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Abstract 

In eukaryotic cells the maturation and stabilization of newly-synthesised protein kinase 

molecules frequently requires the action of Cdc37, a molecular chaperone that will in turn 

often target these maturing protein kinase molecules onto another chaperone, Hsp90. Cdc37-

nascent kinase associations are generally extremely transient in the environment of the living 

cell. Therefore they are seldom detectable by the yeast two hybrid system. This study 

investigated a Cdc37-kinase interaction that was detectable by two hybrid screening, the 

interaction of Cdc37 with the most atypical protein kinase of yeast, cyclin-dependent kinase 

(Cdk)-activating kinase (Cak1). It was shown that Cdc37 and Cak1 form a complex that is 

unaffected by Cdc37 phosphorylation status and sufficiently stable as to be isolatable by gel 

filtration.  

Formation of this Cdc37/Cak1 complex was associated with a change to the phosphorylation 

status of Cak1. Mass spectrometry identified two new sites of Cak1 phosphorylation, Thr27, 

and Ser172. Yeast strains were constructed in which the sole, essential Cak1 has either a 

nonphosphorylatable or a phosphomimetic amino acid at these sites. These were then 

analysed for altered cell cycle progression and stress-sensitivity. Molybdate treatment of 

yeast was shown to cause the loss of Cdc37 and the fragmentation of Hsp90 at a discrete 

site.  

Overall, the work in this thesis indicates that Cdc37 and Cak1 form a stable complex. 

Structural analysis of this complex may provide unique insight into how Cdc37 interacts 

with the N-terminal domain of protein kinases, also the unique structure of fungal Cak1 – a 

kinase which differs markedly from the Cak1 of human cells and is therefore potentially a 

promising antifungal drug target. The thesis also provides the first evidence for: (i) yeast 

Cak1 being regulated by phosphorylation; (ii) Cdc37 being both a determinant of and target 
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for oxidative stress resistance in yeast; and (iii) the molybdate anion inducing in vivo loss of 

Cdc37 and fragmentation of Hsp90. 

Publications arising from this study: Millson SH, van Oosten-Hawle P, Alkuriji MA, 

Truman A, Siderius M, Piper PW. (2014) Cdc37 engages in stable, S14A mutation-

reinforced association with the most atypical member of the yeast kinome, Cdk-activating 

kinase (Cak1). Cell Stress Chaperones (in press). PMID: 24452458 
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Chapter 1: Introduction 

1.1 Molecular chaperones and protein folding 

Environmental conditions are in continuous change, causing stresses that can risk life. Free 

living microbes have mechanisms that reduce the detrimental effects of stress and maintain 

homeostasis. One important response to changing environment is the heat shock response, 

causing up-regulation of expression of a subset of protective proteins known as the heat 

shock proteins (Hsps) (Morano et al., 2012; Morimoto, 1998). Many of these are molecular 

chaperones whose general function, during normal conditions, is to assist in protein folding. 

However they also aid in the recovery of protein damage under stress. Chaperones are 

defined as proteins that help other proteins attain their final conformation more efficiently, 

but do not form a part of the final biologically-active state of these proteins. By performing 

“holdase” or “foldase” functions (Figure 1.1) they prevent protein-protein aggregation, assist 

folding of proteins which have been recently synthesised by the ribosome, assembling and 

folding immature proteins or, in the event that these cannot be folded properly, assist transit 

towards the pathways for protein degradation. Finally, chaperones are also involved in 

translocating proteins to other compartments so that the new folded proteins can perform 

their correct cellular function. 

The heat shock response is highly conserved in evolution (Morano et al., 2012). There are 

several different families of Hsps and these often have different cellular localisations. They 

are classified into several structurally unrelated families on the basis of their molecular size 

in kDa, the major families being Hsp100, Hsp90, Hsp70, Hsp60, Hsp40 and the small HSPs. 

Of these Hsp families the Hsp90 family is of particular interest since it is an unusual protein 

chaperone. Unlike certain other well-characterised chaperones such as Hsp70, Hsp90 does 

not participate in the initial de novo folding of most proteins. Instead it is required for the 
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final activation step of almost-folded proteins. Hsp90 acts on these ‘clients’ when they are 

already substantially folded (often after Hsp70 and Hsp40 family proteins have acted on 

them), so as to enable the final structural changes whereby they attain their fully active 

conformation. Hsp90 clients include many important signalling and regulatory proteins such 

as the glucocorticoid receptor which depends on Hsp90 for steroid-dependent activation, and 

many protein kinases such as the tyrosine kinases v-src and c-src which need Hsp90 

activation to achieve full maturation (Richter and Buchner, 2001).  

Hsp90 is an abundant essential protein in eukaryotic cells (1-2% of total cytosolic protein 

even in the absence of cellular stress) (Borkovich et al., 1989). Hsp90 has received much 

recent interest ever since it was identified as a promising anticancer drug target, since Hsp90 

is critical for the activation of many important oncoproteins, such as p53, v-src/c-src and 

Cdk4. The particular interest of Hsp90 as a drug target for cancer therapy comes from the 

fact that Hsp90 inhibition can inactivate simultaneously several Hsp90-dependent activities 

involved in multistep oncogenesis (Neckers and Workman, 2012). This provides an efficient 

way to simultaneously target several oncoproteins using only one drug, several oncogenic 

activities being targeted to the proteasome for degradation when cancer cells are treated with 

Hsp90 inhibitors (Connell et al., 2001). A number of Hsp90 inhibitors are now in clinical 

trials (Neckers and Workman, 2012)  

Another aspect that has boosted interest in the Hsp90 field is the involvement of this 

chaperone in determining evolutionary change (Queitsch et al., 2002; Rutherford and 

Lindquist, 1998). Hsp90 activity is a key factor determining whether the genotypic variation 

that affects development pathways in nature is expressed phenotypically. Under non-stress 

conditions much of this variation is kept in silent since Hsp90 can buffer this genetic 

variation by assisting mutant client proteins achieve their wild-type conformation. However 
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if Hsp90 function is compromised during development, either by supra-optimal temperature 

or by Hsp90 inhibitors, the silent traits of these mutant client proteins are now expressed, 

leading to new genetic diversity. These new phenotypic traits can then be stably fixed in the 

population in response to evolutionary pressure, allowing a rapid emergence of adaptive 

changes in response to sudden environmental change. 
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Figure 1.1 Proteins newly synthesised on the ribosome associate with molecular chaperones 

which assist several stages of protein maturation. These include avoiding protein aggregation, 

folding, activation and translocation to other cellular compartments or degradation. Hsp90 is 

mainly involved in the final activation of already largely-folded proteins. 
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1.2 The heat shock response 

The heat shock response consists of activating a programme of heat shock gene expression 

to overcome stress. This mechanism is extremely well conserved and involves increasing 

Hsp expression as rapidly as possible. In eukaryotic organisms, this is directed by heat shock 

factor (Hsf), a stress-induced transcription factor. This Hsf binds to a characteristic DNA 

promoter element (the heat shock element HSE) consisting of an alternating repeats of the 

pentanucleotide sequence 5’-nGAAn-3’ (Morano et al., 2012; Verghese et al., 2012). The 

interaction between the Hsf and the HSE is well conserved among eukaryotic organisms. 

However, there is wide variability in the number of HSF genes in different organisms. Yeast 

such as S. cerevisiae have just a single HSF gene (Hsf1), whereas up to four different Hsf 

isoforms can co-exist in plant, avian and mammalian cells. These multiple Hsf isoforms are 

involved not only in the cellular response to internal and external stimuli but also in other 

complex processes such as development and differentiation for reviews see: (Morano et al., 

2012; Verghese et al., 2012). 

There are important differences between the Hsfs of yeasts and higher eukaryotes (Sorger et 

al., 1987). In S. cerevisiae Hsf1 is constitutively trimerised, much of it being constitutively 

bound to HSEs in the absence of stress and under stress conditions. Under stress conditions, 

Hsf1 becomes hyperphosphorylated and functionally activated, leading to transcription of 

its target genes. Unlike the yeast form, the mammalian stress-inducible isoform Hsf1 is 

maintained in an inactive monomeric state. Heat or superoxide stress triggers the conversion 

of this monomer into a homotrimer with DNA-binding affinity, cysteine residues in the 

DNA-binding domain becoming oxidised and forming redox-sensitive disulfide bonds (Ahn 

and Thiele, 2003). This active homotrimer is then translocated to the nucleus where it binds 
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the HSEs at the promoter regions of HSP genes to initiate transcription (Morano et al., 2012; 

Verghese et al., 2012). 

Another notable difference between the Hsf1s of yeast and metazoans is that the latter 

possess just a single trans-activation domain whereas yeast Hsf1 has two independent 

transcriptional activation domains. Due to their position the latter are named the amino-

terminal transcriptional activation domain (NTA; residues 1 to 172) and carboxyl-terminal 

transcriptional activation domain (CTA; residues 584 to 833) (Nieto-Sotelo et al., 1990; 

Truman et al., 2007). It seems that these two HSF activator regions, NTA and CTA, perform 

different functions. The NTA is sufficient for transient increases in Hsf1 activity whereas 

the CTA mediates the sustained response. DNA microarrays showed that some chaperones 

have activation domain specificity. Expression of HSP40 was dependent on the NTA 

whereas the CTA was needed for expression of HSP82, the yeast heat-inducible isoform of 

Hsp90 (Nieto-Sotelo et al., 1990). 

1.3 The yeast Saccharomyces cerevisiae as a model organism for 

studying Hsp90 

Hsp90 is highly conserved among eukaryotes and in most species Hsp90 family proteins are 

to be found in the cytosol, endoplasmic reticulum, mitochondria and chloroplasts. Some 

fungi are an exceptions, possessing only a cytosolic Hsp90 (Chen et al., 2006). Cytosolic 

Hsp90 exists as a single form in D. melanogaster; two (Hsp90α and Hsp90β) isoforms in 

humans and seven Hsp90 isoforms in A. thalania.  In the budding yeast S. cerevisiae 

cytosolic Hsp90 is required for viability, and this is a good model organism in which to study 

cytosolic Hsp90 function in view of its ease of genetic manipulation, also the ability to switch 

Hsp90 genes by plasmid shuffle (Millson et al., 2007; Piper et al., 2003). S. cerevisiae  has 

two 97% identical isoforms of cytosolic Hsp90; Hsp82 and Hsc82, these sharing 50-60% 
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sequence identity with the two isoforms of human cytosolic Hsp90; Hsp90α and Hsp90β. 

Expression of the latter human Hsp90s as sole Hsp90 in S. cerevisiae can provide the 

essential Hsp90 function in this yeast (Millson et al., 2007; Piper et al., 2003). 

1.4 Structure of the Hsp90 chaperone 

When unfolded, newly synthesised proteins emerge from the ribosome their initial folding 

is normally facilitated by chaperones of the Hsp40/Hsp70 family. Subsequently Hsp90 

facilitates the final folding/activation of a number of these proteins both under normal and 

stressful conditions. Elucidating how Hsp90 acts on these varied substrates is one of the 

main challenges in the chaperone field. Structural studies of Hsp90 in complex with its 

clients and/or co-chaperones can give us a better understanding of this mechanism. Nuclear 

magnetic resonance (NMR) and X-ray crystallography have shown Hsp90 consists of a 

modular structure with two well conserved regions, a ~25 kDa N-terminal domain joined by 

a highly charged ‘linker’ region to a ~55 kDa C-terminal domain. It comprises three different 

domains: an N-terminal ATP binding domain, a middle domain thought to be the major site 

of client protein binding and a C-terminal domain, the site of constitutive dimerisation 

(Figure 1.2.a). The crystal structure of the full-length Hsp90 in complex with its co-

chaperone p23/Sba1 ((Ali et al., 2006); Figure 1.2) reveals these domains within the compact 

dimeric state of Hsp90. However this very flexible chaperone is now thought to undergo a 

number of conformational changes as it fulfils its function, changes that are largely directed 

by ATP- and cochaperone binding (Figure 1.3). 

1.4.1 The N-terminal Domain of Hsp90 

The ~25 kDa N-terminal conserved domain of Hsp90 binds ADP/ATP and is also the site of 

interaction of the ATP mimetic Hsp90 inhibitors, geldanamycin (GA) and radicicol (RD) 

(Prodromou et al., 1997; Roe et al., 1999). The crystal structure of this N-terminal ATP-
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binding site showed that it is structurally similar to GHKL family ATPases, the latter 

including type II topoisomerases such as DNA gyrase B, the MutL DNA mismatch repair 

protein and the bacterial histidine kinase CheA. 

1.4.2 Hsp90’s ATPase activity  

Purified Hsp90 has an inherent ATPase activity, inhibited by the Hsp90 inhibitors GA and 

RD (Panaretou et al., 1998; Prodromou et al., 1997; Roe et al., 1999). Two key residues on 

the N-terminal domain were found to be important in the ATPase activity of yeast Hsp90. 

Aspartate D79 is required for ATP binding. When it is mutated from aspartic acid to 

asparagine ATP binding is disfavoured but the nucleotide binding pocket is not disordered 

(Panaretou et al., 1998). Glutamate E33 was found to be conserved between Hsp90 and DNA 

gyrase B, which suggested it is necessary for ATP hydrolysis. When these mutations are 

expressed in yeast as their sole form of Hsp90 the cells are unable to survive (Panaretou et 

al., 1998). This demonstrated that the in vivo function of Hsp90 requires its intrinsic ATPase 

activity. 

1.4.3 The dimeric nature of Hsp90 

The two subunits of the Hsp90 dimer exhibit a constitutive association at their C-terminal 

domains, yet an additional transient association of the N-terminal domains upon ATP 

binding (Meyer et al., 2003; Prodromou et al., 2000). This chaperone is therefore suggested 

to act as a ´molecular clamp´, in which ATP-binding by Hsp90 causing a conformational 

change that traps the client protein into a tight complex (Figure 1.3). With ATP hydrolysis 

the ´molecular clamp´ may then return to its “open” conformation releasing the now-

activated client protein. The structure of full-length Hsp90 in complex with the co-chaperone 

p23/Sba1 and the ATP analogue AMP-PNP ((Ali et al., 2006); Figure 1.2) revealed how the 

co-chaperone p23/Sba1 is recruited to stabilise the ATP-bound complex the full Hsp90 
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architecture. This structure confirmed that Hsp90 functions as a dimer in which the N-

terminal domains transiently associate, but it did not support the notion that the client protein 

was located inside the ´molecular clamp´ as the gap between the middle domains of the 

Hsp90 dimer is too small in the ATP bound conformation to enclose a client protein. Instead 

it indicated that Hsp90 substrates associate with a bipartite binding surface, between the N-

terminal and middle domain, in a manner coupled to the chaperone ATPase cycle. This was 

also indicated by a structure obtained by cryo-electron microscopy of the kinase Cdk4 in 

complex with Hsp90 and co-chaperone Cdc37. In this the kinase substrate seems to be 

located on both the N-terminal and middle domains of Hsp90 (Vaughan et al., 2006). 

1.4.4 The central highly charged region of Hsp90  

The charged ‘linker’ region joins the N-terminal and middle domains of Hsp90. It is the least 

conserved section of the Hsp90 protein and is completely absent from bacterial HtpG. 

Deletion of much of this linker in the yeast Hsp82 showed does not have any effect on the 

ATPase activity of Hsp90 in vitro (Prodromou et al., 2000) and that it is not required for the 

essential function of the cytosolic chaperone in vivo (Louvion et al., 1996). 

1.4.5 The middle (client Binding) domain of Hsp90 

The structure of the middle region of yeast Hsp90 (residues ~ 270-550) revealed three 

different regions: a large αβα domain at the C-terminus which is connected to a smaller αβα 

domain by a helical coil segment  (Meyer et al., 2003). The architecture of these segments 

is very similar to the GHKL ATPase family (Meyer et al., 2003).  
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1.4.6 The C-terminal domain of Hsp90 

Besides being the region responsible for the constitutive dimerisation of Hsp90, the C-

terminal region of cytosolic Hsp90 also ends in the conserved sequence motif -MEEVD. The 

latter is binding site for tetratricopeptide repeat (TPR) domain containing co-chaperones 

(Blatch and Lassle, 1999), some of which “bridge” Hsp70 and Hsp90 so as to assist the 

assembly of Hsp70-Hsp90 multichaperone complexes (Scheufler et al., 2000). Remarkably, 

neither this motif nor many TPR-containing Hsp90 co-chaperones (with the exception of 

Cns1 (Dolinski et al., 1998)) are necessary for S. cerevisiae viability (Louvion et al., 1996).  
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Figure 1.2. Structure of Hsp90 (a) Schematic representation of the amino acid domain 

structure of Hsp90 and their biochemical functions. L refers to the ´Charged linker´ region 

which serves as a flexible linker between the N and Middle domains. The EEVD motif is the 

TPR co-chaperone site binding. (b) Structure of the Hsp90 dimer with the co-chaperone 

p23/Sba1. Blue and orange represents each Hsp90 monomer that are associated via the C-

terminus. Red and green represents p23/Sba1 that binds to the N-terminus, the pink point 

indicates the ATP analogue AMP-PNP (Ali et al., 2006). 

 

b 
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Figure 1.3. The ATP-driven molecular clamp mechanism of Hsp90 (Mollapour et al., 2011). 

Hsp90 is constitutively dimerised at its C-Terminus (brown). ATP binding at the N-terminal 

domain (blue) leads to a conformational change causing the N-terminal regions to dimerise 

transiently. This new Hsp90 conformation is facilitated by some cochaperones (e.g. Aha1) but 

inhibited by others (e.g. Cdc37, Sti). It causes a tighter association with the client protein (not 

shown) which is only relieved when Hsp90´s ATPase activity hydrolyses the ATP causing the 

‘clamp’ to re-open and release of the activated client protein. Hsp90 inhibitors such as GA and 

RA are ATP mimetics and therefore inhibit this ATP cycle.  

 

  

 



 

21 

 

1.5 Client proteins of Hsp90 

Genomic studies indicate that up to 10% of the proteome in eukaryotic cells may associate 

with Hsp90 (Franzosa et al., 2011; Millson et al., 2005; Zhao et al., 2005). Many of these 

associations are essential for protein functionality, these ‘client proteins’ achieving their 

biologically active state through Hsp90/co-chaperone association. The Hsp90 clientele 

identified so far comprises proteins that are all very different, structurally and functionally, 

which is presumably one reason why Hsp90 also needs a number of specific co-chaperones, 

chaperones and cofactors to selectively target its substrates. Examples of these clients 

proteins include telomerase, steroid receptors, tumour suppressor p53, Hsf1, oncogenic v-

src/c-src, Wee1, Cdc2, Cdk4/6/9, nitric oxide synthase, actin, and tubulin. Some of the best 

studied Hsp90 clients are protein kinases, assisted by the kinase-specific co-chaperone 

Cdc37 (see below), and nuclear steroid hormone receptors the latter achieving their active 

state with the help of the chaperones Hsp70/Hsp40 and the co-chaperone Hop/Sti1. 

Steroid hormone receptors like the glucocorticoid (GR) and progesterone receptors are some 

of the most studied Hsp90 clients. The steroid hormone receptor is localised in the cytosol 

in complex with Hsp70 and Hsp40, with the binding cleft in a conformation which does not 

allow access for hormone. This complex is then loaded onto the Hsp90 dimer by Hsp70 with 

the assistance of the co-chaperone Hop/Sti1. ATP dependent binding of p23/Sba1 to Hsp90, 

displaces Hsp70 and Hop, allowing immunophilin FKBP51/2 binding. The final complex 

leads to fully mature steroid hormone receptor which can then bind steroid and migrate to 

the nucleus (Figure 1.4). 

Hsp90 needs the assistance of a variety of accessory “co-chaperone” proteins when 

activating specific proteins in vivo. Depending on the client being studied, its function has 

been shown to need more than 12 of these co-chaperones, in addition to the multiple forms 

http://en.wikipedia.org/wiki/FKBP5
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of the Hsp70 chaperone and the Hsp70 co-chaperones. Identifying the mechanisms whereby 

these co-chaperones module the Hsp90 cycle to activate specific clients is a remarkable 

challenge in the Hsp90 field. 
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Figure 1.4. Activation of glucocorticoid receptor (GR) by hormone and Hsp90. Hormone 

binding to GR causes Hsp90 association and movement from the cytoplasm into the nucleus of 

the GR complexed with Hsp90 and the immunophilin FKBP51. Binding of hormone to GR 

causes a conformational change in the complex, which results in exchange of FKBP51 for 

FKBP52 (Pratt et al., 2004; Pratt and Toft, 2003). FKBP52 in turn binds the dynein (dyn) 

motor protein attached to the cytoskeleton and transports the GR complex into the nucleus. 

Once in the nucleus, the complex disassembles releasing the GR, which dimerizes and binds to 

DNA where it facilitates transcription of DNA (diagram taken from Davies et al. 2002). 
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1.6 Cochaperone accessory proteins of the Hsp90 system 

1.6.1 TPR domain containing co-chaperones  

Many Hsp90 co-chaperones have one or more tetratricopeptide (TPR) repeat domains (Das 

et al., 1998), a protein-protein association domain that – in these cochaperones – facilitates 

binding to Hsp70 and/or Hsp90 by association with the C-terminal motif M(I)EEVD of 

Hsp70 and Hsp90.  The co-chaperone Sti1 (p60/Hop in mammalian cells) acts as a scaffold 

protein, recruiting Hsp90 to the Hsp70 chaperone machine by interacting with Hsp70 via its 

C-terminal IEEVD motif and with Hsp90 via its MEEVD motif. In this way it “bridges” 

Hsp70 and Hsp90 and assists the assembly of Hsp70-Hsp90 multichaperone complexes 

(Scheufler et al., 2000). TPR-domain co-chaperone binding also plays an important role in 

the regulation of the ATPase activity of Hsp90. Sti inhibits the ATPase activity of Hsp90 by 

preventing access to the ATP binding pocket in the N-terminal domain (Prodromou et al., 

1999). (Prodromou et al., 1999) but it has no effect on the ATPase activity of Hsp70 

(Johnson et al., 1998). 

Other TPR domain co-chaperones include CHIP, which regulates the degradation of client 

proteins (Zhang et al., 2005), the immunophilin FKBP52 which assists in nuclear import of 

the GR (Pratt et al., 2004; Pratt and Toft, 2003) (Figure 1.4), Tom70 which mediates protein 

import into mitochondria (Young et al., 2003) and Tah1 (Millson et al., 2008) which is 

involved in snoRNP and RNA polymerase assembly (Back et al., 2013). UNC45 is a TPR-

domain containing co-chaperone that, in metazoans, assists in the folding and assembly of 

myosins (Barral et al., 2002) although the fungal homologues of this UNC45 (Cro1, She4) 

lack the TPR domain.  
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1.6.2 Cdc37 – a non-TPR containing co-chaperone 

One of the most studied Hsp90 co-chaperones that lacks a TPR domain is Cdc37 (p50 in 

mammalian cells). Maturation and stabilization of nascent protein kinase molecules often 

requires an initial association with Cdc37(p50), these maturing protein kinase molecules 

then being targeting on to Hsp90 (Mandal et al., 2007; Pearl, 2005). While Cdc37 fulfils an 

essential function in diverse species from yeast to man, this important molecular chaperone 

would appear to be lacking in certain eukaryotic phyla (Johnson and Brown, 2009). Notably 

Cdc37 seems to be absent in the Apicomplexan phylum of protozoan pathogens, possibly a 

reflection of the protein kinases in these species differing, both structurally and 

mechanistically, from the protein kinases of their hosts (Talevich et al., 2011). 

Since its original discovery of as a component of the v-Src-Hsp90 complex (Brugge et al., 

1981), Cdc37(p50) has been found associated with a wide spectrum of protein kinases. A 

few non-kinase proteins have also been found to bind Cdc37 (Krogan et al., 2006; Millson 

et al., 2004; Rao et al., 2001), though the precise function of Cdc37 in the biology of these 

non-kinase clients is still poorly understood. While Cdc37 interaction serves to stabilise 

many newly-synthesised protein kinases (Mandal et al., 2007; Pearl, 2005), we remain 

largely ignorant of how such nascent protein kinases interact with Cdc37 at the structural 

level; especially how the N-terminus of Cdc37– the Cdc37 region highly conserved in 

evolution – might assist presentation protein kinases to the Hsp90 chaperone machine. A 

crystal structure has though revealed how the middle region of Cdc37 interacts with the N-

terminal domain of Hsp90, thereby preventing ATP-driven N-terminal dimerisation and 

transiently arresting the Hsp90 chaperone cycle but allowing loading of the client protein 

kinase (Roe et al., 2004; Siligardi et al., 2002). 
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Important for Cdc37 function is a sequential casein kinase 2 (CK2)-catalysed 

phosphorylation, then Ppt1(PP5)-catalysed dephosphorylation, of evolutionarily conserved 

serines at the conserved N-terminal region of Cdc37 (Bandhakavi et al., 2003; Miyata and 

Nishida, 2004; Shao et al., 2003; Vaughan et al., 2008). Yeast Cdc37 is phosphorylated by 

CK2 on both Ser14 and Ser17, whereas the mammalian Cdc37 (p50) only Ser13 (equivalent 

to Ser14 in the yeast Cdc37) is modified in this manner (this p50 having a glutamic acid, a 

possible phosphomimetic residue, at the position equivalent to Ser17 in the yeast Cdc37). A 

yeast mutant with a nonphosphorylatable S14A mutant Cdc37 (cdc37(S14A)) is temperature 

sensitive, exhibiting poor growth even at moderate temperatures (Bandhakavi et al., 2003). 

It  has ~70% of its kinome destabilized, revealing that S14 phosphorylation of Cdc37 is 

important for protecting nascent kinase chains against degradation and maintaining 

appropriate in vivo levels of protein kinases (Mandal et al., 2007).  Our laboratory and others 

have shown that this Ser14 phosphorylation event is essential for the functionality of several 

stress-responsive, mitogen-activated protein kinase (MAPK) pathways in yeast, the 

cdc37(S14A) mutation causing loss of Cdc37 interaction with key signaling components of 

these pathways, notably the kinases Ste11, Kss1, Hog1 and Slt2 (Abbas-Terki et al., 2000; 

Hawle et al., 2007; Yang et al., 2006). 

Another Hsp90 co-chaperone that lacks a TPR domain is Sba1 (p23 in mammalian cells). 

Like Sti1 this also has an inhibitory effect on the ATPase activity of Hsp90 (Siligardi et al., 

2004) but whereas Sti1 binds Hsp90 in the absence of ATP, Sba1 binds Hsp90 only in the 

presence of ATP (Fang et al., 1998). Sba1 interacts with the closed conformation of Hsp90 

when the two N-terminal domains are dimerised and the ATP and the client protein bound. 

At this position Sba1 reinforces the ATP-bound conformation of Hsp90 and is thought to 

stabilise the complex in which the client protein achieves its activatory conformational 

change, allowing release of this client protein when ATP is hydrolysed (Ali et al., 2006). 
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This ATP hydrolysis is also stimulated by another non-TPR co-chaperone binding to the 

middle domain of Hsp90, Aha1 (Meyer et al., 2004; Panaretou et al., 2002).  

 

 

Figure 1.5. Activation of protein kinases by the Hsp90-Cdc37 cycle. Maturation of many 

protein kinases (K) requires phosphorylation/dephosphorylation of the kinase-specific 

chaperone Cdc37, then transfer of the nascent kinase to Hsp90. (a) Cdc37, phosphorylated by 

CK2, targets the inactive kinase and Hsp90 dimer forming the H-C-K complex. (b) PP5 (Ppt1 

in yeast) phosphatase binds to Hsp90 and dephosphorylates Cdc37, (c) which subsequently 

dissociates from the Hsp90 complex. ATP binding and hydrolysis by Hsp90 together with 

additional co-chaperones leads to activation and release of the kinase. (d) Free Cdc37 is re-

phosphorylated by CK2 at Ser14 (yeast Cdc37) or Ser13 (human Cdc37), thus “priming” for 

another Hsp90-kinase cycle activation (Reproduced from (Vaughan et al., 2008)).  

 

  



 

28 

 

1.7 Outline of the studies in this thesis 

Most Cdc37-nascent protein kinase associations are extremely transient in the environment 

of the living cell. Therefore they are generally not detectable by the yeast two hybrid system. 

Chapter 3 analyses a Cdc37-kinase interaction that was detectable by two hybrid screening, 

the Cdc37 interaction with the most atypical protein kinase of yeast, cyclin-dependent kinase 

(Cdk)-activating kinase (Cak1) (Figure 1.6).  

In Chapter 3 it is shown that Cdc37 and Cak1 form a complex that is substantially 

unaffected by Cdc37 phosphorylation status, a complex that was sufficiently stable as to be 

isolatable by gel filtration. Formation of this Cdc37/Cak1 complex was found to be 

associated with a change to the phosphorylation status of Cak1. Mass spectrometry identified 

two new sites of Cak1 phosphorylation, Thr27 and Ser172. In Chapter 4 yeast strains were 

constructed in which the sole, essential Cak1 has either a nonphosphorylatable or a 

phosphomimetic amino acid at these sites, also the Ser205 identified as phosphoryated in an 

earlier study. These were then analysed for altered cell cycle progression and stress-

sensitivity.  

Chapter 5 analyses Cdc37 stability in yeast, in particular how the stability of this normally 

stable chaperone is dramatically affected by molybdate treatment and oxidative stress.  

The studies in this thesis provide the first demonstration that: (i) Cdc37 and Cak1 form a 

stable complex (Chapter 3); (ii) yeast Cak1 is regulated by phosphorylation (Chapter 4); and 

(iii) Cdc37 is a determinant of oxidative stress in yeast, being degraded with this stress and 

a molybdate treatment that also causes a discrete fragmentation of Hsp90 (Chapter 5).  
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Figure 1.6 Cak1’s essential role in yeast is to catalyse activatory Thr169 phosphorylation of 

Cdc28 cyclin dependent kinase (Cdk); its effects being counteracted by Swe1/Wee1 tyrosine 

kinase phosphorylation of Cdk on Tyr18. Cak1 also performs nonessential functions, 

phosphorylating Cdks that regulate transcription by RNA polymerase II (Kin28, Bur1, Ctk1) 

and components of the meiotic apparatus. 
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Chapter 2: Materials and Methods 

2.1 Yeast growth media and culture conditions 

Yeast cultures were either grown in rich media (YPD), nitrogen base media or synthetic 

defined minimal media (SD) with the appropriate amino acid dropout (recipes as below 

(all % values are w/v) with plates of each media made by addition of Bacto-agar (2%) prior 

to autoclaving at a temperature of 120°C (15 psi) for 15 min):- 

YPD: D-glucose (2%) (Thermo Fisher Scientific Inc., Loughborough, UK); Bacto-peptone 

(2%); Bacto-yeast extract (1%). 

SD: 2% D-glucose, 0.67% yeast nitrogen base (without amino acids) plus one or more of 

the following auxotrophic amino acids where required: adenine (20mg/l), L-histidine (20 

mg/l), L-leucine (30 mg/l), L-lysine (30 mg/l), L-tryptophan (20 mg/l), uracil (20 mg/l). 

Yeast nitrogen base without amino acids and bases: 2% of chosen carbohydrate, 0.67% 

yeast nitrogen base (without amino acids) plus one or more of the following auxotrophic 

amino acids where required: adenine (20 mg/l), L-histidine (20 mg/l), L-leucine (30 mg/l), 

L-lysine (30 mg/l), L-tryptophan (20 mg/l), uracil (20 mg/l). 

Dropout media: SD base (26.7 g) or nitrogen base (6.7 g) and the appropriate amount of 

complete synthetic media supplement lacking the required amino acids were added  per litre 

of required media. All liquid and agar media adjusted to pH 6.5. 

Growth media and agar were supplied by (BD Ltd., Oxford, UK); SD base and supplements 

were supplied by (Melford Ltd, Ipswich, UK; Formedium Ltd, Hunstanton, UK; Sigma-

Aldrich, Gillingham,UK). 
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All yeast transformants containing the gene of interest in the pYES2.1/V5-His-TOPO® 

plasmid were grown either in YPD or -URA 2% Glucose. For induction of the expression of 

the protein under the GAL1 promoter, cells were grown in -URA 2% Galactose. 

2.2 Yeast strains used in this study 

The yeast strains used in this study are listed in (Table 2.1) they were maintained as frozen 

stocks in YPD + 15% (v/v) glycerol at –80°C. 

To generate strains DH211-5 CAK1-myc (Table 2.1) the CAK1 coding sequence in DH211-

5  (Hawle et al., 2007) was tagged at its C-terminus with the myc epitope, using a cassette 

amplified using a 13myc-TRP1 vector (Longtine et al., 1998) as template and primers 

CAK1tag-R1  

(TATGGGTGTGACCGCTTGCAACAAGAATTTACCGTACATGAAGAATTCGAGCT

CGTTTAAAC) and CAK1tag-F2 

(GAAAGATGGAGCTGTCAAAGAATCTTGCAAGAATTAGAAAAGCCACGGATCC

CCGGGTTAATTAA) (Homology to the cassette underlined). Correct integration in Trp+ 

trasnformants of DH211-5 was confirmed by colony PCR (Section 2.4.3), using primers 

CAK1-chkR (CCTTCTAACATGTCTGCGCACGGG) and CAK1-chkF 

(GCGATTTCAGACTGATTTGCTC), these annealing at +1400 and +790 relative to the 

first base of the start codon respectively. 

For inserting mutant cak1 genes into SY80 (Table 2.1), the relevant TOPO clone (section 

2.4.6) was first used as a template in a PCR reaction with the primers pHscCak1F and 

pHscCak1R (Table 2.2; homology to pHSCprom in capitals and to CAK1 in small case). 

SY80 cells were then transformed to leucine prototropy with this PCR product and linearised 

pHSCprom (Panaretou et al., 1999).  
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Table 2.1 Yeast strains 

Strain Genotype Ref. 

W303-1A MAT-a leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-

11,15 

(Cross and Levine, 

1998) 

82a 

 

W303-1A hsc82::LEU2 hsp82::LEU2 HSP82::HIS3 (Nathan and 

Lindquist, 1995) 

hsp90-G81S 

 

W303-1A hsc82::LEU2 hsp82::LEU2 hsp82,G81S::HIS3 

 

(Nathan and 

Lindquist, 1995) 

SY80 W303-1A cak1::HIS3 (CAK1-URA3) (Cross and Levine, 

1998) 

YDH6 W303-1A cka1::HIS3  cka2::TRP1 (pRS315-CKA2) (Bandhakavi et al., 

2003) 

YDH13 W303-1A cka1::HIS3  cka2::TRP1 (pRS315- cka2 ts) (Bandhakavi et al., 

2003) 

TM141 MAT-a leu2 ura3 trp1 his3 (de Nadal et al., 2003) 

DH211 

CAK1-myc* 

TM141 cdc37::HIS3 (Ycplac111 CDC37-HA) CAK1-myc-

TRP1 

This study 

DH212 

CAK1-myc* 

TM141 cdc37::HIS3 (Ycplac111 cdc37-S14A-HA) CAK1-

myc-TRP1 

This study 

DH213 

CAK1-myc* 

TM141 cdc37::HIS3 (Ycplac111 cdc37-S14E-HA) CAK1-

myc-TRP1 

This study 

DH214 

CAK1-myc* 

TM141 cdc37::HIS3 (Ycplac111 cdc37-S17A-HA) CAK1-

myc-TRP1 

This study 

DH215 

CAK1-myc* 

TM141 cdc37::HIS3 (Ycplac111 cdc37-S17E-HA) CAK1-

myc-TRP1 

This study 

XX201 TM141 cdc37::HIS3 (YCplac33 CDC37-GFP) (Yang et al., 2006) 

XX300 Hsp82-G81S (YEplac195 CDC37) (Yang et al., 2006) 

XX301 Hsp82-G81S (YEplac195 N-term GFP-CDC37) P. Hawle thesis 2008 

XX302 Hsp82-G81S (YEplac195 N-term GST-CDC37) P. Hawle thesis 2008 

PJ694-a MAT-a trp1-901 leu2-3,112 ura3-52 his3-200 gal4Δ gal80Δ 

LYS2::Gal1-HIS3 GAL2-ADE2 met2::GAL7-lacZ 

(James et al., 1996) 

PJ694-α MAT-α trp1-901 leu2-3,112 ura3-52 his3-200 gal4Δ gal80Δ 

LYS2::Gal1-HIS3 GAL2-ADE2 met2::GAL7-lacZ 

(James et al., 1996) 

PH600 PJ694-α (pBDC CDC37-BD) P. Hawle thesis 2008 

PH601 PJ694-α (pBDC cdc37(S14A)-BD) P. Hawle thesis 2008 
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PH602 TM141 cdc37::HIS3 (pBDC CDC37-BD) P. Hawle thesis 2008 

PH603 TM141 cdc37::HIS3 (pBDC cdc37(S14A)-BD) P. Hawle thesis 2008 

MGY140 MATα ura3-1 trp1-289 his3 leu2 lys2Δ0 mob1::kanR 

cdc28::LEU2 pep4::LYS2 (pURA3-MOB1 CDC28). 

(Geymonat et al., 

2007) 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Euroscarf 

BY4741ppt1 BY4741 ppt1Δ kanMX4 Euroscarf 

FY1679-28c MAT-a ura3-52 his3-Δ200 leu2-Δ1 trp1-Δ63 Euroscarf 

ctt1 FY1679-28c ctt1∆kanMX4 Euroscarf 

PP30-HSP82 MAT-a trp1-289, leu2-3,112, his3-200, ura3-52, ade2-

101oc, lys2-801am, hsc82::kanMX4, hsp82::kanMX4 

(pHSCprom-HSP82 a (LEU2)) ** 

(Millson et al., 2007) 

PP30-

huHSP90α 

MAT-a trp1-289, leu2-3,112, his3-200, ura3-52, ade2-

101oc, lys2-801am, hsc82::kanMX4, hsp82::kanMX4 

(pHSCprom- huHSP90α
 a (LEU2)) ** 

(Millson et al., 2007) 

*Strains DH211-5 from an earlier study (Hawle et al., 2007) here modified to express a myc-epitope 

tagged Cak1. 

** The sole Hsp90 gene in this strain, expressed under HSC82 promoter control and borne on the 

LEU2 plasmid pHSCprom. 
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Table 2.2 Primers used in CAK1 gene cloning and CAK1 gene mutagenesis 

Primer 

name 

Sequence 

Y2HCak1F AATTCCAGCTGACCACCATGAAACTGGATAGTATAGAC 

Y2HCak1R GATCCCCGGGAATTGCCATGTTATGGCTTTTCTAATTCTTG 

pHscCak1F ACAGAACCAATAGAAAAATAGAATCATTCTGAAATATGAAACTGGATAGTATAGAC 

pHscCak1R CATAAATCATAAGAAATTCGCCCGGAATTAGCTTGGTTATGGCTTTTCTAATTCTTG 

pHscCak6His

Tag 

ACAGAACCAATAGAAAAATAGAATCATTCTGAAATATGCATCATCATCATCATCATAA

ACTGGATAGTATAGAC 

Cak1T27Af ACTGCTAGGATTTATAGGTCGGATGCATATGCCATTAAATGTCTAGCACTA 

Cak1T27Ar TAGTGCTAGACATTTAATGGCATATGCATCCGACCTATAAATCCTAGCAGT 

Cak1T27Df ACTGCTAGGATTTATAGGTCGGATGACTATGCCATTAAATGTCTAGCACTA 

Cak1T27Dr TAGTGCTAGACATTTAATGGCATAGTCATCCGACCTATAAATCCTAGCAGT 

Cak1S172Af  CTAACAAACAATACCAGCACCGTAGCCCCAAAGTTGTACATAATTGATTTT 

Cak1S172Ar AAAATCAATTATGTACAACTTTGGGGCTACGGTGCTGGTATTGTTTGTTAG 

Cak1S172Ef CTAACAAACAATACCAGCACCGTAGACCCAAAGTTGTACATAATTGATTTT 

Cak1S172Er AAAATCAATTATGTACAACTTTGGGTCTACGGTGCTGGTATTGTTTGTTAG 

Cak1S205Af CCCATGGATAGCAAGGTGACGGATATAGCCACAGGAATTTACAAGGCCCCAGAAGTG 

Cak1S205Ar CACTTCTGGGGCCTTGTAAATTCCTGTGGCTATATCCGTCACCTTGCTATCCATGGG 

Cak1S205Ef CCCATGGATAGCAAGGTGACGGATATAGAGACAGGAATTTACAAGGCCCCAGAAGTG 

Cak1s205Er CACTTCTGGGGCCTTGTAAATTCCTGTCTCTATATCCGTCACCTTGCTATCCATGGG 

Cak1Y221Ff CCAGAAGTGCTTTTTGGAGTAAAATGCTTTGATGGTGGCGTGGACGTGTGGTCGTTG 

Cak1Y221Fr CAACGACCACACGTCCACGCCACCATCAAAGCATTTTACTCCAAAAAGCACTTCTGG 
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2.3 Yeast procedures 

2.3.1 Yeast transformation 

Transformation of S. cerevisiae strains with DNA was performed by making the yeast cells 

competent using lithium acetate (LiAc) and transforming with polyethylene glycol (PEG) 

and single-stranded DNA (Gietz et al., 1995). The yeast strain required for transformation 

was grown in the appropriate media from an OD600 of around 0.2 to an OD600 of around 0.8 

at 30°C with agitation. The cells were harvested by centrifugation at 3,000 xg for 5 min and 

pellets were washed twice in 20 ml sterile dH2O. The cell pellet was transferred to a sterile 

1.5 ml microcentrifuge tube, centrifuged for 15 s at 3,000 xg, and excess water removed. 

The pellet was resuspended in 100 mM LiAc (1 ml) and incubated without agitation at 30°C 

for 30 min. After this period, the cells were again pelleted for 15 s at 3,000 xg and LiAc 

removed. The pellet was resuspended in 100 mM LiAc (500 µl) and for one transformation, 

a 50 µl aliquot of the cells was dispensed into a sterile 1.5 ml microcentrifuge tube. Excess 

LiAc was removed by centrifuging for 15 s at 3,000 xg. To each transformation, 240 µl PEG 

(50% w/v PEG 3350 Sigma-Aldrich Company Ltd., Dorset, UK), 30 µl 1 M LiAc, 25 µl 

single-stranded DNA (2 mg/ml), and 0.1-10 µg plasmid made up to 50 µl with sterile dH2O 

was added. Each transformation reaction was mixed thoroughly by vortexing for 1 min 

before incubating at 30°C for 30 min followed by heat-shock at 42°C for 20 min both without 

agitation. Cells were pelleted at 3,000 xg for 15 s and the PEG supernatant was removed. 

Cell pellets were washed with 1 ml sterile dH2O and resuspended in 500 µl sterile dH2O. 

From each transformation reaction, a 100 µl aliquot was spread on the appropriate selection 

media agar plate. Transformants usually appeared after incubation for 3-4 days at 30°C. 
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2.3.2 Temperature growth assays 

From an overnight culture of strains to be assayed, 100 µl of each was diluted down into 10 

ml of the appropriate media in a sterile 50 ml centifuge tube. 150 µl of each diluted culture 

was aliquoted into rows of 12 adjacent wells of a 96-well V bottom plates. The plate was 

sealed and placed on a gradient PCR machine on a continuous cycle where wells 1-12 were 

on a gradient of temperature ranging from 30°C to 45°C. Plates were left for 24 h and the 

tolerance of the cultures to temperature was assessed by measuring cell density on a 

Multiskan Ascent microplate photometer (Thermo Fisher Scientific Inc.). 

2.3.3  Plate growth assays 

Plate growth assays were carried out with 10-fold serial dilutions of yeast strains in relevant 

media in 96-well flat bottom plates. Up to 6 dilutions of each strain were spotted onto 

relevant agar plates which were incubated from 2-5 days at the temperature required. 

Analysis of the rescue of osmosensitivity by Cdc37 constructs; also Hsp90 inhibitor 

sensitivity, were as previously described (Vaughan et al., 2008; Yang et al., 2006).  

2.3.4 Cak1 and Cdc37 overexpression in yeast. 

 GAL1 promoter-driven overexpression of a N-terminally hexahistidine (His6) tagged Cak1 

used two vector systems; (i) His6-CAK1 inserted into the URA3 vector pYES2 (pYES2-His6-

CAK1) (for data in Fig 2d); (ii); His6-TEV-Cak1 in the HIS3/CDC28 vector pMH940 

(Geymonat et al., 2007) (for data in Fig 3.5). For the latter, strain MGY140 was modified 

for dual GAL1 promoter-driven overexpressions of both His6-Cak1 and a Cdc37(S14A)-

precission-Streptag fusion protein (Streptag introduced at level of PCR primer; see below). 

The His6-TEV-Cak1 gene was amplified using primers: 919-CAK1F 

(CACGATTACGATATCCCAACGACCGAAAACCTGTATTTTCAGCTGGATAGTATAGA

CATTACACACT) and 919-CAK1R 
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(TCTTAGCTAGCCGCGGTACCAAGCTTACTCGAGTCGACCCATGGAGTTATGGCTTT

TCTAATTCTTGCAAGA). Cdc37(S14A)-Streptag fusion expression used a modified form 

if the TRP1/MOB1 vector pMH903 (Geymonat et al., 2007) in which an Nde1 site had been 

introduced at the start codon of the GST gene (TTCATGCATATG). By Nde1 cleavage 

of this vector (pMH903-Nde1), homologous recombination with PCR-generated gene 

sequences can give vectors for GAL1 promoter-driven overexpression of protein fusions with 

a C-terminal tag (in this instance it used a Cdc37 S14A)-precission-Streptag fusion gene 

amplified from strain DH212 DNA using primers: Cdc37F: 

(ttaatatacctctatactttaacgtcaaggagaaaaaaccccgGATCTcaggaaacagtaCATatggccattgattactctaa

gtg) and Cdc37StrpR: 

(gaggtcgacggtatcgataagcttgatatcgaattctttttcgaactgcgggtggctccagtcaacagtgtcggcagtatgtttgac) 

2.4 Molecular techniques 

2.4.1 Amplification and modification of DNA by the polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) allows manipulations and amplification of template 

DNA. A reaction mix was prepared where the components of the reaction, excluding the 

template, were added together in a total volume of 50 l. The mix contained 5 µl of 10x 

Expand™ high fidelity (HF) buffer with 15 mM MgCl2 (Roche Diagnostics Ltd., West 

Sussex, UK) (20 mM Tris-HCl, pH 7.5; 100 mM KCl; 1 mM dithiothreitol DTT; 0.1 mM 

EDTA; 0.5% v/v Tween® 20; 0.5% v/v Nonident® p40; 50% v/v glycerol), 5 µl dNTP mix 

(dNTP mix is an aqueous solution containing dATP, dCTP, dTTP, dGTP, each at a final 

concentration of 2 mM (Fermentas, York, UK)), 0.5 µl of each primer (100 pmol), and 1 µl 

of 3.5 U Expand™ HF Taq DNA polymerase (Roche Diagnostics Ltd.). The relevant amount 

of template DNA was then added to the reaction, which was then made to a total of 50 l 

using sterile dH2O. PCR conditions varied depending on the DNA template being amplified 
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and the primers used but (Table 2.3) shows the general conditions as recommended by the 

manufacturer (Roche Diagnostics Ltd.). Usually, a small aliquot of the PCR was run on an 

agarose gel to see if a product of the required size had been produced 

 

Table 2.3 General PCR parameters. 

Number of cycles Conditions 

1x Denature template 2 min at 95°C 

30-35x Denaturation at 95°C for 30 s 

Annealing usually at 45-65°C * for 30 s 

Elongation at 72 or 68°C ** for 1 min/kb 

1x Final elongation at 72°C for 10 min 

* The annealing temperature was determined for each primer pair using the TM calculator 

function of pDraw32 (ACALONE Software; http://www.acaclone.com/). 

** Elongation temperature depends on the length of amplification product: 72°C is used for 

amplification up to 3.0 kb; 68°C is used for amplification >3.0 kb to prolong the activity of the 

polymerase. 

 

  

http://www.acaclone.com/
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2.4.2 Site-directed mutagenesis 

This PCR allows the site-specific mutation of nucleotide residues in a wild-type sequence of 

DNA. A 50 l reaction mix was prepared as for a general PCR (Section 2.4.1) but using Pfu 

DNA polymerase, 10x reaction buffer with MgSO4 in place of the Expand™ HF buffer 

(Promega Ltd., Southampton, UK) (200 mM Tris-HCl, pH 8.8; 100 mM KCl; 100 mM 

(NH4)2SO4; 20 mM MgSO4; 1% Triton® X-100; 1 mg/ml nuclease-free bovine serum 

albumin BSA). PCR was as in (Table 2.3) except the main number of cycles was 15-20 

instead of 30-35 and the elongation step was always at 68°C. These changes are due to 

plasmid size being very large so with elongations ranging between 8-25 min, the activity of 

the polymerase needs to be prolonged. After PCR, reactions were treated with 20 U DpnI 

(New England Biolabs) for 1 h at 37°C. DpnI cuts at 5’-Gm6ATC-3’ and is specific for 

methylated DNA. Generally, DNA produced by E. coli (i.e. the original plasmid template) 

is dam methylated and therefore susceptible to DpnI, while the PCR produced mutant DNA 

is unmethylated. This difference allows for an easy enrichment of intact mutant plasmid. 

After digestion the reaction was transformed into chemically competent (see Section 2.5.3). 

E. coli cells, selecting for the intact mutant plasmid. The resultant colonies were then 

screened for presence of the mutation by DNA sequencing (Cogenics Inc., Essex, UK). 

2.4.3 Colony PCR 

Colony PCR was used to screen for correct transformants. For yeast colony PCR, yeast cells 

had to be lysed to obtain crude DNA. A small amount of each colony was added to a 1.5 ml 

microcentrifuge. The tube was then heated on the microwave for 90 seconds to lyse the cells. 

The PCR mix was then added as described in section 2.4.1. For bacterial colony PCR, a little 

bit of each colony was added directly to the PCR mix since the cells will easily lyse at 95°C 

during the PCR cycle. 
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2.4.4 Isolation and purification of DNA fragments from agarose gels 

DNA fragments were extracted and purified from an agarose gel using the QIAquick™ gel 

extraction kit following the manufacturer’s protocol (Qiagen Ltd., West Sussex, UK). The 

S.N.A.P.™ DNA clean-up system (Invitrogen Ltd.) was used to isolate DNA fragments from 

agarose gel slices when they were required for TOPO cloning. This is due to the protocol 

being gentler than the QIAquick™ gel extraction kit (see Section 2.4.4) meaning a lower 

chance of the 3’ A-overhangs being sheared away from the DNA fragments which would 

affect the efficiency of the TOPO® cloning. The manufacturer’s protocol was followed 

(Invitrogen Ltd.). 

2.4.5 Ligation of DNA fragments to plasmid vectors 

DNA fragments with compatible ends to cut vectors were ligated together as described in 

Maniatis et al. (1989) using T4 DNA ligase (New England Biolabs) with the supplied 10x 

buffer at a 1x working concentration (50 mM Tris-HCl, pH 7.5; 10 mM MgCl2; 1 mM ATP; 

10 mM DTT; 25 μg/ml BSA). The DNA was used at concentrations between 0.01 and 0.1 

g using a stoichiometric ratio of approximately 3 DNA fragments to 1 of cut vector. The 

reaction was incubated overnight at 16°C, the optimum working temperature for T4 DNA 

ligase. 

2.4.6 TOPO® XL PCR cloning and site-directed mutagenesis 

When required, PCR products would be cloned into the pCR®-XL-TOPO® vector using the 

TOPO® XL PCR cloning kit (Invitrogen Ltd., Paisley, UK). During the PCR reaction, Taq 

polymerase adds a single deoxyadenosine to the 3` ends of PCR products, which tends to 

degrade away over time. The kit uses this overhang to ligate fresh PCR products into pCR®-

XL-TOPO® as this vector is provided linearised, with 3` deoxythymidine overhangs, to 

which topoismerase has been bound to allow quick and efficient ligation of PCR products 
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(Shuman, 1994). A 50 l PCR was set-up and run (See Section 2.4.1), but with a final 

extension at 72°C for 30 min. This allows extra time to make sure the nontemplate-dependent 

terminal transferase activity of Taq polymerase to add the 3’ A-overhang to all PCR 

products. These products were then verified on an agarose gel (the Qiagen) and purified 

using the S.N.A.P.™ DNA clean-up system (the Qiagen). 

An aliquot (2 l) of purified PCR gel band product was pipetted into a fresh 0.5 ml 

microcentrifuge tube at room temperature followed by the addition of 0.5 l pCR®-XL-

TOPO® (5 ng plasmid DNA; 50% v/v glycerol; 50 mM Tris-HCl, pH 7.4, 1 mM EDTA; 2 

mM DTT; 0.1% v/v Triton X-100; 100 µg/ml BSA; phenol red). The reaction was incubated 

at room temperature for 5 min, following which the reaction was stopped by adding 0.5 l 

of 6x TOPO® cloning stop solution (0.3 M NaCl; 0.06 M MgCl2) and placing the tube on 

ice. An aliquot of the cloning reaction was used to transform One Shot® TOP ten chemically 

competent E. coli cells (see Section 2.5.3) or One Shot® TOP ten electro-competent (see 

Section 2.5.4).  

Site-directed mutagenesis of a TOPO® clone of the CAK1 gene used the mutagenic primers 

in (Table 2.2) and the Stratagene® mutagenesis kit in accordance with its instructions. 

Sequences were checked by dye-terminator sequencing.  

2.5 Handling bacteria 

2.5.1 E. coli growth media and culture conditions 

E. coli cultures were routinely grown in LB broth at 37°C (Bacto-tryptone 1%; yeast extract 

0.5%; sodium chloride 1%) with plates of each media made by addition of Bacto-agar 2% 

prior to autoclaving. E. coli transformed with plasmids containing a gene for antibiotic 

resistance were grown with LB containing the appropriate antibiotic at the relevant working 
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concentration (ampicillin to a final concentration of 100 µg/ml, kanamycin to a final 

concentration of 50 g/ml). 

2.5.2 Preparation of competent E. coli 

Competent E. coli cells were prepared according to the calcium chloride technique described 

in Maniatis et al. (1989). The competent cells were resuspended in ice cold 0.1 M CaCl2 plus 

15% v/v glycerol and stored in 0.1 ml aliquots at -80°C. 

2.5.3 Transformation of chemically competent bacteria 

Aliquots of competent E. coli cells were thawed on ice and 50 µl pipetted into a chilled 1.5 

ml microcentrifuge tube. An appropriate amount (1-100ng) of plasmid DNA or 5-10 l of 

vector ligation reaction was added to the chilled cells, mixed gently by pipetting and 

incubated on ice for 30 min. The cells were then heat-shocked at 42°C for 90 s and placed 

on ice a further 3 min to recover. The cells were then resuspended in 500 µl of SOC medium 

(2% w/v tryptone; 0.5% w/v yeast extract; 10 mM NaCl; 2.5 mM KCl; 10 mM MgCl2; 20 

mM MgSO4; 20 mM D-glucose) and incubated at 37°C for 1 h. Cells were pelleted at 3,000 

xg for 30 s. The pellet was then resuspended in 100 µl of the supernatant and then plated on 

LB agar containing the appropriate antibiotic before incubation at 37°C overnight. 

2.5.4 Preparation of plasmid DNA from E. coli 

For mini-preps, single bacterial colonies were inoculated into 5 ml LB supplemented with 

the appropriate antibiotic (for midi-preps 50 ml LB). The cultures were incubated overnight 

at 37°C with shaking to allow bacterial growth. To purify plasmid DNA the appropriate 

QIAprep® Miniprep or Midiprep kits were used as described in the appropriate QIAprep® 

handbooks (Qiagen Ltd.) to obtain approximately 20-200 µg of high-copy plasmid DNA, 

respectively. 
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2.6 Biochemical techniques 

2.6.1 Extraction of total cell protein 

The yeast strain required was grown in 100 ml of the appropriate media from an OD600 of 

around 0.2 to an OD600 of around 1.0 at 30°C with agitation followed by the relevant stress 

conditions for 1 h if required. Cells were pelleted in 50 ml centrifuge tubes by centrifugation 

(3,000 xg, 5 min) and the supernatant was discarded. Pellets were washed twice with 25 ml 

dH2O and transferred to 2 ml screw-cap tubes. Two volumes of acid washed glass beads 

(Sigma-Aldrich Company Ltd.) were added to the cell pellet. Protein extraction buffer (50 

mM Tris-HCl, pH 8.0; 1 complete, EDTA-free tablet (Roche Diagnostics Ltd.) per 50 ml 

extraction buffer) was added at a volume sufficient to cover the cell/bead suspension. Cells 

were disrupted by bead-beating (MiniBeatbeater-8™, BioSpec Products Inc., Oklahoma, 

US) for 30s before chilling on ice for 30s. This procedure was repeated 4 times to ensure 

complete cell breakage. Beads and cellular debris were removed by centrifugation (13,000 

xg, 8 min, 4°C) and soluble protein-rich supernatant was removed and transferred to a fresh 

1.5 ml microcentrifuge tube. 

2.6.2 Determination of protein concentration 

Protein concentrations were determined using the Bio-Rad protein assay kit (Bio-Rad 

Laboratories Ltd., Hemel Hempstead, UK) which is based on the Bradford assay. This 

colourimetric protein assay works due to the blue dye primarily binding basic and aromatic 

amino acid residues, especially arginine, and the subsequent spectrophotometer 595 nm 

measurements being compared to a BSA standard curve. Both standard and unknown protein 

concentrations were assayed as by manufacturer’s instructions. 
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2.6.3 Purification of 6x histidine-tagged proteins using Talon® beads  

Talon® beads (Takara Bio Europe/Clontech Inc.), which are precharged with cobalt ions 

(Co2+), were also used to purify the 6x His-tagged protein of interest from the total soluble 

protein-rich extract (the beads had been washed 3 times with 1 ml of protein extraction buffer 

and resuspended in the original volume using the same buffer). A suitable volume of soluble 

protein extract was incubated with 50 µl Talon® beads in a 1.5 ml microcentrifuge tube. 

Tubes were then incubated at room temperature for 5 min, inverting them every few minutes 

to mix. After incubation the tubes were spun down at 3,000 xg for 30 s and the supernatant 

was removed. The beads were then washed five times with wash buffer (20 mM sodium 

phosphate; 500 mM NaCl; 20-40 mM Imidazole, pH 7.4). The supernatant was removed 

after the last wash and the beads were resuspended in protein extraction buffer. Protein 

loading buffer (0.063 M Tris-HCl, pH 6.8; 10% v/v glycerol; 5% v/v β-mercaptoethanol; 

0.2% w/v SDS; 0.025% w/v bromophenol blue) was added to the samples and tubes were 

boiled at 95°C for 10 min. This allows the elution of the 6x His-tagged protein from the 

beads since the heat breaks the protein-bead bond. After incubation, the tubes were spun 

down at 3,000 xg for 30 s and the supernatant was removed and transferred to a fresh 1.5 ml 

microcentrifuge tube. 

2.6.4 Purification of 6xHistidine-tagged proteins using fast performance liquid 

chromatography (FPLC) 

To obtain soluble protein-rich extract, 1-2 L of yeast cells containing the 6xHistidine-tagged 

protein of interest were grown to OD600= 1.0 in suitable induction selective media at 30°C 

shaking at 160 rpm and harvested by centrifugation at 5000 xg, 5 min. The pellet was 

resuspended in an equal volume of binding buffer, A (20 mM sodium phosphate, 500 mM 

NaCl, 20 mM imidazole, pH 7.4). The yeast cells were broken by passing through a Cell 
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Disrurtion System (Constant Cell Disruption Systems, Northants, UK) at 30psi pressure. The 

extract was centrifuged at 8000 xg for 5 min. The protein rich supernatant was then removed 

and the lysate was cleared of debris by filter steralising it. Protein concentration was 

determined by BioRad assay. The soluble protein extract was applied to HisTrapTM FF 

crude 5 ml column containing Ni2+ SepharoseTM 6 Fast Flow (GE Healthcare Life Sciences 

17-5255-01). The column was washed with 5 bed volumes of binding buffer, A. An 

imidazole step gradient was applied to the column to elute the proteins of interest by 

increasing the percentage of Elution buffer, B, (20 mM sodium phosphate, 500 mM NaCl, 

500 mM imidazole, pH 7.4) to binding buffer A. Fraction samples were collected and 

resolved using SDS/PAGE for analysis by western blot and staining with Coomassie blue 

R-250. 

2.6.5 Separation of proteins by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) 

After assembly of 1.5 mm glass plates in the mounting apparatus, the resolving gel was cast 

using the appropriate volume of 30% acrylamide:bis-acrylamide (29.2% w/v acrylamide; 

0.8% w/v bisacrylamide) (Geneflow Ltd., Staffordshire, UK) to make up the resolving gel 

stock solution (500 mM Tris-HCl, pH 8.8; 0.1% w/v SDS) (Geneflow Ltd.) and polymerised 

upon addition of 0.1% v/v TEMED (Sigma-Aldrich Company Ltd.) and 1% v/v APS (10% 

w/v ammonium persulphate). Once the resolving gel had set it was overlaid with 4% 

acrylamide:bis-acrylamide stacking gel stock solution (125 mM Tris-HCl, pH 6.8; 0.1% w/v 

SDS) (Geneflow Ltd.), which had polymerisation initiated by addition of 0.1% v/v TEMED 

and 1% v/v APS, and the relevant gel combs were inserted. After the stacking gel had set 

the completed gel was fitted into the Bio-Rad Mini-Protean-3 electrophoresis tank as 

described in the manufacturer’s instructions and the tank was filled with 1x SDS-PAGE 
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running buffer (25 mM Tris; 250 mM glycine; 0.1% w/v SDS). The comb was then removed 

and the wells created were carefully rinsed with running buffer.  

Prior to loading, protein samples were boiled at 95°C for 10 min in an appropriate volume 

of protein loading buffer (0.063 M Tris-HCl, pH 6.8; 10% v/v glycerol; 5% v/v β-

mercaptoethanol; 0.2% w/v SDS; 0.025% w/v bromophenol blue). These samples were 

loaded into wells formed within the stacking gel, and electrophoresis proceeded at a constant 

current of 60 mA until the appropriate level of protein separation had occurred. SeeBlue® 

Plus2 pre-stained standard (Invitrogen Ltd.) was run beside the samples to indicate protein 

size. 

2.7 Analysis of proteins after SDS-PAGE 

After electrophoresis was completed the gel was dismantled and the proteins were visualised 

by one of the following methods. 

2.7.1 Direct staining 

Staining with Coomassie Brilliant Blue stain solution (0.1% w/v Coomassie Brilliant Blue 

R-250 (Sigma-Aldrich Company Ltd.); 40% v/v methanol; 10% v/v acetic acid) allows 

detection of abundant proteins (1µg or more). Gels were incubated for 1 h at room 

temperature with shaking. The gels were subsequently incubated overnight in destain 

solution (15% v/v methanol; 7.5% v/v acetic acid) with shaking and several changes of 

destain until the pale blue background of the gel was removed. 

2.7.2 Western blotting 

Western blotting is a technique that allows the transfer of SDS-PAGE separated proteins 

(see Section 2.6.5) from the gel to a nitrocellulose membrane for further analysis. To set up 

the blot a “sandwich” structure was made consisting of 1 fibre pad (Bio-Rad Laboratories 
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Ltd.), 2 pieces of 3 mm Whatman® filter paper (Camlab Ltd., Cambridgeshire, UK) cut to 

the size of the fibre pad, the gel to be blotted, a piece of nitrocellulose membrane (Protran® 

BA 85, Camlab Ltd.) to cover the gel (air bubbles being removed by smoothing out), and a 

further 2 pieces of 3 mm filter paper followed by 1 fibre pad. All these components were 

saturated in chilled transfer buffer (25 mM Tris; 150 mM glycine, pH 8.3; 40% v/v methanol) 

prior to assembly. The completed “sandwich” was immersed within a transfer buffer-filled 

Bio-Rad Mini Trans-blot electrophoretic transfer system (Bio-Rad Laboratories Ltd.), with 

the gel facing towards the cathode and membrane towards the anode. The tank contained an 

ice-pack to keep the apparatus cool. A constant current of 200 mA was applied for 2 h in 

order to transfer the proteins from gel to membrane. Efficiency of protein transfer was 

verified by staining the membrane with Ponceau-S (Sigma-Aldrich Company Ltd.). The 

transient stain was water-soluble and did not affect further analysis of blotted proteins. By 

running pre-stained protein marker during SDS-PAGE, both the efficiency of transfer and 

molecular weight of sample proteins could be identified. 

2.7.3 Identification of immuno-reactive proteins by ECL Plus™ detection 

All immunodetection steps were carried out at room temperature with constant agitation. 1x 

TBS-T (50 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.1% v/v Tween-20 Sigma-Aldrich 

Company Ltd.) was used as a base for blocking solution (1% w/v BSA Sigma-Aldrich 

Company Ltd. dissolved in TBS-T) in which the membrane produced by Western blotting 

(see Section 2.7.2) was incubated for 1 h. The membrane was then incubated for 1-4 h, 

depending on the specificity of the antibody, with agitation in blocking solution containing 

the required dilution of primary antibody. Three 5 min washes with 1x TBS-T were carried 

out to remove any unbound primary antibody. The membrane was then incubated for 1 h 

with agitation in blocking solution containing the required dilution of secondary antibody. 



 

48 

 

This antibody is conjugated to horse radish peroxidase (HRP). Three 5 min washes with 1x 

TBS-T were again carried out to remove any unbound secondary antibody. Once the washes 

were completed the membrane was ready for enhanced chemiluminescence (ECL Plus™) 

(GE Healthcare Ltd., Buckinghamshire, UK) detection. Western blots were analysed with 

anti-His, anti-myc, anti-actin, anti GAPDH and anti-PSTAIRE antisera as previously 

described (Mandal et al., 2007; Millson et al., 2005; Mollapour and Piper, 2007). 

This detection method works on the principle that the HRP molecule conjugated to the 

secondary antibody can react with a luminol substrate found in the ECL Plus™ reagents 

leading to light being emitted. This light can then be detected by exposure to film. To carry 

out this detection method the ECL Plus™ reagents were first prepared by mixing, as per 

manufacturer’s instructions, and then applied to the membrane for 2 min. The membrane 

was then transferred to a film cassette and exposed to Kodak® X-Omat LS film (Sigma-

Aldrich Company Ltd.) for between 5 s and 15 min, depending on the intensity of the signal. 

The film was then developed using an automatic film developer (Compact X4, Xograph 

Healthcare Ltd., Gloucestershire, UK) and the pre-stained standards were marked. 
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Chapter 3: Characterisation of the stable complex forming between 

Cdc37 and the most atypical member of the yeast kinome, Cak1 

3.1 Introduction: Background to the studies in this Chapter 

3.1.1 Cdc37 with a C-terminal BD extension is functional in yeast 

Amongst the Cdc37 proteins of distantly-related species it is only the 20-30 amino acids at 

the extreme N-terminus of Cdc37 that are highly conserved in sequence (MacLean and 

Picard, 2003), a strong indication that this N-terminal region is important for Cdc37 function. 

Consistent with this our collaborators in the Netherlands noted that sequences placed at the 

N-terminus of Cdc37 generally lead to a loss of Cdc37 functionality. Thus, while Cdc37 

overexpression will normally rescue the osmosensitive growth of the hsp90-G81S mutant 

(Yang et al., 2006), overexpressions of N-terminally GFP- or GST-tagged forms of Cdc37 

could not provide any rescue of this mutant in the presence of 2M sorbitol even though these 

proteins have been shown to be stably expressed by western analysis (P. Hawle, unpublished 

data) (Figure 3.1a). Contrasting with this are the experiences of placing sequences at the C-

terminus of Cdc37. Cdc37 has been shown to be functional when tagged at its C-terminus 

with either GFP, the –HA epitope (Hawle et al., 2007) or the tandem affinity tag (Puig et al., 

2001). 

A number of potential interactors of Cdc37 have already been identified in experiments 

involving immunoprecipitation (Abbas-Terki et al., 2000; Hawle et al., 2007), yeast two-

hybrid (Y2H) (Lamphere et al., 1997; Millson et al., 2004; Mort-Bontemps-Soret et al., 

2002) or the mass spectrometry of protein complexes (Gavin et al., 2002; Krogan et al., 

2006). We noted that all the earlier Y2H screens had used “bait” or “prey” fusions where the 

BD or AD domain of Gal4 is positioned at the N-terminus of Cdc37. Concerned that these 
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might not have been functional fusions P. Hawle and S. Millson in this laboratory 

constructed (by homologous recombination in PJ694-α yeast; see Methods), vectors for the 

expression of Y2H “bait” fusions where the BD domain placed at the C-terminus of either a 

wild-type or a Cdc37(S14A) mutant Cdc37 (Cdc37-BD; Cdc37(S14A)-BD respectively). 

After extraction from the original PJ694-α transformants (PH600/1; Table 2.1), the TRP1 

vectors carrying these fusion genes were retransformed into a strain (XX201; Table 2.1) in 

which the essential Cdc37 function is provided by a CDC37-GFP gene carried on a 

centromeric URA3 plasmid. Transformants of this XX201 growing on minus tryptophan 

plates were subsequently streaked onto agar containing 5-fluoroorotic acid (FOA), 

whereupon only cells able to lose the original URA3-based CDC37 plasmid should grow. As 

shown in (Figure 3.1b), the cells containing the Cdc37-BD and the Cdc37(S14A)-BD fusion 

vectors were capable of growth in presence of FOA, indicating that Cdc37 and Cdc37(S14A) 

are still functional with a C-terminal -BD extension. As is normal for the cdc37(S14A) yeast 

mutant, the cells expressing Cdc37(S14A)-BD as their sole Cdc37 (PH603; Table 2.1) were 

temperature sensitive (not shown). 
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Figure 3.1. (a) Overexpression of an N-terminally GFP- or GST-tagged Cdc37 does not rescue 

the osmosensitivity of the hsp90-G81S mutant. Serial dilutions of untransformed wild type (82a 

WT), or osmosensitive hsp90-G81S mutant cells; also hsp90-G81S cells transformed with the 

empty multicopy vector YEplac195 or YEplac195-based plasmids with genes either native 

Cdc37, N-terminally GFP- or GST-tagged Cdc37 were pinned on YPD; also YPD containing 

2M sorbitol. Plates were photographed after 3d at 24°C. (b) Growth (3d 30°C) of Trp+ 

transformants of strain XX201 on FOA, cells containing either empty pBDC vector, or pBDC 

containing a Cdc37-BD or Cdc37(S14A)-BD gene insert. No growth is apparent with the empty 

vector pBDC (data generated by Dr P. Hawle). 
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3.1.2 A genomic Y2H screen for interactors of Cdc37-BD and Cdc37(S14A)-BD. 

In the Y2H study conducted by P. Hawle and S. Millson in this laboratory PJ694cells 

expressing either a Cdc37-BD or a Cdc37(S14A)-BD bait fusion (strains PH600/1; Table 

2.1) were robotically mated with a previously-described array of AD-fusions to the 6000 

different proteins of yeast, the latter expressed in cells of the opposite mating type (PJ694a) 

(Uetz et al., 2000). Diploids - now expressing either Cdc37(Wt)-BD or Cdc37(S14A)-BD 

and an AD-fusion protein - were selected on medium lacking tryptophan and leucine, then 

transferred to medium without tryptophan, leucine and histidine but containing 4mM 3-AT. 

Activity of the interaction-responsive HIS3 reporter gene was monitored as 3-AT resistant 

growth over 4, 8 and 16 days incubation at 30° C. (Figure 3.2a) shows the strong positives 

appearing on four sample plates, arrayed diploid cells (now expressing both the -AD and the 

Cdc37(S14A)-BD fusion) grown 16d in the presence of 4mM 3-AT. Eliminating the known 

false-positives on the array, only a relatively small number of interactors were detected (15 

interactions with the Cdc37-BD fusion and 9 with Cdc37(S14A)-BD; P Hawle thesis, 2008). 
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Figure 3.2. (a) Four sample plates of the 384-colony format 16-plate library array of PJ694a/α 

cells containing the Cdc37(S14A)-BD bait. Activation of the interaction responsive HIS3 gene 

is moitored as 3-AT resistant growth (16 d at 30°C) on SD medium without tryptophan, leucine 

and histidine containing 4 mM 3-AT; Cdc37(S14A)-BD interactions represented on these plates 

being: plate 2: AD-Cak1; plate 6: AD-Ndt80; plate 7: AD-Vps71; plate 15: AD-Nmd5. The 

colony size is an indicator of interaction strength. (b) Serial dilutions of PJ694a/α cells 

expressing Cdc37-BD or Cdc37(S14A)-BD baits and the indicated AD-fusions after growth 

(10d at 30°C) on this same medium and either zero or 6mM 3-AT. (c) Measurements of 

interaction-responsive LacZ reporter gene expression in PJ694a/α cells analysed after growth 

to mid-log phase at 24° (grey), or 1h following a heat shock from 24° to 39°C (black).  LacZ 

expression is expressed as percentage increase relative to that of PJ694a/α control cells 

containing empty pBDC plasmid and the corresponding AD-protein fusion. (d) Total versus 

His Tag -retained His6-Cak1, Cdc37-HA and Cdc37(S14A)-HA in extracts from 28°C glucose 

and galactose-grown cultures of DH211 and DH212 containing pYES2-His6-CAK1, a vector for 

GAL1 promoter-driven overexpression of His6-Cak1. Blots were probed with anti-HA, anti-His 

and (as loading control) anti-GAPDH antisera (data in (a) generated by Dr P. Hawle). 
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3.2. Results 

3.2.1 Confirmation of the Cdc37-BD:AD-Cak1 Y2H interaction 

We initiated this thesis study by confirming certain of the interactions identified in Dr 

Hawle’s genomic screening of the Cdc37-BD or the Cdc37(S14A)-BD bait fusions against 

the library of AD-yeast protein fusions (Figure 3.2a). Repinning (Figure 3.2b) and 

expression measurements of the interaction-responsive LacZ reporter gene in PJ694a/ 

(Figure 3.2c) confirmed the interactions with AD-Cak1, AD-Vps71 and AD-Nmd5; also that 

the S14A mutation in the bait was moderately reinforcing the interactions with AD-Cak1 

and AD-Vps71 and strongly reinforcing the interaction with AD-Nmd5.  

To confirm that Cdc37 associates with Cak1 in cell extracts an N-terminally His6-tagged 

Cak1 (His6-Cak1) was overexpressed from the GAL1 promoter of plasmid pYES2-His6-

CAK1 in DH211 and DH212 (Table 2.1), strains which possess C-terminally HA-epitope 

tagged forms of either the wild type or the cdc37(S14A) mutant Cdc37 respectively (Cdc37-

HA; Cdc37(S14A)-HA). Immobilized metal affinity chromatography (IMAC) retention of 

the His6-Cak1 in cell extracts confirmed that Cdc37-HA was being retained by this His6-

Cak1 and that such retention is enhanced with S14A mutation of this Cdc37-HA, a result 

consistent with the Y2H data (Figure 3.2b-d).  We subsequently found this 

Cak1:Cdc37(S14A) complex to be sufficiently stable as to be isolatable by gel filtration (see 

below). 

3.2.2. Analysis of Cak1 and Cdc37 protein levels in Cdc37 phosphorylation mutants.  

Our Y2H screen did not detect most of the protein kinases thought to be Cdc37 “clients” in 

yeast, for the probable reasons outlined in the Discussion (section 3.3). Remarkably though 

did detect Cdc37(S14A)-BD interacting with at least two protein kinases (Ste20, Cak1) 

which would appear, on the basis of current evidence,  may not require Cdc37 
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phosphorylation for their stability (Table 2). An earlier study indicated that the stability of 

Ste20 is unaffected by cdc37(S14A), a mutation that destabilizes much of the yeast kinome 

(Mandal et al., 2007). Furthermore we have found that the cdc37(S14A) mutant can 

efficiently overexpress His6-Cak1 (Figure 3.2d). Though Cak1 may be a Cdc37 “client” in 

yeast (reduced stability of Cak1 having been reported in the temperature sensitive cdc37-1 

mutant (Farrell and Morgan, 2000)), the eukaryotic Cdc37 chaperone function may not be 

critical for the proper folding of Cak1 since a GST-Cak1 fusion expressed in E. coli is fully 

active and is able to efficiently phosphorylate Cdk (Song et al., 2001).  

Cak1 has not been identified as one of the several protein kinases destabilized in 

cdc37(S14A) yeast cells. So that Cak1 levels could be analysed in this, as well as other Cdc37 

phosphorylation mutants, the chromosomal CAK1 coding sequence of strains DH211-5 was 

myc epitope tagged using the 13myc-TRP1 cassette system (Table 2.1 and Section 2.2). 

Analysing protein extracts from these cells (Figure 3.3), the levels of Cak1-myc in the 

cdc37(S14A) mutant did not appear to be as dramatically reduced as those of Cdc28 (the 

latter Cdk, a major phosphorylation target of Cak1, is destabilized by the cdc37(S14A) 

mutation (Mandal et al., 2007)). Levels of Cak1-myc were also substantially unaltered in 

cells expressing the nonphosphorylatable S17A and phosphomimic (S14E, S17E) mutant 

versions of Cdc37-HA (Figure 3.3). This reveals that, whereas Cdc37 is probably required 

for the in vivo stability of Cak1 (since Cak1 levels are reduced in the cdc37-1 mutant (Farrell 

and Morgan, 2000)), this stabilization is not dependent on the CK2 phosphorylation/Ppt1 

dephosphorylation of Cdc37 (Vaughan et al., 2008).  
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Figure 3.3 (a) Analysis of Cak1 and Cdc28 in Cdc37 phosphorylation mutants. Protein extracts 

from 24°C cultures of strains DH211-5 CAK1-myc were western blotted and probed using anti-

HA, anti-myc, Pstaire and anti-actin (loading control) antisera. Two exposures of the actin blot 

are shown; a nonspecific band from the anti-myc probing is indicated with an asterisk (*). The 

control lane (C) is an identically-treated extract from strain TM141 in which neither the Cdc37 

nor the Cak1 is epitope tagged. (b) An analysis of Cdc37-HA levels in the original DH211-5 

(Hawle et al., 2007). 
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3.2.3 Cells expressing S14A, S14E, S17A mutant versions of Cdc37 have elevated levels 

of Cdc37. 

While conducting this analysis we were intrigued to find that levels of Cdc37-HA are 

elevated in yeast strains expressing, as their sole Cdc37, the S14A, S14E, S17A mutant 

versions of this Cdc37-HA. As shown in (Figure 3.3), levels of Cdc37-HA are increased in 

strains DH212-4 CAK1-myc, relative to the cells expressing either the wild type or S17E 

mutant Cdc37-HA (strains DH211 CAK1-myc and DH215 CAK1-myc). The reasons why 

these mutations in Cdc37 increase cellular levels of this chaperone have yet to be established. 

However it should be noted that these Cdc37 mutations, in contrast to S17E, also render cells 

highly sensitive to stress and the loss of Hsp90 activity (Bandhakavi et al., 2003; Vaughan 

et al., 2008). 

3.2.4 Purification of Cak1 in complex with Cdc37(S14A). 

Cak1 has previously been found to associate with both Cdc37 and Cdc28 in yeast (Lamphere 

et al., 1997; Millson et al., 2004; Mort-Bontemps-Soret et al., 2002). In this study we 

identified that Cak1:Cdc37 association was enhanced by the presence of the S14A mutation 

in Cdc37 (Figure 3.2b-d), despite this mutation normally acting to destabilise protein 

kinases. To further characterize the protein composition of what appeared to be a relatively 

stable complex forming in vivo between Cak1 and Cdc37(S14A) we modified an S. 

cerevisiae vector autoselection system for recombinant protein expression (Geymonat et al., 

2007), so that the cells would simultaneously overexpress both of these yeast proteins (also 

the native Cdc28 and Mob1) during growth on galactose. 

The published vectors for this expression system all create proteins with N-terminal 

sequence extensions (His6- or glutathione transferase (GST-)). However since such N-

terminal sequence extensions generally inactivate Cdc37 (Figure 3.1), Dr Millson in this 
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laboratory modified the TRP1/MOB1 vector pMH903 (Geymonat et al., 2007) so that it had 

a unique Nde1 site upstream of the GST gene (plasmid pMH903(Nde1)) and so that 

homologous recombination in yeast using this Nde1-cleaved vector could generate a GAL1 

promoter regulated gene for expressing a Cdc37-precission-Streptag fusion protein in which 

the N-terminus of Cdc37 was preserved intact. 
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Figure 3.4 The S. cerevisiae plasmid autoselection system for maintaining vectors for optimised 

expression of a single recombinant protein (strain MGY70) or two recombinant proteins 

(strain MGY140) (adapted from (Geymonat et al., 2007)). 
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Strain MGY140 (Table 2.1) was engineered (see Figure 3.4 and Methods) so that it 

maintained two expression vectors, each with a bidirectional GAL1 promoter regulating two 

genes: (1) a pMH940 derivative bearing genes for Cdc28 and His6-TEV-Cak1 (Cak1 with a 

N-terminal TEV protease-cleavable His6 tag), also (2) a pMH903(Nde1) derivative bearing 

genes for Mob1 and Cdc37(S14A)-Strep (the latter Cdc37(S14A) with a C-terminal, 

precision protease-cleavable Strep2 tag). 

Following growth on galactose and cell breakage, we isolated the His6-Cak1 in the cell 

extract on His Tag resin. This His6-Cak was found to be associated with a substantial amount 

of Cdc37(S14A)-Strep, but very little Cdc28 and no detectable Hsp90 (Figure 3.5). Gel 

filtration of the His Tag -eluted sample applied to a 16/60HiLoadSuperdex 200 column 

equilibrated with PBS buffer indicated it contained a substantial amount of free His6-Cak1 

(yield ~20mg/litre culture), as well as – at lower level – complexes containing His6-Cak1, 

Cdc37(S14A) and a little Cdc28 (Figure 3.5). Much of it was a complex with an apparent 

MW of 165kDa, indicative of a monomer of Cak1 in association with a dimer of 

Cdc37(S14A). 

When this His Tag -eluted protein was subsequently applied to streptavidin agarose resin, 

there was no selective retention of the His6-Cak1 (though this resin bound the free 

Cdc37(S14A)-Strep in cell extracts; not shown). This is an indication that the C-terminal 

Strep2 tag on the Cdc37(S14A) bound to His6-Cak1 may be buried in the structure of the 

His6-Cak1:Cdc37(S14A)-Strep complex and that for further affinity purification of this 

complex it would be expeditious to use a longer or larger affinity tag at the C-terminus of 

Cdc37. Such tagging of Cdc37 with the tandem affinity tag has already been used with 

success (Puig et al., 2001). 

  



 

61 

 

 

 

 

Figure 3.5 Production of 6xHis-TEV-CAK1 at ~20mg/litre (also – at lower level the His6-TEV-

Cak1/Cdc37-Strep complex and a little 6xHis-TEV-CAK1/Cdc28/Cdc37 complex) by 

overexpression in galactose-grown MGY140 cells. A total elute of the His Tag -retained 

material (left) analysed by gel filtration (right), revealing both resin-included material (His6--

TEV-CAK1) and a 165kDa peak formed substantially of His6-TEV-Cak1 and Cdc37-Strep 

(also a little untagged Cdc37 derived from the chromosomal CDC37 gene of strain MGY140 

and Cdc28(*)). The slower gel migration for the His6-TEV-Cak1 in Cdc37-Strep association is 

indicated (**). Shown is a Coomassie stained gel. The identity of the major bands was 

confirmed by Dr S. Millson in this laboratory, western blotting these fractions and probing 

with anti His, and PSTAIRE and anti Cdc37 antibodies (not shown). 
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3.3 Discussion 

The novelty of this study is that it has provided the first example of a Cdc37 client kinase 

whose stable association with Cdc37 and expression level is independent of the CK2 

phosphorylation of Cdc37. Stability of Cak1 is greatly reduced in the temperature sensitive 

cdc37-1 mutant (Farrell and Morgan, 2000) yet, despite phosphorylation on the conserved 

S14 of Cdc37 being crucial for the stability of most protein kinases in yeast (Mandal et al., 

2007), the interaction of Cak1 with Cdc37 and the expression level of Cak1 in vivo appear 

independent of this phosphorylation (Figures 3.2,3.3). This is a protein kinase that appears 

not to require the CK2 phosphorylation/Ppt1 dephosphorylation of Cdc37 that is so vital for 

stabilization of much of the kinome. Not only were we able to overexpress His6-Cak1 

efficiently in the cdc37(S14A) mutant (Figure 3.2d), but we found that the Cak1 expression 

level in this mutant was practically normal (Figure 3.3). Though not investigated here, novel 

structural features of fungal Cak1 (see below) may be a factor in these unusual properties of 

the Cdc37:Cak1 complex.  

Earlier Y2H screens for Cdc37 interactors (Lamphere et al., 1997; Millson et al., 2004; Mort-

Bontemps-Soret et al., 2002) all used bait or prey fusions in which the Gal4-BD or AD 

sequence is positioned at this N-terminus of Cdc37. However it appears that fusion proteins 

where domains are placed at the N-terminus of Cdc37 are unable to provide the essential 

Cdc37 function in yeast (Figure 3.1a). Instead fusions in which the –BD is placed at the C-

terminus of Cdc37 remain functional (Figure 3.1b) and should therefore potentially be more 

suitable for Y2H screening. Using such functional Cdc37-BD and Cdc37(S14A) baits in 

genomic Y2H screens, P. Hawle and S. Millson in this laboratory could identifyonly a few 

of the 115 protein kinases of yeast as Cdc37 interactors,  despite Cdc37 apparently stabilising 

~70% of the yeast kinome (based on the evidence of kinase destabilisation in the 
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cdc37(S14A) yeast mutant (Mandal et al., 2007)). Just two protein kinases exhibited a 

reasonably strong interaction with Cdc37 (Hal5 and Cak1), with two others displaying 

weaker interactions (Ste20 and Rim15); P Hawle thesis, 2008). Repinning confirmed that 

Cdc37-BD and Cdc37(S14A)-BD interact with AD-Cak1, but the lack of any detectable 

interaction with four yeast MAP kinases (Slt2, Hog1, Fus3, Kss1; Figure 3.2b) previously 

been shown to interact with Cdc37 in immunoprecipitation studies (Hawle et al., 2007). The 

reason that these protein kinases known to require Cdc37 for their stability (Hawle et al., 

2007; Mandal et al., 2007) were not detected is probably that Cdc37 interactions with nascent 

protein kinases are generally highly transient in the environment of the living cell (the Y2H 

system only detects relatively stable in vivo protein-protein interaction (Bartel and Fields, 

1997)). Indeed it is conceivable that the isolation of reasonably stable complexes between 

Cdc37 and protein kinases (Hawle et al., 2007; Vaughan et al., 2006) may require the dilution 

of cell contents that occurs upon cell breakage.  

The phenotype of cdc37(S14A) cells (Bandhakavi et al., 2003) is remarkably similar to that 

generated with loss of Cak1 activity (cak1-ts mutants become elongated at high temperature, 

most of the budded cells having a short spindle spanning an undivided nucleus at the 

mother/bud neck, characteristic of G2 arrest (Kaldis et al., 1996)). Indications of limiting 

Cdc28 activity being a major factor in the cdc37(S14A) phenotype come from its rescue by 

Cdc28 overexpression or with the loss of Swe1 tyrosine kinase (Bandhakavi et al., 2003). 

Generally these effects have been attributed to the well-established Cdc37-dependence of 

Cdc28 itself (Mandal et al., 2007; Turnbull et al., 2005), rather than the loss of Cak1 activity. 

Consistent with this we were unable to obtain rescue of either the temperature-sensitivity, or 

the elongated cell phenotype of cdc37(S14A) cells with either the His6-Cak1 overexpression 

from the GAL1 promoter of  plasmid pYES2-His6-CAK1 or the expression of a Cak1-

independent mutant allele of Cdk that overrides the essential requirement for Cak1 (Cdc28-
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42344; (Cross and Levine, 1998))(data not shown). The analysis in this Chapter did though 

reveal that the S14A, S14E, S17A mutations in Cdc37 operate to increase the cellular levels 

of this chaperone (Figure 3.3), the first time this effect has been noted. There is currently 

considerable interest in the factors that might influence the cellular levels of Cdc37, since 

this is a protein vital for the activity of several of the oncoprotein “drivers” of cancer (Pearl, 

2005; Smith and Workman, 2009). 

The unusual strength of the Cdc37(S14A) association with Cak1 (Figure 3.2) may reflect the 

novel structural features of Cak1 protein kinase. In man and in most eukaryotes Cak is a 

heterotrimeric complex (Cdk7-cyclin H-Mat1) its catalytic subunit (Cdk7) being activated 

by either phosphorylation of its own activating threonine (Thr-170 in human Cdk7) or the 

binding to MAT1. In contrast S. cerevisiae Cak1 has a highly atypical sequence and is active 

as a monomer (its activity not requiring cyclin binding, phosphorylation, or an assembly 

factor in vivo (Kaldis et al., 1996; Tsakraklides and Solomon, 2002)). Active throughout the 

cell cycle, the S. cerevisiae Cak1 has unusual biochemical properties and a substrate 

specificity that are not shared by the human Cdk7. Thus while human Cdk7 prefers cyclin-

cdk complexes, these yeast CAKs prefer monomeric cyclin-free Cdk substrates. Human 

Cdks bind cyclin prior to becoming phosphorylated by Cdk7 whereas in the S. cerevisiae 

cell cycle Cdk is phosphorylated by CAK prior to cyclin binding (Kaldis et al., 1998; Kaldis 

et al., 1996; Tsakraklides and Solomon, 2002). This difference potentially makes fungal 

Cak1 a promising target for antifungal drug development.  

Structurally fungal Cak1 lacks features conserved in practically all other protein kinases, 

notably the canonical "glycine loop" motif (GXGXXG) that normally stabilises ATP in the 

nucleotide binding pocket as well as a number of highly conserved core residues. 

Furthermore, fungal Cak is also unique in that - while it contains the "invariant lysine" that 
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aligns ATP by interacting with its - and -phosphates and is essential for catalysis in 

practically all other protein kinases, this lysine is completely dispensable for their activity 

both in vitro and in vivo (fungal Cak is insensitive to the protein kinase inhibitor 5'-

fluorosulfonylbenzoyladenosine which, by covalently modifying this lysine, leads to loss of 

activity in nearly all protein kinases, including Cdk7). Despite this, fungal CAKs still have 

high affinity for ATP, with a Km (ATP) ~1.8-5.0μM (Enke et al., 2000; Tsakraklides and 

Solomon, 2002), indicating that they have compensated for their lack of a glycine loop. It is 

tempting to speculate that these unusual structural features may contribute to the 

Cak1:Cdc37 association. Structural analysis of the Cak1:Cdc37 complex in Figure 4 should 

reveal this, as well as how the Cdc37 N-terminus – the region of Cdc37 highly conserved in 

evolution – interacts with protein kinases at the atomic level. It also promises to assist the 

development of drugs that selectively inhibit the fungal, not human, Cak1. 
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Chapter 4: Analysis of Cak1 phosphorylation 

4. 1 Introduction 

Cak1 is generally thought to be constitutively active throughout the yeast cell cycle and is 

also reported to be fully active when prepared by E. coli expression (Song et al., 2001). As 

a result there has been no study to date of any possible regulation of this kinase exerted 

through covalent modification and no systematic study of the role Cak1 phosphorylation 

events in yeast. Our purification of the His6-TEV-Cak1/Cdc37-Strep complex overexpressed 

in galactose-grown MGY140 cells revealed a mobility shift for the His6-TEV-Cak1 in this 

complex, as compared to the free His6-TEV-Cak1 in cell extracts (Figure 3.5). Finding this 

apparent alteration to the phosphorylation status of the Cak1 in this overexpressed His6-TEV-

Cak1/Cdc37-Strep complex we proceeded to identify the sites of Cak1 phosphorylation in 

this protein kinase fraction. We then analysed the effects of expressing, as sole essential 

Cak1 in yeast, forms of Cak1 in which each of these phosphorylated residues was mutated 

to either a nonphosphorylatable alanine residue or to a phosphomimetic residue. 

4.2 Results 

4.2.1 Identification of Cak1 phosphorylations. 

When we overexpressed His6-TEV-Cak1 and Cdc37-Strep in yeast (Section 3.2.4) we noted 

that the His6-TEV-Cak1 fraction in association with Cdc37(S14A) was exhibiting a slower 

gel migration compared to the free His6-TEV-Cak1 (Figure 3.5). This was due to 

phosphorylation of this His6-TEV-Cak1 fraction (not shown). By western blot analysis it 

was investigated whether this Cak1 fraction in Cdc37(S14A) association cross reacted with 

anti-phospho Tyr, phosphor-Ser and phospho-Thr antibodies. The results indicated this Cak1 

fraction was phosphorylated on both serine and threonine (Figure 4.1). 
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A sample of the His6-TEV-Cak1/Cdc37-Strep complex was sent for mass spectrometry 

analysis to Dr A. Truman, University of Chicago. This detected phosphorylations of the 

Cdc37 on Ser 173 and Ser 367 (not analysed further in this study) as well as phosphorylations 

of the His6-Cak1 at Thr 27 and Ser 172 (the latter within a Ser-Pro motif). Previous analyses 

of the yeast phosphoproteome had only detected phosphorylation of Cak1 at Ser 205 of the 

activation loop (Albuquerque et al., 2008). 
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Clustal W alignment of N-terminal Cdc37 sequences. Sequences corresponding to the 70–80 N-

terminal amino acids from 6 different species (Gg, chicken; Hs, human; Dm, Drosophila 

melanogaster; Ce, Caenorhabditis elegans; Sp, Schizosaccharomyces pombe; and Sc, 

Saccharomyces cerevisiae), also Cdc37 and the Cdc37 relative Harc from humans. Residues of 

identity and similarity are shown in black and gray, respectively (from Maclean and Picard, 

2003). 

 

 

Figure 4.1 Analysis of the aminoacids phosphorylated the His6-Cak1 in complex with 

Cdc37(S14A). Phosphorylation on threonine and serine detected by anti-phosphothreonine 

and antiphosphoserine antibodies corresponded to the His6-Cak1 signal detected by the anti-

His antibody (upper figure). This sample was subsequently analysed by mass spectrometry by 

Dr A. Truman and found to be phosphorylated at the residues underlined (lower figure). 
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4.2.2 Construction of strains expressing a Cak1 mutated in each phosphorylation site.  

To determine if these phosphorylations at T27, S172 or S205 are of importance for the 

essential functions Cak1 in yeast, also for the Cak1:Cdc37 association, these residues were 

individually mutated in a TOPO clone of CAK1 to either the nonphosphorylatable residue 

alanine, or to a phosphomimic residue (D or E) (see Methods). By recombinational cloning 

of these genes with the linearised LEU2 vector pHSCprom (Panaretou et al., 1999) in strain 

SY80 (Table 2.1), selecting for Leu+ transformants, then elimination of the original 

CAK1/URA3 vector of these Leu+ SY80 cells by growth on FOA, strains were prepared in 

which these point mutant forms of Cak1 constitute the only form of Cak1 (Figure 4.2a).  

While all of the introduced mutations were compatible with the essential function of Cak1, 

the S205E mutant cells grew slowly on the FOA plate (Figure 4.2a).  Further investigation 

of these seven strains, each cured of their original CAK1/URA3 vector and now expressing 

a wild type or point mutant form of Cak1, revealed a number of phenotypes.  Mutations 

S205E and T172A rendered the cells slightly temperature sensitive, while T172A resulted 

in a pronounced respiration deficiency – the first time such deficiency has been found as a 

consequence of Cak1 mutation (Figure 4.2b). 

These seven strains were also sent to Dr A. Truman, University of Chicago for FACS 

analysis. His analysis of YPD cultures revealed that some of these mutations are affecting 

progression through the yeast cell cycle (Figure 4.3). However it should be noted that these 

cells are probably massively overexpressing Cak1 from the strong pHSC82 promoter of 

plasmid pHSCprom, an overexpression that may have affected the phenotypes observed. We 

subsequently found that the normal levels of Cak1 in yeast are relatively low (see Figure 

3.3a). 
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Figure 4.2 (a) FOA growth (4d 28°C) curing of the CAK1/URA3 vector in SY80 cells 

transformed either with empty LEU2 vector, or LEU2 vector containing a wild type or mutant 

CAK1 gene. (b) Glucose (2d 28°C, 37°C) or glycerol (5d 28°C) growth of cells expressing wild 

type or point mutant forms of Cak1. 
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Figure 4.3 Fluoresence activated cell sorting (FACS) analysis of nonsynchronised YPD cultures 

of SY80 cells expressing different phosphomutant forms of Cak1 (data provided by Dr A. 

Truman, University of Chicago). This is data from a single experiment, the estimation of 

relative proportions of cells in the different phases of the cell cycle being shown in the lower 

diagram. 
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4.3 Discussion 

The analysis in this chapter identified some hitherto unidentified sites of phosphorylation of 

yeast Cak1. So far these sites have only been shown to be phosphorylated in the Cak1 of the 

overexpressed His6-TEV-Cak1/Cdc37-Strep complex of galactose-grown MGY140 cells 

(Figures 3.5 and 4.1). There is as yet no firm evidence for fungal Cak1 being regulated by 

phosphorylation, so it remains to be seen whether the phosphorylations of Thr 27, Ser 172 

or Ser205 are functionally important, or influence the ability to form the Cak1/Cdc37 

complex studied in Chapter 3.  

Here, versions of strain SY80 were made in which the sole Cak1 is a form in which each of 

these residues is either a nonphosphorylatable alanine, or a phosphomimetic residue. While 

these strains exhibited some marked phenotypes (Figures 4.2 and 4.3), it should be noted 

that they are almost certainly massively overexpressing the relevant point mutant form of 

Cak1 from the strong pHSC82 promoter of plasmid pHSCprom.  Not only might this have 

affected the phenotypes observed, but also – through titration effects – it might influence the 

results of pull-down experiments showing how these mutations influence the protein 

associations of Cak1. Probably therefore this analysis should be repeated using cells in which 

these mutant forms of Cak1 are expressed in cells as sole forms of Cak1 from the native 

CAK1 gene promoter. Time constraints did not allow this to be done. Neither did it allow us 

to analyse how these phosphorylation site mutations affect the formation of the Cak1/Cdc37 

complex identified in Chapter 3. 
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Chapter 5: Cdc37 as a target of molybdate and oxidative stress 

5. 1 Introduction: Background to the studies in this Chapter 

The analysis in Chapter 3 revealed that the presence of the S14A, S14E, S17A mutations in 

Cdc37 operates to increase cellular levels of this chaperone, the first time that this effect has 

been noted. Levels of Cdc37-HA were elevated in the strains bearing these mutations 

(DH212-4), relative to the cells expressing either the wild type or the S17E mutant Cdc37-

HA (strains DH211/5) (Figure 3.3). There is currently considerable interest in the factors 

that might influence the cellular level of Cdc37, since this is a protein vital for the activity 

of several of the oncoprotein “drivers” of cancer (Pearl, 2005; Smith and Workman, 2009). 

In certain mammalian cell types an overexpression of this protein is, by itself, oncogenic 

(Pearl, 2005). Therefore the studies described in this Chapter were initiated in order to 

investigate whether Cdc37 is an intrinsically stable protein. 

Unlike S17E, these Cdc37 mutations (S14A, S14E, S17A) also render cells highly sensitive 

to stress and the loss of Hsp90 activity (Bandhakavi et al., 2003; Vaughan et al., 2008). 

Though all three of them sensitise cells to the antibiotics radicicol and geldanamycin (Figure 

5.3b), Hsp90 inhibitors that induce an ADP/ATP-free state of the chaperone with low affinity 

for its client substrates (Prodromou et al., 1997; Roe et al., 1999), S14A would appear to 

cause the greatest sensitivity to these antibiotics (Figure 5.3b). Earlier work in our laboratory 

also revealed S14A causes the greatest sensitivity to molybdate (Millson et al., 2009), an 

inhibitor that is thought to act at a later stage in the chaperone cycle when the client protein 

is much more tightly bound to the Hsp90 machine and to induce a “locked” form of the 

client-chaperone complex where the client is stabilised through strong hydrophobic 

interactions with the ADP/ATP-bound state of the chaperone (Hartson et al., 1999; Pratt and 
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Toft, 1997). Interestingly, the work described below unexpectedly found that this mutation, 

S14A, renders cells more resistant to hydrogen peroxide (Figure 5.3b). As a result the effects 

of hydrogen peroxide on Cdc37 levels were also analysed here. 

5.2 Results 

5.2.1 Cdc37 is a relatively stable protein whose levels are not strongly affected by 

altered activity of Ppt1 protein phosphatase or CK2 protein kinase.  

The elevated levels of Cdc37 in yeast cells which express the S14A, S14E or S17A mutant 

versions of this protein (Figure 3.3) might reflect these mutations acting to increase stability 

of this protein. Alternatively they might be a reflection of increased expression of the CDC37 

gene. Halflives of individual proteins in yeast are often measured as the kinetics of their 

decline in cells treated with the protein synthesis inhibitor cycloheximide (Belle et al., 2006). 

We were unable to detect any reduction of Cdc37 level in BY4741 cells treated with 

cycloheximide. Instead this protein appeared to be even more stable than the actin used as a 

protein loading control on the blots (Figure 5.1a). 

These S14A, S14E and S17A mutant forms of Cdc37 are defective in CK2 

phosphorylation/Ppt1 dephosphorylation of this chaperone, important for the ability of 

Cdc37 to facilitate its activation of nascent protein kinase molecules (Bandhakavi et al., 

2003; Mandal et al., 2007; Vaughan et al., 2008). We therefore analysed how Cdc37 level is 

affected by: (i) the loss of Ppt1 (comparing a ppt1Δ delete and the corresponding wild type 

strain of BY4741 genetic background (Table 2.1); Figure 5.1a); (ii) PPT1 gene 

overexpression in cells expressing either the wild type or S14 mutant Cdc37-HA (strains 

DH211 and DH212 bearing a plasmid with a MET25 promoter regulated PPT1 gene; (Figure 

5.1b); (iii) the expression of a temperature sensitive cka2 mutation (cka2 ts and wild type 

W303-based strains (Table 2.1); Figure 5.1c)). In these experiments, either the loss or 
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overexpression of Ppt1 appeared not to have any appreciable effect on Cdc37 levels (Figure 

5.1a,b), whereas cka2 ts appeared to be having opposite effects on levels of Cdc37 at 25° and 

at 37°C (Figure 5.1c).  

Taken together these experiments indicate Cdc37 to be a relatively stable protein, whose 

levels are not subject to rapid change in response to either the inhibition of protein synthesis 

or alterations to CK2 and Ppt1 activity. 
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Figure 5.1 Measurement of Cdc37 and actin levels in: (a) Strain BY4741 and an isogenic ppt1Δ 

delete, before and after a 4h 28° treatment with 1mg/ml cycloheximide. (b) Cultures expressing 

a wild type (Wt) or S14 mutant Cdc37-HA (strains DH211 and DH212) and transformed with 

a URA3 vector for MET25 promoter regulated PPT1 overexpression, cells either with normal 

Ppt1 levels (-) or overexpressing Ppt1 (+). (c) A temperature sensitive cka2 mutant and 

corresponding wild type (Strains YDH13 (cka2 ts) and YDH6 (CKA2); Table 2.1) in the W303 

genetic background either maintained at 25° or shifted from 25° to 37°C for 2h. 
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5.2.2. Cdc37 levels are not responsive to general proteotoxic stress. 

We next considered whether the increased Cdc37 level in cells expressing S14A, S14E, 

S17A mutant Cdc37 might be reflection of proteotoxic stress, due to these cells being 

deficient in stabilising much of their kinome (Mandal et al., 2007). A number of studies have 

examined the transcriptional effects of such proteotoxic stress in yeast, a stress often induced 

in cells through chemical inhibition of the proteasome with MG132 (Zhang et al., 2013). 

Such inhibition of the proteasome induces proteasomal genes through the stabilization of 

Rpn4, a transcription factor that is normally short lived as it is itself degraded by the 

proteasome and whose stabilisation, in response to proteotoxic stress, upregulates the 

abundance of proteasomal components (Xie and Varshavsky, 2001). However no elevations 

in Cdc37 level were apparent in wild type (DH211) cells treated with MG132, an inducer of 

this Rpn4-mediated response (Figure 5.2c). Levels were also unaffected by up to 8h 

treatment with paromomycin, an antibiotic that generates proteotoxic stress and the 

induction of the heat shock factor (Hsf1)-mediated heat shock response by causing a high 

level of translational error (Grant et al., 1989) (Figure 5.2d). 

5.2.3 Compromised Hsp90 chaperone activity produces little increase in Cdc37. 

Having discounted general proteotoxic stress as the probable cause of the increased Cdc37 

level in cells expressing S14A, S14E or S17A mutant Cdc37, we next investigated whether 

Cdc37 levels are subject to change in response to Hsp90 inhibitors. For this we treated cells 

with either the selective Hsp90 inhibitor radicicol or (see below) with molybdate. With 

radicicol treatment cells expressing the wild type Cdc37-HA (strain DH211) displayed little 

increase in the level of this Cdc37-HA but a strong induction of Hsp90 (Figure 5.2a). This 

induction of Hsp90 reflects radicicol being a potent inducer of the Hsf1-mediated heat shock 

response, Hsf1 being the major regulator of the genes for Hsp90 in yeast (Harris et al., 2001; 



 

78 

 

Piper et al., 2003). However there is still no evidence for Cdc37 being Hsf1 regulated and 

Cdc37 levels are only modestly, if at all, affected by the Hsf1 inducers radicicol (Figure 

5.2a) or paromomycin (Figure 5.2d).   

5.2.4 In vivo molybdate treatment results in the loss of Cdc37, as well as the appreciable 

fragmentation of Hsp90. 

Molybdate is often added to mammalian cell extracts in order to stabilise the complexes 

forming between Hsp90 and its “client” proteins (see (Soti et al., 1998) for literature).  It has 

been proposed that the MoO4
2+ oxyanion, through acting as a transition state analogue of 

phosphate inhibits the final, essential ATPase step of the Hsp90 chaperone cycle and the 

associated, p23-cochaperone assisted release of the activated client protein (Hartson et al., 

1999; Pratt and Toft, 1997; Young and Hartl, 2000). Hsp90: client complexes are thereby 

arrested in a p23-bound state, in which the client protein is prevented from achieving its final 

active form (see Discussion).  

This action of molybdate is strikingly different from that of the Hsp90 inhibitor antibiotic 

radicicol. While geldanamycin, radicicol and molybdate both bind Hsp90 directly 

(Prodromou et al., 1997; Roe et al., 1999; Soti et al., 1998; Stebbins et al., 1997), they exert 

opposing effects on Hsp90-client protein interactions. Geldanamycin and radicicol, 

inhibitors of the ATP binding step (Prodromou et al., 1997; Roe et al., 1999), induce an 

ADP/ATP-free state of the chaperone that has low affinity for the client substrate. This leads 

to a marked destabilisation of Hsp90 client proteins in vivo (Blagosklonny et al., 1996; 

Maloney and Workman, 2002; Ochel et al., 2001; Smith et al., 1998; Whitesell et al., 1997). 

Molybdate, in contrast, is thought to inhibit at a later stage in the chaperone cycle when the 

client protein is much more tightly bound to the Hsp90 machine; inducing a “locked” form 

of the client-chaperone complex in which the client is stabilised through strong hydrophobic 
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interactions with the ADP or ATP-bound state of the chaperone (Hartson et al., 1999; Pratt 

and Toft, 1997). Thus geldanamycin destabilises client proteins in vivo whereas molybdate 

– at least in vitro - exerts the opposite effect, stabilising Hsp90-client interactions. 

The growth inhibitory effects of high molybdate levels on yeast cells have been shown to 

arise mainly from effects on the Hsp90 chaperone system (Millson et al., 2009). When 

DH211 yeast cells were treated for 2h and 4h with 20mg/ml sodium molybdate, a 

concentration shown as inhibitory to the growth of this strain (Millson et al., 2009), we 

unexpectedly observed a marked destabilisation of Cdc37-HA, p23 and Hsp90 (Figure 5.2a). 

Notably - after 4h at 28°C in the presence of molybdate - the Cdc37 and Hsp90 of these cells 

had almost totally lost its integrity, much of the latter chaperone degrading to a discrete 

65kDa subfragment of Hsp90 (**; Figure 5.2a-c). Using cells with a wild type or S14A 

mutant Cdc37-HA (DH211/2) transformed with a vector for Slt2-HA expression, we were 

able to show that this molybdate treatment also results in the loss of a Cdc37/Hsp90 client, 

the MAP kinase Slt2(Mpk1) (Hawle et al., 2007; Millson et al., 2005) (Figure 5.2b). 

This molybdate destabilisation of Cdc37 and Hsp90 in DH211 cells was not appreciably 

slowed by the presence of the proteasome inhibitor MG132 (Figure 5.2c). We subsequently 

found that it was more marked when cells were maintained at 37°C as compared to 28°C, so 

many of our later molybdate experiments (see below) involved either a 2h or 4h treatment 

with 10mM molybdate at 37°C rather than a 2h treatment with 20mM molybdate at 28°C. 
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Figure 5.2 (a) Analysis of Cdc37, Hsp90, p23 and actin levels in DH211 cells before (0) or 2h, 

4h following treatment at 28°C with either 60µg/ml radicicol or 20mg/ml sodium molybdate. *, 

** indicate respectively the major fragment of Hsp90 resulting from oxidative free radical 

damage oxidative damage (Beck et al., 2012) (*) and the Hsp90 fragment that accumulates in 

response to molybdate-treatment (this study) (**). (b) Analysis of Cdc37-HA, Slt2-HA, Hsp90 

and G3PDH levels in DH211/2 cells containing a vector for Slt2-HA expression before (-) or 4h 

following (+) molybdate treatment. (c)Analysis of the effects of the proteasome inhibitor 

MG132, an inducer of the Rpn4-mediated response to proteotoxic stress, on the Cdc37-HA and 

Hsp90 levels of DH211 cells both with and without molybdate under the conditions in (a). (d) 

Analysis of the effects of paromomycin (1mg/ml), an antibiotic that generates proteotoxic stress 

by causing a high level of translational error, on the Cdc37-HA and p23 levels of DH211. 
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5.2.5. Cdc37 is a determinant of oxidative stress resistance in yeast. 

 N-terminally truncated forms of Hsp90 are known to accumulate in vivo (Panaretou et al., 

1999) and, in mammalian cells, these have been shown to result from oxidative damage 

(Beck et al., 2012). This raised the possibility that the loss of Cdc37 and fragmentation of 

Hsp90 we had observed in molybdate-treated cells (Figure 5.2) was the result of damage to 

these chaperone molecules caused by oxygen free radicals. Consistent with this is the 

observation that these events still occurred in the presence of the proteasome inhibitor 

MG132 (Figure 5.2c). 

Analysing the resistance of our strains to hydrogen peroxide (H2O2) we noted that resistance 

to this oxidant was increased with overexpression of the wild type Cdc37 protein (Figure 

5.3a). Remarkably, 28°C oxidant resistance was also increased in the cells expressing the 

S14A mutant form of Cdc37 (Figure 5.3b), despite this being a mutation that sensitises cells 

to high temperature stress and the loss of Hsp90 activity (Bandhakavi et al., 2003; Vaughan 

et al., 2008). As Cdc37 had not previously been identified as a determinant of oxidant 

resistance we next analysed whether H2O2 stress affects cellular levels of Cdc37.  

Analysing the effects of H2O2 treatment on the Cdc37-HA and Hsp90of DH211 cells, we 

found that a H2O2 concentration which causes appreciable loss of viability in plate assays 

(Figure 5.3) also resulted in appreciable loss of Cdc37 protein at 37°C but not 28°C, this 

effect being reduced slightly by a simultaneous treatment with the proteasome inhibitor 

MG132 (Figure 5.4a). It is known that the effects of oxidative stress are generally greater at 

higher temperatures. Further evidence that this reduction in Cdc37 level with H2O2 treatment 

is a consequence of oxidative stress came from an analysis of the ctt1 mutant, lacking the 

major cytosolic catalase of yeast. When exposed to H2O2 – though not in this particular 
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experiment molybdate - the ctt1 mutant displayed a greater loss of Cdc37 relative to the 

corresponding wild type (Figure 5.4b). 

 

 

Figure 5.3 (a) Analysis of the resistance to H2O2 in DH211 cells bearing either empty pG1 vector 

or pG1-CDC37 (the latter a vector for GPD1-promoter driven Cdc37 overexpression). Cells 

were streaked on minus Trp SD medium either with or without 4mM H2O2 and the plates 

photographed after 3d at 28°C. (b) A comparative analysis of the resistances of strains DH211-

5 to Hsp90 inhibitor antibiotics (radicicol, geldanamycin) and oxidants (H2O2, diamide). Serial 

dilutions of YPD grown cultures were pinned onto YPD agar containing the indicated chemical 

and plates photographed after 2d at 28°C. 
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5.2.6 The effects of hydrogen peroxide indicate that it is the MoO4
2+ oxyanion, not 

peroxomolybdate, which destabilises Cdc37 and Hsp90 in vivo.  

In the presence of H2O2 the molybdate anion is converted to diperoxomolybdate, a 

sulphydryl (–SH) selective reagent (Mikalsen and Kaalhus, 1997). The in vitro effects of 

molybdate on mammalian Hsp90, especially in the presence of H2O2, have earler been 

attributed to diperoxomolybdate labelling of the –SH groups that exist primarily in the 

middle and C-terminal regions of this chaperone (Soti et al., 1998). Such in vitro 

diperoxomolybdate labelling of purified mammalian Hsp90 protein is unaffected in the 

presence or absence of ADP or ATP and results in a characteristic shift in gel mobility which 

is, in turn, reversed by dithiothreitol treatment (Soti et al., 1998). However, unlike the 

mammalian Hsp90, the yeast Hsp90 and Cdc37 proteins analysed in this study have no free 

–SH groups. The molybdate-induced loss of Cdc37 and fragmentation of Hsp90 that we had 

observed occurring in yeast (Figure 5.2) cannot therefore be attributed to direct 

diperoxomolybdate modification of –SH groups on either Cdc37 or Hsp90.  

We noted that H2O2 strongly inhibited this molybdate-induced loss of Cdc37 and conversion 

of much of the cellular Hsp90 to a discrete 65kDa subfragment in vivo (Figure 5.4c). That 

the presence of H2O2, leading to the conversion of much of the molybdate to 

diperoxomolybdate, potently abolishes this molybdate-induced destabilisation of Cdc37 and 

fragmentation of Hsp90 is a strong indication that these events are the result, not of 

diperoxomolybdate reaction with components of the Hsp90 chaperone system, but a more 

direct action of the MoO4
2+ oxyanion. 
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Figure 5.4 (a) Analysis of the effects of a 5 or 10mM H2O2 treatment for 2h at either 28°C or 

37°C on the Cdc37-HA and Hsp90 levels of DH211 cells. (b) Analysis of the effects of a 2h 28°C 

10mM molybdate and/or 20mM H2O2 treatment on Cdc37 and Hsp90 levels in a ctt1 mutant 

and its corresponding FY1679 wild type. (c). Analysis of the effects of a 2h 37°C 10mM 

molybdate and/or 20mM H2O2 treatment on Cdc37-HA and Hsp90 levels in DH211 and DH212 

cells. *, ** indicate respectively the major fragment of Hsp90 resulting from oxidative free 

radical damage oxidative damage (Beck et al., 2012) (*) and the major fragment of Hsp90 

accumulating following molybdate-treatment (**). 
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5.2.7 Radicicol reduces the loss of Cdc37, but not the fragmentation of Hsp90 in vivo in 

molybdate treated cells. 

In vitro, molybdate has been shown to inhibit the Hsp90-dependent biogenesis of p56lckF505 

in rabbit reticulocyte lysate by physically locking p56lckF505 onto the Hsp90 machinery, the 

normally salt-labile interaction of Hsp90 with heat-denatured luciferase being rendered salt-

resistant by molybdate. An addition of geldanamycin prior to molybdate prevented this 

molybdate-induced salt resistance whereas with the reverse order of addition of these 

reagents (adding molybdate before geldanamycin), geldanamycin did not compromise 

molybdate-induced salt resistance (Hartson et al., 1999). Thus the order of addition of an 

Hsp90 inhibitor and molybdate can affect the outcome of experiments using these two agents 

(Hartson et al., 1999; Pratt and Toft, 1997). However a pretreatment of rabbit reticulocyte 

lysate with 20 mM molybdate was found to inhibit the subsequent ability of Hsp90 to bind 

immobilised geldanamycin (Hartson et al., 1999). 

If molybdate causing loss of Cdc37 and the fragmentation of much of the cellular Hsp90 in 

yeast (Figures 5.2; 5.4c) reflects a selective binding of the MoO4
2+ oxyanion to just the ADP 

or ATP-bound states of the chaperone, these processes should be slowed when radicicol 

occupies the ADP/ATP site on Hsp90, thus preventing binding of ADP/ATP to this site. 

However only a moderate reduction in molybdate-induced loss of Cdc37-HA was observed 

when a growth inhibitory level of radicicol was added to DH211 cells 10min before, or at 

the same time as, the addition of molybdate. Molybdate treatment still caused a substantial 

reduction in Cdc37-HA levels under these conditions (Figure 5.5a,b). In contrast no such 

partial rescue of Cdc37 loss was apparent when the radicicol was added to the cells 10min 

after they had been treated with molybdate (Figure 5.5a). Molybdate also caused an 

appreciable Cdc37-HA loss in (S14A)cdc37 cells (Figures 5.4c; 5.5b) and, while it did appear 
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that the levels of Cdc37 degradation might be reduced in this mutant as compared to the wild 

type (Figures 5.4c; 5.5b), this might be merely reflect the higher initial levels of Cdc37-HA 

in these (S14A)cdc37 cells (Figure 3.3). 

Importantly, and in marked contrast to Cdc37, the molybdate degradation of Hsp90 did not 

appear to be affected by the presence of radicicol in any of these experiments (Figure 5.5a,b). 

Since molybdate-induced loss of Cdc37 is partially abrogated by radicicol (Figure 5.5a), this 

loss is – at least to a limited degree – Hsp90-dependent and most probably therefore a 

consequence of Hsp90 binding the MoO4
2+ oxyanion. The binding of ATP/ADP to the N-

terminal domain of Hsp90 is known to be prevented as the middle region of Cdc37 binds 

this Hsp90 domain causing a transient arrest of the Hsp90 chaperone cycle (Roe et al., 2004; 

Siligardi et al., 2002). On the basis of current evidence the bindings of either radicicol or 

Cdc37 at this region of Hsp90 appear therefore to be mutually exclusive.  
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Figure 5.5 Analysis of the effects of a growth inhibitory level of radicicol on the molybdate-

induced degradation of Cdc37-HA and Hsp90. (a) DH211 cells growing at 37°C were exposed 

to either: (1) no treatment, (2) 10mM molybdate 2h 37°C, (3) 10mM molybdate for 10min, 

followed by the addition of 50µM radicicol and the cells maintained a further 2h at 37°C; (4) 

50µM radicicol for 10min, then 10mM molybdate added and the cells maintained a further 2h 

at 37°C; (5) 50µM radicicol 2h 37°C. (b) An analysis of the effects of radicicol (100µg/ml) on 

molybdate-induced degradation of Cdc37-HA and Hsp90 in cells expressing either wild type 

(wt; DH211) or S14A mutant (DH212) Cdc37-HA. Radicicol and/or molybdate were added 

simultaneously to 28°C cultures, cells then being maintained 2h at 37°C. Cdc37 was analysed 

using an anti-HA antiserum. *, ** indicate respectively the major fragment of Hsp90 resulting 

from oxidative free radical damage oxidative damage (Beck et al., 2012) (*) and the major 

fragment of Hsp90 accumulating following molybdate-treatment (**). 
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5.2.8 The human Hsp90α expressed in yeast also displays molybdate-induced 

fragmentation.  

The above experiments describe how an in vivo treatment of yeast cells with high levels of 

molybdate causes loss of Cdc37 and the conversion of much of the cellular Hsp90 to a 

discrete 65kDa subfragment. There is currently considerable interest in drug therapies that 

can inactivate Cdc37 (Pearl, 2005; Smith and Workman, 2009) or Hsp90 (Neckers and 

Workman, 2012; Trepel et al., 2010), since these are chaperones vital for the activity of 

several of the oncoprotein “drivers” of cancer. Whilst it will be important to know if 

molybdate treatment could inactivate the Cdc37 and Hsp90 in cancer cells, as well as in 

yeast, such cancer cell studies are outside the scope of the analysis performed in this thesis. 

While mammalian Cdc37 expression cannot provide the Cdc37 function in yeast, the human 

cytosolic Hsp90s are functional in this model eukaryote (Millson et al., 2007). We therefore 

compared the effects of molybdate on yeast strains expressing either the native yeast Hsp82 

or the human Hsp90α as their sole Hsp90. This revealed the human Hsp90α expressed in 

yeast also accumulated as a 65kDa subfragment when cells were treated with molybdate 

(Figure 5.6). 

 

Figure 5.6 Analysis of Hsp90 in cells of the PP30 genetic background expressing either the 

native yeast Hsp82 or the human Hsp90α as their sole Hsp90 (PP30-HSP82 and PP30-

huHSP90α, Table 2.1) treated with 10mM molybdate 2h or 4h at 37°C. The major fragment of 

Hsp90 accumulating following molybdate-treatment is indicated (**). 
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5.3 Discussion 

This study was initiated in order to try to understand why yeast cells expressing the S14A, 

S14E or S17A mutant versions of Cdc37 have higher levels of this cochaperone protein 

(Figure 3.3). While it did not succeed in showing why these mutations have this effect, it did 

reveal Cdc37 to be normally a stable protein (Figure 5.1) and also yield two quite unexpected 

findings: firstly, that Cdc37 and Hsp90 are rendered unstable in molybdate treated cells 

(Figure 5.2) and, secondly, that Cdc37 can be a determinant of oxidative stress resistance, as 

well as a target of oxidative stress (Figures 5.3, 5.4). 

Molybdate is often added to cell extracts in order to stabilise the complexes forming between 

Hsp90 and its “client” proteins (see (Soti et al., 1998) for literature). The transition metal 

oxyanions molybdate, vanadate and tungstate have all been found to stabilise the presence of 

Cdc37(p50) in the pp60v-src –Hsp90 heterocomplex  (Hutchison et al., 1992). Molybdate 

stabilises the normally salt-labile interaction of steroid receptors with Hsp90, p23 and 

immunophilins, but not the heterocomplexes between these receptors, Hop and Hsp70 (Chen 

et al., 1996). It has also been shown to inhibit Hsp90-mediated biogenesis of the p56lck protein 

kinase and to render the Hsp90 interaction with this kinase salt stable (Hartson et al., 1999). 

While it decreases Hsp90’s ability to bind geldanamycin, it stabilises the association of Hsp90 

with p23 (Hartson et al., 1999). This led Toft and co-workers to propose that ADP-MoO4
2+  

was replacing ATP in these molybdate-inhibited p23-comtaining complexes (Pratt and Toft, 

1997). 

The novelty of the work in this chapter is that it shows for the first time that an in vivo 

treatment of cells with millimolar levels of molybdate leads to both the loss of Cdc37 and a 

discrete fragmentation event within the Hsp90 molecule. This molybdate-induced 

fragmentation of Hsp90 and destabilisation of Cdc37 are not the result of a 
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diperoxomolybdate reaction with –SH groups on these chaperones (Figure 5.4c), and 

therefore most probably reflect actions of the MoO4
2+ oxyanion. The Hsp90 fragmentation 

involves the cleavage of a specific peptide bond within this chaperone, a reaction that in vivo 

appears largely unaffected by the Hsp90 inhibitor radicicol (Figure 5.5). This cleavage still 

occurs with the purified yeast Hsp82 protein, prepared following expression in recombinant 

E. coli, incubated with molybdate (not shown). It appears therefore that it most probably 

reflects a chemical reaction catalysed by the Hsp90-bound MoO4
2+ oxyanion.  
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Chapter 6: Significance of this thesis study and the possibilities 

for future work. 

 

This study has uncovered a number of novel findings and highlighted a number of aspects 

that need further investigation: 

The work in Chapter 3 revealed for the first time that cells expressing S14A, S14E, S17A 

mutant versions of Cdc37 have elevated levels of Cdc37. It confirmed Cak1 forms a stable 

association with Cdc37, reinforced by the S14A mutation. However, despite much of the 

yeast kinome being destabilised in cdc37(S14A) cells (Mandal et al., 2007), Cak1 expression 

levels appear unaffected by this mutation (Figure 3.3). Even though Cak1 appears not to 

require the CK2 phosphorylation/Ppt1 dephosphorylation of Cdc37 either for its activity or 

stability, events so vital for stabilization of much of the kinome, one must ask why it forms 

a relatively stable complex with Cdc37. Is this association perhaps facilitating Cdc37 

association with Cdc28, the latter an activity destabilised in cdc37(S14A) cells and activated 

by Cak1?  

Chapter 3 also identified an apparent change to the phosphorylation status of the Cak1 in 

Cdc37(S14A) association (Figure 3.5). Two new sites of Cak1 phosphorylation, Thr 27 and 

Ser 172, were identified (Figure 4.1). Versions of strain SY80 were made in which the sole 

Cak1 is a form in which each of these residues is either a nonphosphorylatable alanine, or a 

phosphomimetic residue (Chapter 4). While these strains exhibited some marked phenotypes 

(Figures 4.2 and 4.3), they are almost certainly massively overexpressing the relevant point 

mutant form of Cak1.  Not only might this have affected the phenotypes observed, but also 

– through titration effects – it might influence the results of pull-down experiments showing 
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how these mutations influence the protein associations of Cak1. Probably therefore the 

analysis in Chapter 4 should be extended to cells in which these mutant forms of Cak1 are 

expressed from the native CAK1 gene promoter. Time constraints did not allow this to be 

done. Neither did it allow us to analyse how these phosphorylation site mutations affect the 

formation of the Cak1/Cdc37 complex identified in Chapter 3. Furthermore, as Ser 172 is 

within a Ser-Pro motif, it might possibly be executed by Cdc28. Analysis of its 

phosphorylation status in a Cdc28-analogue sensitive yeast strain (Knight and Shokat, 2007) 

might reveal if this is the case and reflects a hitherto unidentified Cdc28 control over its 

regulator Cak1. 

Chapter 5 shows for the first time that an in vivo treatment of yeast with millimolar levels of 

molybdate leads to both the loss of Cdc37 and a discrete fragmentation event within the 

Hsp90 molecule. High molybdate levels must therefore be causing a total inactivation of 

these essential chaperone functions in yeast cells, probably a major reason why these levels 

of molybdate result in loss of viability (Millson et al., 2009). Molybdate may also cause loss 

of other Hsp90 system cochaperones besides Cdc37 (indeed we obtained initial data 

indicating it was also resulting in the loss of p23; see Figure 5.2a). However time did not 

allow these other cochaperones to be studied. 

How does molybdate cause loss of Cdc37 (Figure 5.2)? Does it reflect binding of the MoO4
2+ 

oxyanion to intact Hsp90, an action due to the MoO4
2+ -cleaved 65kDa fragment of Hsp90 

or does this Cdc37 loss occur largely independently of Hsp90? Here we only found partial 

rescue of Cdc37 loss with use of the selective Hsp90 inhibitor radicicol and then only when 

the radicicol was added prior to the addition of molybdate (Figure 5.5). 

This molybdate-induced fragmentation of Hsp90 and destabilisation of Cdc37 are not the 

result of a diperoxomolybdate reaction with –SH groups on these chaperones (Figure 5.4c), 
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and therefore most probably reflect actions of the MoO4
2+ oxyanion. The Hsp90 

fragmentation involves the cleavage of a specific peptide bond within this chaperone, a 

reaction that in vivo appears largely unaffected by the Hsp90 inhibitor radicicol (Figure 5.5). 

It is now important to identify, by mass spectrometry, the site of this cleavage in Hsp90. 

Also does it still occur when the purified yeast Hsp82 protein, prepared following expression 

in recombinant E. coli, incubated with molybdate. If so it most probably reflects a chemical 

reaction catalysed by the Hsp90-bound MoO4
2+ oxyanion.  

Another issue raised by the studies in Chapter 5 is why is Cdc37 a determinant of oxidative 

stress resistance (Figure 5.3)? Is it because key components needed for oxidative stress 

signalling are Cdc37-dependent? However the Hog1 MAP kinase, key for such signalling, 

(Proft and Struhl, 2004), is compromised in its function by the cdc37(S14A) mutation (Hawle 

et al., 2007), a mutation that we found actually enhances H2O2 resistance (Figure 5.3). 

Clearly this requires further study. 
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