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Abstract 

The aim of this research was to investigate and validate the usage of 

physiological measures as an objective indicator of driver state in dynamic driving  

environments, and understand if such a methodology can be used to measure driver 

discomfort, and high workload. The work addressed questions relating to: (i) detecting 

and removing motion artefacts from electrodermal activity (EDA) signals in dynamic 

driving environments; (ii) primary factors contributing to driver discomfort during 

automation, measured in terms of their physiological state; (iii) understanding changes 

in drivers’ workload levels at different stages of automation, as indicated by 

electrocardiogram (ECG) and EDA-based measures and; (iv) how drivers’ attentional 

demands and workload levels are affected at different stages of automation, measured 

using eye tracking-based metrics. A series of experiments were developed to 

manipulate drivers’ discomfort and workload levels. The analysis around driver 

discomfort focused on automated driving, whereas drivers’ workload levels were 

investigated during automation, and during resumption of control from automation, in 

a series of car-following scenarios. Our results indicated that phasic EDA was able to 

pick up discomfort experienced by the driver during automation, and correlated to 

drivers’ subjective ratings of discomfort. Narrower roads, higher resultant acceleration 

forces and how the automated vehicle negotiated different road geometries all 

influenced driver discomfort. We observed that drivers’ workload levels were captured 

by ECG and EDA-based signals, with phasic component of EDA signal being more 

sensitive to short term variations in driver workload. Similar results were observed in 

drivers’ pupil diameter values, as well as subjective ratings of workload. Factors such 

as engagement in a non-driving related task (NDRT), presence of a lead vehicle while 

maintaining a short time headway, and takeovers, all seemed to increase drivers’ 

workload levels. Future work can build on this research by incorporating sensor fusion 

of ECG and EDA-based data, along with eye tracking, to help improve the accuracy 

and capabilities of future driver state monitoring systems. 
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1 GENERAL INTRODUCTION 

1.1 Introduction 

In the past decade, there has been an increase in the implementation of 

Advanced Driving Assistance Systems (ADAS), which support the driver in lateral 

and/or longitudinal control of the vehicle. Some examples of such ADAS features 

include adaptive cruise control (ACC) or lane keeping assistance systems. 

Manufacturers, technology companies as well as researchers, have been working 

towards developing higher levels of vehicle automation. The main motivation for 

implementing higher levels of vehicle automation in the market is its hypothesised 

provision of increased safety (ERTRAC, 2017), mobility (Trommer et al., 2016), 

accessibility (Alessandrini et al., 2015), efficiency (Steck et al., 2018) and comfort 

(Beggiato et al., 2019).   

We have observed the emergence of advanced SAE Level 2 (see section 1.2.1; 

SAE International, 2021) driving automation systems such as Tesla’s Autopilot (Tesla, 

2021), General Motor’s Super Cruise (General-Motors, 2021) and Ford’s BlueCruise 

(Ford-Motors, 2021).  GM’s Super Cruise and Ford’s BlueCruise offer hands-free 

driving, within certain pre-defined environments, such as on motorways and under 

certain speed limits. However, all such systems require the driver to constantly pay 

attention to the drive, and supervise the operation of the automated system. Recently, 

Honda released the first SAE L3 conditional driving automation system called Traffic 

Jam Assist, where drivers are not required to monitor the drive under certain conditions 

,such as driving on the motorway in congested traffic, for speeds of up to 50 kmph 

(Honda EU, 2021).  

With automation, the role of a driver changes, from that of an active user to a 

passive observer (Parasuraman & Riley, 1997). As the driver takes on a supervisory 

role, their set of tasks required for the safe operation of the vehicle changes, and calls 

for a better understanding of how this role change can affect performance and safety 

of the vehicle. Automating the driving task, especially as seen in currently available 

SAE L2 and SAE L3 automated systems, would still require the driver to resume 

manual control of the vehicle, if and when prompted by the automated system, or in 
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case of automation failures. While automation of the driving task can increase driver 

safety, assuming the human driver is replaced by an infallible machine, it can also 

result in behavioural changes of the driver, that can negatively affect their driving 

performance and safety of the vehicle (Heikoop et al., 2016). Driving performance after 

a transition of control from the automated system to the driver, which is generally 

quantified in terms of the lateral and longitudinal control of the vehicle with respect to 

road boundaries and safety margins, using measures such as standard deviation of 

lane position (SDLP), lateral acceleration or  braking (Gold et al., 2018), is not only 

affected by driver state during the transition itself, but also when automation is 

engaged (Parasuraman et al., 2008; Zeeb et al., 2016). Therefore, monitoring drivers’ 

state, which, according to Gonçalves & Bengler (2015), is defined as a set of physical 

and mental conditions that can affect drivers’ capabilities at the driving task in a 

specific instant, can help improve performance and safety by helping the system to 

assist or provide additional support to the driver. Certain driver states, such as 

discomfort or high workload, can negatively affect wider acceptance, as well as 

performance and safety of the vehicle, for when they resume manual control 

(Gonçalves & Bengler, 2015; Hartwich et al., 2018; Zeeb et al., 2016). 

 Increased driver comfort is one of the selling arguments for automated driving 

systems (Carsten & Martens, 2019). During manual driving, apart from the vehicle 

specifications around noise, vibration and harshness, the driver modulates comfort by 

having full control of the vehicle, and in turn, controlling aspects that affect comfort 

such as safety margins or acceleration and jerk forces (Wertheim & Hogema, 1997). 

However, in automated driving, the control of the driving task is taken away from the 

driver, and this loss of control, as well as the inability to anticipate the actions of the 

vehicle, can increase driver discomfort (Cahour, 2008). A limited number of studies, 

such as the KomfoPilot study by Beggiato et al. (2019), have explored factors 

influencing driver discomfort during automated driving. It is also important to monitor 

their comfort levels in real-time, to enable the automated system to adapt and provide 

the driver with a more comfortable ride. Therefore, further research is warranted on 

understanding how different driving styles, incorporated by the automated system to 

negotiate different road environments, affects driver comfort. This can  improve driving 

experience and wider acceptance and implementation of such features. 
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Automation can result in the driver being in an out of the loop (OOTL) state 

(Endsley & Kiris, 1995), which refers to a state where drivers are not monitoring the 

driving environment, and may or may not be in physical control of the vehicle, and can 

result in driving performance decrements once they resume manual control (Merat et 

al., 2018). This OOTL state is further aggravated when drivers engage in other non-

driving related tasks (NDRT) during automation, the likelihood of which increases with 

an increase in the level of automation (Carsten et al., 2012), and potentially increases 

drivers’ workload levels (Merat et al., 2012). Studies have shown that both a sudden 

and unexpected high workload (overload), such as negotiating a takeover in complex 

traffic situation with high traffic density (Radlmayr et al., 2014), and low workload 

(underload) due to the diminished task demands brought about by automation (Young 

& Stanton, 2002a), can result in performance decrements if and when the driver has 

to resume manual control of the vehicle. Additionally, driver workload prior to a 

transition of control to manual driving, such as high workload due to engagement in a 

demanding NDRT during automation, can affect driving performance at a later stage, 

for example, during a transition of control to manual driving (Parasuraman et al., 2008; 

Zeeb et al., 2016). Therefore, it is of value to have real-time assessment of drivers’ 

workload levels prior to (that is, when automation is activated) and during transitions, 

to help guide the automated system into providing improved support and assistance 

to the driver, for example, warning the driver of dangerous underload or overload 

conditions (Merat et al., 2012). 

Continuous monitoring of drivers’ state, during automation and during transition 

of control to the driver, is therefore extremely important for ensuring safe operation of 

the vehicle. Current automation systems such as GM’s Super Cruise or Ford’s 

BlueCruise use camera-based eye tracking to monitor drivers’ attentional state (that 

is, whether or not they are monitoring the drive), objectively and in real-time. State-of-

the-art driver monitoring systems that use fixed-base eye trackers such as the Seeing 

Machines Guardian Backup-driver Monitoring System (BdMS; Seeing Machines Inc, 

2022) are able to monitor drivers’ attention to the road in real-time, even when the 

driver is wearing a mask or sunglasses. These systems work in a wide range of lighting 

conditions and are non-invasive. However, eye tracking-based metrics, such as pupil 

diameter and direction of gaze, have their limitations, and as a set of stand-alone 

metrics, are incapable of objectively and accurately quantifying driver states that can 
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negatively affect driving performance, such as discomfort or high workload. For 

example, pupil diameter, which is indicative of drivers’ workload levels, is greatly 

affected by lighting conditions or brightness levels in the driving environment (Mathôt, 

2018). Additionally, if the drivers’ eyes are occluded from the view of the fixed-base 

eye tracker, it cannot provide insight into drivers’ attentional state. Therefore, further 

investigation is required into the validity of additional physiological measures to 

complement eye tracking based metrics, for reliable assessment of driver state. 

Physiological signals such as electrodermal activity (EDA) and 

electrocardiogram (ECG) have been used in the past as an indicator of drivers’ state 

(Foy & Chapman, 2018; Mehler et al., 2012; Patel et al., 2011).  However, the majority 

of the studies that have used these physiological signals have been conducted in 

manual driving, with less availability of results from automated driving. Moreover, the 

majority of studies on physiological signals have been conducted in laboratory 

environments (Cho et al., 2017; Hjortskov et al., 2004; Patel et al., 2011; Shimomura 

et al., 2008), and, within the driving context, many have used fixed-base driving 

simulators (Beggiato et al., 2019; Foy & Chapman, 2018; Mehler et al., 2009). 

Physiological signals of EDA and ECG are extremely sensitive to motion and noise 

artefacts. A better understanding of how such signals are affected by motion artefacts 

in a dynamic driving environment, and whether they can be successfully removed, is 

required. Additionally, validation of whether such signals can be used to correctly 

assess driver states such as discomfort or high workload, within automated driving 

context, is required.  

This thesis aimed to address this issue by investigating whether physiological 

measures of EDA and ECG can be used to complement eye tracking-based metrics 

in driver state monitoring. This can aid in understanding and measuring driver states, 

such as discomfort or workload, that can negatively affect wider acceptance of 

automation features, as well as driving performance after a transition, in real-time. This 

research also investigated how driver state was affected during different automated 

driving scenarios, in a full motion-based simulator environment. Given that this thesis 

focuses on automated driving, the following section considers how the role of a driver 

evolves during automation of the driving task.  
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1.2 History of automation and driving 

In general, automation refers to “operating or acting, or self-regulating, 

independently, without human intervention” (Nof, 2009, p. 14). According to Sheridan 

& Parasuraman (2005), automation involves: “the mechanisation and integration of the 

sensing of environmental variables (by artificial sensors); data processing and 

decision making (by computers); mechanical action (by motors or devices that apply 

forces on the environment) and/or; information action by communication of processed 

information to people” (p. 90). The word automation originates from the Greek word 

automatos, meaning acting by itself, or by its own will, or spontaneously (Nof, 2009). 

Williams (2009) suggested that automation is a way for the human to extend the 

capabilities of their tools and machines. Towards the late 1950s, automation was 

viewed as a substitution for human efforts and decisions, by a  combination of 

mechanical, pneumatic, hydraulic, electrical and electronic devices (Nof, 2009). 

Within the transportation sector, automation generally refers to the transfer of  

responsibilities of some or all of the control tasks and sub-tasks, from the human 

operator to an automated system. An early example of automation in transportation 

was seen in the aviation industry. Innovative technologies, such as fly-by-wire controls 

which replaced manual flight controls with electronic interfaces, and Flight 

Management System, are used by pilots to assist with flight planning, navigation, 

performance management and flight-progress monitoring (Banks et al., 2019; Nadine 

B. Sarter & Woods, 1992). The aviation industry has pioneered the technological and 

engineering developments in automation within the transportation industry (Banks et 

al., 2019), and Stanton & Marsden (1996) warn that driving automation could yield 

similar human factors challenges as some of those observed in the aviation industry. 

These include pilots affected by dangerous underload or overload conditions during 

automation, or over-reliance on the automated system without fully understanding its 

limitations (Nadine B. Sarter & Woods, 1992; Wilson, 2002; Young et al., 2007). 

However, it should be noted that pilots and road vehicle drivers also have their 

differences, owing to differences in vehicle type, technical systems involved, and the 

environment of operation. Additionally, pilots are generally professional operators, 

who undergo rigorous training and are generally required to update their licenses 

annually, which is not the case for road vehicle drivers. 
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Within the driving automation context, the earliest development of an 

automation feature was observed when General Motors presented the Firebird II in 

1956, a concept car guided by electrical wires placed on the road, to cruise in highways 

of the future (General Motors, 1956). While the initial focus was on guided automated 

vehicles, the advancement of computers and computer vision in the 1980s saw the 

invention of a Mercedes Benz van, called VaMoRs, with a vision-based guidance 

system, that could drive in an automated manner on empty roads without traffic, for 

speeds of up to 60 kmph (Dickmanns & Zapp, 1987). In 1997, the California PATH 

consortium successfully demonstrated an 8-car platoon that was manoeuvred under 

fully automated control (Rajamani et al., 2000). In the early 2000s, research and 

development of automated vehicles gained further traction, when the Defence 

Advanced Research Projects Agency (DARPA) introduced the Grand Challenge of 

2004, which required automated vehicles to compete against each other in an off-road 

course. DARPA has organised similar events since, that have resulted in  autonomous 

vehicles and technologies being tested on public roads (Banks et al., 2019; Louw, 

2017).  

While the initial focus in automated vehicle (AV) research was on the 

engineering and technological developments required for automating some or all of 

the driving tasks and sub-tasks, more recently, research into the human factors issues 

surrounding automation is gaining momentum, with EU-funded projects such as the 

H2020 Automated Driving Applications & Technologies for Intelligent Vehicles 

(AdaptIVe; Etemad et al., 2017), L3Pilot project (Etemad, 2021), and the Hi-Drive 

project (Etemad, 2022) having more focused work on the human factors challenges of 

vehicle automation, along with the design, implementation and evaluation of different 

automation functions, for different levels of automation. Other national projects such 

as the Innovate UK/CCAV-funded HumanDrive project (Woolridge & Chan-Pensley, 

2020) or the German Federal Ministry of Education and Research (BMBF) funded 

KomfoPilot project (Beggiato et al., 2018), have also investigated the human factors 

challenges surrounding vehicle automation. Today, driving automation systems can 

be seen in vehicles such as Tesla (Tesla, 2021), or General Motors Cadillac (General-

Motors, 2021), where limited automation features are available, under certain 

operational design domains. The features of the automated system, its operational 

environment, and the responsibilities of the driver during automated driving, are 
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dependent on the level of automation, which is reviewed in greater detail in the next 

sub-section. 

1.2.1 Levels of automation 

Over the years, there have been several attempts to provide a concise 

taxonomy and definition for different levels or degrees of automation. It is important to 

have a rigorous and unanimously agreed upon classification for different levels of 

automation, so that the manufacturers and drivers alike are clear about the 

responsibilities and limitations of such features. The most widely adopted classification 

is that proposed by SAE International (SAE International, 2021), where automated 

driving is classified into 6 levels, from Level 0 to Level 5, in increasing order of 

automation features, as listed below. According to SAE International (2021), “driving 

automation system” refers to any automation system or feature, from Level 1 to Level 

5, capable of performing part or all of the dynamic driving task (DDT) on a sustained 

basis, depending on its operational design domain (ODD). DDT constitutes “all the 

real-time operational and tactical functions that are required to operate a vehicle in on-

road traffic”, including lateral and longitudinal control, situational awareness, object 

and event response detection, execution, manoeuvre planning and enhancing 

conspicuity, via signalling and gestures (SAE International, 2021). ODD refers to a 

manufacturer-specified set of “operating conditions under which a given driving 

automation system or feature thereof is specifically designed to function, including, but 

not limited to, environmental, geographical, and time-of-day restrictions, and/or the 

requisite presence or absence of certain traffic or roadway characteristics” (SAE 

International, 2021). In contrast, an Automated Driving System (ADS), which  generally 

refers to automation Levels 3 to 5, is defined as the software and hardware that is 

capable of performing a DDT on a sustained basis, irrespective of its ODD (SAE 

International, 2021).  

The different levels of automation, as defined by SAE International (2021), is 

explained below: 

• Level 0 or No Driving Automation: All driving tasks are done solely by the human 

driver without any assistance in acceleration, braking or lateral steering control. 

This could include warning systems. Here the role of automation is limited to 

warnings or support, such as momentary intervention.  
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• Level 1 or Driver Assistance: Either longitudinal or lateral control of the vehicle 

is continuously performed by the driver. The system assists in other tasks or either 

lateral or longitudinal tasks. Adaptive Cruise Control (ACC) and Lane Keeping 

Assist (LKA)  are examples of Level 1 automation systems. 

• Level 2 (SAE L2) or Partial Driving Automation: System takes over control of 

both lateral and longitudinal tasks (steering, acceleration and braking). But the 

driver is required to permanently monitor the vehicle. Volvo’s Pilot Assist, Tesla’s 

Autopilot and GM’s SuperCruise are some examples of vehicles with SAE L2 

automated system available in the market (Brooke, 2020). 

• Level 3 (SAE L3) or Conditional Driving Automation: System takes over both 

lateral and longitudinal control of the vehicle under specific ODD. Generally, the 

drivers are not expected to be monitoring the system continuously if it falls under 

the ODD of the SAE L3 automation as specified by the manufacturer. But when the 

ODD limits are exceeded/about to be exceeded or there is a DDT performance 

relevant failure in the ADS system, a timely request is given by the system to the 

driver (DDT fall back-ready user) to take over the control of the vehicle. The system 

disengages at an appropriate time after issuing a request to intervene or does so 

immediately upon driver-initiated take over request. Honda Traffic Jam Assist is 

the first ADS to offer SAE L3 features (Honda EU, 2021). The driver is not required 

to continuously monitor the driver task and can focus on other activities supported 

by an on-board infotainment system, subjected to legal constraints within the 

respective country (SAE International, 2021). 

• Level 4 (SAE L4) or High Driving Automation: The system performs all aspects 

of DDT and the DDT fall-back (transfer of control scenario) within the specified 

ODD, but without the expectation that a user will respond to a request to intervene 

or takeover. This means that the system can give a timely request for the driver to 

take over control if a DDT performance relevant system failure occurs or the ODD 

limits, as specified by the system, are exceeded. In case the driver does not 

respond to the takeover request, the ADS is will transition automatically into a 

minimal risk condition. Minimum risk condition is the “condition to which a user or 

ADS may bring the vehicle after performing DDT fall-back in order to reduce the 

risk of a crash when a given trip cannot or should not be completed” (SAE 

International, 2021). It is assessed independently by the ADS without any input 
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from the driver in SAE L4 systems. The driver is at the liberty of taking over control 

of DDT during takeover request or can also request the ADS to disengage and take 

over control. Currently, there are no SAE L4 enabled vehicles on the market. 

• Level 5 (SAE L5) for Full Driving Automation: The system performs all aspects 

of DDT and DDT fall-back, in a sustained and unconditional manner (i.e. the ODD 

is unlimited) without any expectation that the driver will respond to a takeover 

request. Takeover requests happen only in case of a DDT performance-relevant 

system failure, but the ADS will transition automatically into minimal risk condition 

if the driver does not respond to the takeover request. The driver is at the liberty of 

taking over control of DDT during takeover request or can also request the ADS to 

disengage and take over control. It will be quite some time before an actual SAE 

L5 vehicle would enter the market realistically, although companies like Waymo 

are in the process of testing advanced SAE L4 and SAE L5 ADS equipped vehicles 

(Waymo, 2018). 

In this thesis, I primarily focus on human factors challenges surrounding SAE 

L2 and SAE L3 automation systems, in which drivers are required to resume manual 

control of the vehicle, when prompted by a takeover request (SAE International, 2021). 

However, drivers can be affected by a host of factors, leading up to the transition of 

control, that can result in diminished performance and safety upon resumption of 

manual control, including, but not limited to, drivers’ attention to the driving task (Louw, 

Kuo, et al., 2019), their workload levels (Müller et al., 2021), and discomfort and stress 

levels (Beggiato et al., 2019). In order to perform a safe transition of control, drivers 

are likely required to have good awareness of the immediate driving environment 

(Endsley, 1995) and of the automated system’s state (Beggiato et al., 2015), to be 

better equipped at maintaining adequate safety margins from obstacles and other road 

users. 

1.2.2 Transitions of control 

Within the automated driving context, the terms transitions or takeovers have 

been used interchangeably to refer to the activation or deactivation of an automated 

driving function (Gold et al., 2013), a change in automation state (Merat et al., 2014), 

or, according to Louw (2017), the process and period where the transfer of 

responsibility of some or all aspects of a driving task, between a human driver and a 
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driving automation system, occurs. In this thesis, I use the definition for takeovers as 

that suggested by Louw (2017), mentioned above. 

Martens et al. (2008) proposed an ontology that classifies transitions into four 

cases, with the three underlining factors of: 1) who has the control of the vehicle at the 

beginning of transition; 2) who gets the control of the vehicle during/after the transition 

and; 3) who initiates the transition, defining each transition case, as shown in Table 

1.1.  

Table 1.1. Different types of transitions (Martens et al., 2008) 

 

Table 1.1 shows the different directions of the transfer of control, with ‘i’ being the initiator of the 

transition. It has been assumed that the driver has the ‘required readiness state’ whenever the transition 

of control request is initiated by the operator.  

In this thesis, only automation-initiated transitions of control, from ADS to the 

human driver, was considered, as indicated in the last column of Table 1.1. For the 

safe operation of the vehicle after the transition, the driver is required to be “ready” to 

take over control of the driving task from the automated system. This “driver readiness” 

depends on their physical (such as hand position, head posture and foot position) and 

psychological states (such as stress, attention or workload levels), and requires good 

communication and collaboration between the human driver and the automated 

system (Carsten & Martens, 2019). 

1.2.3 Human-automation interaction 

Given that we are still a long way from achieving full autonomy in driving, for 

the foreseeable future, there will be a wide variety of vehicles offering different levels 

of automation features (Carsten & Martens, 2019). Therefore, rather than considering 

human driver and the automated system as independent and mutually exclusive in 

performing the DDT, they are more likely to communicate and collaborate in order to 

function as a joint cognitive system, to ensure the safe operation of the vehicle, as 
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depicted in Figure 1.1 (Carsten & Martens, 2019; Flemisch et al., 2008). The term 

“Human-automation interaction” encompasses both implicit and explicit 

communication between the human driver and the automated system, and the 

communication interface used in such situations is called a Human-Machine Interface 

(HMI).  

Successful human-automation interaction should include two-way 

communication between the automated system and the driver, and should not just be 

limited to the automated system being able to communicate its capabilities and 

limitations to the driver (Carsten & Martens, 2019), but also, for the system to be able 

to monitor and identify drivers’ capabilities and limitations in performing the DDT, even 

if this communication is implicit, and if required, provide appropriate mitigation 

strategies to ensure safe transition of control (Mioch et al., 2017).  

 

Figure 1.1. Model depicting collaborative control in automated driving (adapted from 

Flemisch et al., 2008) 

As the automation level increases, it is likely that the automated system is 

involved  in making decisions at strategic, tactical and control levels of the driving task 

(Carsten & Martens, 2019; Kircher et al., 2014; Michon, 1985). However, this can also 

result in the drivers being OOTL and engaging in other NDRTs (Carsten et al., 2012; 

Merat et al., 2014). Therefore, the automated system should be able to monitor drivers’ 

state in an objective manner, and ensure drivers’ physical and mental readiness, if 

and when the driver has to resume control, for safe operation of the vehicle (Mioch et 
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al., 2017). In case the driver is not ready, HMI-based responses/feedback can be 

useful in bringing the driver back into the loop (Beller et al., 2013; Lorenz et al., 2014). 

For example, aiding the driver to perform the takeover task using interfaces such as 

visual and augmented reality (AR)-based stimuli and messages, highlighting the path 

to follow, on the windscreen, while performing a lane change or takeover manoeuvre, 

has shown promising results (Lorenz et al., 2014). Haptic, auditory and speech-based 

human-machine interfaces have also been used to re-direct the driver’s attention and 

assist them with the DDT (Mulder, Abbink, & Boer, 2012; Naujoks, Forster, 

Wiedemann, & Neukum, 2016; Pitts, Williams, Wellings, & Attridge, 2009). In order to 

identify the appropriate mitigation strategy to bring drivers back into the driving control 

loop, it is important that the automated system is able to monitor and correctly identify 

drivers’ current state. For example, the automated system should provide different 

mitigation strategies to bring a fatigued or sleepy driver back into driving control loop, 

compared to an inattentive or distracted driver. A distracted driver would be required 

to refocus their attention to the key aspects of the driving task with the aid of auditory 

or visual HMI to refocus his attention, to successfully resume control of the driving 

task. However, in case the driver is sleepy, the vehicle should be safely brought to a 

halt, or direct the driver to pull over, as  it would be harder to get back into the driving 

control look from a sleepy state.  

1.3 Driver state 

The driving task requires decision making at control (such as steering and 

longitudinal control), tactical (such as passing obstacles or negotiating roundabouts) 

and strategic (such as planning the route) levels. Automation substitutes some of 

these tasks (such as on control level when using ACC), and provides additional 

comfort to the driver. However, currently available systems require the driver to 

monitor the drive (SAE L2 vehicles) and/or resume control of the vehicle when 

prompted. To successfully monitor the drive or resume manual control of the vehicle, 

the drivers need to have appropriate readiness levels, and not be affected by driver 

state such as distraction, or high workload. The psychological state of the driver, which 

Gonçalves & Bengler (2015) define as a set of psychological ”conditions” that affect 

the driver in a specific instant, affects their information processing ability, and in turn, 

performance (output) at the driving task. 
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Stanton & Young (2000) proposed a functional model, involving eight 

psychological constructs that could critically impact driver behaviour during 

automation: Situational Awareness, Mental Workload, Mental Model, Feedback, 

Locus of Control, Stress, Task Demands and Trust. However, Stanton & Young’s 

model was a hypothetical model, and according to Heikoop et al. (2016), did not 

provide insights into the nature of the interrelationships between the different 

psychological constructs, that is whether the relationship was causal or co-relational, 

as well as whether the effect was positive or negative. It is important to know the 

interrelationships between the different psychological constructs, as drivers can be 

affected by multiple states, at any given instant. Therefore, Heikoop et al. (2016) 

adapted a descriptive model from Stanton & Young’s model, based on past 

observations in scientific literature, describing the different interrelationships between 

different psychological constructs, as shown in Figure 1.2. 

 

Figure 1.2. Relationship between different psychological constructs during automation 

(redrawn from Heikoop et al., 2016). * indicates how mental models can 

recalibrate drivers’ trust. 

Heikoop’s model consisted of the following psychological constructs: 
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i. Feedback: Feedback in this model refers to automation-induced feedback that a 

driver receives, such as visual or auditory signals. In Figure 1.2, feedback is shown 

to have a negative causal relationship with trust. However, the studies that Heikoop 

et al. (2016) reviewed to derive this relationship between feedback and trust, are 

probably studies on improper feedback, resulting in decreasing drivers’ trust in the 

system, with improper feedback. For example, these feedbacks could be around 

critical takeover events, where the automation initiated takeovers with not enough 

time budget for the driver to safely resume control of the vehicle, and thereby 

diminishing their trust in the system. Feedback is also indicated to have a positive 

causality to workload, which is likely due to drivers having to process additional 

information provided by the automated system, thereby increasing their workload 

levels. 

ii. Trust: Within the driving automation context, Körber et al. (2018) defined trust as 

“the attitude of a user to be willing to be vulnerable to the actions of an automation 

based on the expectation that it will perform a particular action important to the 

user, irrespective of the ability to monitor or to intervene” (p. 19). While not explicitly 

indicated in  Figure 1.2, Heikoop et al. (2016) observed in some of the studies they 

reviewed that trust has a negative causal relationship with stress, situational 

awareness and attention. That is, as stress, situational awareness and attention 

increases, drivers’ trust decreases.  

iii. Task demand: According to APA Dictionary of Psychology (2022), task demand is 

“the effect of a task’s characteristics, including its divisibility and difficulty, on the 

procedures that an individual or group can use to complete the task.” There are 

different functions and processes embedded in a task. The difficulty of the task 

could lie in the demand imposed by these set of functions and processes required 

to sucessfully perform the task. In Figure 1.2, task demand is shown to have a 

positive causality to both stress and workload, indicating that a highly demanding 

task can increase drivers’ stress and workload levels. Task demand is also shown 

to have a negative causality to fatigue. However, this is not always the case, as 

increased task demand can result in task-related fatigue (May & Baldwin, 2009), 

which the authors seemed to have overlooked in their model. Task demand is 

further explored in section 1.3.3.3 of this thesis. 
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iv. Fatigue: Fatigue is a multidimensional construct that has been challenging to 

define, for researchers (Brown, 1994; Desmond & Hancock, 2001). According to 

Brown (1994), fatigue can be defined as the subjectively experienced disinclination 

to perform a task at hand, that can impair human performance and efficiency. 

Fatigue is shown to have a positive causality with stress, in Figure 1.2. 

v. Stress: According to Lazarus (1966), stress is defined as “a relationship between 

the person and the environment that is appraised as personally significant and as 

taxing or exceeding resources for coping”. Increase in stress can have a negative 

effect on driving performance (Matthews & Desmond, 2001). Heikoop et al.’s model 

suggests that stress has a positive causality to fatigue and workload, and a 

negative causality to attention. 

vi. Mental Workload: In driving context, workload describes the relationship between 

and cognitive resources demanded by a task, and those resources available to be 

supplied for the task, by the driver (Parasuraman et al., 2008). Heikoop et al. (2016) 

suggested that mental workload has a U-shaped causality to fatigue and stress, 

and an inverse U-shaped causality to attention. That is, both high and low workload 

levels can result in increased fatigue and stress, as well as diminished attention. 

Optimal workload levels can result in diminished stress and fatigue, and increase 

attention to the driving task. Workload forms one of the central psychological 

constructs explored in this thesis, and is reviewed in detail in section 1.3.3. 

vii. Attention: Drivers’ attention to the driving task and driving environment can 

increase their situational awareness, as well as enable the drivers to create more 

accurate mental models of the driving task, as indicated by the positive causality 

to both situational awareness and mental models, in Figure 1.2.  

viii. Situational awareness: According to Endsley (1995), situational awareness “is the 

perception of elements in the environment, with a volume of time and space, the 

comprehension of their meaning, and the projection of their status in the near 

future” (p. 36). A high degree of situational awareness can result in drivers being 

less likely to be in an OOTL state during automation (Louw, 2017; Merat et al., 

2018), resulting in better performance at the driving task, when required to resume 

manual control of the vehicle. 

ix. Mental models: Heikoop et al. (2016) suggested that mental models, which is the 

dynamic representation of the world (Johnson-Laird, 1980; D. A. Norman, 1983), 
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has a positive causality to situational awareness as seen in Figure 1.2, and can 

recalibrate drivers’ trust towards the automation over time. 

An interesting observation, made by Heikoop et al. (2016), is the intermediary 

relationship existing between task demand, workload, attention and situational 

awareness, as well as that between feedback and situational awareness. Based on 

the scientific studies they reviewed, the authors noted that rather than having a direct 

relationship between constructs such as task demand and situational awareness, or 

workload and situational awareness, task demand has a positive causality to workload. 

That is, an increase in task demand likely increases drivers’ mental workload, and 

mental workload is linked to drivers’ attention levels with an inverse U-shaped 

causality, meaning both high and low workload levels result in diminished attention. 

Finally, attention to the road environment leads to an increase in situational 

awareness.  

The complex nature of the interrelationship between different psychological 

constructs or states can be observed in Heikoop et al. (2016)’s model (see Figure 

1.2). Additionally, Mental Workload appears to be a central construct in the model, and 

is directly affected by: Feedback, Task Demand, and Stress. In their model, mental 

workload also directly affects drivers’ attention, which in turn affects mental models 

and situational awareness, and thereby, affecting driving performance and safety of 

the vehicle (Parasuraman et al., 2008). A notable omission in this model is driver 

comfort. It is likely that the conceptual similarities between lack of comfort, that is, 

discomfort, and related concepts of stress, and mental workload (Beggiato et al., 

2019), might have resulted in its omission from Heikoop et al. (2016)’s model. 

However, driving comfort plays a key role in determining drivers’ trust and wider 

acceptance of such features (Carsten & Martens, 2019; F. Walker, 2021), and 

therefore, its importance in driver state monitoring should not be undermined. 

During automation, especially in currently available SAE L2 and SAE L3 

automated driving systems (SAE International, 2021), the automation takes over the 

decision making at control-level tasks, such as lateral and longitudinal control of the 

vehicle. However, this can affect different drivers differently. For example, experienced 

drivers’ are likely to use skill-based behaviour (that is drawn from past experience) to 

do control level tasks, requiring little or no decision making (Hale et al., 1990). 
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Automating such tasks can reduce boredom and monotony, and increase comfort to 

experienced drivers (Kircher et al., 2014). However, novice drivers are likely to use 

knowledge-based behaviour from their memory, to do control-level tasks. This requires 

information processing, and can result in increased workload. Automating control-level 

tasks can reduce the workload on a novice driver. This example illustrates how driving 

experience and subjective differences between drivers can result in drivers 

experiencing changes to different driver states such as comfort or workload, from 

similar external factors/stimuli. 

This thesis focuses on human factors challenges surrounding drivers’ workload 

and comfort levels, which is expanded in the next subsection, and whether they can 

be objectively captured, on a moment-to-moment basis, using physiological signals. 

1.3.1 Automation and its effect on driver state 

While technological advancements have resulted in developing higher-level 

automation features, they become redundant if drivers are reluctant to adapt or use 

such features. Such automation features are hypothesised to improve comfort, safety 

and driving experience (ERTRAC, 2017). Research has indicated that ensuring driving 

comfort can help improve the trust, wider acceptance and implementation of 

automation features (ERTRAC, 2017; Molnar et al., 2018). Siebert, Oehl, Höger, & 

Pfister (2013) argued that driving comfort determines the acceptance of automation 

features, with high comfort levels leading to better acceptance of such features, and 

thus, improving the safety, with the assumption that the automated system is infallible. 

However, within the automated driving domain, there is limited research that has 

focused on monitoring drivers’ comfort levels objectively and in a continuous manner, 

and understanding which factors cause driver discomfort. 

The second challenge is around ensuring optimal driving performance, and 

providing safety, especially when drivers have to resume manual control of the vehicle, 

after a transition. Until automation is able to retain full control of the DDT, without any 

form of human intervention, human drivers are an important part of the driver-

automation eco-system. As such, drivers are required to maintain appropriate 

readiness levels, as dictated by the automation level and related ODD constraints. 

However, with an increase in automation level, drivers are more likely to engage in 

NDRTs (Carsten et al., 2012).  Reduction in responsibilities for the driving task  
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provides the driver with additional time to do non-driving related activities, likely reduce 

workload from the driving task, and potentially increase driver comfort. Although, from 

a safety perspective, it can result in diminished situational awareness, and exacerbate 

the OOTL effect by taking the driver further away from the driving control loop (Merat 

et al., 2014). Additionally, it can potentially increase their overall workload levels, 

depending on the task demand posed by the NDRT, and thereby reducing their 

readiness levels, and negatively affecting driving performance, for when they have to 

resume manual control of the vehicle. This warrants further research into monitoring 

drivers’ workload level objectively, to inform the system of dangerous underload or 

overload situations, in order to provide better support to the driver when they are 

required to resume manual control of the vehicle. 

The next two sub-sections of this thesis expands on driver states of comfort 

and mental workload and how these affect driving performance and the safety of 

automated driving systems. 

1.3.2 Comfort 

Comfort is a key aspect of human life, and well-being, with people striving to 

attain higher levels of comfort throughout their lives (Slater, 1986). However, there is 

no universal and unanimously agreed upon definition of comfort. Given the subjective 

nature of comfort, it is extremely challenging to derive a quantitative definition of 

comfort (Slater, 1985). From a qualitative perspective, Slater (1986) defined comfort 

as “a pleasant state of physiological, psychological and physical harmony between 

human being and the environment” (p. 158). In his definition, Slater referred to 

physiological comfort as the human body’s ability to maintain life, psychological 

comfort as the mind’s ability to keep itself functioning satisfactorily without external 

help, and physical comfort as that which relates to the effect of the external 

environment on the human body (Slater, 1986). 

In driving context, and especially automated driving, Beggiato et al. (2019) 

defined comfort as “as a subjective, pleasant state of relaxation resulting from 

confidence in safe vehicle operation, which is achieved by the removal or absence of 

uneasiness and distress” (p. 446). Beggiato et al. (2019) further suggested that lack 

of comfort, i.e. discomfort, shares similarities and overlaps with other related concepts 

such as stress, workload, anxiety or motion sickness. Given that comfort generally 
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refers to a relaxed, unaroused state of well-being, both Slater (1985) and Siebert et 

al. (2013) suggest that it is easier to measure discomfort  rather than comfort, as signs 

of discomfort are more well-defined and pronounced. Therefore, this thesis will partly 

focus on understanding and measuring discomfort, as it is easier to define and quantify 

discomfort when compared to comfort. While traditionally, discomfort has been 

measured subjectively using comfort scales, physiological metrics have also been 

used as an objective indicator of discomfort in driving (Beggiato et al., 2019; Hartwich 

et al., 2018; Radhakrishnan et al., 2020), as seen in section 1.4 of this thesis. In the 

next two sub-sections, I will expand on different factors that affect discomfort in the 

manual driving, as well as in the automated driving context. 

1.3.2.1 Discomfort and driving 

Richards, Jacobson, & Kuhlthau (1978) suggested that comfort is a key variable 

in user acceptance of transportation systems, with comfort being one of the most direct 

psychological correlates of ride quality, and also, passenger satisfaction and 

willingness to use the transportation system again. In the mid-70s and 80s, engineers 

and researchers alike gave emphasis on physical and physiological elements of 

comfort, including reducing noise, vibration and harshness (NVH) in automobiles, to 

improve ride quality and passenger comfort (Bryan et al., 1978; Richards et al., 1978). 

This included reduction of engine noise and noise from other moving parts of the 

vehicle, isolating noise due to drag and wind, usage of advanced materials inside the 

passenger cabin to isolate unwanted noise, reducing the vibrational and jerk forces 

inside the cabin and, using improved shock absorber and suspension systems (Bein 

et al., 2012; Heißing & Ersoy, 2011). In addition to NVH, researchers have also 

suggested that thermal comfort can be improved by maintaining ambient temperature 

inside the passenger cabin, and driver/passenger comfort in vehicles can be enhanced 

by improving air quality and  seat ergonomics (De Looze et al., 2003; Gameiro da 

Silva, 2002). From a human factors standpoint, Summala (2007) proposed a four 

factor classification for a driver to be in a “comfort zone”, based on safety margins 

(safety margins kept from road edges, potential hazards or other vehicles), vehicle-

road system (road geometry, road environment, velocity and acceleration), rule-

following (obeying traffic laws) and satisfactory progress of a trip (meeting one’s 

expectations from the pace or progress of travel). 
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Motion sickness is considered to be another key factor affecting discomfort. 

Motion sickness is generally caused by differences between actual motion as detected 

mechanically by the vestibular system, and motion as detected or perceived by the 

visual system or kinaesthetic input (Golding, 2016). For example, when a passenger 

is reading a book while travelling in a car, their vestibular system informs the brain that 

they are in a moving vehicle, whereas their eyes, which are focused on the stationary 

book in their hand, inform their brain otherwise. Treisman (1977) proposed the “toxin-

detector hypothesis”, where  motion-sickness is considered to be an evolutionary 

mechanism, and that the brain has evolved to detect derangement of expected 

patterns of vestibular, visual and kinaesthetic information, as central nervous system 

malfunction. Accompanying symptoms such nausea experienced during motion-

sickness is the body’s apparent self-defence mechanism to get rid of such 

“neurotoxins”. This  has been later confirmed based on experimental evidence, as the 

most plausible underlying mechanism for motion sickness (Money & Cheung, 1983). 

Within the driving context, discomfort and motion sickness is generally 

associated with longitudinal acceleration forces such as those experienced in multiple 

sharp braking manoeuvres (Vogel, Kohlhaas, & von Baumgarten, 1982), or high lateral 

or centripetal forces such as those associated with negotiating a sharp turn at high 

velocities (Golding, 2016; Wada et al., 2012). The different factors affecting driver 

discomfort during manual driving is shown in the Figure 1.3 below. 

During manual driving, the driver is less likely to get motion sickness, compared 

to a rear-seat passenger, as they have a full view of the road ahead, thereby resulting 

in lower disassociation between visual and vestibular cues. Additionally, the ability to 

predict the movement of the vehicle by being in control of the driving task, can lead to 

better coherence between visual and vestibular cues.  However, as the role of the 

driver changes from that of an active participant in manual driving to a passive 

observer during HAD, it is likely that the driver engages in NDRTs (Carsten et al., 

2012), which can increase the likelihood of motion-sickness (Diels & Bos, 2016). This 

role change in the driver and transfer of control authority to the automated system can 

constitute additional discomfort to the driver, warranting further investigation into 

discomfort-inducing scenarios within a similar experimental design framework, 

between automated and manual driving, which is explored in the next sub-section. 
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Figure 1.3. Main factors affecting driver discomfort during manual driving 

1.3.2.2 Discomfort during automated driving 

As noted by Summala (2007) and Siebert et al. (2013), safety margins, or 

rather, apparent safety margins, play a key role in reducing driver discomfort. In 

manual driving, drivers are likely to modulate their comfort levels, by having full control 

of the vehicle and its operation, and keeping adequate safety margins that they deem 

safe and comfortable. However, during automated driving, their comfort levels are 

modulated by how the driving automation system performs the driving task. Therefore, 

it is important to convey the safe operation of the vehicle to the driver, from a human 

perspective, even if the driving automation system is performing in a safe manner 

considering all static and dynamic risk elements, as it might not be apparent to the 

driver. If the driver judges the ADS to be unsafe, it can negatively affect their trust as 

well as acceptance of it. Maintaining a safe distance from hazards, other vehicles and 

road users, smooth execution of manoeuvres such as lane-changing, and minimising 

jerk can all help reduce driver discomfort during highly automated driving (HAD; 

Elbanhawi et al., 2015). Highly automated driving generally refers to automated 

systems where both lateral and longitudinal control of the vehicle is performed by the 

automated system, when engaged. 
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The acceleration and jerk forces experienced in the vehicle can affect driver 

discomfort. Higher acceleration and jerk forces (both magnitude and frequency) can 

increase driver discomfort, with studies showing that drivers tend to keep their lateral 

and longitudinal acceleration values under 2 m/s² (Bae et al., 2019; Bosetti et al., 

2014). For HAD, it should be noted that the driver is not in control, and it is likely that 

they might have slightly lower safety and comfort thresholds for acceleration and jerk 

forces during HAD, compared to their own manual driving. Eriksson & Svensson 

(2015) suggested an acceleration and jerk threshold of 2 m/s² and 0.9 m/s³, for 

minimising motion sickness and ensuring a comfortable driving experience during 

HAD. 

Elbanhawi et al. (2015) suggested that naturalness of the drive could be 

another causal factor for driver discomfort in AVs. Since AVs are still in 

prototype/testing phase, most individuals are unaware of its usage and functions. As 

such, it is likely that drivers would base their expectations for a comfortable drive, 

based on their understanding of driver comfort in manual driving, or as a passenger in 

public transport systems. Therefore, it is of value to understand what particular 

features of an AV’s driving manoeuvres are likely to constitute a comfortable riding 

experience for a human user. For example, it is to be seen whether the driver prefers 

a familiar set of driving manoeuvres akin to a human driver (naturalness of the drive), 

or rather, a more “machine-like” driving behaviour, which entails rigorously adhering 

to the road-centre, and not cutting corners on curve to minimise lateral forces and jerk. 

Figure 1.4 below details factors affecting driver discomfort in HAD scenarios. 
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Figure 1.4. Factors affecting driver discomfort in HAD (adapted from Elbanhawi et al., 

2015) 

Given the subjective nature of comfort, most studies on comfort resorted to 

subjective measures to quantify comfort, such as subjective questionnaires (Thakurta 

et al., 1995) or comfort scales (Myers et al., 2008). However, given that driver 

discomfort can have a negative impact on drivers’ trust as well as wider acceptance 

of such AV features, it is crucial that the system is able to incorporate a discomfort 

detection system, that is minimally invasive, to monitor driver discomfort objectively 

and on a moment to moment basis. This can help the AV to adapt its driving style to 

ensure that the driver is relaxed and at ease. Physiological measures such as ECG 

and EDA-based metrics have been used in the past to assess driver state, in manual 

driving (Foy & Chapman, 2018). However, there is limited research on using 

physiological metrics as a measure of discomfort, especially during highly automated 

driving. A detailed review of physiological measures is provided in Section 1.4. In this 

thesis, I investigate how driver discomfort is affected by the driving style of the 

automated vehicle, including acceleration and jerk forces, human-like driving profiles, 

safety-margins to obstacles and road boundaries, as well as different road geometries, 

and whether driver discomfort can be measured using physiological metrics. While 

lack of safety-margins has been observed to increase driver discomfort, it can also 
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affect drivers’ workload levels. For example, when a vehicle maintains unsafe 

headway distance from a lead vehicle, it has been shown to increase drivers’ vigilance, 

as well as workload levels (Liu et al., 2019). Additionally, as mentioned in section 1.3, 

depending on individual characteristics of the driver, such as driving experience, 

automating the driving task can affect both comfort and workload levels. The next sub-

section introduces the concept of mental workload, and why it is crucial to understand 

and monitor drivers’ workload levels during different stages of HAD. 

1.3.3 Mental workload 

Since the 1960s, researchers have used the concept of mental workload to 

explain an operator’s task capabilities and limitations related to performance at one or 

more tasks. de Waard (1996) defined mental workload as the proportion of information 

processing capacity that is utilised for task performance. That is, mental workload 

describes the relationship between cognitive resources demanded by a task, and that 

which is available to the operator (Parasuraman et al., 2008). Workload has been used 

to describe human error and performance decrements seen in airline pilots in the 

aviation industry (S. G. Hart & Bortolussi, 1984; Roscoe, 1978). In the early days, pilots 

were required to monitor and process information from various sensors, during the 

flight, and make corrections if necessary, which could increase their workload levels. 

However, when part of pilots’ tasks and responsibilities became automated with 

innovative technologies such as fly-by-wire systems, it was assumed that this would 

lead to a decrease in pilots’ workload levels. However, automation posed several new 

human factors challenges, such as boredom due to monotony during periods of 

automation (Norman & Orlady, 1989). Conversely, automating tasks during periods of 

high pilot work rates, such as during take-off and landing, can contribute to an increase 

in cognitive load, due to an ever increasing amount of information processing required 

(Billings, 1991; Norman & Orlady, 1989).  

Within the driving domain, workload is considered to be one of the contributing 

factors affecting the performance and safety of a vehicle (de Waard, 1996; Hancock 

& Caird, 1993; Parasuraman et al., 2008). The term workload in itself does not suggest 

to a particular driver state, but rather, a driver could have different workload levels 

(such as high workload, low workload, or optimal workload) at different points in time, 

and this can be collectively considered as a set of driver states, affecting the driver at 
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that particular instant. How a driver processes information, from the driving 

environment, affects their workload. Therefore, in order to better understand the 

concept of mental workload within the driving context, the following sub-section will 

focus on models of the driving task. 

1.3.3.1 Models of the driving task 

Rasmussens' (1979, 1983) model on human behaviour and performance 

classified human behaviour into three categories: skill-based, rule-based and 

knowledge-based behaviour. 

Skill-based behaviour sits at the lowest level, and consists of well-learned 

procedures that are undertaken using sensory-motor skills, in an automated manner 

and without conscious control. At the intermediate level, rule-based behaviour is 

controlled by a stored rule that may be derived from past experiences. The boundary 

between skill-based and rule-based behaviour is not quite distinct. However, most 

rule-based behaviours involve conscious know-how of the situation, and of the rules 

being followed. At the highest level, knowledge-based behaviour involves conscious 

problem solving and decision making, based on analysis of the environment, to align 

with the overall aims and goals of the person, representing conscious control. 

However, Rasmussen’s taxonomy of human behaviour does not provide a dynamic 

insight into task hierarchy and corresponding performance. 

Within the driving context, Michon (1985) proposed a three level hierarchy of 

cognitive control. The strategic/planning level consists of the overall planning of the 

trip, including route selection, based on the objectives/goals for the trip and evaluation 

of the costs and risks involved. The manoeuvring/tactical level consists of negotiating 

common driving situations such as curves, intersections, and overtaking, as well as 

maintaining safety margins from road edges and other road users, without violating 

the goals and objectives set in the strategic level, and is generally executed in a matter 

of seconds. The operational/control level involves immediate control of vehicle inputs,  

such as acceleration or braking, and is performed in an automatic action/response 

pattern in a matter of milliseconds. The strategic level of driving is largely based on 

past experiences and requires little or no new information, and is usually pre-planned, 

whereas tactical and control levels are data-driven and based on the immediate driving 
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environment and generally require real-time information and feedback (Ranney, 

1994). 

Hale et al. (1990) incorporated Michon’s control hierarchy in driving with 

Rasmussen’s taxonomy on human behaviour, as shown in Table 1.2. Driving 

experience plays an important role in this taxonomy. For experienced drivers, the 

majority of the driving tasks follow a diagonal pattern in the table, from the top-left to 

the bottom-right corner, whereas it is mostly on the top-right for novice drivers. That 

is, an experienced driver is likely to follow skill-based behaviour at control level, rule-

based behaviour at manoeuvre/tactical level and knowledge-based behaviour at 

planning level. The exceptions reflect the differences in driving experience 

(experienced vs novice driver) and familiarity of the driving situations. For example, 

for a novice driver, a control-task, such as changing the gears, might require 

knowledge-based execution. As discussed earlier, in section 1.3.1, automating control 

level tasks can affect the driver states differently, for different drivers, as their driving 

behaviour (whether it is knowledge-based, skill-based or rule-based) could vary, for 

the same control level task, based on their driving experience.  However, familiarity of 

the situation, such as travelling between home and work, or negotiating familiar 

intersections, can make use of skill-based behaviour for successful task execution, 

suggesting that automaticity (without conscious control) can be observed on all three 

levels of cognitive control. Hale et al. (1990) also suggest that drivers perform more 

homogenously in skill-based and rule-based levels, than in knowledge-based 

behaviour, and most human error-based theories have the greatest difficulty in 

predicting error if the behaviour is knowledge-based.  

Table 1.2. Classification of driving task, based on Michon’s control hierarchy and 

Rasmussen’s skill-rule-knowledge based behaviour (adapted from Hale et al., 

1990, p. 1383). 

 Planning Manoeuvre Control 

Knowledge  Navigating in a new 

area 

Controlling skid Novice on first lesson 

Rule Route selection 

between familiar 

routes 

Passing other 

vehicles 

Driving an unfamiliar 

vehicle 
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Skill Travel between 

home and work 

Negotiating familiar 

intersections 

Cornering 

 

Deconstructing driver tasks into sub-tasks helps to demonstrate how changes 

in driver-vehicle-environment can affect driving performance. Processing of 

information (sensory input) from the different agents in the driving task, such as the 

vehicle (speed), or the environment (surrounding traffic, road geometry, etc.) by the 

driver, is crucial across planning, manoeuvre and control levels, allowing the driver to 

take the correct action, in order to successfully perform the driving task and avoid 

errors. The processing of information requires mental resources, affecting drivers’ 

workload levels. An understanding of information processing is required to better 

understand the concept of mental workload, and performance problems arising from 

it. Therefore, the next sub-section expands on information processing and its effect on 

human performance. 

1.3.3.2 Information processing and performance 

Information processing relates to changes in information that are detectable by 

an individual, including how individuals perceive, manipulate, analyse and retain 

information. Driving is a complex task, and the human driver can be considered as an 

input-output system of information processing (Kalsbeek, 1968).  

At a basic level, human information processing consists of four stages: Sensory 

processing, Perception, Response Selection and Response Execution (Parasuraman 

et al., 2000; Wickens, 1984). Sensory Processing and Perception can be considered 

as input functions, whereas Response Selection and Response Execution can be 

considered as the output functions. Wickens' (1984) information processing model 

further expands on these four stages, detailing the intermediary stages such as 

working memory, cognition and attention resources, as shown in Figure 1.5.  
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Figure 1.5. Model of human-information processing stages (redrawn from Wickens et 

al., 2013, p. 4)  

One crucial aspect of Wickens’ model of information processing is that, unlike 

a closed-loop system, it is a dynamic model, and involves constant interaction with the 

immediate environment (Wickens et al., 2013). This involves updating the sensory 

inputs constantly, based on the feedback from the environment, as well as any 

changes in system state, created due to previous response execution, which requires 

attentional/ mental resources at various stages of information processing, as shown in 

Figure 1.5. 

Within information-processing theories is the concept of limited processing 

capacity (Kahneman, 1973; Wickens, 1984). Kahneman (1973) suggested  a single 

undifferentiated capacity, from which mental resources are available for task 

performance. The words capacity and resource have been used interchangeably in 

the past, without differentiating each from one another (O’Donell & Eggemeier, 1986). 

However, the processing capacity of a human is limited (Kahneman, 1973; Wickens, 

1984), and Wickens (1992) and de Waard (1996) defined this capacity as the 

maximum or upper limit of processing capability, and resource as the amount of 

processing facilities allocated, representing the mental effort supplied to improve 

processing efficiency.  

However, resources are limited, and Wickens (1984)’s multiple resource theory 

postulates that people have a limited set of resources available for mental processes, 
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and these resources are shared across different tasks, modalities and processes. 

There is a central resource pool which is required for performing almost all tasks. 

Additionally, Wickens (1984) also suggested that different task modalities might 

require different sets of resource pools, for optimal task performance. When an overlap 

of resource requirement occurs, for example, doing two visual tasks simultaneously, 

requiring visual resources, it can affect the performance. Whereas for tasks that 

require different resources, for example, performing an auditory task along with a 

visual task, performance of both tasks can remain unchanged, as there is no overlap 

between visual and auditory resources, provided there is no performance decrement 

due to exhaustion of the central resource pool (de Waard, 1996). Resources are 

characterised by two general properties: they are generally deployed under voluntary 

control, and they are scarce/limited in quantity. 

There is an implicit assumption in Wicken’s multiple resource theory that the 

size of the resource pool is generally fixed. However, Young & Stanton (2002) 

introduced the Malleable Attentional Resources Theory (MART), which posits that the 

size of the resource pool is not fixed, and can change in size according to the changes 

in task demand. For example, in doing a low demand task, the operator’s resources 

would shrink to accommodate and demand reduction. MART was able to explain why 

degradation in attention and performance was observed, even in low demand tasks. 

In order to better understand how human performance is affected by task demand, we 

look at the relationship between workload, task demand and performance within the 

driving context, in the next section. 

1.3.3.3 Workload, task demand and performance 

According to de Waard (1996), workload is the proportion of information 

processing capacity that is utilised for task performance. In relation to driving, 

Parasuraman et al. (2008) defined workload as the relationship between the mental 

resources demanded by a task, and those resources available to be supplied by the 

driver. In both these definitions, workload is dependent on the individual, as well as 

the nature of the task that is performed. Mulder (1986) distinguished mental workload 

into two components, one being the mental workload associated with processing the 

information presented in a controlled mode (or computational effort) and the other 

being the mental effort that is required to compensate when there is a dip in the driver’s 
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energy resources (compensatory effort). Effort here reflects the driver’s reaction to 

demand. The computational effort is used to maintain an adequate level of task 

performance, whereas compensatory effort is required when the performance 

decreases below a certain level, such as  due to boredom or fatigue (G. Mulder, 1986; 

Silva, 2014).  

One way to conceptualise mental workload is by considering its relationship  to 

performance. Some researchers suggest that workload and performance follows an 

inverted U-shaped curve (Bruggen, 2015), similar to Yerkes-Dodson’s Law on arousal 

and performance (Yerkes & Dodson, 1908). The relationship between workload and 

task performance is quite complex and not necessarily linear. Mental workload can 

vary between extremely low (underload) and extremely high levels (overload, or when 

the demand exceeds processing capacity). These two extremes between the optimal 

level (i.e. the appropriate mental workload where the driver is in a comfortable state, 

while catering to the task demands without any reduction in task performance) are not 

favourable and can lead to depreciation in task performance, and diminish information 

processing capabilities, for example, that which is required to successfully execute the 

driving task (Bruggen, 2015; Lenné et al., 1997; Rusnock & Borghetti, 2016; Silva, 

2014). However, this model does not explicitly specify the interaction between task 

demand, with workload and performance. 

Meister (1976) proposed a model to explain the relationship between task 

demand and performance. Within the driving context, de Waard (1996) proposed a 

modified version of Meister’s model, to include workload as an additional dimension, 

in relation to driving, and is shown in Figure 1.6. He divided the workload into 6 regions 

as shown in the figure. Region D indicates the effects of monotonous tasks on 

workload and performance. Low task demand and under-stimulation (underload 

condition) will lead to decreased attention and diminished arousal (Grandjean, 1979), 

leading to low performance. The transition from region D to A1 is associated with 

monotony experienced by the driver where he needs to make a greater effort 

(compensatory effort) to maintain their performance level. In regions A1 

(compensatory effort) and A3 (computational effort), the driver has to increase their 

effort to maintain their performance and match the task demands. A2 denotes the 

optimal performance region where the driver is able to meet all the task demands with 
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minimal or no extra effort at optimal workload levels, without any deterioration in their 

performance. However, when the task demand becomes too great and computational 

effort cannot be maintained, this leads to a dip in performance (region B) until the 

increasing task demand leads to mental overload, resulting in low performance 

efficiency (region C) (de Waard, 1996; Meister, 1976).  

 

Figure 1.6. Workload, task demand and performance ( de Waard, 1996, p. 24) 

In this thesis, only task-related effort, and performance decrements associated 

with increased task demands (computational effort), will be considered. Drivers using 

different levels of automation are likely to experience workload differently. For 

example, drivers in SAE L2-enabled vehicles would have to monitor the drive 

constantly, which can result in similar levels of mental workload and attentional 

demand as manual driving (Lohani et al., 2021; Stapel et al., 2019). In SAE L3 

automated driving, drivers are not required to monitor the drive, which can reduce their 

workload levels. However, they are more likely to engage in other non-driving related 

activities (Carsten et al., 2012), including visual NDRTs such as using their 

smartphone, which results in an increase in their workload levels. If and when they are 

required to resume manual control of the vehicle, they would have to switch back to 

the driving task, from an OOTL state, which is likely to negatively affect both 

performance and safety (Zeeb et al., 2016). The next sub-section discusses how 

mental workload can affect driving performance during HAD, and around takeovers. 
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1.3.3.4 Task switching, mental workload and HAD 

A transition of control to manual driving would involve task switching, where the 

driver has to stop his current task, such as monitoring the drive (in SAE L2 enabled 

vehicles) or other non-driving related activities (in SAE L3 enabled vehicles), and 

switch their physical, mental and attentional resource to perform the manual driving 

task. However, this task switching comes at a switch cost, which affects both the 

driver’s workload and task performance in resuming manual control of the vehicle 

(Dogan et al., 2017). Concurrent tasks, that use similar mental resources to perform 

two distinct tasks, such as talking on the phone and driving, both of which require 

mental resources for information processing, can result in mental overload if the driver 

is negotiating a complex driving environment and/or the phone conversation is 

mentally taxing, resulting in diminished performance (Wickens et al., 2015). Sequential 

task performance involves the driver performing one task or the other at a time, with 

the limited resources available to perform the tasks, as they are unable to perform 

both the tasks concurrently, without being in a mental overload condition (Wickens et 

al., 2015). There are many examples of task failures during sequential task 

performance in driving, such as texting on the phone while driving, where the driver 

has to choose between either texting or driving, at a time, which can take the driver’s 

attention away from the road, resulting in accidents (Klauer et al., 2006). During 

automated driving, task switching from a demanding non-driving related activity, to the 

driving task during transition, can come with a switch cost, in terms of reaction time 

and higher error rates (Jersild, 1927; Monsell, 2003), as well as a decrement in 

performance in the follow on task, which is manual driving (Monsell, 2003).  

Parasuraman et al. (2008) suggested that workload is a better predictor of 

drivers’ future performance, than their current performance, and in order to ensure 

optimal driving performance when they have to resume manual control, their workload 

should be at an optimum level (neither underload nor overload condition, region A2 of 

Figure 1.6). For example, it can be argued that a driver’s ability to safely resume 

control from automation is likely to be affected if they are engaged in a high workload 

task during HAD, such as a demanding NDRT, with worse performance observed in 

terms of higher reaction time, and poorer lateral control, indicated by larger deviations 

from the lane centre and higher lateral acceleration, compared to consequent driving 

performance after a no task period during HAD (Gold et al., 2015; Zeeb et al., 2016). 
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As drivers are more likely to engage in NDRTs as automation level increases (Carsten 

et al., 2012), it is imperative that drivers’ workload levels are monitored at different 

stages of the HAD, to provide mitigation strategies, and reduce performance 

decrements and errors upon resumption of manual control during transitions (Merat et 

al., 2012). 

Drivers’ workload levels are not just affected by NDRTs, but also, the driving 

environment itself. Studies have shown that increased traffic (Radlmayr et al., 2014), 

complex driving environments such as driving through a busy city centre or suburban 

road (Foy & Chapman, 2018), and short time headways during car-following (Liu et 

al., 2019) increase drivers’ workload levels. Therefore, in this thesis, we investigate 

the effect of different car-following situations and NDRTs, on drivers’ workload levels, 

and whether driver workload can be objectively measured in a continuous manner. 

Driver workload is highly subjective depending on the individual, and how they 

are affected by, or perceive it. Workload has been measured in most studies using 

subjective ratings, such as NASA-TLX (Sandra G. Hart & Staveland, 1988a; Stapel et 

al., 2019). However, Hart & Wickens (1990) suggested that such self-reported 

workload ratings reflect subjective impressions of workload, that may differ from the 

workload as reflected by task performance. The ability to objectively measure 

workload in real-time during different stages of HAD is crucial, as it can provide insights 

into drivers’ capabilities and limitations, such as whether they are in an underload or 

overload state, ultimately helping to improve the safety of the automated system. Real-

time, minimally intrusive, and continuous assessment of driver workload can be used 

to assist the driver, for example, to warn them of their dangerous overload or underload 

states (Merat et al., 2012). The next section of this thesis expands on how 

physiological metrics can be used as an objective indicator to assess driver states of 

discomfort and mental workload, during HAD. 

1.4 Use of physiological metrics for driver state monitoring  

 Psychophysiology conceptualises how different psychological processes 

trigger physiological responses within the body, especially with a focus on higher 

cognitive processes (Cacioppo et al., 2007a). Physiological signals have been used 

to understand, and objectively quantify, different driver states such as fatigue, stress, 
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workload, attention or discomfort (Beggiato et al., 2018; Cho et al., 2017; Foy & 

Chapman, 2018; Mehler et al., 2009; Patel et al., 2011). The next sub-section provides 

a basic understanding of physiology and its relationship with a number of key 

psychological constructs, with a focus on autonomic (relating to autonomous nervous 

system or ANS) physiological functions. 

1.4.1 Introduction to psychophysiology 

Understanding how physiological signals can be used, as an objective measure 

of drivers’ psychological state, requires a deeper understanding of the relationship 

between physiological signals and psychological constructs. The relationship between 

psychological constructs and physiological signals is quite complex, and varies across 

scenarios, environments and individuals. One issue surrounding psychophysiological 

relationship is its limited validity (such as validity in dynamic driving environments), 

because the clarity in relationship between psychological functions (e.g. cognitive 

functions) and physiological signals (e.g. skin conductance, heart rate) is observed 

only in certain well-prescribed assessment contexts (Cacioppo et al., 2007b).  

The Autonomic Nervous System (ANS) controls the unconscious actions of the 

body, and helps in understanding how certain psychological states can elicit 

physiological responses. This consists of the sympathetic (SNS) and parasympathetic 

nervous system (PNS). PNS is generally associated with homeostasis or activities of 

the body when it is at a state of rest (called rest and digest functions), whereas (SNS) 

is generally associated with the ‘fight or flight’ response, which is the body’s reaction 

to threat, a harmful event or survival. It also complements the PNS by being constantly 

active in the background at a very basic state, to maintain homeostasis of the body 

(Brodal, 2010; Cacioppo et al., 2007a). While historically, it was assumed that the 

status of the nervous system existed along a single continuum extending from the 

parasympathetic to sympathetic domain, more recent representations of ANS and its 

functioning suggests that the parasympathetic and sympathetic nervous systems can 

change reciprocally, coactively or independently (Berntson et al., 2007). Driver states 

such as high workload, or discomfort, results in increased SNS activity, as well as 

diminished PNS activity. Table 1.3 below provides an overview of how PNS and SNS 

affect different organs of the human body.  
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Table 1.3. Effect of SNS and PNS on different organs of the human body (adapted 

from Brodal, 2010) 

Organ Sympathetic nervous system 

(SNS) 

Parasympathetic nervous 

system (PNS) 

Arteries Vasoconstriction (increased 

blood pressure)  

Vasodilation (decreased blood 

pressure) 

Skin Sweat secretion No innervation 

Heart Increased heart rate Reduced heart rate 

Airways  Relaxation of bronchial muscles Contraction of bronchial 

muscles, secretion from mucous 

glands 

Eye Pupillary dilation Pupillary constriction, 

accommodation, secretion of 

tears 

 

As can be observed in the table, different physiological responses, by different 

organs in the body, are controlled by either PNS or SNS, or in some cases, by both. 

Previous research has indicated promising results in using skin-based (such as 

Electrodermal activity or EDA), eye-based (pupillometry) and heart-based (such as 

Electrocardiogram or ECG) physiological signals, as indicators of drivers’ discomfort 

or workload levels (Beggiato et al., 2019; Foy & Chapman, 2018; Mehler et al., 2009). 

Moreover, EDA and ECG measures are minimally intrusive compared to brain-based 

signals such as electroencephalogram (EEG), with technological advancements 

leading to even non-contact techniques to capture these signals (Kranjec et al., 2014). 

Therefore, this thesis focuses on minimally-intrusive or non-intrusive physiological 

measures of electrodermal activity (EDA), heart rate variability (HRV) along with 

pupillometry, as an indicator for driver state. The next sub-section of this thesis 

focuses on EDA and its relationship to psychological processes. 

1.4.2 Electrodermal activity 

Electrodermal activity (EDA) relates to changes in electrical potential of the 

skin, due to sweating. Research has indicated that the eccrine sweat glands located 

in the palmar and plantar surfaces are affected more by psychological factors, than 

thermoregulation (Edelberg, 1972; Shields et al., 1987). Recent research has shown 
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convincing evidence linking EDA to SNS activities (Beggiato et al., 2019; Boucsein, 

2012).  

The EDA signal is typically classified into tonic and phasic components. The 

tonic components record the slow changes in electrical conductivity of the skin and the 

most common measure for this is skin conductance level (SCL; see Figure 1.7). The 

fast or rapidly evolving component is the phasic component or skin conductance 

response (SCR; see Figure 1.7), which is usually triggered by an event (Braithwaite 

et al., 2013). Instead of the conventional trough-to-peak method to separate the tonic 

and phasic components of an EDA signal, Benedek & Kaernbach (2010) proposed 

continuous decomposition analysis to extract the phasic component of the EDA signal, 

where the raw EDA data is deconvolved first using a general response shape of the 

EDA signal, following which, it is decomposed into the tonic and phasic components. 

This method has been shown to be more accurate, as well as computationally robust 

(Benedek & Kaernbach, 2010), and therefore, the processing of all EDA data included 

in this thesis is based on this method. 

 

Figure 1.7. Tonic (grey) and Phasic (dark blue) components of an EDA signal after 

continuous decomposition analysis, done on MATLAB R2016a using Ledalab 

software (Benedek & Kaernbach, 2010). 
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 It is extremely difficult to identify an isolated SCR event, with the corresponding 

exact stimuli, without controlled context. Although, this can be circumnavigated by 

having a strictly controlled experimental paradigm (e.g. having just one aspect of 

stimulus change across experimental conditions) or by using it in conjunction with 

other physiological metrics (Dawson et al., 2007). The various derived metrics from 

both the tonic and phasic components of an EDA signal, its definition and typical 

values, are shown in Table 1.4, some of which are visually represented in Figure 1.7 

. 

Table 1.4. EDA metrics, definitions and typical values (Dawson et al., 2007) 

Measure Definition Typical Values 

Skin conductance level 

(SCL) 

Tonic level of electrical conductivity of the skin 2-20 µS 

Change in SCL Gradual changes in SCL measured at two or more 

points in time 

1-3 µS 

Frequency of NS-SCRs Number of SCRs in absence of identifiable eliciting 

stimulus 

1-3 per min 

SCR amplitude Phasic increase in conductance shortly following 

stimulus onset 

0.1-1.0 µS 

SCR latency Temporal interval between stimulus onset and SCR 

initiation 

1-3 s 

SCR rise time Temporal interval between SCR initiation and SCR peak 1-3 s 

SCR half recovery time  Temporal interval between SCR peak and point of 50% 

recovery of SCR amplitude 

2-10 s 

SCR habitation (trials to 

habituation) 

Number of stimulus presentations before two or three 

trails with no response 

2-8 stimulus 

presentations 

SCR habituation (slope)  Rate of change of event related SCR amplitude 0.01-0.5 µS per 

trial 

nSCRs/min Number of significant SCRs above amplitude threshold 

(generally between 0.01 – 0.05 µS) in a minute 

Stimulus 

dependent (10 

– 45 nSCRs) 

 

While electrodermal activation is sensitive to a wide range of stimuli, research 

has shown a strong relationship between EDA and SNS-related activities, such as 

arousal (Boucsein, 2012). Within the driving domain, EDA-based measures such as 

tonic SCL, and nSCR/min (see last row in Table 1.4) have been used as indicators of 
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driver workload or discomfort. For example, using a manual driving simulator study, 

Mehler et al. (2009) found that drivers’ tonic SCL increased, when they performed a 

cognitive n-back (recall) task during driving. The n-back task required the driver to 

recall the number presented n-steps earlier in the sequence, at a given moment. The 

authors report a significant increase in SCL from baseline (no task) to 0-back and 1-

back tasks, suggesting that SCL is sensitive to incremental increases in driver 

workload. Similarly, Foy & Chapman (2018) observed significant differences in driver 

workload, across different road environments such as dual-carriageways, suburban 

roads and city centre driving, with the authors finding a significant increase in drivers’ 

nSCR/min values, as the driving environment became more complex and drivers’ 

workload levels increased. The objective workload levels, as indicated by nSCR/min 

values, correlated to subjective NASA-TLX workload ratings collected in the study (Foy 

& Chapman, 2018; Sandra G. Hart & Staveland, 1988b). Research on the use of EDA 

signals in detecting discomfort during driving is quite limited. However, in a recent 

driving simulator study on HAD, Beggiato et al. (2019) observed that tonic SCL was 

sensitive to discomfort-inducing scenarios such as when the vehicle was negotiating 

a complex intersection without traffic lights, or when aggressively approaching a red 

traffic light. The authors observed significant increases in SCL levels around periods 

of discomfort (Beggiato et al., 2019). 

However, the majority of the studies on EDA have been conducted in either 

laboratory environments, including fixed-base simulators for studies on driving. As 

such, there is limited validation for EDA signals in highly dynamic environments, such 

as real-world driving studies. EDA signals are known to be highly susceptible to 

motion-artefacts (Braithwaite et al., 2015; Taylor et al., 2015). Therefore, this thesis 

addresses this research gap by evaluating the validity of EDA signals, in highly 

dynamic driving environments, and developing novel methods to remove such 

artefacts. The next sub-section expands on the use of heart rate variability as an 

indicator of driver state. 

1.4.3 Heart rate and heart rate variability 

The chain of events that occur from one heartbeat to the next is referred to as 

a cardiac cycle, which begins with the depolarisation of the heart’s sinoatrial (SA) 

node. This is the P wave in the electrical signal generated by the heart, also known as 
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an electrocardiogram (ECG), which is depicted in Figure 1.8. This is shortly followed 

by the contraction of the atrial and ventricular chambers, which appears as the QRS 

complex (Figure 1.8) on the ECG signal. The Q and R waves denote the 

depolarisation of the ventricular septum, followed by the bulk of the ventricular 

myocardium, respectively. At the end of a ventricular contraction, the atrioventricular 

valve closes, causing pressure to build up in the ventricular chamber, leading to blood 

filling up the ventricular chamber. Towards the end of ventricular contraction, the 

atrioventricular nodes repolarise, which is observed as the T wave in an ECG signal 

(Figure 1.8), initiating the relaxation of the ventricular chamber, and opening the aortic 

value to pump the blood across the body (Berntson et al., 2007). 

 

Figure 1.8. A typical ECG signal denoting a single cardiac cycle, including the QRS 

complex (adapted from Berntson et al., 2007, p.184). 

Data acquisition, at high sampling rates of over 1000 Hz, minimises loss of 

information, and reduces noise in R-R waves, where the R peaks can be demarcated 

easily, even with motion (Berntson et al., 2007). Additionally, band-pass filtering could 

be implemented to further remove the noise from the ECG signal for R peak detection 

(An & Stylios, 2020). Patel et al. (2011) provides a well explained example of peak 

detection algorithm that can be used extract R-R peaks from an ECG signal. However, 

it should be noted that removing noise from the QRS complex is challenging and 

complicated, especially without distorting the shape of the QRS complex (van Gent et 
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al., 2018). Most autonomic cardiac responses can be derived from R-R intervals, and 

therefore, removal of noise from the QRS complex, while preserving its shape, is 

beyond the scope of this thesis. Although, zero-phase infinite impulse response (IIR) 

filters based on a high-pass Butterworth filter, with a cut-off frequency of 0.5 Hz, and 

filter order 2, has been shown to be an effective tool in removing motion artefacts from 

the QRS complex of the ECG signal (An & Stylios, 2020).  

Heart rate (HR) refers to the number of heart beats that occur within a minute, 

where each heartbeat is generally measured by successive R wave peaks in the ECG 

signal, as R wave peaks are more pronounced and, hence, easier to identify. In 

contrast, photoplethysmogram (PPG), uses optical sensors which are sensitive to 

discolouration in the skin as blood perfuses through the blood vessels during each 

heartbeat, as opposed to ECG, which directly measures electrical signals from the 

heart. Additionally, PPG is highly susceptible to motion artefacts, which can completely 

distort the QRS complex in a highly dynamic environment (van Gent et al., 2018), and 

make peak detection almost impossible in certain cases of high movement. Therefore, 

this thesis focuses on using ECG signals as a measure for cardiac metrics. 

Studies show that the heartbeat does not necessarily occur at regular intervals 

(Berntson et al., 2007), and this variation in the time interval between heartbeats is 

referred to as heart rate variability (HRV). The cardiovascular actions causing this 

variation in heart rate are generally associated with the activities of both SNS and PNS 

(Berntson et al., 2007). Of particular interest is the spectral functions of cardiac signals, 

in the high frequency (HF) region of an HRV signal (0.15 – 0.4 Hz), which is 

predominantly controlled by PNS activity and reflects vagal control (Berntson et al., 

2007; Laborde et al., 2017). Recent research has indicated that SNS is constantly 

active, even during low arousal states, to maintain homeostasis, therefore, reduction 

of PNS activity could also be used as a better indicator of higher arousal states, and 

vagal or PNS indices offer a clearer interpretation of psychological constructs such as 

stress, workload or fatigue (Laborde et al., 2017; Mehler et al., 2009; Patel et al., 

2011). Of particular interest amongst the vagal metrics, is the time domain metric of 

root mean squared of successive differences of R-R peak intervals (RMSSD), which, 

unlike spectral HF metrics, is not influenced by respiration rate (Hill et al., 2009), and 
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is thought to provide a better assessment of vagal tone (Otzenberger et al., 1998). A 

list of commonly used HRV metrics, and their description, is given in Table 1.5 below. 

Table 1.5. Summary of commonly used HRV parameters and their description 

(adapted from Laborde et al., 2017, p. 4) 

 Variable Description Physiological origin 

Time domain SDNN Standard deviation of all R-R 

intervals 

Cyclic components 

responsible for HRV 

 RMSSD Root mean square of successive 

differences in R-R intervals 

Vagal tone 

 pNN50 Percentage of successive normal 

sinus R-R intervals more than 50 

ms 

Vagal tone 

 Peak-valley Time domain filter dynamically 

centred at the exact ongoing 

respiratory frequency 

Vagal tone 

Frequency domain ULF Ultra-low frequency Circadian oscillations, core 

body temperature, 

metabolism 

 VLF Very-low frequency Long-term regulation 

mechanisms, 

thermoregulation and 

hormonal mechanisms 

 LF Low frequency Mix of sympathetic and 

vagal activity, baroreflex 

activity. 

 HF High frequency Vagal tone or PNS 

 LF/HF Low frequency/high-frequency 

ratio 

Mix of SNS and PNS activity 

Non-linear indices SD1 Standard deviation – Poincare plot 

crosswise 

Depicts quick and high 

frequency changes in HRV 

 SD2  Standard deviation – Poincare plot 

lengthwise 

Depicts long term changes 

in HRV 

 

Within the driving context, both HR and HRV-derived metrics have been used 

to indicate driver states such as fatigue (Patel et al., 2011), high workload (Mehler et 

al., 2009) or stress (Taelman et al., 2008). A general finding is that HR increases, while 
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HRV reduces. Studies show that RMSSD values reduce during high arousal states 

such as stress (Orsila et al., 2008), high workload (Mehler et al., 2009) or discomfort 

(Beggiato et al., 2019). While ECG signals are susceptible to motion-artefacts, these 

are less affected by motion, when compared to a PPG or EDA signal. One limitation 

of HRV-based metrics is that they require at least two minute (ideally five minute) 

windows, for accurate analysis (Bourdillon et al., 2017; Laborde et al., 2017). Since 

the signal has a high decay time, it might include carryover effects from previous 

stimuli, when presented with continuously fluctuating stimuli. However, there is limited 

research on the use of HRV-based metrics in the HAD context. Investigating the 

sensitivity of this metric to less pronounced stimuli, that induces discomfort or 

workload, warrants further research. However, as mentioned earlier, physiological 

changes can be caused by a variety of factors, and eye tracking helps us in 

understanding where the attention of the driver is, thereby providing more context as 

to why the physiological change is happening. In the next sub-section, eye tracking 

metrics and its usage in driver state detection is explained. 

1.4.4 Eye-based metrics and pupillometry 

In most modern eye trackers, the eye movement and the direction of gaze are 

obtained by optical tracking of corneal reflections, which helps assess visual attention. 

Eye trackers have become more and more compact and minimally intrusive over the 

years. 

Most modern eye trackers utilize near-infrared technology along with a high-

resolution camera (or other optical sensor) to track gaze direction, as well as 

demarcating the pupils from the rest of the eye. Gaze-based eye tracking metrics have 

been used in driving research as an indicator of visual attention (Chapman & 

Underwood, 1998; Louw, Kuo, et al., 2019; Louw, Madigan, et al., 2017; Merat et al., 

2014; Wilkie & Wann, 2003). Eye tracking-based metrics are widely used for driver 

state monitoring, owing to the non-intrusive nature of measurement. Table 1.6 

summarises various commonly used eye-based indices, their definitions, 

corresponding psychological relationships and typical values. 



 

43 

 

Table 1.6. Eye-based metrics, definitions and typical values (Beggiato et al., 2019; 

Mathôt, 2018; Rauch et al., 2009) 

Metric Definition Psychological 

relation 

Typical values 

Gaze (Pitch and 

Yaw) 

The pitch and yaw angles of 

vectors indicating the direction of 

gaze 

Visual attention - 

Fixations  Gaze cluster formed by series of 

gaze points close to each other in 

time and magnitude, indicating a 

period in which the eyes are 

locked onto an object 

Visual attention 100 – 300 ms 

Area of Interest 

(AOI) 

User defined regions within the 

display stimulus 

Visual attention - 

Time to first fixation  Amount of time it takes to fixate 

on a specific AOI, from stimulus 

onset 

Indicative of 

detection time of 

hazards and objects 

- 

Pupil diameter The diameter of the eye’s pupil, 

which can increase or decrease 

due to stimuli 

Arousal, workload 

and light intensity 

can result in an 

increase in pupil 

diameter. 

2-4 mm in bright 

conditions and 4-

8 mm in dark 

conditions 

Blink frequency and 

duration 

The closing and opening of 

eyelids, its frequency and 

duration 

Indicative of 

cognitive load, 

discomfort and 

drowsiness 

- 

PERCLOS Percentage eyelid closure Drowsiness indicator - 

 

In addition to measuring drivers’ visual attention, studies using pupillometry 

(measurement of pupil size and reactivity) have indicated a relationship between pupil 

dilation and constriction, and cognitive activity, with the pupil dilating when the 

cognitive load or task demand increases, even for non-visual tasks (Marquart et al., 

2015; Mathôt, 2018).  

For example, in their driving simulator-based study on manual driving, Palinko 

et al. (2010a) observed that drivers’ pupils dilated significantly, with increases in 

cognitive load, presented in the form of two NDRTs: a twenty questions task, and a 
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last letter (memory recall) game. Using a driving simulator study to investigate driver 

discomfort in HAD, Beggiato et al. (2019) found that pupils dilated during discomfort-

inducing situations, such as when the vehicle was negotiating a complex intersection 

without traffic lights, or when aggressively approaching a red traffic light. However, 

pupil diameter variations can be caused by other factors. These include variations due 

to brightness levels, also known as pupil light response, which results in larger pupil 

diameter during darker conditions (Mathôt, 2018; Spector, 1990). Shifting of focus 

between a nearer object to a farther object, can also result in pupil dilation, also known 

as accommodation reflux (Mathôt, 2018). Finally, orienting response, which occurs 

when there is a sudden change in the environment, for example as caused by a startle 

response to sounds, movement or touch, can also lead to pupil dilation. This is 

normally a small change in magnitude of pupil diameter, and of short duration, which 

occurs within 0.5 s to 1s of stimulus onset (Mathôt, 2018).  

In addition to changes in pupil diameter, blink frequency and blink duration have 

also been associated with changes in cognitive load (de Waard, 1996; Marquart et al., 

2015; Merat et al., 2012). However, results of studies using these metrics have been 

somewhat conflicting, with some reporting an increase (Recarte et al., 2008) and 

decrease in blink frequency and duration (Veltman & Gaillard, 1996), with an increase 

in cognitive load. Recarte et al. (2008) argued that visual attention can lead to blink 

inhibition, and thereby reducing blink frequency and duration, as blink suppression 

aids in decision making. However, blink rates and duration can increase due to 

performing a cognitive task, as the resources required to perform the cognitive task 

while driving can interfere with the resources required for blink inhibition (J. A. Stern 

et al., 1994). Therefore, in this thesis, blink metrics have been avoided in favour of 

pupil diameter, as the latter provides a stronger inference with the underlying 

psychological construct (in this case, cognitive activity or workload).  

While eye tracking-based metrics can provide deeper insights into drivers’ 

cognitive and attentional states, there are some limitations and drawbacks. For 

example, the sensitivity of eye trackers to psychological states, such as discomfort, is 

not well established, and warrants further research. Furthermore, for unobtrusive, 

dash-based, eye trackers, a loss of the eye or face features from the camera sensors 

can hinder real-time driver state detection, and potentially compromise driver safety. 
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For example, during HAD, if the drivers are engaged in an NDRT, and looking away 

from the camera’s field of view, the eye tracking system would be unable to assess 

the driver’s state. Therefore, combining eye tracking data with other physiological 

metrics, such as skin conductance and heart rate-based measures, can help improve 

driver state detection in future AVs. 

1.5 Summary of key research gaps 

We are still a long way off from achieving full autonomy, where all aspects of 

the driving task and sub-tasks are undertaken by the automated system, without 

requiring any intervention from the human driver. Therefore, driver state monitoring 

plays a critically important role in ensuring safety of the automated vehicle, especially 

in situations where the driver might have to resume control of the vehicle. Real-time 

detection of driver states, such as discomfort and high workload, can improve human-

automation interaction by enabling the automated system to select appropriate 

mitigation strategies and assist the driver in safely and successfully resuming control 

of the vehicle, when required. This will eventually improve trust and wider acceptance 

of these systems by drivers (Carsten & Martens, 2019). However, there are still 

significant gaps in our knowledge about the effect of automation on certain driver 

states, such as discomfort or workload, and how such driver states can be objectively 

measured using physiological signals, as seen below: 

• Physiological signals have been used in the past as an indicator of driver states 

such as discomfort (Beggiato et al., 2019) or high workload (Mehler et al., 

2009). However, a vast majority of psychophysiological studies have been 

conducted in a laboratory environments. In case of the limited number of 

driving related psychophysiological studies, a fixed-base simulator 

environment was used (Beggiato et al., 2019; Foy & Chapman, 2018; Mehler 

et al., 2009). With regards to ECG signals, as mentioned in section 1.4.3, when 

data is recorded at frequencies above 500 Hz, the R-peaks are highly unlikely 

to be affected by motion artefacts. Simple zero phase infinite impulse response 

filters can be used to remove noise from the ECG signal. However, EDA 

signals have been shown to be highly sensitive to motion artefacts (Taylor et 

al., 2015). Therefore, further research is required to establish whether motion 
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artefacts can be removed from an EDA signal during a highly dynamic driving 

environment, in order to make useful interpretations of driver state from the 

EDA signal, in real-world driving environments. 

• Ensuring driving comfort can help improve trust and encourage wider 

acceptance, as well as safety of automation features in driving (ERTRAC, 

2017; Molnar et al., 2018; Siebert et al., 2013). However, as the driver changes 

from an active operator to a supervisory role, with an increase in automation 

level, the factors and threshold limits for driver discomfort changes. There has 

been limited research on how factors such as an AV’s driving style (including 

acceleration and jerk forces, safety margins or “human-like driving”) can induce 

driver discomfort, during automation. Additionally, the different measurement 

techniques that can be used to quantify driver discomfort warrant further 

investigation, including the usability of physiological metrics such as SCRs, 

mean HR and RMSSD, as an objective and continuous measure of discomfort, 

to enable real-time discomfort detection in future driving automation systems.  

• Drivers’ workload levels can affect both performance and safety of the vehicle 

during HAD, if and when the driver has to resume manual control of the vehicle 

(Merat et al., 2012; Parasuraman et al., 2008). Therefore, continuous 

monitoring of drivers’ workload levels can be used in warning the driver of 

dangerous underload or overload conditions, and provide appropriate 

mitigation strategies (Merat et al., 2012). There has been limited research on 

understanding how different factors, such as  presence of a lead vehicle, safety 

margins in terms of time headway maintained from a lead vehicle, monitoring 

the drive or engaging in NDRTs, can affect driver workload, during HAD and 

during transitions, and whether these more subtle changes (as opposed to 

changes due to more cognitively demanding memory recall tasks) in workload 

levels can be captured by physiological metrics.  

1.6 Research questions and thesis overview 

The main aim of this thesis is to investigate and validate the usage of 

physiological measures as an objective indicator of driver state in dynamic driving  

environments, and understand if such a methodology can be used to measure driver 

discomfort, and high workload, as well as how such states affect drivers’ resumption 
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of control from automation. In particular, this thesis addresses the following research 

questions: 

1. Can electrodermal activity be used to assess drivers’ discomfort and workload 

levels, in a dynamic driving environment? 

2. What are the primary factors contributing to driver discomfort during HAD, and 

are these reflected in drivers’ physiological state? 

3. Are changes in workload levels during different stages of HAD, including the 

transition of control, reflected in drivers’ electrodermal activity and 

electrocardiogram-based physiological metrics? 

4. How are drivers’ attentional demand, and workload levels, affected at different 

stages of HAD, including transition of control, as reflected in their pupil diameter 

values? 

Driver state manipulations were performed to induce driver states of discomfort 

and increased workload, in this research. Discomfort was manipulated by controlling 

the driving style of the automated vehicle, including acceleration and jerk forces, 

human-like driving profiles, safety-margins to obstacles and road boundaries as well 

as different road geometries. Driver workload was manipulated by using a non-driving 

related visual task, the presence of a lead vehicle during takeover scenarios and by 

manipulating the headway distance maintained by a lead vehicle, during car-following 

situations. Physiological indices derived from EDA, ECG and eye tracking measures 

were used as objective indicators of driver state, and validated against subjective 

ratings of either discomfort or workload. 

The overall outline of this thesis, including the remaining five chapters, is shown 

in Figure 1.9 below. 
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Figure 1.9. Thesis structure. 
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2 ANALYSING ELECTRODERMAL ACTIVITY IN DYNAMIC 

DRIVING ENVIRONMENTS 

ABSTRACT: This methodology proposes a novel and rapid automated motion 

artefact detection algorithm for electrodermal activity (EDA) data in dynamic 

environments. Building on a well validated shape-based artefact detection method, we 

improved the detection algorithm by adding an additional slope constraint. We also 

proposed a novel approach to account for missing or removed data, using modified-

Akima (Makima) interpolation technique. Upon visual inspection, our shape and slope-

based algorithms, along with the Makima interpolation techniques, detects and 

corrects from motion artefacts in ambulatory environments, while preserving the shape 

of the EDA signal.  

2.1 Introduction 

Electrodermal activity (EDA) refers to the autonomic changes in the electrical 

properties of the skin, which is observed by studying the current flow between two 

points of contact on the skin’s surface, when an electrical potential is applied 

(Braithwaite et al., 2015). While the primary function of eccrine sweat glands is 

thermoregulation, the sweat glands located on the palmar and plantar regions of the 

body is more responsive to psychologically significant stimuli than thermal stimuli 

(Cacioppo et al., 2007a). EDA is directly related to sympathetic nervous system (SNS) 

activity, with strong correlation to psychological stimuli such as arousal, stress, anxiety 

or attentional demand (Cacioppo et al., 2007a; Kübler et al., 2014). EDA-based 

measures have been increasingly used to understand driver state in driving studies, 

given its sensitivity in detecting psychological constructs such as stress, workload, 

arousal and discomfort (Foy & Chapman, 2018; Kübler et al., 2014; Radhakrishnan et 

al., 2020).  

However, a major concern with the usage of EDA signals in driving-related 

studies is its susceptibility to motion artefacts and noise (Taylor et al., 2015), especially 

when conducted in a dynamic environment such as a real-world vehicle or a motion-

based driving simulator. Artefacts can be attributed to electronic noise, or due to 

movement or, adjustments that results in variation in contact between the skin and 

electrodes (Taylor et al., 2015). 
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Traditionally, most studies as well as dedicated software packages for 

analysing EDA signals were designed for fixed laboratory environments, and as such, 

robust motion artefact detection were not a necessity owing to low prevalence of noise 

and artefacts within such an environment. However, in a more dynamic environment, 

neglecting or not accurately accounting for noise/artefacts in the signal can result in 

incorrect results, such as when noise is mistaken/misinterpreted as skin conductance 

response (SCR) events. This paper aims to address this issue, by proposing a robust 

and real-time artefact removal algorithm that can be used to pre-process the EDA 

signal, especially when used in dynamic environments such as road vehicles or 

motion-based driving simulators.  

2.1.1 Related work 

An EDA signal typically consists of two components, a slowly evolving tonic 

component called skin conductance level (SCL, see Figure 2.1) and a rapidly evolving 

phasic component called Skin conductance response (SCR; Braithwaite et al., 2015). 

Boucsein (2012) provided a comprehensive and detailed overview on the 

characteristics and shape of an SCR signal. A typical SCR event (see Figure 2.1) 

lasts for 1-5 s, has an amplitude of at least 0.01 µS, a latency of 1-3 s from stimulus 

onset, and is characterised by a steep onset followed by exponential decay (Boucsein, 

2012; Braithwaite et al., 2015). However, if two SCR events happen closer in time, it 

is not necessary that the first SCR event decays before the onset of the second SCR 

event (Taylor et al., 2015). The above-mentioned characteristics of SCRs act as a 

guideline for distinguishing SCR events from noise. 

 

Figure 2.1. A typical EDA signal, with the phasic component or SCRs (dark blue) and 

the tonic component or SCL (grey), plotted on MATLAB R2016a using ledalab 

software (Benedek & Kaernbach, 2010) 
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While some studies implemented manual inspection of EDA signal, with the 

help of expert labellers, to differentiate noise from the signal, this is not feasible for 

large scale studies, or for real-time analysis of EDA signals, especially within the 

driving context. Most studies on EDA have tried to address the issue of artefact 

removal by using exponential smoothing of the EDA signal (Hernandez et al., 2011) 

or by using lowpass or bandpass filters (Benedek & Kaernbach, 2010; Setz et al., 

2010). However, using a lowpass filter with an acceptable cut-off frequency of around 

1 Hz, only smoothens the signal for smaller variations, and does not completely 

remove all the artefacts, especially the large magnitude artefacts that can be caused 

by movement. Such artefacts can get mistaken as genuine physiological responses, 

as observed by Taylor et al. (2015) in their paper. 

Another approach proposed by researchers is the usage of accelerometer data 

to identify and remove periods with relatively high movement (Braithwaite et al., 2015; 

Taylor et al., 2015). However, the driving task involves hand and foot movements, and 

generally, periods of high movements such as a takeover scenario in highly automated 

driving (HAD), also coincides with high physiological activation and arousal. The EDA 

data during such periods, can inform us of drivers’ psychological state, and therefore, 

warrants a deeper understanding. Taylor et al. (2015) used accelerometer data along 

with machine learning based approach, where the EDA features such as those based 

on amplitude and mean SCR values, along with wavelet coefficients were extracted 

and analysed using a binary classifier (valid or invalid) for 5 s segments in the signal. 

However, their paper lacked clarity in terms of what governing criteria was used to 

determine if a segment was valid or invalid. As observed by Kleckner et al. (2018), this 

lack of transparency makes it hard for researchers to understand why the data 

segments are classified as valid or invalid, and inhibits them from giving different 

instructions to the participants to improve data collection quality. Moreover, such 

machine learning and wavelet transformation-based approaches are complex and 

computationally intensive, and therefore, not ideal for real-time usage. 

Kocielnik et al. ( 2013) and Kikhia et al. (2016) have used recommendations 

from Boucsein (2012) regarding the shape and characteristics of a typical SCR signal, 

to identify noise. They discarded data segments where the signal increased by more 

than 20% or decreased by more than 10%, within a 1 s time window, and their 
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approach was verified using visual inspection by experts (Kikhia et al., 2016; Kocielnik 

et al., 2013). Kikhia et al. (2016) suggested using linear interpolation for filling signal 

gaps due to noise. However, given that an SCR follows a steep onset followed by an 

exponential decay, we believe the linear interpolation approach is inadequate for this 

purpose. In this paper, we propose a simple and improved shape-based motion 

artefact removal algorithm for EDA signal. We further propose a novel approach for 

filling up signal gaps due to motion artefacts, which best captures the characteristics 

of an SCR signal. 

The remainder of this paper is structured as follows: Section 2 introduces our 

novel methodological proposal for motion artefact removal in EDA signals. In Section 

3, we conducted a case study using physiological data collected from a previous study 

in dynamic driving simulator environment, as well as discussions around it. Section 4 

is the conclusion section. 

 

2.2 Methodological proposal 

The cleaning of EDA signals to remove motion artefacts is a two-step process. 

The first step involves an artefact detection algorithm, that correctly detects and 

removes artefacts from the EDA signal. In the second step, we fill in the missing data 

using appropriate interpolation technique, given the total missing data is within an 

acceptable range of the entire dataset (usually under 5%; Kikhia et al., 2016). 

2.2.1 Artefact detection 

As mentioned in the introduction, the three main sources of artefacts in EDA 

signals are: electronic noise, loss of contact between the skin and electrode surface, 

or hand and body movements. The electronic noise generated by AC power systems 

is generally between 50/60 Hz and can be filtered using a lowpass filter such as a 

Butterworth filter, with a cut-off frequency of 1-3 Hz (Boucsein, 2012). In case of loss 

in contact between the skin surface and the electrodes, we used a threshold value of 

0.05 µS, which is well below realistic values for an EDA signal (Kleckner et al., 2018). 

When 90% of the values within a 5 s window does not exceed this threshold value, 

the data for that 5 s window is removed (Kikhia et al., 2016; Kleckner et al., 2018). 
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However, the EDA device should be carefully checked for zero error, and the threshold 

value for loss of contact between the electrodes and skin surface. 

Removing motion and motion artefacts due to hand and body movements is 

more complex than the other two sources of artefacts. Based on the shape of an typical 

SCR as described by Boucsein (2012), both Kocielnik et al. ( 2013) and Kikhia et al. 

(2016) suggested that an EDA signal cannot increase by more than 20%, or decrease 

by more than 10%, within a 1 s time window. However, there could be a possibility that 

1 s time window is too short to accurately reveal motion artefacts, or there could be 

residual noise in the preceding or succeeding windows. Therefore, we propose using 

3 different time windows of 1 s, 2 s and 3 s. The method used in finding maximum 

increase or decrease in EDA values in each time window is explained in detail below. 

Let y be the EDA value at the start of the time window (t = 0). Maximum and 

minimum possible values of y after 1 s (t = 1), as proposed by Kocielnik et al. ( 2013) 

and Kikhia et al. (2016): 

ymax(1) = 1.2 * y(0)                                                                                                                              (1) 

ymin(1)= 0.9 * y(0)                                                                                                                                (2) 

Given the maximum and minimum values after 1 s, maximum and minimum 

possible values of y after 2 s (t = 2) would be given by: 

ymax(2)= 1.2 * ymax(1)                                                                                                                          (3) 

 ymin(2)= 0.9 * ymin(1)                                                                                                                                                                  (4) 

Combining equation (1) and equation (3), and equation (2) and equation (4), 

we get: 

ymax(2)= 1.44 *y(0)                                                                                                                              (5) 

ymin(2)= 0.81 * y(0)                                                                                                                             (6) 

Similarly, the maximum and minimum possible values of y after 3 s (t =3) is 

given by: 

ymax(3)= 1.728 * y(0)                                                                                                                          (7) 
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ymin(3)= 0.729 * y(0)                                                                                                                          (8) 

The above equations were used as limiting criteria with 3 different time windows 

of length 1 s, 2 s and 3 s. A data point is initially compared to each of the data points, 

succeeding it within a 1 s time window, followed by each of the data points succeeding 

it within a 2 s time window, and finally, each of the data points succeeding it in a 3 s 

time window, and the time windows move continuously across the signal. If any of the 

succeeding data points failed to meet the limiting criteria in any of the 3 time windows, 

it was replaced with not a number (NaN) values. To ensure the starting data point is 

not noisy, we suggest trimming the data to a few seconds after the recording is started, 

ideally from a time when the participant is stationary. However, when the EDA signal 

is recorded at higher sampling rates, motion artefacts of very short time duration can 

corrupt the signal. The shape based algorithm mentioned above might not be sufficient 

to remove such artefacts, given its short time duration, and the time windows of shape-

based algorithms being a minimum of 1 s. Therefore, in the next section, we explore 

how an additional slope based constraint can be used to remove such artefacts from 

the EDA signal. 

2.2.1.1 Filtering using maximum and minimum slope for the signal 

Initially, the EDA signal was filtered for noise using the shape-based algorithm 

described by equations (1) and (2). In addition to the shape constraint mentioned 

above, we use a slope constraint, derived from the recommendations based on 

Boucsein (2012) and Kikhia et al. (2016). Accordingly, the EDA signal does not 

increase by more than 20% in 1 s window or decrease less than 10% in 1 s window. 

While a direct value for maximum (0.2 µS/s) and minimum slope (-0.1 µS/s) within that 

1 s window, as derived from Boucsein (2012) could be used as the threshold values, 

EDA samples are recorded at frequencies far greater than 1 Hz. As such, there would 

be multiple data points (n) within a 1 s time window, depending on the frequency of 

recording. Therefore, the slope of the line of best fit for any given 1 s time window is 

given by: 

 𝑚 =

∑ ((𝑥𝑖 −  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
) (𝑦𝑖 −  

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
)) 𝑛

𝑖=1

∑ (𝑥𝑖 −  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
)

2

 𝑛
𝑖=1

                                                                               (9) 
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 This results in generating a set of slopes, from which the 95th and 5th percentile 

was computed. The 95th and 5th percentile values were used as the maximum and 

minimum slopes respectively, for any two data points in the signal, within a 1 s time 

window. However, if the 95th and 5th percentile of the slope is lower than two times the 

maximum slope (< 0.4 µS/s) or greater than minimum slope (> -0.2 µS/s) derived from 

Boucsein (2012) and Kikhia et al. (2016)’s recommendations, then these values ([0.4 

-0.2]) are used as the maximum and minimum slopes. In the next section, we 

investigate different interpolation techniques that can be used to interpolate the gaps 

due to the removed noisy data, in the EDA signal.                                                                                                                                                       

2.2.2 Missing data treatment and interpolation 

An EDA signal is generally processed as a continuous signal over time, and 

therefore, any missing data can lead to errors. As a general rule, interpolation of 

missing data is performed if the percentage of missing data is less than 10% of the 

entire data segment (Dong & Peng, 2013). 

As mentioned earlier, previous research have recommended using linear or 

moving average interpolation techniques to fill missing data in an EDA signal (Kikhia 

et al., 2016; Kleckner et al., 2018). A linear interpolant is a straight line between the 

two end nodes and is a special case of polynomial interpolation. Moving average filters 

generally incorporate a moving window of length ‘n’, where the missing values are 

replaced with n-point means within such a window. However, neither of these 

interpolation techniques accurately capture the steep rise and exponential decay 

observed in an SCR. 

More effective interpolation techniques are based on piecewise cubic 

polynomials, rather that linear polynomials (Moler, 2004). Cubic spline is a commonly 

used piecewise cubic interpolation technique. While it retains the shape characteristics 

of an SCR signal, one of the unwanted consequences is that it can create unwanted 

undulations between two points, resulting in larger errors (Dan et al., 2020). A 

piecewise cubic Hermite interpolation polynomial (PCHIP) addresses this issue by 

aggressively reducing any undulations between two datapoints. However, it can 

aggressively flatten the signal, especially around troughs and peaks of an SCR event. 

Akima (1970) proposed a piecewise cubic Hermite interpolation technique, that that 

avoids excessive local undulations, while not as aggressively as PCHIP.   
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Let each frame or node in the signal be represented by x, and the corresponding 

value of the EDA signal at that frame be y. For each interval [𝑥𝑛 𝑥𝑛+1), cubic Hermite 

interpolation finds a cubic polynomial that finds a corresponding data value of 𝑦𝑛 ,  𝑦𝑛+1. 

Additionally, it also provides derivatives ∆𝑦𝑛 , ∆𝑦𝑛+1 for the nodes 𝑥𝑛 , 𝑥𝑛+1 

respectively. 

Let  ∆𝑦𝑛 =  ( 𝑦𝑛+1 − 𝑦𝑛 )/( 𝑥𝑛+1 −  𝑥𝑛 ) be the slope at interval [𝑥𝑛  𝑥𝑛+1). Then, 

Akima’s derivative at 𝑥𝑛 is defined as: 

𝜕𝑛 =  
| ∆𝑦𝑛+1 − ∆𝑦𝑛 | ∆𝑦𝑛−1 +  | ∆𝑦𝑛−1 −  ∆𝑦𝑛−2 | ∆𝑦𝑛 

| ∆𝑦𝑛+1 − ∆𝑦𝑛 |  +  | ∆𝑦𝑛−1 −  ∆𝑦𝑛−2 | 
                                                        (10) 

Where 𝜕𝑛 represents a weighted average between the slopes ∆𝑦𝑛−1 and ∆𝑦𝑛 of the 

intervals [𝑥𝑛−1  𝑥𝑛) and [𝑥𝑛  𝑥𝑛+1). 

Let  𝜔1 =   | ∆𝑦𝑛+1 − ∆𝑦𝑛 | and 𝜔2 =   | ∆𝑦𝑛−1 − ∆𝑦𝑛−2 | be the weights. 

Therefore, equation (10) becomes: 

𝜕𝑛 =  
𝜔1 

𝜔1  +  𝜔2 
∆𝑦𝑛−1 + 

𝜔2 

𝜔1  +  𝜔2 
∆𝑦𝑛                                                                          (11) 

The Akima’s derivative 𝜕𝑛 is computed using the 5 points  𝑥𝑛−2 , 𝑥𝑛−1 , 𝑥𝑛 ,

𝑥𝑛+1 , 𝑥𝑛+2  . For the edge points  𝑥1 , 𝑥𝑛 , it requires the slopes of previous/next data 

points, which does not exist. Therefore, Akima (1970) proposed using quadratic 

extrapolation to interpolate the end nodes. 

However, the interpolant to switches to a different formula for edge cases, and 

also, can result in overshoots or undershoots when data is constant for more than 2 

consecutive nodes. In order to overcome this problem, MATLAB R2019a software 

(Mathworks, 2019) uses a modified Akima or Makima interpolation technique with 

slightly modified weights, where: 

𝜔1 =   | ∆𝑦𝑛+1 −  ∆𝑦𝑛 |  + 
| ∆𝑦𝑛+1 +  ∆𝑦𝑛 |

2
                                                                                 (12) 

𝜔2 =  | ∆𝑦𝑛−1 −  ∆𝑦𝑛−2|  +  
| ∆𝑦𝑛−1 +  ∆𝑦𝑛−2 |

2
                                                                         (13) 

To best preserve the shape of an SCR event, the Makima interpolation 

technique was used to fill any consecutive data gaps created for up to 5 s. Figure 2.2 

depicts the flow chart of the proposed algorithm.  
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Figure 2.2. Flow chart of the artefact detection algorithm and filling signal gaps after 

artefact removal. 

 

In the next section, we do a case study of a sample EDA data, and apply the 

above proposed algorithm to remove motion artefacts and fill in missing data using the 

proposed interpolation technique. 

2.3 Case Study and Discussion 

The proposed algorithm in section 2.2 was applied to a sample dataset that 

included ~ 5 minutes of automated driving a takeover (~ 15 s) and ~ 5 minutes of 

manual driving. The data was recorded in the University of Leeds Driving Simulator 
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(UoLDS). UoLDS is a full motion-based driving simulator, consisting of a 4 m diameter 

spherical projection dome, with a 300⁰ field of view projection system, and a Jaguar 

S-type cab, housed within the dome. Its electric powered motion system has 8 degrees 

of freedom and consists of a 500 mm stroke-length hexapod motion platform, carrying 

the 2.5 t payload of the dome and vehicle cab combination, and allowing movement in 

all six orthogonal degrees of freedom of the Cartesian inertial frame. The motion 

platform is mounted on a railed gantry, which further allows 5m of effective motion in 

surge and sway.   

The sample EDA data was collected using the BIOPAC MP35 data acquisition 

system, with an acquisition rate (frequency) of 512 Hz. The results of the noise removal 

algorithm mentioned in Section 2.2 are discussed below. 

2.3.1 Artefact detection 

After low-pass filtering, the shape-based algorithm, as presented in section 2.2 

of this paper, have been used to detect motion artefacts, as shown in the Figure 2.3 

below. 

The unfiltered data, with noise highlighted in pink bands, can be observed in 

Figure 2.3(a). The shape-based artefact detection has been validated in Kocielnik et 

al. (2013) and Kikhia et al. (2016). However, since this data was recorded at high 

sampling rates, some of the motion artefacts, as indicated by the green arrows and 

confirmed by visual inspection, are kept in the filtered signal. This could affect the 

interpolation technique implemented to treat the missing data, as observed later on in 

this section. 

Therefore, the data was treated to additional slope constraint as mentioned in 

section 2.2.1.1. As observed in Figure 2.4 below, the residual motion artefacts 

(indicated using green arrows), have been removed from the signal. Additionally, 

sharp spikes in the signal are also removed. We believe the addition of a slope 

constraint, along with the shape-based constraints, improves the accuracy of data, by 

filtering out noisy spikes due to motion, in an EDA signal. 
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Figure 2.3. (a) Unfiltered signal (motion artefacts in pink bands) and (b) filtered signal 

(low-pass IIR filter) with motion artefacts removed, without slope constraint 

mentioned in section 2.2.1.1. Green arrows indicate points where artefacts were 

not detected by the algorithm. 

 

Figure 2.4. (a) Unfiltered signal and (b) filtered signal (low-pass IIR filter) with motion 

artefacts removed, with slope constraint mentioned in section 2.2.1.1. 
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2.3.2 Interpolating the removed noisy data 

As discussed in section 2.2.2, a Makima interpolation (labelled as custom filter 

in Figure 2.5) technique was used to interpolate missing and removed data. By visual 

inspection, it can be observed that the spline and custom (makima) interpolation 

techniques, closely preserve the shape of the EDA signal, compared to linear and 

moving average interpolation techniques. Additionally, the effect of using slope 

constraint in removing noisy data, on different interpolation techniques is discussed. 

As seen in Figure 2.5(b), the spline interpolation technique was prone to overshooting, 

when slope constraint was not implemented. This was also observed in the custom 

(Makima) filter, although to a much smaller extend. This can be likely attributed to the 

dependency of spline interpolation techniques on the slope characteristics at the 

edges of the data being interpolated. 

In order to overcome this problem, as well as to discount the noisy data at the 

end nodes, we implemented the slope constraint discussed in section 2.2.1.1. As 

observed visually in Figure 2.6(b), the custom (Makima) and spline interpolation 

techniques performed better with slope constraints and avoided overshoots. 

 

Figure 2.5. (a) Unfiltered signal and (b) filtered signal (low-pass IIR filter) with motion 

artefacts removed (without slope constraints), and data interpolated using 

custom filter (Makima), moving average, Linear and Spline interpolation 

techniques.  
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Figure 2.6. (a) Unfiltered signal (motion artefacts in light green bands) and (b) filtered 

signal (low-pass IIR filter) with motion artefacts removed (with slope constraints), 

and data interpolated using custom filter (Makima), moving average, Linear and 

Spline interpolation techniques.  

Overall, our algorithm was robust in detecting and correcting motion artefacts,. 

In Figure 2.7, the noisy parts in the signal can be observed in pink and yellow bands. 

It can be observed visually that the combination of artefact detection and interpolation 

techniques mentioned in section 2.2 were able to automatically remove motion 

artefacts, and interpolate the missing data points without overshoots. The band 

highlighted in yellow in Figure 2.7(a) has been further expanded in Figure 2.8.  

As observed in Figure 2.8, even with slope corrections, normal spline 

interpolation techniques tend to overshoot. Therefore, the custom (Makima) filter was 

able to best preserve the shape of the SCR. Additionally, both moving average and 

linear interpolation techniques tend to distort the shape characteristics of a typical SCR 

waveform, potentially affecting derived metrics such as SCR amplitudes. Overall, our 

proposed algorithm was successful in identifying and removing motion artefacts from 

the EDA signal, and fill missing data using a novel interpolation technique. 
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Figure 2.7 (a) Unfiltered signal, with noisy parts highlighted in pink and yellow bands; 

(b) filtered signal (low-pass IIR filter) with motion artefacts removed (with slope 

constraints), and data interpolated using custom filter (Makima), moving average, 

Linear and Spline interpolation techniques.  

 

Figure 2.8. (a) Unfiltered signal, with noisy part highlighted in yellow band; (b) filtered 

signal (low-pass IIR filter) with motion artefacts removed (with slope constraints), 

and data interpolated using custom filter (Makima), moving average, Linear and 

Spline interpolation techniques 
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2.3.3 Considerations and Limitations 

Generally, an artefact detection algorithm’s performance is determined by 

comparison with artefacts detected manually using expert labellers (Kleckner et al., 

2018). However, the shape-based constraint for the EDA signal, described in section 

2.2.1, has been well validated in studies such as Kocielnik et al. (2013) and Kikhia et 

al. (2016). Future studies could further validate our proposed slope constraint, and 

whether it improves artefact detection accuracy in EDA signals. 

For our slope constraint, we suggested using 95th percentile and 5th percentile 

of the slopes for the entire dataset, as the maximum and minimum slope. However, if 

the dataset is relatively clean and without motion artefacts, then these values would 

be well below the threshold values for slope (maximum slope of 0.2 and minimum 

slope of -0.1). Therefore, depending on the dataset, we would suggest adjusting this 

value between 95th and 99th percentile for maximum slope, and between 1st and 5th 

percentile for minimum slope. Additionally, to ensure good data does not get 

incorrectly identified as motion artefact, we incorporated a buffer for the slope 

thresholds. That is, if the 95th percentile of the set of slopes were less than 0.4 (two 

times the derived maximum slope values derived from Boucsein (2012) and Kocielnik 

et al. ( 2013) ‘s recommendation) or the 5th percentile of the set of slopes were greater 

than -0.2 (two times the derived minimum slope value), then the maximum and 

minimum slope thresholds were considered as 0.4 and -0.2. This conservative 

approached helped us in ensuring no good data was wrongly classified as motion 

artefacts. 

In terms of the interpolation techniques used to fill the missing data points, our 

custom Makima filter strongly resembled the characteristics and shape of an SCR, as 

described by Boucsein (2012). It also prevented overshoots and undulations that are 

normally observed when using other spline interpolation techniques. Future studies 

could further validate this approach. Additionally, the dataset used in this methodology 

paper was collected using BIOPAC MP35 data acquisition system. Future studies 

could investigate the performance of the artefact detection algorithm when the data is 

collected using different hardware. 
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2.4 Conclusion 

To conclude, we were able demonstrate a novel and rapid technique that can 

be used to automatically remove motion artefacts from an EDA signal, in dynamic 

driving environments, with potential for real-time application. This can help assist 

future driver state monitoring systems (DSM), in accurately classifying driver states 

such as discomfort, high workload or stress (Beggiato et al., 2019; Foy & Chapman, 

2018), using EDA-based metrics. 
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3 DRIVER DISCOMFORT DURING HIGHLY AUTOMATED 

DRIVING 

ABSTRACT: This study investigated how driver discomfort was influenced by 

different types of automated vehicle (AV) controllers, compared to manual driving, and 

whether this response changed in different road environments, using heart-rate 

variability (HRV) and electrodermal activity (EDA). A total of 24 drivers were subjected 

to manual driving and four AV controllers: two modelled to depict “human-like” driving 

behaviour, one conventional lane-keeping assist controller, and a replay of their own 

manual drive. Each drive lasted for ~15 min and consisted of rural and urban 

environments, which differed in terms of average speed, road geometry and road-

based furniture. Drivers showed higher skin conductance response (SCR) and lower 

HRV during manual driving, compared to the automated drives. There were no 

significant differences in discomfort between the AV controllers. SCRs and subjective 

discomfort ratings showed significantly higher discomfort in the faster rural 

environments, when compared to the urban environments. Our results suggest that 

SCR values are more sensitive than HRV-based measures to continuously evolving 

situations that induce discomfort. Further research may be warranted in investigating 

the value of this metric in assessing real-time driver discomfort levels, which may help 

improve acceptance of AV controllers. 

3.1 Introduction 

In the recent past, there has been an increasing interest in implementing 

vehicles with a range of advanced driver assistant systems (ADAS), fuelled by 

manufacturers’ desire to introduce higher levels of vehicle automation capability (SAE 

International, 2018). The primary motivation for these implementations is their 

hypothesised provision of increased road safety, and enhanced mobility, accessibility, 

efficiency and comfort (ERTRAC, 2017). According to Carsten & Martens (2019), 

manufacturers have been using comfort as one of the main selling points for ADAS. 

Additionally, the comfort of the driver is considered to be a determining factor for the 

broader acceptance of the automated system (Siebert et al., 2013). Therefore, it can 

be argued that, if an automated system can measure driver comfort in real-time, it can 

adapt its driving style/behaviour to match the drivers’ expectations accordingly, and 

thereby potentially increase acceptance. This could have the additional benefit of 
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reducing unnecessary driver initiated takeovers, which can otherwise jeopardise the 

safety of the vehicle and its occupants (Beggiato et al., 2018). This study, conducted 

as part of the HumanDrive project, considered the effect of a number of road and 

vehicle-based factors on driver comfort, investigating whether physiological metrics 

can be used to provide an objective measure of comfort, to help inform the design 

process when investigating the acceptance of future automated vehicles. 

Currently, there is no unanimously agreed on definition of comfort. In a general 

context, Slater (1986) described comfort as “a pleasant state of physiological, 

psychological and physical harmony between human being and the environment” (p. 

158). In the context of driving, and especially highly automated driving (HAD), 

Beggiato, Hartwich, & Krems (2019), defined comfort as “a subjective, pleasant state 

of relaxation resulting from confidence in safe vehicle operation which is achieved by 

the absence of uneasiness and distress” (p. 446). Beggiato et al. (2019) further 

suggested this is still a rather broad definition of comfort, and is associated with other 

concepts, such as stress, mental workload, fear, motion sickness or anger, with stress 

and mental workload having the closest link to discomfort (i.e., lack of comfort). Siebert 

et al. (2013) argued that it is easier to measure discomfort rather than comfort, since 

signs of discomfort tend to be more well-defined and pronounced, compared to the 

un-aroused relaxed state of comfort. Summala (2007) proposed four factors that need 

to be maintained above a certain threshold to keep drivers within their “comfort zone” 

during manual driving. These are safety margins (to road edges, obstacles or other 

vehicles), vehicle-road system (accelerations, road geometry), rule-following (obeying 

traffic laws, maintaining speed limits) and good progress of the trip (meeting one’s 

expectations for the pace or progress of the travel). However, assuming 100% 

performance of the automated system, Siebert et al. (2013) noted that the rule-

following factor for comfort is redundant in HAD, as the automated vehicle (AV) will 

almost certainly follow the rules, and that good progress of the trip is dependent on 

traffic conditions, rather than automation state in itself, assuming the route selected by 

the AV is similar to that in manual driving, where the navigation system 

decides/recommends the optimal route to be followed. Therefore, in this paper, we 

focus specifically on how factors that affect the safety margins, and vehicle-road 

system, affect driver discomfort, for manual and automated driving. 



 

88 

 

Summala (2007), suggested that sufficient safety margins from potential 

hazards are required for a driver to feel safe and comfortable. Factors influencing 

these safety margins, and likely to increase driver discomfort, include situations which 

increase drivers’ stress levels, such as navigating in crowded cities, interactions with 

other road users, or when passing another car/obstacle (Cahour, 2008; Healey & 

Picard, 2005). 

Comfort is affected by jerk and acceleration forces of the vehicle, with higher 

accelerations and jerks (in terms of both magnitude and frequency) associated with 

an increase in discomfort (Beard & Griffin, 2013; Martin & Litwhiler, 2008; Wertheim & 

Hogema, 1997), and an increase in motion sickness (H. Vogel et al., 1982). Drivers 

tend to keep their lateral and longitudinal acceleration under 2 m/s2 for a comfortable 

driving experience (Bae et al., 2019; Bosetti et al., 2014; Moon & Yi, 2008). However, 

it should be noted that drivers’ comfort threshold for lateral acceleration varies with 

respect to their velocity, with an increase in velocity resulting in lower threshold values 

for lateral acceleration (Bosetti et al., 2014; Levison et al., 2007). Within the public 

transport domain, especially in railway systems, standard acceleration values are 

limited to under 1.47 m/s2, and jerk values are kept under 0.6 m/s3, to ensure 

passenger comfort (Bae et al., 2019; Martin & Litwhiler, 2008; Powell & Palacín, 2015). 

However, the acceleration and jerk thresholds used in public transport systems 

consider both seated and standing passengers. Therefore, it may be permissible to 

have slightly higher thresholds in HAD, where passengers are typically seated. For 

instance, Eriksson & Svensson (2015) suggested an acceleration and jerk threshold 

of under 2 m/s2 and 0.9 m/s3 respectively, to ensure a comfortable ride in HAD. 

Because AVs are still in the prototype and testing phase, most individuals have 

not had a real-world experience of HAD. Therefore, our expectations of what 

constitutes a ‘comfortable’ experience during HAD can only be based on our current 

understanding of users’ comfort in either manual driving, or in other surface transport 

modes. However, there are considerable differences between these modes, in terms 

of Summala’s (2007) proposed four factors, described above, making them difficult to 

compare to HAD. Thus, to assist with the development of more acceptable AVs, and 

to ensure user uptake of these systems in the future, it is of value to understand what 

particular features of an AV’s manoeuvres are likely to enhance or diminish user 
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discomfort. For example, humans try to minimise the jerk during manual driving, 

whereas most current ADAS features tend to have a relatively higher jerk, due to their 

preference to stay closer to the lane centre and unwillingness to cut corners, unlike 

human drivers. Thus, it is important to know if users would prefer, and feel more 

comfortable with, a more “human-like” AV controller, which favours manoeuvres that 

result in lower acceleration and jerk, over a more conventional AV controller, with very 

strict margins for optimal and accurate lane-keeping and vehicle velocities. 

Studies on comfort in manual driving have used subjective measures, such as 

comfort questionnaires (Thakurta et al., 1995) and comfort scales (Myers et al., 2008). 

Since comfort is highly subjective, it can be challenging to measure it accurately and 

reliably on a moment-to-moment basis. In a real-world HAD scenario, the driver may 

become annoyed if they are asked to rate their comfort levels time and again during 

the drive, especially when they have the option to engage in more appealing non-

driving related activities. Thus, in HAD, there is a need for a non-intrusive, objective, 

discomfort detection system, which can ultimately be used to adapt the automated 

system’s driving style, to ensure the driver is relaxed and at ease (Beggiato et al., 

2019). Physiological techniques are one example of such objective methods, which 

have been used in the past to assess driver state both in HAD (Beggiato et al., 2019) 

and manual driving (Lal & Craig, 2002; Mehler et al., 2009). Recent technological 

advancements have led to the development of non-intrusive physiological devices that 

measure heart rate variability (HRV) and electrodermal activity (EDA), such as 

wearable smart-band sensors like Empatica E4 (McCarthy et al., 2016a) or Microsoft 

band 2 (Beggiato et al., 2019), and non-contact methods, such as those listed in 

(Kranjec et al., 2014). Previously, studies have shown strong correlations between 

stress and workload, and users’ HRV, and EDA. A general finding is that heart rate 

(HR) increases, and HRV (including the time-domain based metric of root mean 

square of successive differences in R-R intervals (RMSSD)) decreases, during periods 

of high stress or workload (Cinaz et al., 2010; Healey & Picard, 2005; Mehler et al., 

2011; Orsila et al., 2008). 

An EDA signal consists of the slow-changing tonic component called skin 

conductance level (SCL) and the rapidly changing phasic component, known as skin 

conductance response (SCR, Braithwaite et al. 2015). SCRs are generally used to 
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understand short-term fluctuations in the EDA signal, due to a short-term stimulus (for 

example, being startled or passing an obstacle), whereas SCL is used to understand 

the overall change in a person’s skin conductance when the stimulus is spread over a 

longer period (for example, fatigue induced by driving for a long time). SCRs have a 

much shorter decay time than SCLs, and, hence, can more accurately capture 

differences in manipulations, without the need for recovery/resting periods in between 

(Braithwaite et al., 2015; Cacioppo et al., 2007a). In the context of driving, both SCL 

and SCRs have been shown to increase with an increase in stress and workload for a 

driver (Foy & Chapman, 2018; Healey & Picard, 2005; Mehler et al., 2009), and, thus, 

are associated with increases in discomfort (Beggiato et al., 2019). Based on these 

findings, we analysed RMSSD, HR and SCR responses per minute (nSCR/min) in this 

study, as the objective physiological metrics of drivers’ comfort. 

3.1.1 Current study 

This study was undertaken as part of a 10-member consortium of the 

HumanDrive project, part-funded by the UK’s Centre for Connected and Autonomous 

Vehicles (CCAV), via Innovate UK. The main aim of the project was to develop an 

advanced vehicle controller, which allowed the vehicle to perform a ‘natural’, human-

like, driving style, using artificial intelligence (AI), and deep learning techniques. As 

outlined above, developing a human-like controller could potentially help with the 

broader acceptance of AVs, driven by a more natural driving style, which is familiar to 

the driver. Using manual driving data collected from 44 drivers in an earlier 

HumanDrive study, an aggregated model for human-like controllers, focusing on both 

vehicle safety and comfort, was developed for the present study (see also 

Hajiseyedjavadi et al., in prep), for more details of the controllers). An environment-

specific risk model was developed to guide the design of the experiments. The 

simulated drives were constructed to include risk elements present in the drive, based 

on road width and curvature, as well as on the presence of road-based furniture and 

obstacles, such as hedges of different heights, grass/asphalt verges, pedestrian 

refuges and parked-cars or roadworks (see Louw et al., 2019, for more details). The 

development of this risk model was based on satisficing risk corridors, proposed by 

Boer (2016), where a set of vehicle states are within acceptable bounds. The vehicle 

state includes velocity and lateral offset. The trajectory of the vehicle is always within 

this risk corridor and adopts a comfortable smoothness for the ride. The model holds 
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that drivers’ perceived risk level is based on minimum time to lane crossing, wherein 

the lateral position for the vehicle stays within the road boundaries (Boer, 2016). Based 

on this model, two human-like AV controllers (SLOW and FAST, with the FAST 

controller having higher velocities than the SLOW controller) were developed, and 

compared to a conventional controller (LKAS), and drivers’ replay of their own drive 

(see Section 3.2.3, for more details). To understand how the different physical 

characteristics of a drive can affect drivers’ discomfort, our study exposed participants 

to a range of accelerations, induced by the four different AV controllers and manual 

driving. Participants experienced these controllers in two different road environments 

(rural and urban), which included a variety of road geometries, such as roads of 

different curvatures/width/speed limit, containing a range of road furniture/obstacles 

(parked cars, roadworks and pedestrian refuges). Previous studies on driver 

discomfort during HAD, such as Beggiato et al. (2019), have focused on discrete 

situations causing discomfort, such as negotiating an intersection, exit ramp or an 

obstacle. In our study, we considered the effects of longer, repeated exposure to 

different road environment, human-like AV controllers and interactions with road 

furniture and obstacles, on drivers’ discomfort. Drivers’ HR and EDA data were 

compared to drivers’ self-reported level of perceived discomfort for each road 

environment, which was measured in real-time, using a button pressing technique (see 

Section 3.2.4 for more details). We addressed the following research questions: 

i. How is driver discomfort, as measured by changes in physiological state (i.e., 

HRV and EDA), affected by the various controllers, and manual driving? 

ii. Do drivers’ discomfort levels change, based on the behaviour of the different 

controllers, in the different road environments (rural and urban)? 

iii. Does the change in drivers’ physiological state reflect their self-reported level 

of perceived discomfort during HAD? 
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3.2 Materials and Methods 

3.2.1 Participants 

In total, 24 participants (10 Female), each with a valid UK driving licence, took 

part in this driving simulator-based study. Their mean age was 43 ± 17 years, with a 

mean driving experience of 23 ± 18 years. All participants gave consent to take part in 

the study, in accordance with the rules and regulations of the University of Leeds ethics 

committee (LTTRAN-086) and were compensated with £50 for taking part in the study. 

Participants were pre-screened for physiological data collection and those with pre-

existing heart conditions were not included in the study, as per recommendations in 

Braithwaite et al. (2015) and Laborde, Mosley, & Thayer (2017). In addition, 

participants were requested to avoid consuming food and beverages that had cardiac 

stimulants such as caffeine or alcohol for 24 h before they took part in the study. 

3.2.2 Apparatus 

The experiment was conducted in the full motion-based University of Leeds 

Driving Simulator (UoLDS), which consists of a Jaguar S-type cab housed in a 4 m 

diameter spherical projection dome with a 300-degree field-of-view projection system. 

The simulator also incorporates an 8 degree-of-freedom electrical motion system. This 

consists of a 500 mm stroke-length hexapod motion platform, carrying the 2.5 t 

payload of the dome and vehicle cab combination, and allowing movement in all six 

orthogonal degrees-of-freedom of the Cartesian inertial frame. Additionally, the 

platform is mounted on a railed gantry that allows a further 5 m of effective travel in 

surge and sway. Drivers’ physiological data were collected using a Biopac MP35 data 

acquisition system at 1000 Hz, which consisted of ECG electrodes and an EDA 

sensor. 

3.2.3 Study Design 

The study used a within-participant design and included a short familiarisation 

drive for ~10 min. Each participant experienced five drives: a MANUAL drive, two with 

human-like AV controllers (SLOW and FAST), a replay of their manual drive (REPLAY) 

and one conventional lane-keeping assist-based AV controller (LKAS) which did not 

adapt its behaviour to road furniture, such as kerbs or hedges. Each drive consisted 
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of two different road environments (rural and urban). The design of the drives and the 

road environments are discussed below. 

3.2.3.1 Road Design 

Each drive was 15.8 km long, and incorporated several situations that 

demanded greater attention and a shift in lateral position and speed, which could be 

deemed uncomfortable by the driver based on how it was negotiated, presented 

across two different road environments (rural and urban, see Figure 3.1). The speed 

limits, geometries, and obstacle locations, for each road are listed in Table 3.1 and 

Figure 3.2. The road design was similar across all drives except for LKAS, which did 

not include any obstacles, which were partly within the lane, such as roadworks or 

parked cars. 

 

Figure 3.1. (a) Rural environment with roadworks; (b) urban environment 

Table 3.1. Road geometry and furniture across different segments (in the order they 

were experienced). 

Segment Obstacles Environment Speed Limit 

(mph) 

Road Width 

(m) 

Radius and Number of Curves 

100 m   170 m   252 m   750 m 

Segment 1 - rural 60 7.3 - 2 3 - 

Segment 2 4 rural 60 5.8 1 4 - - 

Segment 3 4 urban 40 7.3 - - - 5 

Segment 4 - rural 60 5.8 1 4 - - 

Segment 5 6 urban 40 7.3 - - - 5 

 

Roads in the rural environments were narrower than those in the urban 

environments, except in the first segment, which was wider than the other two rural 

segments (see Table 3.1). We did this to assess whether a decrease in road-width 
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increased discomfort within the same road environment. Overall, rural environments 

were designed to have narrower roads, tighter curves, and higher speed limits (and 

therefore, higher resultant acceleration), along with the presence of obstacles (parked-

cars and roadworks, see Figure 3.1). These factors were designed to increase the 

attentional demand of the driver at varying degrees, which could possibly induce 

discomfort depending on how they were negotiated by the controllers, or drivers’ 

individual manual driving style. There were more obstacles (parked-cars, roadworks, 

or pedestrian refuge, see Figure 3.2) in the urban environments (10), when compared 

to the rural environments (4), to investigate whether participants’ discomfort increased 

with the number of obstacles. 

3.2.3.2 Experimental Design 

The five drives were counterbalanced, with the exception of the MANUAL drive, 

which was always the first drive for every participant, so that data could be collected 

for their REPLAY drive, although participants were not explicitly informed about this. 

As discussed in the Introduction, the SLOW and FAST controllers were modelled, 

based on data collected during manual driving across similar road segments in a 

previous HumanDrive study (see Louw et al., 2019). They were designed to mimic 

human-like driving, based on a risk model, which defined a range of acceptable vehicle 

states, such as velocity and lateral offset, depending on drivers’ perceived risk levels 

in response to different road furniture and features present in the drive, such as 

parked-cars or sharp curves. The FAST controller had higher velocities, compared to 

the SLOW controller, with a maximum difference of 4 m/s, and a minimum difference 

of 0.15 m/s. The driving data used to create the models (see Hajiseyedjavadi et al., in 

press) showed that when driving at higher velocities, drivers’ time to lane crossing 

(TLC) decreased, and, in order to maintain their preferred safety boundary, they 

moved further away from the road edge. Taking this knowledge into account, we 

increased the lateral offset of the FAST controller from the left edge of the road, at a 

rate of 5 cm for every 1 m/s increase in relative speed, compared to the SLOW 

controller. The LKAS controller was a simple lane-keeping assist controller, which had 

a constant velocity for most parts of the drive (at the speed limit for that section), except 

for when the vehicle had to negotiate a curve, or when it moved from an urban to rural 

environment (or vice-versa). The LKAS controller mostly kept to the lane centre (even 

when on curves). The objective of the design of the different drives with these 
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controllers was to understand how discomfort was affected by factors such as manual 

and automated driving, the behaviour of the human-like AV controllers, a conventional 

lane-keeping controller and the controller based on one’s own driving style. The 

different drives and their properties are shown in Figure 3.2, Table 3.2 and Table 3.3, 

which show that the LKAS controller had the highest resultant acceleration (combined 

lateral and longitudinal accelerations) in rural environments, whereas the SLOW 

controller had the lowest resultant acceleration in rural environments. The 95th 

percentile of resultant acceleration and lateral jerk values across all the drives in rural 

environments was higher than the suggested comfort threshold value for acceleration 

and jerk (2 m/s2 and 0.9 m/s3, respectively, according to Eriksson & Svensson (2015), 

whereas it was well below this threshold across all drives in the urban environments. 

The resultant acceleration values were mainly governed by the lateral accelerations, 

as the longitudinal accelerations were minimal, and within the suggested comfort 

threshold for longitudinal acceleration, across both environments, for all controllers. 

 

Figure 3.2. Resultant acceleration of the different controllers and manual driving, 

along with the location of obstacles across all drives, except LKAS. 
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Table 3.2. The 95th percentile of resultant acceleration (in m/s2) for different drives 

across different road environments. 

 
MANUAL SLOW LKAS FAST REPLAY 

Rural 3.42 2.34 3.48 3.20 3.42 

Urban 0.74 0.47 0.45 0.57 0.74 

 

Table 3.3. The 95th percentile of absolute values of lateral jerk (m/s3) for different 

drives across different road environments. 

 
MANUAL SLOW LKAS FAST REPLAY 

Rural 2.27 1.38 1.71 2.13 2.27 

Urban 0.66 0.83 0.19 0.83 0.66 

 

3.2.4 Subjective Discomfort Rating (Button Presses) 

For each of the automated drives, the participants heard 41 auditory beep 

triggers. These beeps were played immediately after the participants were exposed to 

any obstacles, changes in road furniture, changes in road curvature or changes in 

road environment. In response to these triggers, they were required to press one of 

two buttons on an Xbox handset, to state: “Yes, I found the behaviour to be 

safe/natural/comfortable” (right button) or “No, I did not find the behaviour to be 

safe/natural/comfortable” (left button). This response explicitly pertained to the 

behaviour of the car within a couple of seconds around the moment of the beep’s 

occurrence. Additionally, participants were encouraged to give this binary input 

whenever they felt necessary, across each drive. 

3.2.5 Procedure 

Upon arrival, the participants were briefed with the description of the study, after 

which they were invited to sign a consent form, with an opportunity to ask questions. 

Three ECG electrodes were then attached to the participant’s chest, and 2 EDA 

electrode bands were attached on the index and middle finger of their non-dominant 

hand. They then performed a manual familiarisation drive, where they could become 

accustomed to the simulator environment and vehicle controls. Participants were 
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instructed to adhere to the posted speed limit and to obey the normal rules of the road. 

After each drive, the participants were given a 10-min break, during which they were 

asked to complete a set of subjective questionnaires relating to that drive and the 

controllers. The results of the subjective questionnaires are not within the scope of this 

paper and will not be reported here. 

3.2.6 Data Analysis Tools 

The ECG data was processed on Kubios HRV premium software (Tarvainen et 

al., 2014). EDA signals were pre-processed, and artefacts were removed using 

custom algorithms1 based on recommendations in (Braithwaite et al., 2015) and 

(Kikhia et al., 2016), on MATLAB R2016a. The data were analysed using Ledalab v3.9 

(Benedek & Kaernbach, 2010), a MATLAB-based software package. 

3.2.7 Statistical Analysis 

Statistical analysis was conducted on IBM SPSS Statistics 26. Shapiro Wilk’s 

test, which showed that not all estimates across the independent variables were 

normally distributed, but, in general, the majority of the estimates (>75%) were 

normally distributed for each of the dependent variables used. We judged the repeated 

measures ANOVA to be sufficiently robust to these issues, with only a small effect on 

Type I error rate (Blanca et al., 2017). For statistical significance, an α-value of 0.05 

was used, and partial eta-squared was computed as an effect size statistic. Degrees 

of freedom were Greenhouse-Geisser corrected when Mauchly’s test showed a 

violation of sphericity. Pair-wise comparisons with Bonferroni corrections were used 

to determine the differences in different drives and road segments. Pearson’s 

correlation coefficient was used for any correlation analyses. Data from participants 

24 and 14 were classified as outliers, and the data recorded from participants 10 and 

15 were of poor quality, and, hence, these were discarded for RMSSD and HR 

analysis. Participant 12 did not respond to the instructions given for button presses, 

and participant 13 had an abnormally high rate of button presses. Therefore, these 

participants were not considered in the subjective button press analysis. 

 

1 Described in detail in Chapter 2 of this thesis 
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3.3 Results 

Initially, the data were analysed for five separate segments (three in rural and 

two in urban environments) for each of the five drives, but results for physiological 

metrics, and the button presses, were not statistically different between the different 

segments, within the same environment. Therefore, the physiological and button press 

data across the three rural and 2 urban segments were aggregated for analysis, with 

the two independent variables being drive (MANUAL, SLOW, LKAS, FAST, REPLAY) 

and environment (rural and urban). The dependent variables were RMSSD, mean HR 

and nSCR/min. 

3.3.1 Physiological Metrics 

To understand how the behaviour of the AV controllers and manual driving 

affected drivers’ physiological response, and discomfort, across the different road 

environments, we conducted a 5 (Drive: SLOW, LKAS, FAST, MANUAL and REPLAY) 

× 2 (Environment: rural, urban) repeated-measures ANOVA on all three physiological 

metrics (RMSSD, mean HR, nSCR/min). As discussed in the Introduction, previous 

research has shown that RMSSD values tend to decrease with an increase in 

discomfort, whereas mean HR and nSCR/min values tend to increase with an increase 

in discomfort (Beggiato et al., 2019; Foy & Chapman, 2018). 

There was a main effect of drive on RMSSD values, F(2.4, 45.2) = 5.27, p = 

0.006, ηp
2 =0.22, Figure 3.3a, with post-hoc tests showing significantly lower RMSSD 

values in the MANUAL drive, compared to the LKAS (p = 0.007) and FAST (p = 0.008) 

drives. No other significant differences were found between the drives. There was no 

effect of environment on RMSSD, or any interactions between drive and environment. 

There was a main effect of drive on drivers’ mean HR, F(4, 76) = 6.81, p < 

0.001, ηp
2 = 0.23, Figure 3.3b, with post-hoc tests showing that drivers had 

significantly higher mean HR values in the MANUAL drive, compared with the FAST 

drive (p = 0.001). There were no significant differences between the other drives. 

There was no main effect of environment and no interactions between drive and 

environment. 
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Figure 3.3. (a) Root mean square of successive differences (RMSSD) and (b) heart 

rate (HR) plots for drive. ** p ≤ 0.01, *** p ≤ 0.001. Error bars denote s.e.  

There was a main effect of drive on nSCR/min, F(4, 92) = 4.70, p = 0.002, ηp
2 

= 0.17, Figure 3.4a, with post-hoc tests showing that there were significantly higher 

nSCRs/min in the MANUAL drive, compared to the SLOW (p = 0.006) and REPLAY 

drives (p = 0.005). There were no other significant differences. There was also a main 

effect of environment on drivers’ nSCR/min, F(1, 23) = 40.54, p < 0.001, ηp
2 = 0.64, 

Figure 3.4b, with higher values seen in the rural environments, than the urban 

environments ( p < 0.001). An interaction between drive and environment, F (4, 92) = 

3.37, p = 0.013, ηp
2 = 0.13, Figure 3.4c, was also observed. Pairwise comparisons 

with Bonferroni corrections (α = 0.002) revealed that, in the MANUAL drive, drivers 

had a significantly higher nSCR/min while driving in rural environments, compared to 

the urban environments (p < 0.001). Additionally, within the rural environments, drivers 

showed significantly higher nSCR/min values in the MANUAL drive, when compared 

to the SLOW (p < 0.001), FAST (p < 0.001) and REPLAY (p = 0.001) drives. Amongst 

the AV controllers, LKAS showed the largest reduction in nSCR/min values between 

rural and urban environments (20.3% reduction in mean nSCR/min from rural to 

urban).  
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Figure 3.4. Number of skin conductance responses (SCRs) per minute (nSCR/min) 

for: (a) each drive; (b) across different environments; (c) and interaction effects. 

**p ≤ 0.01, ***p ≤ 0.001. Error bars denote s.e. 

3.3.2 Subjective Discomfort Ratings (Button Presses) 

In the previous section, we reported a comparison of drivers’ physiological state 

during each drive. However, physiological signals are sensitive to a wide range of 

stimuli, and are prone to individual differences. Therefore, care must be taken when 

interpreting a psychological construct, such as discomfort, using physiological 

measures only (Beggiato et al., 2019). Hence, we used data from the button presses 

(see section 3.2.4, in the Methods section) to establish whether the changes in 

physiological state correlated with the participants’ overall subjective discomfort rating. 

Correlation analysis showed that button presses and nSCR/min were significantly 

positively correlated (r(20) = 0.46, p = 0.04). 
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To normalise the button press data across all participants, the percentage of 

NO presses was calculated in relation to the total number of presses, for each road 

environment, in each drive. A 4 × 2 repeated measures ANOVA was performed on the 

percentage of NO presses to assess discomfort, comparing the values across the four 

drives (SLOW, LKAS, FAST, and REPLAY) at two different road environments (rural 

and urban). 

ANOVA results showed no main effect of drive on participants’ button presses, 

but there was a main effect of environment, where drivers reported a significantly 

higher percentage of discomfort ratings in the rural, compared to the urban 

environment, F(1, 21) = 9.83, p = 0.005, ηp
2 = 0.32, Figure 3.5a. This pattern is similar 

to that observed for drivers’ nSCR/min values, above. 

There was also an interaction effect, F(3, 63) = 3.16, p = 0.031, ηp
2 = 0.13, 

Figure 3.5b. Pair-wise comparisons with Bonferroni corrections (α = 0.003125) did not 

show any significant differences between any of the drives, in each environment. 

Discomfort ratings were similar across all the drives in the rural environment. However, 

there was a 43.8% and 52.3% reduction in mean discomfort ratings for LKAS and 

REPLAY drives, respectively, in the urban environment, compared to their respective 

values in the rural environment. 

 

Figure 3.5. Percentage of NO presses: (a) across the two environments; (b) the 

interaction between these two factors is shown in the right graph. **p ≤ 0.01. Error 

bars denote s.e. 
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3.4 Discussion and Conclusions 

This study investigated driver discomfort, from a physiological perspective, and 

sought to establish whether drivers’ physiological state changes in line with the 

behaviour of different automated vehicle controllers. Drivers’ response in manual 

driving was compared to four automated drives, with each navigating through a range 

of road geometries and speeds, associated with urban and rural road environments. 

Physiological signals can be highly subjective, and therefore individuals may 

respond slightly differently to a particular stimulus. Additional care must be given whilst 

interpreting a physiological change to a psychological construct, as a range of 

constructs could initiate similar physiological responses (Beggiato et al., 2019). In this 

study, participants were pre-screened for any physiological anomalies that could occur 

from usage of cardiac stimulants, exercise, or any medication that they were taking. 

Furthermore, for EDA analysis, we used nSCR/min instead of amplitude sum of each 

SCRs, and the former is less susceptible to individual differences such as thickness 

of skin, as each event related SCR is generally initiated as a response to a particular 

stimuli. This, and, given the fact that our study incorporated a within-subject design, 

additional standardisation techniques were not applied for processing RMSSD, mean 

HR and nSCR/min metrics. 

Results showed lower RMSSD values, and higher mean HR and nSCR/min 

values, in the MANUAL drive, compared to at least one of the AV controllers. However, 

since drivers were not required to evaluate their own driving, by button presses in the 

MANUAL drive, it is not possible to conclude whether this difference in physiological 

metric between the MANUAL and automated drives reflects driver discomfort only, or 

rather, whether it is due to an increased physical and mental demand associated with 

the manual driving task, or both. 

There were no significant main effects in either the physiological metrics, or 

button press data, between the four automated drives. This may be because overall, 

the drives had similar resultant acceleration profiles across the whole drive (see 

Figure 3.2). We analysed physiological metrics and subjective button press data for 

each segment/environment, which were at least 2 min long. Hence, some of the 

instantaneous variations in controller behaviour may have produced opposing effects, 

which cancelled each other out when averaged across a larger time window. These 
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findings are in agreement with Beggiato et al. (2019), where the authors did not find 

any significant differences in physiological responses between their three automated 

drives (defensive, aggressive and replay of manual drive). Those authors attributed 

the lack of difference in physiological responses to high confidence interval bands in 

their analysis, where missing or opposite effects would have increased the confidence 

bands dramatically. 

In contrast, there were some observable differences, both in terms of 

physiological metrics nSCR/min), and subjective button presses, for the two road 

environments, with the rural roads being significantly more uncomfortable than the 

urban environments. This increase in discomfort is likely attributed to the significantly 

higher resultant acceleration and jerk experienced in the rural environments, for all 

drives, which often crossed the 2 m/s2 and 0.9 m/s3 threshold for acceleration and jerk, 

respectively, for a comfortable driving experience, as suggested by Eriksson & 

Svensson (2015). In other words, the higher speed limits, narrower roads and tighter 

curves associated with the rural environments, seem to be the main cause of 

increased driver discomfort in this environment. Although more obstacles were present 

in the urban sections (10 vs. 4), it seems that the way these were negotiated by the 

vehicle in the rural sections (i.e., passed at a much higher velocity and on narrower 

roads), was a significant source of driver discomfort during rural environment. These 

findings are in line with those of Mourant & Thattacherry (2000), where the authors 

found higher levels of simulator sickness in high-velocity rural environments, when 

compared to city environments. These results also suggest that those developing 

automated vehicle controllers should focus on improving comfort, and thereby 

minimising jerk, when the vehicle is negotiating higher speed, higher acceleration, 

road geometries. 

While the mean discomfort ratings and nSCR/min seemed to be quite similar 

across all AV controllers in the rural environments, these were particularly low for the 

urban section of the LKAS (as seen in both discomfort ratings and nSCR/min) and 

REPLAY (as seen in the discomfort ratings) drives. This is likely due to the absence 

of any obstacles in the LKAS drive, resulting in very little variations in velocity and 

lateral offset (and thus, resultant acceleration). With respect to the REPLAY drive, it is 

likely that participants visibly recognised their own driving style and preferred this 
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familiar behaviour during the lower speed urban environment, where their comfort 

threshold for acceleration forces was not breached. This was also reflected in their 

subjective ratings. This recognition was indeed noted by some participants, after their 

REPLAY drive, although not formally recorded. There seems to be incongruence in 

participants’ physiological indicator of discomfort and perceived level of discomfort 

during the REPLAY drive in urban environments, indicating a bias in rating one’s own 

driving behaviour. These findings suggest that when the resultant acceleration and 

jerk experienced by the driver remains well below the comfort threshold, other factors 

that affect discomfort, such as familiarity of the drive or presence of obstacles, become 

more prominent and noticeable. In contrast, when the resultant acceleration and jerk 

values moves above the comfort threshold, it seemingly overshadows other 

determinants of driver discomfort. This warrants further research into understanding 

drivers’ comfort threshold in terms of jerk and acceleration forces, and its impact on 

other factors that induce discomfort to the driver. 

This study was conducted on a dynamic driving simulator (see Section 3.2.2 for 

more details), and the acceleration and jerk forces experienced by the participants 

would be similar to that in a real-world scenario. Since acceleration and jerk were two 

main factors affecting discomfort, we believe a drivers’ feeling of discomfort due to 

these forces is quite similar in a simulator and real-world environment. Johnson et al. 

(2011) conducted a study on effect of physiological responses in fixed-based simulator 

vs. real-world driving and concluded that while level of immersion is at an acceptable 

level to elicit presence and the trends observed in physiological data during simulated 

driving relative to real-world driving were quite similar, the absolute physiological 

responses for virtual and real-world environments were significantly different. There is 

also the possibility of different behavioural responses by drivers in simulator, when 

compared to a real-world driving situation (Ekanayake et al., 2013). This study 

incorporated conventional techniques and sensors to measure drivers’ physiological 

data, which were intrusive in nature. However, recent technological advancements 

have led to non-intrusive (Beggiato et al., 2019; McCarthy et al., 2016a) and even non-

contact physiological sensor technologies (Kranjec et al., 2014), which need to be 

validated with on-road studies. 
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To conclude, there is a need to measure discomfort objectively, and in real-

time, so that future AVs can adapt their driving behaviour and provide a more 

comfortable and pleasant driving experience for human occupants. The novelty of this 

study is in understanding and measuring the long-term effects of discomfort, across 

various road environments and a range of AV controllers, using physiological 

measures. This study suggests that, compared to HR variability measures, EDA-

based SCR values are more sensitive to continuous changes in discomfort inducing 

stimuli, such as those experienced when a vehicle navigates through different 

geometric and speed-based scenarios. We observed a moderately positive correlation 

between participants’ nSCR/min and their subjective rating of discomfort. Further 

research may, therefore, be warranted to investigate the value of this metric for 

assessing real-time driver discomfort levels, which may be useful when developing 

more acceptable controllers for future automated vehicles. 
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4 MEASURING DRIVER WORKLOAD AT DIFFERENT STAGES 

OF AUTOMATED DRIVING, INCLUDING TAKEOVERS 

ABSTRACT: This driving simulator study, conducted as a part of Horizon2020-

funded L3Pilot project, investigated how different car-following situations affected 

driver workload, within the context of vehicle automation. Electrocardiogram (ECG) 

and electrodermal activity (EDA)-based physiological metrics were used as objective 

indicators of workload, along with self-reported workload ratings. A total of 32 drivers 

were divided into two equal groups, based on whether they engaged in a non-driving 

related task (NDRT) during automation (SAE Level 3) or monitored the drive (SAE 

Level 2). Drivers in both groups were exposed to two counterbalanced experimental 

drives, lasting ~18 minutes each, of Short (0.5 s) and Long (1.5 s) Time Headway 

conditions during automated car-following (ACF), which was followed by a takeover 

that happened with or without a lead vehicle. Results showed that driver workload due 

to the NDRT was significantly higher than both monitoring the drive during ACF and 

manual car-following (MCF). Furthermore, the results indicated that a lead vehicle 

maintain a shorter THW can significantly increase driver workload during takeover 

scenarios, potentially affecting driver safety. This warrants further research into 

understanding safe time headway thresholds to be maintained by automated vehicles, 

without placing additional cognitive or attentional demands on the driver. Our results 

indicated that ECG and EDA signals are sensitive to variations in workload, which 

warrants further investigation on the value of combining these two signals to assess 

driver workload in real-time, to help future driver monitoring systems respond 

appropriately to the limitations of the driver, and predict their performance in the driving 

task, if and when they have to resume manual control of the vehicle after a period of 

automated driving. 

4.1 Introduction 

In recent years, we have seen a gradual increase in the implementation of 

Advanced Driving Assistance Systems, such as lane-keeping assistance or adaptive 

cruise control, in vehicles, with manufacturers striving to attain higher levels of vehicle 

automation capabilities. Highly Automated Driving (HAD) systems such as Traffic Jam 

Pilot, are currently available on the market (IEEE, 2019) and the use of the first SAE 

Level 3 (L3; SAE, 2021), Automated Lane Keeping System became legal in the UK in 

2021 (Kinnear et al., 2021). Unlike SAE Level 2 (L2) systems, SAE Level 3 does not 

require constant monitoring of the drive, and drivers can engage in other non-driving 
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related tasks (NDRTs), and activities. The main rationale for the implementation of  

HAD is its hypothesised provision of increased comfort and safety (ERTRAC, 2017). 

However, in terms of the human driver, one of the unwanted consequences of vehicle 

automation is the out of the loop (OOTL) phenomenon, which, according to Merat et 

al. (2018), refers to a state where, when automation is engaged, the driver is not 

monitoring the driving environment, and may or may not be in physical control of the 

vehicle. Studies have shown that when drivers are out of the loop, a decrement in 

performance is observed (Endsley & Kiris, 1995) once they are required to resume 

control of the vehicle, which can lead to reduced safety, for example, if the driver is 

required to avoid an impending collision (Louw, Madigan, et al., 2017; Wandtner et al., 

2018; Zeeb et al., 2016) 

Driving performance and safety, after resumption of manual control from HAD, 

is also affected by driver workload, which describes the relationship between physical 

and cognitive resources demanded by a task, and those resources available to be 

supplied by the driver (Dogan et al., 2019; Parasuraman et al., 2008). The relationship 

between workload and task performance is complex, and follows an ‘inverted U-shape’ 

relationship (Bruggen, 2015; de Waard, 1996). For HAD, both high workload (overload 

- where the task demand exceeds the available resources) and low workload 

(underload - where the attentional capacity of the driver is reduced due to low task 

demand and monotony during automation) can result in a performance decrement, 

and increases the chances of driver error (Parasuraman et al., 2008; Young & Stanton, 

2002b). Parasuraman et al. (2008) have also suggested that workload is a better 

predictor of drivers’ future performance, than their current performance. For example, 

research has shown that a driver’s ability to safely resume control from automation is 

likely to be affected if they are engaged in a high workload task during HAD, such as 

a demanding NDRT, with worse performance observed compared to a no task period 

during HAD (Gold et al., 2015; Zeeb et al., 2016). This effect of workload on 

performance can be especially problematic if there is a sudden increase or change in 

task demand (such as an unexpected takeover scenario due, e.g. to avoid an obstacle 

in the lane), compromising safety. For optimal performance in the driving task, 

reducing the likelihood of errors, drivers are required to maintain a moderate level of 

workload (Bruggen, 2015; de Waard, 1996). As engagement in NDRTs is likely to 

increase with higher levels of automation (Carsten et al., 2012; NTSB, 2017), 
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especially in L3, it is important to understand how driver workload changes during 

different stages of HAD, in order to provide appropriate mitigation strategies, and 

reduce performance decrements during transitions of control (Merat et al., 2012; 

Meteier et al., 2021).  

An example of obstacle avoidance after resuming control from automation is 

preventing a rear-end collision during car following scenarios. Rear-end collisions 

account for over 31% of all collisions in the US (National Highway Traffic Safety 

Administration, 2009, p. 56). Car-following refers to the longitudinal following of a lead 

vehicle by drivers. Given that car-following is a pre-cursor to rear-end collisions (Li et 

al., 2017), it is of value to understand how different car-following situations in HAD can 

affect driver workload. Time headway (THW), and time-to-collision, are two safety 

indicators used in car-following situations to understand drivers’ longitudinal driving 

behaviour (K. Vogel, 2003). THW is defined as the elapsed time between the front of 

the lead vehicle passing a point on the roadway and the front of the following vehicle 

passing the same point (Evans, 1991, p. 313).  

Research has shown that driver workload can be influenced by the THW 

maintained by a vehicle. For example, in a manual driving study, conducted in a driving 

simulator,  Liu, Green, & Liu (2019) found that subjective ratings for workload were 

significantly higher for the 0.5 and 1 s THW conditions, compared to the 2, 2.5 and 3 

s THW conditions. In their study on HAD, Siebert & Wallis (2019) reported that drivers 

were significantly more uncomfortable during THWs under 1.5 s, as reported by their 

subjective ratings of riskiness due to the THW, compared to longer THWs, while 

driving at 50 km/h, 100 km/h and 150 km/h respectively. However, participants’ 

subjective ratings of riskiness due to the THW maintained by the vehicle was also 

dependent on environmental factors such as visibility (fog), and traffic conditions such 

as following a truck, with driver discomfort increasing with lower visibility, increased 

traffic, and when following a truck, as opposed to a car. In Louw et al. (2020), we 

observed, via subjective ratings, that shorter headways maintained by HAD are 

perceived as riskier or unsafe by drivers, especially when they are not in control of the 

driving task. Resuming control from automation in the presence of a closer lead vehicle 

is also likely to be more demanding, especially following engagement in an NDRT 

(Mehler et al., 2009), further exacerbating the OOTL effect, with studies on HAD 
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showing that engagement in NDRTs increases driver workload, and negatively affects 

their driving performance after takeovers (Du et al., 2020; Wandtner et al., 2018; Zeeb 

et al., 2016). 

Given the high inter-individual variability in how people are affected by, or 

perceive, workload, it can be challenging to accurately measure and interpret it on a 

moment-to-moment basis. However, the ability to objectively measure workload in 

real-time during different stages of HAD is crucial, as it can provide insights into 

drivers’ capabilities and limitations, when they are required to resume control of the 

vehicle, ultimately helping to improve the safety of the automated system. Real-time, 

minimally-intrusive, and continuous assessment of driver workload can be used to 

assist the driver, for example, to warn them of dangerous overload or underload 

situations (Merat et al., 2012). Therefore, in the current paper, we investigated the 

added value of using physiological signals to objectively measure driver workload, in 

HAD. 

Electrocardiogram (ECG)-based physiological metrics such as heart rate (HR), 

heart rate variability (HRV), ECG-derived respiration rate (EDR), and metrics derived 

from electrodermal activity (EDA) signals, have been used extensively to understand 

and measure workload, in both manual driving and HAD (Biondi et al., 2018; Du et al., 

2020; Hidalgo-Muñoz et al., 2019; Mehler et al., 2009). 

A general finding is that an increase in drivers’ workload is associated with an 

increase in HR and EDR, the latter of which is the number of breaths a person takes 

in a minute, as derived from an ECG signal (Hidalgo-Muñoz et al., 2019; Mehler et al., 

2009). However, an increase in workload results in a decrease in HRV, which is the 

physiological phenomenon of variation in time interval between heartbeats (Mehler et 

al., 2009). A decrease in HRV is reflected by a reduction in drivers’ root mean square 

of successive differences in R-R intervals (RMSSD) (Orsila et al., 2008). An EDA 

signal consists of a slowly evolving tonic component, called skin conductance level 

(SCL) and a rapidly evolving phasic component, called skin conductance response 

(SCR) (Braithwaite et al., 2015; Cacioppo et al., 2007a). SCRs generally have a faster 

decay time, compared to other EDA and ECG-based metrics,  thus making them more 

sensitive to changes in stimuli that are constantly evolving and/or of short duration 

(Braithwaite et al., 2015). Both SCL and SCRs are shown to increase with stress and 
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workload during driving (Du et al., 2020; Foy & Chapman, 2018; Mehler et al., 2009), 

and the number of SCRs per minute (nSCR/min) has been shown to increase in 

situations that involve high stress/workload or discomfort for drivers (Foy & Chapman, 

2018; Radhakrishnan et al., 2020). 

4.1.1 Current study 

This study investigated how manipulations of workload, during different stages 

of L2 and L3 HAD affects drivers’ psychophysiological metrics. Workload was 

manipulated by introducing two lead vehicle conditions (Lead/No Lead) in an urban 

driving environment, and two THW conditions when a lead vehicle was present (Short 

and Long). To understand how the different vehicle automation states affected driver 

workload in the context of car-following, our study exposed drivers to automated car-

following (ACF) segments, manual car-following (MCF) segments, and Takeover 

segments, with the latter involving transitions of control from automated to manual 

driving. To study the effect of NDRT on drivers’ workload levels, a between-participant 

design was used, with one group of drivers (L2) asked to monitor the driving 

environment at all times, and another (L3) asked to engage in an NDRT when 

automation was engaged. ECG- and EDA-based physiological data were collected as 

objective measures of workload, and compared with drivers’ self-reported workload 

ratings. The following research questions were addressed: 

RQ 1. How is L2 drivers’ workload, as measured by changes in their physiological 

state, and self-reported workload ratings, affected by the two THW conditions 

(Short vs Long) when monitoring the drive during ACF?  

RQ 2. Is drivers’ workload during ACF affected by an NDRT (L2 vs L3)?  

RQ 3. Does drivers’ workload vary between ACF and MCF?  

RQ 4. Is drivers’ workload during the takeover affected by the THWs maintained by 

the automated controller (Short vs Long)?  

RQ 5. Is drivers’ workload during the takeover affected by engagement in an NDRT 

during automation (L2 vs L3)?  
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4.2 Materials and Methods 

4.2.1 Participants 

A total of 32 participants (16 for each level of automation), each with a valid UK 

driving licence, took part in this driving simulator-based study. A total of 6 participants 

(3 each from L2 and L3) were excluded from the analysis. Of this, 3 participants did 

not adhere to the instruction to follow the lead vehicle, and 3 others were excluded 

due to missing physiological data. For the 13 (4 female, 9 male) participants 

considered in the L2 group, the mean age of the participants was 42 ± 17 years, with 

a mean driving experience of 22 ± 16 years. The 13 participants (3 female, 11 male) 

of the L3 group had a mean age of 33 ± 8 years, with a mean driving experience of 14 

± 8 years. Prior to the experiment, participants were instructed to avoid caffeinated 

products, consumption of alcohol, and engagement in extreme exercise, to control for 

their effect on physiological data, as recommended in  Laborde, Mosley, & Thayer 

(2017). All participants gave consent to take part in the study, in accordance with the 

rules and regulations of the University of Leeds ethics committee (LTTRAN-054), and 

were compensated with £25 for taking part in the study. 

4.2.2 Apparatus 

The experiment was conducted in the full motion-based University of Leeds 

Driving Simulator (UoLDS), which consists of a Jaguar S-type cab housed in a 4 m 

diameter spherical projection dome with a 300º field of view projection system. The 

simulator also incorporates 8 degrees of freedom electrical motion system. This 

consists of a 500 mm stroke-length hexapod motion platform, carrying the 2.5 t 

payload of the dome and vehicle cab combination, and allowing movement in all six 

orthogonal degrees of freedom of the Cartesian inertial frame. Additionally, the 

platform is mounted on a railed gantry that allows a further 5 m of effective travel in 

surge and sway. Drivers’ physiological data were collected using Biopac MP35 data 

acquisition system at 500 Hz, which consisted of ECG electrodes and an EDA sensor. 

The Automated Driving System (ADS) was designed to control lateral and 

longitudinal operation of the vehicle at a speed of 40 mph. The HMI interface on the 

dashboard showed a red steering wheel symbol when the ADS was inactive (Figure 

4.1a), and a green steering wheel symbol when the ADS was active (Figure 4.1b). 
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Figure 4.1. HMI Interface on the dashboard: (a) when automation was disengaged; 

(b) Automation was engaged (in colour). 

4.2.3 Study design  

This study incorporated a mixed design, with within-participant factors of Time 

Headway (Short, Long), Drive Mode (ACF, MCF) and Lead Vehicle (Lead, No Lead), 

and a between-participant factor of Level of Automation (L2, L3). All factors, with the 

exception of Drive Mode, were counterbalanced.  

Following a ~10-minute practice drive, each participant experienced two 

experimental drives. All drives were completed in a single-carriageway urban 

environment, with a speed limit of 40 mph, and low-density oncoming traffic. For all 

drivers, their first experimental drive consisted of free driving for ~2 minutes. After 

around 2 minutes, a lead vehicle joined the driving lane and drivers were instructed to 

follow the lead vehicle for about 5 minutes, in what we termed as the manual baseline 

drive. Drivers’ baseline car-following behaviour, including their preferred headway, 

was collected during this segment. Except for the manual baseline segment, which 

was only present in the first experimental drive, the two experimental drives were the 

same. There were 4 segments in each experimental drive, which were experienced in 

the following order: Automated drive 1, Manual drive 1, Automated drive 2, Manual 

drive 2 (Figure 4.2).  
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Figure 4.2. Schematic representation of the experimental drives (in colour). 

During automation, the participants experienced one of the two THW conditions 

(0.5 s for the Short THW and 1.5 s for the Long THW, derived from the 25th and 75th 

percentile of a driver behaviour model by Ferson et al. (2019), based on naturalistic 

driving studies incorporating drivers’ instantaneous aggressiveness during car-

following scenarios), in a counterbalanced order. After the manual baseline drive, or 

at the start of the second experimental drive, drivers experienced a ~1- minute free 

drive, after which the ADS was available. Drivers received a verbal-audio prompt: 

“Attention, engage automation” through the car’s speakers, upon which, they could 

engage the ADS feature by pressing a button on the steering wheel. About a minute 

into the automated drive, a lead vehicle moved into the driving lane, starting the ACF 

segment.  

ACF was followed by an auditory-verbal takeover request: “Attention, get ready 

to takeover”. The takeover request was presented when the ego vehicle reached a 

section of the road with faded lane markings, representing a system limitation 

condition for the ADS. The takeover request was followed by a short acoustic tone 

(1000 Hz, lasting 0.2 s), with increasing frequency, until the driver resumed manual 

control. The ADS could be disengaged by either pulling the left-hand stalk, rotating the 

steering wheel by more than 2o, or pressing the brake or accelerator pedals.  

To study how the time headway of a lead vehicle affected workload, we 

introduced two kinds of takeover scenarios in this study, one with the lead vehicle 

present (Lead) and one without the lead vehicle (No Lead). In the No Lead condition, 

the lead vehicle exited the road at an intersection shortly before a takeover request 
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was given, and subsequently, a new lead vehicle joined the driving lane from the next 

intersection, ~10 s after participants resumed manual control of the vehicle. In the 

Lead condition, the lead vehicle continued in the driving lane when the takeover 

request was issued.  

Each takeover was followed by a period of manual car-following (MCF). Each 

experimental drive consisted of ACF, Takeover and MCF, in that order, repeated twice, 

and incorporating the Lead Vehicle factor (see Figure 4.2 and Figure 4.4). 

Level of Automation determined whether or not participants could engage in 

NDRTs during automation. In the L3 group, participants were not required to monitor 

the drive and were asked to engage in an ‘Arrows Task’ (Jamson & Merat, 2005) 

during automation. This task required participants to search and select the upward-

facing arrow, in a 4x4 grid of arrows displayed on a touchscreen (Figure 4.3a), placed 

in the centre console, near the gearshift ( 

Figure 4.3b). The screen showed participants’ cumulative score, as well as a 

“score to beat”. To ensure full engagement in the Arrows task, participants were told 

they would receive an additional £5 if they beat this score, but, for ethical reasons, 

every participant was paid an additional £5 at the end of the study. This task was only 

available after engagement of automation, until when the takeover request was given. 

The instructions for participants in L2 automation was to monitor the road scene at all 

times, although they removed their hands from the steering wheel and foot off the 

pedals when automation was engaged.  

 

Figure 4.3. (a) A representation of the arrows task with the upward facing arrow circled 

in red; (b) A participant engaging in arrows task in L3 group during automation 

(in colour).  
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4.2.4 Self-reported workload ratings 

Each participant was asked to rate their workload 13 times (7 times in the first 

experimental drive, including once during the manual baseline drive and 6 times during 

the second experimental drive). Response was provided verbally on a scale of 1-10, 

with 10 denoting highest workload. When they were engaged in either ACF or MCF 

(two each per experimental drive), they were prompted with the following verbal-

auditory message ~ 2.5 minutes after starting ACF or MCF (roughly halfway through 

the drive): “Please rate your workload now”. Similarly, when they resumed manual 

control of the vehicle (two times per experimental drive), they were prompted with the 

following message 10 s after the takeover: “Please rate your workload during the 

takeover”.  

4.2.5 Procedure 

Upon arrival, participants were briefed with a description of the study, after 

which they were invited to sign a consent form, with an opportunity to ask questions 

about the study. Three ECG electrodes were then attached to the participant’s chest, 

and 2 EDA electrode bands were attached to the index and middle finger of their non-

dominant hand. Once the participant was seated in the simulator cab, we collected the 

physiological baseline data, where participants were asked to relax for a period of 7 

minutes with their eyes closed, palms on their laps facing upwards (Braithwaite et al., 

2015; Laborde et al., 2017). This was used to standardise the experimental 

physiological data. Participants then performed a practice drive, which included both 

automated and manual driving. During the practice drive, participants were talked 

through the various aspects of the vehicle HMI, how to engage and disengage 

automation and those in the L3 group practised the Arrows task. After the practice 

drive, participants experienced the two experimental drives, which lasted ~18 minutes 

each. 

For all manual driving segments, participants were instructed to adhere to the 

posted speed limit of 40 mph and drive in the centre of the lane. They were also asked 

not to overtake the lead vehicle, but otherwise, follow the normal rules of the road, 

ensuring the safe operation of the vehicle, and maintaining their desired distance from 

the lead vehicle. After each experimental drive, the participants were given a 10-

minute break, during which they were asked to complete a set of questionnaires, 
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including Arnett’s Sensation Seeking Questionnaire (Arnett, 1994), traffic locus of 

control (Özkan & Lajunen, 2005) and the Driver Style Questionnaire (French et al., 

1993), see Louw et al. (2020). However, results from these questionnaires are not 

reported here, since they did not include questions about driver workload. 

4.2.6 Data analysis 

To analyse drivers’ workload during ACF, MCF and Takeover, the physiological 

data was first segmented into appropriate time windows. Participants provided verbal 

self-reported workload ratings, for each of the ACF, MCF and Takeover windows, as 

mentioned in section 2.4, which aligned with the segments used for physiological data 

collection. The time window for ACF was established as the time from when the lead 

vehicle entered the driving lane during the automated drive, until when the takeover 

request was given to the driver. The verbal response provided by the driver during this 

time window was considered as the self-reported workload rating for ACF. 

Drivers’ data from when they received the takeover request, until 10 s after they 

resumed manual control of the vehicle was classified as data for the Takeover window 

(see Figure 4.4). The subjective workload ratings for the Takeover window were 

provided 10 s after drivers resumed manual control of the vehicle. We took 10 s after 

takeover as the cut-off point, as previous research has shown that the peak in driving 

performance decrement is observed within 10-15 s after takeover of control (Merat et 

al., 2014). For the purpose of this study, we classified the time window from 10 s after 

resuming manual control until re-engaging automation as MCF, and the verbal 

response given by the participant during this window was considered as self-reported 

workload rating during MCF. 

Drivers experienced two experimentally similar ACF and MCF scenarios, in 

each of the experimental drives, as seen in Figure 4.2. A set of t-tests applied to the 

physiological data, and self-reported workload ratings revealed no significant 

differences between the two ACF and two MCF scenarios, within each experimental 

drive. Therefore, in order to study changes in workload during automated and manual 

car-following, data for the two ACF scenarios, and the two MCF scenarios, in each 

experimental drive, were aggregated to a single representation. This was applied for 

both physiological data, and self-reported workload ratings. 
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Figure 4.4. Schematic depicting the Time windows used for data analysis. 

4.2.7  Data analysis tools 

The ECG data was processed on Kubios HRV premium software (Tarvainen et 

al., 2014). EDA signals were pre-processed, and artefacts were removed using 

custom algorithms2 based on recommendations from Braithwaite et al. (2015) and 

Kikhia et al. (2016), using MATLAB R2016a. The EDA data was analysed using 

Ledalab v3.9 (Benedek & Kaernbach, 2010), a MATLAB-based software package. The 

EDA signal was decomposed into tonic and phasic components, using continuous 

decomposition analysis (CDA; Benedek & Kaernbach, 2010). To identify a phasic 

event as an SCR, an amplitude threshold of 0.01 µS was used (Braithwaite et al., 

2015). nSCR/min was computed as total number of SCRs in the window (above the 

amplitude threshold), divided by the time duration of the window (in seconds), which 

was then multiplied by 60, to get the number of SCRs per minute. 

4.2.8 Statistical analysis 

Statistical analysis was conducted with IBM SPSS Statistics 26. A Shapiro 

Wilk’s test showed that the majority (> 75%) of the group-level estimates were normally 

distributed for each of the dependent variables used, for every ANOVA test we 

conducted.  For statistical significance, an α-value of 0.05 was used as a limiting 

 

2 Described in detail in Chapter 2 of this thesis 
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criterion, and partial eta-squared was computed as an effect size statistic. Degrees of 

freedom were Greenhouse-Geisser corrected when Mauchly’s test showed a violation 

of sphericity. Homogeneity of data was tested using Levene’s test. In cases when the 

data was heterogeneous, the differences in group sizes were mostly equal 

(largest/smallest < 1.5), and the ANOVA was sufficiently robust to handle such 

heterogeneity in the data (Pituch & Stevens, 2016). Data from a participant was 

identified as an outlier if it was 3 times the interquartile range (IQR) above the 3rd 

quartile or below the 1st quartile, of the dataset. Due to a technical error with the voice 

recorder, self-reported workload ratings were missing for 5 participants, and self-

reflected workload ratings data from a participant was identified as an outlier, across 

all the analyses done in this study. Therefore, data from these participants was 

excluded from the self-reported workload rating analysis. Data from 2 participants (one 

each from the L2 and the L3 group) in the EDR metric, nSCR/min metric and the 

RMSSD metric, were identified as outliers and excluded from the analysis. For 

analysis of RQ 3, data from 4 additional participants were identified as outliers, and 

removed from nSCR/min analysis. 

For the self-reported workload ratings, only 50% of the dataset was normally 

distributed, and Levene’s test revealed that workload ratings for the Long THW 

condition during ACF across the L2 and L3 groups were only slightly heterogeneous 

(p = .046), with equal group size. The skewness and kurtosis of the non-normally 

distributed data were within the acceptable range +/- 2 (George & Mallery, 2010). The 

one way ANOVA and the mixed ANOVA were robust enough to accommodate this 

violation of normality and homogeneity, with only a small effect on Type I error (Blanca 

et al., 2017; Pituch & Stevens, 2016).  

4.3 Results 

Since there is high inter-individual variability in physiological data, and this 

study incorporated a between-participant design, the physiological data during each 

of the ACF, MCF and Takeover time windows, for each participant, were standardised 

by representing the physiological values during ACF, MCF and Takeover, for each 

participant as a percentage of their respective physiological baseline data, collected 

before the experiment (see section 4.2.5). 
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4.3.1 The effect of Time Headway on driver workload during ACF in the 

L2 group (RQ 1) 

To understand how drivers’ workload was affected by the  two THW conditions, 

during the monitoring phase in the L2 group, we performed a one-way ANOVA with 

repeated measures on drivers’ RMSSD, mean HR, EDR, nSCR/min and self-reported 

workload ratings, with a within-participant factor of Time Headway (Short, Long). 

As shown in Table 4.1, there were no main effects of Time Headway, across 

all the physiological metrics and self-reported workload ratings, with participants 

showing similar physiological activity, and self-reported workload ratings, in the Short 

and the Long THW conditions.  

 

Table 4.1. Results of the one-way ANOVA with repeated measures (RQ1) across 

various physiological measures and subjective ratings, for the Time Headway 

condition, in the L2 group. 

Predictor df1 df2 F p ηp2 

1. RMSSD 1 11 .154 .702 .014 

2. Mean HR 1 12 .001 .976 .000 

3. EDR 1 11 1.77 .211 .138 

4. nSCR/min 1 11 .041 .843 .004 

5. Self-reported workload ratings 1 9 4.06 .075 .311 

 

4.3.2 The effect of an NDRT on driver workload during ACF (RQ 2) 

To understand how drivers’ workload during ACF was affected by engagement 

in an NDRT, compared to just monitoring the drive, we performed a one-way ANOVA 

on drivers’ RMSSD, mean HR, EDR, nSCR/min and self-reported workload ratings, 

with a between-participant factor of Level of Automation (L2, L3). As seen in section 

4.3.1, in the L2 group, participants exhibited similar physiological activity and self-

reported workload ratings across the two THW conditions during ACF. In the L3 group, 

participants were engaged in the visual Arrows task during ACF, without paying 

attention to the road and hence, did not observe the two THW conditions. Therefore, 
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we combined the physiological metrics and self-reported workload ratings during ACF, 

for Short and Long THW conditions, into a single representation, for each group. 

Our results indicated that there was a significant main effect of Level of 

Automation, across all the physiological metrics (Figure 4.5, Table 4.2), during ACF, 

with drivers in the L3 group having significantly higher physiological activation, and 

hence, workload, when engaged in an NDRT, compared to those in the L2 group who 

were just monitoring the drive. Although statistically insignificant, a similar trend was 

observed in drivers’ self-reported workload ratings, with drivers reporting higher 

workload when engaged in an NDRT (L3 group), compared to monitoring the drive (L2 

group), during ACF (Figure 4.6). 

 

Table 4.2. Results of the one-way ANOVAs across various physiological measures 

and self-reported workload ratings during ACF (RQ 2), for the Level of 

Automation condition. 

Predictor df1 df2 F p ηp
2 

1. RMSSD 1 22 9.616 .005 .304 

2. Mean HR 1 24 5.41 .029 .184 

3. EDR 1 22 13.34 .001 .377 

4. nSCR/min 1 22 5.35 .030 .196 

5. Self-reported workload ratings 1 18 1.258 .277 .065 
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Figure 4.5. Effect of Level of Automation on workload during ACF as reflected by (a) 

RMSSD (b) Mean HR (c) EDR and (d) nSCR/min metric. *p≤ .05 , **p ≤ .01 and 

***p≤.001. 
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Figure 4.6. Effect of Level of Automation on drivers’ self-reported workload ratings 

during ACF. 

4.3.3 The effect of Drive Mode on driver workload (RQ3) 

To understand how drivers’ workload varied between ACF and MCF, we 

conducted a one-way ANOVA with repeated measures on drivers’ RMSSD, mean HR, 

EDR, nSCR/min values, and self-reported workload ratings, with a within-participant 

factor of Drive Mode (ACF, MCF). This was done separately for the L2 and L3 groups, 

since drivers in the L3 group were only exposed to NDRT during ACF and not during 

MCF. Since drivers had similar workload across the two THW conditions, for all the 

physiological metrics and self-reported workload ratings, we combined the values for 

Short and Long THW conditions into a single representation, for both ACF and MCF. 

There was an effect of Drive Mode on drivers’ EDR values, in the L2 group (see 

Table 4.3 and Figure 4.8a), with drivers having significantly higher respiration rates 

during MCF, compared to ACF. However, there was no statistically significant effect 

of Drive Mode on any other physiological metrics, or self-reported workload ratings, 

for the L2 group (see Table 4.3). On the other hand, a significant effect of Drive Mode 

was seen across all the physiological metrics evaluated in the L3 group (see Table 

4.3). Drivers had significantly higher physiological activity during ACF, compared to 
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MCF (see Table 4.3, Figure 4.7, Figure 4.8b, Figure 4.9a), suggesting that a higher 

level of workload was imposed by engaging in the NDRT. Results from the ANOVA 

did not reveal any statistically significant differences in self-reported workload ratings 

between ACF and MCF in the L3 group (see Table 4.3 and Figure 4.9b). 

 

 

Figure 4.7. Effect of Drive Mode on workload in the L3 Group, as reflected in (a) 

RMSSD metric and (b) mean HR metric. **p ≤ .01 and ***p≤ .001. 
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Figure 4.8. Effect of Drive Mode on workload, as reflected in (a) EDR metric in the L2 

group and (b) EDR metric in the L3 group. *p ≤ .05 and **p ≤ .001. 
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Figure 4.9. Effect of Drive Mode on workload in the L3 group, as reflected in (a) 

nSCR/min metric and (b) Self-reported workload ratings. *p ≤ .05. 

Table 4.3. Results of one-way ANOVA with repeated measures across various 

physiological measures, on Drive Mode, in the L2 and the L3 group. 

Predictor df1 df2 F p ηp
2 

1. RMSSD      

L2 group 1 10 .140 .716 .014 

L3 group * 1 10 21.99 .001 .687 

2. Mean HR      

L2 group 1 12 .383 .548 .031 

L3 group * 1 12 15.99 .002 .571 

3. EDR      

L2 group * 1 10 6.08 .030 .336 

L3 group * 1 10 18.98 .001 .655 

4. nSCR/min      

L2 group 1 12 .069 .797 .006 

L3 group * 1 8 7.39 .026 .480 

5. Self-reported workload 

ratings 

     

L2 group 1 9 .421 .533 .045 

L3 group  1 9 .040 .845 .004 

* statistically significant at p ≤ .05 

4.3.4 The effect of Takeover on driver workload (RQ 4 and RQ 5) 

ECG-based metrics, such as RMSSD, mean HR and EDR, were not analysed 

around takeovers, as accurate analysis of such metrics requires a minimum time 

window of 5 minutes (Malik et al., 2012), and in this study, the takeover time windows 

(shown in light blue, Figure 4.4) only lasted 15 - 20 seconds. As mentioned in section 

4.2.6, nSCR/min reported in this section was computed using the data for Takeover 

Window (shown in light blue, Figure 4.4), that is, the time period from when they 
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received the takeover request, until 10 s after they resumed manual control of the 

vehicle. 

To understand how driver workload was affected by the time headway of the 

lead vehicle during takeovers, and whether their workload level during the takeover 

was affected by their engagement in an NDRT during automation (which occurred prior 

to the takeover), we performed a 2x2 mixed ANOVA, including a within-participant 

factor of Time Headway (Short, Long) and between-participant factor of Level of 

Automation (L2, L3), on drivers’ nSCR/min, and self-reported workload ratings. Only 

the Lead vehicle condition was considered here, as the Time Headway factor is 

irrelevant when there is no lead vehicle. For the nSCR/min metric, there was missing 

data from 5 participants, and data from 2 other participants were classified as outliers 

and excluded from the analysis. 

As shown in Table 4.3, ANOVA results revealed that the effect of Time Headway on 

drivers’ nSCR/min was nearing statistical significance (p = .056) with drivers of both 

groups having higher mean nSCR/min values during the Short THW condition, 

compared to the Long THW condition (see Figure 4.10a and Table 4.4). There was 

also an effect of Time Headway on drivers’ self-reported workload ratings. Drivers had 

significantly higher self-reported workload ratings during the Short THW condition, 

compared to the Long THW condition (see Figure 4.10b and Table 4.4), similar to the 

trend observed in nSCR/min metric. There was no effect of Level of Automation or 

interaction effects, for either nSCR/min or self-reported workload ratings, suggesting 

that drivers of both group experienced similar levels of workload during the takeovers.  
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Figure 4.10. Effect of Time Headway condition when a lead vehicle was present, 

during takeover, (a) on drivers’ nSCR/min metric and (b) self-reported workload 

ratings during. n.s. nearing significance (p = .056), *p ≤ .05 

 

Table 4.4. Results of mixed ANOVAs across nSCR/min and self-reported workload 

ratings, during takeovers. 

Predictor df1 df2 F p ηp
2 

1. nSCR/min 

Time Headway n.s. 1 17 4.21 .056 .198 

Level of Automation 1 17 .830 .375 .047 

2. Self-reported workload ratings 

Time Headway  1 18 5.36 .033 . 229 

Level of Automation 1 18 .045 .834 .003 

n.s. nearing significance. 
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4.4 Discussion and Conclusions 

This study investigated how changes in driver workload, imposed by different 

demands from a simulator-based automated driving study, with car-following 

scenarios, affected drivers’ physiological state and self-reported workload ratings. Two 

groups of participants were recruited to study how the presence of a lead vehicle, and 

its Time Headway (THW), affected workload during different stages of L2 and L3 

automated driving. We also investigated whether engagement in an NDRT during L3 

automation increased driver workload.   

Both physiological (ECG and EDA-based) metrics, and self-reported workload 

ratings indicated that the L2 drivers experienced a similar level of workload when 

monitoring the lead vehicle during automation, whether this was in the Short (0.5 s) or 

Long (1.5 s) THW condition. This result is in contrast to results from a manual driving 

simulator study by Liu et al. (2019), who found significantly higher subjective feedback 

of workload for short THW conditions (0.5 and 1 s), compared to longer THWs of 2, 

2.5 and 3 s. The absence of an effect of headway in the current study may be because 

the perceptual difference in the two levels of THW used was not prominent enough to 

affect drivers’ workload levels, especially when they were simply monitoring the driving 

environment. Therefore, future studies should compare workload experienced at 

different THWs by both manual and automated driving, to understand if the workload 

experienced by short THWs is directly related to drivers’ responsibility for the driving 

task.   

When automation was engaged, drivers in the L3 group (who were asked to 

conduct the Arrows task during automation) had significantly higher levels of workload, 

as illustrated by all the physiological metrics, when compared to the L2 group. This 

suggests that the workload associated with both the physical movement (hand/finger), 

and the cognitive elements of the Arrows task in the L3 group, was higher than that 

experienced by the simple monitoring of the drive by the L2 group, although the 

between participant nature of this study must also be taken into account, when 

considering the implications of these results. These results are in agreement with 

Müller et al. (2021), who found a significant increase in drivers’ workload levels, as 

reflected in their RMSSD values, when they were engaged in texting, using a touch-

screen phone, compared to monitoring the drive, during an automated driving 
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simulator study. Our participants’ self-reported workload ratings during this period of 

automation were found to be similar for the L2 and L3 groups. Hart & Wickens (1990) 

argue that such self-reported workload ratings reflect subjective impressions of 

workload, and may differ from the workload reflected by task performance, which may 

suggest that drivers underestimated their workload levels when performing the Arrows 

task. 

When comparing the physiological metrics observed in manual and automated 

driving in the L2 group, results were only significant for the ECG based EDR-metric, 

with an in increase in respiratory activity during manual driving, compared to 

automated driving. This is likely due to the sensitivity of the EDR-metric to the physical 

act of steering and pedal control, required in manual driving (Hidalgo-Muñoz et al., 

2019; Omlin et al., 2016). All other physiological metrics, and also the self-reported 

workload ratings, indicated that drivers had similar cognitive workload levels when 

monitoring the drive during automation, compared to when they were engaged in 

manual driving. This result is similar to that of Lohani et al. (2021), and Stapel et al. 

(2019), who observed that drivers exhibited similar levels of cognitive workload, as 

indicated by their RMSSD values (Lohani et al., 2021), or subjective ratings (Stapel et 

al., 2019), during L2 automation and manual driving. 

For the L3 group, drivers showed significantly higher workload, as indicated by 

all the physiological metrics, when they were engaged in the Arrows task during 

automated driving, compared to the workload levels observed in manual driving. While 

it is difficult to accurately separate the physical and cognitive demands of the Arrows 

task, it is assumed that the physical demand of responding to this simple touchscreen 

task was lower than that of manual driving. Therefore, higher levels of physiological 

activity during automation in the L3 group are more likely to be linked to the cognitive 

demand from the Arrows task. 

To understand the sensitivity of different physiological indices to physical and 

cognitive demands within the driving context, our study incorporated three distinct 

scenarios: manual driving, the monitoring task in L2, and conducting the Arrows task 

in L3, each of which had varying levels of physical and cognitive demands. In terms of 

the physical demand, we proposed that the monitoring task had the lowest physical 

demand, with manual driving likely being more physically demanding than the Arrows 
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task. Given the similar driving environment across all the scenarios, we argue that the 

monitoring task and manual driving likely had similar cognitive demands (Lohani et al., 

2021; Stapel et al., 2019), with the highest cognitive demand imposed by the Arrows 

task. The EDR was the only metric that picked up the changes in physical demand 

between monitoring and manual driving in the L2 group, along with the differences in 

cognitive demand between the Arrows task and manual driving in the L3 group, 

suggesting that it may be a better indicator of drivers’ overall (physical and cognitive) 

workload levels in this study. 

When considering how different Time Headways affected driver workload 

during takeovers across the L2 and the L3 groups, EDA-based nSCR/min were found 

to be marginally higher for the short THW condition, with the differences between the 

two THWs only approaching significance (p = .056). However, a significant difference 

was found for the self-reported ratings, with higher values for the Short THW condition. 

Therefore, although simple monitoring of a lead vehicle, which maintained a short 

headway during automation, did not seem to affect L2 drivers’ workload, an actual 

resumption of control while closely following a lead vehicle does seem to have 

increased drivers’ perceived and actual workload levels. In terms of how workload at 

the takeover was affected by the previous activity (i.e. engaging in the Arrows task for 

the L3 group, versus monitoring the drive in the L2 group), results were similar for both 

physiological and self-reported workload ratings. This might suggest that the takeover 

was extremely demanding in itself, masking the effect of any activities that took place 

before the takeover request. On the other hand, since this was a non-critical takeover 

scenario, and drivers had adequate time to stop engaging in the Arrows task before 

resuming control, any additional workload imposed by the Arrows task may have been 

eliminated by this stage. Further research into safe and acceptable Time Headways 

maintained by AV controllers is, therefore, warranted, to ensure safe transition of 

control to the driver when required, without placing additional demand on the driver. 

Our results share some similarities with the findings of Dogan et al. (2019), who 

observed an increase in driver workload, measured by subjective ratings, with 

increases in the criticality of takeovers, influenced by shorter takeover lead time, and 

presence of an obstacle in the driving lane. 
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To conclude, our results illustrate the added value of psychophysiological 

metrics in identifying driver workload, during different stages of an automated drive. 

Our findings suggest that a demanding NDRT such as the Arrows task, can 

significantly increase drivers’ workload levels, compared to just monitoring the drive, 

or manual driving. While the time headway conditions did not have an effect on drivers’ 

workload levels when monitoring the drive during automation, we observed that the 

presence of a lead vehicle maintaining a shorter time headway significantly increased 

drivers’ workload levels during the takeover, when they had to resume manual control 

of the vehicle. Although physiological signals are susceptible to motion artefacts, we 

were able to filter these out and objectively monitor drivers’ workload levels, in a fully 

motion-based simulator environment, which emulates motion experienced during real-

world driving. However, it is well known that physiological metrics are sensitive to a 

wide range of stimuli (Backs & Boucsein, 2000). To clearly interpret driver state using 

physiological metrics, especially in real-world scenarios, it is important to know the 

specific conditions and context which induced such physiological changes in drivers 

(Beggiato et al., 2019). Combining physiological metrics with camera-based sensors, 

and eye tracking data, can help to identify the cause of such physiological changes, 

and further improve driver state predictions. Therefore, further work is warranted to 

assess the real-time use of such physiological signals as part of future driver 

monitoring systems, to support drivers’ safe operation of automated vehicles. Finally, 

it should be noted that in our study, participants in the L3 group were always required 

to engage in an NDRT during automation. However, this would not necessarily be the 

case in real-world SAE L3 driving, where drivers could also choose to observe the 

driving environment. Our aim here, was to understand the impact of sustained eyes-

off-road behaviour on physiological trends, making a clear distinction between the L2 

and L3 groups. Future studies should investigate the impact of more naturalistic, self-

regulated behaviours in SAE L3 driving. 
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5 EFFECT OF DRIVERS’ ATTENTIONAL DEMAND ON 

MENTAL WORKLOAD, AT DIFFERENT STAGES OF 

AUTOMATION 

ABSTRACT: This Horizon2020-funded driving simulator-based study on 

automated driving investigated the effect of different car-following scenarios, and 

takeover situations, on drivers’ mental workload, as measured by eye tracking-based 

metrics of pupil diameter and self-reported workload ratings. This study incorporated 

a mixed design format, with 16 drivers recruited for the SAE Level 2 (L2; SAE 

International, 2021) automation group, who were asked to monitor the driving and road 

environment during automation, and 16 drivers in the Level 3 (L3) automation group, 

who engaged in a non-driving related task (NDRT) during automation. Drivers in each 

group undertook two experimental drives, lasting about 18 minutes each. To 

manipulate perceived workload, difficulty of the driving task was controlled by 

incorporating a lead vehicle which maintained either a Short (0.5 s) or Long (1.5 s) 

Time Headway (THW) condition during automated car-following (ACF). Each ACF 

session was followed by a subsequent request to takeover, which happened either in 

the presence or absence of a lead vehicle. Results from standard deviation of pupil 

diameter values indicated that drivers’ mental workload levels fluctuated significantly 

more when monitoring the drive during L2 ACF, compared to manual car-following 

(MCF). Additionally, we found that drivers’ mental workload, as indicated by their mean 

pupil diameter, increased steeply around takeovers, and was further exacerbated by 

the presence of a lead vehicle during the takeovers, especially in the Short THW 

condition, for both groups. Pupil diameter was found to be sensitive to subtle variations 

in mental workload, and closely resembled the trend seen in self-reported workload 

ratings. Further research is warranted to assess the feasibility of using eye tracking-

based metrics along with other physiological sensors, in real-world settings, to aid real-

time indications of drivers’ mental workload, for further improvement of future driver 

state monitoring systems. 

5.1 Introduction 

With the recent push towards more automated control of vehicles, human-

factors research into how this affects driver state has also gained momentum. 

However, we are still a long way from achieving full autonomy of the driving task, 

where drivers are not required to intervene at all. Especially for automation levels that 

require some form of driver intervention, such as SAE Level 2 (L2) or Level 3 (L3; SAE 

International, 2021), drivers are required to have appropriate “readiness levels” (Gold 
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et al., 2016; Zeeb et al., 2016) to safely resume control of the vehicle, when the system 

reaches limiting criteria, based on its Operational Design Domain, or when an 

unexpected event/fault causes the automated system to relinquish control to the driver 

(Mioch et al., 2017; Parasuraman et al., 2008). 

Inappropriate levels of driver workload (underload or overload) can influence 

drivers’ performance, safety, and readiness, especially when they have to resume 

manual control of an automated vehicle (Dogan et al., 2019; Parasuraman et al., 

2008). Mental workload is described as the relation between the mental resources 

demanded by a task/activity, and an individual’s information processing capacity, or 

the mental resources that are available to be supplied to the driver (de Waard, 1996; 

Parasuraman et al., 2008). Mental workload and task performance follow a complex 

and ‘inverted U-shape’ relationship (Bruggen, 2015; de Waard, 1996). Drivers have 

limited cognitive resources at their disposal, including a central resource pool that is 

used to perform all tasks (Kahneman, 1973), and additional multiple resources (such 

as visual or auditory), that are utilised, based on the task demand and modality.  

(Wickens, 1984). The size of this resource pool can vary in capacity, based on the 

task demand (Young & Stanton, 2002b). For example, exceptionally low workload 

levels (underload), resulting from low task demand, and/or the monotony imposed by 

automation, can reduce drivers’ vigilance, or ability to maintain sustained attention 

(Young & Stanton, 2002b). This also reduces drivers’ ability to detect or perceive 

risk/hazards, resulting in deteriorating performance of the driving task, if and when 

drivers are required to resume control of the vehicle (Heikoop et al., 2019). Similarly, 

very high workload (overload) and increased demand from a competing task, such as 

engaging in a demanding non-driving related task (NDRT), can also result in a 

performance decrement, because drivers’ physical and mental attention is taken away 

from the primary driving task (Gold et al., 2015; Zeeb et al., 2016). Therefore, in order 

to successfully resume control from automation and maintain appropriate readiness 

levels, drivers should maintain moderate workload and arousal levels, to reduce the 

likelihood of driving errors (Bruggen, 2015; de Waard, 1996). This paper focuses on 

understanding how drivers’ mental workload is influenced by a series of car-following 

situations in manual and automated driving, and takeover scenarios after automation, 

in a simulator-based study on highly automated driving (HAD), investigating whether 
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eye-based metrics can be used as an objective, non-invasive, indicator of drivers’ 

mental workload. 

Studies that have compared drivers’ mental workload between monitoring the 

drive during automation and manual driving, suggest that drivers had similar levels of 

mental workload, and did not experience automation-induced underload during a 

monitoring phase of the drive, compared to manual driving (Lohani et al., 2020; Stapel 

et al., 2019). However, these studies measured average workload over a ~30-minute 

time window, and relied on subjective or heart-rate based measures. Observation 

studies within the aviation domain that have used subjective ratings, and a detection 

response task as performance indicators of workload (Wiener, 1989; Sarter, Woods, 

& Billings, 1997), have suggested that automation results in an uneven distribution of 

mental workload, rather than simply reducing or increasing it. In a recent study on 

workload in unmanned aerial vehicle (UAV) operators, Boehm et al. (2021) observed 

that mental workload can vary rapidly (in a matter of seconds) as a function of 

fluctuating task demands, and affects the performance of the operator. However, there 

are limited studies that have focused on understanding the moment-to-moment or 

phasic changes in drivers’ mental workload (that is, rapid fluctuations in their workload 

levels) while monitoring the drive during automation, how this is different to fluctuations 

in mental workload during manual driving, and whether it affects driving performance 

during the resumption of control from automation.  

Another factor influencing drivers’ mental workload is car-following scenarios, 

where changes in the distance maintained from a lead vehicle can affect drivers’ 

attentional demands (Liu et al., 2019; Siebert & Wallis, 2019). Car-following refers to 

the longitudinal following of a lead vehicle by a driver or automated system, and is a 

pre-cursor to rear-end collisions, which constitutes over 31% of all collisions in the US 

(National Highway Traffic Safety Administration, 2009, p. 56). Time headway (THW), 

which is the elapsed time between the front of a lead vehicle passing the road, and 

the front of the ego vehicle passing the same point, has been used as a behavioural 

measure for understanding car-following (K. Vogel, 2003). Using a simulator study 

with manual driving, Liu et al. (2019), found that drivers reported significantly higher 

workload when the lead vehicle maintained shorter THWs of 1 s or less, compared to 

longer THWs of 1.5 s or more. Shorter THWs maintained by the ego vehicle have also 
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been associated with higher risk perception (Louw et al., 2020) and discomfort (Siebert 

& Wallis, 2019), which can also lead to an increase in drivers’ workload levels 

(Beggiato et al., 2019), during automated car-following scenarios. Therefore, to 

understand how drivers’ mental workload was affected by the THW of a lead vehicle 

during both automated (ACF) and manual car-following (MCF), as well as the takeover 

period, this study included a series of car-following scenarios with different THWs. 

Task switching within the automated driving context, for example, from 

monitoring the drive in a passive supervisory role, to resuming control of the vehicle in 

an active role as a driver, can increase driver workload (Monsell, 2003; Wickens et al., 

2015). When a takeover request is issued, drivers are required to refocus their 

attention to the driving environment, and pay more attention to the road and any 

potential hazards. This sudden change in attentional demand from simply monitoring 

the drive, to the attention and effort required to perform a successful takeover, can 

result in a physical and mental overload during takeovers, where the task demand 

exceeds the resources available to the driver.  

Accurate, objective, measurement of drivers’ mental workload levels can be 

challenging, due to the high inter-individual variability of how people perceive, and are 

affected by, different task demands. Nevertheless, from a performance and safety 

standpoint, it is crucial that we are able to objectively measure and understand 

variations in driver workload during HAD, as this can inform the automated system 

about the capabilities and limitations of the driver, especially if they have to resume 

control of the vehicle. Eventually, the vehicle can establish if the driver is indeed 

capable of taking back control of the vehicle, or if other measures, such as a Minimum 

Risk Manoeuvre (Thorn et al., 2018) should be considered to bring the car to a safe 

stop (Yu et al., 2021).  

Skin conductance and heart-based sensors have been used extensively within 

the driving context, as objective indicators of mental workload (Foy & Chapman, 2018; 

Radhakrishnan et al., 2022; Reimer & Mehler, 2011), stress (Healey & Picard, 2005) 

or discomfort (Beggiato et al., 2019; Radhakrishnan et al., 2020). However, as a stand-

alone measure, such skin conductance and heart-based measures are unable to 

identify the causal factor (such as stress, attention, workload, or arousal) that induce 

physiological changes, and the addition of other sensors, such as eye tracking, can 
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aid our understanding of driver state. Also, skin conductance and heart-based sensors 

are affected by physical load, and in tasks such as manual driving, which involves both 

physical and mental load, it would be challenging to distinguish between physical and 

mental workload, using skin conductance or heart-based sensors alone. Moreover, 

some heart-based sensors can be intrusive in nature, and require extended 

preparation, prior to a study. Dash-based eye-trackers can be both non-invasive and 

unobtrusive (Marquart et al., 2015; Merat et al., 2012; Tsai et al., 2007), and eye 

tracking-based metrics, such as pupil diameter, blink frequency and blink duration, 

have been used in the past as indicators of mental workload, where shorter blink 

durations lead to high blink frequency, and vice versa. The relationship between blink 

frequency and duration, and the demand from different tasks is not always clear. For 

example, visual tasks can reduce blink frequency (Veltman & Gaillard, 1996), whereas 

a non-visual cognitive task (n-back) can increase blink frequency (Recarte et al., 

2008). Given this ambiguity between blink duration and frequency and their 

relationship to workload in this paper, we only assessed pupil diameter, and its 

feasibility as an indicator of real-time driver workload. 

Studies have shown that pupil diameter generally increases with an increase in 

drivers’ mental load (Tsai et al., 2007). Mean pupil diameter has been used as an 

indicator of tonic dilation/constriction, with mean pupil diameter values increasing with 

an increase in mental load (Appel et al., 2018; Steinhauer et al., 2004), although these 

are generally 11% or lower, compared to baseline values (Batmaz & Öztürk, 2008; 

John A. Stern, 1997). However, one disadvantage of using mean pupil diameter is that 

it fails to capture the phasic fluctuations in pupil diameter, as the high and low 

fluctuations can cancel each other out, when taking the mean value of pupil diameter 

over the entire time series (Buettner, 2013). The standard deviation of pupil diameter 

has therefore been used as an indicator phasic fluctuations, with higher standard 

deviation of pupil diameter suggesting a higher fluctuation in drivers’ workload levels 

(Beatty, 1982; Buettner, 2013). Pupil diameter is also known to be affected by 

individual and environmental differences, with variations in pupil diameter due to 

changes in light intensity being significantly higher than variations due to mental 

workload (Mathôt, 2018). For example, pupil diameter can increase in darker 

conditions to accommodate more light into the eyes (pupil light response, Mathôt, 

2018; Spector, 1990). A shift in focus between near objects to those further away (pupil 
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near response or accommodation reflux), can also result in pupil dilation (Mathôt, 

2018), while a sudden change in the environment, for example, caused by sounds, 

movement or touch (orienting response), can also cause a small increase in 

magnitude or duration of pupil dilation, within 0.5 s to 1s of stimulus onset (Mathôt, 

2018).  

5.1.1 Current study 

This study was funded by the European Commission Horizon 2020 program 

under the L3Pilot project, grant agreement number 723051, and investigated how 

drivers’ mental workload, as measured by pupil diameter changes, varied during 

different stages of manual and automated driving. This study is also discussed in 

Radhakrishnan et al. (2022)3, where the authors investigated the effect of driver 

workload on heart-rate and skin conductance-based physiological signals. Using a 

mixed design, drivers were asked to monitor the drive during automation (L2) or 

engage in an NDRT (L3). Driver workload was also manipulated using two THW 

conditions, in a series of car-following scenarios (Short and Long), and two different 

types of takeovers, that happened either in the presence or absence of a lead vehicle 

(Lead/No Lead). To understand how drivers’ mental workload varied during the 

monitoring phase, we compared drivers’ mental workload levels during automated car-

following (ACF) and manual car-following (MCF). To understand how drivers’ mental 

workload varied at different points during the transition of control from automation to 

manual driving, we analysed drivers’ mental workload levels before (Pre-Takeover), 

during (Takeover) and after resumption of control (Post-Takeover). We also 

investigated whether the presence of a lead vehicle, or shorter headway conditions, 

increased their mental workload during takeovers. Additionally, we investigated 

whether prior engagement in an NDRT (L3), as opposed to monitoring the drive during 

automation (L2), affected drivers’ mental workload during the takeover. Eye tracking-

based measure of pupil diameter was used as an objective measure of drivers’ mental 

workload, and drivers were also asked to report their perceived workload using a 

 

3 The work mentioned here represents Chapter 4 of this thesis. 
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subjective workload ratings scale (1-10, with 10 being extremely high workload). The 

research questions addressed by this paper were: 

RQ 1.  Does drivers’ mental workload, as indicated by pupil diameter and self-

reported workload ratings, vary between automated car-following (ACF) and 

manual car-following (MCF), in the L2 group (ACF vs MCF)? 

RQ 2.  Is drivers’ mental workload during the takeover different for the different 

takeover windows in the L2 group (Pre-Takeover, Takeover, and Post-Takeover)? 

RQ 3.  Is drivers’ mental workload during the takeover affected by the THWs 

maintained by the automated controller (Short vs Long)? 

RQ 4.  Is drivers’ mental workload during the takeover affected by the presence of a 

lead vehicle during the takeover (Lead vs No Lead)? 

RQ 5.  Is drivers’ mental workload during the takeover affected by prior engagement 

in an NDRT during automation (L2 vs L3)?  

 

5.2 Materials and Methods 

5.2.1 Participants 

For this driving simulator study, a total of 32 participants were recruited, with 16 

participants each in the L2 and L3 groups. However, the data from 3 participants from 

each group were discarded due to either missing data, or because they did not follow 

the instructions of the study. The remaining 13 participants (4 females, 9 males) in the 

L2 group had a mean age of 42 ± 17 years, with a mean driving experience of 22 ± 16 

years. For the L3 group, the 13 participants (3 females, 11 males) had a mean age of 

33 ± 8 years, with a mean driving experience of 14 ± 8 years. In accordance with the 

rules and regulations of the University of Leeds ethics committee (LTTRAN-054), all 

participants gave prior consent to take part in the study. Additionally, they were 

compensated with £25 upon completion of the experiment. 

5.2.2 Apparatus 

The University of Leeds Driving Simulator (UoLDS), which is a full motion-

based driving simulator, was used to conduct the experiment. UoLDS consists of a 4m 

diameter spherical projection dome, which has a 300⁰ field of view projection system, 

and also includes a Jaguar S-type cab, housed within the dome. The electrical motion 
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system for the simulator has 8 degrees of freedom, and consists of a 500 mm stroke-

length hexapod motion platform, carrying the 2.5 T payload of the dome and vehicle 

cab combination, and allowing movement in all six orthogonal degrees of freedom of 

the Cartesian inertial frame. The electrical motion platform is mounted on a railed 

gantry, which further allows 5m of effective motion in surge and sway. Drivers’ eye 

tracking data was recorded using Seeing Machines FOVIO eye tracking hardware 

system and Seeing Machines PC-DMS software package. 

When engaged, the Automated Driving System (ADS) used in this study was 

designed to control both lateral and longitudinal aspects of the driving task, driving at 

a constant speed of 40 mph. When the control of the vehicle was with the driver during 

manual driving, and the ADS was inactive, the HMI interface on the dashboard 

displayed a red steering icon (Figure 1a), When the ADS was activated, the HMI 

interface displayed a green steering icon (Figure 1b). 

 

Figure 5.1. HMI Interface on the dashboard: (a) when automation was disengaged; 

(b) Automation was engaged. 

5.2.3 Study design  

This study has already been presented in Radhakrishnan et al. (2022). A mixed 

design was incorporated in this study, with between-participant factor of Level of 

Automation (L2, L3) and a within-participant factor of Time Headway (Short, Long), 

Drive Mode (ACF, MCF) and Lead Vehicle (Lead, No Lead). With the exception of 

Drive Mode, all the other factors were counterbalanced.  

Each participant undertook a ~10-minute practice drive, to become familiar with 

the simulator environment, and the driving controls. After the practice drive, each 
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participant experienced two experimental drives, with a 5-minute break in between. All 

the experimental drives were performed in a single-carriageway urban environment, 

with a 40 mph speed limit, and low-density oncoming traffic. The first experimental 

drive consisted of free driving for ~2 minutes, following which a lead vehicle joined the 

driving lane. The participants were instructed to follow the lead vehicle as they 

normally would in such a scenario, without overtaking, for about 5 minutes. This was 

termed the manual baseline drive, and was used to collect drivers’ baseline car-

following behaviour, prior to any experimental manipulations. With the exception of the 

manual baseline drive, which was only present in the first experimental drive, the two 

experimental drives were similar. Each experimental drive consisted of 4 segments in 

the following order: Automated drive 1, Manual drive 1, Automated drive 2, and Manual 

drive 2 (Figure 4.2). 

 

Figure 5.2. Schematic representation of the experimental drives (adapted from 

Radhakrishnan et al., 2022). 

At the end of the manual baseline drive, the lead vehicle exited the driving lane 

at an intersection, following which drivers experienced free driving for ~1 minute. At 

the end of the free drive, participants were prompted with an auditory handover 

message, requesting them to engage the ADS: “Attention, engage automation”. 

Drivers engaged the ADS using a button on the steering wheel. After about 1 minute 

into the automated drive, a lead vehicle joined the driving lane, starting what we termed 

the automated car-following (ACF) segment. During the ACF segment, participants 

were exposed to one of two THW conditions (0.5 s for Short THW and 1.5 s for Long 

THW), in a counterbalanced order across the two experimental drives. 
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The end of an ACF segment was followed by an auditory takeover request: 

“Attention, get ready to takeover”. The takeover request was issued when the ADS 

reached a system limitation criterion, linked to faded lane markings on the road. The 

takeover request was followed by a short acoustic tone (1000 Hz), lasting 0.2 s, with 

increasing frequency (by a factor of 1.2 after each cycle), until the driver resumed 

manual control. To disengage the ADS, drivers pulled the left-hand indicator stalk, or 

rotated the steering wheel by more than 2o, or pressed the accelerator or brake pedals. 

There were two types of takeover situations in this study, one with a lead vehicle 

present during the takeover (Lead), and the other without a lead vehicle when the 

takeover request was issued (No Lead). Each of the two experimental drives included 

the two lead vehicle conditions, with participants experiencing them after automation 

in both drives. The order in which participants experienced each of the two takeover 

situations was counterbalanced. In the Lead condition, the lead vehicle remained in 

the driving lane, when the takeover request was issued, and the participants took 

control of the vehicle. In the No Lead condition, the lead vehicle exited the driving lane 

at an intersection, about 5 s before the takeover request was given. About 10 s after 

the participants took control of the vehicle, a lead vehicle joined the driving lane, 

starting the manual car-following segment (MCF). Each experimental drive included 

an ACF, a Takeover and an MCF, repeated twice, in that order.  

In this study, the Level of Automation determined whether the driver had to 

monitor the road during automated driving (L2), or could engage in an NDRT (L3). The 

Arrows task (Jamson & Merat, 2005) was used as the NDRT in this study. Participants 

were required to select an upward facing arrow, from a 4x4 grid of arrows, as shown 

in Figure 5.3a. The arrows were displayed on a touchscreen, placed near the centre 

console and the gearshift, as shown in Figure 5.3b. The screen also displayed 

participants’ cumulative score (each correct selection awarded them with one point) 

as well as a “score to beat”. To ensure that participants fully engaged in the Arrows 

Task, the participant briefing sheet offered an additional £5 reward to anyone who was 

able to beat the “score to beat”. However, for ethical reasons, every participant was 

paid this extra £5. Drivers in the L2 group were instructed to monitor the drive, when 

the ADS was engaged, with their hands off the steering wheel and foot off the pedals. 
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Figure 5.3. (a) A representation of the arrows task with the upward facing arrow circled 

in red; (b) A participant engaging in arrows task in L3 group during automation.  

5.2.4 Self-reported workload ratings 

In addition to eye tracking based metrics, we collected participants’ subjective 

workload ratings, with each participant asked to rate their level of perceived workload, 

13 times across the two drives (7 times in the first experimental drive, including once 

during the manual baseline drive, and 6 times in the second experimental drive). When 

prompted, participants rated their workload verbally, on a scale of 1-10, with 10 

corresponding to the highest workload. 

5.2.5 Procedure 

Participants were briefed about the study upon arrival, after which they were 

requested to sign the consent form, and ask any questions they had about the study. 

After they signed the consent form, they entered the driving simulator for the practice 

drive. The practice drive included automated and manual driving, as well as a takeover 

situation. Participants were shown how to control the vehicle, engage and disengage 

the ADS, and provided information about the HMI. Participants in the L3 group were 

also given an opportunity to practise the Arrows Task. The practice drive was followed 

by the two experimental drives, lasting about 18 minutes each.  

During the experimental drives, whenever participants were engaged in manual 

driving, they were advised to adhere to the speed limit of 40 mph, and asked to avoid 

overtaking the lead vehicle. A ~ 10-minute break followed each of the experimental 

drives, allowing participants to answer a set of questions about the experimental drive, 

including Arnett’s Sensation Seeking Questionnaire (Arnett, 1994), traffic locus of 

control (Özkan & Lajunen, 2005) and the Driver Style Questionnaire (French et al., 
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1993), see Louw et al. (2020). The scope of the questionnaire data is beyond the 

objectives of this paper, and as such, were not included in our analysis. 

5.2.6 Data analysis 

The eye tracking metrics were pre-processed using Seeing Machines’ PC-DMS 

system, and all the data segmentation and plotting was done using MATLAB R2016a. 

Mean values were used to investigate drivers’ overall mental workload levels as 

depicted by eye-based metrics, and standard deviations were used to show the 

variation or spread in mental workload, for each participant, across ~4-minute time 

windows of ACF and MCF. The time window for ACF was considered as the time from 

which the lead vehicle entered the driving lane after the drivers engaged automation, 

until the takeover request. The MCF time window started 10 s after taking over manual 

control of the vehicle, until ADS was re-engaged. As stated earlier, there were two 

ACF segments and two MCF segments, in each experimental drive (see Figure 4.2). 

A set of t-tests on drivers’ mean pupil diameter, and self-reported workload ratings, 

did not reveal any statistically significant differences between the two ACF and the two 

MCF segments, within each of the experimental drives. Therefore, the data for the two 

similar ACF and MCF segments were aggregated to a single representation, for both 

eye-metrics and self-reported ratings of workload, in the L2 group. 

To analyse how drivers’ mental workload varied around the takeover, we 

segmented the eye-metrics into 3 distinct time windows: Pre-Takeover, Takeover and 

Post-Takeover (Figure 4.4). Only drivers in the L2 group were considered in this 

analysis, as drivers in the L3 group were engaged in the Arrows tasks, and their eyes 

were not captured by the eye tracker. The Pre-Takeover window was the time window 

from 10s before the takeover request, until the takeover request was given. Takeover 

was the time window from when the takeover request was given, until the driver 

resumed manual control of the vehicle. This Takeover time window varied for each 

participant. Post-Takeover was the time window from when the driver resumed manual 

control of the vehicle, until 10s after they resumed manual control. This time window 

was chosen because previous studies have shown that the peak in driving 

performance decrement was observed within 10 s after takeover of control (Merat et 

al., 2014). 
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Figure 5.4. Schematic depicting different takeover windows. 

To understand how drivers’ mental workload levels during takeovers were 

affected by the presence of a lead vehicle (RQ 4), the THW maintained by this lead 

vehicle (RQ 3), and engagement in an NDRT during automation (RQ 5), we 

aggregated the eye-metrics across the Takeover and Post-Takeover windows, into a 

single window labelled Takeover (overall) window. This analysis was done across 

drivers in the L2 and L3 groups, as drivers in the L3 group redirected their eyes onto 

the road environment, which was within the field of view of the eye-tracker, upon 

hearing the takeover request. The time from which a takeover request was given, until 

10 s after they resumed manual control of the vehicle was considered as the overall 

takeover window (Figure 4.4, yellow segment). Since pupil diameter has a rapid signal 

decay time, and is sensitive to instantaneous fluctuations in drivers’ mental workload 

(Buettner, 2013; Mathôt, 2018), it is less likely to be influenced by previous workload 

inducing stimuli. Therefore, during the two No Lead takeover conditions in this study, 

presence of a lead vehicle in either Short or Long THW condition during automation, 

would not have influenced drivers’ mean pupil diameter values at a later stage during 

the takeover. Additionally, paired-sample t-tests between the two No Lead takeover 

conditions did not reveal any significant differences, for either mean pupil diameter or 

self-reported workload ratings, across the L2 and the L3 groups. Hence, the data for 

the two No Lead conditions were combined to form a single representation, and 

labelled Infinite THW.  

We computed both mean and standard deviation values of pupil diameter, 

during ACF and MCF segments. However, only mean values were used when 
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comparing performance in the takeover segments. This was because the ACF and 

MCF segments were comparatively longer (~ 4 minute) compared to the relatively 

short Takeover windows (maximum window width of ~ 15 s), and therefore, any 

fluctuations (high and low) in phasic pupil diameter values would have cancelled each 

other out, when taking only mean values. Standard deviation of pupil diameter is 

indicative of fluctuations in pupil diameter, and therefore, fluctuations in drivers’ mental 

workload levels (Buettner, 2013). 

5.2.7 Statistical analysis 

IBM SPSS Statistics 26 was used to conduct all the statistical tests in this study. 

Shapiro Wilk’s test revealed that the majority (> 90%) of the group-level estimates 

were normally distributed for each of the dependent variables used, for every ANOVA 

test we conducted. For statistical significance, an α-value of 0.05 was used as a 

limiting criterion, and partial eta-squared was computed as an effect size statistic. 

Mauchly’s test was used to test the sphericity of data. In cases where the data was 

not spherical, the degrees of freedom were corrected using Greenhouse-Geisser 

corrections. Levene’s test was used to test whether the data was homogenous. Pair-

wise comparisons were used to determine differences between the different factors.  

Only 50% of the data from self-reported workload ratings were normally 

distributed. However, the skewness and kurtosis of the non-normally distributed data 

were within the acceptable range +/- 2 (George & Mallery, 2010). The repeated 

measures ANOVA was robust enough to accommodate this violation of normality and 

homogeneity, with only a small effect on Type I error (Blanca et al., 2017; Pituch & 

Stevens, 2016). 

 

5.3 Results 

5.3.1 The effect of Drive Mode on driver workload in the L2 group (RQ 1) 

To understand how drivers’ mental workload during monitoring the drive in 

automated car-following (ACF) compared to manual car-following (MCF), we a 

performed one-way ANOVA, with within-participant factor of Drive Mode (ACF, MCF), 

on drivers’ mean pupil diameter, standard deviation of pupil diameter, and self-
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reported workload ratings, for the L2 group. The use of Time Headway (THW) as a 

factor was excluded in these analyses, because drivers controlled their own THW in 

the MCF condition, as opposed to the fixed values imposed during ACF. Additionally, 

paired sample t-tests revealed no significant differences in pupil diameter values, or 

self-reported workload ratings, across the Short and Long THW conditions, during 

ACF. Therefore, we combined the values for the Short and Long THW conditions into 

a single representation, for both ACF and MCF. Since the ACF and MCF segments 

were about 4 minutes in length, we analysed the mean and standard deviation of pupil 

diameter, to understand if there were any overall differences and/or variations in 

mental workload within the ~ 4-minute segment. 

Results showed no significant main effect of Drive Mode on the mean pupil 

diameter values (Table 5.1). This may be because the time window used for analysis 

of data was relatively long (~4 minutes), such that the phasic fluctuations in pupil 

diameter might have cancelled out when using the mean values for this metric. 

Previous research has shown that the standard deviation of pupil diameter provides a 

better indication of the phasic and dynamic aspect of pupil dilation, and is therefore a 

better measure for highlighting fluctuations in mental workload (Buettner, 2013). As 

seen in Table 5.1, our results showed a significant main effect of Drive Mode on the 

standard deviation of drivers’ pupil diameter, with drivers showing significantly higher 

standard deviation of pupil diameter during ACF, compared to MCF (Figure 5.5, 

Figure 5.6).  
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Figure 5.5. Effect of Drive Mode on standard deviation of pupil diameter, in the L2 

group. ***p≤ .001 

 

 

Figure 5.6. Variation of drivers’ pupil diameters, during ACF and MCF, in the L2 group. 

The darker blue and red lines denote mean values across all drivers in the L2 

group, and the lighter blue and pink regions denote the 95% confidence interval 

bands. Note that the MCF window used in the analysis only starts 10 s after 

drivers resumed manual control (~ 15 s after takeover request is issued), to filter 

out any variations due to the takeover. 
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Table 5.1. Effect of Drive Mode on drivers’ pupil diameter, and self-reported workload 

ratings, in the L2 group. 

Predictor df1 df2 F p ηp
2 

1. Pupil diameter (mean) 1 12 3.01 .108 .200 

2. Pupil diameter (standard 

deviation) 

1 12 59.09 <.001 .831 

3. Self-reported workload ratings 1 9 .421 .533 .045 

 

To further understand why pupil diameter values fluctuated more during ACF, 

compared to MCF, we visualised drivers’ raw gaze data during ACF and MCF, across 

all participants and all drives, in the L2 group, using a 3D gaze contour plot. Results 

from the gaze contour plot suggest that there was a larger spread in gaze, across the 

driving scene, with drivers looking around more, when monitoring the drive during ACF 

in the L2 group (Figure 5.7a). However, when they were in control of the vehicle during 

MCF, their gaze was mostly concentrated around the centre of the driving scene, or 

approximately around the road centre area, suggesting they were more attentive to 

the driving task while being engaged in Manual driving (Figure 5.7b).  

 

Figure 5.7. 3D gaze contour plots across (a) ACF and (b) MCF, in the L2 group. 

Colour-bar scale indicates number of gaze points in a particular bin, with the size 

of each square bin used to create the contour grid being 0.285⁰. 

Results from drivers’ self-reported workload ratings did not reveal any 

significant effect of Drive mode, suggesting that drivers experienced similar levels of 
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perceived workload, across both ACF and MCF, in the L2 group. However, there was 

only one workload rating for the entire duration of ACF or MCF, and hence, we could 

not compare the moment-to-moment changes in perceived workload, during the whole 

ACF or MCF period, using self-reported workload ratings. 

5.3.2 Changes in workload during different stages of a takeover in the 

L2 group (RQ 2) 

To understand how drivers’ mental workload varied around the actual takeovers 

in the L2 group, and whether the presence of a lead vehicle affected this workload, we 

performed two 3x2 repeated measures ANOVAs with within-participant factors of 

Takeover Window (Pre-Takeover, Takeover, Post-Takeover) and Lead Vehicle (No 

Lead, Lead), on drivers’ mean pupil diameter. A separate ANOVA was conducted for 

the Short and Long THW conditions, as adding THW as a factor would have been 

inaccurate because drivers did not experience any THW conditions, during the No 

Lead condition. Self-reported workload ratings were not captured separately during 

the three Takeover Windows considered in this analysis, and therefore, not included 

in the analysis.  

There was a main effect of Takeover Window on drivers’ mean pupil diameter 

in both the Short and Long THW conditions (Table 5.2). Given each of these takeover 

windows were under 10s, standard deviation of pupil diameter was not analysed here, 

as mean pupil diameter was sufficient to reflect drivers’ workload levels during such 

shorter time windows. Post-hoc tests revealed that drivers’ mean pupil diameter 

increased significantly from the Pre-Takeover time window to the Takeover time 

window, as well as from the Pre-Takeover time window to the Post-Takeover time 

window, for both the Short and Long THW conditions (Figure 5.8a and Figure 8b). 

Additionally, the mean pupil diameter increased significantly from the Takeover time 

window to the Post-Takeover time window, for the Short THW condition. Taken 

together, our results suggest that drivers’ mental workload increased during the 

takeover event, increasing from the Pre-Takeover time window to the Post-Takeover 

time window, across both the Short and Long THW conditions. There were no other 

main effects or interaction effects. 
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Figure 5.8. Effect of Takeover Window on pupil diameter values during (a) Short and 

(b) Long THW conditions. *p≤ .05, **p≤ .01, ***p≤ .001 

 

Table 5.2. Effect of Takeover Window on mean pupil diameter values, during Short 

and Long THW conditions, in the L2 group. 

Predictor df1 df2 F p ηp
2 

Effect of Takeover Window 

1. Mean pupil diameter (Short 

THW) 

2 24 26.95 <.001 .692 

2. Mean pupil diameter (Long 

THW) 

1 12 35.78 .015 .386 

Effect of Lead Vehicle 

1. Mean pupil diameter (Short 

THW) 

1 12 .064 .805 .005 

2. Mean pupil diameter (Long 

THW) 

1 12 1.365 .265 .102 
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5.3.3 Effect of Time Headway, Lead Vehicle and Level of Automation on 

driver workload during takeovers (RQ 3, RQ4 and RQ 5) 

To understand how drivers’ mental workload was affected by the presence of a 

lead vehicle during the takeover, and its Time Headway, and whether their workload 

level during the takeover was affected by their prior engagement in an NDRT during 

automation, we performed a 3x2 mixed ANOVA on drivers’ mean pupil diameter and 

self-reported workload ratings, using a within-participant factor of Time Headway 

(Short, Long, Infinite) and a between-participant factor of Level of Automation (L2, L3). 

As mentioned in section 5.2.6, the takeover window for this analysis is considered as 

the time from which the takeover request was given, to 10 s after they resumed manual 

control of the vehicle. For the Short and Long THW conditions, only the takeovers 

where a lead vehicle was present during the takeover, in either the Short or Long THW 

condition, was included. Additionally, the two No Lead conditions were consolidated 

to a single presentation labelled Infinite THW, as explained in section 5.2.6. We could 

not analyse the L3 drivers’ eye-metrics before the takeover request was issued (such 

as the Pre-Takeover window seen in section 5.3.2) as they were engaged in the 

Arrows task, and, hence their eyes were occluded from the field of view of the fixed-

base eye tracker used in this study. 

Results showed a main effect of the Time Headway condition on drivers’ mean 

pupil diameter values, and self-reported workload ratings (Table 5.3, Figure 5.9). 

Post-hoc tests revealed that drivers exhibited significantly higher mental workload 

levels in the Short THW condition, compared to when there was no Lead vehicle 

present during the takeover (Infinite THW), as revealed by both mean pupil diameter 

values (p <.001, Figure 5.9a) and self-reported workload ratings (p =.007, Figure 

5.9b). Although statistically insignificant, drivers had higher mean pupil diameter 

values during the takeover in the Short THW condition, compared to the Long THW 

condition (p =.098). Drivers also reported higher workload levels during takeover in 

the Short THW condition, compared to the Long THW condition (p =.033, Figure 5.9b). 

There were no other main effects or interaction effects on drivers’ mean pupil diameter 

values, or self-reported workload ratings. 
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Figure 5.9. Effect of Time Headway on driver workload, as reflected in (a) mean pupil 

diameter and (b) self-reported workload ratings, with drivers’ self-reported 

workload increasing from 1 to 10. *p≤ .05, **p≤ .01, ***p≤ .001 

Table 5.3. Effect of Time Headway (including No Lead condition represented as 

Infinite THW) and Level of Automation on drivers’ mean pupil diameter values 

and self-reported workload ratings, during takeovers. 

Predictor df1 df2 F p ηp
2 

Effect of Time Headway 

1. Mean pupil diameter  2 48 3.29 .046 .120 

2. Self-reported workload ratings 2 36 4.02 .011 .220 

Effect of Level of Automation 

1. Mean pupil diameter  1 24 1.92 .179 .074 

2. Self-reported workload ratings 1 18 .01 .937 .0004 

 



 

165 

 

5.4 Discussion and Conclusions 

This study investigated changes in drivers’ mental workload during a series of 

car-following situations in manual and automated driving, and examined how factors 

such as presence of a lead vehicle during the takeover, the Time Headway (THW) 

maintained by the lead vehicle, and prior engagement in an NDRT during automation 

affected drivers’ mental workload. Drivers’ self-reported levels of workload, and eye 

tracking based metrics, such as mean pupil diameter and standard deviation of pupil 

diameter, were compared at different stages of automated and manual driving.  

Paired-sampled t-tests revealed no significant differences in mean pupil 

diameter values or self-reported workload ratings, due to the different THW conditions, 

during the automated car-following (ACF).  It is likely that the perceptual difference 

between the two THW conditions used in this study, was not prominent enough to 

affect drivers’ mental workload levels, especially when they were not in control of the 

driving task. Additionally, drivers’ mean pupil diameter values, and self-reported 

workload ratings, indicated that they experienced similar levels of overall mental 

workload across the entire automated drive, (which last around 4 minutes), when the 

L2 drivers were simply monitoring the driving environment during ACF, compared to 

manual car-following (MCF). This is consistent with results from past studies which 

report similar levels of mental workload, as indicated by physiological data (Lohani et 

al., 2021; Radhakrishnan et al., 2022), or subjective ratings (Stapel et al., 2019). 

However, a comparison of the standard deviation of pupil diameter values in 

the L2 group suggests that drivers had a higher moment to moment variation in pupil 

diameter, when monitoring the drive during ACF, compared to manual driving during 

MCF. Such fluctuations in pupil diameter could be attributed to a host of factors, such 

as variations in light intensity (Ellis, 1981), pupil near response, that is, the pupillary 

response when the pupil constricts or dilates to focus on an object (Mathôt, 2018), a 

startle response (Mathôt, 2018) or variations in mental workload (Buettner, 2013; 

Kahneman & Beatty, 1966). To understand this result further, we compared drivers’ 

gaze patterns during the monitoring task (in ACF) and manual driving (MCF). 3D Gaze 

contour plots revealed that drivers focused their attention more towards the road-

centre area when they were in manual control of the vehicle, as would be expected. 

However, in agreement with previous studies in our lab (Louw, Madigan, et al., 2017; 
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Louw, Markkula, et al., 2017), and that of others (Noble et al., 2021; Schartmüller et 

al., 2021; Yang et al., 2022), a higher spread in gaze was observed during automation, 

with drivers looking away from the road centre. The higher spread in gaze during 

automation could have been caused by drivers looking around the driving scene more 

and shifting and refocusing their attention between objects near and further away in 

their field of view, resulting in pupil near response, also known as accommodation 

reflex, and explains the higher phasic fluctuations seen in our study (Fincham, 1951; 

Mathôt, 2018). Since the ACF and MCF driving environments in our study were quite 

similar in terms of lighting conditions, it is unlikely that variations in pupil diameter were 

due to startle response or variations in light intensity. At present, it is not possible to 

establish whether these higher fluctuations in pupil diameter during automation were 

due to variations in mental workload, or the movement of gaze to different regions, or 

both. Our results are in agreement with findings of Wiener (1989), who showed uneven 

distributions of attention for airline pilots during automation, as indicated by subjective 

ratings, and performance of the detection response task. This uneven distribution of 

drivers’ mental workload during automation (e.g. extreme underload or overload) can 

be detrimental for a safe takeover (Merat et al., 2014), and highlights the value of 

accurate driver monitoring systems that can assist drivers with keeping the right level 

of attention for supervision of the automated system, as is requested by the SAE 

guidelines (SAE International, 2021). 

We also analysed the L2 drivers’ mental workload, as indicated by pupil 

diameter and subjective ratings, across the three takeover windows: Pre-Takeover, 

Takeover and Post-Takeover. Mean pupil diameter values steadily increased from the 

Pre-Takeover window to the Post-Takeover window. This clear increase in pupil 

diameter at each of the three stages, from monitoring the drive, to hearing the takeover 

request, to taking over shows how drivers’ vigilance and attention levels, and likely 

their workload, is affected as they are asked to come back into the driving loop (Merat 

et al., 2018), and take on the responsibility of the driving task. Similar results have 

been observed for skin conductance responses, when workload was found to steadily 

increase upon the issuance of a takeover request (Du et al., 2020). In our study, 

drivers’ workload levels, as reflected by their pupil diameter values, peaked at around 

15 s after they resumed manual control of the vehicle (see Figure 5.6). This is in line 

with driving simulator studies which show a peak in performance decrement around 
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15 seconds after a resumption of control from automated driving (Merat et al., 2014), 

after which the driver is able to stabilise the vehicle (Bueno et al., 2016).  

In terms of differences in workload experienced between the two groups, 

engagement in the Arrows tasks did not seem to affect drivers’ workload levels when 

they resumed control from automation, with similar pupil diameter values seen for the 

L2 and L3 group at the Pre-takeover stage. Since this study incorporated a non-critical 

takeover scenario, it is likely that drivers had adequate time to stop engaging in the 

Arrows task before resuming control of the vehicle, thereby eliminating the effect of 

any additional workload demands placed by the Arrows task on drivers in the L3 group, 

by the time they resumed manual control. Our results also indicated the presence of 

lead vehicle, especially at shorter THWs, significantly increased driver workload during 

the takeover, when compared to longer THWs, or takeovers without a lead vehicle 

present (Infinite THW). We did not observe any differences in drivers’ mental workload, 

as reflected by mean pupil diameter values and self-reported workload ratings, 

between takeovers with a lead vehicle in the Long THW condition and takeovers 

without a lead vehicle, which suggests that the longer (1.5 s) THW conditions felt more 

comfortable for drivers during these non-critical takeover scenarios. We have found a 

similar pattern for drivers’ skin conductance responses (SCR), which are known to be 

sensitive to stress and workload in driving (Du et al., 2020; Foy & Chapman, 2018; 

Mehler et al., 2009), with higher SCRs observed during takeovers that were preceded 

by a lead vehicle maintaining a short THW (0.5 s), compared to those with longer 

THWs (1.5 s) (see Radhakrishnan et al., 2022). Overall, these results suggest that 

drivers’ physiological response and self-reported workload ratings are sensitive to the 

demands of a takeover after automated driving, and especially prior to more 

(potentially) critical scenarios. 

To conclude, our findings indicate that pupil diameter can be used as an 

objective indicator of drivers’ mental workload levels, as well as to indicate phasic 

variations in workload. One of the potential limitations of this study is that it was 

conducted in a controlled driving simulator environment, where the driving scene and 

its brightness levels were relatively similar throughout the drive. Further research is 

warranted to understand how pupil diameter is affected by different stages of 

automated driving in more real world settings. In this study, we were unable to use the 
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eye tracker to objectively capture drivers’ mental workload when they were engaged 

in the Arrows task during automation (L3 group), since drivers were looking away from 

the eye tracking cameras ( see Figure 5.3b).  Since the chances of engaging in other 

activities will increase with higher levels of automation, it is important that drivers’ 

workload levels and attention are monitored during automation, because, according to 

guidelines from SAE (SAE International, 2021), Level 3 driving still requires drivers to 

resume control from automation “when required”. Therefore, combining eye tracking 

measures with physiological sensors, can provide a more comprehensive, accurate 

and continuous prediction of drivers’ mental workload and attention levels, even when 

drivers’ eyes are occluded from the eye tracking sensors. Further research is required 

to understand the value of these metrics, and their fusion, for a wider range of takeover 

scenarios, to help with the creation of more reliable driver monitoring systems.  
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6 FINAL DISCUSSION AND CONCLUSION 

This research was conducted on an EPSRC funded studentship, with iCASE 

partner Seeing Machines Inc, Canberra, Australia. The overall objective of this project 

was to evaluate the feasibility of using different physiological sensors, such as EDA, 

ECG and eye tracking, for understanding and measuring driver states during vehicle 

automation.  

The work carried out in this research involved studies conducted as part of other 

larger projects, such as the Innovate UK-funded HumanDrive project, and the 

Horizon2020-funded L3Pilot project. The main aim of the HumanDrive project was to 

develop human-like autonomous driving systems that can drive 200+ miles across the 

UK, in live traffic and in natural conditions, using artificial intelligence and machine 

learning. As part of this project, the study reported in Chapter 3, investigated factors 

affecting driving comfort, across a wide range of conditions, in automated driving. The 

EU-funded L3Pilot project focused on testing the viability of SAE L3 automated driving, 

as a safe and efficient means of transportation on public roads. As part of this project, 

and in partnership with one of the consortium partners, Toyota Motor Europe, the study 

reported in Chapters 4 and 5 investigated how driver workload is affected by a host of 

factors, during different stages of automated driving, especially around car-following 

scenarios.   

The main aim of this thesis was to understand and measure drivers’ 

psychological states such as discomfort and workload, using physiological signals, to 

better understand how automation affects these states, at different stages of the drive. 

For example, I investigated how different road environments and automated vehicle 

driving styles can affect driver discomfort. Experiencing high levels of discomfort 

during automation can negatively impact drivers’ trust and wider acceptance of 

automation features. To measure the driver states of comfort and workload objectively, 

and in real-time, physiological metrics derived from electrocardiogram (ECG), 

electrodermal activity (EDA), and eye tracking, were used. ECG, EDA and eye tracking 

signals were selected due to the minimally-intrusive nature of these metrics, and prior 

work suggesting their effective usage as indicators of comfort and workload in manual 

driving.  
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This thesis focused on understanding and evaluating the effects of automation 

on the human driver, and not on the technology underlying such automated systems. 

Neither was the focus on validating human-machine interfaces and their effects on 

driver state. The design of the experiments were, on the one hand, guided by 

answering some of the practical questions in the literature regarding how certain 

situations and scenarios affect driver state, and on the other hand, measuring such 

driver states objectively, in a controlled simulator environment. Given the nature of 

physiological signals, and its many-to-one relationship with psychological states (for 

example, an increase in EDA can be indicative of stress, arousal, high workload, or, 

discomfort), the experiments were controlled for other confounding factors such as 

caffeine intake or physical exercise, and as such, may not reflect precise real-world 

use cases. However, the results obtained in our studies have allowed us to draw 

practical conclusions regarding how different physiological metrics, especially when 

combined, can be used to objectively identify, and distinguish between, different driver 

states, in real-world conditions. This can help future automated vehicles to better 

understand the capabilities and limitations of the driver, and assist by providing a more 

tailored intervention strategy, based on the individual and their current psychological 

state. 

6.1 Summary of main findings from the experiments 

As discussed at the end of Chapter 1, four specific research questions were 

formulated as guiding questions for this thesis. Chapters 2, 3, 4 and 5 of this thesis, 

were structured to answer these research questions, the findings of which, have been 

summarised below. 

 

1. Can motion artefacts be removed from EDA signals, in a dynamic driving 

environment, to assess drivers’ comfort and workload levels in real-world 

driving? 

 

The literature on physiological signals of ECG and EDA, suggest that these 

signals are highly susceptible to motion artefacts (Boucsein, 2012; Kikhia et al., 2016; 

van Gent et al., 2018). The majority of studies on ECG and EDA signals have been 
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conducted in stationary laboratory environments, including studies on driving, many of 

which have been conducted in fixed-base driving simulators (Beggiato et al., 2019; 

Foy & Chapman, 2018; Mehler et al., 2009; Müller et al., 2021). This gap acted as a 

starting point for my research, with a preliminary investigation focused on whether 

such motion artefacts can be successfully removed from ECG and EDA signals, in 

driving environments, to make useful interpretations in real-world settings. As 

mentioned in the introduction, ECG signals, especially R-R peaks, were less 

susceptible to motion-artefacts in driving environments, when the signal was captured 

at sampling rates greater than 500 Hz. Therefore, I focused on removing motion 

artefacts from EDA signals. 

Chapter 2 of this thesis is a methodology paper, that introduces a novel and 

efficient method for removing motion artefacts from EDA signals, with the potential to 

be used in real-time. The filter designed is essentially a shape-based filter, which 

detects whether the signal exceeds certain threshold values, based on 

recommendations in Boucsein (2012) and Kikhia et al. (2016). Additionally, a slope-

based boundary constraint was applied, derived from the recommendations in 

Boucsein (2012) and Kikhia et al. (2016). A case study for this method was conducted 

using a dataset from a simulator study conducted in the full-motion based University 

of Leeds Driving Simulator (UoLDS).  

From visual inspection, it was observed that my proposed algorithm 

successfully removed motion artefacts from the EDA signal, while closely retaining the 

shape of skin conductance response (SCR) events in the EDA signal. An algorithm 

based on this method has been used to remove motion artefacts from EDA signals for 

the studies mentioned in Chapters 3, 4 and 5. This code will be made available for 

download as a free MATLAB-based function on GitHub soon, and is also provided in 

the appendix section of this thesis.  

 

2. What are the primary factors contributing to driver discomfort in HAD, and 

are these reflected in drivers’ physiological state? 

 

Chapter 3 of this thesis focused on understanding factors affecting driver 

discomfort, and whether the changes in drivers’ discomfort levels during different types 
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of automated driving styles can be measured using physiological metrics such as 

RMSSD, mean HR and number of SCRs per minute (nSCR/min). I measured driver 

discomfort (i.e. the lack of comfort), since signs of discomfort tend to be more well-

defined and pronounced, compared to an unaroused/relaxed state of comfort (Siebert 

et al., 2013).  

The study in Chapter 3 focused on understanding how different automated 

driving styles, including human-like driving controllers, and a replay of drivers’ own 

manual driving style, affected driver comfort, while negotiating varying road 

geometries and obstacles in urban and rural environments. Physiological metrics of 

RMSSD, mean HR and nSCR/min, captured using the BIOPAC MP35 data acquisition 

system, were used as objective indicators of driver discomfort, along with subjective 

discomfort ratings. 

Results from the study indicated that there were no significant differences in 

driver discomfort, as measured by physiological metrics and subjective ratings, across 

the different automated driving controllers. A possible explanation for this finding could 

be the similar resultant acceleration profiles across the different automated controllers 

for the whole drive, where it only exceeded the comfort threshold for acceleration (2 

m/s2; Eriksson & Svensson, 2015) in the rural (and not urban) sections. A similar result 

was observed in the study by Beggiato et al. (2019), where the authors did not observe 

any significant changes in driver discomfort across three different automated driving 

styles, when considering the whole drive, which was 9.2 km in length and consisted of 

intersections, exit ramps, obstacles, rural road and construction zones.  

Results from the study in Chapter 3 also showed significant differences in terms 

of physiological activity across all the metrics, between manual driving and at least 

one of the automated driving styles. However, it could not be determined if this was 

due to increased physical and mental demand required for manual driving, the higher 

discomfort experienced during manual driving, or both. I also observed higher 

discomfort, for all controllers, during the higher speed and narrower sections of the 

rural environment, as opposed to the urban environment, as indicated by both 

subjective ratings, and nSCR/min values. Similar observations were seen by Mourant 

& Thattacherry (2000) in their study on manual driving, who suggested that higher 

speeds and narrower roads can induce discomfort for the driver.  
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One crucial finding of this study was the importance of acceleration forces and 

how these affect driver discomfort. Based on our findings, it is likely that when the 

resultant acceleration and jerk forces experienced by the driver is well below the 

comfort thresholds, other factors that affect comfort, such as familiarity of the drive, or 

presence of obstacles, become more prominent and noticeable to drivers and affects 

their comfort rating. In contrast, when resultant acceleration and jerk forces are well 

above drivers’ comfort threshold, it seemingly overshadows other determinants of 

driver discomfort, such as familiarity of the drive or presence of obstacles. Results also 

showed that the EDA-based nSCR/min metric was more sensitive to continuous 

changes in discomfort-inducing stimuli, compared to ECG-based metrics. This could 

be because ECG-based measures of RMSSD, and mean HR require larger time 

windows (minimum of two minutes) for accurate analysis.  

In the study reported in Chapter 3, factors affecting driver discomfort, during 

automation, were investigated when drivers were simply monitoring the drive. 

However, it should be noted that discomfort shares similarities, and overlaps with other 

related driver states, such as stress and mental workload (Beggiato et al., 2019). For 

example, driver discomfort induced when the vehicle does not keep adequate safety 

margins from another vehicle, can also result in an increase in driver workload, and 

drivers are likely to become more vigilant and pay more attention to the actions of the 

automated vehicle and the driving environment, when their safety thresholds are 

breached, thereby increasing their workload levels.  

High workload (overload) is also know to affect both the performance and safety 

of the driver, for example, if and when they have to resume manual control of the 

vehicle, after a period of automated driving. To investigate how drivers’ workload levels 

are affected by different sections of an automated driving scenario, and whether this 

can be measured using physiological metrics, the next study focussed on measuring 

eye tracking and physiological metrics in an automated driving study, involving a range 

of take over scenario, as detailed below.  

 

3. Are changes in workload levels during different stages of HAD, including the 

transition of control, reflected in drivers’ electrodermal activity, and 

electrocardiogram-based physiological metrics? 
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Chapter 4 of this thesis focused on understanding how different manipulations 

during an automated car following scenario affected driver workload. Additionally, the 

use of physiological metrics as objective indicators of driver workload was 

investigated. Accurate detection of drivers’ workload levels can help future driver state 

monitoring systems to be better informed about drivers’ capabilities and limitations, 

especially when they are required to take over from automation. Driver workload was 

manipulated in a set of car-following situations by varying the time headway from a 

lead vehicle, at different stages of automated driving, and during takeovers. Car-

following situations were of particular interest, as they are known to be pre-cursors to 

rear end collisions, which account for over 31.5% of all collisions in the US (National 

Highway Traffic Safety Administration, 2009). 

In Chapter 4, I focused on whether physiological metrics of RMSSD, mean HR, 

ECG-derived respiration rate (EDR) and nSCR/min, can be used as objective 

indicators of drivers’ workload levels, along with self-reported ratings of workload. The 

physical and cognitive demands imposed by different tasks, such as monitoring the 

drive, engaging in an NDRT, or manual driving, could be distinguished using 

physiological signals. I have hypothesised and ranked the physical, cognitive, and 

overall (physical plus cognitive) workload levels of the different conditions in our study, 

with manual driving being the task with the highest physical workload, and the Arrows 

task having the highest cognitive and overall workload (see Figure 6.1).  

The trends observed in drivers’ RMSSD, mean HR, and nSCR/min values  

suggest that engagement in the Arrows task during SAE L3 drive resulted in higher 

workload levels than monitoring during SAE L2 drive, or manual driving. The trends in 

drivers’ RMSSD, mean HR and nSCR/min also suggest that monitoring the drive and 

manual driving had similar levels of workload. This trend is similar to that observed for 

congitive task demands of the three tasks, as seen in Figure 6.1, suggesting RMMSD, 

mean HR and nSCR/min are more senstive to cognitive demands of a task, within 

driving context. However, the trend seen in the EDR metric was similar to that of overall 

workload imposed by monitoring the drive, manual driving and the arrows task, 

Drivers’ had significant higher workload levels as indicated by the EDR metric, during 

manual driving, compared to monitoring during SAE L2 drive. This could be due to the 
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higher senstivity of breathing rate to even minor physical load/activity, such as those 

associated with hand and leg movements in manual driving (Hidalgo-Muñoz et al., 

2019). Their workload levels, as indicated by the EDR metric, when engaging in the 

Arrows task during SAE L3 drive, was significantly higher than workload levels during 

both monitoring in SAE L2, and manual driving. Therefore, by combining EDR metric, 

with RMSSD, mean HR, and nSCR/min metric, one can distinguish tasks which are 

purely cognitive in nature, with task that might have physical workload, within driving 

context. I believe this to be a novel finding, which is of great importance to 

psychophysiological research, within the driving context. This ablity to distinguish 

between the physical and cognitive demands posed by different tasks, using such 

physiological metrics, can vastly improve workload detection, and drivers’ 

performance predictions in future driver state monitoring systems. While I was able to 

see differences between the different conditions seen in our study, it is to be seen 

whether these metrics are able to distinguish more subtle changes in physical or 

cognitive task demands, in a wider range of physical and cognitive loads, within driving 

context. Therefore, further research is warranted to understanding the sensitivity of 

different physiological metrics, to physical and cognitive demands of different tasks, 

encountered in the driving context. 
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Figure 6.1. Schematic representation of the hypothesised relationship between 

physical, cognitive and overall (physical + cognitive) workload of different tasks 

during driving – based on the studies reported in Chapters 4 and 5. 

 

Results from nSCR/min and subjective workload ratings indicated that the 

different Time Headways (THW) maintained by a lead vehicle, did not affect drivers’ 

workload levels during automation, when they were a passive observer of the driving 

task. Only the nSCR/min metric was used as an indicator of driver workload around 

takeovers, as ECG-based metrics require longer time windows (over at least 2 

minutes), for accurate analysis (Laborde et al., 2017).However, the presence of a lead 

vehicle, especially one maintaining shorter THWs, seemed to increase driver workload 

as indicated by nSCR/min and subjective workload ratings, when a resumption of 

control by drivers was required. It is likely that drivers were less bothered by the safety 

margins in terms of time headways, maintained by the automated driving controller, 

as long as they were not required to control the driving task. Further research into the 

safe and acceptable time headways maintained by an AV controller is therefore 
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warranted, to ensure that a safe transition of control is achieved, without too much 

additional attentional and workload demands on the driver.  

Drivers’ engagement in an activity during automation (either completing the 

arrows task, or monitoring the drive), did not seem to affect driver workload during the 

takeovers, as indicated by their nSCR/min data and subjective workload ratings. This 

is in contrast to the findings of Zeeb et al. (2016), and Wandtner et al. (2018), where 

the authors observed significant differences in workload, as indicated by subjective 

ratings, and takeover performance, as indicated by response times, minimum time to 

collision and deviation from the lane centre, due to prior engagement in NDRTs. There 

are several possible explanations for this. It could be due to the between-participant 

nature of the prior activity, in the current study. Also, since this study involved a non-

critical takeover scenario, drivers had adequate time to stop engaging in the Arrows 

task, before resuming control, thereby nullifying any additional workload that was 

imposed by the Arrows task. Finally, perhaps the takeover task was quite demanding 

in itself, masking the effects of any activities that took place before the takeover 

request. 

 

4. How is drivers’ attentional demand, and workload levels, affected at different 

stages of HAD, as reflected by pupil-diameter values? 

 

Chapter 5 of this thesis focused specifically on how attentional demand (in 

terms of how they process the visual driving scene) at different stages of automation 

affected driver workload, as indicated by eye tracking based metrics. Pupil diameter 

was used as an indicator of attentional demand and cognitive load, and 3-D gaze 

contour plots were used to understand where drivers allocated their visual attention, 

during different stages of automation and manual driving. In agreement with results 

from other physiological metrics, outlined in Chapter 4, mean pupil diameter values 

were shown to be similar when monitoring the task during automation, as that seen in 

manual driving. The similar pupil diameter values suggests that drivers had similar 

overall levels of cognitive workload, when monitoring the driving task in automation, 

as that seen during manual driving. However, a different result was found for the 

standard deviation of pupil diameter, which showed a fluctuation of pupil diameter 
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when drivers were engaged in monitoring the drive during automation, compared to 

when they were in control of the vehicle in manual driving. Since the brightness levels 

were similar during automation and manual driving, fluctuation in pupil diameter values 

could be narrowed down to either accommodation reflex (shifting of focus between 

near and far objects) or variations in workload. To further investigate the causal factor 

of this pupil diameter fluctuation, I compared where drivers’ visual attention, during 

automation and during manual driving. For example, if the drivers’ shifted their 

attention across different objects in the driving scene, this could indicate 

accommodation reflex. Although, it does not rule out variations in cognitive load, and 

processing different elements across the driving scene could indeed result in varying 

levels of cognitive load. 3D gaze contour plots revealed that drivers looked around the 

driving scene more, with more glances away from the road centre, during automation, 

compared to manual driving, results which are in agreement with previous research in 

this context (Louw, Markkula, et al., 2017; Schartmüller et al., 2021; Yang et al., 2022). 

However, it was not possible to conclude whether the larger fluctuations in pupil 

diameter values during automation were a result of variations in attentional demand 

and cognitive workload, or due to an accommodation reflex (Mathôt, 2018), or both. 

Research from the aviation industry has also indicated that airline pilots experience 

uneven distribution of attention and workload, as indicated by subjective ratings and 

performance in detection response tasks, during automation (N B Sarter et al., 1997; 

Wiener, 1989). 

I also found that pupil diameter values increased during takeovers, when the 

takeover happened in presence of a lead vehicle maintaining shorter THWs, indicating 

an increase in drivers’ workload levels. This is in agreement with the findings in 

Chapter 4. Additionally, how drivers’ workload, based on their pupil diameter, varied 

around the actual takeover, from the pre-takeover section, to the takeover itself, and 

the period after takeover, was also analysed. As predicted, there was a steady 

increase in pupil diameter values from the pre-takeover window to the takeover 

window, increasing further after the takeover. This suggests that the takeover process 

is in itself a complex and mentally demanding task, which can be identified by changes 

in pupil diameter. A peak in the pupil diameter was observed around 15 seconds after 

the drivers resumed manual control of the vehicle, suggesting their workload was 

highest around this time. This is in line with previous research, which shows a peak 
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performance decrement around 15 seconds after a resumption of control from 

automated driving, as indicated by metrics such as maximum steering wheel angles, 

speed and deviation from lane centre  (Bueno et al., 2016; Merat et al., 2014). 

Overall, I was able to establish the validity of physiological metrics, for 

measuring drivers’ discomfort and workload levels objectively, in a number of driving 

simulator studies involving manual and automated driving. In section 6.3, I discuss 

how future driver state monitoring systems can build on the findings from this research, 

to provide real-time and accurate detection of drivers’ comfort and workload levels. 

However, there are some merits, as well as limitations in using such metrics in real-

world settings, as opposed to more controlled environments, which will be discussed 

in the next section. 

6.2 Reflections on methodology and measures 

6.2.1 Methodology used and limitations 

The EDA signal was collected in a high-fidelity, motion-based driving simulator, 

which is comparable to motion experienced in real-world driving. Our algorithm for 

motion  artefact removal is actually adapted from well-cited research, which suggests 

that EDA signal does not increase by more than 20% or decrease by less than 10%, 

in  a 1 second time window (Boucsein, 2012; Kikhia et al., 2016). Additionally, a slope 

constraint was derived from this boundary condition, to ensure there were no 

unwanted sharp spikes in the signal, especially when the EDA signal is collected at 

high sampling rates. Given the nature of the shape of an EDA signal, as described by 

Boucsein (2012) and Braithwaite et al. (2015), the Modified Akima cubic Hermite 

interpolation, also referred to as Makima interpolation technique, was found to be the 

best technique for fill the missing/noisy data points, and preserving the shape of the 

signal. Future studies could further validate this method by collecting and comparing 

EDA data in stationary as well as full-motion environments.  

In Chapter 3, I wanted to investigate how driver discomfort is affected by the 

presence of obstacles, such as parked-cars and roadworks, that were incorporated 

into the road-geometry of the study. It is likely that the key differences would have 

been around how the different automated controllers negotiated these obstacles. 

However, I was unable to analyse the physiological data around the short time 
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windows where the controllers were negotiating these obstacles, due to a 

synchronisation error between the BIOPAC MP35 system and the simulator data. This 

failed synchronisation was likely to cause a sync-time difference of up to 5 seconds, 

which was unacceptable, given the obstacles were negotiated in time windows lasting 

less than 5 seconds.  

Studies in Chapter 4 and Chapter 5 incorporated a complex mixed-design, to 

test the various workload-inducing conditions on driver physiological metrics and 

subjective response. The synchronisation issue for BIOPAC signals was rectified prior 

to this study.  

Due to time limitations, and to avoid a long drive for each participant, a between 

participant design was used for this study, which meant that half the drivers engaged 

in the Arrows task and half were asked to monitor the driving environment during 

automation. Given that both physiological indices, and self-reported workload ratings 

can be highly subjective in nature, interpretation of the results need to consider this 

caveat. Additionally, data from 6 participants were discarded, due to a failure to  follow 

the instructions of the study, or due to missing data. While this affected the statistical 

power of some of our analyses, similar trends were observed across different 

independent sensors (such as ECG, EDA, eye tracking), which validate the 

effectiveness of our workload manipulations. 

6.2.2 Limitations of the ECG- and EDA-based measures 

At the start of this project, the Empatica E4 (McCarthy et al., 2016b) wristband 

was used to collect physiological data. Empatica E4 included a Photoplethysmography 

(PPG) based heart rate sensor, and EDA sensor at the wrist. However, initial analysis 

from a simulator study indicated that the PPG data was too noisy, and could not be 

used in dynamic driving environments, such as those in the simulator. PPG uses a 

light sensor, which is highly susceptible to even small movements, corrupting the 

signal. Moreover, the sampling rate for Empatica E4 for PPG data was at 64 Hz, and 

that for EDA data was at 4 Hz, which was well below the recommended values 

(Braithwaite et al., 2015; Laborde et al., 2017). Therefore, in the following experiments, 

ECG and EDA signals were collected using a BIOPAC MP35 data acquisition system. 

One disadvantage of using this system was that it was more intrusive than the 

Empatica E4 system. Recent technological advancements have introduced more non-
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intrusive (Beggiato et al., 2018), and even non-contact physiological sensors (Kranjec 

et al., 2014), that can be considered in future on-road studies. 

Initially, there was an error in synchronising the BIOPAC MP35 system, with 

the simulator data, during the study reported in Chapter 3. This was identified during 

the data analysis stage, and therefore, certain adjustments had to be made to data 

analysis, as mentioned in section 6.2.1. This issue was resolved prior to the next 

experiment. While motion and noise artefacts did affect both ECG and EDA signals, 

the methods mentioned in Chapter 2 helped remove these artefacts, providing clean 

signals, for accurate interpretations. Additionally, baseline (at rest) physiological data 

were collected, to account for any inter-individual differences arising from the 

physiological signals. 

A large number of EDA and ECG-derived metrics (more details on the different 

metrics used are provided in the appendix) were analysed during this research. 

However, the metrics that showed the highest sensitivity to our experimental 

manipulations, and those that have been used in similar situations in prior research, 

(i.e. RMSSD, mean HR and nSCR/min), were carefully selected and included for 

analysis. 

One of the drawbacks of using physiological data is that changes in drivers’ 

physiological state could be caused by a host of psychological and/or environmental 

factors. For example, stress, workload, discomfort, arousal or ambient temperature 

could all result in an increase in drivers’ EDA values. Therefore, the studies in this 

thesis had to be carefully designed, with strict experimental control, to avoid any 

confounders that could influence drivers’ physiological state. For example, cardiac 

medications, prior physical activity, caffeine, differences in temperature in the 

simulator cabin, were all controlled for, to avoid any confounding effect on the ECG or 

EDA data. However, in a real-life situation, such control is not feasible. In section 6.3.3, 

I provide some thoughts on how these physiological signals can be used in real-world 

driving to correctly identify driver state.  

6.2.3 Eye tracking based measures 

For capturing drivers’ eye-movements, the study reported in Chapter 5 used 

the Seeing Machines Fovio Driver Monitoring System. While creating visualisation 

plots, the sampling rate of 60 Hz was found not be consistent, with some frames having 
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a higher and some a lower sampling rate, with the mean value hovering around 60 Hz. 

This created problems for visualising the time-series data. Therefore, the data was 

interpolated to create a uniform time-width between consecutive frames in the eye-

tracker. Another limitation of results from eye tracking data is that pupil diameter is 

sensitive to environmental factors, such as brightness levels. This was controlled in 

this study by ensuring drivers were driving through an urban environment across the 

whole drive, which had similar background lighting conditions, throughout. Therefore, 

the use of pupil diameter for measuring workload in real-world driving studies may 

pose some challenges, based on more variable lighting conditions.   

6.2.4 The University of Leeds Driving Simulator (UoLDS) 

There are number of advantages in using driving simulators, such as 

experimenting otherwise dangerous driving scenarios without putting the driver at risk, 

stricter experimental control by manipulating the virtual driving environment (de Winter 

et al., 2012), and providing repeated scenarios. This thesis focused on the use of 

physiological metrics as an objective indicator of driver state in real-world 

environments. Therefore, my experiments required full motion simulation, where 

drivers are subject to forces and movements similar to that observed in the real world, 

to validate whether such physiological metrics can be used in real-world driving 

settings. Due to its advanced motion-system, the UoLDS was able to elicit motion that 

was similar to that experienced in real-world driving scenarios. However, in addition to 

the sensitivity of physiological metrics to motion artefacts, which were partly resolved 

as highlighted above, the absence of complete realism provided by such simulators, 

when compared to real world studies, is acknowledged and must be taken into account 

when interpreting the results. 

6.3 Contribution to the field and outlook 

This thesis provides an understanding of how driver states of discomfort and workload 

are affected by different levels and stages of automated driving, indicating how these 

affect driver physiological metrics, and subjective feedback. While the development of 

various wearable sensors has increased the interest and ease of conducting 

psychophysiological research, this work is still limited within the automated driving 

domain. Furthermore, given the sensitivity of physiological signals such as ECG or 



 

191 

 

EDA to motion artefacts, further validation within dynamic driving environments ia 

required. The work presented in this thesis does not provide a comprehensive 

investigation of all driver states, or the link between all the human factors-related 

issues associated with such driver states. Rather, this research provides specific 

insights into driver states of discomfort and workload during HAD, factors influencing 

and affecting these states, and its measurement using subjective feedback, and 

physiological signals such as ECG, EDA and eye tracking. An overview of this these 

relationships is provided in Figure 6.2. 

 

Figure 6.2. Schematic depiction of the relationship between vehicle/environmental 

factors, driver states and physiological metrics 

This figure consists of four main components: 1) Factors that affect driver states; 2) 

Driver states of discomfort and workload; 3) Physiological metrics to measure driver 

states; 4) Outcomes in terms of performance and safety during takeovers. Each of 

these is further elaborated in the subsections below: 

6.3.1 Factors affecting driver state 

This figures provides a depiction of the various environmental and vehicle-

based factors that influence driver discomfort, and driver workload, incorporating the 
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influence of additional factors interacting with these concepts, to influence driver state 

– using the current state of the art. On the left side of the Figure 6.2, there are vehicle-

based and environment-based factors that influence driver state. Vehicle based 

factors such as acceleration forces, safety margins, AV driving style, HMI, NDRTs and 

request to takeover, can affect drivers’ state. Similarly, various factors from the driving 

environment, such as road geometries, obstacles, traffic density, whether conditions, 

road type (e.g. rural roads, urban roads, motorway driving) influence driver state. 

However, the influence of vehicle-based and environmental-based factors on driver 

state is not necessarily mutually exclusive. For example, safety margins maintained 

by a vehicle depend on how the automated driving controller negotiates an obstacle 

or a road environment, and this interaction between the vehicle-based and 

environmental-based factors influence driver state. In the next subsection, I expand 

on the second theme in the figure, around driver states of discomfort and workload.  

6.3.2 Driver states of discomfort and workload 

In this thesis, I focused on understanding and measuring driver states of 

discomfort and workload during different stages of automated driving. On a broad 

level, there are physical (such as acceleration and jerk forces) and psychological 

factors (such as safety margins, naturalness of the drive) that affect driver discomfort. 

It is not necessary that the physical and psychological factors act separately, to cause 

driver discomfort. For example, the way in which and AV controller negotiates an 

obstacle, with harsh braking and steering controls (physical discomfort), while 

maintaining poor safety margins (psychological discomfort), can result in both physical 

and psychological discomfort. Similarly, workload has both physical and psychological 

components. Physical workload requires the usage of physical resources to perform 

a task, such as lifting an object. Psychological workload, requires mental resources to 

perform a task, such as a memory recall n-back task. Certain tasks, such as manual 

driving, is a psychomotor (combining cognitive functions and physical movements) 

task, that uses both physical and mental resources. 

The relationship between driver discomfort and workload, is not well defined. 

Drivers can be affected by multiple driver states, at the same instant, and some of 

these driver states share conceptual similarities. For example, let us consider the 

safety margins factor and how it affects driver discomfort and workload. Safety 
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margins are a set of apparent minimum distances (based on the driver’s judgement) 

to be maintained by vehicle from road edges, other road users, obstacles or hazards, 

for safe and smooth operation of the vehicle. In manual driving, drivers ascertain the 

safety by maintaining adequate safety margins. However, in automated driving, the 

automated vehicle controller controls and modulates these safety margins, with little 

or no input from the driver (Cahour, 2008). When a drivers’ threshold for what is 

deemed a safe margin is breached, such as when an automated vehicle controller is 

following a lead vehicle quite closely (Siebert & Wallis, 2019), it can result in driver 

discomfort. It can also negatively affect drivers’ trust (Carsten & Martens, 2019), as 

shown using the dotted grey arrow in Figure 6.2. Since trust was not the main focus 

of this thesis, the relationship between discomfort and trust is shown using dotted-grey 

arrows as it is an implicit inference. The lack of trust in the automated system’s driving 

capabilities, can cause the driver to become more vigilant and monitor the driving task, 

resulting in usage of additional attentional resources. Again this is indicated by dotted-

grey lines in Figure 6.2, as it is an implicit inference. However, using additional 

resources can also result in increasing drivers’ workload levels, as indicated by the 

grew arrow in Figure 6.2. This result was also seen in Chapters 4 and 5 of this thesis, 

where shorter headways maintained by the automated vehicle from a lead vehicle, 

increased drivers’ workload levels. Therefore, a breach in safety margins, can 

simultaneously result in both discomfort and increased workload to the driver. This 

mutual relationship between discomfort and workload, where discomfort to the driver 

can also result in increased workload, and vice-versa, is indicated by the double 

headed grey arrow in Figure 6.2. While driver states of trust and attention were not 

the main focus of this thesis, I believe that particularly around safety margins, 

understanding the potential implications on drivers’ trust and attention helps in better 

highlighting the relationship between workload and discomfort. Future studies on 

driver states of discomfort and workload should also consider related driver states 

such as trust and attention, to better understand the nature of this inter-relationship 

existing between the two driver states. 

With regards to the inter-relationship existing between trust, attention and 

workload, Heikoop et al. (2016) suggested that trust can negatively influence drivers’ 

attention, which is observed in our example above. That is, a decrease in trust can 

increase driver’s attention. They also suggested a U-shaped causality existing 
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between workload and attention. That is, low or high workload can result in diminished 

attention at the driving task, or in our example, increased attention can lead to higher 

levels of workload. It is also clear that a driver can be affected by multiple driver states 

at the same time. For example, when the safety margins are breached by the 

automated vehicle controller, this can result in driver having increased discomfort, 

decreased trust, higher attention and vigilance, higher stress, and higher workload 

levels. The exact nature of this inter-relationship between the different driver states 

still remains unclear. In order to accurately determine drivers’ capabilities and 

limitations, it is important to incorporate a holistic approach, and consider all relevant 

states that affect the driver at a specific instant, and their implications. Future research 

should take this into account, when creating predictor models that can predict drivers’ 

future performance, by objectively measuring their current and previous driver states. 

6.3.3 Physiological metrics and driver state  

In this research, I used physiological data from ECG, EDA and eye tracking 

sensors, to understand and measure driver states of workload and discomfort. It 

should be noted that a plethora of metrics can be derived from each of these sensors. 

For example, Shaffer & Ginsberg (2017) lists 29 different ECG-derived metrics, and 

MATLAB-based EDA software Ledalab (Benedek, 2015) includes 15 different metrics 

for EDA. However, after careful review of the literature, following an analysis of the 

different metrics, and removal of highly correlated metrics, RMSSD, mean HR and 

EDR from ECG, and nSCR/min from EDA, were selected to highlight the changes 

observed in drivers’ discomfort and workload levels. For eye tracking measures, 

previous research was used to select pupil diameter as the best metric for identifying 

changes in drivers’ workload levels. Driver’s gaze was used to analyse and understand 

where their visual attention was allocated during the experimental manipulations. 

Results from Chapter 3 indicated the nSCR/min is a better indicator for driver 

discomfort than ECG-based metrics, as it captures both long-term variations, as well 

as instantaneous changes in discomfort, brought about by environmental and driving 

condition. This is partly because ECG signals are more susceptible to prior 

manipulations, owing to larger decay times in this signal. However, this can be 

overcome by collecting baseline and post-event recovery data for the ECG signal, and 
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modelling the signal’s recovery pattern to account for carry-over effects from prior 

manipulations (Laborde et al., 2017; Radhakrishnan et al., 2020). 

To understand and measure workload, RMSSD, mean HR, EDR, nSCR/min 

and pupil diameter metrics, were used. Results from Chapters 4 and 5, indicated that 

ECG-based metrics such as RMSSD, mean HR and EDR, were better indicators of 

longer-term variations in driver workload, such as those due to monitoring the drive, 

or engagement in NDRTs, during periods of automation. However, given that ECG 

signals require at least 2 minute windows for accurate measurement (Bourdillon et al., 

2017), and also because they have carry-over effects from prior stimuli, they were not 

deemed suitable for identifying short-term workload variations. On the other hand, both 

nSCR/min and pupil diameter were able to capture short- and long-term variations in 

driver workload.  

I was also able to use physiological metrics to separate the physical and 

cognitive aspects of driver workload, based on its sensitivity to different physiological 

metrics, which I believe is a novel finding. RMSSD, mean HR, nSCR/min and pupil 

diameter were all more sensitive to the cognitive element of workload experienced 

during driving. On the other hand, only the EDR metric, which is indicative of 

respiration rate, was sensitive to the physical demands imposed by the more  

physically demanding tasks, such as manual driving, as well as the cognitive demands 

posed by various workload-inducing manipulations in the study, such as monitoring 

the drive, engaging in the Arrows tasks. Therefore, the EDR metric is considered to 

be a better indicator of drivers’ overall (physical + cognitive) workload. I believe future 

research can incorporate the EDR metric, along with indicators of cognitive workload 

such as RMSSD, mean HR, pupil diameter and nSCR/min, to distinguish between the 

physical and cognitive elements of workload. 

6.3.4 Driver state, performance and safety 

An important observation from my research was that data from a single sensor 

is not enough to correctly identify driver state in a real-world setting. For example, an 

increase in drivers’ RMSSD values, mean HR, EDR or nSCR/min could be due to 

discomfort, stress, increase in workload, arousal or even physical activity. It is 

important to combine these metrics with eye tracking and vehicle data, to pinpoint the 

causal factor for physiological changes. Additionally, eye tracking data can become 
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unavailable in certain use-cases, especially for higher levels of vehicle automation, 

such as when drivers are allowed to engage in an NDRT during Level 3 automation, 

which means their eyes are likely to be occluded from the eye tracking cameras. 

Physiological signals such as EDA and ECG are then useful at this stage, as they can 

monitor drivers’ workload levels. Since there is a desire to increase the capability of 

automated vehicles and drivers are more and more likely to engage in NDRTs in higher 

levels of automation, future research should investigate the value of sensor-fusion for 

different physiological sensors. Combined with suitable machine learning algorithms, 

this technique may be valuable for identifying drivers’ state, establishing their 

capability to resume control, by predicting the likelihood of impending performance 

decrements, and providing appropriate support to the driver, should they be required 

to resume control from automation, for example at the end of an ODD. 

6.4 Conclusion 

To conclude, this thesis provides a deeper understanding of driver states of 

discomfort and workload, and the factors influencing these driver states during 

automated driving. I was able to validate the use of physiological metrics such as 

RMSSD, mean HR, EDR, pupil diameter and gaze metric for understanding, and 

measuring, driver states of discomfort and workload. Future work can build on this 

research by incorporating sensor fusion of ECG and EDA based data, along with eye 

tracking, to help improve the accuracy and capabilities of future driver state monitoring 

systems. 
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APPENDIX A 

Contents (DOI: 10.13140/RG.2.2.24091.54560) 

▪ EDA filtering 

▪ Input arguments 

▪ Output arguments 

▪ Code 

▪ Shape-based algorithm to remove noise 

▪ Algorithm to detect loss of contact between skin and electrodes 

▪ Algorithm to do detect missing data of more than "time_window" seconds 

EDA filtering 

% Author : Vishnu Radhakrishnan 

% Licence: mn16vr@leeds.ac.uk 

% copyright protected under the author licence. 

 

% For this code to be copied, modified and distributed,  prior permission 

% from the author 

% is to be requested AND is subject to the following conditions:- 

% 

% - The code is not to be used for commercial gain. 

% - The code and use thereof will be attributed to the authors where 

%   appropriate (including papers, presentations and demonstrations which 

%   rely on its use). 

% - All modified, distributions of the source files will retain this 

%   header. 

% 

% Usage of this code in analysis of any published work requires prior 

% permission from the author, and the user is required to cite the 

% following paper: 

% Radhakrishnan,V.; Solernou, A.; Merat, N. (2022). Artefact Correction for 
Electrodermal Activity Signals in Dynamic Driving Environments. Pre-print. DOI: 

10.13140/RG.2.2.24091.54560 

 

% ************************************************************************* 

 

function [eda_filtered, slope]= eda_filter(eda_data,varargin) 

Input arguments 

% Input arguments = edafilter(eda_data,seconds,slope_constraint,... 

% max_slope,min_slope,contact_loss,linear_value,time_window,smoothing,... 

% cutoff_freq,filt_order) 

 

% eda_data an nx2 matrix, with first column containing time in seconds, and 

% second column containing EDA values in µS (microsiemens) 

 

% varargin can contain upto 8 optional arguments 

 

% second argument is seconds (numeric value, a number between 1 and 6), and 

% it details for what window-length the shape-based algorithm is performed 

% for. If it is 6 (default value), then the shape-based algorithm considers 

% window-lengths from 1:6 seconds. 

 

% third argument argument is slope constraint ('Yes' or 'No'), and details 

% whether a slope-based noise detection algorithm is perfromed for 1 second 

file:///C:/Users/mn16vr/Documents/MATLAB/html/eda_filter.html%231
file:///C:/Users/mn16vr/Documents/MATLAB/html/eda_filter.html%232
file:///C:/Users/mn16vr/Documents/MATLAB/html/eda_filter.html%233
file:///C:/Users/mn16vr/Documents/MATLAB/html/eda_filter.html%234
file:///C:/Users/mn16vr/Documents/MATLAB/html/eda_filter.html%235
file:///C:/Users/mn16vr/Documents/MATLAB/html/eda_filter.html%236
file:///C:/Users/mn16vr/Documents/MATLAB/html/eda_filter.html%237
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% windows, where the slope of the signal cannot exceed max_slope, or be 

% below min_slope. 

 

% fourth argument argument is percentile ('Yes' or 'No'), and finds, 

% max_slope and min_slope values, based on linear fitting for 1s windows, 

% for all non-nan values after impletementing a 1 second window shape based 

% algorithms, deriving the 5th and 95th percentile values for the entire 

% data set, to be used as max-slope and min_slope respectively. 

 

% fifth input agrument is max_slope (between 0 and 1), which defines the 

% maximum allowable slope for the slope constraint (default at 0.7). 

 

% sixth input argument is min_slope (between 0 and -1), which defines the 

% minimum allowable slope for the slope constraint (default at -0.35). 

 

% seventh input arugment is contact loss, a decimal number (default 0.05), 

% where below its value, the electrodes is considered to have lost contact 

% with skin and replaced with NaN 

 

% eigth input argument is linear value (default is No), which specifics 

% whether if there are consecutive NaN values for more than time-window 

% seconds, then whether or not a linear interopolation is done ('Yes', does 

% not affect SCRs, but will affect SCL), or removed ('No', data points will 

% be replaced by NaN values, and wont be continous). 

 

% ninth imput argument is time-window (default 5) in seconds, which 

% specifies for what time window if the data remains as NaN values, a 

% linear inpterpolation is done. 

 

% tenth input argument is smoothing (default is Yes), which determines 

% whether ('Yes') or not ('No') a low-pass iir butterworth filter is 

% applied to smooth the data or not, and remove high frequency noise. 

 

% eleventh input argument is cutoff_freq (default 3 Hz), which determines the 

% cutoff frequency for the butterworth filter 

 

% twelth input arguement is filt_order(default is 2), which determines 

% the filter order of the butterworth filter. 

Output arguments 

% the function returns eda_filtered, an nx2, matrix, with timestamps on the 

% first column 

Code 

% check for maximum number of optional input arguments 

numvarargs = length(varargin); 

if numvarargs > 11 

    error('myfuns:edafilter:TooManyInputs', ... 

        'too many input arguments (must have at least 1, and at most 12)'); 

end 

 

% check for size of eda_data 

no_columns = size(eda_data,2); 

if no_columns ~= 2 

    error('myfuns:edafilter:MatrixDimension', ... 

        'size of eda_data is incorrect (must be an nx2 matrix)'); 

end 
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% set defaults for optional inputs 

optargs = {3 'No' 'Yes' 0.4 -0.2 0.05 'No' 5 'Yes' 3 2}; 

 

% replace default values with optinal input arguments, if entered 

[optargs{1:numvarargs}] = varargin{:}; 

[seconds,slope_constraint,percentile,max_slope,min_slope,contact_loss,linear_value,

... 

    time_window,smoothing,cutoff_freq,filt_order] = optargs{:}; 

 

% check for time window of the shape based filter 

if (rem(seconds,1)~=0 || seconds>8 || seconds<1) 

    error('myfuns:edafilter:IncorrectValue', ... 

        'seconds (2nd argument) must be an integer value between 1 and 8'); 

end 

 

% check slope-constraint 

if (strcmp(slope_constraint,'Yes')==0 && strcmp(slope_constraint,'No')==0) 

    error('myfuns:edafilter:IncorrectValue', ... 

        'slope_constraint (3rd arugment) must be a char of value Yes or No'); 

end 

 

% check percentile 

if (strcmp(percentile,'Yes')==0 && strcmp(percentile,'No')==0) 

    error('myfuns:edafilter:IncorrectValue', ... 

        'slope_constraint (3rd arugment) must be a char of value Yes or No'); 

end 

 

% check for max_slope 

if ( max_slope>1 || max_slope<0) 

    error('myfuns:edafilter:IncorrectValue', ... 

        'max_slope(5th arugment) must be a value between 0 and 1'); 

end 

 

% check for min_slope 

if ( min_slope>0 || min_slope<-1) 

    error('myfuns:edafilter:IncorrectValue', ... 

        'min_slope (6th arugment) must be a value between -1 and 0'); 

end 

 

% check linear filter value 

if (strcmp(linear_value,'Yes')==0 && strcmp(linear_value,'No')==0) 

    error('myfuns:edafilter:IncorrectValue', ... 

        'linear_value (8th arugment) must be a char of value Yes or No'); 

end 

 

% check linear filter value 

if (strcmp(smoothing,'Yes')==0 && strcmp(smoothing,'No')==0) 

    error('myfuns:edafilter:IncorrectValue', ... 

        'smoothing (10th arugment) must be a char of value Yes or No'); 

end 

 

sampling_rate = 1/(eda_data(4,1)-eda_data(3,1)); 

sampling_rate = round(sampling_rate); 

 

j = size(eda_data,1); 

 

% Check if the slope-based filter is applied, and if the percentile values 

% need to be calculated for max and min slope. 

 

if strcmp (slope_constraint,'Yes') && strcmp(percentile,'Yes') == 1 

    eda_prct = eda_data(:,:); 

 

    for m1 = 1:j 
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        var2 = isnan(eda_data(m1,2)); 

        if var2 == 1 

            continue; 

        else 

            for k1=1:sampling_rate 

                n0 =m1+k1; 

                if (n0<=j) 

                    if(eda_prct(n0,2)> 1.2*eda_prct(m1,2)) 

                        eda_prct(n0,2)= NaN; 

                    elseif (eda_prct(n0,2)<0.9*eda_prct(m1,2)) 

                        eda_prct(n0,2)= NaN; 

                    end 

                end 

            end 

        end 

    end 

 

    % Determine max_slope and min_slope values using linear fitting for 1s 

    % windows 

 

    for m2 = 1:j 

 

        var1 = isnan(eda_prct(m2,2)); 

        if var1 == 1 

            continue; 

        else 

            k2 = m2+sampling_rate; 

            if k2<=j 

                eda1 = eda_prct(m2:k2,2); 

                t1 = eda_prct(m2:k2,1); 

                idx1 = isnan(eda1); 

                p1 = polyfit(t1(~idx1),eda1(~idx1),1); 

                s1(m2) = p1(:,1); 

            end 

            clearvars eda1 t1 

        end 

    end 

    slope(1,1) = max(s1); 

    slope(1,2) = min(s1); 

    slope(1,3) = mean(s1(s1>0)); 

    slope(1,4) = mean(s1(s1<0)); 

    slope(1,5) = prctile(s1(s1>0),95); 

    slope(1,6) = prctile(s1(s1<0),5); 

 

    if slope(1,5)>0.4 && slope(1,6)<-0.2 

        max_slope = slope(1,5); 

        min_slope = slope(1,6); 

    end 

 

else 

    slope(1,1) = NaN; 

    slope(1,2) = NaN; 

    slope(1,3) = NaN; 

    slope(1,4) = NaN; 

    slope(1,5) = NaN; 

    slope(1,6) = NaN; 

 

end 

Shape-based algorithm to remove noise 

where an EDA signal does not increase by more than 20% or decrease by more than 10%, within a 1 second 
time window. max_slope and min_slope based on this calculation, with a 3x buffer 
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d1 = designfilt('lowpassiir','FilterOrder',filt_order, ... 

    

'HalfPowerFrequency',cutoff_freq,'DesignMethod','butter','SampleRate',sampling_rate

); 

 

if strcmp(smoothing,'Yes')==1 

    eda_data(:,2) = filtfilt(d1,eda_data(:,2)); 

end 

 

switch seconds  %switch-case statement to apply the algorithms 

    % from 1:n seconds, where n is given by input 

    % argument seconds 

 

    case {1} 

        for m = 1:j 

            var = isnan(eda_data(m,2)); 

            if var == 1 

                continue; 

            else 

                for k=1:sampling_rate 

                    n =m+k; 

 

                    if (n<=j) 

                        z = (eda_data(n,2)-eda_data(m,2))/(eda_data(n,1)-

eda_data(m,1)); 

 

                        if strcmp (slope_constraint,'Yes')==1 && ~isnan(z) 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif z>max_slope 

                                eda_data(n,2)= NaN; 

                            elseif z<min_slope 

                                eda_data(n,2)= NaN; 

                            end 

 

                        else 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

 

 

    case {2} 

        for m = 1:j 

            var = isnan(eda_data(m,2)); 

            if var == 1 

                continue; 

            else 

                for k=1:sampling_rate 

                    n =m+k; 

                    n2 = n+sampling_rate; 

 

                    if (n<=j && n2<=j) 

                        z = (eda_data(n,2)-eda_data(m,2))/(eda_data(n,1)-

eda_data(m,1)); 

 

                        if strcmp (slope_constraint,'Yes')==1 && ~isnan(z) 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 
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                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif z>max_slope 

                                eda_data(n,2)= NaN; 

                            elseif z<min_slope 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            end 

 

                        else 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

 

 

    case {3} 

        for m = 1:j 

            var = isnan(eda_data(m,2)); 

            if var == 1 

                continue; 

            else 

                for k=1:sampling_rate 

                    n =m+k; 

                    n2 = n+sampling_rate; 

                    n3 = n2+sampling_rate; 

 

                    if (n<=j && n2<=j && n3<=j ) 

                        z = (eda_data(n,2)-eda_data(m,2))/(eda_data(n,1)-

eda_data(m,1)); 

 

                        if strcmp (slope_constraint,'Yes')==1 && ~isnan(z) 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif z>max_slope 

                                eda_data(n,2)= NaN; 

                            elseif z<min_slope 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            end 

 

                        else 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 
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                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

 

 

    case {4} 

        for m = 1:j 

            var = isnan(eda_data(m,2)); 

            if var == 1 

                continue; 

            else 

                for k=1:sampling_rate 

 

                    n =m+k; 

                    n2 = n+sampling_rate; 

                    n3 = n2+sampling_rate; 

                    n4 = n3+sampling_rate; 

 

                    if (n<=j && n2<=j && n3<=j && n4<=j ) 

                        z = (eda_data(n,2)-eda_data(m,2))/(eda_data(n,1)-

eda_data(m,1)); 

 

                        if strcmp (slope_constraint,'Yes')==1 && ~isnan(z) 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif z>max_slope 

                                eda_data(n,2)= NaN; 

                            elseif z<min_slope 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            end 

 

                        else 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 
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                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

 

 

    case {5} 

        for m = 1:j 

            var = isnan(eda_data(m,2)); 

            if var == 1 

                continue; 

            else 

                for k=1:sampling_rate 

 

                    n =m+k; 

                    n2 = n+sampling_rate; 

                    n3 = n2+sampling_rate; 

                    n4 = n3+sampling_rate; 

                    n5 = n4+sampling_rate; 

 

                    if (n<=j && n2<=j && n3<=j && n4<=j && n5<=j) 

                        z = (eda_data(n,2)-eda_data(m,2))/(eda_data(n,1)-

eda_data(m,1)); 

 

                        if strcmp (slope_constraint,'Yes')==1 && ~isnan(z) 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif z>max_slope 

                                eda_data(n,2)= NaN; 

                            elseif z<min_slope 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif(eda_data(n5,2)> 2.48832*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif (eda_data(n5,2)<0.59049*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            end 

 

                        else 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 
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                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif(eda_data(n5,2)> 2.48832*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif (eda_data(n5,2)<0.59049*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

 

 

    case {6} 

        for m = 1:j 

            var = isnan(eda_data(m,2)); 

            if var == 1 

                continue; 

            else 

                for k=1:sampling_rate 

 

                    n =m+k; 

                    n2 = n+sampling_rate; 

                    n3 = n2+sampling_rate; 

                    n4 = n3+sampling_rate; 

                    n5 = n4+sampling_rate; 

                    n6 = n5+sampling_rate; 

 

                    if (n<=j && n2<=j && n3<=j && n4<=j && n5<=j && n6<=j) 

                        z = (eda_data(n,2)-eda_data(m,2))/(eda_data(n,1)-

eda_data(m,1)); 

 

                        if strcmp (slope_constraint,'Yes')==1 && ~isnan(z) 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif z>max_slope 

                                eda_data(n,2)= NaN; 

                            elseif z<min_slope 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif(eda_data(n5,2)> 2.48832*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif (eda_data(n5,2)<0.59049*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 
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                            elseif(eda_data(n6,2)> 2.985984*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n6,2)<0.531441*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            end 

 

                        else 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif(eda_data(n5,2)> 2.48832*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif (eda_data(n5,2)<0.59049*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif(eda_data(n6,2)> 2.985984*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n6,2)<0.531441*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

 

 

    case {7} 

        for m = 1:j 

            var = isnan(eda_data(m,2)); 

            if var == 1 

                continue; 

            else 

                for k=1:sampling_rate 

 

                    n =m+k; 

                    n2 = n+sampling_rate; 

                    n3 = n2+sampling_rate; 

                    n4 = n3+sampling_rate; 

                    n5 = n4+sampling_rate; 

                    n6 = n5+sampling_rate; 

                    n7 = n6+sampling_rate; 

 

                    if (n<=j && n2<=j && n3<=j && n4<=j && n5<=j && n6<=j && n7<=j) 

                        z = (eda_data(n,2)-eda_data(m,2))/(eda_data(n,1)-

eda_data(m,1)); 

 

                        if strcmp (slope_constraint,'Yes')==1 && ~isnan(z) 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif z>max_slope 

                                eda_data(n,2)= NaN; 

                            elseif z<min_slope 
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                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif(eda_data(n5,2)> 2.48832*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif (eda_data(n5,2)<0.59049*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif(eda_data(n6,2)> 2.985984*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n6,2)<0.531441*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n7,2)> 3.5831808*eda_data(m,2)) 

                                eda_data(n7,2)= NaN; 

                            end 

 

                        else 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif(eda_data(n5,2)> 2.48832*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif (eda_data(n5,2)<0.59049*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif(eda_data(n6,2)> 2.985984*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n6,2)<0.531441*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n7,2)> 3.5831808*eda_data(m,2)) 

                                eda_data(n7,2)= NaN; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

 

 

    case {8} 

        for m = 1:j 

            var = isnan(eda_data(m,2)); 

            if var == 1 

                continue; 

            else 

                for k=1:sampling_rate 
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                    n =m+k; 

                    n2 = n+sampling_rate; 

                    n3 = n2+sampling_rate; 

                    n4 = n3+sampling_rate; 

                    n5 = n4+sampling_rate; 

                    n6 = n5+sampling_rate; 

                    n7 = n6+sampling_rate; 

                    n8 = n7+sampling_rate; 

 

                    if (n<=j && n2<=j && n3<=j && n4<=j && n5<=j && n6<=j && n7<=j 

&& n8<=j) 

                        z = (eda_data(n,2)-eda_data(m,2))/(eda_data(n,1)-

eda_data(m,1)); 

 

                        if strcmp (slope_constraint,'Yes')==1 && ~isnan(z) 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif z>max_slope 

                                eda_data(n,2)= NaN; 

                            elseif z<min_slope 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif(eda_data(n5,2)> 2.48832*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif (eda_data(n5,2)<0.59049*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif(eda_data(n6,2)> 2.985984*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n6,2)<0.531441*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n7,2)> 3.5831808*eda_data(m,2)) 

                                eda_data(n7,2)= NaN; 

                            elseif(eda_data(n8,2)<0.43046721*eda_data(m,2)) 

                                eda_data(n8,2)= NaN; 

                            end 

 

                        else 

                            if(eda_data(n,2)> 1.2*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif (eda_data(n,2)<0.9*eda_data(m,2)) 

                                eda_data(n,2)= NaN; 

                            elseif(eda_data(n2,2)> 1.44*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif (eda_data(n2,2)<0.81*eda_data(m,2)) 

                                eda_data(n2,2)= NaN; 

                            elseif(eda_data(n3,2)> 1.728*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n3,2)<0.729*eda_data(m,2)) 

                                eda_data(n3,2)= NaN; 

                            elseif(eda_data(n4,2)> 2.0736*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 

                            elseif (eda_data(n4,2)<0.6561*eda_data(m,2)) 

                                eda_data(n4,2)= NaN; 
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                            elseif(eda_data(n5,2)> 2.48832*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif (eda_data(n5,2)<0.59049*eda_data(m,2)) 

                                eda_data(n5,2)= NaN; 

                            elseif(eda_data(n6,2)> 2.985984*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n6,2)<0.531441*eda_data(m,2)) 

                                eda_data(n6,2)= NaN; 

                            elseif(eda_data(n7,2)> 3.5831808*eda_data(m,2)) 

                                eda_data(n7,2)= NaN; 

                            elseif(eda_data(n8,2)<0.43046721*eda_data(m,2)) 

                                eda_data(n8,2)= NaN; 

                            end 

                        end 

                    end 

                end 

            end 

        end 

end 

Algorithm to detect loss of contact between skin and electrodes 

for m = 1:j 

    if (eda_data(m,2)<=contact_loss) 

        eda_data(m,2)= NaN; 

    end 

end 

 

 

counter = 0; 

counter_array = []; 

Algorithm to do detect missing data of more than "time_window" 

seconds 

for c=1:j-1 

    if (~isnan(eda_data(c,2)) && isnan(eda_data(c+1,2))) 

        b = c+1; 

        while (isnan(eda_data(b,2)) && b+c<j) 

            if((b-c >= sampling_rate*time_window) && ~isnan(eda_data(b+1,2))) 

                counter = counter+1; 

                counter_array(counter,:) = [c+1,b]; 

            end 

            b = b+1; 

        end 

    end 

end 

 

 

if isempty(counter_array==1) 

    eda_filtered1 =fillmissing(eda_data(:,2),'makima'); 

 

else 

 

    switch linear_value    % check whether fill missing data of 

morecounter_array(i-1,2)+1:counter_array(i,1)-1 

        % than time-window seconds with linear 

        % interpolation (Yes) or not (No). 
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        case 'Yes' 

 

            for i=1:size(counter_array,1) 

 

                if (size(counter_array,1) == 1) 

                    eda_filtered1(1:counter_array(i,1)-1) = 

fillmissing(eda_data(1:counter_array(i,1)-1,2),'makima'); 

                    eda_filtered1(counter_array(i,1):counter_array(i,2)) = 

fillmissing(eda_data(counter_array(i,1):counter_array(i,2),2),'linear','EndValues',

'nearest'); 

                    eda_filtered1(counter_array(i,2)+1:j) = 

fillmissing(eda_data(counter_array(i,2)+1:j,2),'makima'); 

 

 

                else 

 

                    if(i==1) 

                        eda_filtered1(1:counter_array(i,1)-1) = 

fillmissing(eda_data(1:counter_array(i,1)-1,2),'makima'); 

                        eda_filtered1(counter_array(i,1)-1:counter_array(i,2)+1) = 

fillmissing(eda_data(counter_array(i,1)-

1:counter_array(i,2)+1,2),'linear','EndValues','nearest'); 

 

 

                    elseif (i~=1 && i~=size(counter_array,1)) 

 

                        eda_filtered1(counter_array(i-1,2)+1:counter_array(i,1)-1) 

= fillmissing(eda_data(counter_array(i-1,2)+1:counter_array(i,1)-1,2),'makima'); 

                        eda_filtered1(counter_array(i,1)-1:counter_array(i,2)+1) = 

fillmissing(eda_data(counter_array(i,1)-

1:counter_array(i,2)+1,2),'linear','EndValues','nearest'); 

 

 

                    elseif (i==size(counter_array,1)) 

 

                        eda_filtered1(counter_array(i,1)-1:counter_array(i,2)+1) = 

fillmissing(eda_data(counter_array(i,1)-

1:counter_array(i,2)+1,2),'linear','EndValues','nearest'); 

                        eda_filtered1(counter_array(i,2)+1:j) = 

fillmissing(eda_data(counter_array(i,2)+1:j,2),'makima'); 

 

 

                    end 

 

                end 

 

            end 

 

        case 'No' 

 

            for i=1:size(counter_array,1) 

 

                if (size(counter_array,1) == 1) 

                    eda_filtered1(1:counter_array(i,1)-1) = 

fillmissing(eda_data(1:counter_array(i,1)-1,2),'makima'); 

                    eda_filtered1(counter_array(i,1):counter_array(i,2)) = NaN; 

                    eda_filtered1(counter_array(i,2)+1:j) = 

fillmissing(eda_data(counter_array(i,2)+1:j,2),'makima'); 

 

                else 

 

                    if(i==1) 

                        eda_filtered1(1:counter_array(i,1)-1) = 

fillmissing(eda_data(1:counter_array(i,1)-1,2),'makima'); 

                        eda_filtered1(counter_array(i,1):counter_array(i,2)) = NaN; 
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                    elseif (i~=1 && i~=size(counter_array,1)) 

 

                        eda_filtered1(counter_array(i-1,2)+1:counter_array(i,1)-1) 

= fillmissing(eda_data(counter_array(i-1,2)+1:counter_array(i,1)-1,2),'makima'); 

                        eda_filtered1(counter_array(i,1):counter_array(i,2)) = NaN; 

 

 

                    elseif (i==size(counter_array,1)) 

 

                        eda_filtered1(counter_array(i,1):counter_array(i,2)) = NaN; 

                        eda_filtered1(counter_array(i,2)+1:j) = 

fillmissing(eda_data(counter_array(i,2)+1:j,2),'makima'); 

 

 

                    end 

                end 

            end 

    end 

end 

 

eda_filtered(:,1) = eda_data(:,1); 

eda_filtered(:,2) = eda_data(:,2); 

eda_filtered(:,3) = eda_filtered1'; 

end 

 
Published with MATLAB® R2021b 
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APPENDIX B 

Other related work  

I was awarded the UKRI – MITACs research award which funded my placement 

in the Human Factors and Statistics Lab (HFASt), at the school of Mechanical and 

Industrial Engineering (MIE), University of Toronto. For this project, I investigated the 

use of sensor-fusion of physiological sensors and eye-tracking, to develop machine 

learning models that can predict drivers’ future takeover performance, for if and when 

they resume manual control of the vehicle. The outcome of this research is currently 

in preparation for submission as a journal manuscript by August 2022. 

 


