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Abstract

Heterogeneities present within the structure of our planet cause seismic waves to atten-

uate, especially when they are on the order of the seismic wavelength. Cracks, fluids,

and patches of different temperature or composition are only a few examples of such

inhomogeneities, all of which can produce complex wavefield fluctuations in time and

amplitude and affect the signals recorded at the surface. Seismic source and velocity in-

versions, the discrimination and yield of a chemical or nuclear explosion, or peak ground

velocity and acceleration are only a few examples of calculations directly derived from

seismic data which require accurate amplitude measurements. However, while seismic

amplitudes are particularly affected by scattering and absorption, many of the models

used for these and other estimations are laterally homogeneous or smoothly varying,

potentially biasing the results obtained from them.

In this thesis, I combine both single- and multi-layer energy flux models (EFMs)

with a Bayesian inference algorithm to rigorously and probabilistically characterise the

small-scale heterogeneity and attenuation structure of the lithosphere beneath seismic

stations and arrays. The single-layer energy flux model, or EFM, characterizes the

energy losses to the ballistic arrivals by means of the intrinsic, scattering and diffu-

sion quality factors. I then use these values to compare the strength of these different

attenuation mechanisms and their effects on the recorded signals. I implemented two

main versions of the multi-layer EFM. The first of these, called here the Depth Depen-

dent Energy Flux Model (EFMD), uses the intrinsic quality factor obtained from the

EFM and a new Bayesian inversion algorithm to compute synthetic coda envelopes.

By comparing synthetic and data envelopes, I can then obtain the scattering param-

eters (correlation length (a) and RMS velocity fluctuations (ε)) in each layer of the

model. The second, expanded, version of the EFMD, called the E-EFMD, does not

rely on the EFM and can simultaneously invert for both the scattering and intrinsic

attenuation (intrinsic quality factor at 1 Hz (Qi0) and its frequency dependence coeffi-

cient (α)) parameters in each layer of the model. Both the EFMD and E-EFMD use

the Metropolis-Hastings algorithm to sample the likelihood space and obtain posterior

probability distributions for each parameter and layer in the model.

My thorough testing of these methods reveals the specific effect each of these pa-
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Abstract vii

rameters has on the seismic codas, with initial coda amplitudes being more affected

by the scattering parameters and decay rates controlled mostly by intrinsic attenu-

ation. Independent calculation of these parameters in multi-layer models using the

EFMD or E-EFMD remains challenging due to complex and strong trade-offs between

them and to solutions being extremely non-unique in most cases. This issue is accen-

tuated by an apparent bias of the E-EFMD towards extreme values of the intrinsic

quality factor at 1 Hz. Overall, my results highlight the importance and usefulness

of the Bayesian inference framework in this kind of study, since it provides detailed

information about the uncertainty and uniqueness of the solutions. I applied these

approaches to large, high quality, datasets of teleseismic events recorded by the Pilbara

(PSA), Alice Springs (ASAR), Warramunga (WRA), Eielson (ILAR), Lajitas (TXAR),

Pinedale (PDAR), Yellowknife (YKA) and Boshof (BOSA) seismic arrays or stations.

For PSA, ASAR and WRA, my EFM and EFMD results suggest scattering is the main

driver of attenuation, with the crust beneath them presenting different heterogeneity

strengths and the lithospheric mantle being mostly homogeneous. Data inversions of

ILAR, PDAR, TXAR, YKA and BOSA data using the EFMD and E-EFMD point to

the algorithm being unable to fit the data in many cases, likely because of the assumed

power law frequency dependence for Qi not being good enough to explain the complex

coda behaviours shown in their datasets but also due to the aforementioned bias of

the algorithm towards extreme values of some parameters, which is also observed in

PSA, ASAR and WRA E-EFMD data inversions. Relating these inversion results to

the physical structure beneath the stations is, therefore, not possible. In general, my

results suggest that parameter trade-offs and solution non-uniqueness in the E-EFMD

are too extreme to allow for successful simultaneous recovery of all the parameters,

while the combination of the EFM and EFMD can yield stable and reliable results

for 1- and 2-layer models and also allow us to compare between different attenuation

mechanisms.
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Chapter 1

Introduction

The Earth is heterogeneous on a variety of scales, ranging from the grain scale to scales

of hundreds of kilometers. Heterogeneities such as changes in composition or tempera-

ture, cracks, the presence of gas bubbles or fluids are evident in data and results from

geo-disciplines with as varying sensitivity to different scales as geochemistry, petrol-

ogy or seismology, and at depths ranging from the surface to the inner core (e.g. Wu

and Aki, 1988; Vernik and Nur, 1992; Romanowicz and Durek, 2000; Cormier and

Li, 2002; Sato et al., 2012; Kennett and Furumura, 2016; Rost et al., 2021). In a

laterally homogeneous medium, direct seismic waves can be reflected or refracted at

layer boundaries, but most of the energy they carry reaches the free surface, and the

recording instruments on it, within a short time interval (Fig. 1.1). In contrast, when

seismic waves propagate through a heterogeneous medium (Fig. 1.2), only a fraction of

the energy of the initial wavefront reaches the free surface in the same time window as

the ballistic arrival (Fig. 1.1). Since recorded amplitudes of seismic waves are directly

related to the energy they carry, this reduction in the direct wave energy results in

lower recorded amplitudes (Fig. 1.1, also e.g. Toksöz et al., 1979). Part of this “lost”

energy is scattered at the inhomogeneities in the medium and can either reach the free

surface at later times or be backscattered into lower layers (Fig. 1.2). The energy that

gradually reaches the free surface at later times forms a tail that trails the ballistic

arrivals called the seismic coda (Fig. 1.1). Aki (1969) showed that the power spec-

tra of these coda waves for a given station are independent of epicentral distance and

earthquake magnitude. They proposed that seismic codas were caused by backscat-

tered energy from discrete heterogeneities randomly distributed beneath the stations.

The presence and shape of the coda strongly depends on the heterogeneity structure

and, therefore, can be related to the geology beneath the station. Later studies (e.g.

Aki and Chouet, 1975; Rautian and Khalturin, 1978; Aki, 1980b; Sato et al., 2012)

showed that the stable decay in coda wave amplitude was also independent of epicen-

tral distance and source mechanism, and that other attenuation mechanisms failed to

1
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Figure 1.1: Comparison of synthetic traces obtained using OpenSWPC (Maeda et al., 2017) for a
laterally homogeneous model (black lines, velocity model on the left) and those for the same model
with added crustal random heterogeneities (red lines, model on the right). These inhomogeneities
are characterized by their average spatial distribution, controlled by the correlation length a, and the
velocity fluctuations with respect to the background medium, ε. In this example, these parameters
follow an exponential autocorrelation function, with a = ax = ay = az = 0.5 km (x and y representing
the horizontal directions and z the vertical), and ε = 0.5 km.

reproduce the observed signals, thus fully supporting the scattering hypothesis. Several

scattering regimes can be identified based on key parameters such as the wavenumber

(k), the correlation length (a), the RMS velocity fluctuations of the heterogeneity (ε) or

combinations of these. As an example, the normalised wavenumber (ka) is commonly

used to define scattering as quasi-homogeneous (ka < 0.01), Rayleigh type (ka ≪ 1),

Mie or large-angle (ka ≈ 1) or small-angle (ka ≫ 1) (e.g. Wu and Aki, 1988). The

length and amplitude of the coda is, therefore, directly related to the small-scale het-

erogeneity structure in the areas surrounding either the seismic source, the receiver or

both (e.g. Sato et al., 2012; Napolitano et al., 2020; Aki, 1969; Aki, 1980b), as well

as its average spatial distribution and strength. It is not, however, the only source of

seismic attenuation. Within the Earth, both elastic and inelastic processes take place.

In the former, the energy of the wavefield is conserved, as in the case of scattering,

while in the latter, the seismic energy is not conserved (e.g. Müller et al., 2010; Sato

et al., 2012). Absorption, also called intrinsic or anelastic attenuation, is caused by

anelastic processes such as the conversion of seismic energy into heat due to friction,

or the movement of fluids within cracks and pores in the structure (e.g. Müller et al.,

2010; Tisato et al., 2015; Sun et al., 2015). These phenomena result in an exponential

decrease in the recorded amplitudes of direct waves as a function of time (e.g. Sato

et al., 2012; Carcolé and Sato, 2010; Müller et al., 2010). Although seismic codas
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are most frequently related to scattering, at certain lapse times and for specific fre-

quency bands, they can also carry information about absorption (e.g. Aki, 1980a; Aki

and Chouet, 1975; Aki, 1980b; Rautian and Khalturin, 1978; Wegler, 2003; Sketsiou

et al., 2020; De Siena et al., 2014). As with seismic scattering, the occurrence and

intensity of intrinsic attenuation is also closely related to the heterogeneity structure

of the Earth (e.g. Romanowicz and Durek, 2000; Tisato et al., 2015; Sun et al., 2015),

changes in rheology (e.g. Romanowicz and Durek, 2000; Stachnik et al., 2004) and the

local tectonic and volcanic history/activity, so that recent or more intense tectonic or

volcanic activity is associated with stronger scattering and intrinsic attenuation (e.g.

Romanowicz and Durek, 2000; Sketsiou et al., 2021; Rost et al., 2021; Borleanu et al.,

2017; Napolitano et al., 2020). Finally, the recorded amplitudes of seismic waves are

also affected by the geometric spread of the wavefront, by which the energy density at

any point of the wavefront will gradually decrease with increasing travel time/distance

as it is spread over a larger surface area (e.g. Sato et al., 2012; Fehler et al., 1992; Xia

et al., 2020; Müller et al., 2010; Kennett and Pha.m, 2018). As opposed to scattering

and intrinsic attenuation, this phenomenon is mostly independent of the properties of

the medium the seismic waves travel through. The addition of the effects of these three

attenuation mechanisms (scattering, anelasticity and geometric spreading) provides a

measure of the total attenuation experienced by the seismic wavefield as it propagates

through the structure of the Earth (e.g. Sato et al., 2012; Toksöz et al., 1979; Müller

et al., 2010).

Many seismological Earth models are laterally homogeneous or smoothly varying,

with a lack of small-scale heterogeneity (e.g. Helmberger, 1968; Dziewonski and An-

derson, 1981; Kennett and Engdahl, 1991; Randall and Owens, 1994). Estimations

inferred from seismic data often rely on amplitude measurements (e.g. Selby et al.,

2012; McLaughlin and Jih, 1988; Zhang and Wen, 2013), which, as stated above, are

affected by both elastic and anelastic processes that take place along the entire ray

path. The use of smooth, simplified models of the Earth, not only limits our un-

derstanding of high-frequency seismic wave propagation but can potentially bias any

calculations derived from seismic amplitudes. In tectonic settings, studies have sug-

gested a dependence of intrinsic attenuation on strain rates (e.g. Eberhart-Phillips

et al., 2014) and shown that having accurate characterizations of the scattering and

absorption structures beneath and around fault systems can help us better understand

their dynamics and improve our seismic hazard assessments (e.g. Sketsiou et al., 2021;

Rost et al., 2021; Napolitano et al., 2020; Borleanu et al., 2017). For volcanoes, where

scattering and attenuation can be very strong and significantly affect seismic signals,

the spatial mapping of scattering and intrinsic attenuation parameters have been used

to image their plumbing systems and magma pathways (e.g. Prudencio et al., 2017;

De Siena et al., 2014; Wegler, 2003), which in turn can also help us refine our volcanic
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Figure 1.2: Simplified representation of the scattering and intrinsic attenuation processes as seismic
waves propagate through a heterogeneous layer. A plane wavefront, represented by the vertical arrows at
the bottom of the model, enters the structure, where it encounters discontinuities and heterogeneities
that deviate the ray paths from a straight line path (scattered trajectories are represented by blue
arrows) and cause the energy to reach the surface at later times and/or be backscattered into the lower
layers again.

hazard estimates. The study of scattering and attenuation is also key for nuclear explo-

sion monitoring purposes, since event discrimination and magnitude-yield estimations

are obtained, directly or indirectly, from recorded seismic amplitudes and need to be

corrected for path effects using attenuation models and/or calibration using historical

datasets (e.g. Selby et al., 2012; Zhang and Wen, 2013; McLaughlin and Jih, 1988; Dou-

glas, 2013). Seismic hazard estimations would also benefit from improved scattering

and attenuation characterizations, since these affect peak ground velocity and accelera-

tion estimations (e.g. Eulenfeld and Wegler, 2016). These are only some examples that

show the importance of understanding and accurately characterizing the heterogeneity

and attenuation structures, as well as their effects on recorded wavefields.

Methods to study scattering and attenuation within the Earth vary depending on

the type and scale of the heterogeneity. Many seismological studies use deterministic

methods to characterize the structure of the Earth (e.g. Christensen and Mooney,

1995; Zelt and Barton, 1998) or to find, locate and characterize individual scatterers

(e.g. Etgen et al., 2009; Thorbecke et al., 2017; Neut et al., 2015). (e.g. Thorbecke

et al., 2017; Neut et al., 2015)(e.g. Etgen et al., 2009). These techniques tend to

have limited spatial resolution due to the wavelength of the studied waves and do not

always take into account small-scale heterogeneities (on the order of magnitude of the
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wavelength or smaller), therefore failing to explain or reproduce the complex coda waves

we see in seismograms. A different approach that partially overcomes these issues uses

a stochastic description of the heterogeneity (e.g. Korn, 1990; Korn, 1997; Ritter et

al., 1998; Hock et al., 2004; Margerin, 2005). This kind of approach (e.g. Frankel and

Wennerberg, 1987; Korn, 1990; Fehler et al., 1992; Shapiro and Kneib, 1993; Hock et al.,

2004; Margerin, 2005; Sato and Emoto, 2018) provides a statistical description of the

structure and determines the integrated effect of heterogeneity on propagating seismic

waves, so the characteristics and locations of individual scatterers are not relevant.

Studies show the crust and lithospheric heterogeneity are statistically complex (e.g.

Kennett and Furumura, 2016) and the necessity of heterogeneous Earth models that

are capable of explaining not only the main waveforms but also coda waves (e.g. Aki,

1973; Flatté and Wu, 1988; Langston, 1989). Single-scattering perturbation theory (e.g.

Aki and Chouet, 1975; Sato, 1977; Sato, 1984) was one of the first methods designed for

this purpose. Here, scattering is a weak process and limited to a single scattering event

along the path. Coda waves are considered the superposition of single scattered waves

generated at randomly distributed heterogeneities within the Earth. It often makes use

of the Born approximation (e.g. Sato et al., 2012), a first-order perturbation condition

which does not take into account the energy loss due to scattering. As a result, within

this model, energy is not conserved in the scattering process (e.g. Aki and Chouet,

1975; Sato et al., 2012). In this model and at low frequencies, the quality factor of

coda waves, Qc, includes both the effects of scattering and anelastic attenuation. At

the other end of the heterogeneity strength spectrum is the stochastic diffusion model

(Aki and Chouet, 1975). In this framework, scattering is strong and can occur multiple

times along the ray path, thus resulting in codas being mainly composed of multiply

scattered waves. All the seismic energy is scattered through diffusion, and Qc includes

only energy losses due to anelasticity. These two approximations are at the core of

many, widely used, techniques.

In recent years, Radiative Transfer Theory (RTT) has become one of the most fre-

quently used methods to either separately or jointly characterize the effects of scattering

and intrinsic attenuation on propagating seismic waves. This stochastic technique was

initially developed for light propagation (Chandrasekhar, 1950) and it was first applied

to seismology in the 1980s (e.g. Wu, 1985; Gusev and Abubakirov, 1987) but has been

significantly improved and expanded (e.g. Margerin et al., 1998; Przybilla and Korn,

2008; Nakahara and Yoshimoto, 2011; Sanborn et al., 2017; Sato and Emoto, 2017;

Sato and Emoto, 2018; Hirose et al., 2019; Margerin et al., 2019) since then. In par-

ticular, the development and improvement of Monte Carlo simulations (e.g. Hoshiba,

1991) and analytical approaches to solve the radiative transfer equations have made it

possible to apply RTT to a wide variety of tectonic and geological settings (e.g. Gaebler

et al., 2015b; Gaebler et al., 2015a; Margerin, 2003; Hirose et al., 2019; Wegler, 2003;
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Prudencio et al., 2015; Nardoni et al., 2021; Fielitz and Wegler, 2015; Carcolé and

Sato, 2010). RTT is not, by any means, the only statistical method currently used to

study seismic scattering and/or absorption. Other methods to analyse coda energy and

study lithospheric heterogeneity have been proposed and are also frequently used, such

as Multiple Lapse Time Window Analysis (MLTWA, e.g. Hoshiba, 1991; Fehler et al.,

1992), the coda normalization method (Aki, 1980a; Sketsiou et al., 2021; De Siena

et al., 2014), the teleseismic fluctuation wavefield method (TFWM, e.g. Shapiro and

Kneib, 1993; Ritter et al., 1998; Ma and Huang, 2020), peak-delay time measurements

(e.g. Borleanu et al., 2017; Napolitano et al., 2020), energy flux models (e.g. Frankel

and Wennerberg, 1987; Langston, 1989; Korn, 1990; Korn, 1997) or coda wave inter-

ferometry (e.g. Snieder, 2006), among others. From the computational point of view,

a number of codes implementing RTT and other methods of stochastic wave propa-

gation in random media have been developed and made publicly available in recent

years (e.g. Eulenfeld and Wegler, 2016; Sanborn et al., 2017; Maeda et al., 2017), and

the combination of Machine Learning algorithms with RTT or other stochastic meth-

ods (e.g. Belochitski and Krasnopolsky, 2021) offers a very promising path into the

future of scattering and attenuation studies. However, while these methods are able to

characterize the heterogeneity structure of the Earth, they all use approximations, are

computationally expensive, or both, which highlights the need for improvements both

within the theoretical and computational frameworks if we want to advance and better

our models of the small-scale structure of the Earth.

In this thesis, I use single-layer and depth-dependent Energy Flux Models (EFM

and EFMD respectively, Korn, 1990; Korn, 1997) to study and compare scattering and

intrinsic attenuation in the lithosphere. In Chapters 2 and 3, I describe and test my

implementation of these methods based on their description in the literature, as well as

my Bayesian inference algorithm, and apply them to large, high quality datasets from

three seismic arrays in Australia (Pilbara Seismic Array (PSA), Alice Springs Array

(ASAR) and Warramunga (WRA)). Then, in Chapter 4, I expand my initial implemen-

tation of the EFMD to allow for the joint Bayesian inversion of scattering and intrinsic

attenuation parameters. After thoroughly testing this new algorithm both by means

of synthetic tests and real data inversions, in Chapter 5, I apply it to datasets from

five seismic arrays or stations part of the International Monitoring System (IMS). My

results show complex trade offs between the scattering and/or intrinsic attenuation pa-

rameters, which highlight the importance and usefulness of Bayesian inference in this

context, since this approach provides detailed information about the posterior prob-

ability distributions and the parameter space. The EFM/EFMD combination yields

stable and reliable results for one- and two-layer models, while their expansion to invert

also for the absorption parameters suggest the trade-offs between the parameters are

too extreme to be accurately resolved.
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Methods

The Energy Flux Model, or EFM (Frankel and Wennerberg, 1987), is a technique

initially developed as an alternative to the single-scattering theory (e.g. Chernov and

Silverman, 1960; Aki, 1980b; Sato, 1984) for the statistical characterization of the

small-scale heterogeneity of the crust. The original formulation of the EFM, developed

by Frankel and Wennerberg (1987), was designed to model seismic S wave codas from

local earthquakes using a phenomenological approach based on the energy conservation

law. By considering the balance of energy between the direct wavefront propagating

through a scattering medium and the coda, Frankel and Wennerberg (1987) derived

equations that predict coda levels and decays for any random media without explaining

the scattering processes that are the origin of coda waves. As opposed to the single-

scattering theory (e.g. Chernov and Silverman, 1960; Aki, 1980b; Sato, 1984), the

EFM implicitly included multiple scattering, was applicable to both weak and strong

scattering and allowed one to obtain independent estimates of the intrinsic (Qi) and

scattering (Qs) quality factors. Frankel and Wennerberg (1987) tested their approach

both on synthetic data obtained from 2D acoustic finite difference simulations and

real data from two M∼3 earthquakes from southern California. They found that the

EFM could explain the coda decays and levels observed both in synthetic and recorded

waveforms and proposed it as an improvement over the single-scattering theory which

was commonly used at the time to analyse codas from local earthquakes.

Korn (1988) was one of the first studies to apply the EFM. However, instead of

using it to analyse codas from spherical or cylindrical wavefronts spreading from a

point source nearby and travelling approximately horizontally through a heterogeneous

medium, Korn (1988) changed the formulation of the method to use it on plane wave-

fronts reaching a model formed by a heterogeneous layer above a homogeneous half-

space from below and travelling upwards to the free surface. This new geometry made

the updated EFM applicable to P wave codas from deep teleseismic events and suitable

7
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for the study of the near-receiver, small-scale heterogeneity structure. Korn (1988) used

this new implementation of the EFM to analyse P codas from 54 events from the Flores,

Timor and Banda Sea region recorded at the Warramunga Array in central Australia.

Korn (1990) added diffusion attenuation to the EFM, to take into account the

energy that is constantly scattered back from the inhomogeneous layer into the half-

space. The implementation by Korn (1988) did not include diffusion in its formulation,

thus forcing the scattered energy to stay within the scattering layer at all times and

causing an overestimation of the intrinsic attenuation. Langston (1989) also extended

the EFM from Frankel and Wennerberg (1987) to apply it to teleseismic P codas and

include diffusion, but his version of the method only allowed the energy to leave the

heterogeneous layer once the direct wave left it on its way down after total reflection

at the free surface, while diffusion was permitted at any time in Korn (1990). This

method does not take into account any phase conversions or reflections at interfaces

other than the free surface, and assumes no strong lateral velocity changes are present

beneath the seismic stations. When the technique is applied to full arrays, it is assumed

that the same velocity and heterogeneity structure is present beneath all the stations.

My implementation of the EFM, detailed in this section and applied in Chapter 3, is

based on the modified Energy Flux Model developed by Korn (1990). All mentions of

the EFM from here on will refer to this version of the method and any references to

other implementations will be clearly indicated.

Building on the EFM, Korn (1997) expanded the formulation from Korn (1990),

which included intrinsic, diffusion and scattering attenuation, to take into account

variations in the small-scale heterogeneity structure with depth. From here on, and to

avoid confusion with the EFM, I will refer to the depth-dependent Energy Flux Model

from Korn (1997) as the EFMD.

In the past, the EFM and EFMD have been used both independently (e.g. Korn,

1993; Rothert and Ritter, 2000), together (Hock and Korn, 2000), or in combination

with a third technique, called the Teleseismic Fluctuation Wavefield Method (TFWM,

e.g. Ritter et al., 1998). This method is designed to statistically study the heterogene-

ity structure beneath seismic arrays (e.g. Ritter et al., 1998; Rothert and Ritter, 2000;

Ritter and Rothert, 2000) and is based on the separation of the recorded P wavefields

into a coherent or mean wavefield, which is observed at all stations, and an incoherent

or fluctuating wavefield, which varies from one station to another. Overall, these tech-

niques have been applied to a variety of tectonic and geologic scenarios, such as central

Australia (Korn, 1990), the circumpacific area (Korn, 1993), central Europe (e.g. Rit-

ter et al., 1998; Rothert and Ritter, 2000) or the Sichuan Basin, China (Li, 2010),

among others. In this chapter, I focus on the single layer modified Energy Flux Model

(EFM, Korn, 1990) and the depth dependent Energy Flux Model (EFMD, Korn, 1997)

on Sections 2.1.1 and 2.1.2, but I also describe and test the Teleseismic Fluctuation



§2.1 Energy Flux Models 9

Wavefield Method in Section 2.2. This work is partially based on work published as

González Álvarez et al. (2021).

2.1 Energy Flux Models

2.1.1 The modified Energy Flux Model (EFM)

When a plane wavefront travels through a heterogeneous unlayered medium, part of the

energy propagates with the ballistic wavefront, while part forms the forward scattered

coda energy that arrives later at the surface and some energy scatters back into the

half-space. Total energy Etot within the scattering layer is conserved in this process

and it can be written in terms of angular frequency, ω, and time, t, as

Etot(ω, t) = Ed(ω, t) + Ec(ω, t) + Ediff (ω, t) + Ei(ω, t), (2.1)

with Ed being the energy density of the direct wave, Ec the energy density that is

transferred from the direct wave into the coda (forward scattered), Ediff the energy

density that is leaked or diffused (backscattered) from the heterogeneous layer back

into the half-space and Ei the anelastic or intrinsic energy losses due to dissipation into

heat. At time t = 0, the wavefront enters the scattering layer from below, so Etot(ω, 0) =

Ed(ω, 0) = E0 and Ec(ω, 0) = Ediff (ω, 0) = Ei(ω, 0) = 0. Direct wave energy losses

due to scattering and anelasticity, controlled by quality factors Qs and Qi respectively,

occur continuously while the ballistic wave is inside the inhomogeneous layer but stop

at t = 2t1 (t1 being the one-way travel time through the layer), when it enters the

half-space after total reflection at the free surface. Intrinsic attenuation also happens

within the homogeneous half-space and is measured by Q′
i, but it does not affect the

coda and is not addressed by the EFM. Diffusion of energy out of the scattering layer

and into the half-space can continue after 2t1 and is controlled by the diffusion quality

factor Qdiff . Based on this, the energy balance within the inhomogeneous layer can be

described with a system of differential equations (Korn, 1990; Korn, 1993):

d

dt

 Ed

Ec

Ediff

 =


−ω(H(2t1−t)

Qs
+ 1

Qi
) 0 0

ωH(2t1−t)
Qs

−ω( 1
Qdiff

+ 1
Qi

) 0

0 ω
Qdiff

−ω
Q′

i


 Ed

Ec

Ediff

 , (2.2)

where H is the Heaviside step function or unit step function. From Eq. 2.2, the coda

energy density Ec for times t > t1 (after the direct wave reaches the free surface) can

be defined as

Ec(ω, t) =
2E0

1−Qs/Qdiff
sinh[ωt1(Q

−1
s −Qdiff

−1)]·

e[−ωt1(Q
−1
i +Q−1

s )]e[−ωt(Q−1
i +Qdiff

−1)] .

(2.3)
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The initial energy, E0, can be calculated from the direct wave energy (ED) measured

at the free surface at t = t1 as

E0(ω) = Ed(t1) e
−ωt1(Q

−1
s +Q−1

i ) . (2.4)

The energy densities in Eqs. 2.2 and 2.3 cannot be directly estimated from data,

but are related to the power spectral density, P (ω, t), which can be measured from the

squared envelopes of filtered velocity seismograms (see Frankel and Wennerberg (1987),

Korn (1990) or Langston (1989) for details), through:

E(ω, t) =
1

c

∫
P (ω, t) dV , (2.5)

with c being a scaling factor and V the whole volume occupied by E.

For the coda, if we assume that coda energy within the heterogeneous layer is

approximately homogeneously distributed in space, and that d represents the thickness

of the scattering layer, the relationship between the coda energy density and the coda-

power spectral density can be written as:

Ec =
d δF

c
Pc . (2.6)

This assumption, also supported by energy transport theory (e.g. Sato, 1995), is based

on the independence of coda amplitudes with respect to hypocentral distance (e.g.

Aki, 1980a), and backed up by results from numerical modelling (e.g. Frankel and

Wennerberg, 1987; Korn, 1990). Further assumptions in the EFM are that the velocity

of the scattered energy through the heterogeneous layer is the same as the P-wave and

that energy propagates isotropically.

For the direct wave, if we define the average velocity of the scattering layer and the

horizontal area increment as v and δF respectively, we can write V = dδF = vt1δF ,

and Eq. 2.5 becomes

Ed(ω, 0) =
1

c

∫∫∫
Pd dV =

vδF

c

∫ δt

0
Pd(ω, t) dt =

vδF

c
Id , (2.7)

in which the integral Id is calculated over the time window of the direct wave arrival,

as estimated from the data based on the duration of the large amplitudes in the power

spectral density plots.

Combining Eqs. 2.3, 2.4, 2.6 and 2.7, we can calculate the coda-power spectral

density Pc(ω, t) as a function of the intrinsic, diffusion and scattering quality factors,
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as well as the one-way travel time through the scattering layer:

Pc(ω, t) =
2Id

t1 (1−Qs/Qdiff )
sinh[ωt1

(
Q−1

s −Qdiff
−1

)
]e−ωt(Q−1

i +Qdiff
−1) (2.8)

Taking the logarithm of the theoretical coda-power spectral density shown in Eq.

2.8 for a fixed frequency converts the exponential decay shown in Eq. 2.8 into a linear

function, from which we can define the coda decay rate, a1, and the coda amplitude

at zero time (t0 being defined by the direct wave entering the heterogeneous layer), a0

(Korn, 1990; Korn, 1993), as

log10 Pc(ω, t) = log10 a0 − a1t (2.9)

with

a1(ω) = ω log10 e
[
Q−1

i +Qdiff
−1

]
(2.10)

and

a0(ω) = log10

(
2Id

t1 (1−Qs/Qdiff )
sinh

[
ωt1

(
Q−1

s −Qdiff
−1

)])
. (2.11)

Calculating a0 and a1 at different frequencies using a linear least squares fit of Eq. 2.9

for a fixed frequency ω allows us to separately calculate Qi, Qs and Qdiff . For the

scattering quality factor, Korn (1990) discussed the dependence of a0 on Qs and Qdiff

for different scenarios and concluded that Qs can always be estimated from a0 without

precise knowledge of Qdiff . In particular, if the scattering and diffusion quality factors

are on the same order of magnitude, the hyperbolic sine in Eq. 2.11 approximately

takes the value of its argument, which leads to

Qs(ω) ≈ 2IDω10
−a0 . (2.12)

We can then use the relationship between Q−1
s , the correlation length (a) and the

RMS velocity fluctuations (ε) of the heterogeneity structure for different types of au-

tocorrelation functions (ACFs) to determine the type of ACF that fits the data best.

For isotropic exponential media, Fang and Müller (1996) obtained:

Q−1
s (ω) = ε2

28.73(aω/v)3

1 + 16.77(aω/v)2 + 2.40(aω/v)4
, (2.13)

where v is the mean P velocity of the random medium. Since the EFM does not allow

any layering, a and ε represent an approximation to the average spatial distribution

and strength of the heterogeneity of a hypothetical single scattering layer beneath the

array or station.

The intrinsic and diffusion quality factors are obtained from the coda decay rate,
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a1, based on their different frequency dependence. Assuming that the relative energy

loss of the coda per unit time does not depend on frequency, we can write:

Qdiff (ω) =
Qd0ω

2π
, (2.14)

withQd0 being the intrinsic quality factor value at 1 Hz. Equation A7 from Korn (1990),

obtained using basic assumptions about the propagation of the wavefield in and out of

the scattering layer in 3D media, defines the relationship between Qdiff and the one-way

travel time through the scattering layer, t1, as Qdiff = 4ωt1. This expression makes it

possible to estimate the thickness of the layer, d, as long as a background velocity can

be defined. However, this thickness is only a rough approximation to the real value and

will not be used in my applications of the EFM.

For the intrinsic quality factor, the frequency dependence is described by

Qi(ω) = Qi0

( ω

2π

)α
(2.15)

where α is the exponent controlling the power law frequency dependence of Qi (Korn,

1990, Eq. 17). Laboratory measurements of α have shown that it probably remains

below 1 for most of the frequency range considered in most seismological studies (Korn,

1990, and references therein). Replacing these expressions for Qi(ω) and Qdiff (ω) in

Eq. 2.10, we obtain

a1(ω) = −2π[Q−1
d0 +Q−1

i0 (ω/2π)1−α] log10 e, (2.16)

which, for a fixed α, allows us to calculate the intrinsic and diffusion quality factors

values at 1 Hz, Qi0 and/orQd0, by measuring the coda decay rate at different frequencies

and using a least squares inversion of Eq. 2.16. My attempts at obtaining α as a third

free parameter in the inversion revealed a very complicated trade-off with Qi0 and Qd0,

with high values of α corresponding to negative values of Qi0 and/or Qd0. Therefore, I

limited α to the range of 0.0 - 0.6, in steps of 0.1, and chose the value that minimised

the misfit to the data. Both my results and those of Korn (1990) show that α has a

strong effect on Qi but only weakly affects Qdiff . The impossibility to fully invert for

α makes it difficult to accurately calculate Qi within the EFM, but has a minor effect

in the determination of Qdiff (Korn, 1990).

Finally, we calculated the combined quality factor, Qcomb , as the combination of

the scattering, intrinsic and diffusion quality factors:

1

Qcomb
=

1

Qdiff
+

1

Qi
+

1

Qs
(2.17)

Please note that Qcomb , as opposed to other quality factors, is not related to the
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energy decay of the wavefield nor is it applied to any specific part of the seismogram.

Its only intent is to summarise the total coda attenuation and make it easier to compare

my results from different arrays or stations.

2.1.2 The Depth-Dependent Energy Flux Model

In the EFMD, a plane wavefront enters a stack of N heterogeneous layers from below.

Each layer j has its own characteristic transit time δtj and scattering parameters aj

and εj (Fig. 2.1). The stack of layers is symmetric with respect to the free surface, at

the center of the stack, to take into account the reflection of the wavefront.

For a given angular frequency ωc, the normalised coda energy envelope of a veloc-

ity seismogram at the free surface is computed from the squared amplitude envelope

A2(ωc; t) and is related to the energy balance within the different layers in the model

through √
A2(ωc; t)

Id
=

√
2ECN

(ωc; t)

tNED(ωc; tN )
, (2.18)

with Id defined as in Eq. 2.7, ECN
(ωc; t) being the spectral coda energy density of the

layer containing the free surface, tN the traveltime from the bottom of the stack of

layers to the free surface and ED(ωc; t) the energy density of the direct wave measured

at the free surface. This normalization procedure ensures that the stacking of the

envelopes from events with different magnitudes is not affected by differences in the

amplitude scale of the original seismograms. Qs and Qi control the decay of the direct

La
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a
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, ε
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j+1
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j-1

a
j
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j

Direct wave                                  Diffusion
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Figure 2.1: Total energy balance for layer j, according to the EFMD. (After Korn, 1997).
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wave energy over time due to scattering and intrinsic attenuation via

ED(ω; tj) = ED(ωc; tj−1)e
−ω(tj−tj−1)(Q

−1
sj

+Q−1
ij

)
, (2.19)

where tj represents the one-way travel time through each layer. As in the EFM, at time

t = 0 the incident wavefront reaches the bottom of the model vertically from below and

Ed(ω, 0) = E0. The EFM assumption of homogeneous scattered energy density within

the volume behind the wavefront is now applied to each layer in the model (Korn,

1997), but differences between layers are allowed. Assumptions regarding isotropic

energy spread and scattered energy velocity (see Section 2.1.1) are also applied to the

EFMD. The energy balance within layer j (j = 1, ..., N) is represented by

dECj

dt
=− 1

4δtj
ECj (t)H (t− tj)

− 1

4δtj
ECj (t)H (t− tj−1)

+
1

4δtj−1
ECj−1 (t)H (t− tj−1)

+
1

4δtj+1
ECj+1 (t)H (t− tj)

− ω

Qij

ECj (t)H (t− tj−1)

+
ω

Qsj

ED (t)H (t− tj−1)H (tj − t)

, (2.20)

where H is the Heaviside function. The first two terms of Eq. 2.20 describe the energy

flux from layer j to the layers above and below, while the next two terms describe the

opposite flux from the neighbouring layers into layer j. The last two terms represent

the anelastic or intrinsic energy loss and the direct wave energy input into the layer.

In practice, for a given model m, comprising a single value of a and ε for each

layer in the stack, Qs is calculated from the structural parameters aj and εj using the

analytical approximation for isotropic exponential media defined in Eq. 2.13. Qi is

obtained from the EFM and assumed to take the same values within each layer of the

model. With these values, ED can be calculated for each time sample using Eq. 2.19,

starting from the energy value measured at the free surface. Then, the system of linear

differential equations in Eq. 2.20 is solved for the layer containing the free surface and

data and synthetic coda envelopes are calculated for each frequency band using the left

and right hand sides of Eq. 2.18 respectively. These envelopes can now be used in an

inversion to obtain the scattering parameters for each layer in the model.
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2.1.3 Bayesian approach to the Depth-Dependent Energy Flux Model

Previous studies using the EFMD (Korn, 1997; Hock and Korn, 2000; Hock et al.,

2004) obtained the correlation length and RMS velocity fluctuation values for each

layer in the model by systematically calculating the synthetic envelopes for a series

of predetermined lithospheric models. The parameter space can be efficiently and

meticulously explored using this kind of grid search, but it is impractical and does not

easily allow the inclusion of prior information.

For my study, I decided to take a different approach and use Bayesian inference

(e.g. Tarantola, 2005) to obtain the scattering parameter values for each layer in the

model. In this type of inversion, the aim is not to obtain a single, best fitting model,

but to test a large number of models with parameters drawn from a prior probability

distribution p(m) (or prior) defined by previous knowledge on them. Different sampling

algorithms exist that allow us to probe the posterior probability distribution and obtain

the probability of each test model of explaining the observed data, thus providing

detailed information about uncertainties and trade-offs in the determination of the

different parameters.

Bayesian inference theory

The likelihood associated with model m, p(d|m), is the probability of observing my

data, d, given the model parameters in m. Within the Bayesian EFMD framework,

this data is defined as the set of normalised coda envelopes (obtained by means of

Eq. 2.18) for all events and stations in the dataset (see Section 2.1.4) and each of the

frequency bands of interest (Table 2.3). The variance-covariance matrix of the data,

C, is built as a diagonal matrix, with elements representing the variance of each time

sample of the data envelopes. In this context, I used the Mahalanobis distance Φ(m)

(Mahalanobis, 1936) between d and the synthetic envelopes ,g(m), to calculate the fit

to my data:

Φ(m) = (g(m)− d)TC−1(g(m)− d), (2.21)

which I then applied to the calculation of the likelihood of model m:

p(d|m) =
1√

(2π)n|C|
exp

(
−Φ(m)

2

)
(2.22)

Bayes’ theorem (Bayes, 1763) allows us to calculate the corresponding sample of

the posterior probability distribution (or posterior), that is, the probability density

associated with model m, or p(m|d):

p(m|d) ∝ p(d|m)p(m) (2.23)
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Figure 2.2: Graphic representation of the Metropolis-Hastings algorithm (Metropolis and Ulam,

1949; Metropolis et al., 1953; Hastings, 1970) which is the base of the Markov Chain Monte Carlo

(MCMC) algorithm. m and L represent a model, consisting on a correlation length and velocity

fluctuation value for each layer in the model, and its loglikelihood, respectively. c is a random number

between 0 and 1. See text for more details.

In my case, I use a uniform prior. I create an initial model by selecting a random

value for the correlation length and velocity fluctuations in all layers in the (amin, amax)

or (εmin, εmax) intervals, with amin = 0.2λmin [m], amax = 2λmax [m] (λmin and λmax

being the minimum and maximum wavelengths in the layer, depending on signal fre-

quency and background velocity), εmin = 4.5 · 10−3 % and εmax = 10 %. These max-

imum and minimum values were chosen considering the relevant range for detectable

scattering while being geologically feasible (e.g Korn, 1993; Hock et al., 2004).

I then applied the Metropolis-Hastings algorithm (graphically represented in Fig.

2.2; Metropolis and Ulam, 1949; Metropolis et al., 1953; Hastings, 1970) to sample

the posterior probability distribution and generate my ensemble of solution models.

This way, at every time step, this Markov Chain Monte Carlo (MCMC) algorithm

generates a new model m′ by randomly choosing one of the parameters in the previous

model (m) and updating its value by adding a random number in the (−δa, δa) or

(−δε, δε) interval, with δa and δε being the step size for correlation length and RMS

velocity fluctuations respectively. In case the new value of the parameter exceeds the

boundaries defined by (amin, amax) or (εmin, εmax), the distance ∆ to the boundary

is calculated and the new parameter value is forced to bounce back into the valid

parameter range by the same distance ∆. The algorithm then takes model m′ and

uses Eqs. 2.20 and 2.18 to obtain the corresponding synthetic envelopes. In order to

decide whether to accept or reject the new model, the algorithm uses the posterior
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Figure 2.3: 1-layer, 2-layer and 3-layer lithospheric models used to test my implementation of the

Bayesian EFMD analysis. Model 1 from Table 2.1 corresponds to model type I here, models 2, 3 and 4

to model type II and model 5 has the same layering as model type III. The free surface is at the center

of the middle layer of each one of these models to account for the total reflection of the wavefront at

the surface.

probability exponent (Eq. 2.22), Φ(m)/2, called here the loglikelihood, L, associated

with model m, as an estimator of the likelihood and the goodness of the fit to the

data. Thus, if L(m)/L(m′) ≥ 1, m′ will be accepted. If L(m)/L(m′) < 1, however,

it will only be accepted if exp(L(m)− L(m′)) ≥ q, q being a random number between

0 and 1. This algorithm ensures that parameter values closer to the true value have

high likelihoods and are accepted more often than values further from the true value.

The acceptance rate (AR) represents the percentage of times new parameter values

were accepted through the Markov chain. There are several criteria defining what the

value of the AR should be, most of them making assumptions about the properties of

the target distributions (e.g. Brooks et al., 2011). In my case, since I do not have any

a priori information about the posterior distributions, I aimed at AR values between

30–60 %. Finally I calculate the 5- to 95- percentile range (PR) for each parameter in

each layer in the model from my ensemble of accepted models.

For more detailed descriptions of Bayesian inference and MCMC, see Tarantola

(2005) or Brooks et al. (2011).
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Synthetic tests

Previous studies have tested the validity of both the EFM and EFMD: Frankel and

Wennerberg (1987) and Korn (1990) used a 2–D acoustic finite difference code to check

the validity of their respective versions of the EFM; Korn (1997) and Hock et al. (2004)

tested their approaches by obtaining synthetic seismograms from a fully elastic 2–D

finite difference method and comparing them with synthetic envelopes obtained from

the EFMD. More testing of the forward method is, therefore, not necessary. Here, I

tested my Bayesian inversion code with five different synthetic datasets, corresponding

to lithospheric models with varying number of layers and parameter values (Fig. 2.3).

Synthetic envelopes for these five models were calculated using the EFMD algorithm,

as described in Section 2.1.2. Parameter values for each one are shown in Table 2.1,

together with a summary of my synthetic tests results. In all of them, I used Pil-

bara Seismic Array (PSA, Section 3.1) as a reference array and obtained its velocity

model and Moho depth from the Australian Seismological Reference Model (AuSREM,

Kennett and Salmon, 2012; Kennett et al., 2013; Salmon et al., 2013a) and AusMoho

model (Kennett et al., 2011) respectively, although my results should be applicable to

any array or seismic station. Based on the lower bound of the lithosphere-asthenosphere

boundary (LAB) for this array (Yoshizawa and Kennett, 2015; Kennett, 2015), I set

the bottom depth of all models to 200 km. Frequency bands used are listed in Table

2.3.

Figures 2.4 to 2.8 illustrate the results from my synthetic tests for Models 1 to 5

(Table 2.1). In order to test the convergence of my algorithm, I ran three independent

Markov chains for each model, with a total of 3 million iterations (parameter com-

binations tested) for the single layer model, 9 million for the 2-layer models, and 15

million for the 3-layer model. For each chain, I discarded the models corresponding to

the burn-in phase, during which the algorithm is not efficiently sampling the posterior

probability distribution and models are still affected by the random initialization of the

Markov chain. In order to define the point at which the algorithm reached convergence

and the burn-in phase ended, I first calculated the mean loglikelihood value in the sec-

ond half of the chain (during which the algorithm is stable) and then subtracted 5% off

that value. I consider the algorithm has converged the first time it accepts a model with

loglikelihood L equal or higher than this value. My threshold was defined based on the

observation, in test runs of the EFMD, that L generally remained stable after reaching

the defined threshold for the first time. L provides an estimation of the goodness-of-fit

of the synthetic data to my real data and takes negative values, meaning fits improve

as L gets closer to zero (Eq. 2.22). In terms of parameter values, I consider that a

narrow 5–95 percentile range (PR) points to clearly determined values of the structural

parameters, while wide 5–95 PRs would suggest multiple parameter values are equally

likely and good at fitting my data.
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Figure 2.4: Summary of the results obtained from my EFMD algorithm for synthetic model 1
from Table 2.1 from three separate chains, adding up to a total of 3 million iterations (parameter
combinations tested). Panels a–c show the loglikelihood (or posterior probability exponent) for each
accepted model in the chain, once the burn-in phase was removed. Panels d–f contain the posterior
PDFs of the structural parameters, as well as the joint PDF. Dotted blue lines in these plots represent
the input parameter values and the shaded area corresponds to the 5–95 percentile range (PR). Panels
g–n on the right show 2D histograms of the synthetic envelopes for all accepted models and frequency
bands, with color bars indicating the number of models that produced a data sample within each bin.
Vertical scale is the same in all plots. The shaded area here indicates the time window used for the
fitting and blue dotted lines are the input data.

For Model 1, with a single layer encompassing the entire lithosphere, all three chains

reached stability and converged within 10000 iterations. Panels d–f in Fig. 2.4 show my

posterior probability density functions (PDFs) for each parameter, as well as the joint

PDF. In both cases, the distributions are approximately Gaussian and symmetric, with

the 5–95 PR being ∼ 0.06 km and ∼ 0.01% wide for the correlation length and RMS

velocity fluctuations respectively (Table 2.1), which indicated that the range of suitable

values of the parameters is very well defined. The algorithm slightly overestimates the

correlation length and underestimates the RMS velocity fluctuations, with the input
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value of the parameter being included in the 5–95 PR for the latter but not for the

former (Table 2.1, Fig. 2.4). However, the difference between the central value of the

PDFs and the true value of the parameter is < 0.4% for both the correlation length and

the RMs velocity fluctuations. Graphs on the right hand side of Fig. 2.4 (panels g–n)

show histograms of the synthetic envelopes for my ensemble of accepted models for all

frequency bands. It is convenient to note that the synthetic envelopes obtained from

the EFMD do not include the impulsive primary arrival and aim only at reproducing

coda amplitudes and decay rates within the time window of interest. The sharp

increase in amplitude observed here at ∼25 s corresponds to the one way travel time

through the lithosphere, at which the direct wave is totally reflected at the free surface.

Coda energy within the top layer of the model (the one used to compute the synthetic

envelopes) continues to increase after this moment due to scattering from the direct

wave into the layer, but will start to decay once the direct wavefront leaves the layer.

This is generally observed as a sharp peak or a maximum in the synthetic envelopes

(e.g. Figs. 2.5–2.8). For single layer models, the large thickness of the scattering layer

makes this variation in energy much more subtle, even if it continues to present the

same behaviour observed in the rest of the synthetic tests. It is also possible to observe

that, as frequency increases, both envelope amplitudes and width of the ensemble of

synthetic envelopes increase too. However, in all cases, the highest density of envelopes,

indicated by a dark brown color, is found along a very narrow region that matches the

input data envelopes, not only in the time window used for the fit (shadowed area in

the plots), but also outside of it.

Model 2 contains two layers, representing the crust and lithospheric mantle. My

three chains converged in less than 120000 iterations and remained stable for the rest

of the inversion, as shown in panels a–c in Fig. 2.5. Panels d–i in this figure summarise

my results. In this case, the PDFs for the parameters in both layers are narrow (the

Table 2.1: Summary of the synthetic model layering and my synthetic tests results. For
each model, I include the 5–95 percentile range (PR) and the acceptance rate (AR) for each
parameter, as well as the maximum loglikelihood (L) found during the inversion. Bottom depth
of all models is 200 km, after the LAB depth estimated by Yoshizawa and Kennett (2015) or
Kennett and Saygin (2015). Crustal thickness for model types II and III is 32 km, as defined
in the AusMoho model (e.g. Kennett et al., 2011) for PSA.

Model
Number Layer Input model Correlation length (a) RMS velocity fluctuations (ε) Maximum
of layers number a (km) ε (%) 5 – 95 PR (km) AR (%) 5 – 95 PR (%) AR (%) L

1 1 1 5.0 5.0 4.99 – 5.05 23 4.99 – 5.00 8 -2.5

2 2
1 2.0 5.0 1.7 – 2.4

12
4.8 – 5.3

47 -0.02
2 3.0 4.0 2.8 – 3.4 3.9 – 4.1

3 2
1 1.0 7.0 1.00 – 1.01

51
6.95 – 7.02

47 -0.03
2 6.0 1.0 7 – 32 1.0 – 1.8

4 2
1 6.0 1.0 6 – 25

50
1.0 – 1.8

51 -1.3
2 1.0 7.0 0.998 – 1.002 6.998 – 7.003

5 3
1 1.0 4.0 1 – 23

52
0.1 – 4.7

31 -0.022 2.0 3.0 1 – 21 0.6 – 6.1
3 4.0 2.0 3 – 30 1.8 – 3.3
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Figure 2.5: As Fig. 2.4 but for synthetic model 2 from Table 2.1 (2-layer model).

5–95 PR is < 0.7 km wide at most for a and < 0.5% for ε) and approximately centered

around the input values, even if they are not Gaussian and show some local maxima.

The true values of the parameters lie within the 5–95 PR in all cases, near the center of

the joint PDFs, and the maximum difference between the input values and the absolute

maxima of the PDFs is 2%. Panels j–q in Fig. 2.5 indicate fits to the synthetic data

are good, since they show again that the largest concentration of synthetic envelopes

for all frequencies coincides with the input data envelopes.

Models 3 and 4 have the same interface structure as model 2 (Table 2.1) and inves-

tigate high contrast situations in which a strong heterogeneity layer is above or below

a layer containing weak heterogeneities, respectively. Figs. 2.6 and 2.7 summarise my

results. In both cases, the chains reached stability within 11000 iterations. Posterior

PDFs for the strongly scattering layer are approximately Gaussian and narrow for both

models 3 and 4, with maxima that deviate from the input parameter values by 0.4%

at most (Table 2.1). The weakly scattering layer, however, is poorly resolved for both

models. The posterior PDFs for this layer are very similar in both cases and clearly

non-Gaussian. They show multiple maxima that do not correspond to the input param-

eter values, which widens the 5–95 PR, especially for a. The RMS velocity fluctuation

values seem to be constrained to the range from 0.5–1.9 % for both models, while the

shape of the PDFs suggests any value of the correlation length would be equally ac-

ceptable, even if large values (> 5 km) are favoured. The stability of the chains, shown
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Figure 2.6: As Fig. 2.4 but for synthetic model 3 from Table 2.1 (2-layer model).
-
-

Figure 2.7: As Fig. 2.4 but for synthetic model 4 from Table 2.1 (2-layer model).
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Figure 2.8: As Fig. 2.4 but for synthetic model 5 from Table 2.1 (3-layer model).

in panels a–c in Figs. 2.6 and 2.7, together with the ensemble of synthetic envelopes

on panels j–q, indicate that all these models provide similarly good fits to the data

and have similar loglikelihoods. This observation points to solutions being highly non-

unique, and to the scattering parameters of the weakly heterogeneous layer not being

easily recoverable for these high contrast cases.

Finally, model 5 contains three layers, with boundaries corresponding to upper and

lower crust and lithospheric mantle. My results are shown in Figs.

2.8 and Table 2.1. Chains converged in less than 130000 iterations. In all cases, PDFs

are clearly non-Gaussian (panels d-l on Fig. 2.8) and have complex shapes, which widens

the 5–95 PR and increases the range of suitable values of the parameters. The correla-

tion length PDFs show clearly defined maxima near the true values of the parameter in

all layers (the maximum distance between the maximum and the input parameter value

being 0.35%). RMS velocity fluctuations PDFs are more complex and neither of them

show clear maxima near the input parameter values. Figure 2.9 contains the marginal

PDFs for all parameters in all layers, as well as the PDF for each individual parameter.

It shows a strong trade-off between parameter values in different layers of the model,

especially the two crustal layers, and allows me to identify two independent families

of parameters that separately fit my data within my posterior PDFs. Subindices Li

(i being the layer number) are used here to refer to parameter values in each layer of

the model. Starting on panel 3–1 on Fig. 2.9, I observe how all accepted models cor-
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Figure 2.9: Joint PDFs for all parameters and layers in synthetic model 5 from Table 2.1. Plots in
the diagonal of the figure contain the individual PDF for the different scattering parameters.

responding to aL1 ∼ 1 km (the sharp peak on panel 1–1) have aL2 values either lower

than 1 km or higher than 2 km, which would correspond to the tails of the aL2 PDF

on panel 3–3. Panel 3–2 compares εL1 and aL2 and I can see how all models with aL2

in the ranges mentioned before have εL1 > 3.5%. Similarly, panels 4–1, 5–2 and 5–3

show that these values of aL1, aL2 and εL1 correspond to εL2 <∼ 5%, εL3 ∼ 2.1% (the

second, sharp, peak on the PDF on panel 6–6) and 2 < aL3 < 10 km (the wide peak on

the PDF on panel 5–5). Interestingly, the first peak and the side tail on the εL3 PDF



§2.1 Energy Flux Models 25

Table 2.2: Summary of the two independent and equally likely families of parameters extracted
from Fig. 2.9 for synthetic model 5 from Table 2.1.

aL1 εL1 aL2 εL2 aL3 εL3
(km) (%) (km) (%) (km) (%)

Input model 1.0 4.0 2.0 3.0 4.0 2.0

Parameter family 1 ∼ 1 > 3.5% < 1 & > 2 < 5 2–10 ∼ 2.1

Parameter family 2 <0.6 & >1.1 < 3.5 ∼1.2 ∼6 3–30 ∼1.6–3.7

(panel 6–6) correspond to the same parameter family, as do the tail and the base of

the peak on the aL3 PDF (panel 5–5). Following the same reasoning detailed above, I

extracted the other family of parameters, which is summarised in Table 2.2. This inter-

action between the parameters is caused by two main factors: first, the energy balance

the EFMD is based on (Eq. 2.20) is strongly dependent on the layering of the model,

since the maximum energy that can be present within a layer at any time depends on

its thickness (i.e. energy leaks out of thinner layers faster); second, correlation length

values have a much smaller effect on coda amplitudes, compared with RMS velocity

fluctuations, so the algorithm uses ε to compensate the excess or lack of energy within

a layer and match data coda amplitudes. Since panels m–t on Fig. 2.8 do not show

two clearly different sets of envelopes in my ensemble of synthetic envelopes, and given

that the loglikelihood values remained stable throughout the three independent chains

I ran for this example, I conclude that both sets of parameters I obtained from my

inversion provide equally good fits to the data, even if neither of them match my input

parameter values.

2.1.4 Data selection and processing for the EFM/EFMD analysis

The modelling of the seismic coda carried out by both the EFM and EFMD requires

the data used in the analysis to have minimum near-source scattering and no secondary

arrivals in the time window of interest. These conditions guarantee that the observed

coda is generated by near-receiver, small-scale heterogeneities, and limit the range of

seismic events that can be used with these methods. To ensure the data meet these

requirements, I select events with epicentral distances between 30 and 80 degrees from

the array centres, source depths greater than 200 km and magnitudes from 5 to 7 for

the analysis. These conditions ensure vertical or nearly vertical incidence angles and

prevent near-source scattering and unwanted deep seismic phases from appearing in

the time window of interest.

Before using these data in the EFM or EFMD, I preprocess and quality control the

raw data. For this purpose, I first convert the waveforms to SAC format and remove

the instrument response from each seismic trace to obtain ground velocity values. All

the required information about the station and the event is included in the headers of

each SAC file in this step, and horizontal component traces are rotated from north and
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east to radial and transverse directions respectively.

After this initial preprocessing, I calculate the signal-to-noise ratio (SNR) for each

trace and frequency band (Table 2.3) dividing the peak-to-peak amplitude values in

two separate time windows: for noise, I use a 20 s long window, starting ∼ 25 s before

the theoretical P-wave arrival (as estimated from PREM (Dziewonski and Anderson,

1981)), while for the signal I choose a time window starting 1 second before the theo-

retical first arrival and ending 40 s later. I only include in the study those traces with

signal-to-noise ratio equal to or higher than 5. For arrays of 3-component stations, I

only use events with 5 or more good quality traces, while for single seismic stations or

arrays of mostly 1-component stations, I use every available, good quality, 3-component

trace. As an additional precautionary measure, data for each array/station, event and

frequency band is also manually inspected to ensure that there are no secondary arrivals

or events within the time window of interest for the EFM/EFMD. Figure 2.10 contains

a comparison of two events with SNR> 5 with and without the presence of secondary

arrivals within the time window of the EFM/EFMD analysis. Events such as the one

shown in panel b in this figure are excluded from the analysis.

The eight different one octave-wide frequency bands we used in my analysis for both

methods are shown in Table 2.3.

EFM/EFMD processing

The processing steps described in the section above prepare my data for the EFM/EFMD

analysis. Prior to the application of these methods, I need to obtain a P-wave velocity

model of the lithosphere beneath each seismic array or station, as well as the Moho

and LAB depths, which can be obtained from local or global models and/or previous

studies on the area of study. For each array, I can then proceed to calculate the coda

envelopes as described in Sections 2.1.1 and 2.1.2 for each frequency band (Table 2.3)

and calculate the quality factors and scattering coefficients as follows:

(i) Computation of 3-component envelopes for each frequency band, station and

event, by taking the square root of the sum of the squared envelopes for all

components. All traces are aligned to the P-wave arrival for each event using the

frequency-wavenumber analysis (e.g. Rost and Thomas, 2002) and then trimmed

Table 2.3: List of all frequency bands used for the EFM/EFMD analysis. All traces were
filtered using fourth order Butterworth bandpass filters with a zero phase shift and corner
frequencies as defined below.

Frequency band A B C D E F G H

Minimum frequency (Hz) 0.5 0.75 1 1.5 2 2.5 3 3.5

Maximum frequency (Hz) 1.0 1.5 2 3 4 5 6 7
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Figure 2.10: Comparison between two events recorded by the Pilbara Seismic Array (PSA). Event
a, from March 23rd, 2014, took place 47.4 degrees away from the array, 565 km below the surface and
had a moment magnitude of 5.7. Event b, with a magnitude of 6.8, happened on January 23rd 2015,
at a distance of 46.2 degrees from the center of the array and 224 km deep. Traces for both events
have a SNR> 5. However, event b shows secondary arrivals within the time window of interest for the
EFM/EFMD analysis and could not, therefore, be used.
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to the time window going from tN seconds before to at least 3tN seconds after the

theoretical P wave arrival (tN being the travel time through the lithosphere). For

the EFMD, these are then stacked by event, normalised using Eq. 2.18 and stacked

by frequency band, while for the EFM unnormalised envelopes for all events are

also stacked by event and frequency band. The variance of both normalised and

unnormalised envelopes is calculated sample by sample from all individual event

stacked envelopes and used as the uncertainty of the data.

(ii) Estimation of Qs, Qi, Qdiff , a and ε for a single scattering layer using the EFM.

(iii) Bayesian inversion for the structural parameters of each layer in each model type

from Fig. 2.3 by applying the envelope modelling technique from the EFMD, as

described in Section 2.1.2, and using the Qi values obtained from the single layer

EFM (Section 2.1.1). In order to speed this process up, the data are resampled

to a common sampling rate of 15 Hz before applying the EFMD algorithm.

Comparison of 1-component and 3-component data

Hock et al. (2004) pointed out that the EFMD generally overestimates the RMS velocity

fluctuations by up to 3% when using only vertical-component data and that a mix of

1-component (vertical) and 3-component data produced unstable results, both of them

caused by the difference in coda amplitudes between 1-component and 3-component

data. However, 3-component data are not always available. To address this issue, I tried

calculating a correction factor to approximate vertical 1-component to 3-component

coda levels. I tested different approaches to obtain this correction factor, all of them

based on the ratio between every available 3-component unnormalised coda envelope

A(t;ωc) or normalised envelope (left hand side on Eq. 2.18) and its 1-component

(vertical) counterpart. Since all of its stations are 3-component, the Pilbara Seismic

Array (PSA, Section 3.1) is an ideal array for these tests. Figure 2.11 shows the

3-component to 1-component ratios for both the normalised and unnormalised coda

envelopes for all frequency bands listed on Table 2.3. These ratios were calculated

sample-by-sample for each event in the PSA dataset (Table 3.1). I used the mean of

the ratios as a multiplicative correction factor (Fig. 2.12) for each frequency band that

I proceeded to apply to the 1-component traces to try to obtain an approximation to

3-component data.

I found that these ratios vary significantly from event to event and frequency band

to frequency band, even after using a large dataset to calculate them, and are generally

higher for unnormalised envelopes than for the normalised ones (Figs. 2.11 and 2.12).

The corrected 1-component envelopes did not in general fully match the 3-component

coda amplitudes for all frequency bands using this approach (Fig. 2.12). Both the EFM

and EFMD are highly sensitive to variations in coda amplitudes, so small differences
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Figure 2.11: Sample-by-sample ratios of the 3-component normalised and unnormalised envelopes
for all events in the PSA dataset (Table 3.1) and their 1-component counterparts for all frequency
bands listed on Table 2.3 (bold capital letters in the panels).

between the corrected 1- and 3-component envelopes result in large differences in qual-

ity factor and scattering parameter values. I tested the “corrected” 1-component data

in my EFM-EFMD algorithm and compared the results for the lithospheric models

on Table 3.3 with those from my 3-component data for PSA. Quality factors obtained
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Figure 2.12: Panels a and b contain boxplots of the 3-component to 1-component ratios shown
in Fig. 2.11, both for normalised and unnormalised envelopes and all frequency bands. Outliers have
been removed from these plots. Panels c to h contain the stacked uncorrected 1-component, corrected
1-component and 3-component normalised and unnormalised envelopes for frequency bands A, D and
H from Table 2.3.

from the EFM varied significantly (e.g. Qi 0 1comp ≈ 600 vs. Qi 0 3comp ≈ 2000, or

Qdiff 0 1comp
≈ 4000 vs. Qdiff 0 3comp

≈ 500) and the distribution of the heterogeneity

shown in posterior PDFs did not follow similar patterns. Therefore, I concluded that

this approximation to 3-component data from 1-component data did not yield satisfac-
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tory results and did not use it for any application of the EFM/EFMD analysis, which

was restricted to data from 3-component stations.

2.1.5 Limitations and assumptions

A possible source of error in EFM/EFMD inversion is the prescribed thickness of the

layers in my models. The EFM does not allow any layering in the structure and the

thickness of the scattering layer is not clearly constrained. The EFMD is sensitive to

changes in the bottom depth of the different layers, especially for the shallowest layer,

as this affects the diffusion out of them. A priori information on Moho and lithosphere-

asthenosphere boundary (LAB) depths can be used to help design the lithospheric

models, but uncertainty in these reported depths always exists. Lateral velocity

variations in the structuree are also not included within the EFM/EFMD framework,

since they can only take 1-D velocity models. This is usually not a problem when

working with individual seismic stations, especially considering the steep incidence

angles required for the method, but might become an issue when working with large

aperture arrays and should be taken into account. Array apertures also have an effect

on their sensitivity to different frequencies, with larger arrays being more sensitive to

lower frequencies. The selection of the frequency bands to be used in the analysis

should therefore be adjusted to each specific case.

Other limitations of my approach are the assumptions for the determination of the

different quality factors in the EFM and the fact that neither the EFM nor the EFMD

take into account phase conversions and reflections at interfaces other than the free

surface. Equation 15b from Korn (1990), which I use in this study, is based on the

assumption that Qs and Qdiff are of the same order of magnitude, even if that is not

necessarily always the case (Fig. 3.8). The intrinsic quality factor (Qi) value used in the

EFMD was determined by the EFM, with a limitation to a single scattering layer and a

poorly constrained frequency dependence of Qi, since α could not be fully inverted for in

the EFM (Section 2.1.1). Therefore, all layers in my EFMD models in Chapters 2 and 3

have the same Qi and frequency dependence as obtained in the EFM, as opposed to the

more complex inversions for Qi in Chapters 4 and 5 of this thesis. The heterogeneity

anisotropy observed by Kennett and Furumura (2016) and Kennett et al. (2017) could

be included in future approaches of Bayesian inversion for heterogeneity structure but

given the range of acceptable models I find and the trade-offs inherent in inverting for

scattering parameters I have demonstrated, it is unlikely anisotropy in scattering could

be well resolved with this kind of approach.

2.1.6 Conclusions

Overall, results from the synthetic tests in Section 2.1.3 show that my Bayesian al-

gorithm is capable of successfully fitting my data and retrieving the input parameter
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values for 1-layer and 2-layer models. For 3-layer models, however, the method provides

good fits to the data but fails to obtain the correct parameter values due to the inherent

trade-offs in scattering studies. For real data inversions, since scattering parameters

values are not known beforehand, results from a 3-layer model would not be reliable.

My observations illustrate the usefulness of the Bayesian approach I take in this study.

It provides detailed information about the parameter space in the region of the local

likelihood maximum and indicates whether a single set of parameters that fits the data

exists or a range of models can equally match the data. Any estimation of scattering

parameters in a maximum-likelihood or best-fitting framework would therefore have

led to erroneous conclusions about the physical parameters in these systems, which I

have avoided. The joint PDFs highlight the complicated relationships and trade-offs

between the model parameters in the different settings explored here, which had not

been observed in previous studies using the EFMD. I do not observe systematic overes-

timation of a in the EFMD, as reported by Hock et al. (2004). This observation might

be related to the limited number of models tested in grid search approaches and the

observed trade-offs between parameters.

Energy flux models are simple, heuristic and phenomenological models based on

the conservation of energy and the geometrical spread of the wavefront as it travels

through a model. However, they are versatile, and apt to the study of small-scale

heterogeneity on Earth and other planets or moons: they can be applied both to

seismic arrays or single seismic stations, do not rely on local or regional seismicity,

since they use teleseismic data, and do not require the strength of the heterogeneity to

be limited to a specific range. Finally, the computational efficiency of the EFMD means

it can be combined with Bayesian inference algorithms to explore wide and complex

parameter spaces. The posterior PDFs obtained from my inversion algorithm provide

detailed information about the trade-offs and uncertainties in the determination of the

structural parameters and allow us to determine whether a single set of scattering

parameters can successfully explain the data or whether solutions are not unique. All

of these characteristics show that the Bayesian approach to the Energy Flux Model I

use in my study is an effective tool to quantify heterogeneities in the lithosphere and

can contribute to our understanding of heterogeneity distribution in the Earth.

2.2 The Teleseismic Fluctuation Wavefield Method

The Teleseismic Fluctuation Wavefield Method (TFWM) is a technique designed to

statistically study the heterogeneity structure beneath seismic arrays (e.g. Ritter et al.,

1998; Rothert and Ritter, 2000; Ritter and Rothert, 2000). It is based on the separation

of the recorded P wavefields, comprising the P wave arrival and the coda immediately

following, into a coherent or mean wavefield, which is observed at all stations, and an

incoherent or fluctuating wavefield, which varies from one station to another. The ratio
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between the intensities of these two wavefields can be related to material properties of

the scattering medium such as the correlation length of the heterogeneity (a), the RMS

velocity fluctuations (ε) and background velocity (v) or the thickness of the scattering

layer (L). The TFWM is an adaptation to the teleseismic case of the theory by Shapiro

and Kneib (1993) and Shapiro et al. (1996).

Several studies have used the TFWM in the past. Ritter et al. (1998) applied it to

characterize the lithospheric structure beneath a temporary seismic network deployed

in the French Massif Central. This network was part of a tomographic experiment and

was operative for six months. It recorded 140 teleseismic events during this period,

but only 6 of them fulfilled the requirements of the TFWM and could be used in the

analysis. Rothert and Ritter (2000) applied it to a dataset of 17 teleseismic events

from the Hindu Kush region recorded by the Gräfenberg array in southeast Germany.

Ritter and Rothert (2000) used common teleseismic events simultaneously recorded by

a temporary network and the permanent Auvergne network, both in the Massif Central

(the former was also used by Ritter et al. (1997)), and the Gräfenberg array to analyse

and directly compare the heterogeneity structure in these areas. These studies found

increased seismic scattering in the Massif Central, up to 2–3 times stronger than in

the Frankonian Jura, where the Gräfenberg array is located. These differences were

attributed to differences in geologic and tectonic history between these regions, and

especially to the presence of solidified magmatic intrusions in the Massif Central. An

attempt to use the TFWM to characterize the lithospheric heterogeneity structure be-

neath small-aperture arrays was done by Shen and Ritter (2010) and Shen et al. (2010).

However, synthetic tests carried out by Li (2011) proved that the inhomogeneities are

heavily underestimated when applying the TFWM to recordings from seismic arrays

with apertures smaller than the maximum wavelength and the correlation length. This

is likely caused by heterogeneities the size or larger than the array aperture generating

scattered waves that appear to be coherent at different stations. More recently, Ma and

Huang (2020) combined the TFWM with the Monte Carlo seismic phonon algorithm

developed by Shearer and Earle (2004). They applied this approach to a dataset of 188

events recorded by two large seismic networks in the northern Tien Shan region. They

tested four different thicknesses for the scattering layer and RMS velocity fluctuation

values ranging from 1% to 9%. To resolve the trade-off between a and ε, they com-

pared their data with synthetic seismograms obtained using the Monte Carlo method

for a range of models. Their results show strong heterogeneities beneath these seismic

networks, which they attribute to isolated melt pockets caused by the upwelling of hot

mantle materials. Fan et al. (2020) also applied the TFWM to a large seismic network,

located in the Longmenshan fault zone and the adjacent regions of the Songpan-Ganzi

fold belt and the Yangtze Blocks. They analysed the teleseismic P wavefield of 13

events and related the strong scattering parameters they obtained from their analysis
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to the intense tectonic activity and lithospheric flow within these regions.

Of particular interest here is the different approach taken by Hock et al. (2004),

which combined the TFWM with the EFM/EFMD analysis (Section 2.1). They com-

pared both methods with 2-D numerical wave propagation simulations and reported

reliable results from the TFWM as long as the product aε2 remained below ∼ 0.01

km (a being the correlation length and ε the RMS velocity fluctuations of the hetero-

geneities). For the EFM, their results suggest a severe and systematic overestimation of

a. To take advantage of the strengths of the EFM/EFMD and the TFWM while avoid-

ing their shortcomings, Hock et al. (2004) combined them so that they could obtain

the type of autocorrelation function (ACF), thickness of the scattering layer and RMS

velocity fluctuation values from either the EFM or EFMD and use these results within

the TFWM to finally obtain the correlation length values. They applied their tech-

nique to recordings from the Gräfenberg array in Germany, the Auvergne network in

France and three temporary networks across Europe, with stations deployed in France,

Sweden, Denmark, Belgium, Luxembourg, Germany and the Netherlands. The good

results obtained with this combined approach to the EFM/EFMD and TFWM meth-

ods make it an interesting option to tackle some of the weaknesses of the energy flux

models.

The following sections summarise the theoretical background of the TFWM and

some of the tests I carried out using the large dataset of teleseismic events recorded by

the Pilbara Seismic Array (PSA) described in Section 3.1.

2.2.1 Theory

The TFWM is based on the mathematical formulation of wave theory by Shapiro and

Kneib (1993) and Shapiro et al. (1996) for plane body waves propagating in 2-D or 3-

D acoustic media with constant density and background velocity and random velocity

fluctuations. The adaptation to the teleseismic case, which I follow here, was developed

by Ritter et al. (1998).

In this framework, the total P wavefield recorded at site r(x, y, z) and time t af-

ter propagation through the heterogeneous layer, ut(r, t), is the combination of an

attenuated coherent or mean wavefield, ⟨u(r, t)⟩ (angular brackets represent spatial or
statistical averaging), and a fluctuating or incoherent one, uf (r, t), so that

ut(r, t) = ⟨u(r, t)⟩+ uf (r, t) . (2.24)

Assuming anelastic attenuation and backscattering (diffusion out of the heteroge-

neous layer) are negligible, the only attenuation affecting the coherent wavefront is

caused by the flux of energy into the scattered or fluctuating wavefield and the total
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intensity It of the wavefield remains constant within the volume of interest. If we de-

fine the intensities of the total, coherent and incoherent wavefields as It = |ut(r, t)|2,
Ic = |⟨u(r, t)⟩|2 and If = |uf (r, t)|2 respectively, then It = Ic + If (e.g. Shapiro and

Kneib, 1993; Shapiro et al., 1996; Ritter et al., 1998). The ratio between If and Ic

provides an estimation of the strength of the wavefield fluctuations:

⟨ξ2⟩ =
|uf (r, t)|2

|⟨u(r, t)⟩|2
=

If
Ic

=
It − Ic
Ic

=
It
Ic

− 1 (2.25)

Based on this expression, we can now define the regions of weak and strong wavefield

fluctuations regimes (Shapiro and Kneib, 1993; Shapiro et al., 1996; Ritter et al., 1998).

In the weak fluctuations regime, defined by ⟨ξ2⟩ ≪ 1, the coherent wavefield in the

denominator dominates over the fluctuating one. Similarly, the strong fluctuations

regime, in which the incoherent wavefield predominates, is characterised by ⟨ξ2⟩ ≫ 1.

In this context, and under the assumptions stated above, It/Ic ≈ e2αL (Shapiro and

Kneib, 1993; Ritter et al., 1998), where L is the thickness of the scattering layer and α

the scattering coefficient of the coherent wavefield. If the isotropic correlation length

of the heterogeneities, a, is on the order or larger than the wavelength (ka ≥ 1, k being

the wavenumber), and the velocity contrasts are weak (akε2 ≪ 1 and ⟨ξ2⟩ ≪ 1), then

for an exponential autocorrelation function α = ε2k2a (Ritter et al., 1998). From Eq.

2.25, we now have:

⟨ξ2⟩ = e2αL = e2ε
2k2aL − 1 = e8π

2ε2f2aL/v2 − 1 (2.26)

where f and v represent the frequency and background velocity of the random medium

respectively. This equation allows us to characterize the heterogeneity structure be-

neath the seismic array by calculating the product aε2. L and v need to be obtained

from previous seismic or geologic studies of the area of interest. In particular, by taking

the natural logarithm of Eq. 2.26, we can express the frequency dependence of ⟨ξ2⟩ as:

ln(⟨ξ2⟩+ 1) =
8π2ε2aL

v2
f2 = γf2 (2.27)

The coefficient γ can now be calculated within the weak fluctuations regime from a

parabolic least-squares fit of ln (⟨ξ2⟩+ 1) in the frequency domain. In practice, most

studies (e.g. Ritter et al., 1998; Rothert and Ritter, 2000; Ritter and Rothert, 2000)

using the TFWM determine the frequency at which the transition between the weak

and strong fluctuation regimes takes place, and at which the parabolic fit of ln(⟨ξ2⟩+1)

must end, fmax, from the ln(⟨ξ2⟩) curves, since the shift takes place at ln(⟨ξ2⟩) ≈ 0.

Shapiro et al. (1996) established a more flexible threshold by pointing out the transition

happens where ⟨ξ2⟩ = O(1), while Ma and Huang (2020) chose to define the transition

frequency as the frequency at which ⟨ξ2 + 1⟩ saturates. Fan et al. (2020), on the other
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hand, kept the definition of the transition frequency used by Ritter et al. (1998), Rothert

and Ritter (2000) or Ritter and Rothert (2000) but introduced a cutoff frequency which

determines where the parabolic fit of ⟨ξ2 + 1⟩ should stop. Finally, Hock et al. (2004)

did not set any specific threshold for the transition frequency but calculated the fits

up to a range of different limits. They compared the average of γ for the two lowest

and two highest frequencies and lowered fmax until the average for the two highest

frequencies was at least 80% that for the two lowest. Once fmax is obtained, if L and v

are known, then we can determine aε2 from this estimation of γ. The TFWM is unable

to further separate the heterogeneity parameters a and ε. Previous studies, such as

Ritter et al. (1998), Rothert and Ritter (2000) or Ritter and Rothert (2000), have used

estimates of ε from previous seismic studies to solve this unavoidable trade-off, while

Hock et al. (2004) combined it with the EFM (see Section 2.2).

2.2.2 Data selection and processing

This method assumes plane seismic waves travelling vertically, or approximately ver-

tically, towards the free surface, on which seismic stations are deployed. The TFWM

focuses on the P wavefield, which includes the direct P wave arrival and the scattered

coda waves immediately behind it. Care has to be taken to avoid the presence of

secondary arrivals or depth phases within this time window, thus making teleseismic

events with 30–80 degrees source distances, source depths larger than 200 km and mag-

nitudes 5–7 the ideal type of data to apply the TFWM to, similarly to the EFM/EFMD

analysis.

Data processing steps prior to the TFWM are similar to those described in Section

2.1.4. First, I remove the instrument response from all raw SAC waveforms and add

relevant station and event information to file headers for later use. To quality control

the data, I calculate the peak-to-peak amplitudes within a noise time window and the P

wave time window for each unfiltered, vertical component trace. The noise time window

starts 25 s before the theoretical P wave arrival (estimated using PREM (Dziewonski

and Anderson, 1981)) and lasts for 20 s, while the P wave one begins 1 s before this

time and ends 40 s later. I then calculate the signal-to-noise ratio (SNR) by dividing

these peak-to-peak amplitudes. Only events with 5 or more traces with SNR ≥ 5 are

used in the TFWM analysis. Fig. 2.13 shows an example of a good quality event for

array PSA (Section 3.1).

As opposed to the EFM or EFMD, the TFWM does not require 3-component data.

The first step in the TFWM analysis is to normalize all vertical-component traces for a

given event and array. Then, traces are aligned using slowness and backazimuth mea-

surements obtained from the frequency-wave number analysis (e.g. Rost and Thomas,

2002) and trimmed to the time window of interest. Seismic traces in Fig. 2.13 have

been processed following these steps. Previous studies using the TFWM defined the
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Figure 2.13: Teleseismic M5.4 event recorded by PSA stations (Section 2.1.4). Traces are
normalized, aligned using the frequency-wave number analysis (e.g. Rost and Thomas, 2002)
and trimmed to the TFWM time window, which extends from 5 seconds before the theoretical
P wave arrival, as estimated from PREM (Dziewonski and Anderson, 1981) and marked here
with an orange line, to 40 seconds after. No other phases appear within this time window for
this event.

time window of interest differently (e.g. Ritter et al. (1998) analysed recordings from 4

s before to 17 s after P wave arrival, while Rothert and Ritter (2000) used waveforms

from 5 s before to 40 s after P wave arrival), without any specific criteria seemingly

being followed for this purpose across different studies. In my study, I applied the

TFWM to 45 s long traces, extending from 5 seconds before the theoretical P wave

arrival (obtained from PREM (Dziewonski and Anderson, 1981)), to 40 s later, and I

manually checked the recordings for each event to ensure that no secondary arrivals

could be found within the time window of interest before proceeding with the rest of

the TFWM analysis.

The mean or coherent wavefield is calculated by stacking (averaging) all traces

recorded by an array for a specific event, once they have been processed as described

above. This procedure accentuates phases that are recorded at all stations within the

array. For teleseismic data from the range of distances studied here, these coherent

phases originate at the source and along the common ray path seismic waves follow

on their way to the receivers. Random scattered waves generated by heterogeneities

immediately beneath the stations, where ray paths separate, do not form part of this

wavefield. They make up the fluctuating or incoherent wavefield, which is determined

for each station by subtracting the mean wavefield from each individual recording.

Figure 2.14 shows the coherent and incoherent wavefields for the same event shown in

Fig. 2.13.

Intensities Ic and If are calculated as the squared amplitude spectra of the mean
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Figure 2.14: Coherent or mean wavefield for the M5.4 event shown on Fig. 2.13 (black line)
and fluctuating or incoherent wavefield recorded at each PSA station (Section 2.1.4). Scale is
the same for all traces.

wavefield and the average of all individual fluctuating wavefields. These intensities allow

us to determine ⟨ξ2⟩ (Eq. 2.25), from which we can now obtain the product aε2 via

the parabolic fit shown on Eq. 2.27. The coefficient γ is calculated separately for each

event and also for the average of all the ⟨ξ2⟩ curves. The maximum and minimum γ

values from the individual events, γmin and γmax, are used to constrain the uncertainty

in the estimation of this parameter, while the value obtained from the stacked ⟨ξ2⟩ is

taken as its mean value, γmean . Finally, a range of suitable ε, together with v and L

values, are used to determine the correlation length from γ.

2.2.3 TFWM tests and results

I used the dataset described in Section 3.1 for the Pilbara Seismic Array, in Australia, to

test the TFWM. The quality control process described above was applied to unfiltered,

vertical-component traces, and a total of 102 events with 5 or more good quality traces

were included in the analysis. This dataset is much larger than those used in previous

studies using the TFWM (e.g. Ritter et al. (1998) used 6 events, Rothert and Ritter

(2000) 17, Ritter and Rothert (2000) 13, or Hock et al. (2004) only 3 for some of

their regions of interest), which helps ensure a thorough sampling of the heterogeneity

structure beneath the arrays.

For each array and event, I separated the coherent and fluctuating wavefields, as

described in Section 2.2.2, and calculated ⟨ξ2⟩ by taking the ratio between their in-

tensities. Calculating fmax, the frequency at which the incoherent wavefield begins to

dominate over the mean field, is not at all obvious and needs to be carefully done, since
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the TFWM cannot be applied within the strong fluctuation regime. I tested and com-

pared the results obtained from different approaches used in previous studies. For the

first, and most common one, used by Ritter et al. (1998) and called “Ritter” in Table

2.4, I calculated fmax as the frequency at which ln(⟨ξ2⟩) becomes positive. Shapiro

et al. (1996) stated the transition from the weak to the strong fluctuation regimes takes

place when the ratio ⟨ξ2⟩ = O(1). Considering that the coherent wavefield rarely has

energy beyond 5 Hz, I tested different threshold values ranging from 1 to 9 and defined

fmax as the first time the ratio becomes equal or higher than these values. Setting

⟨ξ2⟩ = 1 as the condition to calculate fmax often yielded transition frequencies below 2

Hz and failed to provide good fits to the ln(⟨ξ2⟩+1) curves. Threshold values above 2,

however, often extended the parabolic fit beyond 5 Hz and, therefore, into the strong

fluctuations regime, where the TFWM is not applicable anymore. For this reason, I

set the final threshold value to 2, which produces maximum fmax values only up to 5.4

Hz. Results obtained using this method are labelled “Shapiro” in Table 2.4. Finally, I

tested the approach used by Hock et al. (2004) (labelled “Hock” in my results table)

by calculating the parabolic fits of ln(⟨ξ2⟩ + 1) up to frequencies from 2 to 5.5 Hz,

in steps of 0.25 Hz. If the average parabolic fit coefficient, γ, from the two highest

Table 2.4: Summary of the TFWM results for PSA, ASAR and WRA. The saturation or
transition frequency fmax was calculated for each event and for the stack of all the ⟨ξ2⟩ curves
using three different approaches, described in Ritter et al. (1998), Shapiro et al. (1996) and Hock
et al. (2004) respectively. Minimum and maximum values of fmax and γ are obtained from the
individual events using each approach, while mean values correspond to the transition frequency
for the stacked ⟨ξ2⟩. Results from the TFWM analysis obtained using all three approaches are
shown together here for comparison. Different RMS velocity fluctuations values, scattering
layer thicknesses and velocities were used to estimate the correlation length both in the crust
and the entire lithosphere.

Array Layer Method
fmax γ Correlation length (km)
(Hz) (Hz−2) ε = 1% ε = 3% ε = 5% ε = 7% ε = 9%

PSA

Crust

Ritter
1.5 0.01 0.022 0.007 0.005 0.003 0.002
3.0 0.07 0.108 0.036 0.022 0.015 0.012

L/v2 = 0.8

4.2 0.24 0.39 0.13 0.08 0.06 0.04

(s2/km)

Shapiro
1.5 0.02 0.028 0.009 0.006 0.004 0.003
3.3 0.06 0.091 0.030 0.018 0.013 0.010
5.4 0.19 0.31 0.10 0.06 0.04 0.03

Hock
2.1 0.02 0.040 0.013 0.008 0.006 0.004
5.3 0.07 0.120 0.040 0.024 0.017 0.013
5.1 0.19 0.31 0.10 0.06 0.04 0.03

Lithosphere

Ritter
1.5 0.01 0.0054 0.0018 0.0011 0.0008 0.0006

(1998)
3.0 0.07 0.026 0.009 0.005 0.004 0.003

L/v2 = 3.2

4.2 0.24 0.096 0.032 0.019 0.014 0.011

(s2/km)

Shapiro
1.5 0.02 0.0068 0.0023 0.0014 0.0010 0.0008
3.3 0.06 0.022 0.007 0.004 0.003 0.002
5.4 0.19 0.075 0.025 0.015 0.011 0.008

Hock
2.1 0.02 0.0097 0.0032 0.0019 0.0014 0.0011
5.3 0.07 0.029 0.010 0.006 0.004 0.003
5.1 0.19 0.075 0.025 0.015 0.011 0.008
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Figure 2.15: ln(⟨ξ2⟩ + 1) curves for the M5.4 event shown on Figs. 2.13 and 2.14 (top row),
a M5.9 event (middle row) and the stack of all ratios ⟨ξ2⟩ curves. Transition frequency fmax

values for each of the three different methods tested here are shown with orange dashed lines
and their values indicated in the legends. Red lines represent the parabolic least-squares fits
curves. The obtained γ in each case is included in the legend of each panel.

frequencies was lower than 80% of the value for the two lowest, then the highest fre-

quency was discarded and the process repeated until this condition was satisfied. Table

2.4 contains the results obtained from the TFWM analysis using these three different

approaches. Minimum and maximum fmax and γ are obtained from the results from

individual events (top and bottom rows of results for each method, respectively), while

mean values (central row) correspond to the stack of all individual ⟨ξ2⟩ curves.

Figure 2.15 contains the ln(⟨ξ2⟩ + 1) curves for the 2014 event shown in Fig. 2.13,

as well as a M5.9 event recorded by PSA stations in 2016 and the stack for all events.

In all cases, the curves saturate at ln(⟨ξ2⟩ + 1)+ ∼2, but the frequency at which that

happens varies. A sharp peak at low frequencies can be observed in all three cases. It
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Figure 2.16: Correlation length values obtained for both crustal and lithospheric scattering
and the range of tested values of the RMS velocity fluctuations, using all three different ap-
proaches to fmax calculation tested here.

is caused by low frequency noise, especially in the time window prior to the P wave

arrival, increasing the ratio between the fluctuating and coherent wavefields. This

peak is not easily removed from the ln(⟨ξ2⟩ + 1) curves, since it varies in amplitude

between events and sometimes extends up to ∼1 Hz, while for other events it is barely

noticeable. A potential solution to this issue, which Ma and Huang (2020) or Fan et al.

(2020) apply to certain extent, would be filtering the original seismograms prior to the

TFWM analysis or manually inspecting the ⟨ξ2 + 1⟩ curves for every single event in

the dataset and removing those which do show this peak at low frequencies. Red lines

in Fig. 2.15 represent the parabolic fits required in the TFWM to obtain γ and the

heterogeneity parameters, a and ε. They extend up to the fmax value calculated for

each one of the methods described above. The parabolic trend of ln(⟨ξ2⟩ + 1) is more

obvious for the 2014 event than for the 2016 one or the stack for all events. This results

in very small differences in γ values between the three methods, even if the transition

frequency does vary from 2.7 to 5.1 Hz. For the 2016 event, the ln(⟨ξ2⟩+ 1) is almost

constant from ∼0.5–4 and 4–7 Hz, before reaching its saturation value of ∼2 at ∼7

Hz. fmax and γ values range in this case from 2.1–4.6 and 0.014–0.024 respectively.

The stacked ln(⟨ξ2⟩ + 1) curve grows smoothly and continuously up to ∼10 Hz, when

it reaches its saturation value. Transition frequencies vary from 3.0–5.3 Hz here, which

translates into larger differences between obtained γ values.

Finally I calculated the product aε2 using the obtained γ values, as well as Moho and

lithospheric thicknesses and P wave velocities obtained from previous studies for this

array (Kennett and Salmon, 2012; Kennett et al., 2011; Yoshizawa and Kennett, 2015).

The TFWM does not have the power to resolve these two parameters independently, so
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previous studies have either used ε values previously obtained in their areas of interest

or a range of suitable or realistic values. The only exception here is the approach

taken by Fan et al. (2020), who used fmax and the average P wave velocity within the

scattering layer to obtain the corresponding correlation length value from v = afmax.

They then obtained RMS velocity fluctuations using these values together with the aε2

factors obtained from γ. In my case, I chose to determine the correlation length values

for RMS fluctuations varying from 1–9 %, in steps of 2%, in an approach similar to

Ritter et al. (1998), Rothert and Ritter (2000) or Ma and Huang (2020). Results from

this calculation are shown in Table 2.4 and represented in Fig. 2.16. My γ values are

generally much lower than those obtained by previous studies, in which they varied

from 0.25–0.84 Hz−2 (Ritter et al., 1998), 0.11–0.23 Hz−2 (Rothert and Ritter, 2000)

or 0.16–0.67 Hz−2 (Ma and Huang, 2020), or had averages ranging from 0.11–0.84

Hz−2 (Ritter and Rothert, 2000), 0.16–0.39 Hz−2 (Hock et al., 2004) or 0.97–1.50 Hz−2

(Fan et al., 2020). This difference could be related to differences in the heterogeneity

structure beneath these different study areas, but also to my dataset being larger and

less manually curated than those in past studies. Looking at parabolic fit figures in these

studies (Fig. 2.17), it is not always clear whether their parabolic functions included a

second parameter and took the γf2+ b form (as opposed to the γf2 form stated in the

theory), since they do not always seem to cross the origin at (0,0) (Fig. 2.17). I did try

this approach but found the fits to the data were usually worse which can even result

into negative correlation length values, possibly because of the effect of the noise related

peak at low frequencies. The frequency at which the parabolic fit starts also seems to

be manually selected and varies for different events or stacks in many of these studies

(Fig. 2.17), probably to avoid the peak at low frequencies. In my case, forcing the

parabolic fit to start at f=0 Hz inevitably results in flatter curves and lower γ values.

Starting the fits right after the low frequency peak while adding a second parameter

(which would be equivalent to subtracting the lowest value in ln(⟨ξ2⟩ + 1), in a water

level removal fashion) can probably greatly improve the fits to the data and increase

the obtained γ values, but are hardly practical for large datasets like the one used in

this study. Correlation lengths obtained from these γ and the range of tested ε values

are generally higher for the crustal scattering case than for the lithospheric one, but

in both cases they are much lower than those obtained in previous studies and range

from a few meters to a maximum of ∼400 m. These results are not realistic, especially

considering that, with a minimum P wave velocity of ∼6.4 km/s (average velocity in the

crust, according to the AuSREM model (Kennett and Salmon, 2012)) and a maximum

frequency of 5.5 Hz, the minimum wavelength the array would be sensitive to is ∼1.2

km. The TFWM requires heterogeneities to be on the order of, or larger, than the

wavelength. This means this technique is, by definition, not sensitive to scatterers of

the scale lengths my results suggest, which deems them not just unrealistic but also

unreliable.
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Figure 2.17: Parabolic fits carried out by Ritter et al. (1998) according to the TFWM for
an event with epicenter in Costa Rica (a) and the stack of all events included in their dataset
(b), as recorded by seismic stations located in the French Massif Central. Modified from Ritter
et al. (1998).

2.2.4 Conclusions

The Teleseismic Fluctuation Wavefield Method, or TFWM, has both been used inde-

pendently (e.g. Ritter et al., 1998; Rothert and Ritter, 2000; Shen and Ritter, 2010)

and in combination with the Energy Flux Model (Hock et al., 2004) or a Monte Carlo

seismic phonon algorithm (Ma and Huang, 2020). While the TFWM on its own is

not capable of independently recovering the heterogeneity parameters of the crust or

lithosphere, its association with these other methods appeared to be capable of circum-

venting their individual disadvantages to obtain a more robust solution.

However, my tests have revealed a number of issues with the TFWM, which are ac-

centuated when working with a large dataset. It is sensitive to the transition frequency

(fmax) between the weak and strong fluctuation regimes, and at which the parabolic

fit of ln(⟨ξ2⟩+1) needs to end. I calculated fmax using three different approaches used

in past studies, which yielded different results, not just for individual events but also

for the stack of all events. Accurately calculating fmax remains the biggest challenge

when working with the TFWM, but my tests have also shown that, for results to be

reliable, the frequency at which the parabolic fits start also needs to be manually and

carefully selected for each event, and that a second parameter may be required within

the fitting function.

In addition to this, the TFWM only allows a single heterogeneous layer within the

structure and is only applicable for weak heterogeneities and seismic arrays. Further

limitations are anelasticity and backscattering not being taken into account within the

theoretical framework of the method, which inherently makes TFWM less accurate and

realistic than other methods that do take these phenomena into account. For all these

reasons, I decided not to use the TFWM to characterize the heterogeneity structure,

either on its own or in combination with the EFM/EFMD analysis.



Chapter 3

Characterization of seismic

scattering and attenuation

beneath two Australian cratons

Major tectonic processes have an effect not only on the large-scale lithospheric struc-

ture of the continents, but also on the small-scale heterogeneity, especially along the

margins of tectonic blocks. Understanding the distribution and characteristics of the

small-scale heterogeneity of the lithosphere helps us improve our earthquake monitoring

efforts through better understanding of the effects of the inhomogeneity on the recorded

wavefield while also providing a link to the tectonic history of the lithosphere seismic

waves travel through. In this context, past studies have shown that the small-scale

heterogeneity of the lithosphere, which strongly affects seismic attenuation and scat-

tering, tends to be stronger in areas which have undergone more tectonic reworking,

while these propagation effects are much weaker in less tectonically active regions (e.g.

Cormier, 1982; Korn, 1993; Sipkin and Revenaugh, 1994; Domı́nguez and Rebollar,

1997).

The continent of Australia is an interesting research area both for lithospheric struc-

ture and tectonic history studies, since it has not always been the isolated giant that

we know today. The main tectonic blocks that form current Australia first merged

within the Nuna supercontinent. Very large supercontinents, comprising all, or nearly

all, of the continental blocks on the planet have developed at least three times in

Earth’s history (e.g. Rogers and Santosh, 2003; Zhao et al., 2004). The earliest of

such supercontinents, called Nuna/Columbia, formed at ∼2100–1800 Ma and started

breaking apart ∼200–600 Ma later, after a subduction-related accretion period (e.g.

Rogers and Santosh, 2002; Rogers and Santosh, 2003; Zhao et al., 2004; Betts et al.,

2016). Despite the uncertainties in determining the exact configuration of Nuna (e.g.
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Rogers and Santosh, 2002; Zhao et al., 2004; Pisarevsky et al., 2014), paleomagnetic,

tectonic, geochemical and geochronology data support its existence (e.g. Karlstrom et

al., 2001; Zhao et al., 2004; Evans and Mitchell, 2011; Condie et al., 2011; Pisarevsky

et al., 2014). It was during the amalgamation of this supercontinent that the West-

ern, Northern and Southern Australian Cratons first joined, even if their present-day

configuration was not reached until ∼650 Ma, after a series of rotations, accretionary

processes and continent-continent collisions separated by lithospheric extension periods

(e.g. Betts et al., 2002; Pisarevsky et al., 2014; Betts et al., 2016). Most of present-day

tectonic activity in Australia takes place along the large subduction zones along its

northern and eastern margins, thus making it difficult to study its structure using seis-

mic waves from local or regional earthquakes while turning it into an ideal candidate

for methods that rely on teleseismic data.

In order to resolve and compare potential variations of small-scale structure with

tectonic history and large-scale structure, I applied the single-layer Energy Flux Model

(EFM, Korn, 1990) and multi-layer Energy Flux Model (EFMD, Korn, 1997) described

in Chapter 2 to large datasets from three medium aperture arrays located on different

tectonic terranes. Warramunga (WRA) and Alice Springs (ASAR) seismic arrays are

part of the International Monitoring System (IMS), a worldwide network created to

ensure compliance with the ban on nuclear tests as part of the Comprehensive Test Ban

Treaty. The arrays are located on the Proterozoic North Australian Craton (NAC),

with ASAR being located on its southern margin, next to the Amadeus Basin. The

Pilbara Seismic Array (PSA), designed for research purposes (Kennett et al., 2015), is

located on the Archaean West Australian Craton (WAC). All three arrays are part of

the Australian National Seismic Network, operated by Geoscience Australia.

This work is published as González Álvarez et al. (2021) and this chapter is partially

based on that article. My EFM results for PSA show that quality factors take higher

values for this array than for ASAR or WRA, thus pointing to the small-scale structure

beneath PSA being less attenuating and heterogeneous than below the other arrays.

Scattering and total attenuation are similarly strong for the NAC arrays, while intrinsic

and diffusion attenuation are stronger for ASAR than for WRA or PSA. My EFMD

results show the lithospheric mantle is less heterogeneous than the crust for all three ar-

rays, an observation which may be linked to the cratonic nature and the longevity of the

lithosphere beneath them (Wang et al., 2014). The scattering parameters (correlation

length and RMS velocity fluctuations) are lower for PSA than for ASAR and WRA,

pointing to weaker and smaller scale heterogeneity being present beneath PSA. These

differences and similarities in the lithospheric small-scale structure beneath the arrays

agree with variations in the tectonic histories of these regions, as well as results from

previous studies using different data analysis techniques (e.g. Kennett and Furumura,

2016; Kennett et al., 2017).
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3.1 Data selection and processing

Data selection and processing for this study follows the processes described in Section

2.1.4. I used used the FDSN Client tool from Obspy (Beyreuther et al., 2010) to obtain

event metadata directly from IRIS Data Management Services (DMS) and build a

catalog with all events occurring between January 1, 2012, and December 31, 2018,

with 30 – 80 degrees epicentral distance to the array centers, source depths greater

than 200 km and magnitudes from 5 to 7 (Section 2.1.4).

I collected waveforms and station metadata from PSA stations from IRIS DMS,

while for WRA and ASAR I acquired waveforms and station metadata directly from
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Figure 3.1: Events locations for PSA, ASAR and WRA datasets used for this study (a, b, c)
and velocity models for the arrays obtained from the Australian Seismological Reference Earth Model
(AuSREM; Kennett and Salmon, 2012; Salmon et al., 2013a; Kennett et al., 2013) (d).
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Table 3.1: Number of events and good quality (SNR > 5) traces for each array and frequency
band.

Number of events per frequency band

0.5–1 Hz 0.75–1.5 Hz 1–2 Hz 1.5–3 Hz 2–4 Hz 2.5–5 Hz 3–6 Hz 3.5–7 Hz

PSA
Events 86 161 213 276 343 268 212 158
Traces 973 1899 2489 3226 3179 2965 2282 1641

WRA
Events 292 355 385 407 413 410 412 406
Traces 709 843 916 977 983 984 980 965

ASAR
Events

309 375 440 429 405 397 386 374
Traces

the IMS. The EFM/EFMD analysis requires 3-component seismic data (Section 2.1.4),

which means the number of seismic stations included in these datasets varies from array

to array. For PSA, all its stations are 3-component, while only 3 and 1 are for WRA

and ASAR, respectively. Table 3.1 contains the number of good quality events (as

defined in Section 2.1.4) recorded by PSA, WRA and ASAR stations used in this study

for the frequency bands listed on Table 2.3. Panels a, b and c on Fig. 3.1 show the

epicentres, magnitudes and depths of all events included in this study for each array.

I obtained the required P-wave background velocity model of the lithosphere for

each array from the Australian Seismological Reference Model (AuSREM; Kennett and

Salmon, 2012; Salmon et al., 2013a; Kennett et al., 2013). These velocity structures

are shown in Fig. 3.1 d.

3.1.1 Dataset size analysis

A characteristic of past studies using the EFM or EFMD is the small number of seismic

events used in the analysis: Hock and Korn (2000) and Hock et al. (2004) used only 3

events, recorded by stations from three temporary seismic networks in Europe; Korn

(1990) analysed data from 11 events from the Flores, Timor and Banda Sea region

recorded by WRA stations; Korn (1993) included 188 seismograms from 9 stations in

the circumpacific area, with most stations recording 10–24 events and a maximum of

62 events recorded by a single station; Li (2010) does not specify how many events were

used in their analysis.

Considering that the EFM and EFMD are stochastic methods, I decided to study

the effect of the size of the dataset on coda amplitudes stability and smoothness, as

well as on the results obtained from these methods. To test this, I used the dataset of

normalised coda envelopes calculated for WRA for the EFMD as described in Sections

2.1.2 and 2.1.4. Given that the only difference between normalized and unnormalized

coda envelopes is a scaling factor, I believe the dataset size would have a similar effect

on both EFM and EFMD results. To evaluate such an effect, I stacked all available

normalised envelopes for each frequency band (Table 3.1) and used the result as a

proxy of the“true envelope”. For each frequency band, I randomly selected 250 groups
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Figure 3.2: Amplitude residuals obtained by subtracting each of the 250 realizations of stacks of N
events from the stack of the full dataset (407 events, Table 3.1) available for frequency band D (1.5 –
3 Hz, Table 2.3). Black lines highlight the residuals for a randomly chosen stack.

of N events and calculated the mean and standard deviation of the envelopes, with N

ranging from 2 to 200 in steps of 1 event. Figure 3.2 contains the residuals obtained from

subtracting each realization of stacks of 5, 10, 20, 50, 75, 100, 200 and 300 events from

the full stack (the “true envelope”) for frequency band D (Table 2.3). Residuals for the

other frequency bands can be found in Appendix A.1. Up to 50 events, the variation

of the residuals rapidly diminishes as the number of events used to compute the stacks

increases. For stacks of more events, residuals continue decreasing but become more

stable.

To further illustrate the potential effect of the dataset size on the EFM/EFMD

results and establish an optimum or recommended dataset size, I ran the first step of

the EFM analysis (the linear fit of the coda) on these data to obtain the coda decay

rate (a1) and coda intercept (a0) values for each N value. Fig. 3.3 contains a statistical
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Figure 3.3: Statistical analysis of the residuals shown in Fig. 3.2 and coda decay rates (a1) obtained
from the first step of the EFM analysis for frequency band D (Table 2.3). a and b) Boxplots of the
values for stacks of 5, 10, 20, 50, 75, 100, 200 and 300 events; c and d) probability density functions;
e and f) standard deviation value for all tested N values. Orange lines in panels a and b represent the
median of the residuals for each value of N. Boxes mark the interquartile range (IQR), while upper and
lower whiskers extend from both ends of the box to 1.5 · IQR above and below the box respectively.
Residuals or coda decay rates values outside this range are considered outliers. Black lines on panels e
and f represent the expected decay of the standard deviation, according to the Central Limit Theorem.
The orange shaded areas on the same panels mark the standard deviation value for N = 60–80, which
we suggest as the minimum number of events necessary to ensure coda and coefficients stability.
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analysis of the coda decay rate (a1) values obtained from this analysis for frequency

band D (1.5 – 3 Hz, Table 2.3). Results for the other frequency bands and coda intercept

(a0) values are consistent with those included here and shown on Appendix A.1. Fig. 3.3

shows that the interquartile range (IQR) and the probability density functions (PDFs)

of the residuals become narrower as the number of events used in each stack increases.

The median remains relatively constant, regardless of the number of events used in

the stacks, but the standard deviation decreases rapidly as N increases, up to ∼60–80

events for the residuals and ∼80–100 events for a1. Beyond that threshold, marked by

red dashed lines on Fig. 3.3 e, f, the standard deviation decreases more slowly but does

not become constant, following the cN−1/2 (c =const) decay predicted by the Central

Limit Theorem. This “convergence” is also illustrated on Fig. 3.3 a–d, in the form of

IQRs on panels a and b stabilizing or the narrowing of the PDFs on panels c and d

becoming negligible for stacks of more than 50 events.

The EFM and EFMD analysis are based on the fitting of coda amplitudes to dif-

ferent functions. Therefore, stable codas are essential to ensure results from these

techniques are reliable and accurate. Based on the standard deviation of the coda de-

cay rates shown on Fig. 3.3 f, I suggest an optimum dataset size of at least 60 – 80

events, since these are the parameters required for the EFM/EFMD analysis. Smaller

datasets, such as the ones used by Korn (1990), Hock and Korn (2000) or Hock et al.

(2004), cannot provide stable codas that guarantee the reliability of the coefficients,

while larger datasets would offer little improvement and increase processing time in the

first steps of the analysis. For this study, however, I decided to take advantage of the

full datasets for PSA, ASAR and WRA (Table 3.1), since higher computing costs were

not a concern and some, if minor, improvement could still be gained from using more

events.

3.2 Tectonic Setting

ASAR and WRA are located on the North Australian Craton (NAC), one of the Pro-

terozoic cratons in the Precambrian westernmost two-thirds of the Australian continent

(e.g. Myers, 1990; Simons et al., 1999; Cawood and Korsch, 2008; Wellman, 1998) (Fig.

3.4). The NAC consists of late Archaean to Proterozoic cratonic blocks overlaid by

Proterozoic and Phanerozoic orogenic belts and basins. PSA is located on Archaean

lithosphere part of the West Australian Craton (WAC), which includes both the Pil-

bara and Yilgarn Archaean cratons, as well as some Proterozoic orogens and basins

(Cawood and Korsch, 2008) (Fig. 3.4). Present day tectonic activity in Australia is

concentrated along the active plate boundaries in the north and east, with continental

regions presenting only moderate seismicity (Fichtner et al., 2009).

Previous studies have investigated crust and lithospheric thicknesses and structure
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around the three arrays studied here. Thick crust (Lc > 40 km) with a wide and smooth

Moho transition has generally been found in the Proterozoic shields of Central Australia

while the Archaean regions of western Australia have thinner crust (Lc < 40 km) and

sharper crust-mantle transitions (e.g. Clitheroe et al., 2000; Sippl, 2016; Salmon et

al., 2013b; Kennett et al., 2011; Kennett and Saygin, 2015). This difference in crustal

thickness between Archaean and Proterozoic regions seems not to fit the trend of crustal

thickness increasing with age suggested for Australia (e.g. Clitheroe et al., 2000). It has

been attributed to post Archaean tectonic activity underplating material at the base of

the crust in these regions, as opposed to the Archaean cratons being located at passive

margins and, therefore, not being affected by more recent tectonics (e.g. Drummond

and Collins, 1986).

Sippl (2016) and Kennett and Sippl (2018) imaged a series of Moho offsets along

a north-south profile in the NAC. One of these offsets is associated with the Redbank

Shear Zone, which separates the Aileron Province and the location of ASAR from the

Amadeus Basin, just south of the array (e.g Goleby et al., 1989; Korsch et al., 1998;

Sippl, 2016). The profile used in Sippl (2016) and Kennett and Sippl (2018) is located

roughly 50 km west of ASAR and shows an offset of up to 20 km coinciding with

ASAR latitude, even though they show constant Moho depths beneath the array. An

east-west gravity anomaly has been found at the location of this Moho offset (Sippl,

2016, Fig. 1) and attributed to denser lithosphere at the base of the crust caused by the

overthrusting of the Aileron crustal block during the Alice Springs Orogeny 400-350

Ma ago (Goleby et al., 1989; Aitken, 2009; Aitken et al., 2009; Sippl, 2016). Another

offset imaged by Sippl (2016) and Kennett and Sippl (2018), further north, shows a

north-south decrease in Moho depth of about 10 km just south from WRA, which has

been associated with a Proterozoic suture zone. Corbishley (1970) also found evidence

of a layered and dipping structure below WRA. Gravimetric data do not show any

anomalies here (Sippl, 2016), which has been attributed to a layer of sediments near

the surface, isostatically compensating the mass excess at depth.

Several studies have addressed the thickness of the lithosphere in the Australian

continent. Some suggest similarly deep interfaces across all Precambrian cratonic re-

gions in Australia (Ll ≈ 200 km) (e.g. Debayle and Kennett, 2000). More recent studies

use a lithosphere-asthenosphere transition zone (LAT), defined as a mechanical or ther-

mal boundary layer related to changes in rheology, as opposed to a simple interface at

the bottom of the lithosphere (e.g. Kennett and Sippl, 2018; Yoshizawa and Kennett,

2015). Specifically, Kennett and Sippl (2018) place the upper and lower bounds of the

LAT at 140 and 170 km depth respectively for ASAR, and at 120 and 160 km for

WRA, while Yoshizawa and Kennett (2015) place them at 100 and 200 km depth for

PSA. Some studies have also found evidence for mid-lithospheric discontinuities below

both ASAR and WRA, at 90 and 91 km respectively, which have been interpreted as
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Figure 3.4: Simplified geological map of northwestern Australia and location of the three seismic
arrays used in this study (Alice Springs Array (ASAR), Warramunga Array (WRA) and Pilbara Seismic
Array (PSA)). Blue dashed lines represent the boundary of the West Australian Craton (WAC, light
blue line) and the North Australian Craton (NAC, dark blue line). PSA and WRA are located on
Archaean and Proterozoic basement respectively, inside the cratons, while ASAR is situated at the
southern boundary of the NAC. Panels on the right show the station configuration of the arrays, with
the same scale bar shown for PSA being applicable to all three maps. Geological structure based on
Blake and Kilgour (1998) and Raymond et al. (2018).
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vertical variations in mantle composition, grain size or fabric, for example a low veloc-

ity melt cumulate layer (Ford et al., 2010) and as a former mantle detachment zone

associated with the Alice Springs orogeny (Kennett and Sippl, 2018).

3.3 Results and discussion

I applied the single-layer EFM to the dataset summarised on Table 3.1 to obtain the

intrinsic, diffusion and scattering quality factors that characterize the lithospheric struc-

ture beneath ASAR, PSA andWRA. Then, as described in Section 2.1.4, I characterized

the heterogeneity structure beneath the arrays by applying the EFMD analysis to the

same dataset. Detailed data selection and processing steps can be found in Sections

2.1.4 and 3.1.

3.3.1 EFM results

I calculated the coda decay rate, a1, and its value at zero time, a0, for all frequency

bands and arrays as stated in Section 2.1.1. I applied the linear least-squares fit of the

squared stacked envelopes at the free surface (Fig. 3.5) to a time window starting tN

seconds after the theoretical P wave arrival (tN being the one-way traveltime through

the lithosphere, listed for each array on Table 3.2), since the EFM is only applicable

after the direct wave has left the scattering layer (Korn, 1990; Hock and Korn, 2000).

The length of this time window varied from 42.5 to 48 s for all arrays and frequency

bands, with variations depending on differences in P wave velocities based on the AuS-

REM model (Kennett and Salmon, 2012; Salmon et al., 2013a; Kennett et al., 2013;

Salmon et al., 2013b) (Table 3.2).

A least-squares fit using Eq. 2.16 then allowed me to calculate the quality factors for

diffusion and anelasticity at 1 Hz from a1 (Fig. 3.6). For all arrays, the coda decay rate

for the lowest frequency band did not follow the trend defined by the other frequency

bands. Including it in the least squares fit produced inconsistent results, and it was

excluded from the analysis (Fig. 3.6). A possible explanation for this observation are

the lack of smoothness in the amplitude of the coda envelopes for this frequency band

(top left panel in Fig. 3.5), possibly caused by noise or phase conversions or reflections

at large scale heterogeneities, which made the linear fits of the coda less robust and

increased the uncertainty in the determination of a1. The intrinsic quality factor at 1

Hz derived from this calculation, Qi0, takes similar, frequency independent (α = 0),

values of ∼ 2000 for WRA and PSA. For ASAR, my best fits to the coda decay rate

(Eq. 2.2) correspond to α = 0.2 (Fig. 3.6) and Qi0 ∼ 1000. Diffusion quality factor

(Qdiff ) values at 1 Hz are similar for ASAR and WRA (∼ 400), and higher for PSA

(∼ 500). Since this quality factor does not depend on α (Eq. 2.14), this translates into

Qdiff following the same trend for all arrays but being higher for PSA than for WRA
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and ASAR.

Figure 3.7 shows measured scattering quality factor (Qs) values, obtained from Eq.

2.3, together with the theoretical least-squares regression curves derived by Fang and

Müller (1996) for the relationship between the structural parameters, a and ε, and

Qs for an exponential isotropic ACF. As explained in Section 2.1.1, these parameters

represent a first approximation to the average spatial distribution and strength of the

heterogeneity of a single scattering layer beneath the arrays. Correlation length values

are similar for the three arrays, varying from 0.9 – 1.1 km. Heterogeneities appear to

be weaker beneath PSA than ASAR or WRA, with ε varying from ∼ 3.0% for PSA to

∼4.5% and ∼4.7% for WRA and ASAR respectively.

Figure 3.8 shows the frequency dependence of the different quality factors obtained

from the EFM. The combined quality factor (Section 2.1.2, Eq. 2.17), Qcomb , follows

a similar trend to Qs, with both of them taking their highest and lowest values for

PSA and ASAR respectively. For WRA and ASAR, maximum Qs and Qcomb values

are found in the 0.5–1 Hz and 0.75–1.5 Hz bands respectively, and the minimum in

the 1.5–3 Hz frequency band. The frequency dependence of Qs and Qcomb above 2

Hz is similar for both arrays. This indicates that the dominating scale length of the

heterogeneity is likely in the range of 3–5 km for these arrays when I consider a single

scattering layer. For PSA, however, Qs decreases for frequencies below 1.5 Hz and then

remains approximately constant, which could be indicative of different scale lengths of

the heterogeneity being equally present in the structure. For this array, Qcomb increases

slowly over the frequency range covered here.

In general, diffusion is the strongest attenuation mechanism (lowest Q) at low fre-

quencies, with scattering dominating at higher frequencies. For WRA, this transition

happens at 0.75 Hz, while for ASAR and PSA, the change takes place at 1.125 Hz.

Anelasticity remains the weakest attenuation mechanism (highest Q) at low frequen-

cies, up to 4.5 Hz for WRA and PSA and 3.75 Hz for ASAR. Above that frequency,

Qdiff becomes dominant. These results agree with the observations by Korn (1990),

who obtained Qi > 1000 and Qdiff ∼ 300 − 400 at 1 Hz for WRA, even if his results

showed that Qi remained larger than Qdiff up to 10 Hz. My Qcomb results suggest that,

even if Qs, Qi and Qdiff are lower at most frequencies for ASAR than for the other two

Table 3.2: Summary of the main results obtained from the EFM for all arrays: intrinsic (Qi0)
and diffusion (Qd0) quality factors values at 1 Hz, intrinsic quality factor frequency dependence
coefficient (α), correlation length (a) and RMS velocity fluctuations (ε).

Array vP (km/s) tN (s) Qi0 Qd0 α a (km) ε (%)

PSA 7.9 25.2 2100± 200 500± 40 0.0 0.9± 0.1 2.9± 0.1

WRA 7.9 25.3 2100± 100 400± 20 0.0 1.1± 0.1 4.5± 0.1

ASAR 7.8 25.6 1000± 100 400± 40 0.2 0.9± 0.2 4.7± 0.2
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Figure 3.5: Linear fit of the logarithm of the squared normalised coda envelopes for all arrays,
as described in Section 2.1.1. The shaded area represents the maximum time window used for the
fits. Lighter solid lines represent my data envelopes. Darker, dashed lines show the linear fits whose
equations are shown in the legend.
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Figure 3.6: Coda decay coefficient (a1) vs. frequency for all arrays. Solid lines represent the
regression curves defined by Eq. 18 from Korn (1990). The legend contains my obtained values of the
intrinsic and diffusion quality factors at 1 Hz, as well as the indicative estimation of the thickness of
the scattering layer.
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Figure 3.7: Scattering quality factor, Qs, vs. the theoretical curve derived by Fang and Müller
(1996). The legend contains my estimation of the correlation length and RMS velocity fluctuations for
a single scattering layer.

arrays, total attenuation strength is similar for ASAR and WRA. These lower Qcomb

values could be related to the location of these arrays on the NAC, younger in origin

than the WAC (Section 3.2). The location of ASAR, on the southern edge of the NAC,

in an area widely affected by the accretionary processes that took place during the

assembly of the Australian continent, as well as major events like the Petermann and
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Figure 3.8: Frequency dependence of the intrinsic (Qi), the diffusion (Qdiff ), scattering (Qs) and
total (Qcomb) quality factors for all arrays.

Alice Springs orogens (Section 3.2), could explain the lower values of the different qual-

ity factors obtained for this array. For PSA, the generally high quality factors values I

obtained could be related to the location of the array on a tectonically quiet Archaean

craton (Section 3.2). Previous studies (e.g. Cormier, 1982; Korn, 1993; Sipkin and

Revenaugh, 1994; Domı́nguez and Rebollar, 1997) have also found lower Q values in

regions with quiet tectonic histories, an observation that matches my results from the

EFM for all three arrays.

3.3.2 EFMD results

I use lithospheric model types I and II (1-layer and 2-layer respectively), shown in Fig.

2.3, in my inversion of the data for all three arrays. All models are 200 km thick and,

for 2-layer models, the top layer represents the crust and extends down to the Moho
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depth obtained from the AusMoho model (Kennett et al., 2011). Qi values necessary

to calculate the synthetic envelopes from Eq. 2.18 are determined by the EFM and are

assumed to be constant throughout the lithosphere. As with my synthetic tests, I ran

three parallel Markov chains for each array and model type, with 1 million or 3 million

iterations for models with 1 and 2 layers respectively. The burn-in phase, defined as

described in section 2.1.3, was removed from all chains. Table 3.3 summarises my

results.

Inversion of PSA data with model type I, revealed this model produces very large

amplitude codas that barely decay over time (Fig. 3.9). All chains were stable and

converged within 14000 iterations, but the maximum loglikelihood reached during the

inversion (< −106, panels a–c on Fig. 3.9), indicated fits to the data are very poor,

which is also obvious from the comparison of the ensemble of synthetic envelopes with

the data (panels g–n on Fig. 3.9). The posterior PDFs suggest a nearly homogeneous

lithosphere, with ε ∼ 0% and a > 20 km. This is likely due to the large thickness of

the layer (200 km) greatly reducing diffusion out of it and, therefore, energy levels in

the heterogeneous layer remaining high at all times, regardless of the magnitude of the

scattering parameters. I also tested model type I on ASAR data, since coda levels for

this array are higher (Fig. 3.10). Despite the higher coda amplitudes, model type I also

fails to fit my data for this array, with the maximum loglikelihood reached being on

the order of −10000. ASAR coda amplitudes are similar to WRA, indicating similar

behaviour. Therefore, this model was not tested for WRA. It is convenient to note

that, as stated in Section 2.1.4, the datasets used in these inversions were carefully

curated to ensure that no deep or secondary arrivals were present in the seismograms

between the direct P-wave arrival and the end of the time window of interest. This

means that the small amplitude peak between the direct wave and the start of the

EFMD time window in Figs. 3.9, 3.10, or 3.14 is probably not caused by such an

arrival. Considering the size of the datasets analysed here, conversions and reflections

Table 3.3: Summary of my EFMD results for all arrays and model types. Bottom depth of all
models is 200 km, after the LAB depth estimated by Yoshizawa and Kennett (2015) or Kennett
and Saygin (2015) (see Section 3.2) . Crustal thickness for model type II is 32 km for PSA and
46 km for ASAR and WRA, as defined in the AusMoho model (e.g. Kennett et al., 2011).

Array
Model Frequency Layer Correlation length (a) RMS velocity fluctuations (ε) Maximum
type bands number 5–95 PR (km) AR (%) 5–95 PR (%) AR (%) L

PSA

I A-H 1 23 – 32 48 < 0.01 47 < −14× 106

II A-H
1 0.5 – 25

75
< 0.01

47 < −450000
2 0.5 – 32 < 0.01

II D-H
1 0.5 – 0.8

59
2.3 – 2.5

44 −7.1
2 4 – 32 0.1 – 1.8

ASAR
I A-H 1 2 – 30 93 0.01 – 0.07 44 −10500

II D-H
1 0.2 – 1.4

59
2.4 – 3.0

50 −2.2
2 3 – 32 0.1 – 3.7

WRA II D-H
1 0.7 – 1.5

60
3.1 – 3.9

53 −0.7
2 3 – 32 0.2 – 5.0
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Figure 3.9: EFMD results for PSA and model type I. Panel content is as in Fig. 2.4.

(especially P-S conversions) at heterogeneities and boundaries near the receivers are the

most likely cause for these peaks. These phenomena are not taken into account within

the EFMD framework, but given their low amplitude and their presence well outside

the time window used for the analylsis, their overall effect on the obtained results is

likely small.

Model type II inversions for all three arrays showed much better fits for frequency

bands D-H (central frequencies above 2.25 Hz, Table 2.3) than for A-C (below 1.125

Hz, example for PSA in Fig. 3.11). However, loglikelihood values are still very low

(< −4 × 105), Table 3.3), which indicates poor fits to the data and, therefore, unreli-

able parameter estimations, even if there is a substantial improvement with respect to

model type I. My EFM results show scattering only becomes the dominant attenua-

tion mechanism above 1.5 Hz for PSA (Fig. 3.8). This, together with coda amplitudes

shown on panels j–q in Fig. 3.11 being barely above the noise level in the time window

of interest for the lowest frequency bands, suggests these codas are affected by large-
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Figure 3.10: EFMD results for ASAR and model type I.

scale heterogeneities and might not be composed only of energy scattered at small-scale

structure. Therefore, the EFMD may not be able to fit my coda envelopes for frequen-

cies below this threshold. To test this, I ran my EFMD inversion code for frequency

bands D to H (Table 2.3) alone. By comparing my results for PSA in Fig. 3.11 and

Fig. 3.12, I observe considerable improvement in the fits to the data, also evidenced

by much higher loglikelihood values (< −10). Given these new observations, I remove

frequency bands A to C (0.5–1 Hz, 0.75–1.5 Hz and 1–2 Hz, Table 2.3) from future

inversions of the data for all arrays.

Figures 3.12, 3.13 and 3.14 summarise my results for all three arrays and model

type II. The Markov chains converged within 10000, 7000 and 4000 iterations for PSA,

ASAR and WRA, respectively. The scattering structure beneath the arrays shows

varying amounts of heterogeneity in the crust and a relatively homogeneous lithospheric

mantle. The posterior PDFs for both parameters in the top layer in all cases are roughly

Gaussian and narrow (Table 3.3). Maxima for the correlation length PDFs for PSA,
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Figure 3.11: EFMD results for PSA and model type II (2-layer) using all eight frequency bands
listed on Table 2.3.

Figure 3.12: Results from model type II (2-layer) and PSA using only the five highest frequency
bands from Table 2.3.
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Figure 3.13: As Fig. 3.12 but for ASAR.
-
-

Figure 3.14: As Fig. 3.12 but for WRA.
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ASAR and WRA are at 0.6, 0.7 and 1 km, while RMS velocity fluctuations posteriors

peak at 2.4%, 2.7% and 3.6% respectively. PDFs for layer 2, on the other hand, show

no clear maxima and also have similar shapes for all arrays. For PSA, ε only takes

values below ∼ 3%, while for WRA and ASAR, the PDF extends up to ∼8 % and ∼6

% respectively. In all cases, the majority of the accepted models have ε < 1%. The

correlation length PDF, on the other hand, extends throughout the entire parameter

space, not allowing us to constrain scale length values. For PSA and WRA, large

values of a (> 5 km) are favoured, while small correlation lengths (< 1 km) seem to

work better for ASAR. Loglikelihood values are high (> −10) for all arrays, which

suggests fits to the data are generally good. The shape of the PDFs for the bottom

layer makes my solutions non-unique and similar to my results for synthetic model 4,

which had strong scattering in the crust and a fairly homogenous lithospheric mantle.

This would mean scattering takes place mostly in the crust for all three arrays, with

very weak or no scattering at all in the lithospheric mantle.

These results agree with observations from previous studies. Kennett (2015) stud-

ied P-wave reflectivity in the lithosphere and asthenosphere in Australia. Their results

point to strong lithospheric heterogeneity being present beneath stations in the Protero-

zoic NAC and they suggest correlation lengths of at most a few kilometres and ∼ 2%

velocity fluctuations in the crust. For the lithospheric mantle, they propose much larger

correlation lengths (10-20 km) and ε < 1%. Kennett and Furumura (2016) and Kennett

et al. (2017) also addressed the presence and interaction of multi-scale lithospheric het-

erogeneity in the Australian continent. In their simulations, they combined large scale

heterogeneities with stochastic media and fine scale structure. Their results indicate

a wide range of heterogeneity spatial scales are present and interact within the litho-

sphere. Their models contain four different layers for the fine scale structure, two in

the crust and two in the lithospheric mantle, and different horizontal (aH) and vertical

(aV ) correlation lengths. Their scattering parameters suggest a mildly heterogeneous

asthenospheric mantle (aH = 10 km, aV = 10 km, ε = 0.5%) and an increase in the

strength of the heterogeneity in the lithosphere-asthenosphere transition zone (aH = 5

km, aV = 1 km, ε = 1 %). The crust is generally more heterogeneous in these models,

with aH = 2.6 km, aV = 0.4 km for both crustal layers and RMS velocity fluctuations

of 0.5% and 1.5% for the upper and lower crust respectively. At resolvable scales, these

values are consistent with my results from the EFMD (Table 3.3).

3.4 Conclusions

For three Australian seismic arrays, I applied the single layer modified Energy Flux

Model (EFM) and depth dependent Energy Flux Model (EFMD) to a large dataset

which includes events from a wide range of magnitudes, distances and azimuths. This

ensures I am thoroughly sampling the structure of the lithosphere beneath the arrays
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and reduces azimuthal and lateral bias. My EFM results highlight similarities and

differences in the behaviour of the quality factors (intrinsic (Qi), diffusion (Qdiff ), scat-

tering (Qs) and combined (Qcomb)) for the three arrays studied here and, therefore, the

attenuation structure beneath them. Generally, Qi and Qdiff are lower at all frequen-

cies for ASAR than for the other two arrays, which would indicate that attenuation

caused by these two mechanisms would be strongest for ASAR. However, the scat-

tering and combined quality factors take similar values for ASAR and WRA, making

their heterogeneity and overall attenuation structure comparable but different to PSA.

These results are consistent with the tectonic histories and settings of the regions the

arrays are located on. WRA and ASAR lie on the Proterozoic North Australian Craton

(NAC), but while WRA is situated near its center, ASAR is on its southern border, a

margin with more complex and recent tectonic history than the interior of the craton,

which correlates with the generally lower quality factor values I observe for ASAR.

The EFMD confirms some of these similarities and differences. My results suggest the

crust is more heterogeneous than the lithospheric mantle for all arrays, which could

be related to the cratonic nature of the lithosphere in these areas. Correlation lengths

in the crust vary from ∼0.2–1.5 km and RMS velocity fluctuations take values in the

2–4 % range. The scattering structure of the lithospheric mantle, on the other hand,

is more complex. Solutions for this layer are not unique, with both low (< 2 km) and

high (> 5 km) correlation lengths being equally probable. Low velocity fluctuation

values are favoured in the inversion results for all arrays, but the posterior PDFs for

ASAR and WRA extend up to ∼6% and ∼7% respectively and only to ∼ 3% for PSA,

thus supporting our hypothesis that the similarities and differences in the heterogeneity

structure beneath these arrays are caused by their different locations on the cratons and

the different tectonic histories of these areas. These results agree with previous studies

and our current knowledge about the tectonic histories of these regions. This means

that, despite the theoretical limitations of the methods discussed in Section 2, the ad-

dition of a large enough dataset and a Bayesian inversion algorithm to these methods

substantially contributes to improving the reliability of the small-scale characterization

obtained from them.

This study is also an example of the versatility of energy flux methods. I have

shown that these techniques can be used for seismic arrays or groups of stations (PSA,

WRA) and single seismic stations (the single available 3-component station at ASAR).

Regions with limited local and regional seismicity, such as my study areas in northern

and western Australia, can be investigated using energy flux methods, since they rely

on teleseismic data. Finally, the lack of constraints on the strength of the heterogeneity

makes this approach applicable to both strong and weak scattering regimes and apt to

the study of small-scale heterogeneity on Earth and other planets.



Chapter 4

The Extended Depth-Dependent

Energy Flux Model

Chapters 2 and 3 contain an extensive description of both the single-layer and multi-

layer Energy Flux Models (EFM and EFMD respectively), as well as their capabilities

to resolve the heterogeneity structure beneath a seismic station or array and compare

between different attenuation mechanisms. My implementation of these methods makes

the EFM completely independent, while the EFMD relies on the EFM to obtain the

intrinsic quality factor, Qi, and its frequency dependence, required for the inversion of

either real or synthetic data. Previous studies using the EFMD have worked around this

issue by not including intrinsic attenuation within the EFMD. Korn (1997) included

anelasticity within the theoretical framework of the EFMD but decided to omit it

from his tests to focus on the differences in coda shapes caused by different scattering

parameters. Hock and Korn (2000) and Hock et al. (2004) obtained Qi for some of their

regions of study from the EFM but did not take intrinsic attenuation into account in

their implementation of the EFMD.

This necessity of separately obtaining Qi, either from the EFM or from other ap-

proaches reported in the literature, is one of the biggest shortcomings of the EFMD.

The EFM is, in itself, a useful, quick and easy tool to quantify the heterogeneity struc-

ture and its results can either be used on their own or serve as a basis for more advanced

methods. However, its inherent limitation to a single scattering layer with unspecified

thickness reduces the accuracy of the EFMD results. For this reason, I decided to re-

move the dependence of the EFMD on the EFM by expanding the Bayesian inference

algorithm described in Chapter 2 to make it capable of independently determining the

intrinsic quality factor and its frequency dependence for each layer in the model. To

my knowledge, none of the previous studies applying the EFMD have ever attempted

to independently obtain the Qi, either in a depth-dependent or independent fashion,

65
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using this technique. Additionally, I optimized the algorithm and improved its overall

performance by adding internal adaptive step size and continuation algorithms, which

allow me to benchmark the Markov chains and prevent me from having to manually

select the step sizes of the parameters. This improved, or extended, EFMD algorithm,

called here the E-EFMD, is generally on the order of 10 times faster than the original

EFMD, and allows us to directly obtain the scattering (a, ε) and intrinsic attenuation

(Qi0, α) parameters from the inversion, thus making it possible to compare these two

attenuation mechanisms layer by layer. Such an algorithm would remove the depen-

dence of the EFMD on previous studies on the area of interest or alternative methods

to obtain Qi and lead to a complete and consistent determination of the attenuation

beneath a seismic station or array.

In this chapter, I describe the expansion to my previous Bayesian inversion algo-

rithm and provide the results from a series of synthetic tests designed to assess its

capability to successfully recover the input values of both scattering parameters, as

well as the intrinsic quality factor and its power law exponent. In addition to this,

I use the E-EFMD to characterize the heterogeneity structure beneath PSA, ASAR

and WRA, the three Australian seismic arrays studied in Chapter 3, and compare the

results obtained from the two algorithms.

4.1 The Extended Depth-Dependent Energy Flux Model

(E-EFMD)

Intrinsic or anelastic attenuation, also known as absorption, is one of the two main

causes of attenuation of seismic waves. The other one, scattering, as discussed in previ-

ous chapters, is produced by heterogeneities redistributing the energy of the wavefield,

leading to a reduction of the direct wave amplitudes and the excitation of coda waves.

In contrast, intrinsic attenuation is caused by the conversion of seismic energy into heat

and has often been related to the presence of cracks and fluids within the medium the

wavefield is propagating through (e.g. Picotti et al., 2010; Sketsiou et al., 2021). As a

result of this seismic energy loss, both the direct and coda waves amplitudes decrease.

In Chapters 2 and 3, I discussed a third attenuation mechanism, diffusion, which is

explicitly included within the EFM formulation (Section 2.1.1) in order to ensure the

conservation of energy in the system. Total seismic attenuation can be calculated then

as the combination of scattering and absorption through their respective quality factors

or their inverses, also called dissipation factors:

Q−1
T = Q−1

i +Q−1
s , (4.1)

where Q−1
T , Q−1

i and Q−1
s represent the inverse of the total attenuation, intrinsic and

scattering quality factors. In the case of scattering, it is widely accepted that Qs varies
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with frequency, and a number of relationships have been proposed over the years for

different kinds of media (e.g. Sato et al., 2012; Fang and Müller, 1996). For intrinsic

attenuation, this dependence is not so clear. For decades, there has been consider-

able debate about the frequency dependence (or lack of) of Qi, possibly triggered by

differences in frequency ranges of interest, part of the seismic wavefield being used

and overall purpose of the study. Frequencies used in lab-based, rock-physics experi-

ments can often reach hundreds or even thousands of Hz (e.g. Tisato et al., 2015), well

above local or even teleseismic frequencies (0.01–10 Hz), and these are themselves much

higher than those required for normal modes analysis (f < 0.01 Hz) (e.g. Romanowicz,

1995; Durek and Ekström, 1996). The response of seismic waves to medium proper-

ties depends largely on their wavelength and, therefore, their frequency, thus making

it difficult to compare attenuation structures obtained from these different studies.

Additional challenges in translating laboratory results to observations in the Earth are

their limitations to accurately reproduce realistic rheological conditions or comparable

source-receiver distances. Still, some form of frequency dependence is widely accepted

nowadays (e.g. Aki, 1980a; Romanowicz, 1995; Sams et al., 1997; Korn, 1997; Sato et

al., 2012; Eulenfeld and Wegler, 2016) , with a power law often being used to describe

its behaviour (e.g. Korn, 1990; Sato et al., 2012; Sketsiou et al., 2021).

The Depth-Dependent Energy Flux Model (EFMD), described in Section 2.1.2,

has the ability to calculate not only the heterogeneity parameters of the structure

(correlation length a and RMS velocity fluctuations ε), but also the intrinsic (Qi) and

scattering (Qs) quality factors for each layer within the model. Qs values for each layer

and frequency band are always calculated within the EFMD for each tested model, but

previous implementations of the method have either neglected anelasticity altogether

(Korn, 1997; Hock and Korn, 2000; Hock et al., 2004) or, in the case of my own version,

used a constant value for all layers. The E-EFMD goes a step further by including the

intrinsic quality factor at 1 Hz, either as Qi0 or its inverse, Q−1
i0 , and the exponent

controlling its power law frequency dependence, α (Eq. 4.2), as free parameters that

can be obtained from the Bayesian inference algorithm. Here, a given model m includes

a single value of a, ε and Qi0 for each layer, as well as α, which is constant for all layers

(Fig. 4.1). Intrinsic Q values for all frequency bands are then calculated using:

Qi(ω) = Qi0 fα
c , (4.2)

where fc is the central frequency for each frequency band of interest. Thus, for a 2-

layer model, m would contain a total of 7 free parameters, as opposed to the 4 included

in my previous implementation of the EFMD. The relationship stated in Eq. 4.2 is

equivalent to the one on Eq. 2.15, used by Korn (1990). I should note that, while the E-

EFMD is, in theory, capable of independently resolving Qi values for different frequency

bands, without the need to define a specific frequency dependence, in practice this
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Figure 4.1: Total energy balance and parameter dependence within the E-EFMD. After Korn (1997).

problem is severely underconstrained and requires extremely long chains before reaching

convergence (see Section 4.1.2). As before, parameters are only allowed to vary within

a limited range of reasonable values, chosen to represent realistic heterogeneity values

but also to produce detectable scattering or intrinsic attenuation. Correlation lengths

and RMS velocity fluctuations range from 0.2λmin–2λmax (λ being the wavelength in

the layer and calculated from the central frequency and the mean P wave velocity) and

ε from 4.5 ·10−3–10% respectively. The prior probability distributions for Qi0 and α are

also uniform and range from 10–2000 (5 · 10−4 < Q−1
i0 < 0.1) and 0–1 respectively. For

Qi0, these limits were chosen by considering a range of realistic values of the quality

factor in the lithosphere, while still having a perceivable effect on coda amplitudes.

For its power exponent, my prior distribution takes constant values from 0–1, based on

Korn (1990, and references therein), which stated that α probably takes values within

this range for most of the seismic frequency band.

I create the initial model by randomly selecting a value of each parameter within

their prior probability distributions. From these parameters, the direct wave energy

and the energy balance for each layer and frequency band can be calculated with Eqs.

2.19 and 2.20 respectively, before computing the synthetic envelopes for the layer con-

taining the free surface using Eq. 2.18. These envelopes can be compared with the

data by means of the loglikelihood, L (Eq. 2.22). The Metropolis-Hastings algorithm

(Metropolis and Ulam, 1949; Metropolis et al., 1953; Hastings, 1970) then guides the

random walk and helps sampling the posterior probability distribution. In each iter-

ation, the MCMC algorithm randomly chooses a parameter for one of the layers in

the model and updates its value by adding a random number in the range (−δa, δa),
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(−δε, δε), (−δQi, δQi) or (−δα, δα), with δa, δε, δQi and δα being the step size for

the correlation length, RMS velocity fluctuations, intrinsic quality factor and α respec-

tively. These step sizes do not remain constant throughout the inversion, as opposed

to the approach taken in Section 2.1.3. Step size values are a key element of the design

for an efficient random walk and need to be carefully chosen. When they are too small,

the algorithm moves very slowly through the parameter space and tends to accept most

updated models, which increases the acceptance rate (AR) for the parameter. If step

sizes are too large, the algorithm moves too fast between regions of the parameter

space, which increases the probability of rejection for the updated model and decreases

the AR. As detailed in Section 2.1.3, there are several criteria that define the optimum

value of the AR, but since most of them make assumptions about the properties of

the posterior probability distribution (e.g. Brooks et al., 2011), I opted for the more

flexible AR range of 30–50% stated by Tarantola (2005) as generally reasonably effi-

cient. This way, when the AR for a given parameter goes below 30% or exceeds 50%,

the algorithm increases or decreases its step size accordingly so that the AR remains

within this interval at all times.

A final addition to my initial implementation of the Bayesian EFMD is the possi-

bility of starting a new MCMC from where a previous chain ended to allow the use of

HPC with restricted execution times. The E-EFMD inverts for three more parameters

than the EFMD, which increases the number of required steps for the chain before

convergence is reached. It is therefore useful to be able to split very long chains into

multiple, smaller segments which help reduce memory requirements while keeping the

algorithm fast enough to test many millions of parameter combinations.

4.1.1 E-EFMD sensitivity

The EFMD and E-EFMD are based on fitting either synthetic or real data coda ampli-

tudes and decays within a specified time window and frequency band. As explained in

Sections 2.1.3 and 4.1, they do so by testing different parameter combinations obtained

by randomly sampling the parameter space and estimating how likely each set of pa-

rameters is to produce the observed coda envelopes. However, solutions are often not

unique, as shown by the results of my EFMD synthetic tests in Section 2.1.3, and as

the number of parameters to be recovered from the inversion increases, it is essential to

study and understand the effect of each individual parameter on the coda. This knowl-

edge can offer some insight into the algorithm’s ability to accurately recover parameter

values, as well as help interpret both synthetic and real data inversion results.

For this purpose, I created and computed the synthetic envelopes for 28 synthetic

datasets in which six of the free-varying parameters of the E-EFMD remain constant

and only one is allowed to change (Figure 4.2). Model layering and velocities are

the same I used in my EFMD and E-EFMD synthetic tests (Sections 2.1.3 and 4.1.2
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respectively). For each varying parameter with the exception of α, I created two main

groups of datasets: in the first, the parameter values remain constant in the lithospheric

mantle and vary within the crust, while in the second it is the crustal parameters that

are left unchanged (left and right column panels in Fig. 4.2 respectively). Analyzing the

synthetic envelopes for each frequency band of interest and all parameter combinations,

grouped by varying parameter, allows me to compare coda amplitudes and decays

and, therefore, estimate the sensitivity of my E-EFMD algorithm to each individual

parameter. Figure 4.2 contains the synthetic envelopes for frequency band D (1.5–3

Hz, Table 2.3) and all 28 different synthetic datasets. Similar figures for the other

frequency bands in Table 2.3 can be found in Appendix A.2.

At first sight, the plots in Fig. 4.2 allow us to determine which parameters con-

trol each part of the synthetic envelopes. Those corresponding to models with varying

scattering parameters (panels A–1 to B–2) all have different starting amplitudes but

comparable decay rates, while coda amplitudes for models with varying attenuation

parameters (panels C–1 to D–1) decay at different speeds, even if they all had similar

initial values. As explained above, seismic scattering reduces the amplitudes of direct

waves by displacing energy to later portions of the seismogram. The amount of en-

ergy that is redistributed from the coherent arrivals to the coda waves depends on the

strength of the heterogeneity present in the structure. In terms of the synthetic en-

velopes obtained from the E-EFMD, this means that initial coda amplitudes are mainly

determined by the scattering parameters, and particularly by ε, as shown in panels B–1

and B–2 in Fig. 4.2. Correlation lengths play a role in these initial coda amplitudes

and have a small effect on decay rates as well, but it is much smaller than that of

the other parameters (panels A–1 and A–2). Intrinsic attenuation, on the other hand,

entails a real energy loss, since seismic energy is converted into heat as the wavefield

propagates through the structure. This results in coda decay rates being primarily

controlled by Qi0 and α. As shown in panels C–1, C–2 and D–1 in Fig. 4.2, a model

layer with strong attenuation (low Qi/high Q−1
i ) means that a significant portion of

the energy that propagates through it does not effectively reach the layer above it or

the free surface, causing a fast reduction in coda amplitudes. The power law exponent,

α, also has an effect on coda decay rates, though much smaller than that of Qi0 (panel

D–1). Plots A–2 to C–2 in Fig. 4.2 suggest that parameters for the bottom layer of

the model have a bigger effect both on coda amplitudes and decay rates. However, this

could be an artifact of the different layer thicknesses (layer 1 of the model is 32 km

thick, as opposed to the 168 km of layer 2) and should not be over-interpreted.

Regarding E-EFMD sensitivity, it is obvious from Fig. 4.2 that even small variations

of some of these parameters can lead to large changes in coda amplitude, decay rate,

or both, while others have much smaller effects on the synthetic envelopes. Panel D–1,

for example, illustrates how an increase of 0.25 in α produces synthetic envelopes with
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Figure 4.2: Synthetic envelopes for frequency band D (Table 2.3) and a collection of 28 synthetic
datasets in which one of the seven parameters the E-EFMD inverts for is allowed to vary, while the rest
remains constant. Envelopes in panels A–1 and A–2 correspond to datasets with varying correlation
length in the crust and lithospheric mantle, respectively, and constant ε, Q−1

i0 and α. Panels B–1/B–2,
C–1/C–2 and D–1 contain coda envelopes for synthetic datasets with varying RMS velocity fluctuations,
inverse intrinsic Q at 1 Hz and coda power respectively. Scale in both axes is the same for all plots.

slightly, but clearly, higher coda amplitudes. Changes in ε or Q−1
i0 in either layer of

the model (panels B–1/B–2 and C–1/C–2 respectively) produce alterations in initial

coda amplitudes and decay rate, with these changes being especially pronounced for

variations in the velocity fluctuations within the lithospheric mantle. Panels A–1 and
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A–2, on the other hand, show that even large variations in the correlation length

structure, including sharp contrasts between crustal and lithospheric values, lead to

very small differences in coda amplitudes or decay rates for all frequency bands (Figs.

4.2 and A15–A21), with several envelopes partially or completely overlapping within the

time window of interest for the E-EFMD. These tests suggest synthetic envelopes, and

therefore the EFMD and E-EFMD algorithms, should be more sensitive to variations in

ε and Q−1
i0 than they are to α or a and, therefore, more capable of accurately recovering

their values from an inversion. However, the fact that initial coda amplitudes are not

included within the time window used for the E-EFMD (or the EFMD) analysis will

inevitably result in a reduction in the weight of ε in the inversions and, as discussed

in Section 4.1.2, contribute to the highly complex interactions and strong trade offs

between the parameters. The combination of these factors is likely the main cause of

the extremely non-unique E-EFMD solutions observed in Sections 4.1.2, 4.2 or 5.2

and the fact that Q−1
i0 is generally worse recovered than all the other parameters. It

is also reasonable to conclude that at least part of the non-uniqueness observed in

the results of my EFMD synthetic tests and real data inversions in sections 2.1.3 and

3.3, evidenced by very wide correlation length PDFs and uniform loglikelihoods, could

have been caused by the wide variety of correlation length configurations that result in

similar codas within the time window of interest, as well as the reduced weight of the

RMS velocity fluctuations caused by initial coda amplitudes not being part of the time

window of interest in the analysis. This behaviour could also be behind the generalised

overestimation of a by the EFM/EFMD observed by Hock et al. (2004). This lack of

uniqueness in EFMD solutions could not only continue to exist in the E-EFMD, but

also become more acute due to the increased number of parameters. For this reason,

I recommend thoroughly testing the ability of the E-EFMD to accurately recover all

seven parameter values for a wide variety of configurations, as has been done in the

following section.

4.1.2 Synthetic tests

I created 22 different synthetic datasets which represent a wide range of lithospheric

attenuation scenarios (Table 4.1) to test both the ability of the E-EFMD code to

accurately recover any input parameter values and fit the data at all frequency bands,

as well as its sensitivity to variations in either Qi0 or α. In terms of model layering,

results from my EFMD synthetic tests (Section 2.1.3) of 3-layer models show that the

code provides good fits to the synthetic data but fails to successfully retrieve the input

parameter values. Because of this, I decided to only test 1- and 2-layer models for

the E-EFMD. I did not include any variations in correlation length and RMS velocity

fluctuations in these new datasets, since those were already analysed in my EFMD

synthetic tests in Section 2.1.3. In particular, for 2-layer models, I kept correlation

length and RMS velocity fluctuation values constant and equal to the values used for
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the EFMD synthetic test 2 (Table 2.1). My results from that test show that the original

EFMD algorithm is capable of accurately recovering all of these parameter values for

fixed Qi0 and α. Scattering parameters for the single-layer models tested here are the

same I used for the crustal layer in the 2-layer models (Tables 2.1 and 4.1). Finally,

and to further test the algorithm and assess its performance for varying numbers of

parameters, I also developed two alternative versions of the inversion code in which

either Qi0 is allowed to vary freely, without any specific frequency dependence being

imposed (therefore inverting for a total of 20 parameters), or α is fixed and only Qi0

for each layer is recovered (6 inversion parameters).

Table 4.1 contains the layering and inversion results for each of these synthetic tests.

I used the Pilbara Seismic Array (PSA) as my reference array again and obtained

its velocity model and Moho depth from the AuSREM (Kennett and Salmon, 2012;

Kennett et al., 2013; Salmon et al., 2013b) and AusMoho models (Kennett et al.,

2011) respectively. The LAB depth is kept at 200 km, based on previous studies in

the area (Yoshizawa and Kennett, 2015; Kennett and Saygin, 2015). For each of the

synthetic models in Table 4.1, I ran and combined the results from three independent

Markov chains, each 10 million iterations long. The final results for each test were

obtained by taking only 1 in every 100 accepted models in each chain. This common

practice in Bayesian inference (Zhang et al., 2020; Bodin et al., 2012; Bodin et al.,

2014) not only improves the manageability of the results, but also helps avoiding bias

or correlation between consecutive samples in the chain. Figures 4.3, 4.6, 4.7 and

4.8, are shown here as examples, with the rest being placed in Appendix A.3 to avoid

repetition. These figures are analogous to EFMD results figures in Chapters 2 and 3,

and contain a summary of my results for each of these individual synthetic tests. This

joint representation of all parameters and chains allows me to estimate whether all the

accepted models are equally likely to produce the observed coda envelopes, while also

comparing the obtained PDFs for each parameter with their input values and the data

envelopes for each frequency band with the ensemble of envelopes from all accepted

models. Please note that both Table 4.1 and these summary plots show the inverse

quality factor, Q−1
i0 , common in attenuation studies, instead of Qi0. This change places

obtained Q−1
i0 values within a narrower range in which low parameter values represent

weaker attenuation and viceversa, and any potential bias associated with high Qi0

variations (which have little to no physical effect on synthetic envelopes) is reduced,

therefore helping assess the performance of the E-EFMD algorithm and interpret the

inversion results.

Synthetic datasets 1–4 in Table 4.1 correspond to single-layer synthetic datasets.

The frequency dependence coefficient of Qi, α, is constant for all these datasets and

equal to 0.5. For the intrinsic quality factor, I chose and tested four different val-

ues, which I categorise as “extremely low” (Qi0=50, Q−1
i0 =0.02), “low” (Qi0=100,
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Table 4.1: Summary of the layering, parameter values and results of the inversion for synthetic
models 1 to 22 used to test the validity of the E-EFMD. Models 1–4 correspond to single-layer models,
while 5–22 all have 2 layers. Models 5–10 have constant Qi0 and α throughout the lithosphere, while
models 11–22 present varying degrees of contrast between crustal and lithospheric mantle attenuation.
An alternative version of the E-EFMD code, which does not solve for α, was also tested with synthetic
datasets 9 and 17. Results from these inversions are also included here and marked with a * symbol.

Model Layer
Input model Corr. length (a) RMS vel. flucts. (ε) Inv. int. Q at 1 Hz (Q−1

i0 ) Freq. power of Qi (α) Maximum

number number
a ε

Q−1
i0 α

5 – 95 PR AR 5 – 95 PR AR
5 – 95 PR

AR
5 – 95 PR

AR
L

(km) (%) (km) (%) (%) (%) (%) (%)

1 1 2.0 5.0 0.05 0.5 1.99-2.01 40.6 4.98–4.99 39.4 0.0199–0.020 42.3 0.49–0.51 42.8 -0.01

2 1 2.0 5.0 0.01 0.5 1.99–2.01 40.2 4.99–5.0 37.9 0.0099–0.010 39.8 0.49–0.50 38.6 -0.01

3 1 2.0 5.0 0.005 0.5 1.99–2.01 40.4 4.99–5.0 40.0 0.00199-0.0020 41.8 0.49–0.51 39.2 -0.01

4 1 2.0 5.0 0.001 0.5 1.99–2.0 38.6 4.99–5.0 37.8 0.00083–0.00084 39.8 0.49–0.52 40.4 -0.01

5
1 2.0 5.0

0.02 0.5
2 – 25

41.9
1 – 9

41.0
0.0117 – 0.0692

39.6 0.36 – 0.63 39.6 -0.06
2 3.0 4.0 3 – 30 0.5 – 8 0.0169 – 0.0929

6
1 2.0 5.0

0.01 0.0
2 – 18

40.0
4.3 – 7.0

39.3
0.0067 – 0.0130

39.3 0.003 – 0.1 40.8 -0.06
2 3.0 4.0 2 – 9 3.4 – 4.9 0.009 – 0.012

7
1 2.0 5.0

0.01 0.5
1 – 14

40.0
4.3 – 5.8

40.9
0.0035 – 0.018

38.7 0.05 – 0.5 39.3 -0.02
2 3.0 4.0 2 – 30 2.6 – 6.6 0.0085 – 0.0271

8
1 2.0 5.0

0.002 0.0
1.6 – 3.1

39.7
4.5 – 5.3

40.6
0.0016 – 0.0033

38.2 0.001 – 0.04 40.5 -0.06
2 3.0 4.0 2.6 – 3.5 3.9 – 4.4 0.0016 – 0.0023

9
1 2.0 5.0

0.002 0.5
2 – 22

40.3
4.3 – 7.0

40.0
0.0007 – 0.0075

40.9 0.26 – 0.52 39.3 -0.10
2 3.0 4.0 2.4 – 3.4 3.8 – 5.3 0.0008 – 0.0027

9*
1 2.0 5.0

0.002 0.5*
2 – 24

41.8
4.7 – 7.6

35.0
0.0013 – 0.0056

38.7 – – -0.05
2 3.0 4.0 2.6 – 3.4 3.8 – 5.0 0.0012 – 0.0023

10
1 2.0 5.0

0.00083 0.5
2 – 12

39.6
4.6 – 5.8

38.8
0.0005 – 0.0017

40.0 0.38 – 0.58 41.2 -0.03
2 3.0 4.0 2.4 – 3.3 3.9 – 4.8 0.0005 – 0.001

11
1 2.0 5.0 0.02

0.5
1.8 – 3.8

40.2
4.0 – 4.4

40.7
0.0044 – 0.0077

40.0 0.18 – 0.52 41.2 -0.05
2 3.0 4.0 0.01 1 – 32 0.1 – 6.0 0.0152 – 0.0633

12
1 2.0 5.0 0.01

0.5
1–25

40.3
0.3–6.5

41.0
0.0085–0.0437

37.7 0.39–0.63 39.2 -0.06
2 3.0 4.0 0.02 3–28 5.2–6.8 0.0118 – 0.0278

13
1 2.0 5.0 0.02

0.5
2 – 22

40.7
4.0 – 7.7

40.5
0.0009 – 0.0251

40.3 0.46 – 0.76 39.5 -0.09
2 3.0 4.0 0.002 2 – 30 0.1 – 4.4 0.0019 – 0.0061

14
1 2.0 5.0 0.002

0.5
2 – 19

40.7
2.8 – 6.9

39.0
0.0013 – 0.0234

40.1 0.26 – 0.79 40.6 -0.13
2 3.0 4.0 0.02 2 – 28 1.3 – 6.3 0.0058 – 0.0293

15
1 2.0 5.0 0.02

0.5
2–23

41.3
4..1–7.4

41.2
0.0129–0.0282

41.6 0.46–0.69 39.5 -0.08
2 3.0 4.0 0.00083 2.1–3.5 3.8–4.5 0.0006–0.0012

16
1 2.0 5.0 0.00083

0.5
2–22

40.2
1.3–5.9

40.4
0.0007–0.0287

39.6 0.45–0.85 40.3 -0.07
2 3.0 4.0 0.02 2–26 1.7–6.3 0.0045–0.0220

17
1 2.0 5.0 0.01

0.5
1.9 – 3.0

38.5
4.4 – 5.0

40.4
0.0006 – 0.0075

38.5 0.39 – 0.62 39.2 -0.07
2 3.0 4.0 0.002 1.7 – 4.9 1.5 – 3.7 0.0023 – 0.0052

17*
1 2.0 5.0 0.01

0.5*
2.0 – 2.7

40.4
4.4 – 4.8

39.9
0.0006 – 0.0016

40.1 – – -1.13
2 3.0 4.0 0.002 2 – 24 1.5 – 2.8 0.0042 – 0.0052

18
1 2.0 5.0 0.002

0.5
1.6 – 2.9

40.3
4.3 – 5.4

38.1
0.0008 – 0.0049

39.0 0.13 – 0.63 40.3 -0.06
2 3.0 4.0 0.01 2.0 – 3.9 3.6 – 5.1 0.0067 – 0.0145

19
1 2.0 5.0 0.01

0.5
1.9–5.0

39.7
4.4–5.2

38.6
0.0005–0.0124

39.9 0.41–0.73 40.2 -0.09
2 3.0 4.0 0.00083 2.0–4.3 1.7–4.4 0.0007–0.0031

20
1 2.0 5.0 0.00083

0.5
1.7–2.5

39.7
4.8–5.4

41.0
0.0006–0.0106

41.9 0.38–0.71 40.2 -0.06
2 3.0 4.0 0.01 2.2–4.3 3.4–4.3 0.0039–0.0109

21
1 2.0 5.0 0.002

0.5
2 – 14

40.4
4.4 – 6.2

40.0
0.0006 – 0.0035

38.3 0.34 – 0.54 41.4 -0.14
2 3.0 4.0 0.00083 2.4 – 3.4 3.7 – 4.8 0.0005 – 0.0013

22
1 2.0 5.0 0.00083

0.5
1.7 – 2.9

40.7
4.6 – 5.3

40.7
0.0005 – 0.0045

42.6 0.42 – 0.56 40.4 -0.07
2 3.0 4.0 0.002 2.4 – 3.5 3.8 – 4.3 0.0008 – 0.0022

Q−1
i0 =0.01), “medium” (Qi0=500, Q−1

i0 =0.002) or “high” (Qi0=1200, Q−1
i0 = 8.3 ·10−4),

and would correspond to extremely strong, strong, medium or weak attenuation, re-

spectively. Figure 4.3, shown here, and Figs. A22, A23 and A24, in Appendix A.3,

contain the results from these inversions. In all of them, posterior PDFs for all pa-

rameters are approximately gaussian, narrow and very close to input parameter values.

This, together with the good fits to the data shown in panels h–o in these figures,

and the very high loglikelihood values reached during the inversions (L ∼ −0.01 in

all cases), point to parameter recovery and E-EFMD performance being excellent for

1-layer models.

For 2-layer models, synthetic datasets 5–10 represent the simplest intrinsic attenu-

ation configuration, with the quality factor at 1 Hz taking the same values I used for

the single-layer models. In addition to this, datasets 6–7 and 8–9 test the ability of
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Figure 4.3: Summary of the results for the synthetic test number 1 (Table 4.1), representing a
single-layer model of the lithosphere in which intrinsic attenuation is extremely strong and frequency
dependent (Q−1

i0 = 0.02, α = 0.5). Panel a contains the posterior probability exponent, or loglikelihood
(L), for all accepted models in each of the three chains I combined to produce the full set of results.
Panels b–c and e–f show the posterior PDFs for each of the parameters obtained from the E-EFMD
inversion for this model (correlation length (a), RMS velocity fluctuations (ε), inverse intrinsic quality
factor at 1 Hz (Qi0) and power law exponent (α)), while panels d and g present the joint PDFs for the
scattering and intrinsic attenuation parameters respectively. Dotted lines in plots b–e point to input
parameter values, while shaded areas represent the 5–95 percentile range for each of them. Finally,
panels h–o show the input data envelopes for each frequency band (dotted lines) together with the
ensemble of envelopes obtained from all accepted models during the inversion (represented by the
colormap in the background). Shaded areas in these plots highlight the time window used for the fit
to the coda.

the algorithm to resolve different values of α for a fixed Qi0 value. To explore more

complex lithospheric attenuation and scattering settings, datasets 11–22 have different

values of the intrinsic quality factor at 1 Hz in each layer of the model and have been

designed to represent lithospheric structures with varying degrees of contrast in intrin-

sic attenuation. Models 11, 12, 17 and 18 would represent a low contrast setting, in

which Qi0 varies from extremely low to low or low to medium and viceversa. Medium
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contrasts, meaning Qi0 goes from extremely low to medium or medium to high are

illustrated by models 13, 14, 21 and 22. Finally, models 15, 16, 19 and 20 describe high

contrast situations, with Qi0 varying from extremely low to high or low to high. The

power law exponent for the intrinsic quality factor, α, remains constant throughout

the lithosphere and equal to 0.5 in all these datasets but is allowed to vary during the

inversion and obtained as an independent parameter, as opposed to synthetic tests 9*

and 17*, which tested the alternative implementation of the E-EFMD inversion algo-

rithm for fixed α. Synthetic envelopes for all frequencies and datasets detailed here

were calculated using the E-EFMD algorithm.

Due to the large number of parameter combinations I evaluate here, especially for 2-

layer models, I created a score system both for each individual parameter and synthetic

test, to make it easier to compare results from different tests and summarise my overall

results. This system, graphically represented in Fig. 4.4, assigns a score (S) between 0

and 3 to each 2-layer model test’s parameter recovery results, as well as to its overall

performance, based on three criteria.

For each parameter:

1. If the input value (IV) of the parameter lies within the 5–95 percentile range (PR)

of the probability density function (PDF), then both the individual parameter

score and the overall score are increased by 1 point. Otherwise, no points are

added to either score.

2. If the mode (M) of the PDF for each parameter is located within the interval

defined by (0.8·IV–1.2·IV), 1 point is added to the parameter and global scores.

If this condition is not met, but M can be found inside the (0.6·IV–0.8·IV) or

(1.2·IV–1.4·IV) intervals, 0.5 is added to the scores. For modes further from the

input values, neither score is increased.

3. For each parameter, if the 5–95 PR is narrower than 30% of its total permitted

range (interval from minimum to maximum allowed values), the parameter score

and the global score are both increased by 1. If the width of the 5–95 PR is

between 30–50% of the total permitted range, then the scores are increased by

0.5. Wider 5–95 PRs do not get any points added.

The only exception to these criteria corresponds to the two synthetic tests for which

α = 0.0 (tests 6 and 8 on Table 4.1). The input parameter value matches its minimum

allowed value, which prevents it from being included within the 5–95 PR and always

results in a score of 0 from the first criterion. At the same time, the intervals defined in

the second criterion to establish the difference between the mode and the input value of

the parameter will always be equal to 0 in this case, the score then failing to reflect the

algorithm’s ability to recover this parameter. Therefore, and to prevent the bias, these
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 0  Initialize scores: Global score (GS) = 0         Parameter score (PS) = 0

 3  Compared to the parameter's permitted range (PPR), is the 5-95 percentile range 
(PR) narrow, or wide?

If  5-95 PR width < 30% PPR width:                                   GS += 1          PS += 1
If 30% PPR width < 5-95 PR width < 50% PPR width:        GS += 0.5       PS += 0.5

 1  Is the input value (IV) of the parameter within the 5-95 percentile range (PR)?

If 5-95 PR  < IV < 5-95 PR   :         GS += 1         PS += 1min max

 2  Is the mode (M) centered 
around the input value (IV)?

If 0.8 IV < M < 1.2 IV:
GS += 1
PS += 1

If 0.6 IV < M < 1.4 IV:
GS += 0.5
PS += 0.5

or

Figure 4.4: Graphic representation of the score system I designed to be able to compare the ability of
the E-EFMD algorithm to accurate recover the input parameter values used in all 18 synthetic tests for
2-layer models. x symbols are used to indicate cases in which α was fixed and, therefore, not recovered
from the inversion. See text for more details.

criteria were adjusted for all tests with α = 0.0. The correction for the first criterion

is based on the comparison between the mode, obtained from the PDF, and the input

value. If they are close enough, this will always result in their exclusion from the 5–95

PR. To avoid this artifact in S, I compare the mode with a very low value (0.01, 1/100

of the total permitted range for the parameter). If the mode is lower than this number,

then 1 is added both to the parameter and the global score, with no points added to

either of them for higher mode values. The mode is also the key for the second criterion

amendment: if it is lower than 0.2 (i.e., it can be found within the lowest 20% of the

total permitted range), 1 point is added to the parameter and global S; if it is higher

than 0.2 but lower than 0.4, scores are increased only by 0.5; no points are added for

higher modes.

This score system ensures we will obtain a minimum of 0 and a maximum of 3 points

for each individual parameter and synthetic test. Global scores for each test go up to

21, but are normalized to the 0–3 range so they can be compared with parameter scores.

Parameter scores lower or equal than 1 are indicative of poor parameter recovery, with

the 5–95 PR not including the input parameter value, its mode being at least 20% off

that value and/or its width at least larger than 30% or the total permitted range. Global

S in this range represent poor overall performance of the algorithm (the majority of the
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Figure 4.5: Graphic representation of the global and parameter scores obtained by the E-EFMD
algorithm for each of the 2-layer model synthetic tests summarised in Table 4.1. Labels along the
x axis indicate synthetic test numbers, as stated in Table 4.1, as well as a summary of the intrinsic
attenuation parameters values in each layer of the model (with extremely low, low, medium and high
Qi0 values each corresponding to 50, 100, 500 and 1200). L1 and L2 are used here to refer to layers 1
and 2 of the lithospheric models, respectively. x symbols are used here to highlight tests for which α
was fixed and, therefore, not obtained from the E-EFMD inversion.

parameters have a score below 1) for that synthetic test. Scores larger than 1 but lower

or equal to 2 are labelled as fair recovery/performance, since at least one of the three

criteria was fully met for most parameters. Finally, S > 2 point to good parameter

recovery and overall performance for the current synthetic test. Figure 4.5 contains

a graphic representation of S for all parameters and synthetic tests I carried out to

investigate the parameter recovery capabilities and assess the overall performance of

the E-EFMD algorithm. The top seven rows in this figure refer to individual parameters

I invert for in the E-EFMD, allowing me to evaluate the general performance of the

algorithm to recover them, while columns give us the parameter score for each synthetic

test and its global score in the bottom row.

Based on the global scores on Fig. 4.5, the overall performance of the E-EFMD for

2-layer models is satisfactory. Recovery of individual parameters varies widely, both

between different tests and for each model layer within a test. Scores for ε1 are higher

than 2 for 16 synthetic tests and only below or equal to 1 in 2 of them, making it the best

recovered parameter. By contrast, Q−1
i0L1

is well (S > 2) and poorly (S ≤ 1) recovered

for 5 and 4 synthetic tests, respectively, which represents the lowest overall score for a

parameter. In terms of global scores, 14 of my 2-layer model synthetic tests (out of 20,

if we include tests 9* and 17*) have S > 2, meaning good recovery of most parameters.

An example of a well resolved case is illustrated in Fig. 4.6, with all seven parameters
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Figure 4.6: Summary of my results for synthetic test number 8 (Table 4.1), which represents a
lithosphere with constant medium intrinsic attenuation (Q−1

i0 = 0.002) without any frequency depen-
dence (α = 0). Panel content is as in Fig. 4.3, with the addition of panels h–k for parameters in the
lithospheric mantle.

being accurately recovered from the inversion for this test (number 8, Table 4.1). The

remaining 6 tests obtained scores between 1 and 2, placing them in the “fair recovery”

range. Out of these 6 cases, 5 had extremely strong intrinsic attenuation in at least one

layer of the model (e.g., Q−1
i0 =0.02) and 3 of them had either strong (e.g., Q−1

i0 =0.01) or

extremely strong attenuation in both layers, which results in very low coda amplitudes.
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Figure 4.7: As Fig. 4.6 but for synthetic test number 5 from Table 4.1. Results for this test show
an overall good fit to the synthetic envelopes but poor parameter recovery.

Synthetic tests 5 and 11 (from now on, ST5 and ST11, respectively; Table 4.1, and

Figs. 4.7 and 4.8) clearly illustrate this phenomenon. These tests are generally poorly

resolved, with only one parameter getting S > 2 both for ST5 and ST11, and 1 and

2 having 1 ≤ S ≤ 2 for each test respectively (Fig. 4.5). In both cases, Q−1
i0L1

=0.02,

but while this value remained constant throughout the lithosphere for ST5, Q−1
i0L2

=0.01

for ST11 (Table 4.1). As a result of this strong or extremely strong attenuation, coda

amplitudes are barely above zero for at least 1/3 of the time window used for the fit
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Figure 4.8: As Fig. 4.6 but for synthetic test number 11 from Table 4.1. Similarly to test number
5, shown in Fig. 4.7, fits to the synthetic envelopes are good for all frequency bands, but the input
parameter values are poorly recovered.

and all frequency bands (panels n–u in Figs. 4.3 and A26). Posterior PDFs for Q−1
i0

in both layers have complex shapes, with multiple maxima, and are constrained to the

0.01 < Q−1
i0 < 0.1 interval, which defines the strong to extremely strong attenuation

range (panels f and l). PDFs for the power law exponent are approximately gaussian

and narrow for ST5 and ST11 (panels e or k), but those for the scattering parameters

(panels b–c and h–i) in both tests show long tails and broad 5–95 PRs (Table 4.1)
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Figure 4.9: Samples of the E-EFMD results for synthetic test 5 from Table 4.1. Panels A1–A5
contain the loglikelihood (L), correlation length (a), RMS velocity fluctuation (ε), inverse intrinsic
quality factor at 1 Hz (Q−1

i0 ) and power law exponent (α) for all models with L > −1, as well as
the input parameter values in each case. Panels B1–B5 have the same content, but for models with
−1 > L > −5.

for at least one of the layers in the model. These wider distributions indicate strong

variability and a reduced effect of these parameters on coda amplitudes, which greatly

increases the difficulty to determine their true value.

To investigate variations in parameter combinations as fits to the synthetic data
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Figure 4.10: Same as Fig. 4.9 but for synthetic model 11 from Table 4.1.

improve, I decided to sample the obtained PDFs and extract two groups of models

based on their loglikelihoods (L). The first group (G1) includes all models with L > −1,

that is, the models that have the highest likelihoods and are, therefore, more likely to

produce the input synthetic envelopes (panels A1–A5 in Fig. 4.9). The second group

(G2) comprises models with −1 > L > −5 which represents slightly worse fits to

the data (panels B1–B5 in Fig. 4.9). Figures 4.9 and 4.10 present loglikelihood and

parameter value variations within these two groups of models and compares them with
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their input values (similar figures for the remaining synthetic tests can be found in

Appendix A.3). For ST5, Fig. 4.9 highlights the presence of two distinct sets of solutions

or preferred parameter combinations (also visible in Fig. 4.7, especially panel g, and

Fig. A42), characterized by having either relatively constant Q−1
i0L1

< 0.02 and widely

varying Q−1
i0L2

> 0.02 or vice versa. These two sets of solutions are clearly observed

both within the G1 and G2 groups, indicating that they can produce equally good fits

to the data. For the first set, Q−1
i0L1

is the only parameter that remains stable, with the

rest of the parameters taking values throughout most of their permitted range. Within

the second of these sets, most models have fairly stable ε2 ∼ 5 − 6%, a2 ∼ 3 − 10 km

and 0.3 < α < 0.7 (a combination that does not match the input values), while the

rest of parameters present much more variability. These sets of solutions suggest that,

as we increase Q−1
i0L2

towards its higher limit (0.1) and coda amplitudes decrease, the

effect of all the other parameters on coda shapes is greatly reduced, and, therefore, the

importance of their actual value. A Q−1
i0L2

≤ 0.02 appears to be low enough for the effect

of the rest of the parameters to be required again to match the observed amplitudes.

The high Q−1
i0L1

values observed in the second set of solutions also appear to have an

important effect on the relevance of the values of the scattering parameters, although

only in layer 1 of the model. Samples for ST11, shown in Fig. 4.10, show that, in this

case, the algorithm converged to a single set of solutions. Input Q−1
i0 values for this

test are 0.02 and 0.01 for layers 1 and 2 of the model, respectively, but recovered values

show almost the opposite configuration, with fairly stable Q−1
i0L1

∼ 0.01 and widely

varying Q−1
i0L2

> 0.01. Correlation lengths and RMS velocity fluctuations in layer 1

remain approximately constant throughout the entire inversion, with a1 approximately

matching its input value, while parameters for layer 2 present strong variations. Values

of α were lower than its input value for most of the inversion, although with wide

variability. This increased stability and variability of the scattering parameters in

layers 1 and 2 of the model, respectively, appear to be related to the behaviour of Q−1
i0L1

and Q−1
i0L2

, and clearly highlight a trade off between them. As results for ST5 showed,

high Q−1
i0L2

values are enough, on their own, to match low coda amplitudes present in the

input envelopes. While it is possible for the algorithm to obtain them by using different

combinations of the scattering and attenuation parameters, all three Markov chains I

ran for ST11 converged to the same solution, showing that the algorithm favours forcing

Q−1
i0L2

to take higher values to achieve the required coda amplitudes over more complex

parameter combinations.

The examination of Figs. 4.12 or 4.13, which contain the marginal PDFs for all pa-

rameters and layers, as well as the PDF for each individual parameter, provides more

insight into the behaviour of the Bayesian E-EFMD algorithm (similar figures for the

remaining synthetic tests can be found in Appendix A.3). At first sight, they suggest

the presence of two main groups of synthetic tests, based on the interactions or trade
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offs between the parameters shown in the marginals. The first group, of which syn-

thetic test 9 (ST9 from now on, Fig. 4.12) is an example of, is characterized by strong

interactions between the intrinsic attenuation quality factor in both layers of the model

(panel 6–5) and, to some extent, between Q−1
i0L1

, Q−1
i0L2

and ε2 (panels 5–4 and 6–4),

while also presenting very weak interactions between the scattering parameters in both

layers. PDFs for Q−1
i0L1

, Q−1
i0L2

and ε2 (panels 4–4, 5–5 and 6–6 respectively) show two

clear peaks and a correspondence between lower values of Q−1
i0L1

and ε2 and higher val-

ues of Q−1
i0L2

. These relationships between the parameters are also obvious in the high

loglikelihood samples for this test (Fig. A62). Parameter values for the highest loglike-

lihod models confirm that these two peaks in the PDFs define two independent sets of

parameters. The observed variability in the scattering parameters, especially in layer 1,

is associated to changes in Q−1
i0L1

or Q−1
i0L2

and follows patterns similar to those observed

for ST5 and ST11. Marginals for synthetic tests in the second group, represented here

by synthetic test 7 (ST7, Fig. 4.13), appear to be more complex and suggest very strong

trade offs between the scattering parameters (panels 2–1, 3–1, 3–2, 4–1, 4–2 and 4–3)

in both layers and weaker interactions with the attenuation parameters. However, a

closer look at the parameter values for the models with highest L (Fig. 4.11) shows

these results greatly resemble those for ST5. Despite the PDFs for the parameters not

being as evidently bimodal for this case as they are for ST5, two independent sets of

solutions can clearly be identified in Fig. 4.11. Set 1, characterized by Q−1
i0L1

< 0.01

and Q−1
i0L2

> 0.01, presents strong variability for the scattering parameters in layer 2

of the model and relatively stable values for those in layer 1. The second set is al-

most the opposite, with lower Q−1
i0L2

and higher, unstable Q−1
i0L1

, which in turn causes

fluctuations of the scattering parameters in layer 1. The combined observation of the

marginals and models samples for the rest of the synthetic tests show that the patterns

described here for ST9 and ST7 are not isolated occurrences. In every single case, the

trade offs between the scattering parameters observed for tests belonging to this second

group, can be explained by the algorithm’s convergence to two sets of solutions and/or

variations in the intrinsic quality factor.

These observations provide strong evidence about the non-uniqueness of the solu-

tions within the E-EFMD, as well as the complex relationships and trade-offs between

the parameters. To help demonstrate this phenomenon even further, I carefully se-

lected and calculated the synthetic envelopes for eight parameter combinations that

represent different scattering and attenuation scenarios. Figure 4.14 shows the en-

velopes for these models, grouped into three sets. Panel A contains the envelopes for

four of these models, all of them with strong to extremely strong intrinsic attenua-

tion (0.006 ≤ Q−1
i0 ≤ 0.02) in the crust and/or lithospheric mantle. Crustal scattering

for the first and last models in these panels could be described as medium to strong,

while for the remaining two models it is very weak. The lithospheric mantle also has
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Figure 4.11: Same as Fig. 4.9 but for synthetic model 7 from Table 4.1.

varying degrees of heterogeneity in these models, with this layer being relatively ho-

mogeneous for the first and third models and moderately to strongly scattering in the

rest. All of these parameter combinations, however, produce coda envelopes that are

essentially identical within the time window used for the fit by the E-EFMD Bayesian

inversion algorithm, which means that it would not be able to differentiate between

these very distinct scenarios. This coincidence in both coda amplitudes and decay

rates is not exclusive to the specific frequency band represented here, and figures for
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Figure 4.12: Obtained joint PDFs for all parameters and layers in synthetic model 9 from Table
4.1. Plots in the diagonal of the figure contain the individual PDF for the individual scattering and
intrinsic attenuation parameters parameters.

the same datasets and the rest of the bands contained in Table 2.3 can be found in

Appendix A.3. Panels B and C in Fig. 4.14 show two additional sets of models which

also produce matching coda envelopes. The first parameter set in panel B represents a

weakly heterogeneous and moderately attenuating lithospheric mantle beneath a much

more heterogeneous but less attenuating crust. The parameter values for the second

model in this plot describe almost the opposite situation: here, a weakly scattering but

very strongly attenuating crust lies above a moderately heterogeneous and attenuating
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Figure 4.13: As Fig. 4.12 but for synthetic test 7 from Table 4.1.

lithospheric mantle. Finally, models in panels C have identical scattering structures

and high contrasts in intrinsic attenuation between both layers in the model. These

four combinations of parameters correspond to radically different scenarios, but result

in nearly indistinguishable codas within the time window of interest.

The results in this section, as well as those in Appendix A.3, show that, even if the

performance of the Bayesian E-EFMD algorithm is generally good in terms of the score

system illustrated by Figs. 4.4 and 4.5, great care has to be taken when interpreting the

obtained results. The “interchangeability” of Q−1
i0L1

and Q−1
i0L2

, defined as an exchange in
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Figure 4.14: Synthetic envelopes for frequency band D (Table 2.3) and eight synthetic datasets that
represent a variety of scattering and intrinsic attenuation scenarios. Models in panel A all have strong
to extremely strong intrinsic attenuation (0.006 ≤ Q−1

i0 ≤ 0.02) in the crust and/or lithospheric mantle
and varying scattering strengths within each layer. Datasets in panel B represent models with strong
contrasts in scattering between the two layers and weaker variations in anelasticity. Envelopes in panel
C result from models with the same heterogeneity structure and sharp contrasts in intrinsic attenuation
between the model layers. Shaded areas in all plots represent the time window used for the fit in the
E-EFMD, and dotted lines the uncertainty associated to each synthetic envelope used in the inversion
algorithm.

their values having little to no effect on the produced synthetic codas, and observed in

ST5 and ST11, is present in 13 other synthetic tests (see Figs. A60–A76) and is the main
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cause of the poor parameter recovery for Q−1
i0 . The convergence to two independent

sets of solutions observed for ST5 or ST7 is not unique either, and is also caused by the

interactions between Q−1
i0L1

and Q−1
i0L2

and appears to be independent of the strength of

the contrast in anelastic attenuation between the layers of the model. On 13 occasions,

the algorithm found two different combinations of parameters that were equally capable

of reproducing the input data envelopes (e.g. Figs. A68, A72, A75, A76). Test results

which do not show either of these behaviours (e.g. models 8 or 16 from Table 4.1,

Figs. A61 and A69) have generally higher scores both for Q−1
i0L1

and Q−1
i0L2

. However,

the algorithm’s convergence to a single set of solutions does not necessarily guarantee

accurate parameter recoveries either, especially for low coda amplitudes, as shown for

ST11. Finally, reducing the number of parameters to 6 by forcing α to remain constant

throughout the E-EFMD inversion, as tested for models 9* and 17* from Table 4.1, does

not seem to improve the overall performance of the algorithm (Fig. 4.5). This could be

related to the role of this parameter in helping control coda decay rates (Section 4.1.1)

and its interactions with Q−1
i0 . A potential solution to this E-EFMD behaviour, that

could also reduce the uncertainty in parameter recovery, would be including additional

information into the prior probability distributions for the parameters, especially Qi.

Free frequency dependence of the intrinsic quality factor

In addition to the synthetic tests described in Section 4.1.2, I tried a version of the

E-EFMD code which includes the intrinsic quality factor for each layer and frequency

band as a free parameter that can be obtained from the Bayesian inference algorithm.

In this code, for each layer, a given model m includes a single value of a and ε, as

well as a Qi value for each frequency band. Instead of forcing Qi values to follow

a specific frequency dependence, I designed the algorithm so they could vary freely

and independently within the same uniform prior probability distribution used in the

synthetic tests above (10 < Qi < 2000, 5 ·10−4 < Q−1
i0 < 0.1). Priors for the correlation

length and RMS velocity fluctuation are also uniform and the same used in my initial

implementation of the EFMD and the synthetic tests of the E-EFMD (0.2λmin < a <

2λmax, 4.5 · 10−3 < ε < 10%). Thus, for a 2-layer model and the eight frequency bands

described in Table 2.3, m would contain a total of 20 free parameters, as opposed to

the 4 included in my initial implementation of the EFMD, or 7 used in the final version

of the E-EFMD described in the section above. The initialization of the random walk

and updating of the model at each step are as described in Section 4.1.

I tested the capacity of this version of the E-EFMD code to accurately recover

all of the input parameter values and fit the data at all frequency bands by creating

a synthetic dataset which represents a simple scenario in which the intrinsic quality

factor takes the same value throughout the lithosphere and for all frequency bands.

Correlation length and RMS velocity fluctuations values are the same used in previous
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Figure 4.15: Results from a synthetic test for the version of the E-EFMD with free Qi frequency vari-
ation. Black lines represent the synthetic envelopes corresponding to the input model for all frequency
bands from Table 2.3, while shaded areas represent the time window used for the fit and loglikelihood
calculation. Contours represent the histograms of all synthetic envelopes within the ensemble obtained
from all accepted models for all frequency bands, such as darker areas represent a higher density of
envelopes.

EFMD and E-EFMD synthetic tests (Tables 2.1 and 4.1). I used PSA as a reference

array in terms of velocity model and interface depths for this test as well. As stated

above, the number of parameters in this version of the E-EFMD is five times higher than

for my initial implementation of the Bayesian EFMD. To take this fact into account,

and to ensure the algorithm had enough time to properly sample the parameter space,

I decided to run a 15 million iterations long chain for this first test, divided into three

5 million iterations long segments for manageability. Table 4.2, and Figs. 4.16 and

4.15 summarise the layering, input parameter values and results obtained from this

synthetic test.

This version of the E-EFMD does not appear to be capable of accurately recovering

any of the input parameter values. Histograms for correlation length, RMS velocity

fluctuations and Q−1
i at each frequency band for both layers in the model are shown in

Fig. 4.16. None of the histograms are gaussian, and many have complex shapes with

either multiple or no prominent peaks at all. All input parameter values are within

their respective 5–95 percentile ranges (PRs). However, the significance of this result

is greatly diminished by the fact that these 5–95 PRs are extremely wide in most cases

and that input values do not match a peak in the histograms in most cases. Despite the

poor input parameter recovery, fits to the synthetic envelopes (Fig. 4.15) are very good

within the time window used for the fit, as evidenced by the high loglikelihood values
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reached during the inversion (Table 4.2). This observation points to solutions to this

problem being extremely non-unique due to the very complex relationships between

the parameter, thus making it potentially impossible to solve using the free-varying

intrinsic quality factor approach followed here. For all these reasons, I decided not to

continue testing this version of the E-EFMD.

4.2 Application to the Australian arrays

As a final test of the E-EFMD algorithm, I compare the results I obtained for the 2-

layer lithospheric model with my initial version of the EFMD for the three Australian

arrays (PSA, ASAR and WRA) shown in Chapter 3 and those obtained using this

new, expanded algorithm. The results I obtained for these arrays using the Bayesian

EFMD (Chapter 3) show that the EFMD is not suited to fit real data envelopes for

frequency bands A–C (Table 2.3) for these arrays. For this reason, I focus on bands

D–H from Table 2.3 in the E-EFMD inversions, in which I also used the same datasets,

data processing, background velocity model and Moho and LAB depths described in

Sections 3.1 and 3.2 for each array.

Each inversion consisted of three parallel, 10 million iterations long, Markov chains.

Their results were resampled as described in Section 4.1.2 and combined into a single

ensemble of models. The E-EFMD algorithm used in these inversions is identical to

the one used for the synthetic tests in Section 4.1.2 except in the width of the prior

distribution for the intrinsic quality factor at 1 Hz. In those tests, this uniform prior

ranges from 10–2000. However, the results from the single-layer EFM results suggest

Qi0 ∼ 2100 for PSA and WRA. Therefore, and to prevent any bias on the results and

Table 4.2: Summary of the layering, parameter values and results of the inversion for a
synthetic model used to test the validity of the free Qi frequency variation version of the E-
EFMD. I include 5–95 percentile ranges (PRs) and acceptance rates (ARs) for each scattering
parameter (correlation length and RMS velocity fluctuations), as well as those for the intrinsic
quality factor at 1 Hz (Qi0) at each frequency band.

Layer Input model Corr. length (a) RMS vel. flucts. (ε) Int. quality factor (Qi) Maximum

number a (km) ε (%) Qi 5 – 95 PR (km) AR (%) 5 – 95 PR (%) AR (%) 5 – 95 PR (%) AR (%) L

1 2.0 5.0 0.002 2–5 42 4.0–4.6 39

0.001–0.005 35

-0.83

0.0005–0.0025 40
0.0005–0.003 39
0.0006–0.03 44
0.0005–0.005 40
0.0006–0.025 39
0.0005–0.01 38
0.0006–0.01 45

2 3.0 4.0 0.002 2–8 42 4.6–5.4 39

0.001–0.0025 35
0.0014–0.003 40
0.001–0.003 39
0.0008–0.003 44
0.0013–0.005 40
0.0013–0.005 39
0.0014–0.005 38
0.0014–0.005 45
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Figure 4.16: Results from a synthetic test for the version of the E-EFMD with free Qi frequency
variation. Histograms for the two scattering parameters (a and ε, rows (a) and (b) respectively) and
the instrinsic quality factor for all eight frequency bands from Table 2.3 (rows (d)–(j)). Left and right
columns represent results for layers 1 and 2 of the model respectively. Black dashed lines and shaded
areas represent the input parameter values and 5–95 percentile range (PR) respectively.

ensure all suitable values are included within the Qi0 prior, I widened it to include

values up to 3000 (Q−1
i0 ∼ 0.00033). Table 4.3 and Figures 4.17 to 4.20 summarise the
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results from these inversions.

In the crust, the posterior PDFs for both scattering parameters and all three arrays

show clear peaks, even if for ASAR and WRA they also present significant tails on

both sides of the maximum (panels b–d in Figs. 4.18 and 4.19). These tails result in

the widening of 5–95 PRs for these arrays. For the correlation length, they range from

∼ 1–24 km and ∼ 1–21 km for ASAR and WRA, in contrast with the much narrower

PDF for PSA, which extends from 0.6–2.5 km (Table 4.3). Correlation length modes

in this layer are approximately 0.8 for PSA and ASAR, and 1.2 km for WRA. RMS

velocity fluctuations PDFs are also much wider for ASAR and WRA than for PSA,

spanning ∼82 and ∼65 % of the permitted range for these arrays, as opposed to only

∼15% for PSA. Modes suggest the strongest and weakest crustal velocity fluctuations

correspond to WRA (∼3.7%) and PSA (∼2.5%) respectively (Figs. 4.19 and 4.17).

PDFs for the inverse intrinsic Q at 1 Hz in the crust for ASAR and WRA also show

some similarities (panels f and g in Figs. 4.18 and 4.19). Both of them have a clear but

very narrow maximum at very low values (∼0.02) and long tails that extend throughout

most of the entire permitted range (4 · 10−4 ≤ Q−1
i0 ≤ 0.1). For PSA, the Q−1

i0 PDF

in this layer (panel f in Fig. 4.17) shows a similarly clear and narrow maximum at

∼0.004 and a short, low amplitude tail similar to that obtained for WRA. 5–95 PRs for

Q−1
i0L1

are narrow for PSA and WRA (∼5% and ∼ 17% of the permitted range for this

parameter, respectively) and wider for ASAR (∼ 39%) (Table 4.3). The uncertainty in

the determination of Q−1
i0 appears to be more accentuated for WRA and ASAR than

for PSA, for which the PDF maximum is much sharper compared to the width of the

tail (Fig. 4.18). PDFs for the power law exponent, α, clearly favour higher values for

ASAR and WRA, with modes being ∼0.98 in both cases, while for PSA there is a wide

but distinct maximum at ∼0.32 (panels e and g in Figs. 4.17, 4.18 and 4.19). 5–95

PRs for this parameter are wide for all three arrays as well, with the ones for PSA

and ASAR, ranging from 0.11–0.91 and 0.18–0.98 (∼80% of the permitted range for α)

Table 4.3: Summary of the results of the inversions of the data from the Australian arrays
(PSA, ASAR and WRA) described in Chapter 3.

Array Layer
Corr. length (a) RMS vel. flucts. (ε) Inv. int. Q at 1 Hz (Q−1

i0 ) Freq. power of Qi (α) Maximum

name number
5 – 95 PR AR 5 – 95 PR AR

5 – 95 PR
AR

5 – 95 PR
AR

L
(km) (%) (%) (%) (%) (%)

PSA
1 0.6–2.5

38.5
2.3–3.9

38.5
0.0005–0.005

40.9 0.07–0.91 39.6 -6.4
2 3–32 0.1–3.0 0.0004–0.0016

PSA 1 0.7–1.4
39.3

2.3–3.1
36.4

0.0006–0.0026
41.4 – – -6.9

Fixed α 2 3–32 0.1–2.8 0.0005–0.0014

ASAR
1 1–24

39.9
1.4–9.6

39.2
0.0004–0.0396

40.0 0.16–0.98 38.3 -0.95
2 2–31 0.3–9.4 0.0004–0.0222

ASAR 1 1–24
39.8

1.0–9.4
38.5

0.0005–0.0254
41.3 – – 0.94

Fixed α 2 1–31 0.4–9.6 0.0005–0.0092

WRA
1 1–21

37.5
2.7–9.2

40.7
0.0004–0.0182

38.6 0.09–0.97 40.0 -0.61
2 1–32 0.2–8.1 0.0004–0.0046

WRA 1 1–22
39.5

2.3–8.3
41.0

0.0005–0.0056
37.9 – – -0.81

Fixed α 2 1–32 0.2–6.8 0.0005–0.003
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Figure 4.17: Summary of the results obtained from the E-EFMD algorithm for PSA. Panels content
is as in Fig. 4.3 , with the addition of panels h–k for parameters in the lithospheric mantle.

respectively, being narrower than for WRA (∼84% of the allowed range). Since this

parameter was not allowed to take different values for each layer, these values apply to

both the crust and lithospheric mantle.

Scattering parameters PDFs in the lithospheric mantle for ASAR and WRA (panels



96 Chapter 4: The Extended Depth-Dependent Energy Flux Model

Figure 4.18: Same as Fig. 4.17 but for ASAR.

h–j in Figs. 4.18 and 4.19) also share many features. Correlation lengths for these

arrays show both a wide maximum at ∼1.5 km (ASAR) and ∼1.4 km (WRA), but

also a high amplitude tail or secondary maximum towards higher values (> 15 km),

even if this characteristic is more pronounced for ASAR than it is for WRA. For PSA,

there is a clear preference for high (> 10 km) a values in this layer (panels h–j in
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Figure 4.19: Same as Fig. 4.17 but for WRA.

Fig. 4.17). Correlation length 5–95 PRs are similarly broad for all three arrays, with

widths ranging from 29–30 km (Table 4.3). RMS velocity fluctuations PDFs for ASAR

and WRA suggest medium to low values (< 5%) are slightly favoured (Figs. 4.18 and

4.19). However, the largest density of models occurs around a secondary maximum at

∼4% both for ASAR and WRA, which corresponds to the broad maxima observed at
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a ∼1 km. For PSA (Fig. 4.17), this secondary maximum is absent from the velocity

fluctuations, whose PDF shows a very distinct preference for very low (< 3%) values.

5–95 PRs for this parameter are much narrower for PSA than they are for ASAR or

WRA, with values ranging from 0.1–3.0 %, 0.3–9.4 % and 0.2–8.1 % respectively. These

PDFs point to scattering parameters for this layer being largely unconstrained for all

three arrays. Q−1
i0 PDFs are similar for all arrays in this layer again (panel l or m

in Figs. 4.17, 4.18 and 4.19). For ASAR, it contains a sharp and clear maximum at

∼0.01, followed by a low amplitude tail that extends up to ∼ 0.0004 (Fig. 4.18). For

WRA, the PDF shows a preference for low or extremely low values of the parameter,

but suggests any value below 0.004 would be equally likely to produce the observed

codas (Fig. 4.19). In the case of PSA, the algorithm also favours low and extremely

low values (Q−1
i0L2

< 0.0015, Fig. 4.17). The PDF shows two, similarly high, narrow

peaks for values <∼ 0.0005. 5–95 PRs are narrow for all three arrays, spanning from

4·10−4–2·10−3, 4·10−4–0.02 and 4·10−4–5·10−3 for PSA, ASAR and WRA respectively

(Table 4.3).

The results described above are analogous to my EFMD results (Section 3.3) and

suggest that the scattering and intrinsic attenuation structures beneath ASAR and

WRA are similar to each other and different to that for PSA. PDFs for crustal Qi0 and

α for these arrays (Table 4.3) show similar patterns for these arrays which would be

indicative of strong intrinsic attenuation in this layer and a linear frequency dependence

of Qi. Correlation length and RMS velocity fluctuations PDFs (Table 4.3) point to

heterogeneities beneath ASAR being similar than those below WRA, since the overall

effect of lower correlation lengths for ASAR may be compensated by higher ε values for

WRA. The crust beneath PSA appear to be less heterogeneous and attenuating than its

ASAR or WRA counterparts, while there is still significant scattering and attenuation

taking place within the layer. The lithospheric mantle, on the other hand, seems to

be mostly homogeneous and non-attenuating, as evidenced by extremely low velocity

fluctuations and high correlation lengths and intrinsic Q at 1 Hz values (Table 4.3).

The broad width of the 5–95 PRs for most parameters and all arrays is indicative of

non-unique solutions and complex trade-offs between the parameters. Reducing the

number of parameters in the inversion to six by inverting the data with my alternative

implementation of the E-EFMD for fixed α does not help reduce the non-uniqueness

of the parameters. Figures A84, A85 and A86, in Appendix A.4, as well as Table 4.3,

show that, as observed in Section 4.1.2, removing this parameter from the inversion has

very limited effects on the results for the scattering parameters or the intrinsic quality

factor.

These results are in good agreement with the EFM/EFMD structure (Tables 3.2

and 3.3), which suggested ASAR and PSA had the most and least scattering and

attenuating structures respectively, as well as with the tectonic history and setting for



§4.2 Application to the Australian arrays 99

Pr
ob

ab
ili

ty
 

de
ns

ity

Layer 1
EFM
EFM +/- st.dev
E-EFMD
EFMD

Pr
ob

ab
ili

ty
 

de
ns

ity
Layer 2

Pr
ob

ab
ili

ty
 

de
ns

ity

Layer 1
EFM
EFM +/- st.dev
E-EFMD
EFMD

Pr
ob

ab
ili

ty
 

de
ns

ity

Layer 2

Pr
ob

ab
ili

ty
 

de
ns

ity

Layer 1
EFM
EFM +/- st.dev
E-EFMD
EFMD

0 20
Correlation length 

(km)

Pr
ob

ab
ili

ty
 

de
ns

ity

Layer 2

0 5 10
RMS velocity 
fluctuations 

(%)

0.00 0.02 0.04 0.06
Inverse intrinsic 

Q at 1 Hz

0.0 0.5 1.0
Frequency power 

 exponent

PS
A

AS
AR

W
RA

Figure 4.20: Comparison of the posterior PDFs obtained from the E-EFMD and EFMD algorithms
for the three Australian arrays analysed here (PSA, ASAR and WRA). Please note that no negative
values of the intrinsic quality factor were allowed in the inversion. The apparent negative values shown
in this figure are a result of the smoothing applied to rough distribution edges by the plotting function.

these arrays (Sections 3.2 and 3.3.2). Figure 4.20 compares the PDFs obtained for a

and ε from the EFMD and E-EFMD, as well as the numerical results from the EFM

for all three arrays. For Q−1
i0 and α, the figure contains the PDFs obtained from the

E-EFMD, as well as the results for the single-layer considered in the EFM. In the

crust, the correlation length PDFs from the EFMD and all three arrays show a very

sharp peak which corresponds to the EFM value for this parameter (0.9 km for PSA

and ASAR and 1.1 km for WRA, Table 3.2). The E-EFMD PDFs also present clear

maxima around this value of the parameter. In the lithospheric mantle, the shapes of

the a PDFs from the EFMD and E-EFMD have similar widths and amplitudes, with

matching, though broader, maxima at approximately the EFM value for ASAR and

WRA. The agreement between the EFMD and E-EFMD PDFs for the RMS velocity
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fluctuations, in both layers of the model, is also very good. E-EFMD PDFs for this

parameter and all arrays are wider than those from the EFMD, but in all cases they have

clear maxima roughly centered around the same values. In this case, the concordance

with EFM results is not as good, with values from this method being higher than the

modes from both methods for all arrays. In the case of the inverse intrinsic quality

factor at 1 Hz and the frequency power for Qi, I can only compare the PDFs from the

E-EFMD with the EFM estimation for a single layer. The agreement between these

results is worse for α than for the other parameters, probably because of the difficulty

in obtaining it as an independent parameter from the EFM inversion (Section 2.1.1).

EFMD and E-EFMD results for Q−1
i0 , however, appear to be in good agreement for all

arrays and model layers.

However, if I take samples of the posterior PDFs obtained from the E-EFMD for

these arrays, as I did for my E-EFMD synthetic tests, it is clear that these results

show the same strong trade offs shown in my synthetic tests (Section 4.1.2), especially

for ASAR and WRA. Figures 4.21, 4.22 and 4.23 are analogous to Figs. 4.9 or 4.10,

and contain the loglikelihoods and parameter values for the highest likelihood models

obtained from the inversion for each array. For ASAR, this figure shows very strong

variability of the scattering parameters in both layers, which is also clear in panels d and

j in Fig. 4.18. For PSA and WRA, this effect is more obvious for the bottom layer of the

model (Figs. 4.17 and 4.21), even if it is also present in the crust for both arrays. For

PSA and WRA, Q−1
i0L1

presents more variability than Q−1
i0L2

(panels A–4 and B–4, Figs.

4.21 and 4.23), but while for PSA its values tend to mostly remain below 0.01 (which I

defined as “low” Qi0 in the previous section), for WRA it takes values which extend up

to 0.1. For ASAR, both Q−1
i0L1

and Q−1
i0L2

take values throughout the entire parameter

space and are often found within the extremely strong attenuation range (0.02 < Q−1
i0 <

0.1, panels A–4 and B–4 of Fig. 4.22). Physically, these parameter combinations would

indicate that the crust and lithospheric mantle beneath ASAR would both be extremely

attenuating and only weakly heterogeneous. Crustal scattering beneath WRA and PSA

would be stronger than for ASAR, but the lithospheres beneath PSA would be less

attenuating than that under WRA. My thorough analysis of the E-EFMD sensitivity

(Section 4.1.1), as well as my synthetic tests (Section 4.1.2), allow me to relate these

extreme variations in the scattering parameters to the behaviour of the intrinsic quality

factor, instead of interpreting them as the effect of the physical structure beneath the

arrays on the recorded wavefields. Therefore, and despite the good agreement between

my EFMD and E-EFMD results for PSA, ASAR and WRA, any interpretations derived

from these results should be cautiously done.
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Figure 4.21: Samples of the E-EFMD results for PSA shown in Fig. 4.17. Panels A1–A5 contain
the loglikelihood (L), correlation length (a), RMS velocity fluctuation (ε), inverse intrinsic quality
factor at 1 Hz (Q−1

i0 and power law exponent (α) for all models with L > −1, as well as the input
parameter values in each case. Panels B1–B5 have the same content, but for models with −1 > L > −5.
Loglikelihood thresholds for each column were adjusted to the maximum value present in the ensemble
of accepted models, so this figure could be compared with those obtained for my synthetic tests in
Section 4.1.2.

4.3 Conclusions

The E-EFMD results I present in this chapter illustrate, in great detail, the behaviour of

the algorithm both within synthetic tests and real data inversions. My tests in Section
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Figure 4.22: Same as Fig. 4.21, but for ASAR.

4.1.2 demonstrate that the non-uniqueness of the solutions already observed for the

EFMD in Section 2.1.3 is increased in the E-EFMD, not necessarily because of the

larger number of free parameters, but mostly due to the complex trade-offs between

them. For most of the synthetic tests I carried out in Section 4.1.2, the algorithm

converged to two independent sets of solutions, many of those showing a great degree

of interchangeability between Q−1
i0L1

and Q−1
i0L2

and wide variability of the scattering

parameters and α. However, cases for which the algorithm found a single, preferred
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Figure 4.23: Same as Fig. 4.21, but for WRA.

combination of parameters, also often showed the wide 5–95 PRs that tend to appear

with non-unique solutions. My sensitivity analysis (Section 4.1.1) clearly show the

effect of each parameter on the calculated synthetic envelopes, with ε and a mainly

regulating initial coda amplitudes and Q−1
i0 and α controlling the decay rate. This

separation in the effect of the parameters is the main cause of the lack of uniqueness in

the E-EFMD solutions and the poor recovery scores obtained for some of them (Fig.

4.5), since it controls the complex parameter interactions observed in my synthetic tests

results. The performance of the E-EFMD algorithm was generally worse (e.g. got lower
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parameter and global S) for cases with strong or extremely strong intrinsic attenuation

(Q−1
i0 ≥ 0.01) in any model layer. These parameter combinations usually result in lower

coda amplitudes and a clear dominance of the intrinsic quality factor in the inversion

results that also affects the accurate recovery of the rest of the parameters. However, as

pointed out in Section 4.1.1, the large difference in thickness between the model layers

used in all my synthetic tests could be partly behind some of these behaviours. My

inversion results for some IMS stations in Chapter 5 show that 1- or 2-layer models for

lithospheres less than 70 km thick with crusts up to 4 times thicker than the lithospheric

mantle beneath them do present the same wide posterior PDFs and non-uniqueness

than the results in this chapter. Further testing of the E-EFMD should, therefore,

thoroughly investigate the effect of the model layering on the obtained results, so it

could be determined whether the extreme non-uniqueness and interchangeability of

Q−1
i0L1

and Q−1
i0L2

are common issues within the E-EFMD framework or artifacts caused

by the (predetermined) layering of the models. Potentially interesting experiments to

help reduce the non-uniqueness of the solutions could be adding prior information about

the parameters from other studies (instead of assuming uniform prior distributions),

including S-wave codas in the datasets or trying to estimate ε, within an uncertainty

range, from the initial coda amplitudes using the EFM and then running the standard

inversion shown here for the rest of the parameters. Considering the trade-offs between

Q−1
i0 and ε observed in this chapter, such modifications of the E-EFMD could potentially

help avoiding the convergence to more than one combination of parameters.

E-EFMD results for the Australian arrays, shown in Section 4.2, show the same

parameter variability and lack of uniqueness, especially for ASAR and WRA. The clear

association between this increased uncertainty and fluctuations in Q−1
i0 makes unique

interpretations of the physical scattering and attenuation structure beneath the stations

difficult. However, since the model layering for PSA, ASAR and WRA is similar to

each other and to the one used in my synthetic tests, it is possible that these results are

also affected by the difference in layer thicknesses mentioned before. More testing in

this regard is again recommended, but in the meantime, it is reasonable to expect the

issues reported here to arise again in future data inversions, especially when working

with low coda amplitudes.

In summary, the results I present here reveal the usefulness of the added information

about the attenuation parameters provided by the E-EFMD. The frequency dependence

of Qi0 is generally poorly understood, as are its variation with depth or interaction

and trade-offs with the scattering parameters, all of which the E-EFMD brings some

insight into. These results also demonstrate that any attempts at characterizing seismic

scattering and attenuation should always be done in a Bayesian fashion, with Section

4.1.2 confirming that any non-Bayesian approach to this problem will necessarily lead to

incomplete solutions at best, and utterly inaccurate at worst. In recent years, studies
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such as Cormier and Sanborn (2019), Prieto et al. (2009), Del Pezzo et al. (2016),

Ogiso (2019) or Takeuchi (2016) , have addressed the challenge of separating the effects

of intrinsic and scattering attenuation and simultaneously estimating the parameters

that characterize them, as well as the trade-offs between them. In most cases, these

studies have focused on the S-wave codas from local and regional earthquakes, but

similar, strong, frequency-dependent trade-offs can also be expected for the scattering

and attenuation of teleseismic P-waves. The results shown in this thesis show the ability

of Bayesian inference to provide great insight into these complex relationships between

parameters.

My figures sampling the posterior PDFs for all synthetic tests (e.g. Figs. 4.9 and

4.10) show that highest likelihood or best fitting models do not always match the in-

put parameter values, despite achieving excellent fits to the synthetic envelopes. In

addition to this, Fig. 4.14 further proves that P-wave codas can be achieved through a

wide variety of parameter combinations, by showing that models that represent radi-

cally different scattering and attenuation settings can produce identical coda envelopes,

which the E-EFMD algorithm will not be able to differentiate. Most inversions using

grid search approaches use them to obtain a single, best fitting, parameter combination

to match the observed data. However, the detailed information about the parame-

ter space, trade offs, uncertainty and uniqueness of the solutions that my Bayesian

inference results contain highlight that it is not possible to ensure that a maximum

likelihood model would be truly and uniquely representative of the heterogeneity and

attenuation structure beneath the seismic station or array.



Chapter 5

Lithospheric scattering and

intrinsic attenuation beneath

International Monitoring System

stations

On 16 July 1945, the first-ever nuclear bomb was detonated at the Alamogordo Test

Range, New Mexico. In the following decades, over 2000 atmospheric, underground

and underwater nuclear tests were conducted worldwide (Fig. 5.1), in a race to develop

increasingly more powerful weapons. As a consequence, vast amounts of radioactive

materials were dispersed into the atmosphere and deposited all around the globe (e.g.

Maceira et al., 2017). These increased radioactivity levels posed a danger to human lives

and health and the environment (e.g. Upton, 1962), while the growing tensions of the

arms race threatened political stability and peace. In 1962 alone, 175 nuclear weapons

were detonated, most of them in the atmosphere (Fig. 5.1), which lead to the highest

global level of environmental radioactivity ever being measured the following year (e.g.

Maceira et al., 2017). In 1963, the opening for signature of the Partial or Limited Test-

Ban Treaty (PTBT/LTBT) meant nuclear explosions in the atmosphere, underwater

and in space were banned. This change helped reduce the amount of radioactivity

present in the environment (e.g. Maceira et al., 2017), but did not prevent further

underground testing (Fig. 5.1). This purpose was only achieved in September 1996

with the Comprehensive Test-Ban Treaty (CTBT, 1996), after decades of negotiations.

The text of the CTBT establishes that “(...)the most effective way to achieve an end

to nuclear testing is through the conclusion of a universal and internationally and

effectively verifiable comprehensive nuclear test-ban treaty (...)” (CTBT, 1996). As

per this treaty, signatory countries agree to refrain from causing or encouraging nuclear

106
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Figure 5.1: Number of atmospheric and underground nuclear explosions carried out in the 1945-2013
period, together with the dates the Partial Test-Ban and Comprehensive Nuclear-Test-Ban Treaties
opened for signature (from ctbto.org)

explosions and to not to carry out nuclear tests of any kind anywhere on Earth, thus

effectively contributing to putting an end to nuclear testing. As of March 2022, 185

countries have signed the CTBT, 172 of which have also ratified it (ctbto.org), but

the treaty cannot enter into force until all of the countries that initially participated

in its elaboration sign and ratify it. Eight of these countries (which include India,

China, Israel and the United States of America) have yet to sign and/or ratify the

CTBT, but in the meantime, signatory countries have adopted a de facto moratorium

on nuclear testing, with only 10 nuclear tests having been carried out since 1996 (Fig.

5.1). Currently, the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO),
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Monitoring System stations

Figure 5.2: Map of the International Monitoring System (IMS), which includes primary and auxil-
iary seismic arrays and stations, as well as hydroacoustic, infrasound and radionuclide stations. The
International Data Center is also marked on the map, as well as radionuclide laboratories. (Modified
from ctbto.org)

based in Vienna, is in charge of the promotion of the Treaty and the building of its

verification regime.

The International Monitoring System (IMS) is a worldwide instrument network built

by the CTBTO to ensure compliance with the CTBT (Fig. 5.2). Four core technologies

and 321 monitoring stations within this network help ensure that no nuclear test or

explosion goes unnoticed (e.g. Maceira et al., 2017; Kalinowski and Mialle, 2021). The

seismic, infrasound and hydroacoustic instruments of the IMS can detect and identify

explosive atmospheric, underground or underwater events, even at large distances (e.g.

Koper et al., 2001; Heyburn et al., 2020; Pilger et al., 2021; Zhang and Wen, 2013).

However, these waveform-based techniques cannot discriminate whether the origin of an

explosion is chemical or nuclear, and radionuclide sensors and laboratories are normally

required for confirmation. The continuous data recorded at all the IMS monitoring

stations is automatically sent to the International Data Center (IDC) in Vienna, where

most of the analysis is carried out (e.g. Maceira et al., 2017; Kalinowski and Mialle,

2021). In recent years, the IMS has successfully detected the six underground nuclear

tests carried out by the Democratic People’s Republic of Korea in the 2006–2017 period

(e.g. Zhang and Wen, 2013; Carluccio et al., 2014; De Meutter et al., 2018; Myers et

al., 2018; Gibbons et al., 2018). In addition to this, IMS data has also been widely
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used outside the nuclear monitoring community, with applications ranging from Earth

structure investigations (e.g. Rost et al., 2006; Liu et al., 2019; Jerkins et al., 2020;

González Álvarez et al., 2021) to the study of drifting icebergs (Evers et al., 2013),

submarine volcanism (Metz et al., 2018), tracking whales (Le Bras et al., 2016) or

investigate accidental explosions (Savage and Helmberger, 2001; Heyburn et al., 2020;

Pilger et al., 2021).

The solid Earth is monitored by the IMS using 50 primary and 120 auxiliary seismic

stations deployed all around the world (Fig. 5.2), such as the Alice Springs (ASAR) and

Warramunga (WRA) seismic arrays, described in Chapter 3. These seismic stations

are key tools for the detection, discrimination and characterization of underground ex-

plosions, since hydroacoustic and infrasound sensors may not record them as clearly.

Once a potential explosive event has been detected by IMS seismic stations, discrimi-

nation between different event types at teleseismic distances is usually done by taking

the mb : MS ratio, where mb and MS are the network-averaged body-wave and surface-

wave magnitudes respectively (e.g. Selby et al., 2012). Another calculation of critical

importance within the nuclear monitoring community is that of explosion yield, which

is usually obtained from either body-wave or surface-waves magnitudes (e.g. Douglas,

2013; Maceira et al., 2017; Zhao et al., 2017). The computation of these magnitudes

require accurate amplitude measurements (e.g. Douglas, 2013; Stein and Wysession,

2005), while also taking into account that signal amplitudes are affected by path ef-

fects like scattering or intrinsic attenuation. These effects are implicitly accounted for

in the empirical formulas used for magnitude and/or yield calculations (e.g. Peacock

et al., 2017; Maceira et al., 2017; Douglas, 2013), and inverse filter approaches are

also sometimes used to correct signals from intrinsic attenuation (e.g. Douglas, 2013).

Having accurate characterizations of the attenuation structure immediately beneath

the stations, as well as its effects on the recorded signals, is therefore essential.

In this chapter, I apply the approach described in Chapter 4 to the characterization

of the lithospheric scattering and attenuation structures beneath seismic stations part

of four primary seismic arrays (Eielson (ILAR), Lajitas (TXAR), Pinedale (PDAR),

Yellowknife (YKA)) and a primary seismic station (Boshof (BOSA)) of the Interna-

tional Monitoring System.

5.1 Data

With the aim of analysing the scattering and attenuation structure in as wide a va-

riety of regions and tectonic settings as possible, I used the FDSN Client tool from

Obspy (Beyreuther et al., 2010) and the IRIS DMS to explore event catalogues for

over twenty primary and secondary IMS seismic arrays and stations (Boshof (BOSA),

Brasilia (BDFB), Borovoye (BVAR), Chiang Mai (CMAR), Villa Florida (CPUP)),
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Eskdalemuir (EKA), Geress (GERES), Eielson (ILAR), Kilima Mbogo (KMBO), Kur-

chatov (KURK), La Paz (LPAZ), Matsushiro (MJAR), Makanchi (MKAR), Nevada

(NVAR), Pinedale (PDAR), Paso Flores (PLCA), Songino (SONM), Torodi (TORD),

Lajitas (TXAR), Ussuriysk (USRK) and Yellowknife (YKA)).

Data selection and processing for this chapter is analogous to the one described in

Chapter 2 and applied in Chapters 3 and 4 (Section 2.1.4). For each array or station

of interest, I built a catalogue of deep events (source depths greater than 200 km)

with moment magnitudes between 5–7 and 30 – 80 degrees epicentral distances to the

array centers or stations. To maximise the number of available events included in these

catalogues, their start dates vary between arrays or stations and include all available

earthquakes from then until the end of 2020. Arrays or stations for which 3-component

data were not available through the FDSN Client tool from Obspy (Beyreuther et al.,

2010) or the IRIS DMS, had less than 60 suitable events in their catalogue (See Section

3.1.1) with a signal-to-noise ratio above 5 at least for three of the D–H frequency bands

from Table 2.3 or had missing, wrong or incomplete instrument response information,

were excluded from the analysis. These specifications resulted in many stations not

being suitable for the analysis, either because of their short operating time or the lack

of suitable events in the right distance range and/or problems with the instrument

response information. Table 5.1 contains the number of good quality events (as defined

in Section 2.1.4) used in this study for ILAR, PDAR, TXAR, YKA and BOSA and the

frequency bands listed on Table 2.3, as well as the time period of their event catalogues.

Panel a in Fig. 5.3 shows the epicenters, magnitudes and depths of all events for each

array included in this study, as well as their LITHO1.0 P-wave background velocity

models (Pasyanos et al., 2014) and Moho and lithosphere-asthenosphere boundaries in

panel b.

Table 5.1: Number of events with good quality (SNR > 5) traces for each array/station and
frequency band and start and end of the seismic catalogue built for each one of them. Arrays
for which the number of events and traces coincide had only one available 3-component station.

Number of events per frequency band Catalogue

0.5–1 0.75–1.5 1–2 1.5–3 2–4 2.5–5 3–6 3.5–7 Start End
Hz Hz Hz Hz Hz Hz Hz Hz date date

ILAR
Events

96 121 122 123 117 106 93 83 2012 2020
Traces

PDAR
Events

120 110 100 124 118 113 96 85 1990 2020
Traces

TXAR
Events 11 33 68 72 79 68 62 54

1990 2020
Traces 17 57 122 129 141 119 103 83

YKA
Events 81 103 117 146 154 149 119 91

1990 2020
Traces 113 140 161 198 223 211 151 125

BOSA
Events

17 22 27 46 67 67 62 53 1995 2020
Traces
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Figure 5.3: (a) Catalogue of seismic events included in this study for all IMS stations with available
3-component data and 60 or more good quality events for at least three of the D–H frequency bands
from Table 2.3. Marker colors represent event depths, while sizes indicate their magnitudes. (b) LITHO
1.0 P-wave velocity model for each of the stations (solid lines), as well as their Moho and LAB depths
(dashed and dotted lines, respectively), also obtained from the LITHO 1.0 model (Pasyanos et al.,
2014).

5.2 Results and discussion

5.2.1 Extended Depth-Dependent Energy Flux Model results

I applied the E-EFMD approach described in Chapter 4 to the datasets described in

Section 5.1 for ILAR, PDAR, TXAR, YKA and BOSA. I ran inversions using both

1- and 2-layer models, as well as the E-EFMD version for fixed frequency dependence

coefficient (α). In all cases, I initially ran 3 parallel Markov chains per inversion, each

10 million iterations long. In some cases I considered the maximum loglikelihood (L)

reached at the ends of these chains was too low (L < −100) and continued them for

another 10 million iterations to increase the chances of getting out of local maxima and

improve fits to the data. However, L values remained stable, without any significant

increases, so I decided not to continue them any further and chose not to extend chains

for similar tested models either, such as the two 1-layer models I tested for PDAR (Table

5.2). As described in Section 4.1.2, results from the 3 Markov chains were thinned by

taking only 1 in every 100 accepted models and combined into a single, final ensemble

of models. In all cases, I used only frequency bands D–H from Table 2.3, since my

previous inversions using the EFM/EFMD and E-EFMD show that it is probably not

possible to simultaneously fit all of them, at least with this kind of approach. Table

5.2 summarises my results.

In Chapter 3, I inverted the data for ASAR and PSA using the EFM/EFMD ap-

proach and a 1-layer model. In both cases, my results showed that the large thickness

of the layer (200 km) prevents diffusion out of it, therefore generating codas with very
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large amplitudes that failed to fit the data (Section 3.3). However, given the different

tectonic settings and lithospheric structures of the IMS stations studied in this chapter

(Section 5.1), I decided to attempt to invert the normalised coda envelopes datasets for

those stations with thinner lithospheres (PDAR, ILAR and TXAR, Fig. 5.3) using the

E-EFMD and a 1-layer model. Figure 5.4 and Figures A87 and A88, placed in Appendix

A.5 to avoid repetition, summarise the results from these inversions. All three sets of

results show that, while fits are improved, compared to those for the AU arrays in Figs.

3.10 and 3.9, synthetic codas produced by this model are still too high and simple to

successfully fit the input data. PDFs for the scattering parameters, shown in panels

b–d in these figures, suggest a non-scattering lithosphere, with more likely correlation

lengths above 20 km and RMS velocity fluctuations close to 0%. Still, initial coda am-

plitudes produced by these models are still too high to match those observed in my data

envelopes. PDFs for the intrinsic attenuation parameters are narrow and Gaussian, or

approximately Gaussian in all cases, but the coda decay rates they produce still fail to

match those of the data. These poor fits lead to the maximum loglikelihoods reached in

these inversions being all very low (L < −200 for ILAR and L < −104 for PDAR and

TXAR, Table 5.2), which means the scattering and attenuation parameters obtained

from them are not at all reliable. As a final test of the 1-layer model, I decided to

check whether a model that includes only the crust was capable of improving the fits

to the data. Such a model would make diffusion out of the layer easier, thus reducing

the amount of energy present within it and generating lower coda amplitudes. Figure

A89 contains the results for this case and PDAR. Synthetic coda levels obtained for

this crustal model are only barely lower than for the lithospheric case, which results

in a slightly higher maximum L of ∼ −15 · 103, as opposed to ∼ −16 · 103). Posterior

PDFs for all parameters remain largely unchanged, but the poor fits still deem them

unreliable and I decided not to test the 1-layer model for the remaining stations studied

here.

The results of my E-EFMD inversions for all stations and the 2-layer model are

summarised in Figures 5.5, 5.6, 5.7, 5.8 and 5.9. Except for ILAR (Fig. 5.5), fits to

the data are generally poor, as evidenced by the extremely low loglikelihood (L < 103)

values obtained for the rest of the arrays (Table 5.2). As discussed below, this is

likely related to the E-EFMD algorithm not being capable of simultaneously fit the

input envelopes for all frequency bands, and to complex coda behaviours. All five

inversions yield nearly identical results for the scattering parameters in both layers of

the model, despite large differences in the lithospheric structure and tectonic history

of the regions the stations are located on. Correlation lengths vary widely (the 5–95

PRs start at 3–4 km and extend up to 25 km or higher, Table 5.2), but there is a

clear preference for values above 10 km throughout the lithosphere. PDFs for the RMS

velocity fluctuations vary more in width from one station to another, and between
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Table 5.2: Summary of the results of the E-EFMD inversions of the data from ILAR, PDAR,
TXAR, YKA and BOSA using 1- or 2-layer models. I tested both the implementation that
includes α as a free parameter and the alternative version with fixed α. 234. For PDAR, I also
tested two different 1-layer models, one for which the layer encompasses the entire lithosphere,
and another that only takes the crust into account (marked with a * below). For information
on the layering of the models, see Figure 5.3.

Array or Freq. Iterations Layer
Corr. length (a) RMS vel. flucts. (ε) Inv. int. Q at 1 Hz (Q−1

i0 ) Freq. power of Qi (α) Maximum

station bands per chain number
5 – 95 PR AR 5 – 95 PR AR

5 – 95 PR
AR

5 – 95 PR
AR

L
(km) (%) (%) (%) (%) (%)

ILAR

D–H 2 · 106 1 3–27 81.6 0.0–0.8 38.2 0.0035–0.0050 38.4 0.63–0.83 39.6 -230

D–H 106
1 3–26

62.7
0.1–3.0

40.2
0.0005–0.0009

40.9 0.22–0.46 40.5 -8.4
2 4–32 0.3–8.7 0.0218–0.0437

D–H 106
1 4–26

63.7
0.1–2.6

34.8
0.0006–0.0012

41.5 0.5* – -10.3
2 5–32 0.3–9.0 0.0240–0.0495

TXAR

D–H 2 · 106 1 4–28 81.2 0.0–0.1 39.6 0.0015–0.0017 38.8 0.04–0.11 38.9 -97·103

D–H 2 · 106 1 3–26
81.2

0.0–0.1
41.1

5.0 · 10−4–5.005 · 10−4

36.8 0.99–1.0 37.1 -26·103
2 4–32 0.0–0.3 0.0918–0.0921

D–H 106
1 3–26

81.2
0.0–0.1

43.7
5.0 · 10−4–5.002 · 10−4

39.3 0.5* – -30·103
2 4–32 0.0–0.3 0.0309–0.0310

C–E 106
1 4–26

63.4
0.09–3

36.5
0.0005–0.0008

38.3 0.003–0.1 36.2 -24.0
2 6–32 0.3–8 0.0018–0.0059

F–H 106
1 3–26

81.2
0.001–0.05

38.0
5.0 · 10−4–5.003 · 10−4

41.3 1.0–1.0 41.1 −43 · 103
2 4–32 0.01–0.2 0.0918–0.09199

D–F 106
1 4–26

63.5
0.05–1.8

37.5
0.0005–0.0006

36.1 0.001–0.07 40.0 −52
2 6–32 0.3–8 0.0049–0.0079

G–H 106
1 3–26

81.2
0.001–0.05

39.0
5.0 · 10−4–5.003 · 10−4

41.9 1.0–1.0 42.4 −64 · 103
2 4–32 0.005–0.2 0.0919–0.0921

PDAR

D–H 2 · 106 1 4–26 81.2 0.0–0.2 40.5 0.0091–0.0108 41.2 0.9–1.0 39.9 -16·103

D–H 106 1* 3–25 81.3 0.0–0.2 39.3 0.0069–0.0092 38.3 0.82–0.99 43.1 -15·103

D–H 2 · 106 1 3–25
80.7

0.0–0.1
38.3

5.0 · 10−4–5.02 · 10−4

40.5 0.21–0.22 38.5 -4·103
2 4–32 0.0–1.0 0.0995–0.1

YKA D–H 2 · 106 1 3–26
81.9

0.0–0.1
40.3

0.0021–0.0023
39.8 0.14–0.20 42.3 -14·103

2 4–32 0.0–0.1 0.00059–0.00063

BOSA D–H 2 · 106 1 4–26
80.7

0.02–0.8
40.8

0.0075–0.0080
40.6 0.50–0.53 39.1 -103

2 4–32 0.01–0.3 5 · 10−4–5.2 · 10−4

different layers of the model. Distributions for this parameter in the crust are generally

narrower than those for the lithospheric mantle, but in all cases the algorithm tends to

favour values close to 0%, indicating that scattering beneath these stations is generally

very weak. PDFs for the intrinsic attenuation parameters are more variable. For ILAR,

they are approximately gaussian for α and Qi0L2 . In all cases, they present clear, single,

maxima centered around ∼ 5 · 10−4 and ∼ 30 for Qi0 in layers 1 and 2 of the model

respectively, and ∼ 0.34 for α, which point to intrinsic attenuation being weak in the

crust and extremely strong in the lithospheric mantle. For PDAR, TXAR, YKA and

BOSA, these PDFs are much narrower, almost spike-like for TXAR and PDAR and

approximately gaussian for YKA and BOSA. In all cases, these PDFs show long but

extremely low amplitude tails, such as those in panels e–g and k–m in Figs. 5.6 or

5.7. As for ILAR, results for PDAR and TXAR also point to weak and extremely

strong intrinsic attenuation in the crust and lithospheric mantle respectively. Crustal

attenuation beneath YKA and BOSA appears to be medium for the former and low

for the latter, and weak in the lithospheric mantle in both cases.

As mentioned above, fits to the data envelopes are poor for all stations but ILAR.

Panels n–r in Figs. 5.6, 5.7, 5.8 and 5.9 show that, while the algorithm appears to be

capable of successfully fitting the data envelopes for some frequency bands, doing so for
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Figure 5.4: Summary of the results obtained from the E-EFMD algorithm for PDAR and a 1-layer
model that encompasses the entire lithosphere. Panels content is as in Fig. 4.3.

all five bands simultaneously remains a challenge with these datasets. In particular, for

TXAR, panels n–r in Fig. 5.7 suggest that the E-EFMD algorithm might be capable

of fitting frequency bands G–H (Table 2.3) while failing to do so for frequency bands

D–F. To test whether such a division of the frequency bands into smaller groups could

help improve the inversion results for this station, I decided to run individual inversions

for frequency bands D–F, G–H, C–E and F–H. Instead of the full inversion, I ran a

single MCMC for each case, the results of which are represented in Figs. A90, A91,

A92 and A93, in Appendix A.5, and included in Table 5.2. Loglikelihoods from these

inversions indicate that fitting frequency bands C–E or D–F alone significantly improves

the results, compared to the full E-EFMD inversion results for TXAR shown in Fig.

5.7. Inversions of frequency band groups F–H and G–H, on the other hand, yield
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Figure 5.5: Summary of the results obtained from the E-EFMD algorithm for ILAR and a 2-layer
model, with layers 1 and 2 representing the crust and lithospheric mantle, respectively. Panel content
is as in Fig. A24.

much lower L values (L < −104, as opposed to L > −60 for bands C–E and D–F),

suggesting a much worse performance of the algorithm for these cases. PDFs for the

scattering parameters are all similar to each other and to those obtained for the rest

of the inversions shown in Figs. 5.5–5.9. Distributions for the attenuation parameters
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Figure 5.6: As Fig. 5.5 but for PDAR.

are more variable, with those for inversions of the C–D and D–F groups being more

gaussian, while those for groups F–H and G–H are much narrower, almost spike-like,

with long but low tails for α in layer 2 of the model.

Despite the E-EFMD incorporating the adaptive step size algorithm described in

Section 4.1, all of the inversions shown in Table 5.2 have very high acceptance rates
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Figure 5.7: As Fig. 5.5 but for TXAR.

for the correlation length (up to ∼ 82%). This result is caused by the small effect

this parameter has on the synthetic envelopes and the inability of the E-EFMD to

simultaneously fit the data for all frequency bands for these arrays. A high acceptance

rate will cause the step size for the parameter to increase, but large step sizes may

results in the parameter value being outside the allowed range (defined by amin–amax
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Figure 5.8: As Fig. 5.5 but for YKA.

in this case). The E-EFMD fixes this issue the same way the EFMD does, by forcing it

to bounce back within the limits of the prior distribution (Section 2.1.3). However, the

algorithm continued to accept almost all proposed updates of the correlation length,

regardless of its value (panels b and h in Figs. 5.5, 5.6, 5.7, 5.8 or 5.9), which likely

resulted in these increased acceptance rates.
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Figure 5.9: As Fig. 5.5 but for BOSA.

In an attempt to improve the poor fits to the data, I inverted the data for ILAR

and TXAR again using my alternative implementation of the E-EFMD in which the

frequency dependence coefficient of Qi0, α, is fixed. Results from these inversions are

shown in Figures A94 and A95, and also included in Table 5.2. The removal of one

parameter from the inversion not only did not improve the results, compared to the full
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Figure 5.10: Samples of the highest loglikelihood models extracted from the E-EFMD results for
ILAR shown in Fig. 5.5. Panel content is as in Fig. 4.21.

E-EFMD inversion, it made fits to the data slightly worse (maximum L reached during

the inversion decreased) in both cases. PDFs for the attenuation parameters show a

slight increase in Qi0 in layer 1 for ILAR and a decrease in layer 2 for TXAR, with the

other layers of the models showing distributions very similar to those on panels l and

f of Figs. A94 and A95 respectively. Posterior PDFs for the scattering parameters do

not significantly change for either layer or station. Given the minor effect of removing
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α from the inversion on the results for ILAR and TXAR, I decided not to use this

approach for any of the remaining IMS stations.

Sampling the posterior PDFs for models with the highest loglikelihoods shows that

the behaviour of the algorithm in the inversions of the data from these IMS stations

is similar to that observed for my synthetic tests and data inversions for PSA, ASAR

and WRA in Chapter 4. Figure 5.10, and figures A96–A99, in Appendix A.5, contain

the loglikelihood and parameter values for the models that produce the best fits to the

data in each case. For the stations on thinner lithospheres (ILAR, PDAR and TXAR,

Fig. 5.3), values of the intrinsic quality factor at 1 Hz are very high (Qi0 > 0.02, well

within the extremely strong intrinsic attenuation regime) in the lithospheric mantle,

while those for the crust tend to 0. Q−1
i0 values for YKA and BOSA are lower (Qi0 <

0.008) in the crust than those for the rest of the stations and similarly low in the

lithospheric mantle. As discussed in Sections 4.1.2 and 4.2, these extreme values of the

intrinsic quality factor at 1 Hz generally result in increased variability of the scattering

parameters, which is obvious in panels A/B–2 and A/B–3 in Figs. 5.10, A96, A97, A98

and A99. This means that, even for ILAR, for which fits to the data are reasonably

good, associating the parameter values obtained from these inversions to the physical

structure beneath the stations is probably impossible. The results for ILAR, TXAR

and PDAR also show that the layering of the model, discussed in 4.2, is likely a minor

contributor to the non-uniqueness of the solutions and the bias of the E-EFMD towards

extreme Qi0 values.

Despite the similarities in the behaviour of the E-EFMD algorithm both for the

Australian and IMS arrays/stations, the results from these inversions also highlight

intriguing differences in its ability to simultaneously fit the data envelopes for all fre-

quency bands. To investigate this observation, in Figure 5.11 I represent the data

envelopes for all arrays/stations and frequency bands. Figure 5.11 shows that coda

amplitude variations with frequency change greatly between different arrays/stations.

For the Australian arrays, for frequency bands A–E (Table 2.3), coda amplitudes in-

crease with frequency while keeping relatively constant decay rates. Envelope variations

for the higher frequency bands (F–H) are very small though, with only a slight decrease

in amplitude towards the end of the time window of interest for the E-EFMD analy-

sis (shaded area in plots in Fig. 5.11), which points to marginally faster decay rates.

For PDAR, variations in amplitude are small and similar for all frequency bands, but

coda levels clearly decrease with increasing frequency. Codas for ILAR, YKA, TXAR

and BOSA show a much more complex behaviour, with amplitudes initially increasing

with frequency to then decrease again. Decay rates also appear to vary more for these

stations than for the rest and to follow different patterns. For TXAR, for example, en-

velopes for frequency band A (Table 2.3) have amplitudes and decay rates resembling

those for frequency bands F–H, even if their initial amplitudes vary, while frequency



122
Chapter 5: Lithospheric scattering and intrinsic attenuation beneath International

Monitoring System stations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Am
pl

itu
de

 (A
U)

PSA ASAR WRA YKA
A (0.5-1 Hz)
B (0.75-1.5 Hz)
C (1-2 Hz)
D (1.5-3 Hz)
E (2-4 Hz)
F (2.5-5 Hz)
G (3-6 Hz)
H (3.5-7 Hz)

25 50 75 100
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Am
pl

itu
de

 (A
U)

ILAR

25 50 75 100
Time (s)

PDAR

25 50 75 100
Time (s)

TXAR

25 50 75 100
Time (s)

BOSA

Figure 5.11: Coda variation with frequency in the data envelopes for all arrays/stations studied in
this thesis (PSA, ASAR, WRA, ILAR, PDAR, TXAR, YKA and BOSA) and all frequency bands from
Table 2.3.

bands B and E, on one hand, and C and D, on the other, show codas similar to each

other. For ILAR, however, initial coda amplitudes rise with frequency for the lowest

frequency bands before stabilising for the highest, while decay rates become steeper as

frequency increases, thus decreasing coda amplitudes within the time window of inter-

est for the E-EFMD analysis. YKA and BOSA show similar increase and stabilisation

of initial coda amplitudes to ILAR, but decay rates appear to initially become slower,

for frequency bands A–D/E, to then increase again for bands D/E–H.

The data envelopes in Fig. 5.11 clearly point to significant differences in the small-

scale structure beneath these arrays and stations. Envelopes for YKA and PDAR have

generally much lower amplitudes at all frequencies than the rest of arrays/stations,

while those for WRA and TXAR are much higher than the rest, especially at high

frequencies. Since codas are caused by scattering (e.g. Aki, 1969), and coda levels

are related to stronger contrasts at heterogeneities (as I show in Section 4.1.1), these

disparities are clear indicators of differences in scattering strength beneath the stations.

The variations in amplitude and decay rate with frequency discussed above also point

to the local structure, since intrinsic attenuation strength, directly related to coda

decay rates, is affected by the presence, amount and characteristics of cracks and fluids

beneath the stations (e.g. Müller et al., 2010; Tisato et al., 2015; Sun et al., 2015;

Picotti et al., 2010; Sketsiou et al., 2021). Decay rate changes, in particular, point to

the frequency dependence of the intrinsic quality factor. Here, I chose a power law
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Figure 5.12: Results from the E-EFMD single frequency inversions for ILAR. Panels in each row
contain the posterior PDFs for each parameter in the 2-layer model, as well as the fits to the data
envelope for each of the frequency bands in Table 2.3. Modes for each parameter have been included
in the legends for further reference.

of the form Qi = Qi0f
α for my implementation of the E-EFMD, a relationship that

has often been used in other attenuation studies (e.g. Korn, 1990; Sato et al., 2012;

Sketsiou et al., 2021). For an α in the 0–1 range (see Section 2.1.1), such an equation

implies that Qi will either remain constant or increase with frequency, which in turn

leads to decay rates becoming slower as frequency grows. However, as shown in Fig.

5.11, that is not always the case, which points to a power law frequency dependence of

Qi not being accurate or complex enough in general.

As a preliminary test of this hypothesis, I developed another version of the E-EFMD

code, similar to the one described in Section 4.1.2, in which the frequency dependence of

Qi is not predetermined, but with the ability to run the inversion for a single frequency

band. For each frequency band from Table 2.3 and each of the Australian arrays studied

in Chapters 3 and 4, and each of the IMS stations in this chapter, I ran three parallel

Markov Chains, each 2 million iterations long, which I then combined into a single set
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Figure 5.13: As Fig. 5.12 but for PSA.

of results. Models in this version of the E-EFMD consist of the correlation length, RMS

velocity fluctuations and intrinsic quality factor for each layer of the model, thus making

a total of 6 parameters per frequency band. Results from this inversion for ILAR and

PSA are shown in Figs. 5.12 and 5.13, while similar figures for the rest of the arrays

can be found in Appendix A.6. For all arrays, posterior PDFs for the correlation

length in both layers of the model are very wide, with those for the lowest frequency

bands showing a sharp peak at low values (a < 1km) that gradually disappears as

frequency increases. PDFs for ε and Qi show much more variability, both in the shape

of the distributions and its evolution with frequency, with some parameters remaining

largely constant (εL1 for ILAR, in Fig. 5.12, and QiL1
−1 for PSA, in Fig. 5.13, are

such examples) while others do change with frequency (like QiL2
−1 for ILAR or εL1

for PSA, Figs. 5.12 and 5.13). Common patterns in the frequency dependence of these

parameters are not obvious from these results, but it is generally clear that a simple

power law is probably not representative of the attenuation structure. Fits to the

data in these results are not always good (such as frequency bands A and B for ILAR
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and TXAR, Figs. 5.12 and A103) and loglikelihoods for some cases are extremely low

(L < −1000). This seems to be a consequence of the bias of the E-EFMD algorithm

towards the attenuation parameters, as evidenced by the broad posterior PDFs for

a and ε and narrow or extremely narrow distributions for QiL1 and QiL2 (Figs. 5.12

and 5.13). In general, this new approach appears to be capable of helping avoid the

issues created by forcing a single set of scattering parameters to fit the data at all

frequencies and would allow us to determine how the intrinsic quality factor varies

with frequency in each of these structures. Additionally, since we can also obtain the

frequency dependence of a and ε, we could also determine the type of ACF that best fits

the data, instead of assuming an exponential ACF. However, it is still unclear whether

it will be fully capable of allowing us to estimate the frequency dependence of Qi and

relate the parameter values to the physical structure beneath the arrays and stations

and further work in this direction is recommended.

The data and results presented in this section clearly highlight the complex be-

haviour of both the scattering and intrinsic attenuation parameters with frequency for

these datasets, with a single set of parameters probably not being capable of represent-

ing the heterogeneity structure beneath the stations. For the scattering parameters, the

frequency dependence of a and ε is usually tied to the autocorrelation function (ACF)

of the medium (e.g. Fang and Müller, 1996). The E-EFMD assumes an exponential

autocorrelation function, but other studies suggest a von Kármán distribution may be

a more accurate representation of random media (e.g. Sato and Emoto, 2017; Sato and

Emoto, 2018; Fielitz and Wegler, 2015). For the intrinsic quality factor, alternative

models to the power law I use in my initial implementation of the E-EFMD have been

proposed, such as those by Anderson and Given (1982) or Lekić et al. (2009), but more

research into this topic is still needed to fully determine how the intrinsic quality factor

varies with frequency. Finally, amplitude fluctuations similar to those shown in Fig.

5.11 can also be caused, or accentuated, by other structure related phenomena, such as

the amplification of some frequencies at shallow sediment layers and/or contributions

to scattering by near-receiver topography (e.g. Lee et al., 2009a; Lee et al., 2009b).

5.2.2 Depth-Dependent Energy Flux Model results

The E-EFMD results shown in Section 5.2.1 do not provide reliable estimations of the

scattering and intrinsic attenuation parameters (a, ε, Qi0 and α) for the IMS arrays

studied in this chapter. For this reason, I decided to implement my adaptive step

size and continuation algorithms (see Section 4.1 for details) into my original EFMD

algorithm and apply it to the IMS arrays datasets previously analysed with the E-

EFMD method. The resulting EFMD version is ∼10–15 times faster than my initial

implementation and can be run on HPC clusters, but is otherwise identical to the

algorithm described in Chapter 2. The EFM method applied here is the same described
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and applied in Chapters 2 and 3.

EFM results

As detailed in Chapters 2 and 3, coda decay rates (a1) and values at zero time (a0)

for each frequency band are obtained in the EFM by fitting coda amplitudes for each

one using a linear least-squares algorithm (Figs. A106–A110). From the decay rate

values, intrinsic and diffusion quality factors at 1 Hz (Qi0 and Qd0, respectively) can

be obtained using Eq. 2.16, with their values at other frequencies being defined by

equations 2.15 and 2.14 respectively. The scattering quality factors are calculated from

a0 using Eq. 2.12, and these values can then be used to obtain a first estimation of a

and ε using Eq. 2.13. Finally, the combined quality factor Qcomb was calculated from

Eq. 2.17. A summary of my EFM results for the IMS arrays studied in this chapter

can be found in Table 5.4 and Fig. 5.14.

According to the ranges defined and used throughout chapters 4 and 5, intrinsic

attenuation appears to be weak (Qi0 ≥ 1000) and frequency independent (α = 0.0)

for PDAR, TXAR and BOSA. Seismic waves recorded at ILAR and BOSA experience

medium, frequency dependent, intrinsic attenuation (Qi0 ∼ 400 − 500, α = 0.4, Table

5.3). Diffusion is medium-strong (Qd0 ∼200–700) beneath PDAR, TXAR and BOSA,

and weak (Qd0 ∼ 1400) under ILAR and YKA (Table 5.3). The scattering parameters

(a and ε) take similar values for BOSA and YKA (400 and 700 m, respectively, for the

correlation length, and 3.0% and 3.9% for the velocity fluctuations), but there is more

variability for the rest of the arrays, with a being similar for ILAR and TXAR (2.9 and

3 km), but are much higher for PDAR (> 10 km) (Table 5.3), and the RMS velocity

fluctuation ranging from 3.8–6.4% (Table 5.3). Scattering appears to be the dominating

attenuation mechanism at most frequencies for ILAR and TXAR, while for YKA and

BOSA it only becomes the main driver of attenuation above 2 Hz. For PDAR, Qs

is similarly strong to anelasticity throughout most of the frequency range of interest

and only takes lower values above 3.8 Hz. The lowest Qs values obtained from the

EFM inversion, which would correspond to the strongest heterogeneity, are measured

for TXAR in the 1–2 Hz range, where this parameter presents a sharp minimum that is

Table 5.3: Summary of the main results obtained from the EFM for the IMS arrays: intrinsic
(Qi0) and diffusion (Qd0) quality factors values at 1 Hz, intrinsic quality factor frequency
dependence coefficient (α), correlation length (a) and RMS velocity fluctuations (ϵ).

Array vP (km/s) tN (s) Qi0 Qd0 α a (km) ε (%)

ILAR 7.1 7.1 400± 20 1400± 400 0.4 2.9± 0.3 3.8± 0.1

PDAR 6.8 8.5 1200± 80 200± 10 0.0 13.2± 10.0 6.4± 3.0

TXAR 7.1 9.0 1300± 100 300± 20 0.0 3.0± 2.0 5.7± 1.0

YKA 8.0 28.9 500± 50 1700± 1000 0.4 0.7± 0.2 3.0± 0.2

BOSA 7.9 26.1 1100± 60 700± 90 0.0 0.4± 0.1 3.9± 0.7
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Figure 5.14: Frequency dependence of the intrinsic (Qi), diffusion (Qdiff ), scattering (Qs) and total
(Qcomb) quality factors for the five IMS arrays analysed in this chapter.

not observed for any of the other arrays. For YKA and BOSA, Qs takes higher values

at low frequencies and decreases as frequency increases, while for the rest of the arrays

this quality factor slowly rises with frequency. Finally, the combined quality factor

(Fig. 5.14) suggests overall attenuation is stronger beneath ILAR, TXAR and PDAR

for frequencies below 4 Hz, and for BOSA above those frequencies, even if differences

between arrays become smaller as frequency increases.

The trends and behaviours of the quality factors and scattering parameter values

presented in Table 5.3 and Fig. 5.14 do not appear to immediately correlate with

lithospheric type or thickness, nor with mean P-wave velocities. YKA, BOSA and
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Table 5.4: Summary of the results of the EFMD inversions of the data from ILAR, PDAR,
TXAR, YKA and BOSA using 1- or 2-layer models. For information on the layering of the
models, see Figure 5.3.

Array or Freq. Iterations Layer Corr. length (a) RMS vel. flucts. (ε) Inv. int. Q at 1 Hz Maximum

station bands per chain number 5 – 95 PR (km) AR (%) 5 – 95 PR AR (%) (Q−1
i0 ) loglikelihoood

ILAR

A–H 106 1 2–27 87.2 0.01–0.2 41.3 400±20 -2500

D–H 106 1 4–27 81.8 0.01–0.5 39.1 400±20 -260

D–H 106
1 2–26

81.4
0.1–1.7

36.8 400±20 -50
2 3–32 0.2–4.8

TXAR
D–H 106 1 3–27 81.6 0.0–0.001 38.4 1600±300 < −1 · 108

D–H 106
1 3–25

68.3
0.0–0.001

41.0 1600±300 < −3 · 107
2 4–31 0–0.002

PDAR
D–H 106 1 4–26 80.9 0.0–0.005 36.8 1200±70 < −4 · 106

D–H 106
1 3–25

80.8
0.0–0.005

42.4 1200±70 < −3 · 106
2 4–32 0.0–0.01

YKA D–H 106
1 3–26

81.4
0.0–0.001

37.9 1500±100 < −105
2 4–32 0.0–0.01

BOSA D–H 106
1 3–26

41.2
0.01–0.3

39.3 1100±60 < −3 · 103
2 0.26–0.38 1.11–1.26

PDAR are all installed on cratons (which tend to be less tectonically active), but their

lithospheric thickness varies. For PDAR, the LAB is located at relatively shallow depths

(∼ 60 km, Fig. 5.3), while the ones beneath YKA and BOSA are much deeper (sim200

km). ILAR and TXAR both, on the other hand, sit above thinner lithosphere (≤65

km) outside cratons. There appears to be some similarities in the scattering parameter

values for YKA–BOSA and ILAR–TXAR, but they fail to appear when we compare

the values of the different quality factors. In general, these results are suggestive

of important variations in the strength and characteristics of scattering and intrinsic

attenuation in the lithospheres beneath the arrays that do not appear to correlate with

their general tectonic setting in an obvious manner.

EFMD results

I applied my new implementation of the EFMD algorithm to the datasets described in

Section 5.1 for ILAR, PDAR, TXAR, YKA and BOSA. I inverted the data using 1-

and 2-layer models. In all cases, their bottom depth is equivalent to the LAB, while

for 2-layer models the interface between the two layers represents the Moho (Fig. 5.3).

For each array and model tested, I ran three parallel Markov chains per inversion,

each 10 million iterations long. I then combined them into a single ensemble of models

and parameters, after applying the thinning approach described in Section 4.1.2. A

summary of the results from these inversions can be found in Table 5.4.

My results for PSA and ASAR in Section 3.3.2 show that the 1-layer EFMD for

arrays above thick lithospheres generally produces high amplitude codas that fail to

fit the data. As discussed in Section 3.3.2, this is likely caused by the large thickness

of the scattering layer (twice the thickness of the lithosphere) effectively preventing

diffusion out of it and helping keep high energy levels within the layer at all times. For

this reason, I decided not to attempt inverting the data from YKA or BOSA using this
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Figure 5.15: Summary of the results obtained from the EFMD algorithm for ILAR and a 1-layer
model that encompasses the entire lithosphere. Panel content is as in Fig. 3.9.

new approach of the EFMD, since the lithospheres beneath them extend down to ∼200

km depth, similar to the Australian arrays studied in Chapter 3. For ILAR, I initially

ran the inversion using all frequency bands from Table 2.3. Loglikelihood (L) values

are much higher than they were for ASAR or PSA (L ∼ −2500 for ILAR (Table 5.4),

as opposed to < −1.4 · 107 for PSA and ∼ −10500 for ASAR (Table 3.3)), but these

values are still indicative of poor fits to the data. Panels g–n in Fig. 5.15 shows that

the obtained synthetic envelopes only seem to fit the second part of the coda, with

synthetic coda amplitudes at the beginning of the time window of interest being much

higher than the data ones, especially at low frequencies. RMS velocity fluctuations

obtained from the inversion are extremely low (5–95 PR only extends up to 0.2%).

Since ε is the main controller of initial coda amplitudes (Section 4.1.1, these results

clearly point to the 1-layer EFMD also not being capable of fitting the data from arrays

on thinner lithospheres. For all these reasons, I decided not to use this model to invert

the data from any of the other arrays.
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Figure 5.16: Same as Fig. 5.15 but including only frequency bands D–H from Table 2.3 in the
analysis. Panel content is as in Fig. 3.12.

Using only frequency bands D–H from Table 2.3 in the EFMD inversion of ILAR

data with a 1-layer model produced much better fits to the data, as evidenced by

loglikelihood values in the 260–270 range (Table 5.4, Fig. 5.16). However, initial coda

amplitudes are still too high to match the data envelopes, despite obtained RMS values

being extremely low (ε < 0.5%, Table 5.4). I also inverted the data from TXAR and

PDAR using this configuration, but fits to the data for these arrays are much worse

than for ILAR, with maximum loglikelihoods reached during these inversions being on

the order of < −108 and < −106 respectively (Table 5.4). Results from these inversions

are summarised in Figs. A112 and A111. Despite the increase in loglikelihood values

for ILAR, these results continue to point to 1-layer models generally being too simple

to successfully explain the input data, regardless of the thickness of the lithospheric

model considered.

Similarly, results for the 2-layer model and ILAR show an increase in the maximum

loglikelihood reached during the inversion (L ∼ −50, Table 5.4), compared to the 1-
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Figure 5.17: Same as Fig. 5.16 but for a 2-layer model that represents the crust and lithospheric
mantle. Panel content is as in Fig. 3.12.

Figure 5.18: Same as Fig. 5.16 but for PDAR.
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Figure 5.19: Same as Fig. 5.16 but for TXAR.

Figure 5.20: Same as Fig. 5.16 but for YKA.
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Figure 5.21: Same as Fig. 5.16 but for BOSA.

layer models. For the rest of the arrays,however, loglikelihoods remained extremely

low (L < −105, Table 5.4). Panels j–n in Figs. 5.17–5.21 show that the ensembles of

synthetic envelopes miss the data envelopes either partially or completely throughout

the time window used for the fits. For ILAR (Fig. 5.17), the portion of the initial coda

that the synthetic envelopes fail to match is shorter than for 1-layer models, but the

EFMD algorithm is still uncapable of fully fitting the data envelopes, especially at low

frequencies. 5–95 PRs for the RMS velocity fluctuations are wider in this case than

they were for the 1-layer model, ranging from 0.1–1.7% in the crust and 0.2–4.8% in

the lithospheric mantle. The algorithm still shows a marked preference for ε values

below 0.8% in the crust and 2% in the mantle, but these appear to be still to high

for synthetic initial coda amplitudes to match the input data. Correlation lengths

take values throughout the entire allowed range in both layers, but their 5–95 PRs

show the algorithm favours values above 2–3 km. For PDAR, the EFMD completely

fails to fit the data at all frequency bands (panels j–n in Fig. 5.18), with maximum

loglikelihoods for this case being ∼ 3 · 106. RMS velocity fluctuations take extremely

low (ε < 0.01%) values in both layers of the model. These results suggest the EFMD

is not suitable for the inversion of data from this array, which generally shows much

lower coda amplitudes at all frequency bands than data from the other arrays, as well

as little variation in coda amplitudes with frequency (Fig. 5.11). In the case of TXAR,

the EFMD algorithm seems capable of fitting the data for frequency band D (1.5–3 Hz,
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Table 2.3), but not the rest of the bands included in the analysis (panels j–n in Fig.

5.19), an observation that is evidenced by the very low L values reached during the

inversion (< −3 · 107, Table 5.4). For frequency bands E–H, the ensemble of synthetic

envelopes has higher amplitudes than the input data throughout the time window used

for the fit. ε values for this case are also very low (< 0.002%) in both layers of the

model, but initial synthetic coda amplitudes continue to be too high to match the data

envelopes. Fits for the YKA data are better than for PDAR or TXAR, but worse than

for ILAR, with maximum likelihoods in this case being on the order of −105 (Table

5.4). While synthetic envelopes get much closer to the input codas in this case (panels

j–n in Fig. 5.20), their amplitudes continue to be higher than data ones for most of the

time window of interest, especially for frequency bands D–G. Fits for frequency band H,

however, are much better than for the rest, matching the input envelopes throughout

most of the EFMD time window. RMS velocity fluctuation values are very low in both

layers (ε < 0.01%), but in this case synthetic initial coda amplitudes are generally

lower than those shown in the input data. Finally, results for BOSA again point to low

or extremely low ε and high a values in the crust, but in this case parameters appear

to take very well constrained values in the lithospheric mantle. The 5–95 PRs of the

parameters in the bottom layer of the model are extremely narrow (0.12 km and 0.15%,

respectively, Table 5.4) and centered around 0.29 km for a and 1.16% for ε. Despite this

difference with respect to inversions for the other arrays, the maximum loglikelihood

found during the inversion continued to be very low (< −103, Table 5.4) because of

synthetic coda envelopes having lower amplitudes than the data ones for most of the

frequency bands.

The results shown in Figs. 5.17–5.21 suggested the EFMD algorithm is not capable

of simultaneously fitting neither all the frequency bands from Table 2.3 nor a selection of

the five highest bands. However, they also show that it could be capable of individually

fitting some of them, especially for some of the arrays. For this reason, I decided to

develop the EFMD equivalent of the single-frequency inversion code tested for the E-

EFMD in Section 5.2.1. For these inversions, I ran 3 parallel Markov chains for each

array, each 2 million iterations long. I thinned the resulting chains by taking one in ten

samples and combined them into a single set of results, similarly to the processing of the

EFMD or E-EFMD results. Figures 5.22 and 5.23, shown here, as well as A113, A114

and A115, placed in Appendix A.7 (Section A.7.2) to avoid repetition, summarise these

results. Panels on the right column of these plots show the data envelopes together with

the ensemble of synthetic envelopes built during the inversions. These plots continue to

show a lot of variability in the ability of the algorithm to successfully fit the data. For

ILAR or YKA (Figs. 5.22 and A115, respectively), for example, fits tend to improve

as frequency increases, even if synthetic envelopes still fail to match the initial parts of

the coda. For TXAR or BOSA (Figs. A114 and 5.23), the algorithm can only fit the
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Figure 5.22: Results from the EFMD single frequency inversions for ILAR. Panels in each row
contain the posterior PDFs for each parameter in the 2-layer model, as well as the fits to the data
envelope for each of the frequency bands in Table 2.3. Modes for each parameter have been included
in the legends for further reference.

data at some frequencies (C–D for TXAR, D–G for BOSA, Table 2.3). Finally, in the

case of PDAR (Fig. A113), the EFMD appears to be incapable of fitting the data at

any frequency band.

Most of the multi-frequency and single-frequency inversion results presented in this

section point to very high correlation lengths (> 10 km), as well as low or extremely

low RMS velocity fluctuations values (< 1%) in both layers of the model for all arrays.

These results are probably caused by the EFMD trying to match the low initial coda

amplitudes of the input data by lowering ε, which in turn reduces the effect correlation

lengths have on the synthetic coda envelopes. This is also the most likely cause of the

high acceptance rates shown for a in Table 5.4. This behaviour of the algorithm, which

can be considered a sort of bias towards low ε values, and similar to the one that the

E-EFMD exhibits towards low Qi0 values, greatly reduces the reliability of these results

and prevents further interpretation of the obtained parameter values. In Chapter 3, the

higher amplitudes and comparable frequency behaviour of the data from the Australian



136
Chapter 5: Lithospheric scattering and intrinsic attenuation beneath International

Monitoring System stations

Figure 5.23: As Fig. 5.12 but for BOSA.

arrays prevented me from observing this effect. However, as shown in Fig. 5.11, the

coda envelopes from the IMS arrays present much more complex and large variations of

amplitude with frequency, thus adding more difficulty to their inversion and favouring

the apparition of extreme behaviours of the algorithm.

In summary, the results presented in this chapter show that my E-EFMD and

EFMD algorithms, while capable of producing good fits to the input data in some

cases, can be heavily biased towards extreme values of some of the parameters. As

discussed in Chapter 4, the origin of this behaviour is the clearly differentiated effect

of each parameter on the obtained synthetic envelopes. Few, if any, conclusions can be

drawn from the inversion results, and it is not possible to relate parameter values to the

physical structure beneath the stations. Complex variations in coda amplitudes and

decay rates add an extra challenge to the E-EFMD and EFMD inversions of datasets

from areas with varying tectonic and geological contexts. Given the limitations and

simplicity of the method, it is not clear whether it is at all suited to simultaneously

resolve the depth dependence of the scattering and intrinsic attenuation parameters,

as well as the frequency dependence of Qi.
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5.3 Conclusions

In this chapter, I initially apply the E-EFMD algorithm described and applied in Chap-

ter 4 to new, large, high quality datasets of teleseismic events recorded at five stations

part of the International Monitoring System, ILAR, PDAR, TXAR, YKA and BOSA.

In addition to the standard E-EFMD, which inverts for the scattering and intrinsic

attenuation parameters for each layer of 1- or 2-layer models, I also inverted the data

for some stations using alternative implementations in which the frequency dependence

coefficient of Qi, α, is fixed, or inversions are carried out for each individual frequency

band. The results from these inversions suggest that neither a lithospheric nor a crustal

1-layer model are complex enough to reproduce the observed coda envelopes. 2-layer

models greatly improve the fits to the data for these IMS datasets, but these are still

generally worse at all frequency bands than those for the Australian arrays presented

in Section 4.2. This can be at least partly explained by the observation that, while

data envelopes for PSA, ASAR and WRA have similar variations of coda amplitude

and decay rate with frequency, those for the IMS stations are much more complex and

change from one station to another (Fig. 5.11). These disparities are directly related

to changes in the small-scale structure beneath the stations and point to the power

law frequency dependence of Qi assumed in my E-EFMD implementation and many

attenuation studies possibly not being complex enough to explain them. As mentioned

above, in this chapter I tested a new approach that allows me to independently invert

the data for each frequency band without assuming any specific frequency dependence

of Qi. However, fits to the input data in these inversions are not always good and the

parameter results show the same wide variability and bias towards extreme values of

the attenuation parameters than my previous E-EFMD implementations.

Posterior PDFs from the E-EFMD inversions of the IMS stations data in this chap-

ter also show the same extreme non-uniqueness and trade-offs present in the results for

my synthetic tests and data inversions in Chapter 4, thus highlighting again the suit-

ability of Bayesian inference for this kind of study. Posterior PDFs for the scattering

and intrinsic attenuation parameters allowed me here to confirm that this behaviour

is a consequence of the bias of the E-EFMD towards extreme values of Qi0, which is

itself caused by the very specific effect each parameter has on the computed synthetic

envelopes (Section 4.1.1). These results strongly suggest that, whenever trying to si-

multaneously characterise seismic scattering and attenuation, either with an Energy

Flux Model or a different technique, it is highly advisable to carry out detailed sen-

sitivity analyses similar to the one in Section 4.1.1 in order to detect and potentially

prevent bias in the obtained parameter values.

I also inverted the datasets for the IMS arrays studied in this chapter using an

improved version of my initial implementation of the EFMD. This new version of the



138
Chapter 5: Lithospheric scattering and intrinsic attenuation beneath International

Monitoring System stations

code, faster and more efficient, confirmed my previous observation of 1-layer models

not being complex enough to explain the data. Results for 2-layer models continued

to present poor fits to the data in general. This observation is likely caused by the

inability of the algorithm to match the low initial coda amplitudes present in the data,

which in turn results in an effective bias towards low or extremely low values of ε. The

apparent ability of the algorithm to fit some specific frequency bands in these inversions

led me to invert the data using the single-frequency approach also applied to the E-

EFMD in Section 5.2.1. These inversions continued to show the same tendency towards

low ε values in most cases, even if the algorithm managed to accurately fit the data

in more cases than for the multi-frequency inversions. As with my E-EFMD results,

the EFMD bias towards low values of the RMS velocity fluctuations observed in the

IMS arrays inversions prevents me from interpreting the obtained parameter values, or

relating them to the physical structure beneath the arrays.

The data inversions in this chapter also explore the role of variations in the layer-

ing of the models on the obtained E-EFMD and EFMD results, which was suggested

as a potential source for the non-uniqueness of the results in Chapter 4. While the

lithospheric structures beneath YKA and BOSA are similar to those for the Australian

arrays, with Moho and LAB depths being ∼ 40 and ∼ 200 km, those for ILAR, TXAR

and PDAR have similar crustal thicknesses to YKA and BOSA but LABs less than 70

km deep (Fig. 5.3), thus resulting in very thin (10–20 km) bottom layers in their models.

Still, inversion results for these arrays show the same non-uniqueness in the solutions

and strong trade-offs between the scattering and intrinsic attenuation parameters (Figs.

5.5–5.9, 5.10 and A96–A99). Layer thicknesses in the lithospheric models for ILAR,

TXAR and PDAR are almost the opposite to those for the Australian arrays, YKA and

BOSA, with crusts up to 4 times thickner than the lithospheric mantle beneath them.

Both the EFMD and E-EFMD are highly sensitive to variations in the model layering,

but the fact that such different settings can produce such similar results from both of

them suggests the trade-offs and effects of the different parameters to coda amplitudes

are likely more important contributors to the non-uniqueness of the solutions. Still,

it would be advisable to continue testing the algorithm for models with varying layer

thicknesses, so this hypothesis could be confirmed.

Finally, my results show that, regardless of the origin of the lack of uniqueness in the

solutions, relating the obtained parameter values to the physical small-scale structure

beneath any of these stations remains not only difficult, but even potentially impossi-

ble. As discussed in Chapter 4, adding more prior information about the parameters

and/or jointly inverting for P- and S-wave codas could help avoid extreme values of the

parameters, thus potentially reducing the width of the obtained posterior PDFs and

ameliorating the trade-offs between the parameters.
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Conclusions

Seismic scattering and absorption greatly affect the signals recorded by seismic in-

struments. Many disciplines obtain measurements from seismic amplitudes, either di-

rectly or indirectly, like seismic hazard estimates (e.g. Somerville, 2000; Jarahi, 2016;

Malagnini et al., 2007) or magnitude-yield calculations in nuclear or chemical explosion

monitoring (e.g. Selby et al., 2012; Zhang and Wen, 2013; Pilger et al., 2021). There-

fore, it is essential to have an accurate and realistic characterization of the small-scale

scattering and attenuation structures and the effects they have on recorded signals.

Additionally, knowledge about these mechanisms can help us improve our understand-

ing of the structure and dynamics of our planet, from the deep Earth to volcanoes

and faults (e.g. De Siena et al., 2014; Napolitano et al., 2020; Sketsiou et al., 2021;

Carcolé and Sato, 2010; Cormier and Li, 2002). For this purpose, in this thesis I ap-

plied Energy Flux Models to the study of scattering and intrinsic attenuation in the

lithosphere. These simple but versatile techniques aim at characterizing the small-scale

heterogeneity and attenuation structure of the lithosphere beneath seismic arrays or

stations. Based on the conservation of energy and geometric spread as the seismic

wavefront propagates through the model, Energy Flux Models implicitly include mul-

tiple scattering and are applicable to both weak and strong scattering regimes. Details

on the theoretical background, implementation and testing of these methods, together

with my Bayesian inference algorithm, as well as their application to real datasets,

have been thoroughly described and discussed in the individual chapters. The present

chapter summarises and draws conclusions over the entirety of the thesis.

In Chapter 2, I combined the single-layer Energy Flux Model (EFM, Korn, 1990),

the depth-dependent Energy Flux Model (EFMD, Korn, 1997) and my own, new,

Bayesian inference algorithm. From the EFM (Section 2.1.1), I obtain a first estima-

tion of the intrinsic, scattering and diffusion quality factors, which I then use to compare

the strength and effect of these different attenuation mechanisms on the recorded seis-
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mograms. This method does not permit any layering in the structure, so these quality

factors represent the average within a scattering layer of unspecified thickness. The

EFMD (Section 2.1.2) allows multi-layer models, and I tested 1-, 2- and 3-layer mod-

els (Section 2.1.3), with these layers representing either the whole lithosphere (1-layer

models), the crust and lithospheric mantle (2-layer models), or the upper and lower

crust and lithospheric mantle (3-layer models). Adaptive variations in the thickness

of these layers are not included in the EFMD Bayesian algorithm, since they modify

the energy balance within the model and can greatly affect the results of the inversion.

The intrinsic quality factor (Qi0) and frequency dependence coefficient (α) obtained

from the EFM are used to characterize the absorption structure in the EFMD models

and assumed to take the same value throughout the entire lithosphere, since my initial

implementation of this method does not allow for their independent calculation. The

results from my EFMD synthetic tests (Section 2.1.3) show the ability of this approach

to accurately recover the input parameter values for 1- and 2-layer models (correlation

length, a, and RMS velocity fluctuations, ε, for each layer of the model). Fits to the

synthetic data for the 3-layer model were excellent, but the EFMD inversion algorithm

was not capable of accurately recovering the input parameter values and pointed to

two independent families of parameters being equally capable of reproducing the input

synthetic codas. These results highlight the presence of strong and complex trade-offs

between the scattering parameters, as well as non-unique solutions (Section 2.1.3).

With the aim of testing the ability of the EFM/EFMD approach described above to

resolve small differences in the scattering and attenuation structures and relate them to

local tectonic histories, I applied it to large, high-quality datasets of teleseismic events

recorded at the Pilbara (PSA), Alice Springs (ASAR) and Warramunga (WRA) seismic

arrays in Chapter 3. PSA is located on the Archaean West Australian Craton (WAC),

a tectonic block that has been located at passive margins without being affected by

much tectonic activity throughout most of its history (e.g. Drummond and Collins,

1986) (Section 3.2). ASAR and WRA are located on the Proterozoic North Australian

Craton (NAC) (e.g. Cawood and Korsch, 2008), with WRA being near the center of

the craton in a tectonically quiet area, and ASAR lying on its southern edge (Fig.

3.4), in an area affected by more recent and intense tectonic activity (e.g. Aitken et al.,

2009; Aitken, 2009) (Section 3.2). 3.3 From the EFM, I obtained lower (Qi0 = 1000),

frequency dependent, values of the intrinsic quality factor for ASAR, while for PSA

and WRA Qi appears not to vary with frequency and takes higher values (Qi = 2100,

Table 3.2). The scattering, diffusion and combined quality factors, as well as the

first estimation of the scattering parameters, take similar values for ASAR and WRA

(Qd0 = 400 in both cases, and a and ε are 0.9 and 1.1 km, and 4.7 % and 4.5 % for

ASAR and WRA respectively), while taking generally higher values for PSA (Table

3.2, Fig. 3.8), pointing to scattering and diffusion being weaker beneath this array
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than under the others. My EFMD results provide more details about the heterogeneity

structure and clearly point to the crust beneath the arrays being more heterogeneous

than the lithospheric mantle (Section 3.3). Crustal correlation lengths take values in

the 0.5–0.8, 0.2–1.4 and 0.7–1.5 km range for PSA, ASAR and WRA respectively, while

in the lithospheric mantle they vary from 3–4 km to 32 km in all cases (Table 3.2).

RMS velocity fluctuations in the crust and lithospheric mantle range from 2.3–2.5 %

and 0.1–1.8 % for PSA, 2.4–3.0 % and 0.1–3.7 % for ASAR and 3.1–3.9 % and 0.5–5.0

% for WRA (Table 3.2). These inversions further highlight the non-uniqueness of the

solutions observed in my synthetic tests in Section 2.1.3. All these values agree with

previous studies in these regions and suggest the scattering structures under ASAR and

WRA are similar to each other and different to PSA, a result that positively correlates

with the tectonic histories of these areas and also matches previous scattering studies

in the area (e.g. Kennett, 2015; Kennett and Furumura, 2016; Kennett et al., 2017).

To help overcome some of these limitations, in Chapter 4 I extended the EFMD

Bayesian inference algorithm to include the value of Qi at 1 Hz (Qi0) and its frequency

dependence coefficient (α) as free parameters, in addition to the correlation length

(a) and RMS velocity fluctuations (ε). This new code, the E-EFMD, is therefore

completely independent from the EFM and aims to overcome the limitation of the

homogeneous Qi structure assumed in my previous implementation of the method.

To my knowledge, this is the first attempt at trying to simultaneously characterize

the depth-dependent scattering and absorption structures of the lithosphere using a

depth-dependent Energy Flux Model. My comprehensive testing of this new approach

in Chapter 4 revealed very strong trade-offs between the same parameter in different

layers of the model, but also between different parameters and layers. Of particular

interest are the interactions between the intrinsic quality factors in the different layers

of the model, which appear to be almost interchangeable and have a strong effect on

the inversion results (Sections 4.1.2 and 4.3). These interactions lead to extremely non-

unique inversion solutions, with parameter combinations representative of very different

scattering and attenuation scenarios being capable of producing identical synthetic

envelopes within the time window used for the analysis at all frequency bands (Sections

4.1.1 and 4.1.2). This inability to accurately retrieve the input parameter values means

that, despite the algorithm achieving good fits to the data at all frequency bands,

results from these inversions might not entirely represent the structure beneath the

station.

To further test the E-EFMD, in Chapters 4 and 5, I applied it to the same datasets

from PSA, ASAR and WRA I used in Chapter 3, but also to five new, analogous

datasets of events recorded at arrays or stations part of the International Monitoring

System (IMS). Results from these data inversions show the same extreme trade-offs

and lack of unique solutions as my E-EFMD synthetic tests in Section 4.1.2, preventing
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me from drawing any final conclusions for many of these stations. The comparison of

my EFM, EFMD and E-EFMD results for the Australian arrays shows relatively good

agreement between them (Section 4.2), but uncertainties (represented by wider, less

Gaussian, posterior PDFs) are larger for the E-EFMD and most of the variability of

the parameters can be attributed to the behaviour of the algorithm itself, instead of the

physical structure beneath the arrays. These results are, therefore, less reliable than

those from the EFMD, shown in Section 3.3. Inversion results for the IMS stations in

Chapter 5 show a similar algorithm behaviour, with the addition of very poor fits to

the input data in most cases. For some of them, the E-EFMD appears to be capable of

fitting some of the frequency bands, but a simultaneous fit of bands D–H from Table

2.3 was only possible for ILAR. EFMD inversion results for the IMS arrays also failed

to produce reliable, or interpretable, results that could be used to characterize the het-

erogeneity structure of the lithosphere beneath them. In this case, the algorithm shows

a marked bias towards low or extremely low values of the RMS velocity fluctuations

that reduce the effect of correlation lengths in the obtained synthetic envelopes. The

most likely cause for this behaviour is the low initial coda amplitudes present in the

data for most of the arrays (Fig. 5.11). In general, the results I present here illustrate

that relating either the E-EFMD or EFMD results to the scattering and attenuation

structure of the lithosphere beneath any of these arrays/stations, or the tectonic history

of the regions they are located on, is extremely challenging, and few clear conclusions

can be drawn from them.

The synthetic tests and real data inversions I carried out provide a thorough insight

into the characteristics and behaviour of both single-layer and depth-dependent Energy

Flux Models when combined with a Bayesian inference algorithm. My results suggest

full inversions for the scattering and attenuation parameters within each layer of the

model, such as the ones done by the E-EFMD, fail to yield reliable results. Inverting

only for the scattering parameters, using the EFM/EFMD combination, decreases the

magnitude of the trade-offs between the parameters and helps, therefore, reducing the

non-uniqueness in the parameter inversions. These results are mainly caused by the

simplicity of the EFMD algorithm and the different effect each parameter has on the

computed synthetic envelopes. Equation 2.20 defines the energy balance within each

layer of the model in the EFMD and E-EFMD in terms of the one-way travel times

through the layers and the scattering and absorption quality factors. My sensitivity

tests (Section 4.1.1) show that each parameter has a very specific effect on the synthetic

envelopes, with the scattering and attenuation parameters being related to the initial

coda amplitudes and the decay rate, respectively. In general, the effect of even small

variations inQi0 on the synthetic codas was much greater than for the other parameters,

which results in the E-EFMD algorithm being biased towards Qi0, an effect that is also

observed, though at a smaller scale, for ε variations in the EFMD. This, together with
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the extreme non-uniqueness inherent to the EFMD/E-EFMD, also shown in Sections

2.1.3, 4.1.2, 4.2 or 5.2, greatly reduces the importance of the remaining parameters in

the inversion, as well as the reliability of the results.

There are some approaches that could be taken to overcome the issues discussed

here, both with the EFM/EFMD and the E-EFMD algorithms. For cases in which

we are more interested in resolving the absorption structure than the scattering one,

an alternative implementation of the EFM/EFMD in which the scattering parameters

are obtained from the EFM, in a 1D approximation, while the EFMD inverts for the

absorption could help invert for Qi0 and α without the problems shown in E-EFMD

results. However, the limitation of the EFM to a single, unconstrained, layer would

remain. Combining the EFMD with other methods, such as the coda normalization

method (e.g. Aki, 1980a; Yoshimoto et al., 1993) or peak-delay measurements (e.g.

Takahashi et al., 2009), to invert for either the scattering or absorption parameters,

instead of using the EFM, could also help resolve some of the complex trade-offs and

reduce the uncertainty in the inversion results while circumventing the disadvantages

of the EFM. Adding more constraints to the problem, by simultaneously fitting both

P- and S-wave codas could also help improve the results and reduce the non-uniqueness

of the solutions.

My results also highlight the importance of carrying out the inversion in a prob-

abilistic sense using Bayesian inference, a conclusion from this study that is probably

valid beyond Energy Flux Models and applies to any method aimed at characterizing

the small-scale structure of the Earth. As discussed above, the sensitivity analysis I

carried out in Section 4.1.1 clearly shows the effect of each parameter on the obtained

coda envelopes, and proves that essentially identical amplitudes can be obtained from

parameter combinations representative of very different scattering and attenuation sce-

narios. Such a complex behaviour in a system requires, by necessity, either to be

combined with a Bayesian inference algorithm, such as the one I use here, or a compre-

hensive sampling of the entire parameter space, so a clearer representation of the misfit

and posterior PDF can be obtained. The Bayesian framework I incorporated into the

EFMD and expanded in the E-EFMD could also provide some assistance in eliminating

part of the non-uniqueness of the solutions shown in my results. Throughout this thesis,

I have always assumed no prior knowledge on the values of the parameters. However,

it would be possible to obtain information about some of the parameters from previous

studies, either in the areas of interest or comparable locations, and add those to the

algorithm in the form of non-uniform prior distributions, thus effectively narrowing

down the range of suitable parameter combinations and focusing the inversion towards

more realistic values.

In summary, in this thesis I characterize the small-scale heterogeneity and attenu-

ation structure of the lithosphere beneath seismic arrays and stations by using Energy
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Flux Models. The main advantage of these techniques is their computational efficiency,

which allowed me to combine them with a Bayesian inference algorithm and test mil-

lions of parameter combinations in a fast manner. Results from this algorithm provide

comprehensive information about the parameter space, as well as the uncertainty and

trade-offs in the determination of the parameters. My synthetic tests suggest we can

either resolve the scattering or the absorption parameters in 1- or 2-layer models, but

challenges in inverting for both remain. Still, and despite their simplicity, real data

inversions using my EFM/EFMD approach have proven to yield reasonable results in

agreement with similar past studies. The EFM/EFMD approach can still be consid-

ered, therefore, as a useful and computationally efficient tool that can either be used on

their own or as a first step in the application of other, more computationally expensive,

methods.
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through von Kármán-type random media: joint use of the radiative transfer equation

with the Born approximation and the Markov approximation”. Geophysical Journal

International 211 (1), 512–527.

Sato, H. and K. Emoto (2018). “Synthesis of a Scalar Wavelet Intensity Propagating
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Appendices

A.1 Dataset size analysis complementary results

Figures in this section complement those showed in Section 3.1.1, which analyses the

effect of the size of the dataset on coda amplitudes and results obtained from the

EFMD inversion. Figures A1 to A7 contain the amplitude residuals for all frequency

bands listed on Table 2.3, except from frequency band B, which was already included

in Section 3.1.1. Similarly, Figs. A8 to A14 contain the statistical analysis of the coda

amplitude residuals shown in Figs. A1 to A7, as well as the decay rates obtained from

the EFM (Section 2.1.1).
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Figure A1: Amplitude residuals obtained by subtracting each of the 250 realizations of stacks of N
events from the stack of the full dataset (407 events, Table 3.1) available for frequency band A (0.5 –
1 Hz, Table 2.3). Black lines highlight the residuals for a randomly chosen stack.
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Figure A2: As Fig. A1, but for frequency band B (0.75 – 1.5 Hz, Table 2.3).
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Figure A3: As Fig. A1, but for frequency band C (1 – 2 Hz, Table 2.3).
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Figure A4: As Fig. A1, but for frequency band E (2 – 4 Hz, Table 2.3).
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Figure A5: As Fig. A1, but for frequency band F (2.5 – 5 Hz, Table 2.3).
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Figure A6: As Fig. A1, but for frequency band G (3 – 6 Hz, Table 2.3).
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Figure A7: As Fig. A1, but for frequency band H (3.5 – 7 Hz, Table 2.3).
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Figure A8: Statistical analysis of the amplitude residuals shown in Fig. A1 and coda decay rates
(a1) obtained from the first step of the EFM analysis for frequency band A (Table 2.3). a and b)
Boxplots of the values for stacks of 5, 10, 20, 50, 75, 100, 200 and 300 events; c and d) probability
density functions; e and f) standard deviation value for all tested N values. Orange lines in panels a
and b represent the median of the residuals for each value of N. Boxes mark the interquartile range
(IQR), while upper and lower whiskers extend from both ends of the box to 1.5 · IQR above and below
the box respectively. Residuals or coda decay rates values outside this range are considered outliers.
Black lines on panels e and f represent the expected decay of the standard deviation, according to the
Central Limit Theorem. The orange shaded areas on the same panels mark the standard deviation
value for N = 60–80, which we suggest as the minimum number of events necessary to ensure coda and
coefficients stability.
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Figure A9: Same as Fig. A1 but for frequency band B (Table 2.3).
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Figure A10: Same as Fig. A1 but for frequency band C (Table 2.3).



170 Appendices

Figure A11: Same as Fig. A1 but for frequency band E (Table 2.3).
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Figure A12: Same as Fig. A1 but for frequency band F (Table 2.3).
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Figure A13: Same as Fig. A1 but for frequency band G (Table 2.3).
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Figure A14: Same as Fig. A1 but for frequency band H (Table 2.3).
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A.2 E-EFMD sensitivity test complementary results

Section 4.1.1 analyses the sensitivity of the E-EFMD to each of the parameters obtained

from the Bayesian inversion. Figure 4.2 shows the synthetic envelopes for frequency

band D (Table 2.3) and a collection of datasets designed so that only one of the seven

parameters is allowed to vary. Figures in this section are analogous to Fig. 4.2 but for

the remaining frequency bands in Table 2.3.
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Figure A15: Synthetic envelopes for frequency band A (Table 2.3 and a collection of synthetic
datasets in which one of the seven parameters the E-EFMD inverts for is allowed to vary, while the rest
remains constant. Panels in the bottom row contain the same synthetic envelopes than panels A–1 to
D–1, but I zoomed into the time window ranging from 60–70 s so I could observe differences in coda
levels and decay rates in more detail. All plots within each row have the same scale in both axes.
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Figure A16: As Fig. A15 but for frequency band B from Table 2.3.
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Figure A17: As Fig. A15 but for frequency band C from Table 2.3.
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Figure A18: As Fig. A15 but for frequency band E from Table 2.3.
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Figure A19: As Fig. A15 but for frequency band F from Table 2.3.
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Figure A20: As Fig. A15 but for frequency band G from Table 2.3.



180 Appendices

0 20 40 60 80 100
Time (s)

0.0

0.8

1.6

2.4

Am
pl

itu
de

 (A
U)

A - 1
1 = 2 = 3%,

 Qi0L1 = Qi0L2 = 500, 
 = 0.5,

a2 = 1.0 km
a1 = 0.5 km
a1 = 1.0 km
a1 = 2.0 km
a1 = 5.0 km
a1 = 15.0 km

0 20 40 60 80 100
Time (s)

A - 2
1 = 2 = 3%,

 Qi0L1 = Qi0L2 = 500, 
 = 0.5,

a1 = 1.0 km
a2 = 0.5 km
a2 = 1.0 km
a2 = 2.0 km
a2 = 5.0 km
a2 = 15.0 km

0.0

0.8

1.6

2.4

Am
pl

itu
de

 (A
U)

B - 1
a1 = a2 = 1 km,

 Qi0L1 = Qi0L2 = 500, 
 = 0.5,
2 = 3%

1 = 1%
1 = 3%
1 = 5%
1 = 7%

B - 2
a1 = a2 = 1 km,

 Qi0L1 = Qi0L2 = 500, 
 = 0.5,
1 = 3%

2 = 1%
2 = 3%
2 = 5%
2 = 7%

0.0

0.8

1.6

2.4

Am
pl

itu
de

 (A
U)

C - 1
a1 = a2 = 1 km,

 1 = 2 = 3, 
 = 0.5,

 Qi0L2 = 500
Qi0L1 = 50
Qi0L1 = 100
Qi0L1 = 500
Qi0L1 = 1200

0 20 40 60 80 100
Time (s)

C - 2
a1 = a2 = 1 km,

 1 = 2 = 3,
 = 0.5,

 Qi0L1 = 500
Qi0L2 = 50
Qi0L2 = 100
Qi0L2 = 500
Qi0L2 = 1200

0 20 40 60 80 100
Time (s)

0.0

0.8

1.6

2.4

Am
pl

itu
de

 (A
U)

D - 1
a1 = a2 = 1 km,
 1 = 2 = 3%,

Qi0L1 = Qi0L2 = 500
 = 0.0
 = 0.25
 = 0.5
 = 0.75
 = 1.0

Frequency band = 3.5-7 Hz

Figure A21: As Fig. A15 but for frequency band H from Table 2.3.
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A.3 E-EFMD synthetic tests complementary results

A.3.1 Synthetic tests results summaries

Table 4.1 summarises the layering, input parameter value and inversion results for all

of the synthetic tests I carried out to test the ability of the E-EFMD to accurately

recover the input model in a wide variety of intrinsic attenuation settings. Figures in

this section, similarly to Figs. 4.3, 4.6, 4.7 and 4.8, graphically summarise the results

of the E-EFMD Bayesian inversion for the rest of the synthetic tests in Table 4.1.

Figure A22: Summary of the results for the synthetic test number 2 (Table 4.1), representing a
single-layer model of the lithosphere in which intrinsic attenuation is strong and frequency dependent
(Q−1

i0 = 0.01, α = 0.5). Panel a contains the posterior probability exponent, or loglikelihood (L), for
all accepted models in each of the three chains I combined to produce the full set of results. Panels b–c
and e–f show the posterior PDFs for each of the parameters obtained from the E-EFMD inversion for
this model (correlation length (a), RMS velocity fluctuations (ε), inverse intrinsic quality factor at 1
Hz (Qi0) and power law exponent (α)), while panels d and g present the joint PDFs for the scattering
and intrinsic attenuation parameters respectively. Dotted lines in plots b–e point to input parameter
values, while shaded areas represent the 5–95 percentile range for each of them. Finally, panels h–o
show the input data envelopes for each frequency band (dotted lines) together with the ensemble of
envelopes obtained from all accepted models during the inversion (represented by the colormap in the
background). Shaded areas in these plots highlight the time window used for the fit to the coda.
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Figure A23: As Fig. A22 but for synthetic test 3 from Table 4.1.
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Figure A24: As Fig. A22 but for synthetic test 4 from Table 4.1.
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Figure A25: Summary of the results for the synthetic test number 6 (Table 4.1), representing
a lithosphere with constant intrinsic attenuation (Q−1

i0 = 0.01) without any frequency dependence
(α = 0). Panel content is as in Fig. 4.3, with the addition of panels h–k for parameters in the
lithospheric mantle.
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Figure A26: As Fig. A25, but for synthetic test 7 from Table 4.1.
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Figure A27: As Fig. A25, but for synthetic test 9 from Table 4.1.
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Figure A28: As Fig. A25, but for synthetic test 9* from Table 4.1, in which α is not inverted for
but fixed at 0.5.
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Figure A29: As Fig. A25, but for synthetic test 10 from Table 4.1.
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Figure A30: As Fig. A25, but for synthetic test 12 from Table 4.1.
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Figure A31: As Fig. A25, but for synthetic test 13 from Table 4.1.
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Figure A32: As Fig. A25, but for synthetic test 14 from Table 4.1.
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Figure A33: As Fig. A25, but for synthetic test 15 from Table 4.1.
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Figure A34: As Fig. A25, but for synthetic test 16 from Table 4.1.
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Figure A35: As Fig. A25, but for synthetic test 17 from Table 4.1.
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Figure A36: As Fig. A25, but for synthetic test 17* from Table 4.1.
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Figure A37: As Fig. A25, but for synthetic test 18 from Table 4.1.
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Figure A38: As Fig. A25, but for synthetic test 19 from Table 4.1.
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Figure A39: As Fig. A25, but for synthetic test 20 from Table 4.1.
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Figure A40: As Fig. A25, but for synthetic test 21 from Table 4.1.



200 Appendices

Figure A41: As Fig. A25, but for synthetic test 22 from Table 4.1.
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A.3.2 Synthetic tests PDF marginals

Figures 4.12 and 4.13, in Section 4.1.2, contain the joint PDFs for all parameters and

layers in the model for synthetic tests 9 and 7, respectively. This section gathers

analogous figures for the remaining synthetic tests for 2-layer models from Table 4.1.

Figure A42: Obtained joint PDFs for all parameters and layers in synthetic model 5 from Table
4.1. Plots in the diagonal of the figure contain the individual PDF for the individual scattering and
intrinsic attenuation parameters parameters.
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Figure A43: As Fig. A42, but for synthetic test 6 from Table 4.1.
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Figure A44: As Fig. A42, but for synthetic test 8 from Table 4.1.
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Figure A45: As Fig. A42, but for synthetic test 9* from Table 4.1.
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Figure A46: As Fig. A42, but for synthetic test 10 from Table 4.1.
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Figure A47: As Fig. A42, but for synthetic test 11 from Table 4.1.
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Figure A48: As Fig. A42, but for synthetic test 12 from Table 4.1.
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Figure A49: As Fig. A42, but for synthetic test 13 from Table 4.1.
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Figure A50: As Fig. A42, but for synthetic test 14 from Table 4.1.
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Figure A51: As Fig. A42, but for synthetic test 15 from Table 4.1.
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Figure A52: As Fig. A42, but for synthetic test 16 from Table 4.1.
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Figure A53: As Fig. A42, but for synthetic test 17 from Table 4.1.
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Figure A54: As Fig. A42, but for synthetic test 17* from Table 4.1.
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Figure A55: As Fig. A42, but for synthetic test 18 from Table 4.1.
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Figure A56: As Fig. A42, but for synthetic test 19 from Table 4.1.
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Figure A57: As Fig. A42, but for synthetic test 20 from Table 4.1.
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Figure A58: As Fig. A42, but for synthetic test 21 from Table 4.1.
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Figure A59: As Fig. A42, but for synthetic test 22 from Table 4.1.
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A.3.3 E-EFMD Bayesian inversion results samples

In Section 4.1.2, I sampled the ensembles obtained for synthetic tests 5 and 11 (Table

4.1) by taking the models with the highest loglikelihoods (L) and plotting their scatter-

ing and attenuation parameters for each layer. Figures in this section contain similar

samples for the rest of the synthetic tests in Table 4.1.

Figure A60: Samples of the E-EFMD results for synthetic test 6 from Table 4.1. Panels A1–A5
contain the loglikelihood (L), correlation length (a), RMS velocity fluctuation (ε), inverse intrinsic
quality factor at 1 Hz (Q−1

i0 ) and power law exponent (α) for all models with L > −1, as well as
the input parameter values in each case. Panels B1–B5 have the same content, but for models with
−1 > L > −5.
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Figure A61: Same as Fig. A60 but for synthetic model 8 from Table 4.1.
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Figure A62: Same as Fig. A60 but for synthetic model 9 from Table 4.1.
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Figure A63: Same as Fig. A60 but for synthetic model 9* from Table 4.1.
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Figure A64: Same as Fig. A60 but for synthetic model 10 from Table 4.1.
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Figure A65: Same as Fig. A60 but for synthetic model 12 from Table 4.1.
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Figure A66: Same as Fig. A60 but for synthetic model 13 from Table 4.1.



226 Appendices

Figure A67: Same as Fig. A60 but for synthetic model 14 from Table 4.1.
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Figure A68: Same as Fig. A60 but for synthetic model 15 from Table 4.1.
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Figure A69: Same as Fig. A60 but for synthetic model 16 from Table 4.1.
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Figure A70: Same as Fig. A60 but for synthetic model 17 from Table 4.1.
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Figure A71: Same as Fig. A60 but for synthetic model 17* from Table 4.1.
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Figure A72: Same as Fig. A60 but for synthetic model 18 from Table 4.1.
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Figure A73: Same as Fig. A60 but for synthetic model 19 from Table 4.1.
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Figure A74: Same as Fig. A60 but for synthetic model 20 from Table 4.1.
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Figure A75: Same as Fig. A60 but for synthetic model 21 from Table 4.1.
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Figure A76: Same as Fig. A60 but for synthetic model 22 from Table 4.1.
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A.3.4 E-EFMD solutions non-uniqueness

The results of my synthetic tests (Section 4.1.2) illustrate the extreme non-uniqueness

of the Bayesian E-EFMD inversion solutions. To further demonstrate this point, I

computed the synthetic envelopes for an extra set of models which represent a variety

of scattering and attenuation scenarios but produce essentially identical coda envelopes

throughout the entire frequency range of interest. Fig. 4.14, on Section 4.1.2, contains

the envelpes for these datasets for frequency band D (Table 2.3). This section displays

them for the rest of the frequency bands of interest.
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Figure A77: Synthetic envelopes for frequency band A (Table 2.3) and eight synthetic datasets that
represent a variety of scattering and intrinsic attenuation scenarios. Models in panel A all have strong
to extremely strong intrinsic attenuation (0.006 ≤ Q−1

i0 ≤ 0.02) in the crust and/or lithospheric mantle
and varying scattering strengths within each layer. Datasets in panel B represent models with strong
contrasts in scattering between the two layers and weaker variations in anelasticity. Envelopes in panel
C result from models with the same heterogeneity structure and sharp contrasts in intrinsic attenuation
between the model layers. Shaded areas in all plots represent the time window used for the fit in the
E-EFMD, and dotted lines the uncertainty associated to each synthetic envelope used in the inversion
algoritm.
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Figure A78: Same as Fig. A77 but for frequency band B from Table 2.3.
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Figure A79: Same as Fig. A77 but for frequency band C from Table 2.3.
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Figure A80: Same as Fig. A77 but for frequency band E from Table 2.3.
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Figure A81: Same as Fig. A77 but for frequency band F from Table 2.3.
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Figure A82: Same as Fig. A77 but for frequency band G from Table 2.3.
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Figure A83: Same as Fig. A77 but for frequency band H from Table 2.3.
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A.4 E-EFMD AU inversions complementary results

Table 4.3 summarises the layering and results of the inversions for the three Australian

arrays analysed here (PSA, ASAR and WRA). Figures in this section help support the

discussion in Section 4.2.

Figure A84: Summary of the results obtained from the alternative E-EFMD algorithm with fixed
α for PSA. Panels content is as in Fig. A24.
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Figure A85: As Fig. A84 but for ASAR.
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Figure A86: As Fig. A84 but for WRA.
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A.5 E-EFMD IMS inversions complementary results

Results in this section from E-EFMD inversions of the data for the IMS stations (ILAR,

PDAR, TXAR, YKA and BOSA) are complementary to those shown in Chapter 5.

E-EFMD results summaries for IMS stations

Figure A87: Summary of the results obtained from the E-EFMD algorithm for ILAR and a 1-layer
model that encompasses the entire lithosphere. Panels content is as in Fig. A22.
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Figure A88: As Fig. A87, but for TXAR.
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Figure A89: As Fig. 5.4, but for TXAR and a 1-layer model that only includes the crust.
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Figure A90: Summary of the results of the inversion of TXAR data using the E-EFMD approach
with a 2-layer model and frequency bands C–E from Table 2.3. Panel content is as in Fig. A24.
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Figure A91: As Fig. A90 but for frequency bands D–F from Table 2.3.
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Figure A92: As Fig. A90 but for frequency bands F–H from Table 2.3.
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Figure A93: As Fig. A90 but for frequency bands G–H from Table 2.3.
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Figure A94: Summary of the results obtained from the E-EFMD algorithm in its alternative imple-
mentation for fixed α for ILAR and a 2-layer model. Panels content is as in A24.
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Figure A95: As Figl. A94 but for TXAR.
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E-EFMD Bayesian inversion results samples for IMS stations

Samples of the E-EFMD results help analyse the behaviour of the algorithm and study

the trade-offs between the parameters. Figures in this section complement those in

Section 5.2.

Figure A96: Samples of the E-EFMD results for PDAR and the 2-layer model. Panels A1–A5
contain the loglikelihood (L), correlation length (a), RMS velocity fluctuation (ε), inverse intrinsic
quality factor at 1 Hz (Q−1

i0 ) and power law exponent (α) for the models with the highest loglikelihood
found during the inversions (L > −4241 in this case), as well as the input parameter values in each
case. Panels B1–B5 have the same content, but for models with −4241 > L > −4246.
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Figure A97: As Fig. A96 but for TXAR.
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Figure A98: As Fig. A96 but for YKA.
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Figure A99: As Fig. A96 but for BOSA.
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A.6 E-EFMD single frequency inversion results

In Chapter 5, I discuss an alternative implementation to the E-EFMD in which inver-

sions are carried out for each individual frequency band without assuming any specific

frequency dependence of the intrinsic quality factor. The figures in this section help

complement that discussion.

Figure A100: Results from the E-EFMD single frequency inversions for ASAR. Panels in each row
contain the posterior PDFs for each parameter in the 2-layer model, as well as the fits to the data
envelope for each of the frequency bands in Table 2.3. Modes for each parameter have been included
in the legends for further reference.
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Figure A101: As Fig. A100 but for WRA.
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Figure A102: As Fig. A100 but for PDAR.
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Figure A103: As Fig. A100 but for TXAR.
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Figure A104: As Fig. A100 but for YKA.
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Figure A105: As Fig. A100 but for BOSA.
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A.7 EFMD IMS inversions complementary results

A.7.1 EFM complementary results
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Figure A106: Linear fit of the logarithm of the squared normalised coda envelopes for all frequency
bands and array ILAR, as described in Section 2.1.1. The shaded area represents the maximum time
window used for the fits. Solid lines show my data envelopes, and dashed lines the results of the least-
squares linear fitting.
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Figure A107: As Fig. A106, but for PDAR.
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Figure A108: As Fig. A106, but for TXAR.
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Figure A109: As Fig. A106, but for YKA.
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Figure A110: As Fig. A110, but for BOSA.
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A.7.2 EFMD complementary results

Figure A111: EFMD results summary for PDAR, the 1-layer model and frequency bands D–H from
Table 2.3. Panel content is as in Fig. 3.12.
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Figure A112: Same as Fig. 5.16 but for TXAR.
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Figure A113: Results from the EFMD single frequency inversions for PDAR. Panels in each row
contain the posterior PDFs for each parameter in the 2-layer model, as well as the fits to the data
envelope for each of the frequency bands in Table 2.3. Modes for each parameter have been included
in the legends for further reference.
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Figure A114: As Fig. 5.12 but for TXAR.
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Figure A115: As Fig. 5.12 but for YKA.
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