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Abstract

We analyse the performance of control systems that are subject to stealthy data-integrity
attacks. We derive different attack strategies on multiple control system architectures and
study the effect of these attack on control systems. These attack strategies range from
deterministic Denial of Service (DoS) attack to random data-injection attacks. All of these
attack construction alter the integrity of the data sent over a communication channel.
Namely, for the DoS attacks the attacker drops the packet containing the information and
through a data-injection attack the attacker degrades the signal with additive noise.

The performance of control systems with input packet losses on both communication
channels in a control system is analysed. We conduct this analysis for two separate
communication protocols. Namely, the TCP-like and the UDP-like communication proto-
cols. The TCP-like protocol provides the controller of the control system with additional
information, and therefore, the comparison between TCP-like and UDP-like is equivalent
to a comparison between systems with differing information. We provide a proof that
linear optimal control systems operating with limited information, i.e. the UDP-like
communication protocol, have a larger quadratic cost. This holds for multidimensional
communication channels including communication channels that are characterised by
non-stationary sequences of packet loss. The difference in cost that results from operating
with limited information is analysed, enabling a quantification of the maximal difference.
We also provide a scheme for the joint optimisation of the cost of communication and the
cost of optimal control. We show that for the operator using the maximum likelihood
detector the attacker can construct a stealthy attack. The performance of the attack is
measured in terms of the increase of the linear quadratic cost function of the operator
subject to a given detection constraint. The explicit characterisation of the expected cost
increase of the optimal stealthy attack construction is provided and the for the IID attack
bounds on the probability of detection are given.

Following the analysis of control systems with packet loss we consider systems with
additive white Gaussian noise (AWGN) communication channels. We provide explicit
characterisation of the cost increase caused by the error within each of the AWGN com-
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munication channels. Once more we consider systems with differing levels of information.
Namely, we provide this characterisation for three separate system architectures which are
reminiscent of the UDP-like and the TCP-like protocols from the prior chapters. From this
analysis it is seen that once again by limiting the information available to the controller
the operator of a control system necessarily increases the cost of controlling a system. We
characterise this cost increase explicitly for each system architecture and each AWGN
channel within each system architecture. After presenting the framework for optimal
control over AWGN channels we present a random data-injection attack construction and
characterise the cost increase caused by the data-injection attack on each multidimensional
AWGN channel. The attack is analysed and we provide a lower bound on the optimal
attack strategy that enables the attack to remain undetected. Additionally, we provide
an exact solution to the optimal stealthy attack construction for scalar communication
channels. For all analytical results we also provide case studies on control systems to
numerically evaluate the results presented.
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Chapter 1

Introduction

There are three pillars in cyber security: authentication, privacy, and integrity of com-

munication channels. Conventionally, this consists of preventing access to the system

through cryptographic techniques. However, encryptions are breakable. Specifically, given

enough time and computational power, any encryption key can be broken, or alternatively,

secure encryption keys can be stolen. It should be noted that current encryptions, with

current computing power, typically take longer than the age of the observable universe

to crack [42, 74]. However, these time frames are given under the assumption of brute

force methods. Namely, attempting every possible combination of a cryptographic key.

Encryption keys can also be broken through use of what is known as side information. This

practice is the use of information outside of the encryption to help guess the encryption

key. It is shown in [26] that it is possible to crack a 4096-bit RSA encryption through side

information. Specifically, they crack the encryption key through monitoring the sound of

a system using the encryption key to decode a file. When an encryption key is cracked,

all three pillars of cyber security fail for the entire system. However, a control system

that is secure in an information-theoretic sense is unbreakable in a given time frame or

computational power [23]. This claim is sometimes able to be extended to include future

computing power e.g. quantum computers [10], where all current encryption schemes

become redundant [22]. An example of an information theoretically secure system is the

One Time Pad. This encryption scheme is provably secure and termed to have perfect



Introduction 2

secrecy [23, 76]. Therefore, a system operator guarantees fundamental limits on the

systems security when the system is secure in an information-theoretic sense. These limits

are never exceeded under the conditions they are valid for.

There is a growing interest in the community for the security of control systems

operating over critical systems and infrastructure. This increase in interest has been driven

by recent security incidents, such as [39, 35, 70, 16]. These attacks highlight the risk

of interconnecting control systems with sensing and communication infrastructure. In

particular, these malicious agents compromise part of the observation and/or actuation of

the control system. In doing so, the attacks upon these systems have attracted significant

interest in the control, communication, and signal-processing communities.

An attack that is able remain undetected while penetrating the encryption layer and

compromising at least one of the three security pillars is known as a stealthy attack. This

project grounds itself in this scenario. Namely, the scenario of an attacker/attack upon

a control system that has bypassed the encryption layer whilst remaining undetected.

Therein we develop methodologies that provide security in situations where traditional

cyber security fails.

The Stuxnet worm [51, 39, 52] achieved precisely the objectives stated above. Namely,

the Stuxnet worm bypassed the encryption layer and compromised a control system

while remaining undetected. Stuxnet was the first cyber-weapon to physically damage a

control system and in doing so it crossed the boundary from a cyber attack to a cyber

physical attack. This is a direct result of the interconnectivity of sensing and control

systems. By compromising the cyber portion of the control system, the Stuxnet worm

was able to affect and damage the physical world. In particular, the worm targeted

the programmable logic controllers of the centrifuges responsible for separating nuclear

material in approximately 1000 [51] Iranian plants [51, 40]. It infiltrated, replicated,

and spread throughout the system. This is the first case of a malware worm using the

supervisory control and data acquisition (SCADA) systems in place [51, 38, 24]. However,

unlike other programs, it specifically selected which systems to infect. Once it had gained

access to control of the system, it intentionally withheld its full potential for damage
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in order to remain undetected. In fact, Stuxnet performed what is known as a replay

attack on the system [51, 49]. This entails recording the nominal function of the control

system and replaying this back to the controller while intentionally perturbing the system.

These perturbations were achieved through the actuators of the system that already

existed. The worm remained undetected for months and is thought to be the reason why

Iran decommissioned nearly 1, 000 centrifuges between 2009 and 2011. The strategy of

withholding potential for immediate damage in order to remain undetected and, therefore,

cause more damage over a longer period of time is a trade-off that appears multiple times

throughout this thesis.

In a similar vein to Stuxnet, NotPetya is another cyber worm. NotPetya however, is

known as a Ransomware worm. This is because the NotPetya worm locks the user out of

the system until a bitcoin ransom is paid. Note however, that this worm is not stealthy.

This is due to the fact that although it has bypassed layers of encryption, it does not

remain undetected throughout this process. The attack performed by NotPetya is be

modelled as a Denial of Service (DoS) attack on the control systems. This attack strategy

is common and is explored throughout the literature [78, 58]. Although this is not the aim

of the NotPetya worm, a DoS attack can be utilised for a stealthy attack construction given

that the control system already postulates a portion of packet losses. This is intuitively

termed as hiding in the noise. NotPetya infiltrated several systems including control

systems in Ukraine, among these, the radiation sensors outside Chernobyl. The control

systems that were affected were mainly power substations. On 30 substations not only

did the malware shut them down and cause power outages, but NotPetya simultaneously

performed Distributed Denial of Service (DDoS) attacks on call centres in parallel to

cause delays in getting the substations back on-line [16]. If a worm of this nature were to

specifically attack a control system, there could be safety critical failures. If the operator

of the system is locked out of the controls via a DoS attack, the closed loop control system

becomes open loop. For any health or safety critical control systems this could result in

serious harm, either physically or economically.
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Another Ransomware worm is WannaCry. This worm demands payment for access back

into the system. However, instead of locking the user out of the system, it encrypts all of

the data and demands payment. Although both WannaCry and NotPetya infiltrated and

affected systems, they lacked the stealthiness and sophistication of Stuxnet. For example

another Ransomware program, known as CryptoLocker, infected a utility in Brazil [16],

but this infection was instantly detected and control of the system was transferred to a

back up system. The infected machines were then destroyed [16]. Whereas if Stuxnet had

been used, the worm could have infected far more machines before becoming detected.

At which point it would have caused more damage over a longer period of time before

being discovered. This in turn would result in more financial damage to the company than

CryptoLocker achieved.

All examples above are scenarios where traditional cyber security mechanisms failed.

All of these attacks occurred in the last ten years. Given that these cyber worms have

been released, their behaviour can be analysed and replicated. This exact process is seen

in laboratory studies [6]. The above highlights the need for a system (potentially safety

critical) to be able to ensure its safety, even when subjected to a cyber-physical attack, is

becoming evident in the current geopolitical climate.

With this in mind the PhD project focused upon the effect of optimal attacks within

control systems that remain undetected. For this PhD an optimal attack is defined as

the attack, or set of attacks that maximise the operator’s optimal control cost while

remaining undetected. A detection constraint is simultaneously imposed as a constraint

in the optimisation of the attack strategy, but is also operator’s mechanism for detecting

a malicious attacker in the system. Namely, the detection constraint ensures a given

outcome of the hypothesis test, on average. We derive these optimal attacks on control

systems and the resultant optimal control laws for those systems. Our aim is to inform

system operators of the degrees of security that detection constraints give them. Namely,

for a given detection constraint, what is the most damaging attack that can occur? This

question rests at the core of our work. Answering this question for given system constraints
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allows an operator to control not only the system, but the security and the maximal

damage a given attack can cause before the attack is detected.

Within this thesis we consider both DoS attacks and data-injection attacks upon control

systems. We show that not only do optimal stealthy attack constructions exist for control

systems, but we are able to quantify the damage each of these optimal attacks cause. In

doing so we provide analysis of different control system architectures. Namely, we study

the use of feedback communication channels to combat DoS attacks and introduce the use

of an auxiliary channel within a control system experiencing a data-injection attacks. We

explicitly quantify the additional safety these communication channels give in addition to

showing how the expected cost of a control system under nominal conditions is reduced

with the presence of these additional communication channels.

The thesis is structured as follows, Chapter 2 contains the literature review of the

subject matter and the surrounding areas; Chapter 3 utilises the framework within [59]

for the operator of a system and derives an optimal stealthy DoS attack upon the system;

Chapter 4 takes the framework of [59] and extends the scalar channels therein to the

multidimensional channel scenario, in doing which we provide analytic proofs of cost

differences caused by the feedback channels; Chapter 5 builds upon the multidimensional

communication channels constructed within Chapter 4 and derives an optimal random

DoS attack upon the system, where the attacks derived are able to be tuned for a trade-off

between probability of detection and the magnitude of cost increased; Chapter 6 steps

away from the DoS regime and considers a control system with multidimensional Gaussian

channels, in doing which we derive the optimal cost of the control systems and explicitly

show the additional cost induced by controlling a system over imperfect communication

channels; Chapter 7 builds upon the system structure outlined within Chapter 6 and derives

the optimal random stealthy data-injection attack, where the derivation is performed for

multiple system architectures and the differences in resultant cost are quantified; Chapter 8

is concerned with the implementation of the control laws and attack strategies of all of

the previous chapters; Chapters 9 and 10 discuss the future of the work and conclusion of

the thesis, respectively.
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In addition to this thesis there have been publications such as [19] that focuses on

the DoS attacks contained within Chapter 5, and the recently submitted work [20] which

contains the some of the work within Chapter 4.



Chapter 2

Literature Review

When studying the surrounding literature there is a clear divide between approaches. The

first approach is system analysis. This approach does not consider the presence of an

attacker within the system construction. However, these areas of work could be interpreted

in that way, an example of this is seen in [59]. Within [59] the authors consider a system

that randomly drops packets upon the communication channels, and although they do not

consider these drops to be caused by an attack, it is easily interpreted as a DoS attack.

Another approach is where authors analyse an attack on a system from a system theoretic

approach. The third approach is similar to the previous. However, with the exception that

the problem is assessed from an information theoretic perspective. This approach is taken

within [34]. Unfortunately however, this work does not consider control systems. Therefore

in doing so, their work does not readily transfer to the control system architecture. This

is due to the fact that there is memory within a control system. Specifically, a control

system is Markovian in nature and therefore future states depend on the previous. The

work within [34] only considers Independently and Identically Distributed (IID) states.

When considering the cyber security of any system, first the vulnerabilities must be

mapped. Therein [48] highlights some of the security concerns of the smart grid. These

vulnerabilities range anywhere from gas and electric meter bypassing to the Stuxnet

computer worm [39]. A model of the smart grid is proposed in [48] to analyse the security

challenges of the system. The model proposed contains all the layers of the smart grid.
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These are known as: the Wide-Area Network (WAN), the Neighbour-Area Network (NAN),

and the Home-Area Network (HAN). Through introducing each layer, the authors propose

attacks that have the ability to be launched on the system at each of these layers. In

doing so they highlight what they consider the three main security requirements from a

system: confidentiality, integrity, and availability. It is clear why these three properties

are required for a system to be considered secure. Confidentiality is required so that a

system is able to guarantee it is communicating with an authorised user, or similarly it

must be certain that there is no eavesdropping over the communication channel between

the two systems. This relates to the authenticity and privacy pillars we have proposed.

This pillar is usually safeguarded with standard encryption techniques, using either public

or private keys for encryption. Within [48] the customers power usage is considered as

the smart grids confidentiality pillar. This stems from the fact that an unauthorised user

knowing the usage pattern of a customer reveals the personal activities of the customer [4].

Integrity is needed such that any data received is considered reliable and unaltered. For

the smart grid, this is ensuring that the metering costs are unaltered, genuine and from

the energy provider. Finally, availability is needed to ensure attacks that take the form

of denial of service (DoS) do not damage the system. In the smart grid no availability

of power results in black outs. Counter measures for attacks are proposed after the clear

vulnerabilities of the smart grid are shown, such as its entry points and a range of possible

actions that can be performed once access is granted. These countermeasures range from

careful key management, in order to inhibit unauthorized entries, to the redesigning of

the network topology entirely, in an effort to build a secure network from the ground

up. The key element is that for the smart grid to be secure, it is not enough to consider

the problem solely from a cyber security or system-theoretic perspective. Cyber-physical

security is introduced and it highlights this area as a research challenge for the forthcoming

years. Only a few years after [48] was published, the NotPetya malware exploited a lot

of these vulnerabilities, highlighting the need for improved security. These points have

motivated the need for a combined cyber and physical security approach in order to solve

the problems we face.
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2.1 Control Systems with Lossy Communication Chan-

nels

When considering malicious attacks on control systems, random packets drops in the

communication links arise naturally. Packet drops are a result of multiple effects within

communication. They can be the effect of high traffic within a network, noise during

wireless communication, or even the result of a DoS attack. In [59, 58, 66, 46, 65, 63, 56],

control systems with packet loss in the communication channels between the plant and

the controller are modelled and analysed. In doing so, the foundations for control and

estimation over lossy communication channels are established. The optimal control law

and estimator is derived for both protocols in [59] using dynamic programming. A control

system that is susceptible to packet loss on the communication channel from the plant

to the controller is considered in [63]. In [59] and [46] the work of [63] is extended to

systems with packet loss in both the sensing (plant to controller channel) and the actuation

(controller to plant channel) communication channels. In [65] and [66], systems with and

without an acknowledgement link respectively are considered. These approaches analyse

the performance of the controller and characterise the trade-off between the control system

cost, stability, and the properties of the communication channel. More specifically, in [59]

the authors model the performance of a Linear Quadratic Gaussian (LQG) controller that

is experiencing packet drops on the communication channels between the plant and the

controller. The loss of a packet between the plant and the controller is modelled as a

Bernoulli random variable. An IID sequence of Bernoulli variables, although sufficient for

the purpose, do not accurately model a real packet drop channel within a wireless network.

This is due to the fact that losses tend to be dependent on previous time instances [13].

Intuitively, if there is interference in a signal at a given time instance it is more likely that

the same interference will also cause interference with the following time instance. In an

effort to model this effect more accurately in [47], the authors consider a two-state Markov

chain to model the memory in the packet losses. Therein the authors investigate how,

under different protocols, the stability region of the system differs due to the lossy links
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connecting the system. Within both of the works, [59, 47], two protocols are considered:

TCP-like and UDP-like. The scenario where a system that has an imperfect communication

protocol is discussed in [29]. The UDP-like protocol considered in these works is currently

the more realistic scenario for most control systems. Namely, the standard form of practice

has no auxiliary feedback channel that is present in the TCP-like protocol. The authors

conclude in these papers, [59, 47, 29], that the infinite horizon cost of the system is bounded

if and only if the probability of packet loss is below a critical threshold. It is also shown

that in the UDP-like case, the separation principle between control and separation no

longer holds unless there is a perfect communication link between the controller and the

plant. This is caused by the fact that the estimation error covariance depends on the input

distribution, which in turn is dependent on the distribution of the packet arrivals on the

plant to controller link. Within [75] the authors consider the problem of optimising the

schedule of control signals within a networked control system. The authors utilise a time

based schedule as opposed to an event driven schedule but show that they are able to

minimise the average transmission power whilst maintaining the stability of the networked

control system.

A natural question that arises from the study in [59] is: given that the feedback link

in the TCP-like protocol is the only differing feature between the two separate protocols,

under which circumstances does the performance of the TCP-like case tend to performance

of the UDP-like case? This question is approached by Garone et al. [29] who consider an

acknowledgement link that also has a probabilistic loss parameter. This loss parameter

is also a Bernoulli variable. It is shown that in line with [59], if the Bernoulli parameter

governing the acknowledgement link tends to perfect transmission then the systems stability

region converges to the TCP-like case as seen in. Conversely, as this parameter tends

to a broken link, i.e. no transmission for all time instances, the systems stability region

converges to the UDP-like protocol case. It is also shown that as this parameter for

acknowledgement varies, the stability regions of the system also vary, although it is worth

mentioning that the systems stability region never exceeds either of the two extreme cases.

Therefore, given no communication link is perfect, this work highlights exactly what a
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particular system achieves and presents the worst case scenario for the system. On the

other hand it also presents the best possible scenario for a system operator i.e. TCP-like,

meaning that provided the system is performing sub-TCP-like then there is room for

improvement. It should be noted that if the acknowledgement link is not a perfect channel

then, as in the UDP-like case, the separation principle does not hold, and therefore, design

of the controller and the estimator must be conducted simultaneously.

Following on from [59], Mo et al. [47] extend the IID Bernoulli packet drop model to a

Markovian packet drop model. This choice is made to reflect the characteristics of wireless

channels more realistically. In this setting the system is assumed to be operating under

a perfect TCP-like protocol. As in [59], the TCP-like architecture means the controller

has access to the previous realisation of the loss variable. This allows the operator to

include this information in their computations of the optimal control law. Unlike [59], the

closed loop system only drops packets on the actuation link. This implies the controller

is co-located on the sensing side of the plant. The communication channel loss model is

governed by a two state irreducible and stationary Markov chain. The authors consider

an LQG optimal control problem. Therein it is shown that the system is stable provided

that the elements of the transition matrix for the Markov chain are within a specified

region. This region, surprisingly, is fragmented and the elements have dependence with

one another. This region resembles the stability region of the UDP-like protocol from [59].

It is shown that when the transition matrix is such that the realisation of packet delivery

is alternating at every time instance i.e. only actuating at odd or even time instances,

then the closed loop system is unstable. It should be noted that the if communication

channel of the systems is modelled as a Bernoulli process, the system remains stable if

the system is expected to lose half of its packets. It is also shown, in accordance with

the TCP-like protocol, that the optimal control input at each time instance is a linear

function of the states. In addition to this, the separation principle is shown to hold for

the closed loop system, provided it is operating with a TCP-Like communication protocol.

Therefore, the work in [47] shows that increasing the complexity of the loss variable, has

surprising results on the region of stability when compared with the IID Bernoulli case.
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Similar to [47], a Markov chain of losses in considered in [56], specifically the losses are

modelled with a Gilbert-Elliot model [31]. As an alternative to [47] the authors of [56]

analyse the problem of packet losses on the sensory link and assume the actuation link to

be perfect. However, in doing so they are able to show stabilising control laws exist and

present examples of these control laws stabilising a system even outside of the sufficient

conditions they provide.

2.2 Control Theoretic Analysis of Systems under At-

tack

To effectively detect attacks it is necessary to understand the advantages and limitations

of different detection strategies. In [54] the fundamental limits of monitoring within Linear

Time-Invariant (LTI) systems are analysed. Formal definitions of undetectability and

unidentifiability are provided. An unidentifiable attack is one that can be detected, but

cannot be distinguished from another attack. For example, two separate attacks may be

indistinguishable from a single attack on the same system, even though the presence of an

attack is detected. This is considered the problem of assigning ownership to an attack.

An undetectable attack is by definition also unidentifiable, and therefore, an undetectable

attack has a stronger sense of stealth. The authors also introduce the idea of active

and inactive monitors. Active monitors inject their own auxiliary input signal, as seen

in [49], for detection purposes. Conversely, inactive monitors only assess the incoming data.

Additionally, the authors consider both centralised and decentralised attack detection.

The difficulties in identifying distributed attacks are highlighted. Naturally, as mentioned

above, a single attack that is distributed on separate systems is difficult to distinguish

from two separate attacks on separate systems. The problem is approached using system

theoretic and graph theoretic tools. It is concluded, in line with [53], that an attack on the

IEEE 14 bus test system is undetectable to a static monitor, if and only if more than three

sensors are corrupted. These findings are concurrent with those in [49], although the case

study is not on the IEEE 14 bus within [49]. On the same test system it is shown that a
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dynamic detector detects any attack of this construction, independent of the proportion of

sensor corruption. There is also a case study on the IEEE 118 bus test system in which it

is divided into five zones where it is assumed that all generators in a zone are compromised.

The simulations corroborate that the attacks are detected using their proposed distributed

detection filter.

Within [78] the authors consider wireless networked control systems (WNCS) that

are subjected to Denial of Service (DoS) attacks. Unlike other works, [78] considers the

problem from the standpoint of the attacker as opposed to the operator of an unstable

system. The objective of their investigation is to produce an optimal schedule of when

to attack the system. As mentioned above, their attack is constructed as a DoS attack.

The scheduling of the attack is restricted such that the attacker has a finite amount of

energy to expend. The objective of the attacker is to maximise the cost function of the

operator. This work uses the same framework as in [59], i.e. an erasure communication

channel [25]. The attacker is assumed to have full knowledge of the system and attacks

the sensing communication channel. The attacker is also given a selected period of ‘active

time’, this is a predetermined window in which the attacker has the ability to jam the

communication channel. Outside of this active period, the attacker can not jam the

system and must remain inactive. When the operator is implementing the optimal control

strategy, as presented in [59], the best attack for any given active window is a constant

stream of jamming for as long as the attacker can allow with the allotted energy. It is

shown that the system remains stable, in the sense of bounded state covariance. The

only situation where the system is not stable is when the ‘active’ window for the attack

tends to infinity. Naturally, this scenario corresponds to the system running open loop.

This is due to not being able to measure the control system states, and therefore, the

system tends to instability. Within [78] the authors also present case studies on single

and multiple subsystems. In these case studies it is consistently shown that the optimal

attack schedule drives up the cost of the system. However when looking at the case studies,

there are signs that there is room for improvement with this attack strategy. Namely, the

optimal schedule derived gives rise to ‘spikes’ in state magnitudes. This spike in state
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would cause the attack to be detected for most attack detection methods described in the

above literature, for example, the detection constraints seen within [49, 54, 53]. Due to

this, an optimal attack in this framework needs to take more into consideration than the

sole objective of maximising the cost of the operator. Specifically, the attack construction

also needs to consider limiting the short term cost increase in order to remain undetected.

In doing so, an attack would be able to cause a larger cost increase over a longer period of

time.

A more sophisticated attacker may be able to not just drop packets, they could

potentially also inject their own signals. In [49] a standard LQG optimal controller is

considered and for detection purposes, the authors employ a χ2 failure detector with a

monitoring signal. The system is subjected to a replay attack. This attack is implemented

after a fixed training window for the χ2 detector. In this scenario the detector requires

a guaranteed time window with no attack present for the detector to be effective. This

means the system does not account for attacks that are present from day zero of the system

operating. A replay attack entails the attacker recording the incoming measured data and

then ‘replaying’ the recorded data back to the controller whilst perturbing the actuators

if desired. This method is the attack technique used by Stuxnet [39]. This leaves the

operator unaware of the attack, provided that the attack is stealthy. Whilst in operation,

the χ2 detector monitors the measurement and decides whether these values correspond to

nominal operation. The setting in [49] assumes that the attacker injects the attack signal

at any time outside the training window. It is also assumed that the attacker has access,

and the ability to record signals coming from the plant whilst simultaneously modifying

the packets on the actuation link. In order to detect the replay attack, a monitoring signal

is used. The monitoring signal is an IID sequence of random variables with a Gaussian

distribution of zero mean and covariance matrix L. This signal is injected into the control

law. The χ2 failure detector is used to determine whether this lies in the characteristics

of normal operation or if the signal representative of an attack. In the simulations it is

shown that systems without a monitoring signal are susceptible to replay attacks. It is

concluded that the larger the covariance of the monitoring signal between time instances,
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the higher the probability of detecting a replay attack. It is also investigated whether the

training window size affects attack detection. Interestingly, the χ2 has a faster response

to the attack with a smaller training window. However, it has a lower detection rate

overall when compared with a larger training window. It is noted that by including the

monitoring signal, the system loses 9% efficiency, with respect to the optimal LQG cost,

but the detector gains 35% increase in probability of detection. Once again, a trade-off

appears between security and efficiency.

Cyber-physical attacks in power networks are the main focus of [53]. The authors

investigate the performance of different types of attack detectors. The discussion revolves

around how static and dynamic detectors determine differ in their performance during a

malicious attack. A static detector checks a data signal at discrete time intervals and does

not take into account the system dynamics whereas a dynamic detector checks signals on

a continuously. This work defines detectability as whether an attack is distinguishable

from nominal operation. The paper concludes that, for the IEEE 14 bus test system, the

static detector only detects the attack if the attack compromises four or more sensors,

whereas the dynamic detector detects an attack independently of the number of sensors

compromised. This suggests dynamic detectors are more effective at detecting malicious

attacks.

2.3 Information Theoretic Analysis of Systems under

Attack

In the above attack scenarios, [53, 54, 49, 78], the authors approached the problem using

control and system theoretic techniques. The following works address similar issues,

however, they approach the problem from an information theoretic standpoint. The

definitive starting point for information theory is with Shannon [60]. In this paper,

Shannon quantified exactly what society meant by information and communication. In

doing so he simultaneously addresses the limit at which it is impossible to guarantee perfect

communication. This is known as the channel capacity. This is where the field began, but
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quickly the topic grew, measures such as the Kullback-Leibler divergence (KL divergence)

and mutual information appeared. We utilise some of these measures throughout this

thesis.

Yu et al. [77] asses the effectiveness of an information-theoretic measure, the KL

divergence. The authors assess its effectiveness as an attack detection filter. They assess

the effectiveness for a Distributed DoS (DDoS) attack. The attack is designed such that it

mimics network traffic. It is particularly difficult to discern this attack construction from

an unusually high amount of legitimate network flow. This issue of identifying a genuine

traffic surge within a network compared with a malicious attack is addressed throughout

[77]. The paper assumes the attacker creates packets according to either a Poisson or

chi-squared distribution. These packets are created at all of the ‘zombie’ IP addresses. A

zombie address is an address that has been made a slave to the attackers computer. It

is also assumed that the attacker only targets a single server. The background network

traffic, or nominal network traffic, is assumed to follow a Poisson distribution. The paper

addresses the need for a fast detection window in an attack scenario, whilst maintaining a

low false alarm rate. In order to apply the information metric, the authors look at the

packet flow through the routers in the network. When a suspicious amount of traffic is

detected, the routers begin to count the packets travelling through them. After doing so,

they monitor the KL-divergence of the separate flows throughout the routers, following

which a decision on the attack presence is declared. In simulations the authors consider

a network of 21 routers and 336 network nodes. The KL-divergence of the flow between

nominal traffic and the flow caused by an attack, as well as the KL divergence of two

attack flows is considered. In doing so, it is identified that a clear difference between the

two cases of traffic flow exists. However, the authors fail to explore the KL-divergence of

two normal traffic flows. In neglecting this possibility there is a chance that an influx of

legitimate requests flag as an attack. This raises the potential for a false alarm. Similarly,

by considering the difference between an attacked and nominal traffic flow as the normal

case there is a non-zero possibility of a DoS slipping through the detection filter.
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An additive attack within the smart-grid is considered in [34]. This is done using

information theoretic tools. The additive attack used is a more general attack construction

than a DoS attack. In [34] the problem of estimation whilst under attack is considered.

However, it should be noted that the states of the system are modelled as IID states, and

therefore, the results derived do not apply directly to control systems. This is due to the

attacks constructed not taking into account the memory in the states. Ke Sun et al. [34]

consider a stealthy IID attack strategy. In this scenario this assumption is valid, however,

if an author were to extend this work to a control system there is reason to believe an

attacker could take advantage of the structure within the system. The authors construct

a utility function that consists of two terms. One term governs the attacker’s objective

for damage to the system, the mutual information. The other term is responsible for the

attack detection, KL divergence. The attacker aims to minimise this function so that there

is maximum damage caused with the minimum chance of detection. Note that minimising

the mutual information between two distributions causes greater errors in the estimation

of one random variable through use of the other [25]. The case when the attacker has finite

training data to construct the attack is considered. It is shown that an attack constructed

from the training data converges to an attack with full knowledge. The rate of convergence

of this attack construction is also assessed. During simulations, the Signal to Noise Ratio

(SNR) is adjusted to assess the performance of the attacker. In addition to this, Ke Sun

et al. [34] also vary the covariance of the random variable being estimated. It is seen that

when there is an abundance of noise, the attacker can attempt to ‘hide’ amongst it. This

means that the KL divergence is smaller when compared with a higher SNR signal. It is

also seen that the smaller the correlation, the faster the attack converges to the optimal

attack. This convergence is quantified in terms of number of samples needed. However,

it is also seen that the optimal attack is when there is a high correlation in the system,

therefore, a trade-off appears between rate of convergence to the optimal attack and the

performance of the optimal attack.
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2.4 Information Theoretic Approaches to Control

Theory

There are approaches that have attempted to integrated information theory into control

theory. The main goals of these works are to generalise the communication channels within

control [21] or to quantify the cost of communication [37]. Specifically, within [37] the

authors quantify the trade-off between the communication rate over the communication

channels and the the expected quadratic cost function of a control system. In doing so they

present a lower bound on the communication rate necessary to attain a given quadratic

cost. It is not however considered within an attack framework. Namely, [37] does not

consider the presence of an additional malicious agent that is attempting to increase

the quadratic cost of the control system. In a similar vein, [21] generalises the model of

the sensory communication channel within a control system. The authors characterise

the resultant cost of a control system that transmits the sensory information over an

imperfect communication channel. They show that the resultant control system cost

increase caused by communicating over an imperfect sensory communication channel is

able to be decoupled from the cost of controlling a system over a perfect communication

channel. In doing so, this allows the problem of control optimisation and communication

optimisation to be considered separately. It is however assumed in [21] that there is a

perfect communication channel from the controller to the plant. Once again, there is no

consideration of the malicious presence of an attack in the system model within [21].

The surrounding literature is mainly focused on the control theoretic side of the cyber

security problem, [49, 54, 53], where a similar problem to ours is approached. However,

the methodology used differs greatly. Conversely, as seen in the field of information

theory, the cyber-physical security aspects of control systems are still not well understood.

However, the problem of cyber security is addressed outside of a control system setting [34].

As seen above there is a clear gap between the information theoretic and the control

theoretic approaches. This thesis aims to explore the gap between these two fields by

using information theoretic tools to study the security issues within control systems.



Chapter 3

Deterministic Denial of Service

Attacks in Control Systems

3.1 Chapter Introduction

Under normal operation a communication network drops packets as a result of many

factors. These factors include congestion within the network; errors within the channel;

and delays within the network. Therefore, it is reasonable to assume that the operator

of a wireless or networked control system assumes a proportion of packet loss over a

communication channel. In [57] packet loss in wireless control systems is studied, and a

nominal level of packet loss is established for normal operation conditions. In view of this,

an attacker may attempt to disguise an attack that induces packet loss as nominal packet

loss. In doing so, the attacker is able to strategically drop packets without being detected.

This idea is analogous to an attacker hiding among the noise in an additive attack [34]. To

that end, the derivation of an optimal and stealthy Denial of Service (DoS) attack is the

focus of this chapter, specifically, a stealthy deterministic DoS attack. The first step to

achieve this is to establish how an optimal deterministic DoS attack affects a system and,

more importantly, how it differs from the probabilistic case in [59]. In our first approach

we do not consider a detection constraint, the stealth of the attack is studied later.
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The problem contains two different perspectives: the operator of the system, that

assumes IID packet loss, and the attacker, that wishes to attack this system whilst

remaining undetected. It should be noted that the attacker is assumed to have full

knowledge of the system model. This includes the probability of packet loss postulated

by the operator. The attacker having a priori knowledge of the system is a reasonable

assumption given that with full knowledge of the system the attacker can only do better

than an attacker with a subset of the full information [72]. Therefore, with full knowledge

of the system, the attack is considered the worst case attack of that type for the operator.

Naturally, if the operator of the system is armed with the knowledge of the worst possible

attack scenario and it is within acceptable limits, the system is considered safe for that

attack strategy.

3.1.1 Communication Protocol

In the following derivation in this chapter, the operator chooses to implement the TCP-like

communication protocol. The TCP-like protocol differs from the TCP protocol used in

communication literature in that a lost packet is not automatically re-transmitted to the

plant, since there is no reason for this to be useful any longer to the optimal control

input. This is a result of the most recently calculated control signal being the most

vital for the plant to receive. For example, due to the fact that there is no estimation

performed at the plant, in addition to the presence of uncertainty within the system,

the most recent measurement contains the least uncertainty of the current state of the

system. Due to this, in the event of a packet loss, the plant performs no actuation as

is assumed in [59, 65, 66, 46] and is the main focus of [58]. In [58], a comparison of

different control strategies in the event of packet loss is studied. They study the effect of

a smart actuator that supplies the previous input in the event of a packet loss. Therein

they conclude that there exists a trade-off between the zero-input and the hold-input

strategies. Specifically, in the high packet loss percentage scenario or the ‘cheap control’

scenario, where the zero-input strategy is superior in terms of Linear Quadratic Gaussian

(LQG) cost. The ‘cheap control’ terminology corresponds to a control law that does not
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Plant

Delay

Controller

Delay XkVk

Fig. 3.1 The TCP-like system model, where the dotted line represents the transmission of
information and the dashed box shows the communication channel between the plant and
controller.

penalise the actuators heavier than the states. Furthermore, the stability regions for both

strategies are the same. For that reason, the work below adopts the zero-input strategy

for mathematical convenience. A control system communicating with a TCP-like protocol

is depicted in Fig. 3.1. The presence of the information link that transmits the packet

loss information back to the controller enables the operator to update the state estimate

with the realisation of the random variable. It does not however allow the operator to

know the realisation of the random variable before transmitting the control signal over

the communication channel to the plant. In, [59] the operator communicates over two

different protocols. Namely, UDP-like or TCP-like. UDP-like lacks the acknowledgement

link that the TCP-like protocol has. In the remaining sections of this chapter we do not

consider the possibility that the operator communicates using a UDP-like protocol. The

reason for this is if the operator implements a UDP-like protocol, the operator will have no

access to the realisations of the random variable Vk. Therefore, the detection constraints

implemented later on would have to be radically different from the detection constraints

of the TCP-like protocol. Namely, the operator would have to implement an additional

hypothesis test in tandem with the attack test to decide if the packet was dropped. At

each time instant, the additional hypothesis test would be to decide if at the previous time

instant the system was open loop or closed loop.
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3.2 System Model

The state space system under DoS attack is modelled as

Xk+1 = AXk − VkBKX̂k +Wk, (3.1a)

where A ∈ Mn represents the dynamics matrix; Xk ∈ Rn is the state vector at time k

with k ∈ N; X0 is drawn from the Gaussian distribution N (X0,P0) where X0 ∈ Rn

and P0 ∈ Sm
++ are the mean and covariance of X0 respectively; Vk ∈ [0, 1] is the packet

loss variable modelled as an IID Bernoulli random variable with mean V ; B ∈ Mn×m is

the control matrix; Wk ∈ Rn is a Gaussian distributed independent random variable with

mean 0 ∈ Rn and covariance matrix ΣW ∈ Sn
++ ; and K ∈ Mm×n is the constant gain

determined by the system dynamics. Note that with the system model in (3.1a), we adopt

the same framework as in [59]. We require no specific restrictions on the relations of the

pair (A,B) in order to perform the analysis below. However, it follows from standard

theory that in order to have a stabilising control law the pair must be reachable. Similarly

this statement holds for the dual problem of the observability of the system.

Prior to the attack, the system is assumed to achieve a steady state input. It is shown

in [59] that the optimal input for any time instant k after steady state is reached, is a

constant linear function of the state estimate, i.e. U∗
k = −KX̂k|k where X̂k|k is the optimal

state estimate at time instant k given all previous measurements. It should be noted

that the steady state input does not mean the system is in steady state. The system is

considered stable in the sense that the covariance is bounded, and therefore, the states do

not approach 0. The system communicates over the channel with a TCP-like protocol, as

in [59], i.e. the controller always knowledge of the previous loss realisation vk for estimation

purposes.

The observations are modelled as

Yk = CXk + Zk, (3.1b)
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where Yk ∈ Rq are the observations at time k; C ∈ Mq×n is the observation matrix;

and Zk ∈ Rq is the observation noise at time k that is modelled as an independent

Gaussian random variable with mean 0 ∈ Rq and covariance matrix ΣZ ∈ Sq
++.

3.3 Operator Model

At every time instant, the operator has access to a given amount of information determined

by their information set. For the TCP-like protocol the information set is defined as

Ok ≜ {Vk−1, Yk,Ok−1} , (3.2)

where Vk−1 =
{
v0, . . . , vk−1

}
; Y =

{
y0, . . . , yk−1

}
; vk represents a realisation of the random

variable Vk at time instant k; yk represents a realisation of the random variable Yk at time

instant k; and by definition Ok contains all realisations of Vk up to time instance k − 1,

in addition to the current and all previous measurements Yk. In order to assess to the

efficiency of the control system we introduce a Linear Quadratic Gaussian (LQG) cost

function. The cost of the system for the operator is

JN(X0,P0) =E
XT

NQXXN +
N−1∑
k=0

Xk

KX̂k


TQX 0

0 VkQU


Xk

KX̂k


∣∣∣∣∣∣∣∣∣X0,P0

, (3.3)

where QX ∈ Sn×n
++ is the state penalty matrix; QU ∈ Sm×m

++ is the input penalty matrix;

N ∈ N represents the time horizon; and K ∈ Mm×n is the constant gain of the control

law. The optimal cost for the operator is defined as

J∗
N(X0,P0) = min

K

E
XT

NQXXN +
N−1∑
k=0

Xk

KX̂k


TQX 0

0 VkQU


Xk

KX̂k


∣∣∣∣∣∣∣∣∣X0,P0


. (3.4)
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It follows from [59] that K is determined by the solution of a Modified Algebraic Riccatti

Equation (MARE). Specifically, the optimal gain K∗ is given by

K∗ =
(
QU + BTS∞B

)−1
BTS∞A, (3.5)

where S∞ is defined as the steady state solution of the MARE

Sk = ATSk+1A + QX − VATSk+1B
(
QU + BTSk+1B

)−1
BTSk+1A. (3.6)

It should be noted that this “optimal gain” is in fact suboptimal, we have used this

terminology due to the fact that it is the gain matrix that comes from the steady state

solution of the optimal time-varying Riccati equation. This restriction is dropped later

on and the operator uses the true time-varying optimal gain matrix. The proof of the

derivation of the time-varying gain matrix is, for convenience, reported in Appendix A.2

and follows a dynamic programming argument. Following the same approach as in [59],

the estimation of this process rewritten in terms of the constant gain K is

X̂k+1|k =E
[
AXk − VkBKX̂k +Wk

∣∣∣Ok, vk

]
= (A − VkBK) X̂k|k, (3.7a)

Ek+1|k =Xk+1 − X̂k+1|k

= AEk|k +Wk, (3.7b)

Pk+1|k =E
[
Ek+1|kE

T
k+1|k

∣∣∣Ok

]
= APk|kAT + ΣW , (3.7c)

where it should be clear that the operator has access to the realisation of the packet drop

parameter for estimation due to the TCP-like system architecture. As shown in [59], the
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optimal cost at time N the time horizon, is

J∗
N(X0,P0) =XT

0 S0X0 + tr(S0P0) +
N−1∑
k=0

tr (Sk+1Q)

+
N−1∑
k=0

tr
((

ATSk+1A + QX − Sk

)
Pk|k

)
, (3.8)

where Sk is the MARE governed by (3.6).

Throughout later sections, the model for the operator does not change. Namely, the

attack strategies derived below all assume that the operator performs the system control

algorithms detailed above, unless stated otherwise.

3.4 Detection Constraint

In the previous section we define the operator’s control and estimation process. However,

the operator also monitors the communication channel and employs a detection strategy.

The operator postulates two properties from the sequence of packet drops. Namely, the

sequence of packet drops {Vi}N
i=0 is an IID sequence, and that the packet drops follow a

Bernoulli distribution Vi ∼ Be
(
V
)
. With these postulates in mind, the operator constructs

their hypothesis test. We define that hypothesis test as

H0 : There is no attack present, Vk ∼ Be
(
V
)
, (3.9a)

H1 : There is an attack present, Vk ≁ Be
(
V
)
. (3.9b)

Naturally, due to the fact that this is a random sequence, there exists a non-zero probability

that a sequence of nominal packet losses (packet losses from a communication channel with

no attack present) causes result in an error in the hypothesis test decision. This is known

as a false alarm rate. Due to this fact the operator decides to accept the null hypothesis

for all sequences within a certain distance from the postulated statistics. Specifically, the

operator constructs an estimator of the communication channel statistics that is a function

of the measured packet losses V̂k = f (V1, . . . , Vk). From this estimator the operator then
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• Be
(
V
)

δ

H0

H1

{0, 1}k

Fig. 3.2 The probability simplex of the hypothesis test, clearly showing the regions of
acceptance and rejection of the null hypothesis.

measures the distance of this estimated distribution to the postulated distribution. Due

to the fact we have kept the function that the operator chooses to be arbitrary, we define

this distance in terms of the distributions. Therefore, the hypothesis test becomes

H0 : d
(
P

V̂k,V1,...,Vk
,PV

)
< δ, (3.10a)

H1 : d
(
P

V̂k,V1,...,Vk
,PV

)
≥ δ, (3.10b)

where δ > 0 is a constant to be tuned by the operator for a desired trade-off between

attack detection and false alarm rate and d (·, ·) is any distance measure between two

distributions. The hypothesis test in (3.10) is depicted visually in Fig. 3.2. It should be

noted that due to the fact that we are considering an IID sequence of Bernoulli random

variables, this sequence is characterised entirely by the mean. Therefore, any chosen

distance measure is a scaling of another.

We now consider the estimator function for the operator. Namely, the maximum

likelihood estimator for this setting. The maximum likelihood (ML) estimator is defined as

V̂ML
∆= arg max

V̂k

P
[
(V1, . . . , Vk) |V̂k

]
. (3.11)
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Intuitively, this is interpreted as deciding the V̂k that maximises the probability of obtaining

the sequence {V1, . . . , Vk}. For this particular problem, we have an IID sequence of Bernoulli

trials. This is the definition of a Binomial distribution. Therefore,

P
[
(V1, . . . , Vk) |V̂k

]
=

 k

s

 V̂ s
k

(
1 − V̂k

)k−s
, (3.12)

where s ∈ N denotes the number of successful packet transmissions. Namely,

s =
k∑

i=1
Vi. (3.13)

In order to find the maximal points of this function we take the derivative with respect

to V̂k

∂P
[
(V1, . . . , Vk) |V̂k

]
∂V̂k

=

 k

s

[sV̂ s−1
k

(
1 − V̂k

)k−s
− (k − s) V̂ s

k

(
1 − V̂k

)k−s−1
]
. (3.14)

Setting this equal to zero while noting that

 k

s

 is a strictly positive real number yields

sV̂ s−1
k

(
1 − V̂k

)k−s
− (k − s) V̂ s

k

(
1 − V̂k

)k−s−1
= 0 (3.15)

V̂ s−1
k

(
1 − V̂k

)k−s−1 (
s− kV̂k

)
= 0. (3.16)

This manipulation has resulted in three stationary points for the maximum likelihood

estimator. Two of these points are not of interest as they correspond to the edge cases,

namely V̂ML = 0 and V̂ML = 1. However, the third stationary point gives the maximum of

the ML estimator as

V̂ML = s

k
= 1
k

k∑
i=1

Vi. (3.17)
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With this in mind, the hypothesis detection problem becomes

H0 :
∣∣∣∣∣

k∑
i=0

Vi

k
− V

∣∣∣∣∣ < δ, (3.18a)

H1 :
∣∣∣∣∣

k∑
i=0

Vi

k
− V

∣∣∣∣∣ ≥ δ. (3.18b)

Note that due to the absolute value of the distance, this hypothesis test is two sided.

3.5 Attacker Model

Our work diverges from the literature by introducing an attacker that controls the packet

drops within the communication channel. From the point of view of the attacker, the loss

parameter Vk becomes the control variable to achieve their objective. Specifically Vk is

not a random variable and Uk is no longer a control variable. Instead, in this setting Vk

is a deterministic input sequence that the attacker constructs based on the available

information set. This control input is optimised at each time instant by the attacker,

with the aim of maximising the cost function of the operator. It is assumed that the

attacker has access to the entire system architecture in addition to the observation and

state estimate, i.e. Yk, X̂k. Naturally, this implies that the attacker has access to the same

information as the operator in addition to control of packet drops Vk. Bear in mind that

the attacker has no control over the choice of Uk. Therefore, the information set available

to the attacker is

Ak ≜
{
V A

k , Yk,X̂k,Ak−1
}
, (3.19)

where V A
k ∈ {0, 1} is a deterministic control variable controlled by the attacker and X̂k ={

X̂0, . . . , X̂k

}
is the set of all state estimates up until time instant k. As with the operators

information set Ak is a monotonically increasing set. Note that the information set of the

attacker differs in that it contains the current realisation of V A
k . Due to these fundamental
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changes in the control system, the system model is redefined for the attacker as

Xk+1 = AXk + V A
k BKX̂k +Wk, (3.20a)

Yk = CXk + Zk. (3.20b)

The cost function of the attacker is similar to that of the operator, but in this case, the

attacker aims to maximise the cost at each time instant with respect to V A
k as opposed to

a minimisation with respect to K. This formulation yields the optimal cost function of

the attacker

JA∗

N (X0,P0) = max
V A

k
=fk(Ak)

E
XT

NQXXN

+
N−1∑
k=0

 Xk

KX̂k


T QX 0

0 V A
k QU


 Xk

KX̂k


∣∣∣∣∣∣∣∣∣X0,P0


, (3.21)

where the decision at time k of the realisation of V A
k is a function of the information set Ak.

For the attacker, the optimal estimation procedure is the same as for the operator. Thus,

in the case in which the attacker is not able to directly access X̂k the variable is computed

using the same process as the operator, i.e. (3.7). Note that in (3.21) the attacker does not

initially penalise the attack construction in any way to induce stealth. This assumption is

later introduced for attack constructions that almost target minimising the probability of

detection. We term these differing attack constructions as unconstrained and constrained.

This is due to the fact that, in the constrained setting, the attacker limits their damage

potential in order to remain undetected.

3.6 Optimal Unconstrained Attack

The first attack construction is a naive attack. Additionally, the operator’s MARE (3.6),

is assumed to have converged before the attack takes place i.e. Sk = S∞. As a result
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of this assumption, the operator implements the optimal steady state input gain K∗.

This assumption is dropped in later derivations. This simpler setting is first presented

as an introduction to the problem that captures the main features of the problem. The

attacker maximises the cost of the operator without any detection constraints. In order to

compute the sequence of optimal packet drops that maximise the cost function (3.43), a

dynamic programming formulation is used. To that end, the optimal value function for

the attacker fk(Xk) is defined as

fN (XN)≜E
[
XT

NQXXN

∣∣∣AN

]
, (3.22a)

fk (Xk)≜ max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A∗

k X̂T
k K∗TQUK∗X̂k + fk+1(Xk+1)

∣∣∣Ak

]}
, (3.22b)

where N ∈ N is the time horizon for the system. This leads to the following lemma

Lemma 1. The optimal value function (3.22) for the system defined in (3.20) is equivalent

to

fk(Xk)≜ E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, k = N, . . . , 0, (3.23)

where the matrix Rk ∈ Mn and the scalar dk ∈ R are recursively calculated according to

Rk = ATRk+1A + QX + V A∗

k

(
KT

(
QU + BTRk+1B

)
K − 2KTBTRk+1A

)
, (3.24a)

dk = tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (ΣW Rk+1) + E[dk+1|Ak], (3.24b)

where V A∗
k is the optimal choice that maximises the cost function (3.21) at time instant k

that satisfies

V A∗

k =


1 for X̂T

k

(
KT
(
QU + BTRk+1B

)
K − 2KTBTRk+1A

)
X̂k ≥ 0,

0 otherwise.
(3.25)

Proof. See Appendix A.
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The dynamic programming algorithm guarantees that f0(X0) = JA∗
N . Therefore, the

cost whilst under the optimal attack is

JA∗

N (X0,P0) =XT
0 R0X0 + tr(R0P0) +

N−1∑
k=0

tr (Rk+1Q)

+
N−1∑
k=0

tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
, (3.26)

where it should be noted that Rk ̸= Sk for all k > 0 and R0 = S0 = 0. Analysis of the

behaviour of the Rk matrix is not straight forward, and therein the attack construction.

Particularly it should be noted that the variable Rk is not monotonic, this is displayed

graphically in Chapter 8. Due to this property the analysis of the attack constructions

behaviour is non-trivial and an open problem. However, it is seen within the simulations

in Chapter 8 that the optimal attack for this construction is a sequence of all zeros.

Although the above attack construction is optimal under the circumstances given, it

has significant practical limitations. Specifically, the attack construction can only be used

once the operator has reached steady state operation. Additionally, the attack derived

above does not consider any form of attack detection, which is why we have termed it the

‘naive attack’. In the following section, the attack construction is extended to the case

where the operator is implements a time-varying gain matrix Kk. This enables attacks to

be implemented at any point during the operation of the system.

3.7 Optimal Unconstrained Attack with Time-Varying

Gain

In this section we consider the case in which the operator employs a time-varying gain.

This means the operator is no longer operating according to the steady state MARE S∞

and instead uses the time-varying MARE Sk. This in turn induces a time-varying gain Kk.

The method to optimally compute this gain is shown in [59]. A lemma from [59] that is
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central to this result is reported below with the difference that the minimisation is over

the gain Kk instead of over Uk.

Lemma 2. [lemma 5.1, [59]]

Assume a linear time-varying gain such that u∗
k = −K∗

kx̂k|k. Then the value function

of the system under TCP-like operation is

gk(Xk) ≜ E
[
XT

k SkXk

∣∣∣Ak

]
+ ck, k = N, . . . , 0, (3.27)

and it is known that Sk and ck are

Sk = ATSk+1A + QX − VATSk+1BK∗
k, (3.28)

ck = V tr(ATSk+1BK∗
kPk|k) + tr (QSk+1) + E[ck+1|Ok], (3.29)

and the resultant optimal gain, K∗
k is

K∗
k =

(
QU + BTSk+1B

)−1
BTSk+1A. (3.30)

Proof. See Appendix A.2.

The time-varying gain changes the formulation of the innovation step, as well as the

source and observation models defined in (3.7), (3.1a), and (3.1b), respectively. Specifically,

the gain matrices in each of the relations are replaced with their time-varying versions.

The cost for the operator remains as in (3.8),but note that Sk and U∗
k are now equivalent

to

Sk = ATSk+1A + QX − VATSk+1BKk, (3.31)

Kk =
(
QU + BTSkB

)−1
BTSkA, (3.32)

U∗
k = −K∗

kX̂k|k. (3.33)
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The expected cost for the operator is also equivalent to that in[59][Lemma 5.1]

J∗
N =XT

0 S0X0 + tr(S0P0) +
N−1∑
k=0

tr (Sk+1Q) +
N−1∑
k=0

tr
((

ATSk+1A + QX − Sk

)
Pk|k

)
. (3.34)

It should be noted that this is the expected cost given that there is no attack present.

Otherwise, this expected cost is invalid because the control law and the cost function are

calculated with an incorrect percentage of packet drops in the channel.

From the perspective of the attacker, Lemma 1 must also be modified to account for

the time-varying gain. It is assumed that the attacker has access to K∗
k which can be

computed from the attack information set if required. The optimal attack in this setting

is described in the following lemma.

Theorem 1. The optimal value function of the attacker for the system (3.20) is defined

as

fN (XN)≜E
[
XT

NQXXN

∣∣∣AN

]
, (3.35a)

fk (Xk)≜max
V A

k

{
min

Kk=gk(Ak)

{
E
[
XT

k QXXk + V A∗

k X̂T
k KT

k QUKkX̂k

+ fk+1 (Xk+1)
∣∣∣∣∣Ak

]}}
, (3.35b)

where the minimising Kk is (3.30). It is shown that (3.35) is equivalent to

fk(Xk) = E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, k = N, . . . , 0, (3.36)

where the matrix Rk ∈ Mn and the scalar dk ∈ R are recursively calculated according to

Rk = ATRk+1A + QX + V A∗

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
, (3.37)

dk = V A∗

k tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (ΣW Rk+1) + E[dk+1|Ak], (3.38)

where V A∗
k represents the optimal value at time k that maximises the cost function of the

operator and K∗
k is the optimal time-varying gain that the operator implements at time k.
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The optimal value of V A∗
k is determined by the inequality

V A∗

k =


1 for X̂T

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
X̂k > 0,

0 otherwise,
(3.39)

with

K∗
k ≜

(
QU + BTSk+1B

)−1
BTSk+1A. (3.40)

Proof. The proof is moved to Appendix A.3. As before the characteristics of the Rk

variable are difficult and non-trivial to characterise. However, as with the scenario in the

previous section we show in the simulations in Chapter 8 that the optimal attack sequence

for this construction remains a sequence of all zeros.

Under the same principles as before the expected cost of the system, (3.21), while

under this attack construction is

JA
N(X0,P0) =XT

0 R0X0 + tr(R0P0) +
N−1∑
k=0

tr (Rk+1Q)

+
N−1∑
k=0

tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
. (3.41)

3.8 Optimal Attack with a Constant Detection Con-

straint

In the previous sections, the attacker increased the cost of the operator with no regard as

to whether the operator detects the attack. In this section it is assumed that the attacker

wishes to remain undetected while increasing the operators cost function. To that end, a

detection constraint is introduced to ensure the hypothesis test (3.18) remains null. In

order for the hypothesis test to remain null the attacker must incorporate the test seen

in (3.18) within their attack construction. Namely, this term must be included into the

cost function in such a way that any deviations from the operator’s postulated mean V
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penalise the attacker. This is done by introducing the optimal detection constraint as seen

in (3.17). The attacker employs the following as their penalty for a stealthy attack

t (Λ) = −Λ
(

k∑
i=0

V A
i

k
− V

)
, (3.42)

where Λ ∈ R is to be treated as the penalty term for the degree of stealth of the attack.

This is similar to the purpose of QX and QU for the operator.

The penalty variable Λ has the same purpose for the attacker as the state and input

penalty matrices do for the operator, i.e. it is a tuning parameter for the attacker to

determine the stealth of the attack. It is clear that when Λ = 0 the constrained attacked is

equivalent to the unconstrained attack. Assuming the operator uses (3.18) as the detection

hypothesis test, then the cost function of the attacker takes the form

JA
N

(
X0,P0

)
= max

V A
k

=fk(Ak)

{
E
[
XT

NQXXN

+
N−1∑
k=0


Xk

KX̂k

X̂k



T
QX 0 0

0 V A
k QU 0

0 0 t (Λ)




Xk

KX̂k

X̂k



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X0,P0




, (3.43)

where the inclusion of (3.42) with scaling proportional to the current state estimate is the

only change from (3.21).

The reason for the appearance of X̂k in the detection term may not be obvious. However,

as seen in (3.25) and (3.39), the optimal choice for V A∗
k is scaled by the magnitude of X̂k.

If the system becomes rapidly unstable, through no fault of the attacker X̂k also increases

rapidly at which point the contribution of the detection term reduces. Therefore, the

detection term must also be scaled to maintain a stealthy attack under these circumstances.

The system for the operator remains as in the time-varying gain scenario. To that end, we

present the following lemma
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Lemma 3. The optimal value function for the attack on the system (3.20) where the

operator assumes IID packet drops, is defined as

fN (XN)≜E
[
XT

NQXXN

∣∣∣AN

]
, (3.44a)

fk (Xk)≜ max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k K′∗

k QUK∗
kX̂k + X̂T

k t (Λ) X̂k

+ fk+1 (Xk+1)
∣∣∣∣Ak

]}
. (3.44b)

It holds that (3.44) is equivalent to

fk(Xk) = E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, k = N, . . . , 0, (3.45)

with the matrix Rk ∈ Mn and dk ∈ R are recursively calculated according to

Rk = ATRk+1A + QX

+V A∗

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
, (3.46)

dk = V A∗

k tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (ΣW Rk+1) + E[dk+1|Ak]

+X̂kt (Λ) X̂k, (3.47)

where V A∗
k represents the optimal realisation that maximises the cost function of the

operator. The value is determined by the inequality

V A∗

k =



1 for X̂T
k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
X̂k

>X̂kt (Λ) X̂k,

0 otherwise,

(3.48)

where

K∗
k ≜

(
QU + BTSk+1B

)−1
BTSk+1A. (3.49)
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Proof. The proof of this Lemma follows the exact same process as Lemma 1 with the

detection term following throughout.

The above attack construction differs from the previous in that the actuation law, (3.48)

requires the left hand side to be only less negative than the right hand side. This differs

from the previous unconstrained construction where an actuation would require the left

hand side to be positive definite. Additionally it should be clear that the right hand side

changes it’s positivity depending on the choice of the sequence of V A. Due to this fact

analytical analysis of this construction is non-trivial.

Unfortunately, this attack construction is not perfect. Specifically, this attack con-

struction remains undetectable for a finite period of time proportional to the magnitude

of Λ. Furthermore, within this period of time of stealthiness, the attack variable choice

is completely dominated by the detection constraint. In fact, as seen in the simulations

within Section 8.1, this gives the operator a better cost than expected before reverting to

the unconstrained attack construction. To see the this convergence see the following.

t (Λ) = −Λ
(

k∑
i=0

V A
i

k
− V

)
. (3.50)

This term converges to ϵ > 0 for a sequence of V A
i that are statistically similar to a

sequence of nominal losses Vi. To see this, note the following lemmas.

Lemma 4. The ML estimator is unbiased Specifically,

E
[
V̂ML

]
−−−→
k→∞

V . (3.51)

Proof. By the weak law of large numbers

lim
k→∞

P

[∣∣∣∣∣
k∑

i=0

Vi

k
− V

∣∣∣∣∣ > ϵ

]
= 0, (3.52)

where ϵ > 0 is an arbitrarily small scalar value. This concludes the proof.
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With the above lemma it is able to be shown that the convergence of this value is of

order
√
k.

Lemma 5. Due to the relation (3.51), it holds that

E
[(
V̂ML − V

)2
]

= 1
k
V
(
1 − V

)
, (3.53)

and therefore the variance of the square error in the ML estimator decreases with order 1
k
.

Proof. Beginning with the definition

kV̂ML =
k∑

i=1
Vi, (3.54)

it is then seen that taking expectations of both sides yields

E
[
kV̂ML

]
= kV . (3.55)

Similarly, taking the variance of both sides yields

E
[(
kV̂ML − kV

)2
]

= kV
(
1 − V

)
, (3.56)

pulling the k term outside of the expectation and dividing yields the desired relation. This

concludes the proof.

The attacker is constructing a sequence of variables that are statistically similar to

the nominal statistics. However, the attacker picks a sequence of variables that maximise

the cost whilst remaining ϵ close to the nominal statistics. In doing so, the detection

constraint converges, as predicted by Lemma 5. As a result of this convergence, the attack

decision becomes equivalent to (3.39) i.e. the unconstrained attack construction. However,

in Section 8.1 it is seen that the MARE corresponding to the unconstrained attack grows

exponentially. Unfortunately, the detection constraint of the attacker grows linearly for

the case of V A
i = 0 for all i. Therefore, after a period of time that is proportional to
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the magnitude of Λ the detection constraint converges to ϵ. By this it is meant that

the detection term (3.50) converges at a rate of order Λ 1
k
. After this point, the attack

construction reverts to the unconstrained attack construction and the attack is detected.

However, as seen within Lemma 5, the rate at which the detection term converges is known.

This construction therefore, is able to be improved upon.

3.9 Optimal Attack construction with Time Varying

Detection Constraint

This attack behaviour seen from the constant detection term is not practical since the attack

is only stealthy for a finite period of time. Instead, it is desirable that a practical attack

implementation maintains stealth for an arbitrary time duration. In an attempt to mitigate

the convergence of the detection constraint, as seen in Lemma 5, the attacker employs

a time-varying detection constraint. This time-varying detection constraint mitigates

the convergence of the constant detection term in the previous section. Specifically,

the constraint scales with
√
k. Time varying constraint also ensures that if there is a

convergence, the detection constraint grows linearly with the MARE of the attacker, as

opposed to sub-linearly.

The operator performs the same hypothesis test that takes place in (3.18), as in previous

sections. The attacker employs the following as their penalty for a stealthy attack

t (Λk) = −Λk

(
k∑

i=0

V A
i

k
− V

)
, (3.57)

where Λk ∈ R is to be treated as the penalty term for the degree of stealth of the attack.

The time-varying stealth penalty term Λk is defined as

Λk = ΛRk+1
√
k. (3.58)
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As with the the previous attack, the penalty term Λ is similar to the purpose of QX and QU

for the operator. Observe that the time-varying stealth penalty term is weighted by the

square root of k to counter the convergence of the packet drop sequence. Additionally,

the inclusion of the term Rk+1 ensures that the detection constraint grows linearly with

the MARE. As before, the larger Λ is, the stealthier the attack, and when it is set to 0

the attack is equivalent to the unconstrained attack. However, with the time-varying

constraint, the Λ variable does not control the time window for the attack. Therefore,

this attack construction provides stealth for an arbitrary period of time. Again, the

penalty term is included in the cost function of the attacker just as any other penalty

term. Therefore, the resulting cost function of the attacker including the time-varying

detection constraint is

JA
N

(
X0,P0

)
= max

V A
k

=fk(Ak)


E

X
T
NQXXN

+
N−1∑
k=0


Xk

K∗
kX̂k

X̂k



T
QX 0 0

0 V A
k QU 0

0 0 t (Λk)




Xk

K∗
kX̂k

X̂k



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X0,P0




, (3.59)

where the inclusion of (3.57) is the only change from (3.42). Which brings us to the next

lemma.

Lemma 6. The optimal value function for the attack on the system system (3.20), where

the operator assumes IID packet drops, with a time-varying detection constraint is defined
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as

fN (XN)≜E
[
XT

NQXXN

∣∣∣AN

]
, (3.60a)

fk (Xk)≜ max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k K′∗

k QUK∗
kX̂k + X̂T

k t (Λk) X̂k

+ fk+1 (Xk+1)
∣∣∣∣Ak

]}
, (3.60b)

where Λk is defined as

Λk = ΛRk+1
√
k. (3.61)

It holds that (3.60) is equivalent to

fk(Xk) ≜ E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, k = N, . . . , 0, (3.62)

where the matrix Rk ∈ Mn and dk ∈ R are recursively calculated according to

Rk = ATRk+1A + QX

+V A∗

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
, (3.63)

dk = V A∗

k tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (ΣW Rk+1) + E[dk+1|Ak]

+X̂kt (Λk) X̂k, (3.64)

where V A∗
k represents the optimal decision of V A

i that maximises the cost function of the

operator. The decision is determined by the inequality

V A∗

k ≜


1 for (K∗′

k (QU + B′Rk+1B) K∗
k − 2K∗′

k B′Rk+1A) > t (Λk)

0 otherwise,
, (3.65)

Proof. The proof is moved to Appendix A.5.
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The resultant cost of this attack is

JA∗

N (X0,P0) =XT
0 R0X0 + tr(R0P0) +

N−1∑
k=0

tr (Rk+1Q)

+
N−1∑
k=0

tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
. (3.66)

However, it should be noted that the variables present within (3.66) refer to different

realisations of each of the variables when compared to (3.41).

3.10 Chapter Conclusion

The attack strategies presented in this chapter result in optimal DoS attacks for the

constraints considered in each construction. The constrained time-varying attack construc-

tion presented remains stealthy indefinitely. This construction is derived for the given

hypothesis test that the operator is performing. Namely, the hypothesis test in (3.18).

Were the operator to implement a different detection strategy, then the attack construction

would take a different form. This back and forth is reminiscent of a game. Namely, each of

the players, the operator and the attacker, take turns optimising their respective strategies.

Under this interpretation we have stopped the game after a single turn each, with the

operator going first. In the following chapters this stance remains. Namely, the operator

taking the first turn in the game with the attacker going second. Note we calls this a

game for descriptive purposes and do not present the following results as a game in the

mathematically rigorous sense of a game.

The constrained time-varying attack strategy presented allows the attacker to tune

the attack to trade-off the stealth of the attack for attack performance. This is achieved

through use of the Λ variable. As mentioned prior, the Λ variable is a tuning parameter

for the attack. This means that a larger value of Λ results in the detection constraint

dominating the cost function with either very little or no cost increase of the system. In

fact for large enough Λ the attacker improves the expected cost of the operator. This is

explored further within Chapter 8. If however the value of Λ is made small, or even 0,
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the attack designed becomes aggressive causing large cost increases in the expected cost

at the drawback of becoming more likely to be detected. This behaviour is comparable

to that of the operators design of the penalty matrices QX and QU i.e. tuning these

matrices in order to create desired system behaviours. The final attack strategy designed,

the attack derived in Section 3.9, is not perfect in practice. For example, it has a high

computational cost and requires full knowledge of the system and the operators choices.

This strategy requires the attacker to calculate their own Ricatti equation in addition

to then calculating the term in (3.65). Additionally, in order to calculate these objects,

the attacker also requires knowledge of the current realisation of the operators gain, state

estimation, and the Ricatti equation of the operator. With all of these drawbacks, an

optimal stealthy attack strategy that requires less knowledge of the operators system

choices or less computing power may be a more appealing choice.



Chapter 4

Control Systems with

Communication Channel Packet Loss

4.1 Chapter Introduction

In the previous chapter the focus was upon the derivation of an optimal deterministic

DoS attack strategy for a system experiencing packet loss. This was achieved by allowing

the operator to design the optimal control law for a given system, and then switching

perspectives to the attacker to design the optimal attack. This chapter focuses on the

effect of packet loss on different control strategies. The effect of the attacker is studied in

Chapter 5.

As mentioned above the system considered is changed in this chapter. Specifically,

the communication channel that the control system operates over is altered. The optimal

control and the resultant cost of controlling a system over a scalar packet loss communi-

cation channel is derived in [59]. This derivation is utilised in the previous chapter. In

fact it is this control law that the operator utilises during the attacks derived. However,

in the following chapter the system communicates over a multidimensional packet loss

communication channel. This is a generalisation of the scalar communication channel.

In generalising this, we derive the optimal control law for a system communicating over

multiple independent packet loss communication channels. Additionally, unlike the previous
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chapter, the operator is assumed to communicate over one of two different communication

protocols. This enables the characterisation of the cost difference between the communica-

tion protocols. In [59, 65, 66, 46], two communication protocols are proposed for analysis.

Namely, a TCP-like protocol and a UDP-like protocol. The TCP-like protocol remains as

in the previous chapter, in that it implements an auxiliary acknowledgement signal that

is transmitted back to the controller, confirming whether or not the control signal has

been successfully received by the plant. In contrast to this, the UDP-like protocol lacks

this acknowledgement link. As in Chapter 3 we adopt the zero input strategy. Therefore,

in the event that the communication channel drops a packet, the actuators perform no

actuation. It should be noted however, that each of the multiple dimensions within the

channel operate independently. Namely, different actuators receive different realisations

from the communication channel, and therefore, each actuator at any given time instant

could perform a zero input due to a packet loss, while the other actuators receive a packet

and perform the optimal actuation.

The actuation communication channel is extended from [59] and Chapter 3 to allow

for multiple independent channels as opposed to a single channel shared by all actuators.

As a result of this, we provide an analytical proof that the system cost is always greater

as a result of not monitoring realisations of packet loss in the channel. Due to the

communication channel being a generalisation of the result in [59], these results also apply

to a simplified scalar communication channel. The maximal cost difference between the two

protocols is also characterised. The packet loss in the communication channel is modelled

as a set of Independent and Identically Distributed (IID) Bernoulli random variables.

As a result, each actuator either receives the optimal input, or it receives zero input.

The optimal control law is obtained by formulating the problem in a Model Predictive

Control (MPC) framework. This subsequently enables the analytical comparison of the

cost incurred by both protocols in a more tractable fashion that a dynamic programming

approach.
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Plant

Delay

Controller

Delay XkVk

Fig. 4.1 Control system with TCP-like protocol where realisations of the packet
transmission variable are transmitted to the controller.

4.2 System Model and Problem Formulation

We consider systems that consist of a plant, a controller and a communication channel, as

shown in Fig. 4.1 and 4.2. Initially, packet loss only occurs in the controller to actuator

communication channel; the sensor to controller communication channel is initially assumed

to be perfect. However, later on in the Chapter this assumption is dropped. We consider

the plant model described by

Xk+1 = AXk + BVkUk +Wk, (4.1)

where A ∈ Rn×n is the dynamics matrix; Xk ∈ Rn describes the state of the plant at time

step k ∈ N; B ∈ Rn×m is the control matrix; Uk ∈ Rm is the vector of control inputs;

Wk ∈ Rn is the process noise modelled as a vector of Gaussian random variables with

mean 0 ∈ Rn and covariance matrix ΣW ∈ Sn
++; where Sn

++ is the set of n by n symmetric

positive definite matrices; Vk ∈ Sm
+ is the packet transmission variable modelled as a

diagonal matrix where the i-th diagonal entry is an IID Bernoulli random variable with

mean µi ∈ [0, 1] ; and Sm
+ is the set of m by m symmetric non-negative definite matrices.

The initial state of the plant is determined by the Gaussian distributed vector of random

variables Xk with mean Xk and covariance matrix ΣXk
∈ Sn

++. Additionally, the expected
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Plant

Controller

Comm. Channel XkVk

Fig. 4.2 Control system with UDP-like protocol where the realisations of the packet
transmission variable are not transmitted to the controller

value of Vk is E[Vk] = M, where M ∈ Sm
++ is a diagonal matrix in which the i-th diagonal

element is µi.

It is in the structure of Vk and M that the system model differs from [59, 67, 46, 65, 63].

Defining M as a matrix models the case in which the system communicates over m

independent channels, where each actuator has a single dedicated communication channel.

Specifically, the m-th control input communicates through the m-th channel which is

completely solely by the m-th diagonal entry of M. In contrast, were M and Vk to be

defined as a scalars, all control inputs would share a single communication channel that

is fully characterised by these scalars. Due to the imperfect communication between the

controller and the plant, the operator implements a communication protocol. We adopt the

two protocol paradigms mentioned previously. Namely, a UDP-like protocol that does not

monitor the communication channel, and a TCP-like protocol that acknowledges receipt

of the packet from the controller by sending an acknowledgement message to the controller

over an auxiliary channel. As in [59], it is assumed that the auxiliary channel has perfect

communication. The difference between both protocol paradigms is depicted in Fig. 4.1

and Fig. 4.2. The choice of protocol paradigm for a system results in different information

available for the controller. We define the information available at the controller for each
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protocol with the following two information sets

Ik
∆=


Fk =

{
Xk, Vk−1

}
, TCP-like,

Gk =
{
Xk

}
, UDP-like,

(4.2)

where Vk−1 ∆=
{
V0,V1, . . . ,Vk−1

}
and Xk ∆= {X0, X1, . . . , Xk}. Note that all sets are

monotonically increasing, i.e. Ik ⊆ Ik+1. Additionally, the lower indices represent the

time index whereas upper indices refers to the dimension of the information sets. The

information set at each time step contains the information from all previous time steps in

addition to the information from the current time step.

Under the TCP-like protocol, the controller has access to the realisation of the packet

transmission variable Vk when performing state estimation and incorporates it in the error

prediction to obtain an estimate with error

Ek+1(Fk) ∆=Xk+1 − E
[
Xk+1

∣∣∣∣Fk,Vk

]
= AXk + BVkUk(Fk) +Wk − AX̂k − BVkUk(Fk)

= AEk

(
Fk−1

)
+Wk, (4.3a)

where X̂k
∆= E [Xk]. The control law is redefined as Uk(Ik) ∈ Rm to explicitly show the

functions dependency on the information set Ik. Additionally, the control law takes the

form of a state feedback law, and is therefore, a random variable. The UDP-like protocol

error prediction differs from the TCP-like protocol in that there is no knowledge of the

realisation of Vk, and therefore, the error for the UDP-like protocol is given by

Ek+1(Gk) ∆=Xk+1 − E
[
Xk+1

∣∣∣∣Gk

]
= AXk + BVkUk(Gk) +Wk − AX̂k − BMUk(Gk)

= AEk

(
Gk−1

)
+ B (Vk − M)Uk(Gk) +Wk. (4.3b)
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Note that the error prediction for both the UDP-like and the TCP-like protocol resemble

those in [59]. As shown in [59], the optimal linear control law for the UDP-like protocol can

only be obtained when perfect state information is available. Indeed, the lack of knowledge

about the packet loss breaks the separation structure between optimal estimation and

optimal control. It is here our derivation diverges again from [59]. Assuming perfect

knowledge of the realisation of Xk, (4.1) is expanded over a time horizon N ∈ N as follows

Xk+1

Xk+2

...

Xk+N

=

=
...

=

AXk

AXk+1

...

AXk+N−1

+

+

+

BVkUk(Ik)

BVk+1Uk+1(Ik)
...

BVk+N−1Uk+N−1(Ik)

+

+

+

Wk

Wk+1

...

Wk+N−1.

(4.4)

Exploiting the recursive structure of the above allows the states to be expressed in terms

of the initial state Xk. This is seen to be

Xk+1 = AXk + BVkUk(Ik) +Wk

Xk+2 = A2Xk + ABVkUk(Ik) + BVk+1Uk+1(Ik) + AWk +Wk+1

...

Xk+N = ANXk+AN−1BVkUk(Ik)+. . .

+BVk+N−1Uk+N−1(Ik) + AN−1Wk + · · · +Wk+N−1.
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This can be expressed as a matrix equation. Re-writing (4.5) in that form yields



Xk+1

Xk+2

...

Xk+N


︸ ︷︷ ︸

Xk

=



A

A2

...

AN


︸ ︷︷ ︸

Φ

Xk+



B 0 . . . 0

AB B . . . ...
... . . . . . . 0

AN−1B . . . AB B


︸ ︷︷ ︸

Γ



Vk 0 . . . 0

0 Vk+1
. . . ...

... . . . . . . 0

0 . . . 0 Vk+N−1


︸ ︷︷ ︸

Υk



Uk(Ik)

Uk+1(Ik)
...

Uk+N−1(Ik)


︸ ︷︷ ︸

Uk(Ik)

+



I 0 . . . 0

A I . . . ...
... . . . . . . 0

AN−1 . . . A I


︸ ︷︷ ︸

Λ



Wk

Wk+1

...

Wk+N−1


︸ ︷︷ ︸

Wk

. (4.5)

Re-casting (4.5) as a prediction matrix equation gives

Xk
∆= ΦXk + ΓΥkUk(Ik) + ΛWk, (4.6)

where Φ ∈ RNn×n is the dynamics matrix over the prediction horizon; Xk ∈ RNn is the

state prediction vector; Γ ∈ RNn×Nm is the propagation matrix for the control over the

prediction horizon; Uk(Ik) ∈ RNm is the realisation at time step k of the control law

computed with access to the information set Ik; Λ ∈ RNn×Nn is the propagation matrix

for the process noise; Wk ∈ RNn is the process noise over the prediction horizon with

mean 0 and covariance ΣW ; ΣW ∈ SNn
++ is the diagonal block matrix where the i-th block

is ΣW ; Υk ∈ SNm
+ is a diagonal matrix with the Bernoulli random variables describing

the packet transmission over the prediction horizon in the diagonal;and Υ ∈ SNm
++ is the

block diagonal matrix where the i-th block is M, and therefore E [Υk] = Υ. To control

the system over the horizon, N, the controller calculates the expected state trajectory X̂k.

Note that, for both protocols, the estimate coincides due to the fact that neither protocol

knows the realisation of Vk before actuating. The expected state trajectory for both
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protocols is therefore given by

X̂k
∆= E

[
Xk

∣∣∣∣Ik

]
= ΦXk + ΓΥUk(Ik). (4.7)

In the TCP-like regime the operator does not know the realisation of a packet transmission

before actuating, which results in (4.7), but knows the packet transmission realisation when

updating the state estimate, which results in (4.3a). The TCP-like protocol only estimates

the packet transmission for the optimal control problem. In contrast, the UDP-like protocol

packet transmission variables are estimated for both the estimation and the optimal control

problem. Expanding the update error terms in (4.3) over the prediction horizon of N

time-steps results in

Ek(Fk) ∆=Xk − E
[
Xk

∣∣∣∣Fk,Υk

]
= ΦXk + ΓΥkUk(Fk) + ΛWk − X̂k

= ΦXk + ΓΥkUk(Fk) + ΛWk − ΦXk − ΓΥkUk(Fk)

= ΛWk, (4.8a)

Ek(Gk) ∆=Xk − E
[
Xk

∣∣∣∣Gk

]
= ΦXk + ΓΥkUk(Gk) + ΛWk − X̂k

= ΦXk + ΓΥkUk(Gk) + ΛWk − ΦXk − ΓΥUk(Gk)

= Γ
(
Υk − Υ

)
Uk(Gk) + ΛWk. (4.8b)

In this setting we formulate a Linear Quadratic Gaussian (LQG) control problem, i.e.

the system operator minimises a quadratic function of the states and inputs. This

function is weighted with diagonal state penalty matrix Ω ∈ SNn
++, diagonal input penalty

matrix Ψ ∈ SNm
++ , and diagonal matrix Q ∈ Sn

++. Note that the penalties at each time

step vary. Since Wk is random, the state of the plant is random, which yields a stochastic

model predictive control problem [2]. The cost function to be minimised is the expected
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cost, defined as

J (Ik) ∆=E
[
XT

k QXk + X T
k ΩXk + UT

k (Ik)Υk
TΨΥkUk(Ik)

∣∣∣Ik

]
, (4.9a)

where the expectation in (4.56a) is with respect to the joint distribution of Υk and Wk.

The expectation is taken sequentially as in [65, Lemma 1(c)] to account for the causality

constraints imposed by the system. Therein, the expectation at each time step is con-

ditioned on all previous time steps. This is due to the fact that the sequence of states

at each time step forms a Markov chain, i.e. Xk → Xk+1 → · · · → Xk+N . The state

trajectory Xk is re-written in terms of the estimate X̂k and the error induced by the

estimate Ek. Substituting Xk = X̂k + Ek into (4.56a) yields

J(Ik) =E
[
XT

kQXk+
(
X̂k+Ek

)T
Ω
(
X̂k+Ek

)
+UT

k (Ik)Υk
TΨΥkUk(Ik)

∣∣∣∣Ik

]
. (4.9b)

The optimal control problem is to find the input sequence Uk(Ik)∗
k that minimises (4.9b).

Additionally, it should be noted that E
[
Ek

∣∣∣Ik

]
= 0 and the state error and the state

estimate are independent for both protocols. The proofs of these statements are provided

in [65], which leads to the following optimal cost definition:

J∗ (Ik) ∆= min
Uk(Ik)

{
E
[
XT

k QXk + X̂ T
k ΩX̂k + ET

k ΩEk +UT
k (Ik) Υk

TΨΥk Uk(Ik)
∣∣∣∣Ik

]
. (4.10)

4.3 MPC Optimal Cost Derivation and Analysis

The above section has vectorised the state space equations and formed a vectorised LQG

cost function with the aim of solving the optimal control problem using MPC. However,

this is just an alternate way of solving the optimal control problem. This optimal control

problem can be solved using the available tools within Chapter 3, namely the Dynamic

Programming (DP) approach. In fact, as will be shown later, the DP approach is used in

order to give the infinite horizon solution. Specifically, the solution to the Ricatti equation

is used as a penalty matrix to give the equivalence. The reason for the switch to MPC is
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due to the following chapter, Chapter 5. Within Chapter 5 the problem of solving the

optimal attack becomes simplified when the system is viewed in the vectorised state.

The derivation of the optimal control law is therefore recast into solving the minimisation

in (4.10) for both communication protocols. The first and second term on the right hand

side of (4.10) are not random due to the information available and are therefore unaffected

by the expectation. Furthermore, since the first term does not depend on Uk(Ik)k the

minimisation is rewritten as

J∗ (Ik) =XT
k QXk + min

Uk(Ik)

{
X̂ T

k ΩX̂k + E
[
ET

k ΩEk +UT
k (Ik) Υk

TΨΥk Uk(Ik)
∣∣∣Ik

]}
. (4.11)

The computation of the expectation of the last term can be simplified by using the

commutation properties of diagonal matrices and the idempotency of the matrix Υk .

Additionally, due to the causality imposed on the system Uk(Ik) does not depend on the

future realisations of Vk or Wk, and therefore, is not affected by the expectation. Note,

that this still allows for a Uk(Ik) that depends on the statistics of each of these variables,

just not the future realisations. The last term in (4.11) is

E
[
UT

k (Ik) Υk
TΨΥk Uk(Ik)

∣∣∣Ik

]
=Uk(Ik)T ΥΨ Uk (Ik). (4.12)

Therefore, (4.11) is equivalent to

J∗ (Ik) = XT
k QXk + min

Uk(Ik)

{
X̂ T

k ΩX̂k + Uk(Ik)TΥΨUk(Ik) + E
[
ET

k ΩEk

∣∣∣∣Ik

]}
. (4.13)

The term involving the expected state trajectory is combined with (4.7) to give

J∗ (Ik) =XT
k (Q + Ωp)Xk

+ min
Uk(Ik)

{
E
[
ET

k ΩEk

∣∣∣∣Ik

]
+ Uk(Ik)TΥ

(
2ΩgpXk +

(
ΩgΥ + Ψ

)
Uk(Ik)

)}
, (4.14)

where Ωp = ΦTΩΦ, Ωg = ΓTΩΓ, and Ωgp = ΓTΩΦ.
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Evaluating the quadratic error requires knowledge of second-order statistics. It is in

this step that the differences between the UDP-like protocol and the TCP-like protocol

become apparent. This observation leads to the first lemma.

Lemma 7. Consider the system modelled by (4.1) with access to (4.2). Then the following

holds

E
[
ET

kΩEk

∣∣∣∣Fk

]
= tr (ΩlΣW), (4.15a)

E
[
ET

k ΩEk

∣∣∣∣Gk

]
= UT

k (Ik)Υ(I ⊙ Ωg)
(
I − Υ

)
Uk(Gk) +tr (ΩlΣW), (4.15b)

where Ωl = ΛΩΛ and ⊙ denotes the Hadamard product.

Proof. See Appendix.

Lemma 7 highlights that the UDP-like quadratic error term depends on Uk(Gk), whereas

the TCP-like protocol does not. Additionally, (4.14) shows that the quadratic error term

lies within the minimisation. Therefore, the term for the TCP-like quadratic error is

removed from the minimisation in (4.14) whereas the UDP-like term is not. Due to this,

the derivation of the optimal control law is at this point split into two cases.

Theorem 2. Consider the closed-loop systems shown in Fig. 4.1 and Fig. 4.2, with plant

dynamics given in (4.1), protocol dependent information sets given in (4.2), and controller

cost function given in (4.10), respectively. Then the optimal cost for the TCP-like protocol

is

J∗ (Fk) =XT
k(Q + Ωp)Xk+tr (ΣWΩl) −XT

kΩT
gpG−1(Fk)ΥΩgpXk, (4.16a)

and the optimal cost for the UDP-like protocol is

J∗ (Gk) =XT
k(Q + Ωp)Xk+tr (ΣWΩl) −XT

kΩT
gpG−1(Gk)ΥΩgpXk. (4.16b)
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The corresponding optimal control laws are

U ∗
k (Fk) ∆= −

(
ΩgΥ + Ψ

)−1
ΩgpXk (4.17a)

= −G−1(Fk) ΩgpXk,

U ∗
k (Gk) ∆= −

(
Ψ + (I ⊙ Ωg)

(
I − Υ

)
+ ΩgΥ

)−1
ΩgpXk (4.17b)

= −G−1(Gk) ΩgpXk,

for the TCP-like and the UDP-like protocols, respectively.

Proof. See Appendix.

Remark 1. In the TCP-like regime the optimal control law, (4.17a), only depends on the

mean number of packet transmissions Υ and this term weights how the actuation propagates

through the system via the Ωg term. On the other hand, the optimal control law of the

UDP-like regime, (4.17b), contains an additional term that weighs the control law with the

probability of packet loss I − Υ.

Corollary 1. It is possible to show that the for the TCP-like protocol the resultant MPC

LQG cost, (4.16a), is equivalent to the optimal Dynamic Programming infinite horizon

cost. Namely, with the penalty matrices defined such that Q = Ω1,Ω1 = Ω1, . . . ,ΩN−1 = Ω1

and the final penalty matrix, ΩN is defined as the steady state solution of the ARE

Pk = APk+1A + Ω1 − ABPk+1 (BPk+1BM + Ψ1)−1 MBPk+1A

and noting that the optimal control law under DP is

uk = − (BPk+1BM + Ψ1)−1 BPk+1Axk. (4.18)

results in equivalence between the MPC and the DP infinite horizon solutions.

Note that the matrix G (Ik) is invertible, due to the fact that Ωg ⪰ 0 as a result of

the controllability condition on the system and Ψ ≻ 0 by definition. The optimal control
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laws presented in (4.17a) and (4.17b) and the corresponding optimal cost functions (4.16a)

and (4.16b) depend on Υ. Therefore, the current formulation makes no assumption on the

stationarity of the random process governing the channel-loss statistics. Specifically, much

like how the penalty matrices Ψ and Ω vary along the time horizon, the mean of packet

transmission for each channel may also vary over the time horizon. This allows for a wider

class of packet loss models to be utilised. For example, a sequence of packet losses that

form a Markov chain. In this scenario the expected value of a packet transmission, Vk

is modelled as Vk ∼ Be (Mk) where Mk ∈ Sm
++ is a diagonal matrix in which the i-th

diagonal element is µi,k which describes the probability of a packet transmission in the i-th

channel at the k-th time step. Therefore, E[Vk] = Mk and E [Υk] = Υ where Υ is the

block diagonal matrix where the i-th block is Mk. Substitution of these definitions into

the above derivation does not break any assumptions made and results in a control law

and optimal cost function for a non-stationary sequence of packet losses.

It should also be noted that the control laws presented are the vectorised control laws.

In practise only the first entry in the optimal control law should be implemented on a

feedback control law. Namely, the first m entries in the vector Uk (Ik). This entry will

then be used recursively with the updated state estimate in the next time step.

4.4 Cost Difference Analysis

The difference in the information sets leads to different optimal control laws, as seen

in (4.17), and results in differing costs over the horizon. In the following section it is shown

that the expected optimal control cost incurred by the information set of the UDP-like

protocol is strictly greater than the expected optimal control cost incurred by using the

information set of the TCP-like protocol.

Theorem 3. Let M such that 0 ≺ M ≺ I, with information sets given in (4.2). Then

J∗ (Gk) − J∗ (Fk) > 0,
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where the optimal cost is as defined in (4.10).

Proof. The optimal control laws for each communication protocol are defined in (4.17a)

and (4.17b). Note that G (Ik) ≻ 0 and that,

G(Gk) − G(Fk) = (I ⊙ Ωg)
(
I − Υ

)
≻ 0. (4.19)

Therefore, [30, 10.53] implies that

G−1(Gk) ≺ G−1(Fk) ,

G−1(Gk) Υ ≺ G−1(Fk) Υ,

C −XT
k ΩT

gpG−1(Gk) ΥΩgpXk >C −XT
k ΩT

gpG−1(Fk) ΥΩgpXk,

where C = XT
k (Q + Ωp)Xk + tr (ΣWΩl). Therefore, for any 0 ≺ M ≺ I it holds that

J∗ (Gk) − J∗ (Fk)> 0. (4.20)

This concludes the proof.

As is shown in Theorem 3, the cost difference between the UDP-like and the TCP-like

protocol is strictly positive for a channel without deterministic packet transmissions.

The cost difference is zero only in the cases of no communication M = 0 or perfect

communication M = I.

Additional insight can be obtained from Theorem 3. Specifically, the TCP-like protocol

achieves a lower quadratic cost by using larger control signals to drive the states to zero

quicker than the UDP-like protocol. This difference is a result of the larger information

set that the TCP-like protocol has access to, which is shown in the following corollary.

Corollary 2. It holds that

∥U ∗
k (Gk)∥2 < ∥U ∗

k (Fk)∥2 , (4.21)
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where ∥ · ∥2 denotes the 2-norm.

Proof. Starting with (4.19), it is seen that

G(Gk) − G(Fk) = (I ⊙ Ωg)
(
I − Υ

)
≻ 0, (4.22)

G−1(Gk) ≺ G−1(Fk) , (4.23)

G−1(Gk) ΩgpXk <G−1(Fk) ΩgpXk, (4.24)∥∥∥G−1(Gk) ΩgpXk

∥∥∥
2
<
∥∥∥G−1(Fk) ΩgpXk

∥∥∥
2
, (4.25)

∥−U ∗
k (Gk)∥2 < ∥−U ∗

k (Fk)∥2 , (4.26)

∥U ∗
k (Gk)∥2 < ∥U ∗

k (Fk)∥2 . (4.27)

This concludes the proof.

In addition to showing that the cost of the UDP-like protocol is strictly greater than

the cost of the TCP-like protocol. The MPC formulation derived above allows for an

analytic proof that the cost of the system under either protocol is monotonic with respect

to the variable M. The following theorem shows that the cost function is a monotonically

decreasing function in M for both protocols.

Theorem 4. Let M1 ∈ Sm
++ and M2 ∈ SM

++ be diagonal matrices. If M2 ≻ M1 then

J∗
∆M = J∗

M1 (Ik) − J∗
M2 (Ik) > 0, (4.28)

where J∗
M1 (Ik) is the optimal expected cost obtained with the value of Mi, where Mi as the

mean of the channel transmission variable Vk.

Proof. The proof is constructed for the TCP-like protocol. However, with the substitutions

of Ωg for Ωh and Ψ for (I ⊙ Ωg) + Ψ the corresponding UDP-like proof is identical. For a

given M1 and M2 the cost difference between the optimal expected costs calculated for
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each Mi respectively is

J∗
M1 (Ik) = C −XT

k ΩT
gp

(
Υ1Ωg + Ψ

)−1
Υ1ΩgpXk, (4.29)

J∗
M2 (Ik) = C −XT

k ΩT
gp

(
Υ2Ωg + Ψ

)−1
Υ2ΩgpXk, (4.30)

where Υ1 and Υ2 are the diagonal matrices constructed from the matrices M1 and M2,

such that Υ i = IN ⊗ Mi. Additionally, as in the previous proof, the constant C

is defined as C = XT
k (Q + Ωp)Xk + tr (ΣWΩl). Consequently Υ2 ≻ Υ1 due to the

assumption M2 ≻ M1. Therefore, the cost difference between the two optimal expected

costs is

J∗
∆M =J∗

M1 (Ik) − J∗
M2 (Ik) (4.31)

= C −XT
k ΩT

gp

(
Υ1Ωg + Ψ

)−1
Υ1ΩgpXk −

(
C −XT

k ΩT
gp

(
Υ2Ωg + Ψ

)−1
Υ2ΩgpXk

)
=XT

kΩT
gp

[(
Υ2Ωg +Ψ

)−1
Υ2−

(
Υ1Ωg +Ψ

)−1
Υ1

]
ΩgpXk

=XT
k ΩT

gp

(
Υ2Ωg + Ψ

)−1
Υ2
[
Υ−1

1

(
Υ1Ωg + Ψ

)
−Υ−1

2

(
Υ2Ωg + Ψ

)] (
Υ1Ωg + Ψ

)−1
Υ1ΩgpXk

=XT
k ΩT

gp

(
Υ2Ωg + Ψ

)−1
Υ2
(
Υ−1

1 − Υ−1
2

)
Ψ
(
Υ1Ωg + Ψ

)−1
Υ1ΩgpXk. (4.32)

Only the term Υ−1
1 − Υ−1

2 within (4.32) determines the positivity of the expected cost

difference. The term is positive if M2 ≻ M1, as is assumed above. Therefore, Υ2 ≻ Υ1

and Υ−1
1 − Υ−1

2 ≻ 0 and the expected cost difference is strictly positive. This concludes

the proof.

Corollary 3. Theorem 3 combined with Theorem 4 implies that with both protocols

operating at a fixed cost value, the TCP-like protocol communicates with a larger packet

loss rate. Therefore, where M1 ≻ M2.

J∗
M1 (Gk) = J∗

M2 (Fk) . (4.33)
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Proof. From Theorem 3

J∗
M1 ( Gk) = J∗

M1 (Fk) + ϵ,

where ϵ ∈ R+. From Theorem 4 it is known that

J∗
M1 (Fk) + ϵ = J∗

M2 (Fk) .

Therefore,

J∗
M1 (Gk) = J∗

M2 (Fk) .

This concludes the proof.

Remark 2. Theorem 4 and Corollary 3 also apply to a non-stationary communication

channel with a slight adjustment of the conditions. Both are true for a non-stationary

channel when the stronger condition Υ2 ≻ Υ1 holds, or more precisely, M2 k ≻ M1 k for

all k.

4.4.1 Scalar Communication Channel

The maximum difference in the expected cost and the maximising value of the expected

packet transmission variable is characterised when the expected cost difference, as estab-

lished in Theorem 3, is simplified to the scalar case i.e. Υ ∈ [0, 1]. In doing so, the channel

is simplified to a single channel that all actuators share. Due to this, the following results

do not apply to a non-stationary communication channel.

Assuming the same plant dynamics as (4.1), the cost difference between the two

protocols as a function of Υ is given by

J∗
∆

(
Υ
) ∆=J∗ (Gk) − J∗ (Fk) . (4.34)
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Note that Theorem 3 states that (4.34) is positive, and therefore, the cost difference is

J∗
∆

(
Υ
)

= C −XT
k ΩT

gpΥG−1(Gk) ΩgpXk −
(
C −XT

k ΩT
gpΥG−1(Fk) ΩgpXk

)
=XT

k ΩT
gpΥG−1(Gk)

(
1 − Υ

)
(I ⊙ Ωg)G−1(Fk)ΩgpXk

= Υ
(
1 − Υ

)
tr
(
G−1(Gk) (I ⊙ Ωg) G−1(Fk) L

)
, (4.35)

where L = ΩgpXkX
T
k ΩT

gp. From (4.35) it is seen that the cost difference between the

protocols depends on a scaling of the variance of the packet transmission variable Υ
(
1 − Υ

)
over the prediction horizon N . Intuitively, this means that for a channel with a high

variance, the cost difference is larger. The TCP-like protocol has access to more information

and is better able to reduce the uncertainty in the state caused by the variable Υk than the

UDP-like protocol, and therefore, has a smaller cost. However, the cost difference in (4.35)

is a non-linear function of Υ owing to the dependence of G−1(Fk) and G−1(Gk) on Υ. At this

point, we characterise the maximum cost difference as a function of Υ. This maximum cost

difference corresponds to the greatest cost difference incurred by the operator choosing to

communicate using a UDP-like communication protocol instead of a TCP-like protocol.

Lemma 8. The derivative of the cost difference in (4.35) is

∂

∂Υ
J∗

∆

(
Υ
)

=XT
k ΩT

gp

(
G−1(Gk)

( (
1 − 2Υ

)
Ωd

−Υ
(
1 − Υ

)[
ΩhG−1( Gk) Ωd+ΩdG−1(Fk)Ωg

])
G−1(Fk)

)
ΩgpXk, (4.36)

where Ωd = (I ⊙ Ωg) and Υ ∈ [0, 1].

Proof. See Appendix.

Finding the critical points of the cost difference (4.36) is non-trivial for this function

due to the outer products. In order to find the stationary points of (4.36) it is required

that the maximum eigenvalue of the matrix inside the quadratic tends to 0. The maximum

eigenvalue of a matrix can be written as [32]

λmax (C) = max
∥x∥≠0

xTCx
xTx

, (4.37)
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where x ∈ Rn is a column vector, C is a square matrix of appropriate dimension,

and λmax (C) is the maximum eigenvalue of C. Any matrix for which all eigenvalues

are equal to 0 also satisfies that the determinant is zero. However, not all matrices with

a 0 determinant have a maximum eigenvalue equal to 0. Solving for a zero determinant

of (4.36) results in a finite number of values for Υ, at which point the condition (4.37)

reveals the critical points. This leads to the next theorem.

Lemma 9. The equation

det
(
GG

(
Υ
)[(

1 − 2Υ
)

Ωd −Υ
(
1 −Υ

)[
ΩhGG

(
Υ
)

Ωd + ΩdGF
(
Υ
)

Ωg

]]
GF

(
Υ
))

=0, (4.38)

has 2Nm solutions, given by,

ΥD
2i−1 = 1

1 +
√

1 + λi

, (4.39a)

ΥD
2i = 1

1 −
√

1 + λi

, (4.39b)

where ΥD
i correspondences to the i-th solution of (4.38) and λi is the i-th eigenvalue of

the matrix,

(
ΩgΩ−1

d (Ωg + Ψ) + ΨΩ−1
d Ωh

)
(Ωg + Ψ)−1 ΩdΨ−1. (4.40)

Proof. See Appendix.

The above theorem gives a solution in Υ for all of the points for which (4.38) holds true.

However, as mentioned above this does not correspond to all of the critical points of (4.34).

In order for ΥD
i to be a critical point of (4.34) it must hold that the magnitude of the

maximum eigenvalue of (4.36) must also be 0. We address this by solving the following

numerical evaluation problem.
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Theorem 5. The cost difference between the UDP-like and the TCP-like protocols as a

function of Υ, is defined as

J∗
∆

(
Υ
) ∆= J∗ (Gk) − J∗ (Fk) > 0. (4.41)

This function has a maximum point that occurs at ΥD∗, where ΥD∗ is defined as

ΥD∗∆= sup
Υ D

i ∈[0,1]
J∗

∆

(
ΥD

i

)
s.t.

∥∥∥∥∥∥max
∥x∥≠0

xTf
(
ΥD

i

)
x

xTx

∥∥∥∥∥∥=0, (4.42)

and where f
(
ΥD

i

)
is defined as

f
(
ΥD

i

)
= GG

(
ΥD

i

) [(
1 − 2ΥD

i

)
Ωd

−ΥD
i

(
1 − ΥD

i

) [
ΩhGG

(
ΥD

i

)
Ωd + ΩdGF

(
ΥD

i

)
Ωg

]]
GF
(
ΥD

i

)
. (4.43)

Proof. Lemma 9 states that every ΥD
i results in the determinant in (4.38) being equal to 0.

However, this theorem does not guarantee that ΥD
i is a critical point of (4.34). It is also

required that the magnitude of the maximum eigenvalue is 0 for a given ΥD
i . Therefore,

the condition on the ΥD
i is recast as

max
j

∣∣∣∣λj

(
GG

(
ΥD

i

) [(
1 − 2ΥD

i

)
Ωd

− ΥD
i

(
1 − ΥD

i

) [
ΩhGG

(
ΥD

i

)
Ωd + ΩdGF

(
ΥD

i

)
Ωg

]]
GF

(
ΥD

i

))∣∣∣∣ = 0.

Therefore, the condition to ensure that ΥD
i is a critical point becomes

∣∣∣∣∣∣max
∥x∥≠0

xTf
(
ΥD

i

)
x

xTx

∣∣∣∣∣∣ = 0, (4.44)

where

f
(
ΥD

i

) ∆= GG
(
ΥD

i

)[(
1−2ΥD

i

)
Ωd−ΥD

i

(
1−ΥD

i

)[
ΩhGG

(
ΥD

i

)
Ωd+ΩdGF

(
ΥD

i

)
Ωg

]]
GF
(
ΥD

i

)
.(4.45)



4.5 Packet Loss Allocation Optimisation 64

3
.3

8

3
.3

8

3
.3

8
3
.3

8

3.583.583.58

3.58

3
.5

8
3
.5

8
3
.5

8
3
.5

8

3.783.783.783.78

3
.7

8

3
.7

8
3
.7

8
3
.7

8

3.983.983.983.98
3.98

3
.9

8
3

.9
8

3
.9

8
3

.9
8

4.184.184.184.184.18
4
.1

8
4
.1

8
4
.1

8
4
.1

8

4.384.384.384.384.38
4
.3

8
4

.3
8

4
.3

8
4
.3

8
4.584.584.584.584.58

4
.5

8
4
.5

8
4
.5

8
4
.5

8

4.78

4
.7

8
4

.7
8

4
.7

8
4
.7

8

4.98

4
.9

8
4
.9

8
4
.9

8
4
.9

8
5
.1

8
5
.1

8
5
.1

8
5
.1

8
5
.1

8
5
.3

8
5
.3

8
5
.3

8
5

.3
8

5
.5

8
5

.5
8

5
.5

8
5
.5

8
5
.7

8
5
.7

8
5
.7

8
5
.7

8
5
.9

8
5
.9

8
5

.9
8

5
.9

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4.3 Cost values for the TCP-like protocol operating on system (8.3) as a function of
the channel packet packet transmission probabilities in both actuation channel dimensions.

Theorem 3 states that in [0, 1] the cost difference is strictly positive. Therefore, there is at

least one maximum in this interval. Taking the supremum of all critical points that lie

within [0, 1] results in the maximising ΥD
i in [0, 1]. This is denoted by ΥD∗ . This concludes

the proof.

4.5 Packet Loss Allocation Optimisation

In modern communication systems, the probability of packet loss is determined by the

performance of multiple processes. These processes range from the modulation and coding,
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Fig. 4.4 Cost values for the UDP-like protocol operating on system (8.3) as a function of
the channel packet packet transmission probabilities in both actuation channel dimensions.

which operate in the lower layers, to the routing and flow control, operating in the

higher layers. While characterising the probability of packet transmission of a modern

communication system is challenging in general, the probability of packet transmission

decreases monotonically [8] with the resources allocated to the communication system, i.e.

bandwidth, power, and delay. Indeed, resource allocation is a fundamental problem in

communication systems and is often confronted with competing objectives for which the

efficiency trade-offs are difficult to describe analytically. In our setting, the extension to

the multidimensional actuation channel poses a central question that concerns the design

of the communication system of the control system, namely the optimal allocation of
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communication resources to each of the actuation channel dimensions. In the following

section, we capitalise on the analytical framework developed above and provide a resource

allocation framework that optimises the packet loss probabilities for each actuation

dimension while satisfying a total budget constraint.

The set of packet loss probability matrices that achieve a given cost α ∈ R+ is the set

of channel matrices described by

Mk (Ik) = {M : J∗ (Ik) ≤ α} . (4.46)

All the matrices in the set induce a control cost that is upper bounded by α, but differ

in their use of communication resources, i.e. the packet transmission performance across

different dimensions. To quantify the use of communication resources in global terms, a

communication cost for the system is proposed, defined as

C (M) ∆=
m∑

i=1
βiµi = tr (βM) , (4.47)

where β ∈ S+
m×m is the non-negative definite diagonal penalty matrix where each diagonal

entry βi ∈ R is a penalty term corresponding to the cost of communication in that channel.

The communication cost captures the notion of a total communication budget for the

system. That being the case, the minimum communication cost is defined as

Cα (Ik) ∆= min
M∈Mk(Ik)

C (M) . (4.48)

The maximum channel efficiency yields a communication setup that minimises the total

number of packet losses while maintaining the system control performance. In view of this,

the communication system configuration that minimises the amount of resources allocated

to the actuation channel is

M∗ ∆= arg min
M∈Mk(Ik)

C (M) . (4.49)
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This cost of communication formulation highlights the importance of Corollary 3. Specifi-

cally, if it is costly to communicate over a particular dimension, then allocating as few

resources as possible whilst maintaining a set control cost is desirable. Indeed, as few

resources as is dictated by the minimiser M∗.

The optimisation of the communication channel for the pendulum case study presented

in Section 8.2.1 is straightforward. There is a single communication channel, and therefore,

the maximum channel efficiency is the packet transmission value that achieves the optimal

control cost of α with equality. However, for the system presented in Section 8.2.2(8.3)

there are fixed regions of expected cost for both the TCP-like protocol and the UDP-like

protocol, as shown in Fig. 4.3 and Fig. 4.4, respectively. The black dashed lines plotted in

Fig. 4.3 and Fig. 4.4 correspond to the channel matrices defined in (4.49) that achieve the

maximum channel efficiency. The values of β are selected for three different cases. For the

first case, the cost is symmetric in both channel dimensions, i.e. β is set to I and for the

second and third cases the entries are set to (0.05, 1) and (1, 0.05), respectively. These cases

model the situation in which communication across one of the channel dimensions induces

larger cost. Additionally, we also mark the optimal allocation points for each contour line

with a black cross. The same weighting matrices are used for both the UDP-like and the

TCP-like figures. Note that for the point at which the minimum communication cost is

achieved by a matrix M∗ with either µ1 = 1 or µ2 = 1, the optimisation for the channel

reduces to the single dimensional case, i.e. one of the channel dimensions is perfect and the

other dimension incurs in all packet loss. Furthermore, Fig. 4.4 shows that for all the three

weightings of the channel cost considered, the maximum channel efficiency for α ≥ 4.78

requires at least one of the channels to be perfect.

This packet loss allocation presented is not possible with the results [59], due to the

scalar channel model.
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4.6 Control with Sensor and Actuation Packet Loss

In the above it is assumed that the sensory channel has perfect communication. This

means there is no chance of there being a packet drop on the sensory channel. This

section is concerned with deriving an optimal control input to minimise the cost under

an MPC framework, however, the system model is altered. This alteration is such that

there are independent packet losses on the sensory channel in addition to the packet losses

within the actuation channel. In doing so, we create a more general framework for systems

experiencing packet loss. This system is modelled as

Xk+1 = AXk + BVkUk(Ik) +Wk, (4.50a)

Yk = LkXk, (4.50b)

where Yk is the received signal from the sensory communication channel and Lk ∈ Sn
+ is the

sensory channel packet transmission variable modelled as a diagonal matrix where the i-th

diagonal entry is an IID Bernoulli random variable with mean γi ∈ [0, 1]. Additionally,

the expected value of Lk is E[Lk] = T, where T ∈ Sn
++ is a diagonal matrix in which

the i-th diagonal element is γi. The initial state of the plant, as before, is determined

by the Gaussian vector of random variables Xk with mean Xk and covariance matrix

ΣXk
∈ Sn

++. As in the previous derivation, the information sets available to the operator

for each protocol are defined as

Ik =


Fk =

{
Xk, Vk−1,Lk

}
,

Gk =
{
Xk,Lk

}
,

(4.51)

where Lk = {L0, . . . ,Lk−1} and as with Vk this set is monotonically increasing. Under

TCP-like protocols, the operator has access to the realisation of the packet drop Vk and
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therefore can utilise this in the error prediction

Ek+1(Fk) ∆=Xk+1 − E
[
Xk+1

∣∣∣∣Fk,Vk

]
= AXk + BVkUk(Fk) +Wk − AX̂k − BVkUk(Fk)

= AEk

(
Fk−1

)
+Wk, (4.52a)

As before, the function Uk(Ik) is a function of the information set Ik and takes the form of

a state feedback law, and is therefore, a random variable. Similarly to before, the UDP-like

error is defined as

Ek+1(Gk) ∆=Xk+1 − E
[
Xk+1

∣∣∣∣Gk

]
= AXk + BVkUk(Gk) +Wk − AX̂k − BMUk(Gk)

= AEk

(
Gk−1

)
+ B (Vk − M)Uk(Gk) +Wk. (4.52b)

As before, the system is predicted over a horizon length N to give the matrix equation

Xk = ΦXk + ΓΥkUk(Ik) + ΛWk, (4.53a)

Yk = TkXk, (4.53b)

where Yk ∈ RnN is the received sensory channel output over the time horizon; Tk ∈ MnN

is the sensory channel transmission variable over the time horizon; and Uk(Ik) ∈ RmN is

the new control law over the time horizon with sensory channel packet loss. It should be

noted that Tk is an idempotent matrix, meaning Ti
k = Tk for all i ∈ Z++, this is due to

the properties of the Bernoulli distribution. Additionally, ΓA only differs from Γ by the

lack of B within it, i.e ΓA (I ⊗ B) = Γ, where ⊗ is the Kronecker product. Also, due to

the lack of a C in our description it should be clear that p = n. We define the following
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predictions

X̂k =E [X |Ik] = ΦXk + ΓΥUk(Ik) , (4.54a)

Ŷk =E [Yk|Ik] = E [TkXk|Ik] = T
(
ΦXk + ΓΥUk(Ik)

)
, (4.54b)

where E [Tk] = T. As before, for the purposes of estimation, TCP-like protocols will

have access to the both channels packet realisations, resulting in (4.52a). However, when

computing the optimal control law the the operator will not have access to the packet drop

realisations resulting in (4.54). This, as before, is to maintain causality. The operator

does not know the realisation of a packet drop before actuating, but will know the packet

transmission variables realisation when updating the state estimate. Under the UDP-like

protocol, the packet drop must be estimated for both the estimation and optimal control

problem on the actuation side but it does have access to the current realisation of the

packet loss on the sensory communication channel, namely, Lk. Stacking the error terms

in the same fashion as the state trajectory results in the following matrix terms for the

error predictions

Ek(Fk) ∆=Xk − E
[
Xk

∣∣∣∣Fk,Υk

]
= ΦXk + ΓΥkUk(Fk) + ΛWk − X̂k

= ΦXk + ΓΥkUk(Fk) + ΛWk − ΦXk − ΓΥkUk(Fk)

= ΛWk, (4.55a)

for the TCP-like protocol and

Ek(Gk) ∆=Xk − E
[
Xk

∣∣∣∣Gk

]
= ΦXk + ΓΥkUk(Gk) + ΛWk − X̂k

= ΦXk + ΓΥkUk(Gk) + ΛWk − ΦXk − ΓΥUk(Gk)

= Γ
(
Υk − Υ

)
Uk(Gk) + ΛWk, (4.55b)
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for the UDP-like protocol. As in the previous derivation the cost function is an LQG cost

function that the operator minimises, with the same penalty matrices as defined before.

However, due to the loss of packets in the sensory communication channel, γk the cost

is redefined such that it is minimised with respect to Yk and not X . Therefore the cost

function to be minimised is

J (Ik) ∆=E [
XT

k QXk + YT
k ΩYk + UT

k (Ik)Υk
TΨΥkUk(Ik)

∣∣∣Ik

]
, (4.56a)

where the expectation in (4.56a) is with respect to the joint distribution of Υk , Tk,

and Wk. The expectation is taken sequentially as in [65, Lemma 1(c)] to account for the

causality constraints imposed by the system. Therein, the expectation at each time step

is conditioned on all previous time steps. This is due to the fact that the sequence of

states at each time step forms a Markov chain, i.e. Xk → Xk+1 → · · · → Xk+N . The state

trajectory Xk is re-written in terms of the estimate X̂k and the error induced by the

estimate Ek. Substituting Xk = X̂k + Ek into (4.56a) yields

J(Ik) =E
[
XT

kQXk+
(
X̂k+Ek

)T
TkΩTk

(
X̂k+Ek

)
+UT

k (Ik)Υk
TΨΥkUk(Ik)

∣∣∣∣Ik

]
. (4.56b)

The optimal control problem is to find the input sequence U ∗
k (Ik) that minimises (4.9b).

Additionally, it should be noted that E
[
Ek

∣∣∣Ik

]
= 0 and the state error and the state

estimate are independent for both protocols.

J∗(Ik) = min
Uk(Ik)

{
E
[
XT

kQXk+
(
X̂k+Ek

)T
TkΩTk

(
X̂k+Ek

)
+UT

k (Ik)Υk
TΨΥkUk(Ik)

∣∣∣∣Ik

]}
= min

Uk(Ik)

{
XT

kQXk + E
[
X̂ T

k TT
k ΩTkX̂k + ETTT

k ΩTkE + UT
k(Ik) Υk

TΨΥkUk(Ik)
]}
. (4.57)

When looking at the expectation in (4.57), the three terms in the expectation are non-

trivial. The two terms Uk(Ik) Υk
TΨΥkUk(Ik) and X̂ T

k TT
k ΩTkX̂k are easier to evaluate

and E
[
ET

k TT
k ΩTkEk

]
can be simplified by using the commutation properties of diagonal
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matrices and the idempotency of Υk and T. This is

E
[
UT

k(Ik)Υk
TΨΥkUk(Ik)

]
=EΥk

[
UT

k(Ik)Υk
TΥkΨUk(Ik)

]
=EΥk

[
UT

k(Ik)ΥkΨUk(Ik)
]

=UT
k(Ik)ΥΨUk(Ik), (4.58a)

E
[
X̂ T

k TT
k ΩTkX̂k

]
=ETk

[
X̂ T

k TT
k TkΩX̂k

]
=ETk

[
X̂ T

k TkΩX̂k

]
= X̂ T

k TkΩX̂k, (4.58b)

ET,E
[
ET

k TT
k ΩTkEk

]
=EE ,T

[
ET

k TT
k TkΩEk

]
=EE ,T

[
ET

k TkΩEk

]
=EE

[
ET

k TkΩEk

]
, (4.58c)

where the sub index on the expectation denotes with which variable the expectation is

being taken with respect to. Note these variables are by definition independent which

allows this. Substitution of these simplifications yields

J∗(Ik) = min
Uk(Ik)

{
XT

k QXk + UT
k (Ik) ΥΨUk(Ik) + X̂ T

k TΩX̂k + EE
[
ET

k TΩEk|Ik

]}
, (4.59)

substituting (4.54) gives

J∗(Ik) = min
Uk(Ik)

{
XT

k QXk + UT
k (Ik) ΥΨUk(Ik)+

(
ΦXk + ΓΥUk(Ik)

)T
TΩ

(
ΦXk + ΓΥUk(Ik)

)
+EΥ,W

[
ET

k TΩEk|Ik

]}
(4.60)

= min
Uk(Ik)

{
XT

k (Q + Ωpt)Xk + UT
k (Ik) Υ

(
ΩgtΥ + Ψ

)
Uk(Ik) + 2ΥUT

k (Ik) ΩgtpXk

+EΥ,W
[
ET

k TΩEk|Ik

]}
, (4.61)

where for ease of notation ΦTTΩΦ = Ωpt, ΓTTΩΓ = Ωgt, and ΓTTΩΦ = Ωgtp. Also, as

before, a number of terms do not depend on the control input, and therefore, are removed
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from the minimisation to yield

J∗(Ik) =XT
k (Q + Ωpt)Xk + min

Uk(Ik)

{
UT

k (Ik) Υ
(
ΩgtΥ + Ψ

)
Uk(Ik) + 2ΥUT

k (Ik) ΩgtpXk

+EE
[
ET

k TΩEk|Ik

]}
. (4.62)

Evaluating the expectation of the final term is not trivial. It is in this step that the

difference between UDP-like and TCP-like becomes clear. This leads to the following

lemma

Lemma 10. Consider the system modelled by (4.50) with access to (4.51). Then the

following holds

EΥ,W

[
ET

kTΩEk

∣∣∣∣Fk

]
= tr (ΩltΣW), (4.63a)

EΥ,W

[
ET

k TΩEk

∣∣∣∣Gk

]
= UT

k (Ik)Υ(I ⊙ Ωgt)
(
I − Υ

)
Uk(Gk) + tr (ΩltΣW), (4.63b)

where Ωlt = ΛTTΩΛ and ⊙ denotes the Hadamard product.

Proof. The proof of this is identical to Lemma 7 with a transformation of the Ω matrix

and is therefore omitted.

Due to this difference in quadratic error between the protocols, once again the derivation

must be split. This is seen in the following theorem.

Theorem 6. Consider the closed-loop control system, with plant dynamics given in (4.50),

protocol dependent information sets given in (4.51), and controller cost function given

in (4.62), respectively. Then the optimal cost for the TCP-like protocol is

J∗ (Fk) =XT
k(Q + Ωpt)Xk+tr (ΣWΩlt) −XT

kΩT
gtpG−1(Fk)ΥΩgtpXk, (4.64a)

and the optimal cost for the UDP-like protocol is

J∗ (Gk) =XT
k(Q + Ωpt)Xk+tr (ΣWΩlt) −XT

kΩT
gtpG−1(Gk)ΥΩgtpXk. (4.64b)



4.6 Control with Sensor and Actuation Packet Loss 74

The corresponding optimal control laws are

U ∗
k (Fk) ∆= −

(
ΩgtΥ + Ψ

)−1
ΩgtpXk (4.65a)

= −G−1(Fk) ΩgtpXk,

U ∗
k (Gk) ∆= −

(
Ψ + (I ⊙ Ωg)

(
I − Υ

)
+ ΩgtΥ

)−1
ΩgtpXk (4.65b)

= −G−1(Gk) ΩgtpXk,

for the TCP-like and the UDP-like protocols, respectively.

Proof. As in the previous derivation of the optimal control laws and resultant cost func-

tions, the derivation must be split into two sections, with one corresponding to each

communication protocol.

Remark 3. It should be noted that both of the above optimal control laws require access

the state information Xk in order to be implemented. However, in the case of sensory

packet loss it is possible that this information may be unavailable at a given time instance.

We propose implementing the next entry of the previous optimal control input. However,

as with the other work in this thesis we don’t analyse the potential stability repercussions

of the system. Naturally, the drawback of this is we are dealing with random processes

and therefore there is a non zero probability of running out control inputs in the horizon

length, N . Therefore, it is suggested that the horizon length should be created long enough

such that the probability of receiving a sequence of N sequential zeros is below a threshold

that the operator accepts. Alternatively the operator could perform no actuation when

no sensory signal is received, this mirrors the zero input strategy assumed on the control

optimisation.
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TCP-like Protocol

From Lemma 10 it is clear that the error term for the TCP-like protocol does not depend

on the control input and can therefore be removed from the control optimisation

J∗(Fk) =XT
k (Q + Ωpt)Xk + EΥ,W

[
ET

k TΩEk|Fk

]
+ min

Uk(Fk)

{
UT

k (Fk) Υ
(
ΩgtΥ + Ψ

)
Uk(Fk) + 2ΥUT

k (Fk) ΩgtpXk

}
. (4.66)

Using Lemma 10 the cost then becomes

J∗(Fk) =XT
k (Q + Ωpt)Xk + tr (ΩltΣW)

+ min
Uk(Fk)

{
UT

k (Fk) Υ
(
ΩgtΥ + Ψ

)
Uk(Fk) + 2ΥUT

k (Fk) ΩgtpXk

}
. (4.67)

Minimising with respect to Uk(Fk) under the TCP-like protocol yields

∂J(Fk)
∂Uk(Fk)

= 2ΥΩgtpXk + 2Υ
(
ΩgtΥ + Ψ

)
Uk(Fk) (4.68)

= 2Υ
(
ΩgtpXk +

(
Ψ + ΩgtΥ

)
Uk(Fk)

)
. (4.69)

All terms within
(
Ψ + ΩgtΥ

)
are either positive definite or positive semi-definite. This

means the whole term is strictly positive definite, and therefore invertible. Therefore,

assuming Υ,T ̸= 0 yields the minimising Uk(Fk) . Namely, it is found to be

U ∗
k (Fk) = −

(
Ψ + ΩgtΥ

)−1
TΩgtpXk (4.70)

= −G−1
t (Fk) ΩgtpXk, (4.71)
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where G−1
t (Fk) =

(
Ψ + ΩgtΥ

)−1
. Substitution of the optimal control law into the expected

cost function gives the optimal cost function under TCP-like protocols

J∗(Fk) =XT
k (Q + Ωpt)Xk + tr (ΩltΣW)

+U ∗T
k (Fk) Υ

(
ΩgtΥ + Ψ

)
U ∗

k (Fk) + 2ΥU ∗T
k (Fk) ΩgtpXk

=XT
k (Q + Ωpt)Xk + tr (ΩltΣW) −XT

k ΩT
gtpΥG−1

t (Fk) ΩgtpXk, (4.72)

UDP-like Protocol

The main difference in how the protocols affect the optimal control law is that the UDP-like

protocol error depends on the input to the system and therefore cannot be removed from

the minimisation. However, the use of Lemma 10 allows simplification of the minimisation.

The cost is transformed to

J∗( Gk) =XT
k (Q + Ωpt)Xk + tr (ΩltΣW)+

+ min
Uk(Gk)

{
UT

k (Gk) Υ
(
ΩgtΥ + (I ⊙ Ωgt)

(
I − Υ

)
+ Ψ

)
Uk(Gk) + 2ΥUT

k (Gk) ΩgtpXk

}
. (4.73)

Minimising with respect to Uk(Gk) under the UDP-like information set yields

∂J( Gk)
∂Uk(Gk)

= 2ΥΩgtpXk + 2Υ
(
ΩgtΥ + (I ⊙ Ωgt)

(
I − Υ

)
+ Ψ

)
Uk(Gk) (4.74)

= 2Υ
(
ΩgtpXk +

(
Ψ + (I ⊙ Ωgt)

(
I − Υ

)
+ ΩgtΥ

)
Uk(Gk)

)
. (4.75)

All terms within
(
Ψ + (I ⊙ Ωgt)

(
I − Υ

)
ΩgtΥ

)
are either positive definite or positive semi-

definite. This means the whole term is strictly positive definite, and therefore invertible.

Therefore, assuming Υ,T ̸= 0 yields the minimising Uk(Gk). Namely, it is found to be

U ∗
k (Gk) = −

(
Ψ + (I ⊙ Ωgt)

(
I − Υ

)
+ ΩgtΥ

)−1
TΩgtpXk (4.76)

= −G−1
t ( Gk) ΩgtpXk, (4.77)
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where G−1
t ( Gk) =

(
Ψ + ΩgtΥ

)−1
. Substitution of the optimal control law into the expected

cost function gives the optimal cost function under UDP-like protocols

J( Gk) =XT
k (Q + Ωpt)Xk + tr (ΩltΣW)

+U ∗T
k (Gk) Υ

(
ΩgtΥ + Ψ

)
U ∗

k (Gk) + 2ΥU ∗T
k (Gk) ΩgtpXk

=XT
k (Q + Ωpt)Xk + tr (ΩltΣW) −XT

k ΩT
gtpΥG−1

t (Gk) ΩgtpXk. (4.78)

This concludes the proof.

4.7 Dual Channel Cost Difference Analysis

From the previous cost difference analysis, where there is only one multidimensional

communication link, most results readily translate straight into this new system design.

To that end, we restate them explicitly in the new system transformation.

Theorem 7 (Main Result). Let M such that 0 ≺ M ≺ I, and let 0 ≺ T ≺ I then with

information sets given in (4.51). It holds that

J∗ (Gk) − J∗ (Fk) > 0,

where the optimal cost is as defined in (4.62).

Proof. The optimal control laws for each communication protocol are defined in (4.71)

and (4.77). Note that Gt(Ik) ≻ 0 and that,

G(Gk) − G(Fk) = (I ⊙ Ωgt)
(
I − Υ

)
≻ 0. (4.79)
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Therefore, [30, 10.53] implies that

G−1
t (Gk) ≺ G−1

t (Fk) ,

G−1
t (Gk) Υ ≺ G−1

t (Fk) Υ,

C −XT
k ΩT

gtpG−1
t (Gk) ΥΩgtpXk >C −XT

k ΩT
gtpG−1

t (Fk) ΥΩgtpXk,

where C = XT
k (Q + Ωpt)Xk + tr (ΣWΩlt). Therefore, for any 0 ≺ M ≺ I and 0 ≺ T ≺ I

holds that

J∗ (Gk) − J∗ (Fk)> 0. (4.80)

This concludes the proof.

Similarly to before, additional insight can be obtained from Theorem 7.

Corollary 4. In the case where there are sensory communication channel packet loss. It

still holds that

∥U ∗
k (Gk)∥2 < ∥U ∗

k (Fk)∥2 , (4.81)

where ∥ · ∥2 denotes the 2-norm.

Proof. Starting with (4.79), it is seen that,

Gt(Gk) − Gt(Fk) = (I ⊙ Ωgt)
(
I − Υ

)
≻ 0, (4.82)

G−1
t (Gk) ≺ G−1

t (Fk) , (4.83)

G−1
t (Gk) ΩgtpXk <G−1

t (Fk) ΩgtpXk, (4.84)∥∥∥G−1
t (Gk) ΩgtpXk

∥∥∥
2
<
∥∥∥G−1

t (Fk) ΩgtpXk

∥∥∥
2
, (4.85)

∥−U ∗
k (Gk)∥2 < ∥−U ∗

k (Fk)∥2 , (4.86)

∥U ∗
k (Gk)∥2 < ∥U ∗

k (Fk)∥2 . (4.87)
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This concludes the proof.

The following theorem shows that the cost function is monotonically decreasing func-

tions in M even with sensory channel packet loss for a fixed T.

Theorem 8. Let M1 ∈ Sm
++ and M2 ∈ SM

++ be diagonal matrices. If M2 ≻ M1 then

J∗
∆M = J∗

M1 (Ik) − J∗
M2 (Ik) > 0, (4.88)

where J∗
M1 (Ik) is the optimal expected cost obtained with the value of Mi, where Mi as the

mean of the actuation channel transmission variable Vk.

Proof. The proof of this theorem is identical the to the proof of Theorem 4 with the

substitution of variables of Ωgp for Ωgtp and Ωg for Ωgt. This concludes the proof.

Corollary 5. Theorem 7 combined with Theorem 8 implies that with both protocols

operating at a fixed cost value, the TCP-like protocol communicates with a larger packet

loss rate.

J∗
M1 (Gk) = J∗

M2 (Fk) , (4.89)

where M1 ≻ M2.

Proof. From Theorem 7

J∗
M1 ( Gk) = J∗

M1 (Fk) + ϵ,

where ϵ ∈ R+. From Theorem 8 it is known that

J∗
M1 (Fk) + ϵ = J∗

M2 (Fk) .

Therefore,

J∗
M1 (Gk) = J∗

M2 (Fk) .
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This concludes the proof.

Remark 4. Theorem 4 and Corollary 5 also apply to a non-stationary communication

channel with a slight adjustment of the conditions. Both are true for a non-stationary

channel when the stronger condition Υ2 ≻ Υ1 holds, or more precisely M2 k ≻ M1 k for

all k even with a constant, non-stationary T.

As is shown in Theorem 7, the cost difference between the UDP-like and the TCP-like

protocol is strictly positive for an actuation channel without deterministic packet transmis-

sions. The cost difference is zero only in the cases of no actuation communication M = 0

or perfect actuation communication M = I. Note that this conclusion is not necessarily

true in the case of deterministic sensory channel communication. Namely, in the case

with perfect communication on the sensory channel, the scenario reduces to the same as

Theorem 3, in which case the TCP-like protocol still outperforms the UDP-like protocol.

It should be pointed out that transforming the Ω• matrices in the previous section,

where there is perfect communication on the sensory channel, into the Ω•t matrices in this

section, does not alter the positivity or symmetric properties of the matrices. Therefore,

due to this fact, all of the results in those sections also apply to a system with sensory

channel losses.

4.8 Dual Channel Packet Loss Allocation

With the above statement in mind, it allows us to inquire into the resource allocation

problem for a system with packet loss on both communication channels.

To that end, we define some objects corresponding to a system with both actuation

and sensory channel packet. The set of packet loss probability matrices that achieve a

given cost α ∈ R+ is the set of channel matrices described by

Tk (Ik) = {M,T : J∗ (Ik) ≤ α} . (4.90)
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All the matrices in the set induce a control cost that is upper bounded by α, but differ

in their use of communication resources, i.e. the packet transmission performance across

different dimensions and different channels. To quantify the use of communication resources

in global terms, a communication cost for the system is proposed, defined as

C (M,T) ∆=
m∑

i=1
βiµi + ϵiγi = tr (βM + ϵT) , (4.91)

where β, ϵ ∈ S+
m×m are the non-negative definite penalty matrices where each diagonal

entry βi ∈ R and ϵi ∈ R, are penalty terms corresponding to the cost of communication in

that channel. With the above definitions, the minimum communication cost for a system

with packet loss in both communication channels is defined as

Cα (Ik) ∆= arg min
{M,T}∈Tk(Ik)

C (M,T) . (4.92)

The maximum dual channel efficiency yields a communication setup that minimises the

total number of packet losses while maintaining a specified system control performance.

In view of this, the communication channel configurations that minimise the amount of

resources allocated to each channel is

{M∗,T∗} ∆= min
{M∗,T∗}∈Tk(Ik)

C (M,T) . (4.93a)

This cost of communication formulation highlights the importance of Corollary 5. Note

that in the single channel version M∗ is a single matrix. However, in this dual channel

optimisation the set {M∗,T∗} will not necessarily be two matrices and will most likely be

a set of possible matrices that all achieve the same optimal cost.

4.9 Chapter Conclusion

We have obtained the optimal control laws for control systems with multidimensional

communication channels subject to IID packet loss for both TCP-like and UDP-like packet



4.9 Chapter Conclusion 82

acknowledgement protocols. It is proved that for stationary packet loss processes, the cost

incurred by the UDP-like protocol is strictly larger than that of the TCP-like protocol and

that the difference between both increases monotonically with the probability of packet

loss within each channel. These results provide an analytical framework to study the

impact of communication channel resources in the performance of the control system.

Capitalising on this notion, we have provided a guideline to optimally allocate channel

resources for both the UDP-like and TCP-like protocol. This trade-off is explored via two

case studies in Chapter 8.

We also provided the framework for MPC in the case where both of the communication

channels are not perfect. Specifically, the sensory communication channel is another

multidimensional packet loss communication channel. In doing so, it is seen that the

formulation of the cost is similar. Namely, the matrices within the control law also depend

on the probability of the sensory communication channel. In providing this extension the

work above is a true generalisation of the system within [59].

This chapter has fully characterised a control system that operates with a multidimen-

sional packet loss communication channel. Indeed, we derived the optimal control law for

the operator and have provided the resultant optimal cost.



Chapter 5

Optimal Random Denial of Service

Attacks

5.1 Introduction

The previous chapter outlines the optimal control law for the operator. The following

chapter is from the perspective of the attacker. However, the following chapter derives the

optimal stealthy random DoS attack. This is as opposed to the deterministic construction

as seen within Chapter 3. Initially, this attack construction is restricted to the IID case,

however, this assumption is later dropped.

The following attack construction differs from the derivation in Chapter 3 in that

the attacker need not monitor the system after deriving their optimal attack strategy.

This is due to the fact that since the attack construction is random, and therefore, after

designing the optimal statistics for the attack the attacker needs only to implement the

attack according to those statistics. Therefore, the random attack strategy derived is

able to be implemented with a more restrictive information set than in the deterministic

attack strategy. Specifically, once derived this attack construction requires no knowledge

of the current realisation of the system or any system parameters. This means that the

attack strategy can be implemented easier than the deterministic strategy. In doing so
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this attack construction overcomes the main drawbacks of the attack construction seen

within Section3.9.

In Section 5.7 the attack construction is extended from an IID sequence to a non-

stationary random process describing the packet drops. By extending the attack construc-

tion in this way it acts as a middle ground between the deterministic attack in Chapter 3

and the IID attack initially derived in this chapter. In fact it is shown that the IID attack

construction is a subset of the possible solutions of the non-stationary attack.

It should be noted that the following attack strategy is derived for a control system

that only has packet loss on the actuation communication channel. However, as seen in

Chapter 4, the following is trivially extended to a control system with packet loss on both

channels with the relevant transformations of the Ω• variables. It should be noted that

the attacker only performs an attack on the actuation communication channel and leaves

the sensory communication channel unaltered.

5.2 Operator Model

The operator is assumed to be employing the optimal control strategies derived in Chapter 4.

However, in this Chapter the operator is also conducting a hypothesis test as means of

attack detection. Namely, we assume that the operator is monitoring the realisations of

the packet drops in the communication channel and at each time step decides whether

the drops in the channel are nominal or a sequence of drops induced by an attack. This

detection strategy is explored in more detail in Section 5.4. The operator model remains

as in Chapter 4, however, it is outlined briefly here for ease of reading. We consider the

plant model given by

Xk+1 = AXk + BVkUk +Wk, (5.1)

where A ∈ Mn is the dynamics matrix; Xk ∈ Rn describes the state of the plant at time

step k ∈ N; B ∈ Mn×m is the controls matrix; Uk ∈ Rm is the vector of control inputs at
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the k-th time step; Wk ∈ Rn is the process noise modelled by a Gaussian distributed vector

of random variables with mean 0 ∈ Rn and covariance matrix ΣW ∈ Sn
++; and the diagonal

matrix Vk ∈ Sm
++ is the packet loss variable, where the i-th diagonal entry is an IID

Bernoulli random variable with mean µi ∈ [0, 1]. It is assumed that the state of the plant

at time instant k is modelled by a vector of Gaussian distributed random variables Xk

with mean X ∈ Rn and covariance matrix ΣX ∈ Sn
++. The operator utilises an MPC

formulation to expand the plant model given in (5.1) over a prediction horizon N ∈ N+.

This results in the prediction model

Xk
∆= ΦXk + ΓΥkUk(Ik) + ΛWk, (5.2)

where Φ ∈ MNn×n is the dynamics matrix over the prediction horizon; Xk ∈ RNn is the

state prediction vector; Γ ∈ MNn×Nm is the propagation matrix for the control law over

the prediction horizon; Uk(Ik) ∈ RmN is the realisation at the k-th time step of the control

law with access to the information set Ik; Λ ∈ MNn is the propagation matrix for the

process noise; Wk ∈ RNn is the process noise over the prediction horizon; and Υk is a

diagonal matrix with the independent Bernoulli random variables describing the packet

losses over the prediction horizon along the diagonal. All terms in (5.2) are also described

in (4.5) in Chapter 4. As before, due to the lossy communication between the controller

and the plant, the operator implements a communication protocol to monitor the state

of the packet transmission variable. Naturally, we adopt the two protocols outlined in

Chapter 4. Namely, the UDP-like protocol that does not monitor the channel and the

TCP-like protocol that acknowledges receipt of the packet from the controller by sending

an acknowledgement message to the controller over an auxiliary channel. The information

set available to the operator is determined by the choice of protocol. We define the

information sets for the operator as

Ik
∆=


Fk =

{
Xk, Vk−1

}
, TCP-like,

Gk =
{
Xk

}
, UDP-like,

(5.3)



5.3 Attack Model 86

where Vk−1 =
{
V0,V1, . . . ,Vk−1

}
and all sets are monotonically increasing, i.e. there is a

filtration such that Ik ⊆ Ik+1. This is identical to the information sets seen in Chapter 4.

Additionally, the system diagrams that correspond to the TCP-like and the UDP-like

protocols are depicted in Fig. 4.1 and Fig. 4.2, respectively. As seen previously, the optimal

control law is determined by the mean of the packet loss variable. The optimal performance

of the controller is characterised by the optimal LQG cost function

J∗ (Ik) =XT
k(Q + Ωp)Xk+tr (ΣWΩl) −XT

kΩT
gpG−1(Ik)ΥΩgpXk, (5.4)

where Ω ∈ SNn
++ is the state penalty diagonal matrix, Ψ ∈ SNm

++ is the input penalty diagonal

matrix, and the diagonal matrix Q ∈ Sn
++ is the initial state penalty matrix. The control

law that results in the optimal cost function, (5.4), for each protocol is

U ∗
k (Ik)=


U ∗

k (Fk)= −
(
Ψ + ΩgΥ

)−1
ΩgpXk, TCP-like

U ∗
k ( Gk)= −

(
Ψ + ΩgΥ + (I ⊙ Ωg)

(
1 − Υ

))−1
ΩgpXk, UDP-like

(5.5)

as shown in Theorem 2.

5.3 Attack Model

The performance of the controller is dependent on the packet transmission variable, as

shown explicitly in (5.5). In view of this, we study the security risk posed by an attacker

that governs the statistics of the packet losses on the actuation channel. In practice, this

can be achieved by the attacker via DoS attacks over the communication channel. We

are not concerned with the particular implementation of the DoS attacks, instead we

study the packet loss attack strategy that aims to disrupt the operation of the controller.

Specifically, the attacker dictates the statistics of the actuation communication channel.

The rationale for random attacks stems from the fact that the operator expects the packet

losses to be IID, and therefore, the attacker mimics the nominal operation of the channel.

That being the case, the optimal attack construction is characterised by the probability of
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packet loss in the actuation channel, described by the diagonal matrix Vα
k ∈ Sm

++ where

the i-th diagonal entry is an IID Bernoulli random variable with mean µα
i ∈ [0, 1]. In

Section 5.7, the IID assumption is dropped and a non-stationary sequence of Bernoulli

random variables is considered instead. The attacker has access to the information set

Ak =
{
A,B,ΣW ,Υ,Ω,Ψ,Ik

}
. (5.6)

There is a slight abuse of notation in the above, this definition is given to show all of

the information the attacker requires for the following derivations, including knowledge

of matrices/system architecture. Furthermore, knowledge of the state of the plant is not

necessary to construct the optimal attack and it is only required to compute the cost

induced by the attack over a particular realisation of the state variables. The controller

operates under the assumption that the packet losses over the actuation channel are IID

with a mean of packet losses defined by M = E[Vk] for k ∈ N with M ∈ Sm
++. By changing

the statistics of the actuation channel, the attacker induces a different distribution over

the sequence of packet losses. For notation clarity, this random variable is defined as the

diagonal matrix Vα
k . Similarly, the channel is characterised by Mα = E[Vα

k ] for k ∈ N,

with Mα ∈ Sm
++. Note that the mean does not depend on the time step k, and therefore,

the sequence of random variables describing the packet loss in the i-th position is IID.

The sequence of packet losses over the prediction horizon is described by the diagonal

matrix Υα
k with the Bernoulli sequences along the diagonal and Υα ≜ E[Υα

k ]. Namely, the

communication channel under nominal conditions has statistics

E [Vk] =E





V1 0 . . . 0

0 V2
. . . ...

... . . . . . . 0

0 . . . 0 Vm




=



µ1 0 . . . 0

0 µ2
. . . ...

... . . . . . . 0

0 . . . 0 µm


= M, (5.7a)
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and similarly the communication channel under attack has the statistics

E [Vα
k ] =E





V α
1 0 . . . 0

0 V α
2

. . . ...
... . . . . . . 0

0 . . . 0 V α
m




=



µα
1 0 . . . 0

0 µα
2

. . . ...
... . . . . . . 0

0 . . . 0 µα
m


= Mα. (5.7b)

When considering the statistics of the communication channels over the control horizon,

the nominal statistics are seen to be

E [Υk] =E





Vk 0 . . . 0

0 Vk+1
. . . ...

... . . . . . . 0

0 . . . 0 Vk+N−1




=



M 0 . . . 0

0 M . . . ...
... . . . . . . 0

0 . . . 0 M


= Υ, (5.8a)

and similarly the communication channel over the control horizon under attack has the

statistics

E [Υα
k ] =E





Vα
k 0 . . . 0

0 Vα
k+1

. . . ...
... . . . . . . 0

0 . . . 0 Vα
k+N−1




=



Mα 0 . . . 0

0 Mα . . . ...
... . . . . . . 0

0 . . . 0 Mα


= Υα. (5.8b)

The objective of the attacker, in contrast to the objective of the operator, is to maximise

the cost function that the operator minimises. Therefore, the cost function of the attacker

is defined as

JA

(
Ak,Υα

)
≜ min

Uk(Ik)

{
E
[
XT

k QXk + X T
k ΩXk + UT

k (Ik)Υk
αTΨΥα

kUk(Ik)
∣∣∣Ak

]}
,
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and the optimal attack construction is defined as

J∗
A

(
Ak,Υα

)
≜ max

Υ α
JA

(
Ak,Υα

)
. (5.9)

Note that the cost function of the operator lies inside the maximisation of (5.9), i.e. the

attacker chooses the worst case packet loss mean under the assumption that the controller

operates optimally. It should be noted that by putting the minimisation of the operator

within the maximisation of the attacker we have explicitly decided that the operator

performs their optimisation first.

The state estimation performed by the attacker accounts for the true statistics of the

actuation channel to produce the state prediction

X̂ α
k ≜E

[
Xk

∣∣∣Ak

]
= ΦXk + ΓΥαUk(Ik), (5.10)

and the state error prediction of the attack construction for the two protocols is given by

E(Fk)α ≜Xk − E
[
Xk

∣∣∣Fk,Υα
k

]
= ΛWk, (5.11a)

E(Gk)α ≜Xk − E
[
Xk

∣∣∣Gk

]
= Γ

(
Υα

k − Υα
)
Uk(Ik)+ ΛWk, (5.11b)

for the TCP-like protocol and the UDP-like protocol, respectively. The proof of the error

trajectories is identical to the proof in Chapter 4. We describe the attack induced cost by

rewriting (5.9) in terms of the state prediction and the state prediction error as in [20]

which yields

J∗
A

(
Ak,Υα

)
=XT

k (Q + Ωp)Xk + max
Υ α

{
min
Uk(Ik)

{
E

[
EαT

k ΩEk(Ik)
∣∣∣∣Ak

]}
+Υ∗T

k|Ik
Υα

(
2ΩgpXk +

(
ΩgΥα + Ψ

)
U ∗

k (Ik)
)}

, (5.12)

where Ωp = ΦTΩΦ, Ωg = ΓTΩΓ, and Ωgp = ΓTΩΦ.
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5.4 Monitoring of Packet Losses and Attack Detection

The optimal control law for both protocols is determined by the mean number of packet

drops. In view of this, the operator monitors the average number of packet drops on the

actuation channel to check that it agrees with the postulated statistic used to construct

the control law. Specifically, they perform the following hypothesis test

H0 : There is no attack present, Vk ∼ diag (Be (µ1) , Be (µ2) , . . . , Be (µm)), (5.13a)

H1 : There is an attack present, Vk ≁ diag (Be (µ1) , Be (µ2) , . . . , Be (µm)). (5.13b)

Given that the packet losses within each channel of the multidimensional communication

channel form a Bernoulli IID sequence, the ML estimator of each of these channels is

the same as seen in Section 3.4. Therefore, the ML estimator for the multidimensional

communication channel is a parallelisation of the ML estimator of each individual channel.

This follows from the fact that each channel is independent of all other channels. To that

end, the system computes the average number of packet losses over each dimension up to

time step k. Thus, producing the ML estimate

µ̂iML = 1
k

k∑
j=1

(Vj)i,i, (5.14)

where (Vj)i,i describes the i-th diagonal element of Vj. The resulting estimate of the

mean probability of packet losses at time step k is given by

M̂ML = diag(µ̂1ML, µ̂2ML, . . . , µ̂mML). (5.15)

The system uses the estimate to check whether the actuation channel is nominal. In this

setting, nominal operation results in an estimated mean does not deviate significantly from

the postulated mean used by the controller to implement the control law. For the scalar

case, as seen in Section 3.4, this corresponds to the operator designing a safe operation

region that is a 1D line centred around the mean with edge lengths equal to the δ as defined
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in Section 3.4. If the ML estimator remains within this region, then the operator accepts H0.

However, for the multidimensional communication channel the operator determines a safe

operation region that is a hypercube, centred around M with edge lengths determined

by L ∈ Sm
+ . The structure of the lengths is such that L = diag(δ1, δ2, . . . , δm) to account

for the different detection thresholds {δi}m
i=1 for each dimension of the actuation channel.

The resulting safe operation region is given by

C (M,L) =
{
M̂ML ∈ Mm : −L ⪯ M̂ML − M ⪯ L

}
. (5.16)

In this setting, an attack is declared at time step k ∈ N if M̂ML /∈ C(M,L). Otherwise,

normal operation of the system continues and the operator continues monitoring the packet

losses by updating its estimate M̂k at time step k.

Note that the operator does not incorporate a monitoring performance metric in

the cost function; instead, the packet loss monitoring procedure operates concurrent to

the system operation but independently of the controller. In view of this, the attack

construction is concerned with two performance metrics: the cost increase induced by

the attack on the performance of the controller and satisfying that the calculated average

of the packet losses induced by the attack conforms to the safe region defined by (5.16).

When the attacker is considering an IID attack construction they slightly alter the safe

operation region hypercube before incorporating it into their detection constraint. Namely,

attack using an IID attack construction considers the following safe operation region as

their detection constraint

Cϵ (M,L) =
{
M̂ML ∈ Mm : −ϵL ⪯ M̂ML − M ⪯ ϵL

}
, (5.17)

where ϵ ∈ [0, 1] is a tuning parameter for the attack that trades-off the aggressiveness

of the attack with the probability of detection of the attack. Specifically, the larger the

value of ϵ the smaller the cost increase that will be caused by the IID attack however,

there will also be a smaller probability of the attack being detected. Naturally, if an ϵ

is chosen such that ϵ > 1 then the detection hypercube greater than the safe operation
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hypercube, similarly, if ϵ = 0 then the detection hypercube becomes a single point centered

at M. A bound for the probability of detection is presented within Section 5.8, and in

doing so informs the operator in the decision of setting the δi and informs the attack of

the choice of ϵ. This discussion of probability of detection is delayed such that we are

able to discuss the probability of detection of the optimal stealthy attack. Naturally, the

attacker may choose to use a diagonal matrix ϵ ≻ 0 where they can decide upon the the

trade-off between detection and cost increase within each channel, however, it is shown

later that this is a trivial extension of the optimal attack construction. When considering

the non-stationary processes for an attack the region (5.17) is generalised further to a time

varying mean. This is discussed further in Section 5.7.

5.5 IID Attack Construction

Recall that the UDP-like protocol error trajectory given in (5.11b) depends on the mean

of the control variable for the attacker, while the TCP-like protocol does not depend on

the mean of the control variable (5.11a). For that reason, the derivation is presented

separately for each protocol.

5.5.1 UDP-like Protocol

The optimal attack strategy for the UDP-like protocol is the solution to the optimisation

problem

max
Υ α

JA

(
Ak,Υα

)
, (5.18a)

s.t. Mα ∈ Cϵ (M,L) , (5.18b)

where the constraint in the optimisation comes from the hypothesis test that the operator

is performing (5.17). Note that the maximisation aims to increase the cost incurred by

the controller as a result of the packet losses induced by the attack, while the constraint

aims to keep the attack within the stealthy attack region. Additionally, the maximisation
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in (5.18) and the minimisation of the control law in (5.9) differ in that Mα ̸= M. In the

UDP-like setting the information set Ak does not have access to the previous realisations

of packet losses for estimation, specifically, Ik = Gk in (5.6). Using Lemma 1 from [20]

and (5.12) yields the equivalent cost function given by

J∗
A

(
Ak,Υα

)
=XT

k (Q + Ωp)Xk + tr (ΩlΣW)

+ max
Υ α

{
U ∗T

k ( Gk)Υα
(
2ΩgpXk +

(
ΩgΥα + Ψ + (I⊙Ωg)

(
I − Υα

))
U ∗

k ( Gk)
)}
, (5.19)

where the maximisation is subject to Mα ∈ Cϵ (M,L). For the sake of presentation clarity,

it is assumed that all actuators for the system share a single communication channel, as

in [59]. This simplifies the attack construction while displaying the same properties of

the attack construction as in the general case i.e. where in the detection region (5.17)

the maximums occur whilst simplifying the region itself. That being the case Υα is a

diagonal matrix with equal entries, and therefore, Υα = αI where α ∈ [0, 1] is the control

variable of the attacker and αI ∈ Cϵ (M,L). Similarly, the safe operation region C (M,L)

is simplified, in this case to the interval

C (µ, δ) = {µ̂ ∈ [0, 1] : −δ ≥ µ̂ML − µ ≥ δ} , (5.20)

where δ ∈ [0, 1] denotes the detection threshold set by the operator. This simplification of

the safe operation region then in turn results in a simplification of the detection constraint.

This region becomes

Cϵ (µ, δ) = C′ (µ, δ) = {α ∈ [0, 1] : −δϵ ≥ α− µ ≥ δϵ} . (5.21)

Within this simplified setting, the attack strategy is characterised by the attack design

parameter α. In view of this, substituting α as the control variable in (5.19) simplifies the
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optimisation problem to

J∗
A

(
Ak,Υα

)
=XT

k (Q + Ωp)Xk + tr (ΣWΩl)

+ max
α∈ Cϵ(µ,δ)

{
Uk( Gk)Tα (αΩg+(1 − α) (I ⊙ Ωg)+Ψ − 2G( Gk))Uk( Gk)

}
. (5.22)

Note that the first two terms are constants that do not depend on α. Therefore, it is

sufficient to maximise the last term. Substituting −G−1( Gk) ΩgpXk for Uk( Gk) lets us write

the term inside the maximisation as

f(α)≜XT
k ΩT

gpG−1( Gk)α (αΩg + (1 − α)(I ⊙ Ωg) + Ψ − 2G( Gk)) G−1( Gk) ΩgpXk. (5.23)

Note that (5.23) is quadratic in α. Therefore, the function (5.23) is concave, convex, or

linear in α depending on the system parameters. The attacker has no control over the

convexity of the cost function used for the attack construction. However, the information

set available to the attacker determines the convexity of the cost function, and therefore,

the attacker is able to construct the optimal attack by solving (5.23) for any system

parameters. In the following lemma we show that for the convex and linear systems the

optimal attack construction is equivalent.

Lemma 11. Let (5.23) be convex or linear in α over Cϵ (µ, δ). Then the maximum of

this function is given by

max{f(α)} = max
{
f(min{ Cϵ (µ, δ)}), f(max{ Cϵ (µ, δ)})

}
. (5.24)

Proof. Assume there is a maximum of (5.23) such that α ∈ Int{ Cϵ (µ, δ)}, we prove by

contradiction that this is false, and therefore, the maximum is on the boundary of Cϵ (µ, δ).

By the definition of convexity, for δ > 0 it holds that

f(a) ≥ max{f(a+ ϵδ), f(a− ϵδ)}, (5.25)

f(a) ≥ tf(a+ ϵδ) + (1 − t)f(a− ϵδ). (5.26)
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It follows that f(a) is greater than any point of the line connecting f(a+ ϵδ) and f(a− ϵδ))

however, this breaks the convexity assumption of (5.23), and therefore, the maximum is

on the boundary. This concludes the proof.

When the function is concave there is a third maximising case. This is the case

for which the global maximum of the function exists within the interval Cϵ (µ, δ). The

following lemma captures this notion.

Lemma 12. Let (5.23) be concave in α over Cϵ (µ, δ). Then the maximum of the function

is given by

max{f(α)} = max
{
f(min{ Cϵ (µ, δ)}), f(max{ Cϵ (µ, δ)}), f(1Cϵ(µ,δ)αmax)

}
, (5.27)

where 1B denotes the indicator function over the set B.

Proof. The proof has been moved to Appendix C.1.

Note that the αmax (defined in Appendix C.7) attack construction provides a globally

optimal performance for the attacker from within the safe operation region. In fact, it

also provides a lower probability of attack detection as it allows the attacker to operate

away from the boundary condition of Cϵ (M,L).

The following lemma highlights that an attack that minimises the cost of the operator

is not achieved by setting α = 1. We show below that the optimal attack construction

does not necessarily imply increasing the number of packet losses incurred by the operator.

Indeed, there exists system parameters for which the optimal attack entails increasing the

number of actuations. Whilst this might not be implementable in all attack scenarios, it is

feasible to envision settings in which the attacker has full control of the actuation channel

and can set the packet loss statistics at will. The following lemma captures this notion,

namely, that the performance of the operator does not necessarily improve with the average

number of received packets. This reiterates that the operator assumes a mean packet loss,

and in doing so, creates an opportunity for the attacker to exploit the channel. Although

this is not necessarily surprising, given that the operator has designed the optimal control
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law about a given point it is a divergence from the traditional DoS attacks. Namely, DoS

attacks that exclusively reduces the number of packets that successfully reach the end of

the communication channel.

Lemma 13. For any choice of system parameters it holds that

min
α∈[0,1)

f(a) ≤ min {f(1), f(µ)} , (5.28)

where f is defined in (5.23).

Proof. Setting the first derivative of (5.23) equal to zero, and substituting in α = 1 yields

f ′(1) = Uk( Gk)∗T
(
2
(
I − Υ

)
Ωg − Ψ −

(
3I − 2Υ

)
(I ⊙ Ωg)

)
U ∗

k ( Gk). (5.29)

For this to be a minimising solution Ψ = 2
(
I − Υ

)
Ωg −

(
3I − 2Υ

)
(I ⊙ Ωg). Due to Ψ

being a diagonal matrix and the structure of Ωg it is only possible for this equality to hold

in a system with A = 0 and diagonal matrix B. In this scenario Ωg = (I ⊙ Ωg) results

in Ψ = − (I ⊙ Ωg). By assumption we have that Ψ ≻ 0, but it is shown in Lemma 14

that (I ⊙ Ωg) ≻ 0 which is a contradiction. Therefore, f ′(α = 1) ̸= 0 and thus α = 1 is

not a minimising solution. Substituting αI = µI = Υ into the first derivative of (5.23)

results in

f ′(α) =Uk(Gk)∗T
(
2ΥΩg +

(
I − 2Υ

)
(I ⊙ Ωg) + Ψ − 2G( Gk)

)
Uk(Gk)∗

= −XT
k ΩT

gpG−1( Gk) (Ψ + (I ⊙ Ωg)) G−1( Gk) ΩgpXk. (5.30)

This is not equal to 0 due to Ψ, (I ⊙ Ωg) ≻ 0. In view of this, (5.30) is strictly negative

and not a minimising solution. This concludes the proof.

Theorem 9. Let Ak =
{
A,B,ΣW ,Υ,Ω,Ψ, Gk

}
be the information set available to con-

struct the attack, then the optimal mean packet loss probability for an IID attack on a



5.5 IID Attack Construction 97

control system that is communicating with a UDP-like protocol is given by

α∗
UDP = max

{
f (min{ Cϵ (µ, δ)}) , f (max{ Cϵ (µ, δ)}) , f

(
1Cϵ(µ,δ)αmax

)}
, (5.31)

where

f (a)≜XT
k ΩT

gpG−1( Gk) a (aΩg + (1 − a) (I ⊙ Ωg) + Ψ − 2G( Gk)) G−1( Gk) ΩgpXk.(5.32)

Proof. The result follows from the application of Lemma 11 for the convex and linear

cases, Lemma 12 for the concave case, and by noticing that the set of solutions for the

convex and linear cases is a subset of of the set of solutions of the concave case. This

concludes the proof.

5.5.2 TCP-like Protocol

The optimal attack strategy for the TCP-like protocol is the solution to the optimisation

problem

max
Υ α

JA

(
Ak,Υα

)
, (5.33a)

s.t. Mα ∈ Cϵ (M,L) . (5.33b)

Note that in this case, the information set Ak contains the realisations of the packet losses

as given in Fk. For that reason, the optimisation problem differs from that in (5.18) in

that the cost function exhibits a different structure induced by the conditioning on the

previous packet loss realisations. Substituting in the optimal control law for the TCP-like

protocol (5.12) yields

J∗(Ak) =XT
k (Q + Ωp)Xk + tr (ΩlΣW)

+ max
Υ α

{
XT

k ΩT
gpG−1(Fk) Υα

(
ΩgΥα + Ψ − 2G(Fk)

)
G−1(Fk) ΩgpXk

}
, (5.34)
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where the maximisation is subject to Mα ∈ Cϵ (M,L). As with the UDP-like protocol

attack construction it is assumed, without loss of generality, that all actuators share

a single communication channel [59]. Therefore, Υα = αI. Noting that the first two

terms in (5.34) do not depend on Υα and that G(Fk) =
(
ΩgΥ + Ψ

)
, as shown in [20] and

Chapter 4, then the term inside the maximisation is rewritten as

g (α) ≜ −XT
k ΩT

gpG−1(Fk)α
(
Ωg

(
2Υ − αI

)
+ Ψ

)
G−1(Fk) ΩgpXk. (5.35)

Differentiating (5.35) results in

g′ (α) = −XT
k ΩT

gpG−1(Fk)
(
Ωg

(
2Υ − 2αI

)
+ Ψ

)
G−1(Fk) ΩgpXk, (5.36)

g′′ (α) = 2XT
k ΩT

gpG−1(Fk) ΩgG−1(Fk) ΩgpXk. (5.37)

Lemma 14. Let the pair (A,B) be reachable and the state penalty matrix Ω be positive

definite. Then since Xk ≠ 0 almost surely, the function defined by (5.35) is convex in α

over Cϵ (µ, δ).

Proof. It follows from (5.37) that if Ωg ≻ 0 and Xk ̸= 0 then (5.37) is strictly greater than

zero. Therefore, (5.35) is convex in α over Cϵ (µ, δ). It is shown in [30, p.225, 10.31(c)]

that when rank (Γ) = max{Nn,Nm} and Ω ≻ 0 then it follows that Ωg ≻ 0. Since (A,B)

is a reachable pair then rank
[
B,AB, . . . ,AN−1B

]
= n. Therefore, due to the triangular

structure of Γ we have that rank (Γ) = Nn. Under these assumptions it follows that

provided m ≤ n (5.37) is convex in α over Cϵ (µ, δ). This concludes the proof.

Theorem 10. It is shown in Lemma 14 that for a system operating a TCP-like protocol,

g (α) ≜ −XT
k ΩT

gpG−1(Fk)α
(
Ωg

(
2Υ − αI

)
+ Ψ

)
G−1(Fk) ΩgpXk
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is convex. Therefore, the optimal choice of α is known to be on the boundary as shown in

Lemma 13.

α∗
TCP = max

{
g (min{ Cϵ (µ, δ)}) , g (max{ Cϵ (µ, δ)})

}
.

Note that due to the convexity of (5.35), the solution of (5.36) results in the minimising

value of α, which interestingly is not αI = Υ, or α = 1, but instead is given by

αmin = 1
2h

−1
TCP

(
XT

k ΩT
gpG−1( Gk)

(
2ΩgΥ + Ψ

)
G−1( Gk) ΩgpXk

)
, (5.38)

where hTCP = XT
k ΩT

gpG−1(Fk) ΩgG−1(Fk) ΩgpXk > 0. When the TCP-like protocol without

detection constraints is considered, additional insight can be obtained by analysing the

attack construction

g (1) =XT
k ΩT

gpG−1(Fk)
(
Ωg

(
I − 2Υ

)
− Ψ

)
G−1(Fk) ΩgpXk, (5.39)

g (0) = 0. (5.40)

From (5.39), if Ωg

(
I − 2Υ

)
≻ Ψ the maximising value of α is 1 or 0. The Ωg

(
I − 2Υ

)
term is the state penalty matrix Ω weighted by the reachability of the system and the

packet loss probability, i.e.
(
I − Υ

)
. The terms in (5.39) capture the average impact of

actuation in the cost reduction with respect to the input penalty matrix Ψ. Therefore,

the optimal attack is 1 when the average cost increase per actuation is greater than the

average penalty induced by the actuation. As a result, for a system with a high probability

of packet loss that penalises state error more than actuation, the optimal attack strategy

is to allow perfect communication, i.e. all packets are received by the plant. Additionally,

for Υ ≻ 1
2I , the optimal attack strategy is always 0. That being the case, for a system

with a low probability of packet loss the detection criteria of the operator reduces to a

one-sided test. Namely, the movement of the ML estimator in only one direction will cause

a cost increase. Therefore, an attack will only cause a cost increase in one direction and

that direction should be the only one monitored.
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5.6 Cost Increase Analysis

In this section we evaluate the cost increase induced by the optimal IID attack by comparing

the expected cost when an attack is present to the expected cost when no attack is present,

i.e. E [J∗
A(Ak)] − E [J∗(Ik)]. In particular, we study the expected cost increase of the

three attack strategies separately. Namely, each of the cases seen within Theorem 9. The

analysis is carried out for the unconstrained case Cϵ (µ, δ) = [0, 1), i.e. the extreme cases

of the average attack packet drop. Note that there is no loss of generality as the case with

detection constraints can be analysed following the same approach with the appropriate

scaling.

5.6.1 UDP-like Cost Analysis

Attack performance when α∗ → 0. We first analyse the case when the attacker losses

all the packets and induces the cost

E
[
J0

A(Ak)
] ∆= lim

α∗→0
E [JA(Ak)] . (5.41)

The expected cost when there is an attack is given by

E
[
J0

A(Ak)
]

= tr (ΣX (Q + Ωp) + ΣWΩl) + max{f(α)}. (5.42)

Since (5.23) is continuous in α we have that α∗ → 0 implies f (α∗) → 0, and therefore,

the cost increase is

E
[
J0

A(Ak)
]

− E [J∗(Gk)] = XT
k ΩT

gpG−1( Gk) ΥΩgpXk > 0. (5.43)

Note that the α∗ → 0 attack strategy forces the system into open loop, and therefore,

the expected cost increase coincides with the expected cost reduction introduced by the

controller when there is no attack present in the communication channel.
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Attack performance when α∗ = 1. In this case, the attacker allows successful

reception of all packets, i.e. the actuation communication channel is perfect. Surprisingly,

there exist systems for which the cost increase, given by

E
[
J1

A(Ak)
] ∆= E [JA(Ak)]

∣∣∣∣
α∗=1

, (5.44)

is positive despite the fact that the communication channel of the operator improves.

Evaluation of (5.23) with perfect communication results in

E
[
J1(Ak)

]
= tr (ΣX (Q + Ωp) + ΣWΩl)

+XT
k ΩT

gpG−1( Gk)
(
I − 2Υ

)
(Ωg − (I ⊙ Ωg)) G−1( Gk) ΩgpXk

−XT
k ΩT

gpG−1( Gk) ((I ⊙ Ωg) + Ψ) G−1( Gk) ΩgpXk. (5.45)

Unlike the α∗ → 0 strategy, the α∗ = 1 construction does not guarantee an increase in

cost for every system. In fact, the cost only increases when

XT
k ΩT

gpG−1( Gk)
(
I − 2Υ

)
(Ωg − (I ⊙ Ωg)) G−1( Gk) ΩgpXk

≥ XT
k ΩT

gpG−1( Gk) ((I ⊙ Ωg) + Ψ) G−1( Gk) ΩgpXk > 0,

XT
k ΩT

gpG−1( Gk) (Ωg + Ψ) G−1( Gk) ΩgpXk

≥ 2XT
k ΩT

gpG−1( Gk) G ( Gk) G−1( Gk) ΩgpXk. (5.46)

Where in the second line the terms simplified to highlight the trade-off that decides this

change in the attack outcome. Specifically if the quadratic terms are removed it shows

that

Ωg + Ψ ⪰ 2G ( Gk) ≻ 0 (5.47)

2 (Ωg + Ψ) ⪯ G−1 ( Gk) (5.48)

Interestingly this relates the eigenvalues of the nominal system, the system with perfect

communication, to the eigenvalues of the UDP-like controlled system. This relation shows
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that for this particular attack to be viable to gain matrix of the UDP-like controlled

system must be at least twice as large as the perfectly controlled system. Note that this is

a condition for this particular attack to be viable and not a condition for the UDP-like

control strategy to be optimal over the nominal control strategy. However, all variables

that determine (5.46) are system parameters known by the attacker, and therefore, the

attacker decides the optimal attack strategy accordingly. The expected cost increase is

E
[
J1

A(Ak)
]

− E [J∗( Gk)] =XT
k ΩT

gpG−1( Gk) (Ωg + Ψ) G−1( Gk) ΩgpXk

+
(
Υ − 2I

)
XT

k ΩT
gpG−1( Gk) ΩgpXk. (5.49)

Attacker performance when α∗ = 1Cϵ(µ,δ)αmax. We tackle next the introduction of a

general detection constraint. In this case, the expected cost for the attacker is

E [Jαmax(Ak)]≜E [JA(Ak)]
∣∣∣∣
α∗=αmax

= tr (ΣX (Q + Ωp) + ΣWΩl) + f(αmax). (5.50)

Algebraic manipulation of f(αmax) and substituting (C.7) yields

f(αmax)=h
−1
UDP
4

(
XT

k ΩT
gpG−1( Gk) (2G( Gk) − Ψ − (I ⊙ Ωg)) G−1( Gk) ΩgpXk

)2
, (5.51)

where hTCP = XT
k ΩT

gpG−1(Fk) ΩgG−1(Fk) ΩgpXk and the inequality comes from the fact

that f is concave when αmax is a feasible optimal attack strategy. The resulting cost

increase is

E [Jαmax (Ak)] − J∗( Gk) =XT
k ΩT

gpG−1( Gk) ΥΩgpXk

+1
4h

−1
UDP

(
XT

k ΩT
gpG−1( Gk) (2G( Gk) − Ψ − (I ⊙ Ωg)) G−1( Gk) ΩgpXk

)2
> 0. (5.52)

Note that the inequality is strict, i.e. the attack guarantees a performance loss of the

operator. As mentioned previously this attack strategy is only feasible when αmax ∈

Cϵ (µ, δ) and (5.23) is concave. Additionally, it can be seen that E [J0(Ak)] − E [J∗ ( Gk)]

is a subset of the cost increase induced by the α∗ = 1Cϵ(µ,δ)αmax strategy.
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5.6.2 TCP-like Cost Analysis

The cost increase analysis for TCP-like protocols contains only two attack strategies. The

analysis is again performed on the Cϵ (µ, δ) = [0, 1) interval.

Attacker performance when α∗ → 0. For the attack construction that forces the

system into open loop, the expected cost is given by

E
[
J0(Ak)

]
= tr (ΣX (Q + Ωp) + ΣWΩl) + lim

α∗→0
g(α∗). (5.53)

Since (5.40) is continuous in α, we have that α∗ → 0 implies g(α∗) → 0. Therefore, the

expected cost increase is

E
[
J0(Ak)

]
− E [J∗ (Fk)] = XT

k ΩT
gpG−1(Fk) ΥΩgpXk > 0. (5.54)

As with the UDP-like protocol, by implementing the α∗ → 0 attack strategy the attacker

forces the system into open loop and the cost increase is equal to the cost reduction

expected by the operator. Note that the cost increase for the TCP-like protocol and the

UDP-like protocol under the α∗ → 0 strategy differ only in the GIk
term designed by the

controller.

Attacker performance when α∗ = 1. In the TCP-like case, the attack that provides

a perfect communication channel induces an expected cost given by

E
[
J1(Ak)

]
= tr (ΣX (Q + Ωp) + ΣWΩl) + g(1). (5.55)

Therefore, it follows form (5.39) that the expected cost increase induced by the α∗ = 1

strategy is

E
[
J1(Ak)

]
− E [J∗(Fk)] =XT

k ΩT
gpG−1(Fk)

(
Ωg

(
I − 2Υ

)
− Ψ

)
G−1(Fk) ΩgpXk︸ ︷︷ ︸

>0

+XT
k ΩT

gpG−1(Fk) ΥΩgpXk︸ ︷︷ ︸
E[J0(Ak)]−E[J∗(Fk)]

, (5.56)
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where the first term is strictly positive following the assumption that the α∗ = 1 attack

construction is optimal (5.39). Therefore, α∗ = 1 is strictly greater than the α∗ → 0

attack strategy only when Ωg

(
I − 2Υ

)
≻ Ψ, which is the condition needed for the α∗ = 1

construction to be optimal.

5.7 Non-Stationary Random attacks

The plant given in (4.1) is Markovian, and therefore, it seems reasonable to assume that

the attacker should be able to exploit the memory of the system in the construction of the

attack. In that sense, the IID attack construction does not provide sufficient flexibility to

incorporate the time dependency between consecutive packet losses. Motivated by this

insight, we investigate the extension of random attacks to non-IID settings. Specifically,

we consider the case in which the statistics of the attack are non-stationary. The resulting

non-stationary attack construction extends the IID attack construction to an attack that

corrupts a system with independent actuator channels. As in the IID case, the aim of the

attacker is to increase the cost function while remaining in the safe operation region by

adjusting the value of Mα. Specifically, the attack construction is no longer restricted

to a constant Mα, i.e. Mα
k

∆= E[Vα
k ] for k ∈ N. The derivation of the non-stationary

attack construction is equivalent to the IID attack construction up to (5.19). Namely, the

point at which the previous attack construction is reduced to a scalar. The reason for the

necessity of a different derivation stems from the non-stationarity that induces Υα ≠ αI

since Mα
k ̸= Mα

k+1 for all k. This attack is implemented on a multidimensional channel

and not the scalar channel in the previous derivation, and therefore, considers a more

general attack construction setting.
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5.7.1 TCP-like Non-Stationary Attack

We first consider the non-stationary attack construction for the TCP-like protocol. Notice

that for the non-stationary construction maximising (5.19) is equivalent to maximising

f
(
Υα
)

=U ∗T
k (Fk)Υα

(
ΩgΥα + Ψ + (I⊙Ωg)

(
I − Υα

)
− 2G( Gk)

)
U ∗

k (Fk)

= tr
(
Υα
(
(Ωg−(I ⊙ Ωg))Υα + (I ⊙ Ωg) +Ψ− 2G(Fk)

)
U ∗

k (Fk)U ∗T
k (Fk)

)
.

Substituting G(Fk) allows the optimal attack strategy for the TCP-like protocol to be

posed as a quadratic optimisation problem (QP). The resulting construction is

max
Υ α

tr
([

ΥαΩgΥα − Υα
(
2ΥΩg + Ψ

)]
U ∗

k (Fk)U ∗T
k (Fk)

)
,

s.t. Mα
k ∈ Cϵ (M,L) for k ∈ N. (5.57)

It should be stated that the above constraint on the attack is in fact equivalent to the

constraint imposed on the IID attack construction. However, due to the fact that the IID

construction has fewer degrees of freedom, namely it is fixed in time, the constraint simplifies

to the region shown in (5.17). Note that the set of IID attack strategies is therefore a

subset of the strategies considered in the non-stationary optimisation domain. Additionally,

note that the optimisation in (5.57) is constrained by the hypercube Cϵ (M,L). Therefore,

if IID is indeed the optimal attack structure then the proposed non-stationary attack

construction coincides with the strategy presented in the previous section. If however, the

cost induced by the non-stationary attack is greater than that induced by αI then it follows

that memory in the attack yields larger cost increases while satisfying the same detection

constraints. It should be noted that the detection constraint for the IID scenario is much

more restrictive that the non-stationary attack. Note that in the TCP-like scenario all

three of the terms Ωg, Ψ, and U ∗
k (Fk)U ∗T

k (Fk) are positive or positive semidefinite. Both

TCP-like and the following UDP-like QP formulations can be modified to include IID

attacks on multidimensional channels provided that the additional constraint Mα
k = Mα

k+1

for all k is included.
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Note that (5.57) is a QP problem, and therefore, a solution exists and it can be

computed numerically. However, we can find an analytic solution for our case. It is

shown below that for the TCP-like protocol the attack is strictly convex in all attack

variables. This implies that the analysis in the previous sections extend to not only

a multidimensional communication channel but to a non-stationary attack within a

multidimensional communication channel. Specifically, the optimal solution of the IID

attack construction is shown to be a subset of the optimal non-stationary attack. The

objective function of non-stationary TCP-like protocol attack, as seen in (5.57), is equivalent

to

max
Υ α

{
tr
([

ΥαΩgΥα − Υα
(
2ΥΩg + Ψ

)]
U ∗

k (Fk)U ∗T
k (Fk)

)}
,

s.t. Mα
k ∈ Cϵ (M,L) for k ∈ N. (5.58)

The following lemma characterises the almost sure convexity of the optimisation problem

in (5.58).

Lemma 15. The maximisation defined in (5.58) is convex in Υα.

Proof. The proof is moved to Appendix C.2.

Corollary 6. There exists a global minimum of the function (5.58) that is defined as

Υα
min = 1

2
(
I⊙Ω−1

g

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

]) (
I⊙
[
U ∗

k (Fk)U ∗T
k (Fk)

])−1
. (5.59)

This is not equal to operator’s postulate IID variable Υ.

Proof. The proof is moved to Appendix C.3.

From Lemma 15 it follows that in order to maximise (5.58) the optimal stealthy

non-stationary attack is characterised by a Υα on the boundary of Cϵ (M,L). This leads

to the following theorem.
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Theorem 11. The optimal stealthy attack for a control system communicating with a

TCP-like protocol is defined as

max
Υ α

{T
(
Υα
)
} = max

Υ β

{
T
(
Υ + Υβ

)}
. (5.60)

Proof. From Lemma 15 it follows that the maximising stealthy attack solution of the cost

will be on the boundary of the detection region C (M,L). Specifically, the maximising Υα

is

Υα
max = max

Υ β

{
T
(
Υ + Υβ

)}
, (5.61)

where Υβ is defined as Υβ = β (I ⊗ ϵL) and β ∈ MNm is defined as

β =



β1 0 . . . 0

0 β2 . . . 0
... ... . . . ...

0 0 . . . βNm


, (5.62)

where βi ∈ {−1, 1} are the variables to be maximised over. This concludes the proof.

This analytical solution has simplified the optimal attack problem from a QP problem

to the problem of evaluating a function at 2Nm points and taking the maximum of them

all. This has greatly reduced the complexity and computational efficiency of the optimal

attack construction.

Remark 5. As mentioned in Section 5.4 the attacker can substitute the scalar ϵ for a

matrix ϵ. In doing so the optimisation becomes

Υα
max = max

β

{
T
(
Υ + Υβ

)}
, (5.63)
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where

Υβ = β (I ⊗ ϵL) (5.64)

and ϵ ∈ [0, 1]m is a diagonal penalty matrix for the stealth of the attack.

The above remark gives the attack a much higher degree of freedom in designing the

attack. However, in doing so creates additional decision problems. Namely, the attack

now has another m− 1 parameters that require tuning to give a desired trade-off between

cost increase and probability of detection. For the following we assume ϵ = ϵI for ease of

reading.

For a multidimensional channel in which the attacker wishes to perform an IID attack,

the attacker simply adapts the Υβ such that

Υβ = I ⊗ Mα (5.65)

= (I ⊗ (M + βϵL)) . (5.66)

In this case β is an m×m matrix instead of an Nm×Nm matrix. Note that this implies

Mα = M + βϵL. (5.67)

The computing complexity of (11) is reduced greatly by the simplification to a stationary

attack. However, as mentioned above, by restricting the possible configurations of Υα the

attacker does not guarantee the most damaging stealthy attack construction. Note that the

scalar IID attack corresponds to two possible attack configurations of the multichannel non-

stationary attack. Similarly, the stationary multichannel attack corresponds to 2m possible

configuration of the possible 2Nm configurations of the multichannel non-stationary attack.

A graphical depiction of the optimisation region for a 2 dimensional communication

channel for an IID attack is shown in Fig.5.1.



5.7 Non-Stationary Random attacks 109

0

Mα
min1,1

M− εL1,1

M+ εL1,1

Mα
min2,2

M− εL2,2

M+ εL2,2

Mα
1,1

Mα
2,2

T (Mα)

Fig. 5.1 Graphical interpretation of the Matrix channel attack optimisation.

5.7.2 UDP-like Non-Stationary Attack

Unlike the TCP-like attack optimisation, the convexity/concavity of the UDP-like attack

optimisation problem is undetermined. As with the scalar case, the solution of the attack

strategy for the UDP-like protocol is more complex. Performing the same analysis for the

UDP-like system results in a similar QP formulation given by

max
Υ α

tr
([

ΥαΩHΥα − Υα
(
(I ⊙ Ωg) + Ψ + 2ΥΩH

)]
U ∗

k ( Gk)U ∗T
k ( Gk)

)
,

s.t. Mα
k ∈ Cϵ (M,L) for k ∈ N. (5.68)

As with the TCP-like non-stationary optimisation, note that the detection region is once

again equivalent to (5.16) i.e. the shrinking hypercube the operator uses for detection. As

mentioned above the convexity/concavity of the UDP-like attack optimisation problem is

undetermined. This leads us to the following Lemma.
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Lemma 16. The objective function of the optimisation problem

max
Υ α

tr
([

ΥαΩHΥα − Υα
(
(I ⊙ Ωg) + Ψ + 2ΥΩH

)]
U ∗

k ( Gk)U ∗T
k ( Gk)

)
,

s.t. Mα
k ∈ Cϵ (M,L) for k ∈ N, (5.69)

is neither convex nor concave in Υα and the second derivative is equal to 0.

Proof. The proof is moved to Appendix C.4.

5.8 Probability of Detection

The above sections have shown that for the TCP-like protocol the optimal attack strategy

is to operate on the boundary of the detection region. For the following section we

consider the probability that the realisation of the random process corresponding to the

packet losses exits the detection region. This is known as the probability of detection.

Additionally, we restrict ourself to considering th IID attack. This does not mean this

section only considers the scalar communication channel, only that Mα is fixed and not

time varying. Note that for this section we are considering a realisation of a sequence

of random variables, not the realisation of a single random variable. Therefore, we are

actually calculated the probability that a Binomially distributed sequence differs too far

from the expected mean of a binomial distribution. Note that this is in fact a two sided

statement. Initially, we consider the probability of false alarm rate. Specifically, for the

system described in this chapter we are considering the probability of the following event

θ = M̂ML /∈ C (M,L) . (5.70)
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Due to the definition of the hypercube C (M,L) there are two possible events that allow

the event (5.70) to occur. Namely, the events

θ1 = M̂ML − M ⪰ L (5.71)

θ2 = M̂ML − M ⪯ −L. (5.72)

The probabilities of these events occurring is defined as

P [θ1] =P
[

k∑
i=1

Vi > k (M + L)
]
, (5.73a)

P [θ2] =P
[

k∑
i=1

Vi < k (M − L)
]
. (5.73b)

It should be noted that the above probabilities are both in matrix form. Namely, each

channel within the actuation communication channel with have its own individual proba-

bility.

Now that we have defined the above events we can introduce the concept of probability

of false alarm and the probability of detection. The probability of false alarm is the

probability of either of these events occurring given that the system is under nominal

conditions. This is defined as

PF =P [θ1| M = M] + P [θ2| M = M] (5.74)

Similarly the probability of detection is defined as the probability of either of these events

occurring given that the system is under attack. This is defined as

PD =P [θ1| M = Mα] + P [θ2| M = Mα] (5.75)

Initially we consider the probability of false alarm. Within (5.73) the probabilities

shown are that of the Binomial distribution, and therefore, have closed form expressions.

Additionally, due to the fact that the probability of false alarm is two sided, it is expressed

as the union of these probabilities. Due to the fact that these events are independent their
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union is equivalent to the sum of the probabilities. Therefore

PF =P
[

k∑
i=1

Vi > k (M + L)
∣∣∣∣∣M = M

]
+ P

[
k∑

i=1
Vi < k (M − L)

∣∣∣∣∣M = M
]

(5.76)

=
⌈k(M−L)⌉∑

i=1

 k

i

Mi (I − M)k−i +
k∑

i=⌊k(M+L)⌋

 k

i

Mi (I − M)k−i . (5.77)

The above expression is exact. It conveys the exact probability of false alarm for the

operator under nominal conditions. Additionally, due to the fact that this is a Binomial

distribution the probabilities are symmetric, so the above is able to be simplified to

PF = 2
⌈k(M−L)⌉∑

i=1

 k

i

Mi (I − M)k−i . (5.78)

The probability of detection is equivalent to the probability of the binomial sequence

leaving an unsymmetrical region. This is represented as

PD =P1
D + P2

D (5.79)

=P
[

k∑
i=1

VA
i > k (M + L)

]
+ P

[
k∑

i=1
VA

i < k (M − L)
]

(5.80)

=
⌈k(M−L)⌉∑

i=1

 k

i

Mαi (I − Mα)k−i +
k∑

i=⌊k(M+L)⌋

 k

i

Mαi (I − Mα)k−i, (5.81)

where we have defined the probabilities P1
D = P [θ1| M = Mα] and P2

D = P [θ2| M = Mα].

Note that these probabilities are not symmetric i.e. P1
D ≠ P2

D. In the case of probability of

false alarm the mean of the sequence lay in the centre of the hypercube between k (M − L)

and k (M + L). However, in the case of probability of detection the mean of the true

sequence does not lie in the centre of this hypercube.

Within (5.81) we have presented the exact probabilities of detection. These expressions

give little insight into how these probabilities behave. To that end, we bound the

probabilities to gain further insight. Note that we are considering the sum of k IID
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Bernoulli random variables. Therefore, we define

Zk =
k∑

i=1
VA

i . (5.82)

where Zk is the sum of k IID Bernoulli variables. This is known as a Binomially distributed

random variable. We first compute the probability of detection that relates to realisations

of sequences that lie above the k (M + L) region. Namely, the sequences corresponding

the first right hand side term within (5.79) i.e. the probability defined as P1
D.

The following our derivation follows along the lines of [14]. However, it should be

noted that we perform a parallelised version of the derivation in [14]. Namely, we

simultaneously derive the probability of detection for every communication channel within

the multidimensional actuation channel. As shown in [14], the probability of a sum of IID

variables exceeding a value is upper bounded by

P [Zk ≥ T] ≤
E
[
eλZk

]
eλT , (5.83)

where λ ∈ Sm
+ is a diagonal matrix of positive real values and T ∈ Sm

++ is a diagonal

matrix that which in our case is equal to ⌊k (M + L)⌋. The numerator of the fraction is

the moment generating function of Zk. Since (5.83) holds for any λ ≻ 0 it follows that the

operator may wish to minimise the upper bound. This is a natural step for the operator

to take as the left hand side is independent of λ and therefore, minimising the right hand

side results in the tightest bound that the operator can achieve for this inequality. Which

leads to the following theorem

With that in mind we define the logarithm of the numerator as the following function

ΨZk
(λ) = log

(
E
[
eλZk

])
. (5.84)

The minimum of that function is defined in [14] as the solution of

Ψ ∗
Zk

(T) = sup
λ≻0

(λT − ΨZk
(λ)) . (5.85)
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It is also shown in [14] that the above minimisation is able to be extended to negative

values of λ. This result follows from the convexity of the exponential function and Jenson’s

inequality. Therefore, the above function can be extended to

Ψ ∗
Zk

(T) = sup
λ∈Mm

(λT − ΨZk
(λ)) , (5.86)

where we still impose the restriction of λ being a diagonal matrix. The above derivation

has resulted in a parallelisation of Chernoff’s inequality [14]. Namely,

P [Zk ≥ T] ≤ e
−Ψ∗

Zk
(T)
. (5.87)

The above is able to be simplified further. Note that we are considering the sum of IID

variables, and therefore,

ΨZk
(λ) = log

(
E
[
eλ
∑k

i=1 V A
i

])
(5.88)

= log
(

k∏
i=1

E
[
eλV A

i

])
(5.89)

= kΨV A
k

(λ) . (5.90)

Given the above relation, it follows from (5.86) that

Ψ ∗
Zk

(T) = kΨ ∗
V A

k

(T
k

)
. (5.91)

Exploiting the fact that the variables are IID within the probability of detection yields

P [Zk ≥ T] ≤ e
−kΨ∗

V A
k

(T
k )
. (5.92)

The upper bound presented can not be solved for the minimum of ΨV A
k

in its current form.

However, the case when Zk is centered means that Ψ ∗
Zk

is continuously differentiable. This

then allows a closed form expression of the minimum to be calculated. Due to the fact

that we can perform linear transformations of our sum of random variables, we are able
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to perform a linear shifting of the variable Zk such that it is centred around 0. This is

achieved by letting Tk = Zk − kMα and substituting into (5.86).

Ψ ∗
Zk

(T) =λTT − ΨZk
(λT) , (5.93)

where λT is such that

∂ΨZk
(λT)

∂λ
= T. (5.94)

From the properties of the function it follows that

λT =
(
∂ΨZk

∂λ

)−1

(T) , (5.95)

where we have slightly abused notation in order to show the order of steps taken to obtain

the equality. Namely, the function is differentiated, set equal to T and then rearranged to

find λT. Which leads to the following theorem .

Theorem 12. The minimising value of λ for the function

ΨTk
(λ) = log

(
E
[
eλZk

])
. (5.96)

For a centered sequence of Bernoulli random variables is

λT = log
(T
k

+ Mα
)

(I − Mα)
(

I − T
k

− Mα
)−1

(Mα)−1

. (5.97)

Proof. The proof is moved to Appendix C.5.

From Theorem 12 we have a closed form expression of λT. Therefore, we are able to

express the minimum of Ψ ∗
Tk

. Which leads to the following theorem
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Theorem 13. The minimising value of λT results in the following probability of detection

bound

PD ≤ e−kD( ⌊k(M+L)⌋
k ∥Mα) + e−kD( ⌈k(M−L)⌉

k ∥Mα). (5.98)

Proof. The proof is moved to Appendix C.6.

Corollary 7. It follows from Theorem 13 that for an ϵ ̸= 1 i.e. Mα ̸= M±L the probability

of detection tends to 0 as k → ∞ Specifically,

PD −−−→
k→∞

0 (5.99)

Proof. The proof follows from the fact that for a fixed constant c > 0 it is known that

e−kc −−−→
k→∞

0. (5.100)

It result follows from the non-negativity of the KL divergence and that it is non-zero for

any two distributions that are not identical. This concludes the proof.

Remark 6. It should be noted that due to the equality within the probability of detection

if ϵ = 1 then as k → ∞ the probability of detection tends to 1.

Through use of Theorem 13 the probability of false alarm is also bounded. The

probability of false alarm is bounded as

PD ≤ e−kD( ⌊k(M+L)⌋
k ∥M) + e−kD( ⌈k(M−L)⌉

k ∥M) (5.101)

= 2e−kD( ⌊k(M+L)⌋
k ∥M), (5.102)

where the second line follows from the symmetry hypercube when placed at the centre of

the distribution around M.
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5.9 Chapter Conclusion

In the above we characterise the optimal IID attack construction for UDP-like and TCP-

like systems with multidimensional packet loss actuation communication channels. The

attack is constructed as a DoS attacks over the actuation communication channel. The

attack is also derived under the assumption that the operator monitors the state of the

communication channel. It is shown that the optimal hypothesis test is governed by the

calculated average packet loss. We have also shown that the optimal attack strategy

does not always increase the number of packet losses within a given channel. In fact, we

characterise the effect of the system parameters over the solution structure and show that

three different scenarios emerge for which the attack strategy is different. Interestingly, the

attacker only needs knowledge of Ωg, Ψ , and M to decide the optimal strategy, unless the

system operates with a UDP-like protocol and the function (5.23) is concave, in which case

all system parameters must be known. The attacker does not however, require knowledge

of the current control system state, or the operators measurements. For all cases, the cost

increase of the optimal IID construction has been characterised and analysed. We have

also shown that the IID attack construction is not optimal by proposing an achievability

scheme that constructs attacks with non-stationary statistics.

Within Chapter 8 it is shown numerically that the proposed non-stationary attack

outperforms the IID attack in most settings although at the expense of a slight increase in

computational complexity. This is surprising as information-theoretic arguments in similar

settings suggest that IID attacks are indeed the most damaging from a communication

point of view. The combination of Chapter 4 and Chapter 5 have given the optimal

decision for the operator and the attacker, respectively for a multidimensional packet loss

communication channel.



Chapter 6

Stochastic Linear Control Systems

with Noisy Communication Channels

6.1 Introduction

In the following chapter we study a control system that communicates over two communi-

cation channels and derive the optimal cost in this setting. This is the same process as

followed in Chapter 4. As before, there are two communication channels that correspond

to the two communication links between the controller and the plant. Namely, the sensory

communication channel, that goes from the plant sensors to the controller and the actuation

communication channel, that goes from the controller to the plant actuators. However,

unlike Chapter 4 the communication channels within this, and the following chapter, are

Additive White Gaussian Noise (AWGN) communication channels. This is as opposed

to the Bernoulli packet loss communication channels considered within Chapter 4 and 5.

Both of these AWGN communication channels are imperfect and corrupt the message

signals with IID additive Gaussian noise. The message signals within each communication

channel are the system state information and the actuation signal, for the sensory, and

the actuation communication channel, respectively. This is a more general model than the

Bernoulli packet loss communication channels presented in Chapters 4 and 5.
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Fig. 6.1 Implementation of the perfect auxiliary channel within the system model.

Following this model construction we derive the optimal control cost for a control

system that communicates over two separate multidimensional communication channels.

Due to the construction of the communication channels, there is an increase in the errors

within the system. Therefore, in doing this construction, we explicitly characterise the

cost of communication within each channel.

In the same way that within Chapter 4 two different communication protocols are

implemented in an effort to counter the effect of imperfect communication. The following

chapter derives the optimal cost for three separate system models. Initially, the system

is developed with access to an additional perfect auxiliary communication channel. This

perfect auxiliary communication channel scenario corresponds to a control system that

transmits the realisation of the actuation signal that enters the plant back to the controller.

This system model is depicted in Fig. 6.1. We derive the optimal cost for controlling this

system over the communication channels. Following this, the auxiliary communication

channel is removed and the optimal control cost is once again re-derived. The model of a

control system with no auxiliary channel is depicted in Fig. 6.2. After the control costs
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Fig. 6.2 Implementation of the the control system with no auxiliary channel.

are derived we show that the resulting cost of controlling a system optimally with no

auxiliary channel is strictly larger than the first system model i.e. the system depicted in

Fig. 6.1. For the third and final system model, the auxiliary channel is reintroduced, but

this time the communication channel is imperfect and is in fact modelled as a third AWGN

channel. This system model is depicted in Fig. 6.3. Following the derivation of each of

the optimal control costs for each system model we analyse the difference in cost between

all three system. By a perfect communication channel we refer to the communication

channel that replicates the channel input at the output without altering the signal; in

contrast, an imperfect communication channel produces a signal at the output via a

random transformation of the input. Following this construction we characterisation the

cost difference between all three control systems. Specifically, by not monitoring the

realisation of the actuation variable the expected LQG cost of this system necessarily

increases. This is starkly reminiscent of the differences caused by the acknowledgement

signal seen in Chapters 4 and 5. Namely, the cost difference between the UDP-like and

the TCP-like protocols.
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Fig. 6.3 Implementation of the imperfect auxiliary channel within the control system.

6.2 Perfect Communication Channel System Model

We begin by describing the standard state space system model studied in this chapter.

Much like in the previous chapters, we consider a standard LTI state space system. Namely,

a discrete time state space model, defined as

Xk+1 = FXk + GUk +Wk, (6.1a)

where F ∈ Rn×n is the dynamics matrix; Xk ∈ Rn describes the state of the plant at time

step k ∈ N; X0 ∈ Rn is the initial state of the plant and is modelled as a vector of Gaussian

random variables with mean 0 ∈ Rn and covariance matrix ΣX ∈ Sn
++; G ∈ Rn×m is the

control matrix; Uk ∈ Rm is the vector of control inputs at time step k; and Wk ∈ Rn is the

process noise used modelled as a vector of Gaussian random variables with mean 0 ∈ Rn

and covariance matrix ΣW ∈ Sn
++. In addition to this we adopt the a standard sensory
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model

Yk = HXk + V ′
k , (6.1b)

where Yk ∈ Rq is the received sensor signal at time step k ∈ N; H ∈ Rq×n is the linearised

sensor matrix; V ′
k ∈ Rq is the nominal sensor noise used to capture the effect of sensor

error caused by linearisation of the H matrix, this noise variable has mean 0 ∈ Rm and

covariance matrix ΣV ′ ∈ Sm
++.

6.2.1 Optimal Control with Perfect Communication

The objective of optimal control is to minimise a cost function of the control systems’

states and inputs by deciding on the sequence of control inputs. To give consideration to

control laws that are implementable, we restrict the analysis to causal control laws. In our

setting this boils down to the set of causal joint distributions. Note that by considering

the set of random transformations we generalise the set of causal deterministic functions.

Specifically, the set of causal joint distributions contains the set of causal deterministic

functions. These causal deterministic functions are represented by probability distributions

that concentrate all of their probability into a single mathematical point, and therefore,

sampling of these single mass point distributions returns the same value. This means

that if a causal deterministic control law is in fact the global optimal control law, then

the resultant globally minimising family of casual joint distributions is also a causal

deterministic function of the states. This causal set is defined as

U =
{
PU0,...,UN |Y0,...,YN

: PUN ||Y N =
N∏

i=0
P
(
Ui|U i−1, Y i

)}
, (6.2)

where the upper index on random variables indicates that the random variable contains all

previous random variables, i.e. U i = {U0, . . . , Ui} and PU0,...,UN |Y0,...,YN
represents the family

of joint distributions on {U0, . . . , UN} given the random variables {Y0, . . . , YN}. Naturally,

the definition of (6.2) is interpreted as the set of all distributions over {U0, . . . , UN} such
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that for every k the distribution of Uk depends only on the previous random variables Uk−1

and Y k.

When minimising a given cost function over this family of distributions the operator

selects the optimal family of joint distributions. Therefore, when the control law is

particularised with a realisation of Yk, at a given time k, the operator is left with a

particular distribution that depends only on the previous distributions. This distribution

is then sampled to give the control signal for the current time instance.

Note that in our setting the plant model considered is a Gauss-Markov model. Therefore,

only the most recent measurement of the state is required for obtaining optimality

guarantees. This implies that the optimal distribution is of the form of a feedback

controller. Additionally, due to the assumptions previously mentioned on the plant, such

as Gauss-Markov modelling and IID noise statistics, the optimal control strategy results

in the set of causal deterministic functions. The optimal set of functions is a well known

result in control theory. The expected value of a LQG cost function is adopted as the cost

function to be analysed. It is known that with perfect communication the optimal control

cost is obtained by solving an Algebraic Riccati equation [21]. This result condensed into

a theorem and is reported below for convenience.

Theorem 14. Consider the state space system,

Xk+1 = FXk + GUk +Wk, (6.3a)

Yk =Xk. (6.3b)

The optimal control cost is

J∗ = min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + UT

k QUUk

]}

= E
[
WTPW

]
= tr (PΣW ), (6.4)
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where QX ∈ Sn
+ is the state penalty matrix; QU ∈ Sm

++ is the input penalty matrix; N ∈ N

is the time horizon; PU0,...,UN |Y0,...,YN
is the joint distribution of all control inputs over the

horizon, N ; and the set U is as defined in (6.2). The optimal control law is

U∗
k = −

(
GTPG + QU

)−1
GTPFXk = −KXk, (6.5)

where K ∈ Mm×n is the controller gain and P ∈ Mn is the steady state solution of the

Riccatti equation defined by

P = FT
(

P − PG
(
GTPG + QU

)−1
GTP

)
F + QX . (6.6)

It should also be noted that in the perfect communication scenario the sensory matrix H

is set to the identity. For more information on results like these see [7]. Additionally, the

methodology is switched to the DP approach. The choice to switch to MPC for Chapters 4

and 5 is made to reveal additional insights into the nature of the controller and attack

design. However, for our purposes, this and the following chapter obtain no additional

insight through the MPC approach and remain in the DP format.

6.3 Imperfect Channel Construction

In the following we introduce the communication channels on the above system. A

commonly used channel is the Additive White Gaussian Noise Channel (AWGN). We

adopt the AWGN channel for the system model.

Two imperfect communication channels are constructed. One channel from the plant

sensors to the controller, termed the sensory communication channel, and another from

the controller to the plant actuators termed the actuation communication channel. To

combat the randomness of the channels, we adopt a classical communications framework

that introduces encoding and decoding blocks at the input and the output of the chan-

nel, respectively. In that manner, the communication errors introduced by the channel

are arbitrarily reduced provided the communication rate is below the capacity of the
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Fig. 6.4 Communication channel implementation within a control system, where the
additional lines represent the transmission of the variable Ũk over the perfect auxiliary
communication channel.

channel [60]. The implementation of the channels within the control system setting is

depicted in Fig. 6.4. It should be noted that in addition to the imperfect communication

channels, the actuation and the sensory communication channels, we also initially include

a perfect communication channel that transmits the realisation of the variable Ũk back

to the controller. This channel is initially assumed perfect in an attempt to characterise

the impact of the actuation and sensory channel in isolation. Later on the assumption

that this auxiliary channel is a perfect communication channel is dropped. Specifically,

the perfect auxiliary communication channel is dropped and the result is generalised to

include an imperfect auxiliary communication channel.

A communication system is described by three objects: the input alphabet, the channel,

and the output alphabet. As mentioned above, the communication channels we adopt are

AWGN channels. Additionally, the encoders and decoders used are probabilistic encoders

and decoders. In doing so we generalise deterministic encoders which are modelled as

Dirac measures. These Dirac measures allow us to establish equivalence to modelling

the encoders and decoders as deterministic functions, this is much in the same way as
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the deterministic control laws are chosen. That being the case, the encoders, channel,

and the decoders are all modelled as stochastic kernels [71]. In order to define these two

communication channels explicitly the following information sets are defined

PE
k

∆=
{
Xk, A

P
k−1, B

P
k−1, Ũk−1, B

C
k−1P

E
k−1

}
, (6.7a)

PD
k

∆=
{
BP

k , Yk−1, Uk−1, Ũk−1,P
D
k−1

}
, (6.7b)

CE
k

∆=
{
Yk, B

P
k , Uk, A

C
k−1, B

C
k−1, Ũk−1, CE

k−1

}
, (6.7c)

CD
k

∆=
{
BC

k , Ũk−1, CD
k−1

}
, (6.7d)

where PE
k is the information set available to the sensory channel encoder at time k; PD

k

is the information set available to the sensory channel decoder at time k; CE
k is the

information set available to the actuation channel encoder at time k; CD
k is the information

set available to the actuation channel decoder at time k; AP
k ∈ Rnis the random variable

corresponding to the sensory communication channel encoder outputs at time k; BP
k ∈ Rnis

the random variable corresponding to the sensory communication channel decoder inputs

at time k; AC
k ∈ Rm is the random variable corresponding to the actuation communication

channel encoder outputs at time k; BC
k ∈ Rmis the random variable corresponding to the

actuation communication channel decoder inputs at time k; and Ũk ∈ Rm is the actuation

communication channel decoder output which is the corrupted control signal, Uk. It should

be noted that the both of the encoders have access to the previous communication channel

output. This is required in order for communication to occur in a channel with bounded

errors, as shown in [71]. Specifically, this assumption is required for communication to

occur within a channel governing the communication of an unstable dynamics matrix.

Therefore, for a stable dynamics matrix F it is possible for bounded error within the

channel even when the variables BP
k and BC

k are dropped from the information sets PE
k

and CE
k , respectively. Additionally, as seen in (6.7), the decoder on each side of the control

system has access to a subset of the information that the encoder on the same side has
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access to. Namely,

PE
k ⊃ CD

k , (6.8)

CE
k ⊃PD

k . (6.9)

This is a result of the causality within the system in conjunction with perfect information

exchange between objects on each side of the communication channels. By this statement

it is meant that the controller is co-located with the actuation channel encoder and the

sensory channel decoder. Similarly, the plant is co-located with the sensory channel encoder

and the actuation channel decoder. Given the emphasis we have placed on the causality of

this system we define the information pattern of all the random variables. This is defined

as

X0, A
P
0 , B

P
0 , Y0, U0, A

C
0 , B

C
0 , Ũ0, X1, . . . , XN−1, AN−1, BN−1, YN−1, UN−1, A

C
N−1, B

C
N−1, ŨN−1.(6.10)

This time ordering is equivalent with a clockwise movement around Fig. 6.4. With the

above definitions in place it allows the following objects to be defined.

6.3.1 Encoders

The information available to the encoder on the sensory channel side is the current state

measurement in addition to all previous states, sensory channel inputs, and sensory channel

outputs. This collection of variables is known as the information set PE
k , as stated above.

Therefore, due to the utilisation of probabilistic encoders the sensory channel encoder is

the stochastic kernel

P
(
AP

k |Xk, B
P
k−1, Ũk−1, A

P
k−1,P

E
k−1

)
. (6.11a)

The deterministic sensory channel encoder is defined as the mapping

ψP (Xk) : Xk → AP
k (6.11b)
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The actuation channel encoder has access to the current system measurement and

sensory channel output in addition to all previous measurements and sensory channel

outputs. Therefore, the actuation channel encoder is the stochastic kernel

P
(
AC

k |Yk, B
P
k , Uk, Ũk−1, A

C
k−1, B

C
k−1, CE

k−1

)
. (6.12a)

The deterministic actuation channel encoder is defined as the random mapping

ψC (Xk) : Uk → AC
k (6.12b)

These definitions encompasses all causal random and causal deterministic mappings.

6.3.2 Decoders

The decoder for the sensory communication channel has access to the current channel

output as well as all previous system measurements. This is defined in (6.7) as the

information set PD
k . The sensory channel decoder is the stochastic kernel,

P
(
Yk|BP

k , Yk−1, Uk−1, Ũk−1,P
D
k−1

)
. (6.13a)

The deterministic sensory channel decoder is therefore, defined as the random mapping

φP
(
BP

k

)
: BP

k → Yk. (6.13b)

The decoder on the actuation communication channel has access to the current actuation

channel output in addition to all previous actuation channel outputs and control inputs.

This collection is known as the information set PD
k . Therefore, the actuation channel

decoder is the stochastic kernel,

P
(
Ũk|BC

k , Ũk−1, CD
k−1

)
. (6.14a)
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This deterministic decoder is therefore defined as the random mapping

φC
(
BC

k

)
: BC

k → Ũk. (6.14b)

With the definitions of the encoders and decoders made the only object left is the

channel itself.

6.3.3 Channels

The channel is the mathematical model of how randomness is introduced to the input

signal at the output of the channel. A discrete channel is defined to be a system consisting

of an input alphabet A, an output alphabet B, and a probability transition matrix PY |X

that express the probability of observing a given output symbol y ∈ B for a given

input symbol x ∈ A. The channels defined to be the random mapping from the input

alphabet, A, to the output alphabet, B. The channel is said to be memoryless if the

probability distribution of the output depends only on the input at that time instance

and is conditionally independent of previous channel inputs and outputs. Therefore a

memoryless channel, PN
Y |X , is defined as a channel that gives a sequence of outputs, Y =

(y1, y2, . . . , yN) ∈ Bn, from the corresponding set of inputs, X = (x1, x2, . . . , xN) ∈ An.

The transition probabilities are defined as

PN
Y |X =

N∏
i=1
P (yi|xi) , (6.15)

where the upper index implies N channel uses. A stationary memoryless channel refers to

a channel where each channel use is independent from all previous and all future channel

uses. All channels from this point are assumed to be stationary memoryless channels.

In fact, as mentioned we adopt the use of AWGN channels, which are both stationary

and memoryless. There are two communication channels within the system model, and

therefore, two channels to be defined. Specifically, the sensory channel which is defined

as PN
BP |AP and the actuation channel which is defined as PN

BC |AC .



6.4 Imperfect Communication Channel System Model 130

6.3.4 Communication Channel

With the above definitions we now describe the entirety of the communication channel.

Specifically, it can be summarised as a nesting of the above functions. The sensory

communication channel is expressed as the deterministic mapping

P r
Yk|Xk

=ψP
(
φP (HXk + V ′

k) + Ṽk

)
, (6.16a)

where Ṽk is the additive Gaussian noise introduced from the sensory channel with mean 0 ∈

Rq and covariance matrix Σ
Ṽ

∈ Sq
++. The actuation communication channel is similarly

represented as

P r
Ũk|Uk

=ψC
(
φC (Uk) + Zk

)
(6.16b)

where Zk is the additive Gaussian noise introduced from the actuation channel with

mean 0 ∈ Rm and covariance matrix ΣZ ∈ Sm
++.

6.4 Imperfect Communication Channel System Model

We now introduce noise into the measurements of the state and into the actuation signal.

To that end, the updated control system model is defined as

Xk+1 = FXk + GŨk +Wk, (6.17a)

Ũk =Uk + Zk, (6.17b)

Yk = HXk + Vk, (6.17c)

Vk = Ṽk + V ′
k , (6.17d)

where Vk ∈ Rn is the transformed sensory noise, modelling the combined effect of the sensor

linearisation error and the sensory channel noise, modelled as a vector of Gaussian random

variables with mean 0 ∈ Rm and covariance matrix ΣV ∈ Sm
++. The noise introduced into
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these variables is a result of the communication channels they are transmitted across. Due

to the statistics of the actuation channel, it follows that E
[
Ũk

]
= Uk. This system model

is able to be re-arranged such that

Xk+1 = FXk + GUk + W̃k, (6.18a)

W̃k = GZk +Wk, (6.18b)

where W̃k is a zero mean random variable with covariance Σ
W̃

∈ Sn
++.

6.4.1 Optimal Control with Imperfect Communication

where it follows that in designing the optimal family of causal joint distributions PU0,...,UN |Y0,...,YN
∈

U the operator also designs the optimal family of causal joint distributions P
Ũ0,...,ŨN

.

In order to fully asses the control system with imperfect communication channels the

system must be recast slightly in order to invoke Theorem 14. This follows a similar

process as shown in [71]. Namely, the optimal cost function is represented as a sum of

the optimal control cost and the cost of communication over each of the communication

channels. First, the system must be able to be represented as a fully observed state space

model in X̂k; where X̂k ∈ Rn is the operators estimate of the state variable at time k. Once

this is achieved the Riccati optimal control result can be implemented by substituting the

variable X̂k for Xk. To that end, the predicted state estimation error and the predicted

error for the control signal is defined as

EX
k

(
PD

k

)
=Xk − X̂k

(
PD

k

)
, (6.19a)

EU
k = Ũk − Uk, (6.19b)

where X̂k

(
PD

k

)
= E

[
Xk|PD

k

]
. Note that the error on the actuation channel is not a

function of the information set. This is a choice made to emphasise the fact that there

is no estimation done on the plant side of the control system. Namely, whatever the

realisation of the signal Ũk that is received at the plant enters the system unaltered. This
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is due to the fact control systems only perform estimation within the controller and not at

the plant. Given that Xk = X̂k

(
PD

k

)
+EX

k

(
PD

k

)
and Ũk = Uk +EU

k , the system prediction

at time k for the time step k + 1 is

X̂k+1
(
PD

k

)
=E

[
Xk+1

∣∣∣PD
k

]
=E

[
FXk + GŨk +Wk

∣∣∣PD
k

]
=E

[
F
(
X̂k

(
PD

k

)
+ EX

k

(
PD

k

))
+ G

(
Uk + EU

K

)
+Wk

∣∣∣PD
k

]
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (6.20)

where W k

(
PD

k

)
∈ Rn is defined as

W k

(
PD

k

)
= E

[
FEX

k

(
PD

k

)
+ GEU

k +Wk

∣∣∣PD
k

]
. (6.21)

This fully observed state space system can be improved upon if the system is updated

with the new information that the sensors provide. The observation model is defined as

Yk = HXk + Vk. (6.22)

Therefore the updated state estimate X̂k+1
(
PD

k+1

)
, is defined as

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (6.23)

where Lk ∈ Mn×q is the optimal Kalman filter gain at time k. This representation of the

updated state estimate is able to be recast into a fully observed state space system. This

leads to the following theorem.

Theorem 15. For an observable pair, (F,G) the updated state estimate

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (6.24)
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is equivalent to the fully observed state space system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (6.25a)

Ŷk = X̂k

(
PD

k

)
, (6.25b)

where W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= GEU

k + Lk

(
H
(
FEX

k

(
PD

k

)
+Wk

)
+ Vk+1

)
, (6.26)

and Lk is the optimal Kalman filter gain at time step k.

Proof. The proof is moved to Appendix. D.1.

The above theorem groups all of the randomness of the control systems into a single

variable. Namely, the process noise of a new state variable. In doing so the new system is

fully observed. To invoke Theorem 14, all of the random variables within (6.25) must be

uncorrelated with one another. Which leads to the following Lemma

Lemma 17. All of the variables within W k are uncorrelated.

Proof. The proof is moved to Appendix D.2.

When considering the optimal cost (6.4) the expectation is slightly modified to account

for the noisy channels. This expectation must be taken with respect to the joint measure

P
(
XN , AP N−1

, BP N−1
, Y N−1, UN−1, ŨN−1

)
=

N−1∏
k=0

{
P
(
Xk+1|Xk, Ũk

)
P
(
AP

k |Xk, B
P
k−1, Ũk−1, A

P
k−1,Pk−1

)
P
(
BP

k |Ap
k

)
×P

(
Yk|BP

k , Yk−1, Uk−1, Ũk−1,P
D
k−1

)
P
(
Uk|Uk−1, Yk

)
P
(
BC

k |AC
k

)
×P

(
AC

k |Yk, B
P
k , Uk, Ũk−1, A

C
k−1, Ck−1

)
P
(
Ũk|BC

k , Ũk−1, CD
k−1

)}
P(X0). (6.27)

Although initially complicated (6.27) is able to be broken down into the individual

contributions from the overall control system. Each term within the product begins with

the random transformation in the plant and moves clockwise around the system depicted



6.4 Imperfect Communication Channel System Model 134

in Figure 6.4. For example, P
(
Xk+1|Xk, Ũk

)
describes the transformation from once state to

the next given the input into the state; then P
(
AP

k |Xk, B
P
k−1, Ũk−1, A

P
k−1,Pk−1

)
describes the

random process of drawing the variable AP
k given the information at that point; following

on to P
(
BP

k |Ap
k

)
which then describes the transformation within the sensory channel, an

so on through the system. This separability between all of the random transformations

is possible only due to the independency assumptions on the random variables from one

another. The above clearly shows exactly how the expectation over these random variables

is executed, i.e. sequentially.

Due to the introduction of the communication channels there are additional stochastic

kernels that are introduced into the expectation. Specifically, the kernels (6.11), (6.13),

and the stochastic kernels of the communication channels. Therefore, the cost of the

partially observed system is

J∗ = min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

(
E
[

N∑
k=0

XT
k QXXk + ŨT

k QU Ũk

])}
(6.28)

= min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

(
N∑

k=0
E
[
X̂T

k

(
PD

k

)
QXX̂k

(
PD

k

)
+ UT

k QUUk

]
+E

[
EX

k

(
PD

k

)
QXE

X
k

(
PD

k

)]
+ E

[
EU

k

TQUE
U
k

])}
(6.29)

= min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

(
N∑

k=0
E
[
X̂T

k

(
PD

k

)
QXX̂k

(
PD

k

)
+ UT

k QUUk

])}

+ lim sup
N→∞

1
N

(
N∑

k=0
E
[
EX

k

(
PD

k

)
QXE

X
k

(
PD

k

)]
+ E

[
EU

k

TQUE
U
k

])
. (6.30)

where the substitution of (6.19) is made and due to the uncorrelated nature of the

errors E
[
EX

k QEU
k

]
= 0. Additionally, it should be noted that due to the no dual effect

property [71] the errors are unaffected by the optimal control choice and are removed from

the minimisation. The first term of (6.30) is of the correct form to invoke Theorem 14,

with a change of variables. Therefore, the optimal linear control law for the new state

variable is

U∗
k = −KX̂k

(
PD

k

)
, (6.31)
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with associated optimal cost,

tr
(
PΣ

W

)
, (6.32)

where K is defined as the optimal gain matrix according to (6.5). It is assumed that the

error covariances converge. Specifically the covariances

ΣEU
k

=E
[
EU

k+1E
U
k+1

T∣∣∣PD
k+1

]
= ΣZ = ΣEU ,

ΣEX
k+1(PD

k+1)=E
[
EX

k+1

(
PD

k+1

)
EX

k+1

(
PD

k+1

)T∣∣∣∣PD
k+1

]
= L̃k

(
FΣEX

k(PD
k )F

T + ΣW

)
L̃T

k + LkΣV LT
k, (6.33)

are assumed to have converged to their solutions, where L̃k = (I − LkH). This assumption

is reasonable given that the Kalman filter gain Lk is designed such that the error covariances

converge, the same assumption is made in [71]. Additionally the Kalman filter gain Lk is

also assumed to have converged to its steady state value L. These steady state covariance

matrices are defined such that

ΣEU = ΣEU = ΣZ ,

ΣEX = L̃
(
FΣEX FT + ΣW

)
L̃T + LΣV LT. (6.34)

Note that the error covariance matrix of each channel does not depend on the error

covariance of the other channel, showing a separation quality between the two channels.
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With these results in mind the optimal system cost is written as

J∗ = tr
(
PΣ

W

)
+ tr (QXΣEX ) + tr (QUΣEU ) (6.35)

= tr
(

PE
[
W k W

T
k

])
+ tr (QXΣEX ) + tr (QUΣEU ) (6.36)

= tr
(

PE
[(

FEX
k

(
PD

k

)
+ W̃k − EX

k+1

(
PD

k+1

)) (
FEX

k

(
PD

k

)
+ W̃k − EX

k+1

(
PD

k+1

))T
])

+tr (QXΣEX ) + tr (QUΣEU ) (6.37)

= tr
(
P
(
FΣEX FT + GΣEU GT + ΣW − ΣEX

))
+ tr (QXΣEX ) + tr (QUΣEU ) (6.38)

= tr (PΣW ) + tr
((

FTPF − P + QX

)
ΣEX

)
+ tr

((
GTPG + QU

)
ΣEU

)
, (6.39)

where in line (6.37) the relation (D.22) is substituted for W k. It is seen in (6.39) that the

cost function for a system operating over a noisy communication channel is split into three

additive terms. Specifically, the cost is represented as the cost of controlling the system

optimally with perfect communication, with two additional terms relating to the cost

incurred by communicating in each communication channel. This result is an extension

from the formulation in [71] to a system with both channels experiencing noisy additive

terms. These results extend [50] to a system with additive noise on the sensory channel in

addition to generalising the communication channel model to include a decoder and an

encoder within the communication channel structure.

6.5 Imperfect Communication Channel Model with-

out an Auxiliary Channel

In the following we assume that the sensory channel decoder does not have access to

the realisation of the plant input. This is due to the removal of the perfect auxiliary

communication channel within the system architecture. This is shown visually in Fig. 6.5.

This small change in system operation leads to a drastic change in error statistics. Removal

of this auxiliary communication channel causes the state estimation error to depend not

only on the sensory communication channel statistics but also the actuation communication
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Fig. 6.5 Communication channel implementation within a control system, where there is
no transmission of the variable Ũk over an auxiliary communication channel.

channel statistics. This is due to the fact that the operator is unable to remove the effect

of the unknown noise within the state estimate. This error is however lessened through use

of the Kalman filter. But this effect still propagates through to the final LQG cost, causing

an increase from the cost that includes the perfect auxiliary communication channel.

The information sets within (6.7) are re-defined to account for the restricted information

available. Noting the difference in access to the Ũk variable from the previous yields the

following information sets

PE
k =

{
Xk, A

P
k−1, B

P
k−1, Ũk−1,P

E
k−1

}
, (6.40a)

PD
k =

{
BP

k , Yk, Uk−1,P
D
k−1

}
, (6.40b)

CE
k =

{
Yk, B

P
k , Uk, CE

k−1

}
, (6.40c)

CD
k =

{
BC

k , Ũk−1, CD
k−1

}
. (6.40d)

Note the absence of the Ũk variable combined with the presence of the uncorrupted

input Uk in the controller side information sets. Inclusion of this term ensures that the
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separation of optimal control and estimation remains, i.e. there is no dual effect from the

control law choice.

The system modelling and channel construction follows the same structure as in

Section 6.4.1.

6.5.1 Optimal Control without Auxiliary Channel

In order to assess the impact of the auxiliary communication channel, an expected LQG

cost function is adopted. For this system model the cost definition is

J = lim sup
N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨT

k QU Ũk

]
. (6.41)

Note that, as before, in the cost function the variable Ũk is used and not the uncorrupted

input signal Uk. This is due to the fact that the noisy actuation signal is the signal that

enters the plant and not the uncorrupted signal Uk. The optimal cost function for this

system is defined as

J∗ = min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨT

k QU Ũk

]}
, (6.42)

where as before the operator designs the optimal joint distributions PU0,...,UN |Y0,...,YN
∈ U

such that they are contained within the causal set of joint distributions (6.2). The above

is identical to that which used in section (6.4.1), however, it should be noted that the

distribution of the operators measurements Yk for (6.42) are different due to the lack

of information about the random variable Ũk. This results in a strictly larger cost for

non-zero covariance matrices Σ
Ṽ

and ΣZ .

Following the same procedure as in Section 6.4.1 and a similar procedure as in [71],

the cost function is represented as a sum of the optimal control cost and the cost of

communication over each of the communication channels. The system must be able to be

represented as a fully observed state space model in X̂k. Once this is achieved the Riccati

optimal control result is implemented with substitution of the variable X̂k for Xk. To that
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end, the predicted state estimation error and the predicted error for the control signal is

defined as

EX
k

(
PD

k

)
=Xk − X̂k

(
PD

k

)
, (6.43a)

EU
k = Ũk − Uk. (6.43b)

Given that Xk = X̂k

(
PD

k

)
+ EX

k

(
PD

k

)
and Ũk = Uk + EU

k , the fully observed system is

written as

X̂k+1
(
PD

k

)
=E

[
Xk+1

∣∣∣PD
k

]
=E

[
FXk + GŨk +Wk

∣∣∣PD
k

]
=E

[
F
(
X̂k

(
PD

k

)
+ EX

k

(
PD

k

))
+ G

(
Uk + EU

K

)
+Wk

∣∣∣PD
k

]
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (6.44)

where W k

(
PD

k

)
∈ Rn is defined as

W k

(
PD

k

)
= E

[
FEX

k

(
PD

k

)
+ GEU

k +Wk

∣∣∣PD
k

]
. (6.45)

As before the observation model continues to be

Yk = HXk + Vk. (6.46)

As before this representation is improved on if the system is updated with the new

information that the sensors provide. Specifically, the updated state estimate X̂k+1
(
PD

k+1

)
defined as

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
. (6.47)

We are able to cast the problem as a state space system with perfect observation. This

leads to the following theorem.



6.5 Imperfect Communication Channel Model without an Auxiliary Channel 140

Theorem 16. The updated state estimate,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (6.48)

is equivalent to the state space system

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (6.49a)

Ŷk = X̂k

(
PD

k

)
, (6.49b)

where W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= LkH

(
FEX

k

(
PD

k

)
+ GEU

k +Wk

)
+ LkVk+1, (6.50)

and Lk is the optimal Kalman filter gain at time step k.

Proof. The proof is moved to Appendix D.3.

The above theorem, groups all of the randomness into a single variable. Namely, the

process noise of the new state variable. In doing so the new state variable is fully observed.

To invoke Theorem 14, all of the random variables within (6.49) must be uncorrelated. To

that end, the actuation error is

EU
k = Ũk − Uk = Zk. (6.51)

Therefore, the actuation error EU
k is independent of the control law Uk. By definition the

actuation noise Zk is independent of all other random variables. Therefore, the actuation

error EU
k is also independent of the predicted state estimation error EX

k+1

(
PD

k

)
and the

plant noise Wk for all k. Similar to the actuation error, Wk and Vk are by definition
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independent of all other random variables. The predicted estimation error is

EX
k+1

(
PD

k

)
=Xk+1 − X̂k+1

(
PD

k

)
(6.52)

=
(
FXk + GUk + W̃k

)
−
(
FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

))
(6.53)

= F
(
EX

k

(
PD

k

)
− E

[
FEX

k

(
PD

k

)∣∣∣PD
k

])
+G

(
EU

k −E
[
EU

k

∣∣∣PD
k

])
+
(
Wk − E

[
Wk

∣∣∣PD
k

])
(6.54)

= FEX
k

(
PD

k

)
+ GEU

k +Wk. (6.55)

The state error prediction is independent from the actuation error as shown above.

Additionally, as shown in [71], the prediction estimate is independent from the plant

noise, Wk. Naturally, when the controller has access to additional information, the

performance of the estimate is improved, and results in

EX
k+1

(
PD

k+1

)
=Xk+1 − X̂k+1

(
PD

k+1

)
= FXk + GUk + W̃k −

(
FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

))
= FEX

k

(
PD

k

)
+ W̃k −W k

(
PD

k

)
(6.56)

= (I − LkH)
(
FEX

k

(
PD

k

)
+ GEU

k +Wk

)
− LkVk+1. (6.57)

As shown in [71], the state estimation error is uncorrelated with the process noise Wk.

However, linear combinations of independent random variables are random variables.

Therefore, the results presented in [71] hold and the state estimation error is uncorrelated

with all other random variables, provided they are independent from one another, which as

shown above holds in our setting. To see this explicitly note that (6.57) can be rewritten

as

EX
k+1

(
PD

k+1

)
= F̃EX

k

(
PD

k

)
+ ˜̃
W k,
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where F̃ = (I − LkH) F and

˜̃
W k = (I − LkH)

(
GEU

k +Wk

)
+ LkVk+1.

This means, the updated error EX
k

(
PD

k

)
is uncorrelated with all other random variables.

When considering the optimal cost given by (6.42) the expectation is slightly modified

to account for the noisy channels. This expectation must be executed with respect to the

joint distribution

P
(
XN , AP N−1

, BP N−1
, Y N−1, UN−1, ŨN−1

)
=

N−1∏
k=0

{
P
(
Xk+1|Xk, Ũk

)
P
(
AP

k |Xk, B
P
k−1, Ũk−1, A

P
k−1,Pk−1

)
P
(
BP

k |Ap
k

)
×P

(
Yk|BP

k , Yk−1, Uk−1,P
D
k−1

)
P
(
Uk|Uk−1, Yk

)
P
(
AC

k |Yk, B
P
k , Uk, A

C
k−1, Ck−1

)
×P

(
BC

k |AC
k

)
P
(̃
Uk|BC

k , Ũk−1, CD
k−1

)}
P(X0). (6.58)

Due to the introduction of the communication channels there are additional stochastic

kernels that are introduced into the expectation. Therefore, the cost of the partially

observed system is

J∗ = min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨT

k QU Ũk

]}
, (6.59)

= min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

(
N∑

k=0
E
[
X̂T

k

(
PD

k

)
QXX̂k

(
PD

k

)
+ UT

k QUUk

])}

+ lim sup
N→∞

1
N

(
N∑

k=0
E
[
EX

k

(
PD

k

)
QXE

X
k

(
PD

k

)]
+ E

[
EU

k

TQUE
U
k

])
, (6.60)

where the substitution of (6.43) is made and due to the uncorrelated nature of the

errors E
[
EX

k QEU
k

]
= 0. The first term of (6.60) is of the correct form to invoke Theorem 14

with a change of variables. Therefore, the optimal linear control law for the new state

variable is

U∗
k = −KX̂k

(
PD

k

)
, (6.61)
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with associated optimal cost,

tr
(
PΣ

W

)
, (6.62)

where K is defined as the optimal gain matrix according to (6.5). It is assumed that the

error covariances converge to the fixed values, specifically the covariances

ΣEU
k

=E
[
EU

k+1
T
EU

k+1

∣∣∣PD
k+1

]
= ΣZ = ΣEU , (6.63)

ΣEX
k+1(PD

k+1)=E
[
EX

k+1

(
PD

k+1

)T
EX

k+1

(
PD

k+1

)∣∣∣∣PD
k+1

]
= L̃T

k

(
FTΣEX

k(PD
k )F + GTΣEU G + ΣW

)
L̃k + LkΣV LT

k , (6.64)

where L̃k = (I − LkH), are assumed to have converged to their solutions. Additionally,

the Kalman filter gain Lk is also assumed to have converged to its steady state value L.

These steady state covariance matrices are defined such that

ΣEU = ΣEU ,

ΣEX = L̃T
(
FTΣEX F + GTΣEU G + ΣW

)
L̃ + LΣV LT. (6.65)

Under this assumption, the optimal system cost is

J = tr
(
PΣ

W

)
+ tr (QXΣEX ) + tr (QUΣEU ) (6.66)

= tr
(

PE
[
W k W

T
k

])
+ tr (QXΣEX ) + tr (QUΣEU ) (6.67)

= tr
(

PE
[(

FEX
k

(
PD

k

)
+ W̃k − EX

k+1

(
PD

k+1

)) (
FEX

k

(
PD

k

)
+ W̃k − EX

k+1

(
PD

k+1

))T
])

+tr (QXΣEX ) + tr (QUΣEU ) (6.68)

= tr
(
P
(
FΣEX FT + GΣEU GT + ΣW − ΣEX

))
+ tr (QXΣEX ) + tr (QUΣEU ) (6.69)

= tr (PΣW ) + tr
((

FTPF − P + QX

)
ΣEX

)
+ tr

((
GTPG + QU

)
ΣEU

)
, (6.70)
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where in (6.68) the relation (6.56) is substituted for W k. It is seen in (6.70) that the

cost function for a system operating over a noisy communication channel is split into

three additive terms. As before these three terms correspond to the cost of optimal

control, communication over the sensory channel, and communication over the actuation

channel. However, each of these terms represent different quantities. Specifically, the

error covariances in each channel have different statistics, and therefore, converge to

different values. It will be shown in Section 6.7 that the cost of the system without the

acknowledgment link is strictly greater than the cost of the system with the link, provided

the communication channel introduces noise.

6.6 Imperfect Communication Channel with an Im-

perfect Auxiliary Channel

In the following the operator implements the auxiliary communication channel as seen

in the first system model (Fig 6.4). However, unlike the first system model the operator

implements an imperfect channel for the auxiliary channel. This decision is made to

generalise the system architecture further. In this way it is shown that this is the middle

case of the two previous system derivations. Namely, if the noise within the auxiliary

channel is below a threshold then the operator successfully reduces the error in the estimate

and is able to reduce the overall system cost. However, if the noise in this auxiliary channel

is above this threshold then the operator is best disregarding the additional information

and acting as though there is no auxiliary channel. This threshold value is quantified in

the cost difference section. The system model is depicted in Fig 6.6.
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The information sets of the system once again require redefinition.

PE
k =

{
Xk, A

P
k−1, B

P
k−1, Ũk−1,P

E
k−1

}
, (6.71a)

PD
k =

{
BP

k , Yk−1, Uk−1,
˜̃
Uk−1,P

D
k−1

}
, (6.71b)

CE
k =

{
Yk, B

P
k , Uk, A

C
k−1, B

C
k−1,

˜̃
Uk−1, CE

k−1

}
, (6.71c)

CD
k =

{
BC

k , Ũk−1, CD
k−1

}
, (6.71d)

where ˜̃
Uk is the random variable at the output of the imperfect auxiliary communication

channel. Note that due to the inclusion of Uk within PD
k there is still separation of optimal

control and estimation, i.e. as in Section 6.4.1 there is no dual effect from the control law

choice. The system modelling and channel construction is the same as before however

there is now an additional imperfect communication channel.
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Fig. 6.6 Communication channel implementation within a control system, where the the
variable Ũk is transmitted over an imperfect auxiliary communication channel.
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6.6.1 Optimal Control with Imperfect Auxiliary Channel

In order to assess the impact of the imperfect auxiliary communication channel, the

expected value of a LQG cost function is once again adopted. For this system model it is

defined as

J = lim sup
N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨT

k QU Ũk

]
. (6.72)

Once again the cost function includes the variable Ũk and not the uncorrupted input

signal Uk or the variable ˜̃
Uk. This is due to the fact that the noisy actuation signal is still

the signal that enters the plant. The optimal cost function for this system is therefore

defined as

J∗ = min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨT

k QU Ũk

]}
, (6.73)

where as before the operator designs the optimal joint distributions PU0,...,UN |Y0,...,YN
∈ U

such that they are contained within the causal set of joint distributions (6.2). The above

is identical to that which defined within (6.4.1) and (6.42), however, once again the

distribution of the operators measurements Yk for (6.73) are different to both of the

previous derivations due the noisy information about the random variable Ũk.

Theorem 17. The updated state estimate

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (6.74)

is equivalent to the state space system

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (6.75a)

Ŷk = X̂k

(
PD

k

)
, (6.75b)
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where W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= LkH

(
FEX

k

(
PD

k

)
+ GTk +Wk

)
+ LkVk+1, (6.76)

and Tk is the zero mean AWGN introduced by the imperfect auxiliary communication

channel with covariance ΣT .

Proof. The proof is moved to Appendix D.4.

Proving that the process noise of the above state space system is uncorrelated is a

trivial extension of Lemma 17. Specifically because the process noise produced from

Theorem 17 is identical to the process noise within Lemma 17 with the addition of an IID

vectorial Gaussian variable. Therefore, all of the variables within (6.76) are uncorrelated.

Before proceeding with the optimal cost first the updated sensor error is defined

EX
k+1

(
PD

k+1

)
=Xk+1 − X̂k+1

(
PD

k+1

)
= FXk + GUk + W̃k −

(
FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

))
= FEX

k

(
PD

k

)
+ W̃k −W k

(
PD

k

)
. (6.77)

The optimal cost of the partially observed system is defined as

J∗ = min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨT

k QU Ũk

]}
, (6.78)

= min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

(
N∑

k=0
E
[
X̂T

k

(
PD

k

)
QXX̂k

(
PD

k

)
+ UT

k QUUk

]
+E

[
EX

k

(
PD

k

)
QXE

X
k

(
PD

k

)]
+ E

[
EU

k

TQUE
U
k

])}
. (6.79)

where the substitution of (6.75) is made and due to the uncorrelated nature of the errors

it holds that E
[
EX

k QEU
k

]
= 0. The first term of (6.79) is of the correct form to invoke

Theorem 14 with a change of variables. Therefore, the optimal linear control law for the
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new control system is

U∗
k = −KX̂k

(
PD

k

)
, (6.80)

with associated optimal cost

tr
(
PΣ

W

)
, (6.81)

where the optimal gain is independent of the system, and therefore, K is defined as the

optimal gain matrix according to (6.5). It is assumed that the error covariances converge

to the fixed values, specifically the time varying covariances,

ΣEU
k

=E
[
EU

k+1
T
EU

k+1

∣∣∣PD
k+1

]
= ΣZ = ΣEU ,

ΣEX
k+1(PD

k+1)=E
[
EX

k+1

(
PD

k+1

)T
EX

k+1

(
PD

k+1

)∣∣∣∣PD
k+1

]
= L̃T

k

(
FTΣEX

k(PD
k )F + GTΣT G + ΣW

)
L̃k + LkΣV LT

k (6.82)

where the terms L̃k = (I − LkH) are assumed to have converged to their solutions.

Additionally, the Kalman filter gain Lk is also assumed to have converged to its steady

state value L. This is the same assumption as is made in the previous sections. These

steady state covariance matrices are defined such that

ΣEU = ΣEU ,

ΣEX = L̃T
(
FTΣEX F + GTΣT G + ΣW

)
L̃ + LΣV LT. (6.83)
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Under this assumption, the optimal system cost is written as

J∗ = tr
(
PΣ

W

)
+ tr (QXΣEX ) + tr (QUΣEU ) (6.84)

= tr
(

PE
[
W k W

T
k

])
+ tr (QXΣEX ) + tr (QUΣEU ) (6.85)

= tr
(

PE
[(

FEX
k

(
PD

k

)
+ W̃k − EX

k+1

(
PD

k+1

)) (
FEX

k

(
PD

k

)
+ W̃k − EX

k+1

(
PD

k+1

))T
])

+tr (QXΣEX ) + tr (QUΣEU ) (6.86)

= tr
(
P
(
FΣEX FT + GΣEU GT + ΣW − ΣEX

))
+ tr (QXΣEX ) + tr (QUΣEU ) (6.87)

= tr (PΣW )︸ ︷︷ ︸
1

+ tr
((

FTPF − P + QX

)
ΣEX

)
︸ ︷︷ ︸

2

+ tr
((

GTPG + QU

)
ΣEU

)
︸ ︷︷ ︸

3

, (6.88)

where in line (6.86) the relation (6.77) is substituted for W k. It is seen in (6.88) that the

cost function for a system operating over a noisy communication channel is split into three

additive terms. As before, these three terms correspond to the cost of optimal control,

communication over the sensory channel, and communication over the actuation channel.

However, as with the previous cases each of these communication costs represent different

values.

6.7 Cost Difference with Communication Channels

The cost difference between each of the three system models is quantified below. Initially,

it is shown that the cost difference between the systems described in Theorem 15 and

Theorem 16 is strictly positive. Specifically, it is shown that the cost of the system is strictly

increased by not employing the use of the perfect auxiliary communication channel. In the

following derivations we characterise the conditions for the noisy auxiliary channel cost

as described within Theorem 17 to outperform the system without an auxiliary channel.

Additionally, it should be noted that the system with an imperfect auxiliary communication

channel only matches the cost of the system with a perfect auxiliary communication channel

when the covariance of the noise of the imperfect auxiliary communication channel is the

zero matrix. Namely, ΣT = 0.
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In order to continue without confusion we define each of the sensory covariance matrices

with differing labels. The error covariance for the control system with a perfect auxiliary

communication channel is

ΣEP
k+1(PD

k+1)=E
[
EP

k+1

(
PD

k+1

)
EP

k+1

(
PD

k+1

)T∣∣∣∣PD
k+1

]
= L̃k

(
FΣEP

k (PD
k )F

T + ΣW

)
L̃T

k + LkΣV LT
k. (6.89)

This time varying error covariance describes the error term in Theorem 15. Similarly, the

error covariance for the control system with an imperfect auxiliary communication channel

is

ΣEI
k+1(PD

k+1)=E
[
EI

k+1

(
PD

k+1

)
EI

k+1

(
PD

k+1

)T∣∣∣∣PD
k+1

]
= L̃k

(
FΣEI

k(PD
k )F

T + GΣT GT + ΣW

)
L̃T

k + LkΣV LT
k. (6.90)

This time varying error covariance describes the error term in Theorem 17. Lastly, the

error covariance for the control system with no auxiliary communication channel is

ΣEN
k+1(PD

k+1)=E
[
EN

k+1

(
PD

k+1

)
EN

k+1

(
PD

k+1

)T∣∣∣∣PD
k+1

]
= L̃k

(
FΣEN

k (PD
k )F

T + GΣEU GT + ΣW

)
L̃T

k + LkΣV LT
k. (6.91)

This time varying error covariance describes the error term in Theorem 16. Naturally, the

limit of the covariance matrices are defined as

ΣEP = L̃
(
FΣEP FT + ΣW

)
L̃T + LΣV LT, (6.92)

ΣEI = L̃
(
FΣEI FT + GΣT GT + ΣW

)
L̃T + LΣV LT, (6.93)

ΣEN = L̃
(
FΣEN FT + GΣEU GT + ΣW

)
L̃T + LΣV LT, (6.94)
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respectively. With these definitions made the respective optimal costs are characterised.

In doing so we explicitly show the differences between terms

J∗
P = tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEP

)
+ tr

((
GTPG + QU

)
ΣEU

)
, (6.95)

J∗
I = tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEI

)
+ tr

((
GTPG + QU

)
ΣEU

)
, (6.96)

J∗
N = tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEN

)
+ tr

((
GTPG + QU

)
ΣEU

)
. (6.97)

It follows from this characterisation that the difference between system costs can be

described in terms of the limits of the error covariances. With that knowledge we define

the following function

fk (A) =
k∑

i=0

(
L̃k−iF

)i
L̃k−iGAGTL̃T

k−i

(
L̃k−iF

)iT

, (6.98)

where fk (A) is the parametric mapping fk (A) : Mm → Mn with parameter A ∈ Mm.

The above function captures the effect of the the error introduced by the presence or the

lack of the presence of the auxiliary channel. To see this note that

ΣEP
k+1(PD

k+1)= L̃k

(
FΣEX

k (PD
k )F

T + ΣW

)
L̃T

k + LkΣV LT
k + fk (0), (6.99)

ΣEI
k+1(PD

k+1)= L̃k

(
FΣEX

k (PD
k )F

T + ΣW

)
L̃T

k + LkΣV LT
k + fk (ΣT ), (6.100)

ΣEN
k+1(PD

k+1)= L̃k

(
FΣEX

k (PD
k )F

T + ΣW

)
L̃T

k + LkΣV LT
k + fk (ΣEU ) . (6.101)

Note the equivalence in all terms with the exception of the functional term defined in (6.98).

Additionally, we denote by f∞ (A) as the limit value of the function. We term this value

the limit value and not the converged value. This is due to the fact our analysis does not

pertain to the conditions under which this function converges. It follows from the standard

Kalman filter that this function necessarily converges under certain conditions, namely,

with perfect communication there are many results for this convergence. This is due to

the fact that with no communication error the above function is equivalent to a standard

Kalman filter. However, we do not explore the conditions under which this convergence
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remains in this thesis. It is seen in Chapter 8 that this function does converge for real

values on a real control system. Therefore, the limit values of the error covariances are

defined as

ΣEP = L̃
(
FΣEX FT + ΣW

)
L̃T + LΣV LT + f∞ (0), (6.102a)

ΣEI = L̃
(
FΣEX FT + ΣW

)
L̃T + LkΣV LT + f∞ (ΣT ), (6.102b)

ΣEN = L̃
(
FΣEX FT + ΣW

)
L̃T + LΣV LT + f∞ (ΣEU ) . (6.102c)

Therefore, the analysis of the function fk (A) results in the analysis of cost differences

between the system designs. This leads to the following theorem.

Theorem 18. The cost difference between the system without an auxiliary communication

channel and the system with is strictly positive for any system with noise on the actuation

communication channel. Namely

J∗
N ≥ J∗

P (6.103)

with equality if and only if

ΣZ = 0. (6.104)

Proof. We define the cost difference between the two systems is defined as

J∗
∆(N,P ) =J∗

N − J∗
P (6.105)

= tr
((

FTPF − P + QX

)
ΣEN

)
− tr

((
FTPF − P + QX

)
ΣEP

)
. (6.106)

Note that P is independent of the system architecture. This is a direct result of the no

dual effect [71]. Manipulation of this relation results in

J∗
∆(N,P ) = tr

((
FTPF − P + QX

)
(f∞ (ΣEU ) − f∞ (0))

)
= tr

((
FTPF − P + QX

)
(f∞ (ΣEU ) − 0)

)
. (6.107)
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The term FTPF − P + QX is strictly positive definite as it is the solution of the ARE,

and therefore, the positivity of (6.107) is solely determined by the relation f∞ (ΣEU ) − 0.

However, ΣEU = ΣZ . Therefore, this term is positive for all non-zero ΣZ and it holds that

J∗
∆(N,P ) = J∗

N − J∗
I ≥ 0,

J∗
N ≥J∗

P , (6.108)

with equality if and only if ΣZ = 0. This concludes the proof.

Theorem 19. Let the auxiliary channel be such that

ΣZ ≻ ΣT . (6.109)

Then

J∗
N > J∗

I . (6.110)

Proof. We define the cost difference between the two systems is defined as

J∗
∆(N,I) =J∗

N − J∗
I (6.111)

= tr
((

FTPF − P + QX

)
ΣEN

)
− tr

((
FTPF − P + QX

)
ΣEI

)
. (6.112)

Substitution of the relations in (6.102) yields

J∗
∆(N,I) = tr

((
FTPF − P + QX

)
(f∞ (ΣEU ) − f∞ (ΣT ))

)
. (6.113)

The positivity of this term is determined by the term f∞ (ΣEU )−f∞ (ΣT ). However, ΣEU =

ΣZ and by assumption, ΣZ ≻ ΣT . Due to the quadratic nature of the function fk the

equivalence between these costs only occurs when ΣZ = ΣT , otherwise, this term is positive
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and it holds that

J∗
∆(N,I) =J∗

N − J∗
I > 0,

J∗
N >J

∗
I . (6.114)

Additionally, this inequality is reversed for the case ΣZ ≺ ΣT . In this case the operator

disregards any additional information provided by the noisy auxiliary channel and the

optimal control cost is equal to J∗
N . This concludes the proof.

The above theorem shows an auxiliary channel only improves performance if the

operator guarantees that the auxiliary communication channel has a better Signal to Noise

Ratio (SNR) than the actuation communication channel. Under this assumption the cost

function of the imperfect auxiliary channel system is strictly less than the no auxiliary

channel system cost. This highlights the usefulness of the auxiliary communication channel

for systems where communication in one direction is more reliable that the other. For

example, systems with communication channels that send information from the plant to

the controller with a higher SNR than the actuation communication channel, necessarily

decrease the system cost by implementing an auxiliary communication channel.

Theorem 20. Let the auxiliary channel be such that

ΣZ ⪰ ΣT . (6.115)

Then

J∗
N = J∗

I = J∗
P , (6.116)

if and only if

ΣZ ≡ 0. (6.117)
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Proof. It follows from Theorem 18 that the costs J∗
N and J∗

P are only equivalent when there

is no actuation communication channel noise. i.e. ΣZ = 0. Additionally, Theorem 19 states

that in order for the cost J∗
I to be greater than or equal to J∗

N it must hold that ΣZ ⪰ ΣT .

However, both of these covariance matrices are a member of the set Sm
++. Therefore,

if ΣZ = 0 it must also hold that either ΣT = 0 in which case J∗
I = J∗

P or the imperfect

communication architecture is not viable in which case J∗
I = J∗

N = J∗
P . This concludes

the proof.

The above shows that all three system models are only equivalent in the case of a system

with a perfect actuation communication channel. All other AWGN channels necessarily

invoke a cost difference between the three communication channels. To that end, the

following theorem summarises the cost difference between the three system models.

Theorem 21. Let the auxiliary channel be such that

ΣZ ⪰ ΣT . (6.118)

Then

J∗
N ≥ J∗

I ≥ J∗
P . (6.119)

With equality in the upper bound when ΣZ = ΣT and equality in the lower bound only

when ΣT = 0.

Proof. The inequality in the upper bounds follows directly from Theorem 19. The lower

bound follows as a result of Theorem 20. This concludes the proof.

The above theorem shows that provided that the auxiliary communication channel is

viable, then the system with an imperfect auxiliary communication channel has an optimal

control system cost that is bounded by the other two. The usefulness of Theorem 21

follows from the interpretation that the imperfect auxiliary channel characterises a Pareto

front of optimal control between the two other system models. By this it is meant that for
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any imperfect auxiliary channel that has a higher SNR that the actuation communication

channel the optimal control cost will be proportional to the covariance of ΣT . Therefore,

the operator is able to perform a communication cost allocation optimisation problem

much like in Chapter 4. However, in contrast to Chapter 4 the operator optimises over the

eigenmodes of the covariance matrix ΣT , discussion of this further is seen within Chapter 9.

6.8 Chapter Conclusion

In the above, we have derived the resultant optimal cost for an operator of a control system

that communicates over a vectorial AWGN communication channel. This has been done

for multiple system structures. We also show that there is a differing cost for each of these

system designs. Namely, by not monitoring the realisations of the noise in the actuation

channel the operator necessarily experiences an additional estimation error increase and

therefore, an additional associated control cost.

It should be noted that the system designs considered are starkly reminiscent of the

UDP-like/TCP-like system designs seen within Chapter 3 - 5. Namely, the auxiliary

communication channel is the AWGN generalisation of the perfect acknowledgement link

seen within these chapters. When considering this interpretation, the results of Section 6.7

have stark similarity to those seen within Chapter 4.

This chapter concludes the optimal decision for the operators. Specifically, this chapter

has shown the optimal choice of control law for an operator that controls a system over

two AWGN communication channels. However, the operator also monitors these channels

and performs a hypothesis test on each. Discussion of hypothesis test is within Chapter 7.



Chapter 7

Optimal Stealthy Data-Injection

Attacks in Control Systems

7.1 Introduction

The optimal control law for the operator of a system with AWGN communication channels

is studied in Chapter 6. In this chapter, we turn our attention to the attacker. The

attacker, as in Chapter 5, has two objectives: to maximise the expected cost of the system

and to remain undetected. This second objective is modelled as a detection constraint in

the objective function of the attacker. The communication channels of a control system are

constructed in Chapter 6. Therein they are modelled as AWGN communication channels.

Due to this fact the following attack implementation changes from the attack construc-

tion in Chapter 5. Namely, the attacker uses a Gaussian random variable as their control

variable. Specifically, the attacker injects an additive Gaussian noise stream. As seen

in [34], additive Gaussian noise is an optimal attack strategy in terms of increasing cost

whilst minimising probability of detection for a linear IID system. This result follows from

the work in [61] Therein, the authors conclude that Gaussian noise is the worst case additive

noise for wireless networks, this is an extension of the already known result that Gaussian

additive noise is the worst case noise for point-to-point communications. Therefore, we

adopt additive Gaussian noise for the attack model in an attempt to characterise the worst
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case attack scenario for the operator. Additionally, were the attacker to implement a DoS

attack upon this system construction it would be detected trivially. This is due to the fact

that the communication channel is assumed to be communicating perfect with respect to

packet drops but imperfectly with respect to additive Gaussian noise.

The attack is also assumed to be zero mean. This is due to the fact that, as mentioned

in Chapter 6, it is the Nash equilibrium between the operator and the attacker. To see

this, imagine the following game. Again we use the term game in a descriptive sense and

not as the mathematical concept. A turn of the following game is arbitrarily long and

does not necessarily correspond to a time instance of the control system. The operator

takes their turn first, they note that there is no attack, and therefore, perform the optimal

control strategy as laid out in Chapter 6. During this period of time the control system

functions nominally. The attacker on their turn injects a non-zero mean Gaussian signal.

After which the operator is able to estimate the mean of the injected signal. Therefore,

the operator can then counter this injected signal in their transmitted signals. At which

point the control system has reverted back to a scenario of a zero mean attack variable,

with a change of variables. Namely, the operator has offset the attacker’s non-zero mean

Gaussian random variable such that it is transformed into a zero mean Gaussian random

variable. The attacker is then able to detect this offset in after an arbitrary passage of time.

Following which the attacker may then change the mean of the random injection signal

again. This move and counter move between the attacker and the operator is able to go

on indefinitely. Therefore, we consider zero mean strategies, this strategy is a saddle-point

between the two players.

As mentioned above the attacker is constrained such that the attacked communication

channel statistics cannot significantly differ from the nominal communication channel

statistics. This is modelled in the following chapter through use of the KL-divergence.

The reason for choice of the KL-divergence in section 7.2. Therefore, the attacker has

control over the design of the covariance matrix of the attack variable and intends to use

this design to maximise the cost of the operator such that the KL-divergence does not

exceed a specified level.
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Fig. 7.1 System diagram of the control system whilst undergoing a data injection attack.

In the following chapter we characterise the cost increase caused by any data-injection

attack on the AWGN communication channels for each of the three system architectures

presented in Chapter 6. Due to the introduction of the attacker the system models

presented in Chapter 6 are altered. We consider the attack construction on each system

in the same order as in Chapter 6 for ease of reading. Initially, we consider the system

with a perfect auxiliary communication channel. The system with a perfect auxiliary

communication channel during a data injection attack is depicted in Fig. 7.1. Note the

introduction of each of the attacker vectors in each communication channel. Following this

attack construction and analysis we switch to the system with no auxiliary communication

channel. This system under attack is depicted in Fig. 7.2. Finally, we then consider the

attack upon a system with the imperfect auxiliary communication channel. This system

model is depicted in Fig. 7.3. Note that due to the introduction of a third AWGN channel

the attacker has access to a third attack vector. Following each of the attack construction

we then proceed to derive the optimal attack statistics for the injected signal for each of

the communication channels, respectively. Specifically, for a scalar communication channel

we provide an exact solution for given detection constraints and we also provide a lower
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Fig. 7.2 System diagram of the control system whilst undergoing a data injection attack.
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Fig. 7.3 System diagram of the control system whilst undergoing a data injection attack.

bound for the optimal covariance matrix of the injected signal for the vectorial channel

case.
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7.2 Communication Channel Monitoring and Attack

Detection

As in previous chapters, when there is the possibility of an attack being present within a

system the operator employs a detection regime. In this chapter there are no packet drops

to be monitored, instead the operator must monitor the realisations of an AWGN channel

and accept a hypothesis test region with this information. Namely, the outcome of the

following hypothesis test is decided by the realisation of the variables within each of the

communication channels

H0 : There is no attack present, (7.1a)

H1 : There is an attack present. (7.1b)

The operator performs the optimal control law as defined in (6.31). For the systems

defined in Chapter 6, three communication channels are already defined. These are the

sensory communication channel PN
BP |AP , the actuation communication channel PN

BC |AC

and the auxiliary communication channel PN
BF |AF where AF

k and BF
k are the auxiliary

communication channel input and output symbols, respectively. The upper indexing is

used to refer to the auxiliary feedback channel, to not get it confused with the attack

vector within the auxiliary communication channel defined below. These communication

channels are henceforth termed the nominal communication channels. These correspond

to the communication channels of a system with no data-injection attack present. Further-

more, we introduce three additional communication channels. A communication channel

corresponding to each of the previous communication channels when a data injection

attack is implemented. These are defined as the attacked sensory communication chan-

nel QN
BP |AP , the attacked actuation communication channel QN

BC |AC , and the attacked

auxiliary communication channel QN
BF |AF . These new communication channels are all

AWGN communication channels.
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The KL-divergence is implemented as a detection constraint. The KL-divergence

is a measure between two distributions. Additionally, the KL-divergence is equivalent

to he ML test. Namely, for IID data minimising the KL-divergence is equivalent to

maximising the ML estimator. The KL-divergence between two distributions P = {pi}pi∈P

and Q = {qi}qi∈Q is defined as

D (P ∥ Q) ∆=
M∑

i=1
pi log

(
pi

qi

)
, (7.2)

where the convention 0 log(0
0) = 0 is assumed. From (7.2) it follows that D (P ∥ Q) = 0

if and only if Q = P . With this in mind the operator conducts the following hypothesis

tests

HP
0 :D

(
QN

BP |AP ∥ PN
BP |AP

)
≤ δ1, (7.3a)

HP
1 :D

(
QN

BP |AP ∥ PN
BP |AP

)
> δ1. (7.3b)

for the sensory communication channel,

HC
0 :D

(
QN

BC |AC ∥ PN
BC |AC

)
≤ δ2, (7.4a)

HC
1 :D

(
QN

BC |AC ∥ PN
BC |AC

)
> δ2. (7.4b)

for the actuation communication channel, and

HF
0 :D

(
QN

BF |AF ∥ PN
BF |AF

)
≤ δ3, (7.5a)

HF
1 :D

(
QN

BF |AF ∥ PN
BF |AF

)
> δ3. (7.5b)

for the auxiliary communication channel. The presence of N within the upper index of

each distribution indicates that this is the KL-divergence of the joint distribution over the

entire horizon length N . This horizon length is set by the operator and is arbitrary. This

hypothesis test construction implies that the operator is conducting a single hypothesis

test at the end of the horizon length N , and not sequentially. This forces the attacker to
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remain stealthy not only at every time step during the attack but also at the end when

the operator has access to all of the information possible. This means the following attack

derivations are the highly restricted by their detection constraint, however, any attacks

derived using this detection constraint are also undetectable by any other less restrictive

test, such as a sequential test. It should be noted that the above is a slight abuse of

notation. Namely, the above KL-divergences have taken families of distributions as inputs

and not distributions. Specifically, the families QN
BP |AP , QN

BC |AC , QN
BF |AF , PN

BP |AP , PN
BC |AC ,

and PN
BF |AF . Therefore, each of the above hypothesis tests are actually performing the

below calculation

EAD

[
D
(
QN

BD|AD=aD ∥ PN
BD|AD=aD

)]
, (7.6)

where AD and BD are dummy channel input and output channel variables. However, due

the fact that we are dealing with AWGN channels it follows for the actuation channel that

PBC =AC
i + Zi,

QBC =AC
i + Zi + AU

i . (7.7)

The above readily translates to the other two channels. Additionally due to the above

each of the channel distributions are a linear translation of one another. Therefore, the

KL-divergence is not altered and the above hypothesis test are in fact

HP
0 :D (PV+AX ∥ PV) ≤ δ1, (7.8a)

HP
1 :D (PV+AX ∥ PV) > δ1, (7.8b)

for the sensory communication channel,

HC
0 :D (PZ+AU ∥ PZ) ≤ δ2, (7.9a)

HC
1 :D (PZ+AU ∥ PZ) > δ2, (7.9b)



7.2 Communication Channel Monitoring and Attack Detection 164

for the actuation communication channel, and

HF
0 :D (PT+AA ∥ PT) ≤ δ3, (7.10a)

HF
1 :D (PT+AA ∥ PT) > δ3, (7.10b)

where, as in Chapters 4 and 5, the calligraphic font represents the stacked version of a

vector. Explicitly written, these variables are defined as

V =



V0

V1

...

VN


, Z =



Z0

Z1

...

ZN


, T =



T0

T1

...

TN


,

AX =



AX
0

AX
1

...

AX
N


, AU =



AU
0

AU
1

...

AU
N


, AA =



AA
0

AA
1

...

AA
N


. (7.11)

Naturally, due to the nature of the input variables within the KL-divergences the upper

index of N is implicitly included within the vectors structure. From these definitions it

follows that (7.1) is equivalent to

H0 :HF
0 ∩HC

0 ∩HP
0 , (7.12a)

H1 :HF
1 ∪HC

1 ∪HP
1 , (7.12b)

where through a slight abuse of notation it is seen that if any of the three hypothesis test

result in the alternate outcome the operator declares an attack on the control system.

Namely, for there to be no attack declared the operator must decide that there is no attack

on any of the communication channels present.
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Fig. 7.4 Attack implementation on both communication channels implemented in a control
system, where there is transmission of the variable Ũk over a perfect auxiliary communica-
tion channel.

7.3 Attack Construction with Perfect Auxiliary Com-

munication Channel

Initially, the attack is implemented upon the system that incorporates a perfect auxiliary

communication channel within the system architecture. Note that for this system, due to

the fact that there is no noise on the auxiliary communication channel the operator is able

to set δ3 = 0. For any imperfect channel this choice of δ is poor, as any finite sequence of

Gaussian variables would cause a non-zero KL-divergence with probability 1. However,

due to this being a perfect communication channel this is not an issue, and therefore, the

attacker is not able to perform any attack on the auxiliary communication channel without

being detected. With this in mind, we introduce the optimisation function of the attacker.
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This is defined as

J∗
A = max

{QN
BC |AC ,QN

BP |AP }
J∗ (7.13)

J∗
A = max

{QN
BC |AC ,QN

BP |AP }

{
min

PU0,...,UN |Y0,...,YN
∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨAT

k QU Ũ
A
k

]}}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 , and D (PV+AX ∥ PV) ≤ δ2, (7.14)

where δi ∈ R is a tuning parameter set by the system operator and ŨA
k ∈ Rm represents the

optimal control law at time k that has been corrupted by the nominal actuation communi-

cation channel and the actuation communication channel data injection attack. Namely,

the optimal control law corrupted by the attacked communication channel. The δi variables

relate to the trade-off between false alarm rate and probability of detection. The commu-

nication channels considered are all AWGN communication channels, therefore, (7.14) is

equivalent to

J∗
A = max

{Σ
AU ∈Sm

+ ,Σ
AX ∈Sn

+}

{
min

PU0,...,UN |Y0,...,YN
∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨAT

k QU Ũ
A
k

]}}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 , and D (PV+AX ∥ PV) ≤ δ2, (7.15)

where ΣAU is the covariance matrix the random variable injected into the actuation

communication channel and ΣAX is the covariance matrix of the zero mean random

variable that is injected into the sensory communication channel. These injected random

variables are defined as the IID Gaussian variable AU
k ∈ Rm with mean 0 ∈ Rm and

covariance ΣAU for the actuation channel attack and AX
k ∈ Rm as the IID Gaussian

variable with mean 0 ∈ Rm and covariance ΣAX for the sensory channel attack. The

system model must be modified to account for the inclusion of the data injection attack
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variables

Xk+1 = FXk + GŨA
k +Wk, (7.16a)

ŨA
k =Uk + Zk + AU

k , (7.16b)

Yk = HXk + Vk + AX
k . (7.16c)

Note that this state space system is equivalently represented as

Xk+1 = FXk + GUk + W̃A
k , (7.17)

W̃A
k = GEU

k + GAk +Wk. (7.18)

All new terms are additive Gaussian variables that are independent from all other random

variables within the Gauss-Markov model as previously seen in the control system model

in (6.17).

Due to the introduction of the data injection attack, the information sets defined

in (6.7) require updating in order to include the new variables. These are re-defined as

PE
k =

{
Xk, A

P
k−1, B

P
k−1, Ũ

A
k−1,P

E
k−1

}
, (7.19a)

PD
k =

{
BP

k , Yk−1, Uk−1, Ũ
A
k−1,P

D
k−1

}
, (7.19b)

CE
k =

{
Yk, B

P
k , Uk, A

C
k−1, B

C
k−1, Ũ

A
k−1, CE

k−1

}
, (7.19c)

CD
k =

{
BC

k , Ũ
A
k−1, CD

k−1

}
. (7.19d)

Note that these information sets are the attacker’s and not the operators. This is due

to the fact that the attack knows that the additional variables are present whereas the

operator does not and instead performs the hypothesis detection detailed above. Due to

the fact that a linear combination of Gaussian variables are still a Gaussian variables the

previous results from Section 6.4.1 hold and the resultant cost of the system is

J∗ = tr (PΣW ) + tr
((

FTPF − P + QX

)
ΣEXA

)
+ tr

((
GTPG + QU

)
ΣEUA

)
,(7.20)
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where due to the presence of the attack, both of the communication channel error covari-

ances ΣEX and ΣEU now depend on ΣAX and ΣAU . These new communication channels

error are ΣEXA ∈ Sn
+ and ΣEUA ∈ Sm

+ , respectively. Therefore, the objective of the attacker

becomes

J∗
A = max

{Σ
AU ∈Sm

+ ,Σ
AX ∈Sn

+}

{
tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEXA

)
+tr

((
GTPG + QU

)
ΣEUA

)}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 , and D (PV+AX ∥ PV) ≤ δ2, (7.21)

Although correct, the above form is not particularly useful for an operator or an attacker.

Specifically, in (7.21) the operator has no obvious interpretation of how damaging an

attack is, nor does an attacker have a tractable optimisation problem. However, if a similar

methodology as before is followed it is revealed how the data injection attack effects each

of these error covariances, and therefore, the cost. Namely, in the below we show that

the above error covariances can be split into the nominal cost terms plus the additional

induced attack cost. With that in mind, the errors in each communication channel are

defined as

EXA

k

(
PD

k

)
=Xk − X̂k

(
PD

k

)
, (7.22a)

EUA

k = ŨA
k − Uk

=EU
k + AU

k . (7.22b)

Note that, the actuation communication channel error is equivalent to the actuation error

in the nominal case with the addition of the error induced by the actuation communication

channel attack variable AU
k . The sensory error is not as simple as the actuation error. This

is because the error in the sensory communication channel is time varying. Initially, we
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deal with the predicted state estimate of the system, this is defined as

X̂k+1
(
PD

k

)
=E

[
Xk+1

∣∣∣PD
k

]
(7.23)

=E
[
FXk + GŨA

k +Wk

∣∣∣PD
k

]
(7.24)

=E
[
F
(
X̂k

(
PD

k

)
+ EXA

k

(
PD

k

))
+ G

(
Uk + EU

k + AU
k

)
+Wk

∣∣∣PD
k

]
(7.25)

= FX̂k

(
PD

k

)
+ GUk + E

[
FEXA

k

(
PD

k

)
+ G

(
Zk + AU

k

)
+Wk

∣∣∣PD
k

]
(7.26)

= FX̂k

(
PD

k

)
+ GUk +W

A
k

(
PD

k

)
, (7.27)

where we define WA

k

(
PD

k

)
as

W
A
k

(
PD

k

)
=E

[
FEXA

k

(
PD

k

)
+ G

(
EU

k + AU
k

)
+Wk

∣∣∣PD
k

]
. (7.28)

As discussed in Chapter 6, the predicted state estimate is not the state variable that the

operator controls the system through. The operator improves their estimates of the states

through use of system measurements. To that end, we recast the updated state estimate

into a state space system model. This leads to the following theorem.

Theorem 22. The updated state estimate of the system under attack

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (7.29)

is equivalent to the state space system given by

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (7.30a)

Ŷk = X̂k

(
PD

k

)
, (7.30b)

where W
A

k

(
PD

k

)
is defined as

W
A

k

(
PD

k

)
= GEUA

k + LkH
(
FEXA

k

(
PD

k

)
+Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
, (7.31)

and Lk is the optimal Kalman filter gain at time step k, as defined in Theorem 15.
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Proof. The proof is moved to Appendix E.1.

The system is in the form of a fully observed state space model. However, in order to

employ the result of Theorem 14 the errors must be uncorrelated. This brings us to the

next Lemma.

Lemma 18. All variables in W
A

k

(
PD

k

)
are uncorrelated.

Proof. The proof is moved to Appendix E.2

It is evident from (E.25) and (E.14), that the error terms include the relevant attack

variable within each error term. As seen in (7.21), the cost induced by the data injection

attack depends on the covariances of both of the attacked communication channels. With

this in mind, and the derivations above, we delve into an in depth description of these

error covariances. The error covariance of the actuation communication channel is

Σ
EUA

k+1
=E

[
EUA

k+1E
UA

k+1
T
| CD

k

]
(7.32)

=E
[(
EU

k+1 + AU
k+1

) (
EU

k+1 + AU
k+1

)T
| CD

k

]
(7.33)

=E
[
EU

k+1E
U
k+1

T + AU
k+1A

U
k+1

T| CD
k

]
(7.34)

= ΣEU + ΣAU . (7.35)

This error covariance is equivalent to the nominal communication error (6.19b) with the

addition of the data injection attack covariance ΣAU . Additionally, the error covariance of

the actuation communication channel is a constant, and therefore, as before

Σ
EUA

k+1| Ck

= Σ
EUA

k| Ck

= ΣEUA = ΣEU + ΣAU . (7.36)

Due to this fact, throughout the rest of the derivations the time indexing on the actuation

error covariance is dropped for notation simplicity. Following a similar process for the
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updated state estimation error covariance

Σ
EXA

k+1(PD
k+1)=E

[
EXA

k+1

(
PD

k+1

)T
EXA

k+1

(
PD

k+1

)∣∣∣∣PD
k+1

]
(7.37)

=E
[(

L̃k

(
FEXA

k

(
PD

k

)
+Wk

)
− Lk

(
AX

k+1 + Vk+1
))

×
(

L̃k

(
FEXA

k

(
PD

k

)
+Wk

)
−Lk

(
AX

k+1 + Vk+1
))T

∣∣∣∣PD
k+1

]
(7.38)

=E
[
L̃k

(
FEXA

k

(
PD

k

)
EXA

k

(
PD

k

)T
FT +WkWk

T
)

L̃T
k

+Lk

(
AX

k+1A
X
k+1

T + Vk+1V
T

k+1

)
LT

k

∣∣∣PD
k

]
(7.39)

= L̃k

(
FΣ

EXA
k (PD

k )F
T + ΣW

)
L̃T

k + Lk (ΣAX + ΣV ) LT
k . (7.40)

As in [71], it is assumed that the error covariance ΣEX
k

converges to the fixed value Σ̃EX .

The converged value of the state error covariance is defined as the solution to (7.40) when

the Kalman filter gain has converged to the steady state value L. The resulting error

covariance is

ΣEXA = L̃
(
FΣEXA FT + ΣW

)
L̃T + L (ΣAX + ΣV ) LT. (7.41)

Additionally, (7.41) is equivalent to the nominal error covariance plus the additional error

induced by the attack. To see this note that

ΣEXA = ΣEX + g∞ (ΣAX ) , (7.42)

where ΣEX is the nominal limit value of the system error, as seen in (D.23), and

gk (A) =
k∑

i=0

(
L̃k−iF

)i
Lk−iALT

k−i

(
L̃k−iF

)iT

. (7.43)

Additionally, we slightly abuse notation and denote g∞ (A) as the value of k such that

this function has reach a limit. For simplicity we define the variable Σ̃AX as this limit

value of the above function i.e. g∞ (ΣAX ). Note that once again, we term these the limit

values, and not the converged values. The updated state estimate error covariance during
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an attack is

ΣEXA = ΣEX + Σ̃AX . (7.44)

Naturally, the matrix Σ̃AX is wholly characterised by the variable ΣAX . Revisiting the

system cost (7.21) it is seen that

J∗
A = max

{Σ
AU ∈Sm

+ ,Σ
AX ∈Sn

+}

{
tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEXA

)
+tr

((
GTPG + QU

)
ΣEUA

)}
(7.45)

= max
{Σ

AU ∈Sm
+ ,Σ

AX ∈Sn
+}

{
tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEXA

)
+tr

((
GTPG + QU

)
ΣEU

)
+ tr

((
GTPG + QU

)
ΣAU

)}
(7.46)

= max
{Σ

AU ∈Sm
+ ,Σ

AX ∈Sn
+}

{
tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEX

)
+tr

((
GTPG + QU

)
ΣEU

)
+ tr

((
GTPG + QU

)
ΣAU

)
+tr

((
FTPF − P + QX

)
Σ̃AX

)}
. (7.47)

Remarkably, the above optimal control cost whilst under attack is represented as the

previous optimal control cost with noisy communication channels, plus two additional

terms that depend on the attack variable statistics. Specifically, the matrices ΣAU and Σ̃AX .

Therefore, the optimisation of the attacker has been reduced to compute the optimisation

problem

J∗
A = max

{Σ
AU ,Σ

AX }

{
tr
((

FTPF − P + QX

)
Σ̃AX +

(
GTPG + QU

)
ΣAU

)}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 , and D (PV+AX ∥ PV) ≤ δ2. (7.48)

Note that all of the terms within the maximisation are either positive or non-negative

definite. In the following section we provide analytic bounds for the solution of this

optimisation problem and provide the exact solution in a simplified system setting.
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7.4 Attack Analysis with Perfect Auxiliary Commu-

nication Channel

As is seen in (7.48), the covariance matrix ΣAU ∈ Sm
+ and the matrix Σ̃AX ∈ Sn

+ are

both non-negative definite matrices. Therefore, given that all other terms are also either

non-negative or positive definite, the optimisation of (7.48) becomes maximising ΣAU

and ΣAX subject to the KL-divergence constraints. The KL-divergence, as seen in (7.2), is

equivalently defined as [25],

D (PZ+AU ∥ PZ) =
∫

Ω
PZ+AU log

(PZ+AU

PZ

)
dPZ+AU , (7.49)

where Ω is the entire probability space. The communication channels being considered are

AWGN communication channels. Therefore, with substitution of the relevant covariance

matrices, the KL-divergence between these two communication channels is simplified

to [69]

D (PZ+AU ∥ PZ) = 1
2tr

(
Σ−1

PZ
ΣPZ+AU

)
− 1

2m+ 1
2 log

 |ΣPZ
|∣∣∣ΣPZ+AU

∣∣∣
 . (7.50)

The sequence of variables is stationary, additionally, the covariance matrices of the

communication channels are known and presented in Section 7.3. Therefore, the KL-

divergence is simplified to

D (PZ+AU ∥ PZ) = 1
2

(
tr
(
Σ−1

Z (ΣZ + ΣAU )
)

−m+ log
(

|ΣZ |
|ΣZ + ΣAU |

))
(7.51)

= 1
2

(
tr
(
Σ−1

Z ΣAU + I
)

−m+ log
(

|ΣZ |
|ΣZ + ΣAU |

))
(7.52)

= 1
2

(
tr
(
Σ−1

Z ΣAU

)
+ log

(
|ΣZ |

|ΣZ + ΣAU |

))
(7.53)

= 1
2tr

(
Σ−1

Z ΣAU

)
+ 1

2 log
 |ΣZ |

|ΣZ |
∣∣∣I + Σ−1

Z ΣAU

∣∣∣
 (7.54)

= 1
2
(
tr
(
Σ−1

Z ΣAU

)
− log

∣∣∣I + Σ−1
Z ΣAU

∣∣∣). (7.55)
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The secondary KL-divergence constraint is simplified to an equivalent definition

D (PV+AX ∥ PV) = 1
2
(
tr
(
Σ−1

V Σ̃AX

)
−log

∣∣∣I + Σ−1
V Σ̃AX

∣∣∣). (7.56)

In order to solve the optimisation problem the following Lagrangian is constructed

L = tr
((

FTPF − P + QX

)
Σ̃AX +

(
GTPG + QU

)
ΣAU

)
+λ1

2
(
tr
(
Σ−1

Z ΣAU

)
− log

∣∣∣I + Σ−1
Z ΣAU

∣∣∣− 2δ1
)

+λ2

2
(
tr
(
Σ−1

V Σ̃AX

)
− log

∣∣∣I + Σ−1
V Σ̃AX

∣∣∣− 2δ2
)
. (7.57)

In order to perform the derivatives of the Lagrangian seen in (7.57), the following Lemma

is introduced.

Lemma 19. The derivative of

f (A) = tr (BA) + α
(
tr
(
C−1A

)
− log

∣∣∣I + C−1A
∣∣∣− β

)
, (7.58)

with respect to the matrix A ∈ Sn
+ is

∂f (A)
∂A

= B + BT + 2αC−1 − α
[
I + C−1A

]−1
C−1 − αC−1

[
I + C−1A

]−1

−I ⊙
[
B + αC−1 − α

[
I + C−1A

]−1
C−1

]
, (7.59)

where ⊙ is the Hadamard product and I ⊙ (·) = diag(·).

Proof. The proof is moved to Appendix E.3.

As a result of Lemma 19, the first derivatives of the Lagrangian are

∂L

∂ΣAU

=
(
GTPG + QU

)
+
(
GTPG + QU

)T
+ λ1Σ−1

Z

−λ1

2
[
I + Σ−1

Z ΣAU

]−1
Σ−1

Z − λ1

2 Σ−1
Z

[
I + Σ−1

Z ΣAU

]−1

−I ⊙
[(

GTPG + QU

)
+ λ1

2 Σ−1
Z − λ1

2
[
I + Σ−1

Z ΣAU

]−1
Σ−1

Z

]
, (7.60)
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for the derivative with respect to the actuation covariance derivative and

∂L

∂Σ̃AX

=
(
FTPF − P + QX

)
+
(
FTPF − P + QX

)T
+ λ2Σ−1

V

−λ2

2
[
I + Σ−1

V Σ̃AX

]−1
Σ−1

V − λ2

2 Σ−1
V

[
I + Σ−1

V Σ̃AX

]−1

−I ⊙
[(

FTPF − P + QX

)
+ λ2

2 Σ−1
V − λ2

2
[
I + Σ−1

V Σ̃AX

]−1
Σ−1

V

]
, (7.61)

for the derivative with respect to the sensory covariance matrix attack. Next the attacker

must set these derivatives equal to 0 and solve for each respective variable. Although (7.60)

and (7.61) look complicated, the process of solving them is simplified using the following

lemma.

Lemma 20. It is to be shown that solving

0= B + BT + 2αC−1 − α
[
I + C−1A

]−1
C−1 − αC−1

[
I + C−1A

]−1

−I ⊙
[
B + αC−1 − α

[
I + C−1A

]−1
C−1

]
, (7.62)

is equivalent to solving

2B + 2αC−1 − 2α
[
I + C−1A

]−1
C−1 = 0. (7.63)

Proof. The proof is moved to Appendix E.4.

Through use of Lemma 20 (7.60) is rearranged to give

2
λ1

(
GTPG + QU

)
+ Σ−1

Z =
[
I + Σ−1

Z ΣAU

]−1
Σ−1

Z (7.64)

2
λ1

(
GTPG + QU

)
+ Σ−1

Z =
[
Σ−1

Z

(
ΣZ + ΣAU

)]−1
Σ−1

Z (7.65)

= [ΣZ + ΣAU ]−1 ΣZ Σ−1
Z (7.66)

= [ΣZ + ΣAU ]−1 . (7.67)
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Solving the above for ΣAU gives

I =
[ 2
λ1

(
GTPG + QU

)
+ Σ−1

Z

]
[ΣZ + ΣAU ] (7.68)

ΣAU =
[ 2
λ1

(
GTPG + QU

)
+ Σ−1

Z

]−1
− ΣZ (7.69)

ΣAU =
[ 2
λ1

∆P U + Σ−1
Z

]−1
− ΣZ (7.70)

ΣAU = ΣZ

[ 2
λ1

∆P U ΣZ + I
]−1

− ΣZ , (7.71)

where ∆P U = GTPG + QU . Following a similar procedure for (7.61) yields

2
λ2

(
FTPF − P + QX

)
+ Σ−1

V =
[
I + Σ−1

V Σ̃AX

]−1
Σ−1

V (7.72)

2
λ2

(
FTPF − P + QX

)
+ Σ−1

V =
[(

Σ−1
V

)(
ΣV + Σ̃AX

)]−1
Σ−1

V (7.73)

=
[
ΣV + Σ̃AX

]−1
ΣV Σ−1

V (7.74)

=
[
ΣV + Σ̃AX

]−1
. (7.75)

Solving for Σ̃AX gives

I =
[ 2
λ2

(
FTPF − P + QX

)
+ Σ−1

V

] [
ΣV + Σ̃AX

]
(7.76)

Σ̃AX =
[ 2
λ2

(
FTPF − P + QX

)
+ Σ−1

V

]−1
− ΣV (7.77)

Σ̃AX =
[ 2
λ2

∆P X + Σ−1
V

]−1
− ΣV , (7.78)

where ∆P X =
(
FTPF − P + QX

)
. This gives the solution of the first two derivatives

of (7.57). Performing the derivative of (7.57) with respect to each of the variables, λ1

and λ2, gives

∂L

∂λ1
= 1

2tr
(
Σ−1

Z ΣAU

)
− 1

2 log
(∣∣∣I + Σ−1

Z ΣAU

∣∣∣)− δ1, (7.79)
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and

∂L

∂λ2
= 1

2tr
(
Σ−1

V Σ̃AX

)
− 1

2 log
(∣∣∣I + Σ−1

V Σ̃AX

∣∣∣)− δ2, (7.80)

respectively. Note that the derivatives of the Lagrangian in (7.57) with respect to the λi

variables only depends on the KL-divergence constraint. This is to be expected as these

are the constraints of the Lagrangian. Initially, (7.79) is to be solved and then the solution

of (7.80) follows trivially due to the similarities between them. Setting the derivative

of (7.79) equal to 0 yields

δ1 = 1
2tr

(
Σ−1

Z

(
ΣZ

[ 2
λ1

∆P U ΣZ + I
]−1

− ΣZ

))

−1
2 log

∣∣∣∣∣I + Σ−1
Z

(
ΣZ

[ 2
λ1

∆P U ΣZ + I
]−1

− ΣZ

)∣∣∣∣∣, (7.81)

δ1 + m

2 = 1
2tr

([ 2
λ1

∆P U ΣZ + I
]−1)

− 1
2 log

∣∣∣∣∣
[ 2
λ1

∆P U ΣZ + I
]−1∣∣∣∣∣ . (7.82)

With all λ1 terms grouped onto one side it allows further simplification. Taking exponentials

of both sides yields

e2δ1+m = e

[
tr

([
2

λ1
∆P U ΣZ+I

]−1
)

−log

∣∣∣∣∣[ 2
λ1

∆P U ΣZ+I
]−1
∣∣∣∣∣
]
, (7.83)

e2δ1+m =
∣∣∣∣[ 2
λ1

∆P U ΣZ + I
]∣∣∣∣ etr

([
2

λ1
∆P U ΣZ+I

]−1
)
. (7.84)

Through use of [30, 10.62] the exponential on the right hand side of the above is lower

bounded as follows

∣∣∣∣ 2
λ1

∆P U ΣZ + I
∣∣∣∣ etr

([
2

λ1
∆P U ΣZ+I

]−1
)

≥
∣∣∣∣ 2
λ1

∆P U ΣZ + I
∣∣∣∣
∣∣∣ 2

λ1
∆P U ΣZ + 2I

∣∣∣∣∣∣ 2
λ1

∆P U ΣZ + I
∣∣∣ (7.85)

∣∣∣∣ 2
λ1

∆P U ΣZ + I
∣∣∣∣ etr

([
2

λ1
∆P U ΣZ+I

]−1
)

≥
∣∣∣∣ 2
λ1

∆P U ΣZ + 2I
∣∣∣∣ ≥

∣∣∣∣ 2
λ1

∆P U ΣZ

∣∣∣∣+ ∣∣∣2I
∣∣∣, (7.86)
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where in (7.86) the lower bound [30, 10.59(c)] is used to lower bound the determinant sum.

Therefore, (7.84) is rearranged to give,

e2δ1+m ≥
∣∣∣∣ 2
λ1

∆P U ΣZ

∣∣∣∣+ ∣∣∣2I
∣∣∣ (7.87)∣∣∣Σ−1

Z

∣∣∣ e2δ1+m −
∣∣∣2Σ−1

Z

∣∣∣≥ ∣∣∣∣ 2
λ1

∆P U
∣∣∣∣ (7.88)∣∣∣∣Σ−1

Z ∆P −1
∣∣∣∣ (e2δ1+m − 2m

)
≥
∣∣∣∣ 2
λ1

I
∣∣∣∣ (7.89)

m

√∣∣∣∣Σ−1
Z ∆P U−1

∣∣∣∣ (e2δ1+m − 2m) ≥ 2
λ1
. (7.90)

Note that (7.79) and (7.80) are equivalent with a substitution of variables. Therefore, the

bound on λ2 is

m

√∣∣∣∣Σ−1
V ∆P X−1

∣∣∣∣ (e2δ2+m − 2m) ≥ 2
λ2
. (7.91)

Substituting the bound in (7.90) for 2
λ1

back into the critical points of ΣAU , namely (7.71),

gives the following bound for the optimal stealthy attack

ΣAU = ΣZ

[ 2
λ1

∆P U ΣZ + I
]−1

− ΣZ (7.92)

ΣAU≥ΣZ

[
m

√∣∣∣∣Σ−1
Z ∆P U−1

∣∣∣∣ (e2δ1+m − 2m)∆P U ΣZ + I
]−1

− ΣZ . (7.93)

This gives a lower bound on the optimal attack strategy for the actuator attack communi-

cation channel. Similarly, for the sensory communication channel the lower bound on the

optimal attack is

Σ̃AX ≥ ΣV

[
m

√∣∣∣∣Σ−1
V ∆P X−1

∣∣∣∣ (e2δ1+m − 2m)∆P X ΣV + I
]−1

− ΣV . (7.94)

The inequalities (7.93) and (7.94) are lower bounds on the attack strategy for the

actuation and the sensory communication channel for a multidimensional Gaussian data

injection attack, respectively. As seen in (7.93) and (7.94) there is a separation between
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the optimal attack on each communication channel. Specifically, due to the disconnect

between optimal attacks, the optimisation of each attack can be considered separately.

So, an attacker that only has access to a single communication channel employs the same

attack strategy on a given communication channel as an attacker with access to both

communication channels.

7.4.1 Single actuator System

As mentioned above, the lower bound presented is for a multidimensional Gaussian data

injection attack with m actuators and q sensors. If, however, the system is reduced

to a single actuator, or sensor, the optimal attack construction, for each respective

communication channel, is able to be solved exactly. The reduction of the system is

such that Uk ∈ R, and m = 1 for the optimal solution for the actuation communication

channel attack. The reduction of the system for the sensory communication channel

attack is such that Yk ∈ R, and q = 1 for the optimal solution. Note that, due to

the separation between the attacks, the optimal attack for each communication channel

is still be solved separately. Specifically, a system with a single actuator but multiple

states is able to have the exact solution for the actuator communication channel attack

whilst simultaneously being applicable for the multidimensional attack lower bound on

the sensory communication channel. To that end the optimal attack solution for both

communication channels is derived for scalar communication channels and the mix and

match, nature of the attacks developed follows. The derivation of the optimal attack

solution for the scalar actuation communication channel is identical to the derived bound

until (7.84). Therefore, beginning with (7.84) we have that

e2δ1+m =
∣∣∣∣[ 2
λ1

∆P U ΣZ + I
]∣∣∣∣ etr

([
2

λ1
∆P U ΣZ+I

]−1
)
, (7.95)

e2δ1+1 =
( 2
λ1

∆P U ΣZ + 1
)
e

(
2

λ1
∆P U ΣZ+1

)−1

, (7.96)

− 1
e2δ1+1 = −

( 2
λ1

∆P U ΣZ + 1
)−1

e
−
(

2
λ1

∆P U ΣZ+1
)−1

. (7.97)
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At this stage, the right hand side is of the form xex. Therefore, (7.97) is simplified through

use of the Lambert W-function [62]. Applying this function to both sides yields

− 1
e2δ1+1 = −

( 2
λ1

∆P U ΣZ + 1
)−1

e
−
(

2
λ1

∆P U ΣZ+1
)−1

(7.98)

W
(

− 1
e2δ1+1

)
= −

( 2
λ1

∆P U ΣZ + 1
)−1
, (7.99)

where W−1(·) is the −1 branch of the Lambert W-function and is defined as the inverse

function of y = xex, as seen in [62, Sec. 2]. Re-arranging this gives

− 1
W−1

(
− 1

e2δ1+1

) = 2
λ1

∆P U ΣZ + 1 (7.100)

− 1
∆P U ΣZ

− 1
∆P U ΣZ W−1

(
− 1

e2δ1+1

) = 2
λ1

(7.101)

Substituting this solution back into the stationary point, as seen in (7.71), yields

ΣAU = ΣZ

( 2
λ1

∆P U ΣZ + 1
)−1

− ΣZ (7.102)

ΣAU = ΣZ

− 1
W−1

(
− 1

e2δ1+1

)
−1

− ΣZ (7.103)

ΣAU = −ΣZ W−1

(
− 1
e2δ1+1

)
− ΣZ . (7.104)

As before, performing the same process for the sensory communication channel

with Yk ∈ R and q = 1 yields the optimal sensory communication channel data injection

attack solution

Σ̃AX = −ΣV W−1

(
− 1
e2δ2+1

)
− ΣV . (7.105)

Note that, if δi is set to 0 then the optimal attack in this scenario is to construct a

covariance matrix that is the zero matrix. Meaning that with δi set to 0 the optimal attack

is to perform no attack, or put another way, no stealthy attack exists. This is as to be
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Fig. 7.5 Attack implementation on communication channels implemented in a control
system, where there is no transmission of the variable Ũk over an auxiliary communication
channel.

expected due to the nature of the KL-divergence. Due to the separation between the two

attack constructions in each respective communication channel, any combination of these

attack constructions are applicable for the corresponding system. Namely, a system with

a single actuator but multiple sensors can employ the optimal solution on the actuation

channel while utilising the sensory channel bound for the optimal data injection attack

and vice-versa.

7.5 Attack Construction Without an Auxiliary Chan-

nel

The attack construction must be re-worked for the scenario without the auxiliary communi-

cation channel. This section studies the effect of not employing an auxiliary communication

channel for estimation. Specifically, this section informs the operator of the increased

damage an attack can cause through not monitoring the actuation communication channel.

Note that in this case there is no auxiliary communication channel, and therefore, the

attacker once again can perform no attack without being instantly detected. This can be

thought of again the operator setting δ3 = 0. However, the communication channel PN
BF |AF
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is a perfect erasure communication channel. Specifically, every channel output is the zero

vector, with probability 1, for every given channel input.

As before in order achieve their objective, the attacker injects two zero mean Gaussian

random variables. One into each of the communication channels. This is implemented as

seen in Fig. 7.5. Similarly to before, the attacker is constrained such that the attacked

communication channel statistics cannot drastically differ from the nominal communication

channel statistics. Specifically, this is modelled through use of the KL-divergence. With

the above laid out, it follows that the only difference in the system model from Section 7.3

is the choice of not utilising an auxiliary communication channel.

For the system with no auxiliary communication channel the optimisation function of

the attacker is expressed as

J∗
A = max

{QN
BC |AC ,QN

BP |AP }
{J∗} (7.106)

J∗
A = max

{QN
BC |AC ,QN

BP |AP }

{
min

PU0,...,UN |Y0,...,YN
∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨAT

k QU Ũ
A
k

]}}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 , and D (PV+AX ∥ PV) ≤ δ2. (7.107)

This is of the same form as (7.14) due to the fact that the objective of the attacker and

constraints remain the same, only the system structure has change. Specifically, what

each of the variables within (7.107) represent changes. The injected signals, as before,

are zero mean Gaussian variables AU
k ∈ Rm and AX

k ∈ Rq. The communication channels

considered are all AWGN communication channels, therefore, (7.107) is equivalent to

J∗
A = max

{Σ
AU ∈Sm

+ ,Σ
AX ∈Sn

+}

{
min

PU0,...,UN |Y0,...,YN
∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨAT

k QU Ũ
A
k

]}}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 , and D (PV+AX ∥ PV) ≤ δ2, (7.108)
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The system model remains as in (7.16), with the inclusion of the data injection attack

variables

Xk+1 = FXk + GŨA
k +Wk, (7.109a)

ŨA
k =Uk + Zk + AU

k , (7.109b)

Yk = HXk + Vk + AX
k . (7.109c)

As before, the state space system is equivalently represented as

Xk+1 = FXk + GUk + W̃A
k , (7.110)

W̃A
k = GEU

k + GAk +Wk. (7.111)

All new terms are additive Gaussian variables that are independent from all other random

variables within the Gauss-Markov model previously seen in (6.17).

The information sets defined in (7.19) require updating in order to account for the lack

of the auxiliary communication channel. These new information sets are similar to those

defined in (6.40). Indeed, they are defined as

PE
k =

{
Xk, A

P
k−1, B

P
k−1, Ũ

A
k−1P

E
k−1

}
, (7.112a)

PD
k =

{
BP

k , Yk−1, Uk−1,P
D
k−1

}
, (7.112b)

CE
k =

{
Yk, B

P
k , Uk, B

C
k−1, Ũ

A
k−1, CE

k−1

}
, (7.112c)

CD
k =

{
BC

k , Ũ
A
k−1, CD

k−1

}
. (7.112d)

Due to the fact that linear combinations of independent Gaussian variables are still a

Gaussian variables the previous results from Section 6.4.1 hold and the resultant cost of

the system is

J∗ = tr (PΣW ) + tr
((

FTPF − P + QX

)
ΣEXA

)
+ tr

((
GTPG + QU

)
ΣEUA

)
, (7.113)
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where, due to the presence of the attack, both of the communication channel error

covariances ΣEX and ΣEU , now depend on ΣAX and ΣAU . It should be noted that these

error covariances are not equivalent to those defined in Section 7.3, or any in Chapter 6

due to the lack of information about the variable ŨA
k and the inclusion of the attack. The

objective of the attacker is therefore recast as

J∗
A = max

{Σ
AU ∈Sm

+ ,Σ
AX ∈Sn

+}

{
tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEXA

)
+tr

((
GTPG + QU

)
ΣEUA

)}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 , and D (PV+AX ∥ PV)≤ δ2. (7.114)

If a similar methodology as before is followed it is revealed how the data injection attack

effects each of these error covariances, and therefore, the cost. Namely, in the below we

show that the above error covariances are able to be split into the nominal cost terms plus

the additional induced attack cost. Due to the lack of information about the actuation

communication channel realisation it is seen that much like in the control case the cost is

strictly increases by not monitoring the actuation communication channel. To that end,

the error terms in each communication channel are defined as

EXA

k

(
PD

k

)
=Xk − X̂k

(
PD

k

)
, (7.115a)

EUA

k = ŨA
k − Uk, (7.115b)

=EU
k + AU

k . (7.115c)

The actuation communication channel error is equivalent to the actuation error in Sec-

tion 7.3. The cost increase by not employing an auxiliary communication channel comes

directly from the sensory communication channel error. This is similar to that seen in
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Section 6.5. To that end the predicted state estimate of the system is defined as

X̂k+1
(
PD

k

)
=E

[
Xk+1

∣∣∣PD
k

]
(7.116)

=E
[
FXk + GŨA

k +Wk

∣∣∣PD
k

]
(7.117)

=E
[
F
(
X̂k

(
PD

k

)
+ EXA

k

(
PD

k

))
+ G

(
Uk + EU

k + AU
k

)
+Wk

∣∣∣PD
k

]
(7.118)

= FX̂k

(
PD

k

)
+ GUk + E

[
FEXA

k

(
PD

k

)
+ G

(
Zk + AU

k

)
+Wk

∣∣∣PD
k

]
(7.119)

= FX̂k

(
PD

k

)
+ GUk +W

A
k

(
PD

k

)
, (7.120)

where

W
A
k

(
PD

k

)
= E

[
FEXA

k

(
PD

k

)
+ G

(
EU

k + AU
k

)
+Wk

∣∣∣PD
k

]
. (7.121)

Interestingly, the predicted state estimate is equivalent to the predicted state estimate for

the system with a perfect auxiliary communication channel even during an attack. It is

only when the error is updated that the differences are explicit. With that in mind we

once again recast the updated state estimation into a state space system model.

Theorem 23. The updated state estimate of the system under attack

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (7.122)

is equivalent to the state space system

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (7.123a)

Ŷk = X̂k

(
PD

k

)
, (7.123b)

where W
A

k

(
PD

k

)
is defined as

W
A

k

(
PD

k

)
= LkH

(
FEXA

k

(
PD

k

)
+ GEUA

k +Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
, (7.124)

and Lk is the optimal Kalman filter gain at time step k, as defined in Theorem 16.
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Proof. The proof is moved to Appendix E.5.

As seen in the previous section EU
k+1 is independent of all other random variables.

Additionally, the actuation communication channel attack variable AU
k+1 is defined as

independent of all other random variables. Therefore, the actuation error when under

attack, (7.115c), is independent of the predicted state estimation error and the plant noise.

This is the same as in Section 7.3. The predicted state estimation error is defined as

EXA

k+1

(
PD

k

)
=Xk+1 − X̂k+1

(
PD

k

)
(7.125)

= FXk + GUk + W̃A
k −

(
FX̂k

(
PD

k

)
+ GUk +W

A
k

(
PD

k

))
(7.126)

= FEXA

k

(
PD

k

)
+ GAU

k + W̃k −W
A
k

(
PD

k

)
(7.127)

= F
(
EXA

k

(
PD

k

)
− E

[
EXA

k

(
PD

k

)∣∣∣PD
k

])
+ G

(
AU

k − E
[
AU

k

∣∣∣PD
k

])
+Wk

+G
(
EU

k − E
[
EU

k

∣∣∣PD
k

])
(7.128)

= FEXA

k

(
PD

k

)
+ GAU

k + GEU
k +Wk. (7.129)

Note that the actuation communication channel attack only effects the predicted state error.

This is due to the fact that this data injection attack actually enters the system whereas

the sensory communication channel attack only effects the measurements of the states.

However, without the auxiliary communication channel this estimation error propagates

through to the updated state estimation error. With that in mind the updated state

estimate is

EXA

k+1

(
PD

k+1

)
=Xk+1 − X̂k+1

(
PD

k+1

)
(7.130)

= FXk + GUk + W̃A
k −

(
FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

))
(7.131)

= FEXA

k

(
PD

k

)
+ W̃A

k −W
A

k

(
PD

k

)
(7.132)

= FEXA

k

(
PD

k

)
+ GAU

k + GEU
k +Wk − LkH

(
FEXA

k

(
PD

k

)
+ GEUA

k +Wk

)
−Lk

(
Vk+1 + AX

k+1

)
(7.133)

= L̃k

(
FEXA

k

(
PD

k

)
+ GAU

k + GEU
k +Wk

)
− Lk

(
AX

k+1 + Vk+1
)
. (7.134)
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It is evident from (7.134) and (7.115c) that the error terms include the relevant attack

variable within each error term. In fact, the updated state estimate error includes both

attack variables. As seen in (7.114), the cost induced by the optimal attack depends on

the covariances of both of the communication channels. Given that the error terms both

depend on the attack variables the error covariances undoubtedly also depend on the

attack variable statistics. To that end the covariance of the actuation communication

channel is

Σ
EUA

k+1
=E

[
EUA

k+1E
UA

k+1
T
|PD

k

]
(7.135)

=E
[(
EU

k+1 + AU
k+1

) (
EU

k+1 + AU
k+1

)T
|PD

k

]
(7.136)

=E
[
EU

k+1E
U
k+1

T + AU
k+1A

U
k+1

T| CD
k

]
(7.137)

= ΣEU + ΣAU . (7.138)

As before, the error covariance of the actuation communication channel is a constant, and

therefore

Σ
EUA

k+1(PD
k ) = Σ

EUA
k (PD

k ) = ΣEUA = ΣEU + ΣAU . (7.139)

Following a similar process for the updated state estimation error covariance

Σ
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k+1(PD
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[
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(
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)T
EXA
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(
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]
(7.140)

=E
[(
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+Lk

(
AX

k+1A
X
k+1

T + Vk+1V
T

k+1

)
LT

k

∣∣∣PD
k

]
= L̃k

(
FΣ

EXA
k (PD

k )F
T + G (ΣEU + ΣAU ) GT + ΣW

)
L̃T

k (7.142)

+Lk (ΣAX + ΣV ) LT
k . (7.143)
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As in [71] it is assumed that the error covariance ΣEX
k

converges to the value Σ̃EX . The

limit value of the state error covariance is defined as the steady state solution to (7.143)

when the Kalman filter gain has converged to the value L. Namely, it is defined as

ΣEXA = L̃
(
FΣEXA FT + G (ΣEU + ΣAU ) GT + ΣW

)
L̃T + L (ΣAX + ΣV ) LT. (7.144)

Additionally, (7.144) is equivalent to

ΣEXA = ΣEX + f∞ (ΣAU ) + g∞ (ΣAX ) , (7.145)

where the functions are as defined in (6.98) and (7.43), respectively. Additionally, ΣEX

is the limit value of the nominal system error, as seen in (D.23). We denote these limit

vales as Σ̃AU = f∞ (ΣAU ) and Σ̃AX = g∞ (ΣAU ). These variables are wholly characterised

by their respective covariance matrices ΣAU and ΣAX . Revisiting the system cost, (7.114),

it is known that

J∗
A = max

{Σ
AU ∈Sm

+ ,Σ
AX ∈Sn

+}

{
tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEXA

)
+tr

((
GTPG + QU

)
ΣEUA

)}
(7.146)

= max
{Σ

AU ∈Sm
+ ,Σ

AX ∈Sn
+}

{
tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEXA

)
+tr

((
GTPG + QU

)
ΣEU

)
+ tr

((
GTPG + QU

)
ΣAU

)}
(7.147)

= max
{Σ

AU ∈Sm
+ ,Σ

AX ∈Sn
+}

{
tr (PΣW ) + tr

((
FTPF − P + QX

)
ΣEX

)
+tr

((
GTPG + QU

)
ΣEU

)
+ tr

((
GTPG + QU

)
ΣAU

)
+tr

((
FTPF − P + QX

)(
Σ̃AX + Σ̃AU

))}
. (7.148)

The above optimal control cost whilst under attack is represented as the attacked optimal

control seen within Section 7.3 plus an additional term that depends on the covariance of AU
k .

This additional term is a direct result of not monitoring the actuation communication

channel. This additional term is the error induced into the updated state estimate by not

monitoring the actuation communication channel. Specifically, the operator is not able to
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know exactly which input has entered the plant and therefore necessarily has an additional

error in their updated state estimate. The optimisation of the attacker has been reduced

to computing the optimisation problem

max
{Σ

AU ∈Sm
+ ,Σ

AX ∈Sn
+}

{
tr
((

FTPF − P + QX

)(
Σ̃AU + Σ̃AX

)
+
(
GTPG + QU

)
ΣAU

)}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 and D (PV+AX ∥ PV) ≤ δ2. (7.149)

Note that all of the terms within the maximisation are either positive or non-negative

definite. In the following section we provide analytic bounds for the solution of this

optimisation problem and provide the exact solution in a simplified system setting.

7.6 Attack Analysis with no Auxiliary Channel

The optimal attack for the system lacking an auxiliary communication channel is different

from the result derived within Section 7.4. This is seen through the fact that the induced

cost depends on an additional parameter, namely, Σ̃AU . The detection constraints however,

remain the same as before. The simplified KL Divergence constraints are restated for ease

of reading

D (PZ+AU ∥ PZ) = 1
2
(
tr
(
Σ−1

Z ΣAU

)
− log

∣∣∣I + Σ−1
Z ΣAU

∣∣∣) , (7.150a)

D (PV+AX ∥ PV) = 1
2
(
tr
(
Σ−1

V Σ̃AX

)
− log

∣∣∣I + Σ−1
V Σ̃AX

∣∣∣) . (7.150b)

With the above constraints stated, it allows for the definition of the Lagrangian that

corresponds to the system with no auxiliary communication channel. This is defined as

L = tr
((

FTPF − P + QX

)(
Σ̃AX + Σ̃AU

)
+
(
GTPG + QU

)
ΣAU

)
+λ1

2
(
tr
(
Σ−1

Z ΣAU

)
− log

∣∣∣I + Σ−1
Z ΣAU

∣∣∣− 2δ1
)

+λ2

2
(
tr
(
Σ−1

V Σ̃AX

)
− log

∣∣∣I + Σ−1
V Σ̃AX

∣∣∣− 2δ2
)
. (7.151)
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Utilising the substitutions from the previous analysis section highlights where the differences

between these two attack strategies arise

L = tr
(
∆P X Σ̃AX + ∆P U ΣAU + ∆P X Σ̃AU

)
+ λ1

2
(
tr
(
Σ−1

Z ΣAU

)
− log

∣∣∣I + Σ−1
Z ΣAU

∣∣∣− 2δ1
)

+λ2

2
(
tr
(
Σ−1

V Σ̃AX

)
− log

∣∣∣I + Σ−1
V Σ̃AX

∣∣∣− 2δ2
)
. (7.152)

In the above the differences arise from the additional ∆P X Σ̃AU term. Due to the fact that

there are no changes to the KL divergence constraints, or indeed any change to the terms

that depends on Σ̃AX , three derivatives remain the same. Specifically, the two derivatives

of (7.152) with respect to each of the variables λ1 and λ2 defined as

∂L

∂λ1
= 1

2tr
(
Σ−1

Z ΣAU

)
− 1

2 log
(∣∣∣I + Σ−1

Z ΣAU

∣∣∣)− δ1, (7.153)

and

∂L

∂λ2
= 1

2tr
(
Σ−1

V Σ̃AX

)
− 1

2 log
(∣∣∣I + Σ−1

V Σ̃AX

∣∣∣)− δ2, (7.154)

respectively. Additionally, the Lagrangian derivative with respect to the attack statis-

tic Σ̃AX remains as

Σ̃AX =
[ 2
λ2

∆P X + Σ−1
V

]−1
− ΣV , (7.155)

when this derivative of the Lagrangian is set equal to 0 and rearranged. Furthermore,

due to the separation between the attack construction for each communication channel

the attack strategy on the sensory communication channel remains as seen in Section 7.4.

Namely, the lower bound on the sensory communication channel remains as

Σ̃AX ≥ ΣV

[
m

√∣∣∣∣Σ−1
V ∆P X−1

∣∣∣∣ (e2δ1+m − 2m)∆P X ΣV + I
]−1

− ΣV , (7.156)
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and the optimal solution of the system with a scalar Yk is

Σ̃AX = −ΣV W−1

(
− 1
e2δ2+1

)
− ΣV . (7.157)

With the above results given all that remains is the derivation of the optimal attack for

the actuation channel. The first thing to be tackled is the derivative of the Lagrangian

with respect to ΣAU . With that in mind, from Lemma 19 all of the functions derivatives

are known other that the term tr
(
∆P X Σ̃AU

)
. Specifically, the derivative is

∂L

∂ΣAU

= 2∆P U + λ1Σ−1
Z − λ1

[
I + Σ−1

Z ΣAU

]−1
Σ−1

Z +
∂tr

(
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)
ΣAU
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[
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2 Σ−1
Z − λ1

2
[
I + Σ−1

Z ΣAU

]−1
Σ−1

Z

]
, (7.158)

Naturally, this derivative is non-trivial due to the fact that Σ̃AU is a function of ΣAU .

However, it should be noted that all terms within Σ̃AU are linear in ΣAU . This allows for

the following transformation

tr
(
AΣ̃AU

)
= tr (Af∞ (ΣAU )) (7.159)

= tr
(

A
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i=0

(
L̃∞−iF

)i
L̃∞−iGΣAU GTL̃T
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)iT
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(7.160)

= tr
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)i
L̃∞−iGΣAU GTL̃T

∞−i
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(7.161)

= tr
( ∞∑

i=0
GTL̃T

∞−i

(
L̃∞−iF

)iT

A
(
L̃∞−iF

)i
L̃∞−iGΣAU

)
(7.162)

= tr (h∞ (A) ΣAU ) , (7.163)

where we slightly abuse notation to use ∞ to represent the time step at which the func-

tion hk (ΣAU ) has converged to steady state. From the above definition the function hk (A)

is defined as

hk (A) =
k∑

i=0
GTL̃T

k−i

(
L̃k−iF

)iT

A
(
L̃k−iF

)i
L̃k−iG, (7.164)
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and is the mapping hk (A) : Mn → Mm. Note that this summation is symmetric. With

the transformation shown in (7.163) the derivative in (7.158) becomes

∂L

∂ΣAU

= 2∆P U + λ1Σ−1
Z − λ1

[
I + Σ−1

Z ΣAU

]−1
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Z +
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2
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]−1
Σ−1

Z

]
, (7.165)

= 2∆P U + λ1Σ−1
Z − λ1

[
I + Σ−1

Z ΣAU

]−1
Σ−1

Z + 2h∞
(
∆P X

)
−I ⊙

[
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(
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)
+ λ1

2 Σ−1
Z − λ1

2
[
I + Σ−1

Z ΣAU

]−1
Σ−1

Z

]
. (7.166)

As in the previous case the above is able to be simplified through use of Lemma 20. In

doing so this yields

2
λ1

(
∆P U + h∞

(
∆P X

))
+ Σ−1

Z =
[
I + Σ−1

Z ΣAU

]−1
Σ−1

Z (7.167)

2
λ1

(
∆P U + h∞

(
∆P X

))
+ Σ−1

Z =
[(

Σ−1
Z

)(
ΣZ + ΣAU

)]−1
Σ−1

Z , (7.168)

= [ΣZ + ΣAU ]−1 ΣZΣ−1
Z (7.169)

= [ΣZ + ΣAU ]−1 . (7.170)

Solving the above for ΣAU gives

I =
[ 2
λ1

(
∆P U + h∞

(
∆P X

))
+ Σ−1

Z

]
[ΣZ + ΣAU ] , (7.171)

ΣAU =
[ 2
λ1

(
∆P U + h∞

(
∆P X

))
+ Σ−1

Z

]−1
− ΣZ , (7.172)

ΣAU =
[ 2
λ1

(
∆P U + h∞

(
∆P X

))
+ Σ−1

Z

]−1
− ΣZ , (7.173)

ΣAU = ΣZ

[ 2
λ1

(
∆P U + h∞

(
∆P X

))
ΣZ + I

]−1
− ΣZ , (7.174)

Note that the above solution is identical to the solution in (7.71) with the substitution

of ∆P U for the sum ∆P U + h∞
(
∆P X

)
. Therefore, with that in mind, the previous

results follow trivially. Namely, the lower bound on the optimal attack for the actuation
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communication channel becomes

ΣAU ≥ ΣZ

[
m

√∣∣∣Σ−1
Z

(
∆P U + h∞

(
∆P X

))∣∣∣(e2δ1+m − 2m)
(
∆P U + h∞

(
∆P X

))
ΣZ + I

]−1

−ΣZ. (7.175)

Similarly, the optimal solution for a system with a single actuator is

ΣAU = −ΣZ W−1

(
− 1
e2δ1+1

)
− ΣZ . (7.176)

Note that due to the replacement of ∆P U with the sum ∆P U +h∞
(
∆P X

)
the covariance is

scaled with terms relating to both of the commination channels which necessarily creates

a difference in attack structure for all h∞
(
∆P X

)
≠ 0. From the quadratic nature of

the function h∞ (·) and the structure of ∆P X we expect this term to be strictly positive

for most use cases. Additionally, the solution with a single actuator is identical to the

previous solution, as seen in (7.104). This shows that the optimal attack strategy is

independent of the system structure, and only depends on the communication channel

statistics, namely, ΣZ . However, as seen in (7.175), the lower bound is changed.

One important point should be made here. Although the optimal attacks for each

system structure are identical, the induced costs are not. This is due to the fact that the

system with no auxiliary communication channel has an additional cost term associated

with the attack variable that is non-negative definite. Meaning that for any non-zero

attack variable the cost increase caused by the attack will be strictly grater than the cost

of the system with a perfect auxiliary communication channel. Note that this statement

holds irrespective of any cost differences prior to the attack implementation. Namely, it is

already known that, from Theorem 18, the system without an auxiliary communication

channel has a higher optimal cost under nominal conditions. In addition to this higher

nominal operating cost, the system without an auxiliary communication channel has a

cost function that is more sensitive to data injection attacks. This effect increases the cost

associated with no auxiliary communication channel even further. Therefore, the presence
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Fig. 7.6 Attack implementation on all communication channels implemented in a control
system, where there is transmission of the variable Ũk over imperfect auxiliary communi-
cation channel.

of an auxiliary communication channel not only reduces the control cost, but also acts as

an attack mitigation tool. The following section discusses the attack construction for a

system with an imperfect auxiliary communication channel.

7.7 Attack Construction with an Imperfect Auxiliary

Channel

As is seen from Theorem 17 the effect of noise in the actuation communication channel

is removed from the state estimate even with an imperfect auxiliary communication

channel. This is achieved at the cost of introducing an additional error from the imperfect

auxiliary communication channel. However, the introduction of an additional imperfect

communication channel allows the possibility of another attack vector for the attacker.

We denote this new attack vector AA
k and is once again an additive IID Gaussian variable

with mean 0 and covariance ΣAA . This is depicted in Fig.7.6.

Due to the introduction of the additional attack vector the information sets require

redefinition. The information sets of the system with an imperfect auxiliary communication
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channel while under attack is defined as

PE
k =

{
Xk, A

P
k−1, B

P
k−1, Ũ

A
k−1,P

E
k−1

}
, (7.177a)

PD
k =

{
BP

k , Yk−1, Uk−1,
˜̃
U

A

k−1,P
D
k−1

}
, (7.177b)

CE
k =

{
Yk, B

P
k , Uk, A

C
k−1, B

C
k−1,

˜̃
U

A

k−1, CE
k−1

}
, (7.177c)

CD
k =

{
BC

k , Ũ
A
k−1, CD

k−1

}
, (7.177d)

where ˜̃
U

A

k is the random variable at the output of the imperfect auxiliary communication

channel under attack. Due to the inclusion of Uk within PD
k there is still separation of

optimal control and estimation for the operator.

7.7.1 Optimal Control with Imperfect Auxiliary Channel while

under Attack

In order to assess the impact of the attack within the system, the expected value of a

LQG cost function is once again adopted. The LQG cost is defined as

J = lim sup
N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨAT

k QU Ũ
A
k

]
. (7.178)

Once again the cost function includes the variable ŨA
k and not the uncorrupted input

signal Uk or the variable ˜̃
U

A

k . The optimal cost function for the operator of this system is

defined as

J∗ = min
PU0,...,UN |Y0,...,YN

∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨAT

k QU Ũ
A
k

]}
. (7.179)

From this point the attacker is able to define their objective. Namely the objective function

of the attacker is defined as

J∗
A = max

Σ
AX ,Σ

AU ,Σ
AA

{
min

PU0,...,UN |Y0,...,YN
∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨAT

k QU Ũ
A
k

]}}
. (7.180)
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Note the inclusion of the third attack variable ΣAA . As before, the operator minimisation

is first simplified before the attacker performs their maximisation. Which leads to the

following theorem.

Theorem 24. The updated state estimate

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (7.181)

is equivalent to the state space system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (7.182a)

Ŷk = X̂k

(
PD

k

)
, (7.182b)

where W k

(
PD

k

)
is defined as

W
A(

PD
k

)
= LkH

(
FEXA

k

(
PD

k

)
+ G

(
Tk + AA

k

)
+Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
. (7.183)

Proof. The proof is moved to Appendix E.6.

Proving that the process noise of the above state space system is uncorrelated is a

trivial extension of previous results. Specifically, because the process noise produced from

Theorem 17 is identical to the process noise within Lemma 17 with the addition of an IID

vectorial Gaussian variable. Therefore, all of the variables within (E.67) are uncorrelated.

Before proceeding with the optimal cost first the updated sensor error is defined

EXA

k+1

(
PD

k+1

)
=Xk+1 − X̂k+1

(
PD

k+1

)
= FXk + GUk + W̃A

k −
(

FX̂k

(
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k

)
+ GUk +W

A

k

(
PD

k

))
= FEX

k

(
PD

k

)
+ W̃A

k −W
A

k

(
PD

k

)
. (7.184)
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The optimal cost of the partially observed system is defined as

J∗
A = max

Σ
AX ,Σ

AU ,Σ
AA

{
min

PU0,...,UN |Y0,...,YN
∈U

{
lim sup

N→∞

1
N

E
[

N−1∑
k=0

XT
k QXXk + ŨAT

k QU Ũ
A
k

]}}

= max
Σ

AX ,Σ
AU ,Σ

AA

{
min

PU0,...,UN |Y0,...,YN
∈U

{
lim sup

N→∞

1
N

(
N∑

k=0
E
[
X̂T

k QXX̂k + UT
k QUUk

]
+E

[
EXA

k

(
PD

k

)
QXE

XA

k

(
PD

k

)]
+ E

[
EUA

k

T
QUE

UA

k

])}}
. (7.185)

The first term of (7.185) is of the correct form to invoke Theorem 14, with a change of

variables. Therefore, the optimal linear control law for the new control system is

U∗
k = −KX̂k

(
PD

k

)
, (7.186)

with associated optimal cost

tr
(
PΣ

W
A

)
, (7.187)

where the optimal gain is independent of the system, and K is defined as the optimal gain

matrix according to (6.5). It is assumed that the error covariances converge to the fixed

values. Specifically the time varying covariances,

Σ
EUA

k
=E

[
EUA

k+1
T
EUA

k+1

∣∣∣∣PD
k+1

]
(7.188)

= ΣZ + ΣAU = ΣEUA , (7.189)

Σ
EXA

k+1(PD
k+1)=E

[
EXA

k+1

(
PD

k+1

)T
EXA

k+1

(
PD

k+1

)∣∣∣∣PD
k+1

]
(7.190)

= L̃T
k

(
FTΣ

EXA
k (PD

k )F + GT (ΣT + ΣAA) G + ΣW

)
L̃k

+Lk (ΣV + ΣAX ) LT
k, (7.191)

are assumed to have converged to their solutions. Additionally, the Kalman filter gain Lk is

also assumed to have converged to its steady state value L. These steady state covariance
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matrices are defined such that

ΣEUA = ΣEUA = ΣAU + ΣZ , (7.192)

ΣEXA = L̃T
(
FTΣEXA F + GT (ΣT + ΣAA) G + ΣW

)
L̃ + L (ΣV + ΣAX ) LT. (7.193)

The above covariances are able to be split into additive terms that separate the covariance

of the nominal system error from the additional induced attack error is

ΣEXA = L̃T
(
FTΣEX F + GTΣT G + ΣW

)
L̃ + LΣV LT + g∞ (ΣAX )

+f∞ (ΣAA) , (7.194)

ΣEXA = ΣEX + g∞ (ΣAX ) + f∞ (ΣAA), (7.195)

where,fk (A) and gk (A) are defined in (6.98) and (7.43), respectively. We define the

following matrices

Σ̃AX = g∞ (ΣAX ) , (7.196)

Σ̃AA = f∞ (ΣAA) . (7.197)

Naturally, the statistics of the variables Σ̃AX and Σ̃AX are wholly determined by the attack

statistics ΣAX and ΣAX , respectively. Under the assumption that all of the covariances
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have converged, the optimal system cost is written as

J∗ = tr
(
PΣ

W
A

)
+ tr

(
QXΣEXA

)
+ tr

(
QUΣEAU

)
(7.198)

= tr
(

PE
[
W

A

k W
AT
k

])
+ tr

(
QXΣEXA

)
+ tr

(
QUΣEUA

)
(7.199)

= tr
(

PE
[(

FEXA

k

(
PD

k

)
+ W̃A

k − EXA

k+1

(
PD

k+1

)) (
FEXA

k

(
PD

k

)
+ W̃A

k − EXA

k+1

(
PD

k+1

))T
])

+tr
(
QXΣEXA

)
+ tr

(
QUΣEUA

)
(7.200)

= tr
(
P
(
FΣEXA FT + GΣEUA GT + ΣW − ΣEXA

))
+ tr

(
QXΣEXA

)
+tr

(
QUΣEUA

)
(7.201)

= tr (PΣW ) + tr
((

FTPF − P + QX

)
ΣEXA

)
+tr

((
GTPG + QU

)
ΣEUA

)
(7.202)

= tr (PΣW ) + tr
((

FTPF − P + QX

) (
ΣEX + Σ̃AX + Σ̃AA

))
+tr

((
GTPG + QU

)
(ΣEU + ΣAU )

)
(7.203)

= tr (PΣW ) + tr
((

FTPF − P + QX

)
ΣEX

)
+ tr

((
GTPG + QU

)
ΣZ

)
+tr

((
GTPG + QU

)
ΣAU

)
+ tr

((
FTPF − P + QX

) (
Σ̃AX + Σ̃AA

))
, (7.204)

where in line (7.200) the relation (7.184) is substituted for W
A

k . It is seen in (7.204) that

the cost function for a system operating over a noisy auxiliary communication channel

while experiencing a data injection attack is split into five additive terms. As before,

these terms correspond to the cost of optimal control, communication over the sensory

communication channel, communication over the actuation communication channel, the

induced cost of attack in the actuation communication channel, and the cost of the attack

in the sensory communication channel and the auxiliary communication channel.

The above optimal control cost whilst under attack is represented as the optimal control

cost with an imperfect auxiliary communication communication channel, plus terms that

depend on the covariance of the attack variables. Specifically, the matrices ΣAU , Σ̃AA ,

and Σ̃AX . Which leads to the following theorem.
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Theorem 25. For the system in Theorem 24 the cost increase under attack is given by

max
{Σ

AU ,Σ
AX ,Σ

AA }

{
tr
((

FTPF − P + QX

)(
Σ̃AA + Σ̃AX

)
+
(
GTPG + QU

)
ΣAU

)}
,

s.t. D (PZ+AU ∥ PZ) ≤ δ1 , and D (PV+AX ∥ PV) ≤ δ2.

and D (PT+AA ∥ PT) ≤ δ3. (7.205)

7.8 Attack Analysis with an Imperfect Auxiliary Com-

munication Channel

As is seen in Section 7.7, the system cost depends on the covariance matrices ΣAU , Σ̃AA ,

and Σ̃AX . The KL-divergences are each simplified, as before, to yield the following

D (PZ+AU ∥ PZ) = 1
2
(
tr
(
Σ−1

Z ΣAU

)
− log

∣∣∣I + Σ−1
Z ΣAU

∣∣∣), (7.206)

D (PV+AX ∥ PV) = 1
2
(
tr
(
Σ−1

V Σ̃AX

)
−log

∣∣∣I + Σ−1
V Σ̃AX

∣∣∣), (7.207)

D (PT+AA ∥ PT) = 1
2
(
tr
(
Σ−1

T Σ̃AA

)
−log

∣∣∣I + Σ−1
T Σ̃AA

∣∣∣). (7.208)

From this the Lagrangian is constructed as

L = tr
((

FTPF − P + QX

)
Σ̃AX +

(
GTPG + QU

)
ΣAU

)
+λ1

2
(
tr
(
Σ−1

Z ΣAU

)
− log

∣∣∣I + Σ−1
Z ΣAU

∣∣∣− 2δ1
)

+λ2

2
(
tr
(
Σ−1

V Σ̃AX

)
− log

∣∣∣I + Σ−1
V Σ̃AX

∣∣∣− 2δ2
)

+λ3

2
(
tr
(
Σ−1

T Σ̃AA

)
− log

∣∣∣I + Σ−1
T Σ̃AA

∣∣∣− 2δ3
)
. (7.209)

Note the inclusion of the third constraint variable λ3. In order to perform the derivatives

of the Lagrangian seen in (7.209), Lemma 19 is utilised. Note that Lemma 19 is still valid

for the Lagrangian in (7.209), however, it does require the lemma to be invoked three

times as opposed to twice in the previous derivation. Additionally, it should be pointed
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out that the additional terms that within (7.209) do not depend on any of the other terms.

Therefore, the first derivative with respect to ΣAU and Σ̃AX remain unchanged from (7.60)

and (7.61), respectively. Namely, once these derivatives are set to zero and rearranged

they are

ΣAU = ΣZ

[ 2
λ1

∆P U ΣZ + I
]−1

− ΣZ , (7.210)

Σ̃AX =
[ 2
λ2

∆P X + Σ−1
V

]−1
− ΣV . (7.211)

This gives the solution of the first two derivatives of (7.209). The third derivative with

respect to Σ̃AA is calculated in the very same fashion, and therefore yields

Σ̃AA =
[ 2
λ3

∆P X + Σ−1
T

]−1
− ΣT . (7.212)

Similarly the derivatives with respect to each of the λi variables is defined as

∂L

∂λ1
= 1

2tr
(
Σ−1

Z ΣAU

)
− 1

2 log
(∣∣∣I + Σ−1

Z ΣAU

∣∣∣)− δ1, (7.213)

∂L

∂λ2
= 1

2tr
(
Σ−1

V Σ̃AX

)
− 1

2 log
(∣∣∣I + Σ−1

V Σ̃AX

∣∣∣)− δ2, (7.214)

∂L

∂λ3
= 1

2tr
(
Σ−1

T Σ̃AA

)
− 1

2 log
(∣∣∣I + Σ−1

T Σ̃AA

∣∣∣)− δ3. (7.215)

Due to the separation in the channels the optimal attack strategy remains as before for the

sensory and the actuation communication channels. With a change of variables the results

presented for each of the constraints is equivalent. Therefore, the lower bound on λ3 is

m

√∣∣∣∣Σ−1
T ∆P X−1

∣∣∣∣ (e2δ3+m − 2m) ≥ 2
λ3
. (7.216)

Substituting the bound in (7.216) for 2
λ3

back into the critical points of ΣAA , namely (7.212),

gives the following bound for the optimal stealthy attack

Σ̃AA ≥ ΣT

[
m

√∣∣∣∣Σ−1
T ∆P X−1

∣∣∣∣ (e2δ3+m − 2m)∆P X ΣT + I
]−1

− ΣT . (7.217)
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Therefore the resulting bounds for all three attack variables are

ΣAU ≥ ΣZ

[
m

√∣∣∣∣Σ−1
Z ∆P U−1

∣∣∣∣ (e2δ1+m − 2m)∆P U ΣZ + I
]−1

− ΣZ , (7.218a)

Σ̃AX ≥ ΣV

[
m

√∣∣∣∣Σ−1
V ∆P X−1

∣∣∣∣ (e2δ2+m − 2m)∆P X ΣV + I
]−1

− ΣV , (7.218b)

Σ̃AA ≥ ΣT

[
m

√∣∣∣∣Σ−1
T ∆P X−1

∣∣∣∣ (e2δ3+m − 2m)∆P X ΣT + I
]−1

− ΣT , (7.218c)

The inequalities in (7.218a), (7.218c), and (7.218b) are a lower bound on the attack

strategy for the communication channels for a multidimensional Gaussian data injection

attack in each communication channel. As seen in all three of these bounds there is a

separation between the optimal attack on each communication channel. Specifically, due

to the disconnect between optimal attacks, the optimisation of each attack is able to be

considered separately. So, an attacker that only has access to a single communication

channel employs the same attack strategy on a given communication channel as an attacker

with access to all communication channels.

7.8.1 Single Actuator System

As before the optimal attack for each communication channel can be solved exactly. The

reduction of the system is as before, namely, such that Uk ∈ R and Yk ∈ R. This is due to

the fact that the dimensionality of the auxiliary communication channel is determined

by the magnitude of m. Note that, as before, due to the separation between the attacks,

the optimal attack for each communication channel is still solved separately. Due to

this, the optimal attack for the actuation and sensory communication channel remain as

before. The derivation remains identical to the previous derivations and it is found that

the optimal attack on the auxiliary communication channel is

Σ̃AA = −ΣT W−1

(
− 1
e2δ3+1

)
− ΣT . (7.219)
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Due to the separation between the attack constructions in each communication channel,

any combination of these attack constructions are applicable for the corresponding system.

It should be noted that due to the fact that the attack strategy on the actuation and

sensory communication channel is identical to that in Section 7.4. If there is no attack

performed on the auxiliary communication channel then the cost increase induced by the

attack is identical to the cost induced by the perfect auxiliary communication channel

attack. Additionally, this cost increase will be bounded inside of the cost increase by both

of the previous attacks, provided that Σ̃AU ≻ Σ̃AA . If δ3 is such that Σ̃AA ≻ Σ̃AU then the

induced cost by the attack on the imperfect auxiliary communication channel is greater

than both of the previous optimal attack constructions.

7.9 Chapter Conclusion

This chapter has fully characterised the Gaussian data-injection attack construction within

a control system. Namely, we have given the solution of the optimal covariance matrix

for a scalar communication channel, in addition to bounds for the optimal vectorial data-

injection attack. In tandem with the derivation of the optimal attack characteristics we

have explicitly stated the cost increase caused by an attack. Therefore, informing any

operator of a system the degree of which an attack can damage a system through use of a

data-injection attack within the communication channels.

It should be noted once again that the derivations provided are for an attacker with

access to the system model and the nominal communication channel statistics and the

hypothesis test and parameters therein. Access to this information is assumed in order to

inform an operator of the worst case attack performance i.e. the attack that can cause

the most damage. Therefore, any attack with access to less information will necessarily

give a smaller cost increase, or be detected easier. Specifically, in informing the operator

of the exact possible worst case cost increase the operator can calculate this for a given

probability of detection. After which if the expected cost increase is within acceptable

parameters the operator can consider the control system safe from data-injection attacks.
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Where by safe it is meant that the system has an acceptable increase of expected cost

during an undetectable attack, this is equivalent to ‘acceptable losses’.



Chapter 8

Case Studies

In the following chapter we consider various case studies for each of the control systems

designed and the associated attack strategies derived for those systems. Each case study

section is constructed in the same manner as the respective chapters. Unless stated

otherwise the numerical results are obtained by averaging over 1000 realisations of the

process.

8.1 Deterministic DoS Attacks

The attack constructions derived in Chapter 3 cause a cost increase to the operators

cost function whilst attempting to remain undetected. With this in mind the following

section simulates each of the derived attack constructions. A scalar system is considered

for all of this sections simulations. The following simulations are valid for any system,

provided it is stable under the assumptions in [59]. Namely, assuming that it is ensured

that V > 1 − 1∏
i

|λi(A)|2 , where λi(A) are the unstable eigenvalues of A, the stability

assumption holds. This result of stability is derived within [59].

All simulations in this section are performed on an unstable dynamics matrix, A = 1.1,

and with noise statistics, ΣW = 0.01 and ΣZ = 0.01. The operator assumes an actuator

communication channel with an IID Bernoulli packet drop probability of V = 0.3.
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Fig. 8.1 Cost of the system with time-varying Gain under attack (green) and
without (yellow), also the time evolution of the MAREs, in addition the optimal actuation

choice, V A∗
k .

8.1.1 Unconstrained Attack Construction

The first set of simulations relate to the optimal unconstrained attack, and due to the

fact there are no constraints on attack detection, these attacks on the system drive it into

the unstable region. Therefore, the system cost and the MARE values are represented

in logarithmic scale, this is shown in Fig. 8.1. Note that the MARE of the attacker is

equivalent to the MARE corresponding to a no actuation case for which the optimal

sequence is indeed
{
V A∗

i

}N

i=1
= 0, where for these simulations N = 200, the length of

the simulation. Namely, the condition (3.25) was never met in a single simulation over
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the 1000 simulations used for the above plots in addition to this we have never seen this

condition met in any simulations performed with the unconstrained attack. A shorter

length could have been chosen for the this simulation due to the fact that the MARE Sk

converges far earlier. However, we keep the longer end time to keep them consistent with

the following simulations.

8.1.2 Constant Detection Constraint

When the attack with detection constraints is considered we see that the system remains

stable for a time period proportional to the magnitude of Λ and then reverts to the case

without detection constraints. This is shown in Fig. 8.2, as it shows that the cost initially

converges before growing exponentially. This behaviour is explained through Lemma 5.

Namely, as time increases the detection term converges to zero, as a result of the optimal

attack mimicking the random nature. It should also be noted that JA∗
N < J∗

N until the point

at which the detection term converges when the attack construction reverts to the case

without detection i.e. Fig. 8.1. A point of interest is that at the time instant the MARE

corresponding to Rk intersects and surpasses S∞, the cost of the system under attack also

surpasses the operators expected cost for the secure system. Both of these facts are due to

the fact that the detection term dominates the optimal choice of V A
k . Therefore, if this

construction produces a perfect representation of a Bernoulli random variable with V = 0.5

then the attack derivation results in the sequence V A
k → {0, 1, 0, 1, 0, 1, ...}. This results in

a realisation that is always below the average cost scenario presented in [59] as is seen

in Fig. 8.2. The duration before switching into the unconstrained attack behaviour is

shown to be proportional to Λ explicitly in Fig. 8.3 and Fig. 8.4. Namely, the larger the

constant Λ term the longer the period of perfect realisations lasts. It is interesting to note

that when the detection constraints are introduced the behaviour of the MARE changes

drastically. The MARE term Rk is no longer a non-decreasing function, as is shown in

Fig. 8.4, in fact it bounces off of S∞ whenever it touches until the point at which the

detection converges at which point it crosses and diverges. This behaviour corresponds

to the condition that was previously never met in the unconstrained attack having an
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Fig. 8.2 Cost of the system when under attack (green) without (yellow) as a function of
time for Λ = 350, 2000.
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Fig. 8.3 Optimal actuation, V ∗
k , for the attacker for Λ = 350, 2000.

influence on the attack. However, as mentioned above there is complete dominance of

either the detection or optimal unconstrained attack term at any given time instant. This

highlights the need for a reformulation of Λ in order to keep the system stable while

ensuring an increased cost for the operator.

8.1.3 Time Varying Detection Constraint

When considering the optimal time-varying attack, all of the shortcomings of the previous

attack strategies are addressed. Namely, the expected cost is increased indefinitely, this



8.1 Deterministic DoS Attacks 209

0 50 100 150 200

0

5

10

15

20

25

30

35

0 50 100 150 200

0

1

2

3

4

5

6

7

8

9

10

Fig. 8.4 The MARE values as a function of time for Λ = 350, 2000.
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Fig. 8.5 The time varying detection attack.

happens in tandem with the attack remaining undetected. This behaviour becomes

apparent in Fig. 8.5. Interestingly, this attack strategy results in an attack pattern that

prioritises packet drops in succession. Namely, there are periods of all packet drops

followed by periods of all packet transmission. Additionally, these periods grow in length

as time goes on. This is as a result of the detection constraint. Specifically, due to the

normalisation in the detection constraint it requires a longer period of time for the ML

estimator to be moved the same amount as it would have been earlier on in the attack

window.
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8.2 Multichannel Packet Loss Control Case Studies

For the following case studies we conduct simulations for two separate systems. Namely,

a single actuator system and a system with multiple actuators. This choice is made to

highlight the properties control algorithms developed in Chapter 4.

8.2.1 Single Actuator System

The first system we consider is the inverted pendulum system as reported in [59]. The

discrete time state space model of the pendulum is provided in [59] and reported here for

convenience

A =



1.001 0.005 0.000 0.000

0.35 1.001 −0.135 0.000

−0.001 0.000 1.001 0.005

−0.375 −0.001 0.590 1.001


,B =



0.001

0.540

−0.002

−1.066


, Ψ = 2IN , (8.1a)

Ω = IN ⊗



5 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (8.1b)

the prediction horizon is N = 80. Note that this system has a single actuator, and

therefore, there is no difference between the variables µ and Υ. Indeed, they are the same

scalar multiplied by appropriately dimensioned identity matrices.

The analysis in Section 4.4 characterises the maximal cost difference between the two

protocols. Namely, the TCP-like and the UDP-like protocols. Therein, the system is

reduced to a scalar communication channel, similar to that seen in Chapter 3. In Chapter 4

the expected cost difference as a function of the packet transmission parameter, µ, is
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defined to be

J∗
∆

(
Υ
) ∆=J∗ (Gk) − J∗ (Fk) . (8.2)

In Theorem 3 it is shown that J∗
∆

(
Υ
)

converges to 0 for a Υ in the vicinity of either I or 0.

The convergence of the cost difference in these limit cases is observed in Fig. 8.6. The

limit cases of a Υ in the vicinity of I or 0 correspond to deterministic cases. Note, these

are the only cases for which the TCP-like and UDP-like information sets are equivalent,

and therefore, the control laws are identical. Furthermore, in the limit case when Υ is

in the vicinity of I the control law for both protocols are also equivalent to a nominal

LQG controller that does not account for packet loss in the actuation channel. It is seen

in Figure 8.6 that the characterisation given in Section 4.4 corresponds to the observed

behaviour. Specifically, there is a maximal point in the [0, 1] region. This maximal point is

highlighted with the vertical arrow, which corresponds to the maximal point ΥD∗ = 0.0031

as predicted by Theorem 5. Theorem 3 states that the TCP-like cost is strictly less

than the UDP-like as is also seen in Fig. 8.6. Additionally, as seen in Corollary 3, for a

given expected system cost J∗ (Ik) the TCP-like protocol has a smaller channel transition

probability, Υ. This is shown in Fig. 8.6.

The cost difference of the two protocols arises from different control laws. Table 8.1

shows the closed loop eigenvalues of the TCP-like and the UDP-like protocols. Where

the closed loop gain KIk
is defined as the first m by n block of the matrix GIk

Ωgp .

Additionally, the packet transmission variable is set at Υ = 0.9I for the calculation of the

closed loop eigenvalues. As shown in Table 8.1, the TCP-like protocol has a conjugate

pair of eigenvalues with a smaller complex component when compared to the UDP-like

eigenvalues. This suggests the damping of the state response is lower for the UDP-like

protocol than the TCP-like protocol. Additionally, the magnitude of the TCP complex-

conjugate eigenvalues is closer to the origin, this points to faster decay in the response of

these modes.
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Fig. 8.6 Cost difference between the UDP-like TCP-like protocols operating on the
inverted pendulum system described in [59] as a function of the channel packet packet

transmission probability.

8.2.2 Multiple Actuator System

For the second case study we consider an arbitrary system with multiple actuators. This

system is constructed as,

A =

1.03 0.005

0.35 1.01

 , B =

1 0

0 1

 , (8.3a)

Ψ = IN ⊗

1 0

0 1

 , Ω = IN ⊗

1 0

0 1

 , (8.3b)
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Table 8.1 Closed Loop Eigenvalues of (8.1)

λi(A − BKIk
) TCP-like Eigenvalues UDP-like Eigenvalues

λ1 0.9497 + 0.0056i 0.9907 + 0.0201i
λ2 0.9497 − 0.0056i 0.9907 − 0.0201i
λ3 −0.1148 0.9729
λ4 0.9978 0.9382

Fig. 8.7 The optimal cost difference between the UDP-like and the TCP-like protocols for
the system (8.3) as a function of the channel packet packet transmission probabilities in

both actuation channel dimensions.

and the prediction horizon is set to N = 10. The system in (8.3) has multiple actuators

and thus is used to highlight the generality of our results. The expected cost difference, as

seen in Fig. 8.7, shows existence of a maximal point despite the system having multiple

actuators, as predicted by Theorem 5. This is marked with a black cross in Fig. 8.7.
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Fig. 8.8 Cost values for the TCP-like protocol operating on system (8.3) as a function of
the channel packet packet transmission probabilities in both actuation channel dimensions.

This indicates that the results extend to multiple actuators. Fig. 8.7 shows that the cost

difference is strictly positive when M ̸= I and M ̸= 0.

When considering the expected cost for this system, the presence of a second actuator

means the expected cost is a function of multiple packet transmission variables. As a

result, there are regions in [0, 1] × [0, 1] where the expected cost remains fixed for a range

of values of M. This behaviour is depicted in Fig. 8.8 and Fig. 8.9 for the TCP-like and

UDP-like expected costs, respectively. As mentioned for the previous case study, the

control laws developed in Section 4.3 are different for each protocol. As shown in Table 8.2,

the UDP-like protocol has a complex conjugate pair of eigenvalues.
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Table 8.2 Closed Loop Eigenvalues of (8.3)

λi(A − BKIk
) TCP-like Eigenvalues UDP-like Eigenvalues

λ1 −0.1082 0.4904 + 0.0312i

λ2 −0.8938 0.4904 − 0.0312i

Note that for the purposes of calculating the eigenvalues in Table 8.2, the communication

channel is not a scalar, in fact we set M = ( 0.7 0
0 0.01 ). As with the pendulum case study

it is seen that the TCP-like and the UDP-like control laws induce different behaviour in

the state trajectories. It should be noted that the average state trajectories resemble a

damped systems with minimal oscillations for both protocols. Although the UDP-like

Fig. 8.9 Cost values for the UDP-like protocol operating on system (8.3) as a function of
the channel packet packet transmission probabilities in both actuation channel dimensions.
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response resembles a significantly less damped system. This is interesting given the real

part of the TCP-like closed loop eigenvalues are negative and one of them approaches

the maximum frequency for stable oscillations. We suggest that this behaviour despite

the eigenvalues is a result of the fact that only a percentage of the actuations chosen

make it through to the plant and that this limits the oscillating behaviour. In that vein,

notice that the closed loop eigenvalues do not take into account the actuation channel

statistics. Namely, we have presented the eigenvalues λi(A − BKIk
) and not the averaged

eigenvalues E [λi(A − BKIk
)] = λ̂i(A − ΥBKIk

).
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8.3 Random DoS Attacks

The following case studies focus upon a comparison between the IID attack construction

and the non-stationary attack construction. This comparison is conducted over two

communication channels for the same system. To that end, we use the same test system

as in Section 8.2. Specifically, the multiple actuator system

A =

1.03 0.005

0.35 1.01

 , B =

1 0

0 1

 , (8.4a)

Ψ = IN ⊗

1 0

0 1

 , Ω = IN ⊗

1 0

0 1

 , (8.4b)

and the prediction horizon is set to N = 10. The first simulation is performed over a scalar

communication channel with M = 0.7I. The system is averaged over 1000 realisations

and the state trajectories are shown in Fig. 8.10 for a system operating with a TCP-like

protocol and the UDP-like protocol is depicted in Fig. 8.11. Interestingly, when under

either of the attack constructions the UDP-like system trajectory, as seen in Fig. 8.11,

displays a larger change from the nominal state trajectory when compared with TCP-like

trajectory depicted in Fig. 8.10. Additionally, these plots show that the increase in cost

attributed with both of the attack constructions stems from their ability to delay the

convergence of the states to 0.

We also consider an additional channel model. For the second channel model we consider

an M = diag (0.7, 0.01). Additionally, these simulations are obtained by averaging 1000

realisations of the state trajectories. By altering the communication channel model it is

seen that the non-stationary attack has a larger increase from the nominal state trajectory

when compared to the IID attack. This is seen in Fig. 8.12 for the TCP-like protocol and

in Fig. 8.13 for the UDP-like protocol. As in the previous communication channel model,

the system operating with a UDP-like protocol, as seen in Fig. 8.13, is more vulnerable to

attacks than a system operating with a TCP-like protocol, as seen in Fig. 8.12.
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Fig. 8.10 System with TCP-like protocol with A = ( 1.03 0.005
0.35 0.5 ), M = 0.7, and δ = 0.1.
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Fig. 8.11 System with UDP-like protocol with A = ( 1.03 0.005
0.35 0.5 ), M = 0.7, and δ = 0.1.

In order to quantify this degradation of control performance we now consider the

normalised LQG optimal costs of each of these simulations. The LQG cost for system

utilising a UDP-like protocol with no attack present is 7.671. Interestingly, the LQG cost
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Fig. 8.12 System with TCP-like protocol with A = ( 1.03 0.005
0.35 0.5 ), M = ( 0.7 0

0 0.01 ), and
L = 0.1I.
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Fig. 8.13 System with UDP-like protocol with A = ( 1.03 0.005
0.35 0.5 ), M = ( 0.7 0

0 0.01 ), and
L = 0.1I.

induced by the non-stationary attack on this same system is 18.217 while the terminal

cost induced by the IID attack is 13.26. This suggests that UDP-like protocols are more
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Fig. 8.14 System model of the Advanced Geared Turbo-Fan engine, the conceptual 30,000
lbf thrust class gas turbine engine containing high pressure, low pressure, and fan shafts

vulnerable to non-stationary attacks than to IID attacks. Surprisingly, for the TCP-like

case the performance of the IID attack outperforms the non-stationary attack. Specifically,

the average LQG cost induced by the IID attack is 8.689 whereas the averaged LQG cost

induced by the non-stationary attack is 8.525. Admittedly, the difference is small and

might be a result of evaluating the cost with a finite number of realisations, but the results

seem to suggest that there is no significant advantage in implementing non-stationary

attacks in TCP-like systems.

8.4 Advanced Geared Turbofan Engine

The simulations for the following two sections, the sections related to case studies for

Chapters 6 and 7, are performed on the Advanced Geared Turbofan (AGTF) Engine [33].

Specifically, the simulations are performed on the linearised state space model of the

AGTF engine. The system model of the AGTF engine is depicted in Fig. 8.14 and a short

description of the system is as follows and is as described in [33]. The low pressure shaft

and fan shaft are connected by a gearbox with a 3.1 to 1 gear ratio, which acts to increase

fuel efficiency and reduce gas turbine noise. The low pressure shaft is powered by a low

pressure turbine (LPT) and drives the fan and low pressure compressor (LPC). A Variable
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Bleed Valve (VBV) improves the stall margin of the LPC by diverting air from the exit

of the LPC to the engine bypass stream, effectively lowering the LPC exit pressure. The

High Pressure Shaft (HPS) of the engine includes a high pressure compressor (HPC), a

combustion chamber (Burner), and a high pressure turbine (HPT) in series. Flow moving

through the HPS exits through a conventional nozzle, while engine bypass air (Cooling

flow) exits through a Variable area fan Nozzle (VAFN). The presence of a VAFN has

many advantages that include, but are not limited to, improved engine efficiency and

noise reduction. More details on the AGTF30 engine are found within [33]. As mentioned

above, the model used for the following simulations is the linearised state space model of

the engine. The system models in Chapter 6 and Chapter 7 are for discrete time systems.

Therefore, the linearised model of the AGTF engine is also discretised for the simulations.

After discretisation we obtain the following state space model of the system.

A =

0.6431 0.0913

0.0630 0.8199

 , B =

 658.1230

1380.6673

 , (8.5a)

C =



9.2316 0.0647

0.0119 0.0001

0.0130 0.0294

−0.0643 −0.0958

0.3226 0.0000

0.0000 1.0000

−2.7960 0.7866

0.5432 −1.2728



, D =



2.4802

−0.01607

136.6786

2601.3524

0.0000

0.0000

4503.7009

9347.3971



, QX =

1 0

0 1

 , QU = 1, (8.5b)

The above model is rounded to 4 decimal places, for ease of reading, however, the

simulations below are calculated to 8 decimal places. Additionally, the process noise in

the system has covariance ΣW = 1 × 10−10I. Note that the penalty matrices are set to the

Identity matrix. This choice is made as our results do not pertain any particular plant
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behaviour. Specifically, our results focus on the effect of the communication channels in a

control system, and therefore, the choice of the QX and QU penalty matrices is not of

particular interest. For more details on the AGTF engine please see [33].
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8.5 Control Over Noisy Communication Channels

As mentioned above the simulations in this section are of the AGTF engine. The system

model is seen in (8.5). Additionally, all of the following simulations are averages over 1000

iterations of the control system. The main focus of Chapter 6 pertains to the effect

introducing the imperfect communication channels, and therein, the additional noise. To

that end, we defined the nominal noise covariance matrices as

ΣZ = 1 × 10−8Im, ΣV = 1 × 10−8Ip, ΣT = 1 × 10−9Im. (8.6)

Note that ΣZ ≻ ΣT , and therefore, the results of Theorem 21 hold and the expected

cost of the system with an imperfect auxiliary channel should be bounded between the

other two system models. In fact, in Fig.8.15 the costs of the three separate systems are

plotted over time. It is seen that, as predicted the cost of the system with an imperfect

auxiliary channel is bounded between the perfect auxiliary channel and the no auxiliary

channel systems. The costs are plotted in logarithmic scale, and therefore, the convergence

seen corresponds to the bounded state stability as mentioned in Chapter 6. To see the

differences in cost clearer, note Fig. 8.16. This plot shows the cost differences between

the imperfect auxiliary channel and the perfect channel in addition to the difference

between the system with no auxiliary channel and the perfect auxiliary channel system.

Additionally, it is seen in Fig. 8.16 that the cost differences converge. This is a result of

each of the respective costs converging, and therefore, the cost differences converge.
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Fig. 8.15 Logarithm plot of the costs of each of the three system designs.
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Fig. 8.16 Cost difference between the imperfect auxiliary communication channel and the
perfect auxiliary channel and the cost difference between the no auxiliary channel and the

perfect communication channel system.
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8.6 Data Injection Attack Simulations

As in the previous section, the following simulations are performed on the AGTF engine.

The state space model of this system is as defined in 8.5. Additionally, the operator of the

system is the same as in the previous section. Namely, the nominal noise statistics are

defined as

ΣZ = 1 × 10−8Im, ΣV = 1 × 10−8Ip, ΣT = 1 × 10−9Im. (8.7)

Also, for this section, the operator is required to choose a value for δ. For the below,

unless otherwise stated, δ1 = δ2 = δ3 = 4. Due to the fact the fact that m = 1 for this

system, the optimal attack values are known. Specifically, for the δ values set above it is

known that the optimal value for the covariances of the signals injected into the actuation

and the auxiliary communication channels are

ΣAU = 2.2977 × 10−7, ΣAA = 2.2977 × 10−8. (8.8)

For the system laid out above, the bound for the optimal attack on the sensory commu-

nication yields a matrix close to the zero matrix. However, if this matrix is scaled such

that the KL divergence constraint is not exceeded, it results in a covariance matrix that

achieves a KL divergence closer to the δ constraint while preserving the weightings in each

eigenvalue of the lower bound optimal covariance matrix. For the following simulations



8.6 Data Injection Attack Simulations 226

that scaled matrix is

ΣAX=



1.622×10−13 0 0 0 0 0 0 0

0 9.642×10−8 0 0 0 0 0 0

0 0 2.014×10−9 0 0 0 0 0

0 0 0 1.629×10−10 0 0 0 0

0 0 0 0 1.343×10−10 0 0 0

0 0 0 0 0 2.449×10−12 0 0

0 0 0 0 0 0 2.006×10−11 0

0 0 0 0 0 0 0 2.240×10−12



. (8.9)

The above matrix is rounded to 4 significant figures for ease of reading. The above value

of ΣAX yields a KL divergence of 3.648. This value is well in the δ as set by the operator.

It should be noted, that the optimal solutions, (8.8) and (8.8), result in a KL-divergence

of 4 for each respective constraint.

The cost for the system with a perfect auxiliary communication channel is depicted

in Fig. 8.17, which shows that the cost of the system is strictly increased throughout the

attack. This cost is calculated as an average over 1000 simulations. Additionally, Fig. 8.18

shows the averaged state trajectories of the system. The plots in Fig. 8.18 shows the

variance of the state trajectories of the system under nominal conditions and when the

system is under attack. When considering the variance the trajectories presented are

the Mean Squared Error of the realisations from the expected state trajectories. Note

the smaller variance of the nominal state trajectories when compared to the attacked

trajectories. This is as a result of attacker injecting noise into the system increasing the

error but not altering the expected state trajectories.

When considering the system with no auxiliary communication channel many similari-

ties are observed . For instance, as seen in Fig. 8.19 the averaged cost increases when there

is an attack. However, this increase in cost is much larger than the increase in Fig 8.17.
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Fig. 8.17 Normalised log cost of the system with a perfect auxiliary communication
channel both under nominal conditions and during the attack.
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Fig. 8.18 Variance trajectories of the states of the system with a perfect auxiliary
communication channel both under nominal conditions and during the attack.
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Fig. 8.19 Normalised log cost of the system with a no auxiliary communication channel
both under nominal conditions and during the attack.

This is also true when considering the averaged state trajectories. In that the variance of

the state trajectories is larger when there is no auxiliary channel, this effect is shown in

Fig. 8.20. Note that the variances converge in a similar manner under nominal conditions

and when attacked. Yet the value that the variances converged to differ by nearly a factor

of 10 for the system with no auxiliary communication channel. Once again, as expected,

for the system with the imperfect auxiliary channel the data injection attack increases

the averaged cost of the system. This behaviour is seen in Fig. 8.21. However, it may not

be obvious from Fig. 8.21 that the cost increase with respect to the nominal system is

bounded between the other two cost increases. In order to see this we have also plotted the

cost difference of each system in Fig. 8.23. In Fig. 8.23 we have plotted the attacked cost of

each respective system minus the cost of each respective system under nominal conditions.

In doing so it is seen that the imperfect auxiliary channel systems cost increase lies directly

between the other two system cost increases. Interestingly, Fig. 8.23 is reminiscent of

Fig. 8.15 in the previous section. This implies that not only does the introduction of an

auxiliary channel reduce the average cost of the system, but it also mitigates the effect of
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Fig. 8.20 Variance trajectories of the states of the system with a no auxiliary
communication channel both under nominal conditions and during the attack.
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Fig. 8.21 Normalised log cost of the system with an imperfect auxiliary communication
channel both under nominal conditions and during the attack.
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Fig. 8.22 Variance trajectories of the states of the system with an imperfect auxiliary
communication channel both under nominal conditions and during the attack.

a data injection attack of the form derived in Chapter 7. As with both previous systems,

the variance of the state trajectories shows a similar pattern. Namely, the variances

convergence is comparable when under attack yet the values converged to are larger when

under attack. This effect for the system with an imperfect communication channel is seen

in Fig. 8.22.

Another point of interest is how the choice of δi effects the choice of the optimal data

injection attack. This relationship is shown in Fig. 8.24. It is seen in Fig. 8.24 that for

small values of δi the relationship is non-linear. Specifically, it is seen to be sub-linear.

However, for larger values of δi the optimal data injection attack covariance grows linearly.
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Fig. 8.23 Averaged logarithm of the costs of the systems during the attack.
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Fig. 8.24 Value of the optimal data injection attack covariance for the actuation
communication channel and the auxiliary communication channel as a function of δi.



Chapter 9

Future Work

9.1 Chapter 3

Given the attack derivations within Chapter 3, there is interest in the design of an attack

where instead of deciding exactly when a signal is received or not, the attacker only decides

when to jam the signal. This means when not jamming the communication channel, the

operator receives the nominal IID sequence of packet drops they expect to receive. This

attack design helps the attacker minimise attack detection, whilst maximising the cost

of the operator. Specifically, it is seen within the case studies in Chapter 8 that the

deterministic attack construction results in a repeating pattern of packet drops. Therefore,

by mixing this deterministic construction with the natural IID sequence of losses, the

attacker could hid in the nominal noise in the communication channel.

9.2 Chapter 4

Within Chapter 4 we considered the optimal control law for two communication chan-

nels. Namely, a communication channel governed by a sequence of IID packet loss and

another communication channel governed by a non-stationary sequence of losses. The

non-stationary sequence of losses allows the operator to model packet losses where the

mean of losses is variable. However, the modelling of the losses does not include the
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possibility of a Markovian sequence of packet drops. It is shown within [47] that an optimal

LQG controller exists for a sequence of losses governed by a 2-state Markov chain. Given

that [47] is the Markovian extension of [59], and that Chapter 4 is the multidimensional

extension of [59], it stands to reason that the work in Chapter 4 could be extended to

account for Markovian losses within a multidimensional communication channel. This

extension however, is by no means trivial. The main issue arises from the need to express

the expectation of a Markovian process N time steps into the future. This causes a

direct issue with determining E [Υk] which is required in closed form for the calculation of

the control law. Additionally, for the UDP-like protocol, there is an additional issue in

estimating the state of the Markov chain. Namely, the UDP-like protocol does not monitor

the actuation communication channel, and therefore, there would be an additional hurdle

for the UDP-like protocol to overcome.

9.3 Chapter 5

For this chapter, it was assumed the operator declares an attack and turns off the control

system. However, this may not be the optimal choice, as the operator considers random

sequences within their nominal communication channel. Therefore, there is a non-zero

probability of false alarm. This means that the operator may turn off the control system

even when there is no attack present in the communication channel. In order to assess

the optimal choice for the operator when an attack is detected, the formulation could be

extended to a sequential game theoretic setting. In doing so, the optimal strategy for

the operator, and correspondingly for the attacker, can be characterised in terms of a

sequential game. We postulate that in this setting the best response dynamics emerging

in the sequential game can provide insight into the construction of optimal attacks and

defence strategies.
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9.4 Chapter 6

The optimisation problem within Chapter 6 can be extended for the operator to also

include optimisation of the communication channels. This process would take a similar

format as that in Chapter 4. Namely, the operator constructs a trade-off between the

cost of communication over each individual channel, with the optimal control cost. This

would result in optimising over all three covariance matrices ΣZ , Σ
Ṽ

, and ΣT , subject

to an additional cost constraint such that the operator minimises a joint control and

communication cost. This is slightly different to the derivation in Chapter 6, as the

communication channel covariances are seen as fixed constants, and are not treated as

variables that which could be tuned and optimised. If however, they were treated as

control variables, we postulate that it would result in a water filling argument over the

eigenmodes of the covariances matrices.

9.5 Chapter 7

Within Chapter 7 the attacker is restricted to IID sequences of data-injected random

variables. If this was generalised to non-stationary sequences, or even non-Gaussian

sequences, we postulate that the attacker could outperform the results presented. However,

the derivations within Chapter 7 are simplified in multiple places through use of the

Gaussianity of the injected signals, so the complexity of the derivation would be increased.

Additionally, if the attacker considers a non-stationary sequence of variables then the

attacker can choose a time varying mean of the vector. This would result in the breaking

of the Nash equilibrium, therefore allowing the attacker to potentially obtain the upper

hand in this scenario.



Chapter 10

Conclusion

The thesis began with the construction of a deterministic attack on the system outlined

in [59]. We show that a deterministic attack construction exists that results in a guaranteed

cost increase for the operator. This guaranteed cost increase is achieved at the drawback of

a large computational cost and attacker information requirements. Specifically, the attacker

requires intimate knowledge of the system design, in addition to constant information

about the current system states and measurements. These requirements caused us to

venture into random attack constructions. Namely, attack constructions that once derived

required no knowledge of the system and could be implemented simply.

Within Chapter 4 we obtain the optimal control laws for control systems with multi-

dimensional communication channels that are subject to Bernoulli packet loss for both

TCP-like and UDP-like packet acknowledgement protocols. This control law is valid for

control systems experiencing packet losses that are governed by non-stationary Bernoulli

processes on both the actuation and the sensory communication channels. In addition to

this, we also show that the expected cost incurred by the UDP-like protocol is strictly

larger than that of the TCP-like protocol. Specifically, we show that the expected cost

difference between these protocols increases monotonically with the probability of packet

loss. These results provide an analytical framework to study the impact of communication

channel resources in the performance of the control system. Capitalising on this notion,

we have provided a guideline to optimally allocate channel resources for both the UDP-like
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and TCP-like protocol and demonstrated the trade-off analysis by applying it in two case

studies.

With the system outlined thoroughly, we then proceed to characterise the optimal attack

construction for UDP-like and TCP-like systems that utilise this framework. The attacks

are proposed as DoS attacks over the actuation communication channel. Additionally, we

assume that the attacker has full control over the communication channel. The optimal

random attack is constructed under the assumption that the operator monitors the state

of the communication channel. The operator performs the optimal detection test on

the communication channel. Namely, the operator monitors the average packet loss as

the decision statistic. Interestingly, we show that the optimal attack strategy does not

always increase the number of packet losses in a communication channel. We have also

shown that the IID attack construction is a subset of the possible configurations of a

non-stationary attack within a communication channel. We show numerically that the

proposed non-stationary attack outperforms the IID attack in most settings. This is

achieved at the expense of increasing the number of optimisation variables. We also give

bounds on the probability of detection for the attacker. In doing so, we give bounds to

inform the attacker and the operator on how to efficiently design their tuning parameters

for attack performance/detection.

Within Chapter 6 we implement AWGN communication channels onto both the sensory

and the actuation link of a control system. After these communication channels are

modelled and discussed, we show that the expected cost of communicating imperfectly

can to be quantified exactly. This quantification is applied across three separate system

architectures. Namely, we generalise the feedback communication channels in Chapter 4

to AWGN communication channels. This results in two system architectures, one which

resembles an AWGN equivalent of the TCP-like protocol and another which is the AWGN

equivalent of the UDP-like protocol. In addition to the above two system architectures,

we provide a third system model where the feedback communication channel is generalised

to an imperfect AWGN communication channel. This is equivalent to the extension of the

acknowledgment channel within the TCP-like protocol being extended to the imperfect link,
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as seen in [29]. We show, once again, that the inclusion of this feedback communication

channel strictly reduces the expected cost of the control system.

Given the explicit characterisation of the communication channels within Chapter 6

we are then able to implement a data-injection attack within each of the three AWGN

communication channels. Precisely this, is the purpose of Chapter 7. We characterise

the expected cost increase for each of the three system architectures. Following this

characterisation we then provide lower bounds on the optimal attack construction for each

communication channel in the multidimensional setting. In addition to this, we provide

exact solutions for the optimal attack in each of these scenarios for a given detection

constraint.

We have also conducted a comparison between control systems with and without an

auxiliary feedback communication channels. In Chapters 3, 4, and 5 and this feedback

channel took the form of an acknowledgement link. This acknowledgement link was the

direct cause of the differing information sets between the TCP-like and the UDP-like

protocols. This comparison was then extended to the AWGN communication channels,

as seen in Chapters 6 and 7. Namely, system architectures with a perfect auxiliary

communication channel and no auxiliary communication channel. The comparison of the

feedback channel highlighted the differences between the system responses. It is shown that

for both the Bernoulli communication channel and the AWGN communication channel,

the nominal expected cost is strictly increased by not having this communication link. It

is observed that the feedback communication link also provides the system with additional

safeguards against an attack. Specifically, the feedback channel reduces the amount of

expected cost increase an attack can cause.

Throughout this thesis we have studied control systems with limited information.

These conditions have varied from scenarios that the operator expects to occur, such as

Chapter 4 and 6, to scenarios caused by malicious agents, such as Chapters 3, 5, and 7.

For these systems operating with limited information we have derived the optimal control

laws and their associated costs.
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Our aim during this PhD has been to achieve precisely this: to inform the operator of

how much efficiency they need to sacrifice for the system to be safe.



Appendix A

Chapter 3

A.1 Lemma 1

This Section is dedicated to the proof of Lemma 1. The Lemma is re-stated below.

Lemma 1. The optimal value function (3.22) for the system defined in (3.1) is equivalent

to

fk(Xk) ∆= E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, k = N, . . . , 0, (A.1)

where the matrix Rk ∈ Rn×n and the scalar dk ∈ R are recursively calculated according to

Rk = ATRk+1A + QX + V A∗

k

(
KT

(
QU + BTRk+1B

)
K − 2KTBTRk+1A

)
, (A.2a)

dk = tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (Rk+1ΣW ) + E[dk+1|Ak], (A.2b)

where V A∗
k is the optimal choice that maximises the cost function (3.21). Each realisation

is determined by the inequality

V A∗

k =


1 for X̂T

k

(
KT

(
QU + BTRk+1B

)
K − 2KTBTRk+1A

)
X̂k > 0,

0 Otherwise.
(A.3)

Proof. The following proof takes the form of an induction proof. Namely, after showing

the initial conditions hold true it is assumed that (A.1) holds true for time instant k + 1.
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After which it is shown that it also holds true for time instant k, in doing so the recursive

form of Rk is revealed. The optimal value function, fk (Xk) is defined in (3.22) to be

fN (XN) ∆=E
[
XT

NQXXN

∣∣∣AN

]
, (A.4a)

fk (Xk) ∆= max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A∗

k X̂T
k KTQUKX̂k + fk+1(Xk+1)

∣∣∣Ak

]}
. (A.4b)

Noting that RN = QX and dN = 0 then the initial condition is

fN(XN) = E
[
XT

NRNXN AN

]
+ dN = E

[
XT

NQXXN

∣∣∣AN

]
= J0(X0, P0). (A.5)

Due to the equivalence in (A.5) the initial conditions holds. Therefore, assuming (A.1)

holds at the k + 1 time step then the kth time step is

fk (Xk) = max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k KTQUKX̂k + fk+1(Xk+1)

∣∣∣Ak

]}
, (A.6)

= max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k KTQUKX̂k

+E
[
XT

k+1Rk+1Xk+1

∣∣∣Ak+1
]

+ dk+1

∣∣∣Ak

]}
, (A.7)

= max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k KTQUKX̂k

+XT
k+1Rk+1Xk+1 + dk+1

∣∣∣Ak

]}
, (A.8)

= max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k KTQUKX̂k + dk+1

+
(
AXk − V A

k BKX̂k +Wk

)T
Rk+1

(
AXk − V A

k BKX̂k +Wk

)∣∣∣∣Ak

]}
, (A.9)

where (A.7) follows from substituting fk (Xk) with (A.1). As reported in [65], it is shown

for a monotonically increasing set, Ak, (A.7) is in fact equal to (A.8). Thus, noting that V A
K
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is a binary variable in the quadratic expansion yields

fk (Xk) = max
V A

k
=fk(Ak)

{
E
[
XT

k

(
ATRk+1A + QX

)
Xk + V A

k X̂
T
k KTQUKX̂k + dk+1

−2 V A
k X̂

T
k KTBTRk+1AX̂k + V A

k X̂
T
k KTBTRk+1BKX̂k

+WT
k Rk+1Wk

∣∣∣Ak

]}
, (A.10)

= max
V A

k
=fk(Ak)

{
E
[
XT

k

(
ATRk+1A + QX

)
Xk

∣∣∣Ak

]
+ tr (ΣW Rk+1) + E[dk+1|Ak]

+V A
k X̂

T
k

(
KT

(
QU + BTRk+1B

)
K − 2 KTBTRk+1A

)
X̂k

}
, (A.11)

where (A.11) follows from the fact that Wk is an IID set of zero mean random variables

with covariance matrix ΣW . In view of this, to maximise (A.11) with respect to the input

variable V A
k the only way to to affect the cost at each time instant is to actuate only when

X̂T
k

(
KT

(
QU + BTRk+1B

)
K − 2 KTBTRk+1A

)
X̂k > 0 (A.12)

If (A.12) is true at time instance k then V A∗
k equals one, thus increasing the overall cost at

this time instant. Otherwise, V A∗
k is zero. This inequality corresponds to (A.2). Combining

(A.11) and (A.3) yields

fk (Xk) =E
[
XT

k

(
ATRk+1A + QX

)
Xk

∣∣∣Ak

]
+ tr (ΣW Rk+1) + E[dk+1|Ak]

+V A∗

k X̂T
k

(
KT

(
QU + BTRk+1B

)
K − 2 KTBTRk+1A

)
X̂k, (A.13)

=E
[
XT

k

(
ATRk+1A + QX

+V A∗

k

(
KT

(
QU + BTRk+1B

)
K − 2 KTBTRk+1A

))
Xk

∣∣∣Ak

]
+tr (ΣW Rk+1) + E[dk+1|Ak]

−tr
(
V A∗

k

(
KT

(
QU + BTRk+1B

)
K − 2 KTBTRk+1A

)
Pk|k

)
. (A.14)
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Therefore, it follows that Rk and dk take the expressions shown in (A.2), substituting

them gives

fk(Xk) = E
[
XT

k RkXk

∣∣∣Ak

]
+ dk. (A.15)

This concludes the proof.

A.2 Lemma 5.1 [59]

This Section is dedicated to the proof of Lemma 5.1 within [59]. The Lemma is restated

below.

Lemma 5.1. Assume a linear time varying gain such that the optimal input, u∗
k at time

instance, k, is represented as u∗
k = −K∗

kx̂k|k. The value function of the system under

TCP-like conditions is written as

gk(Xk) ∆= E
[
XT

k SkXk

∣∣∣Ok

]
+ ck, k = N, . . . , 0, (A.16)

where Sk and ck are

Sk
∆= ATSk+1A + QX − VATSk+1BK∗

k, (A.17a)

ck
∆= V tr(ATSk+1BK∗

kPk|k) + tr (QSk+1) + E [ck+1| Ok] (A.17b)

and K∗
k takes the form

K∗
k ≜

(
QU + BTSk+1B

)−1
BTSk+1A. (A.18)

Proof. The following proof takes the form of an induction proof. Namely, after showing

the initial conditions hold true it is assumed that (A.1) holds true for time instant k + 1.

After which it is shown that it also holds true for time instant k, in doing so the recursive

form of Sk is revealed, and in doing so, the recursive form of the optimal gain, K∗
k. The



A.2 Lemma 5.1 [59] 243

optimal value function, gk (Xk) is defined as

gN (XN) ∆=E
[
XT

NQXXN

∣∣∣ON

]
, (A.19a)

gk (Xk) ∆= min
Kk=gk(Ok)

{
E
[
XT

k QXXk + VkX̂
T
k KTQUKX̂k + gk+1(Xk+1)

∣∣∣Ok

]}
. (A.19b)

In order to proceed with the proof the initial conditions must be verified. With initial

conditions such that, SN = QX and cN = 0, it is seen that

gN(XN) = E
[
XT

NSNXN

∣∣∣ON

]
+ cN = E

[
XT

NQXXN

∣∣∣ON

]
= J0(X0, P0). (A.20)

Assuming that (A.16) holds for the k + 1 time instance it shall be proved to also hold for

the kth time instance. Beginning at (A.19b) it is seen that

gk (Xk) = min
Kk=gk(Ok)

{
E
[
XT

k WXk + VkX̂
T
k KT

k UKkX̂k + gk+1 (Xk+1)
∣∣∣Ok

]}
, (A.21)

= min
Kk=gk(Ok)

{
E
[
XT

k WXk + VkX̂
T
k KT

k UKkX̂k

+E
[
XT

k+1Sk+1Xk+1

∣∣∣Ok+1
]

+ ck+1

∣∣∣Ok

]}
, (A.22)

= min
Kk=gk(Ok)

{
E
[
XT

k WXk + VkX̂
T
k KT

k UKkX̂k + ck+1

+
(
AXk − VkBKkX̂k +Wk

)T
Sk+1

(
FXk − VkGKkX̂k +Wk

)∣∣∣∣Ok

]}
, (A.23)

= min
Kk=gk(Ok)

{
E
[
XT

k

(
ATSk+1A + W

)
Xk

∣∣∣Ok

]
+ tr (QSk+1) + E [ck+1| Ok]

+V̄ X̂T
k

(
KT

k

(
U + BTSk+1B

)
Kk − 2 KT

k BTSk+1A
)
X̂k

}
, (A.24)

where in (A.22) the lemma from [65][Lemma 1(c)] is utilised. To minimise (A.24) with

respect to Kk the derivative ∂Vk/∂Kk is

∂Vk

∂Kk

= 2V̄ X̂T
k

(
U + BTSk+1B

)
K∗

kX̂k − 2 V̄ X̂T
k BTSk+1AX̂k. (A.25)
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Setting this derivative equal to 0 and solving yields

(
U + BTSk+1B

)
K∗

k = BTSk+1A, (A.26)

K∗
k =

(
U + BTSk+1B

)−1
BTSk+1A. (A.27)

This corresponds to (A.18). Substitution of this optimal gain causes (A.24) to become

gk (Xk) =E
[
XT

k

(
ATSk+1A + W

)
Xk

∣∣∣Ok

]
+ tr (QSk+1) + E [ck+1| Ok]

+V̄ X̂T
k ATSk+1B

(
U + BTSk+1B

)−1(
U + BTSk+1B

)(
U + BTSk+1B

)−1
BTSk+1A

−2V̄ X̂T
k ATSk+1B

(
U + BTSk+1B

)−1
BTSk+1AX̂k. (A.28)

Cancelling out
(
U + BTSk+1B

)
with its inverse results in the second term becoming

equivalent to the third, causing them to amalgamate.

gk (Xk) =E
[
XT

k

(
ATSk+1A + W

)
Xk

∣∣∣Ok

]
+ tr (QSk+1) + E[ck+1| Ok]

−V̄ X̂T
k ATSk+1B

(
U + BTSk+1B

)−1
BTSk+1AX̂k. (A.29)

Substituting (A.18) for K∗
k yields

gk (Xk) =E
[
XT

k

(
ATSk+1A + W

)
Xk

∣∣∣Ok

]
+ tr (QSk+1) + ck+1 − V̄ X̂T

k ATSk+1BK∗
kX̂k,(A.30)

gk (Xk) =E
[
XT

k

(
ATSk+1A + W − V̄ATSk+1BK∗

k

)
Xk

∣∣∣Ok

]
+ tr (QSk+1)

+E[ck+1| Ok] + V̄ tr(ATSk+1BK∗
kPk|k), (A.31)

where (A.31) is achieved through use of [65, lemma 1(b)]. The proof of this lemma is

supplied in Appendix A.4. This is of the same form as (A.17). Therefore, substitution

gives

gk (Xk) =E
[
XT

k SkXk

∣∣∣Ak

]
+ ck, k = N, . . . , 0, (A.32)

which corresponds to (A.16), as required. This Concludes the proof.
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A.3 Theorem 1

This Appendix is dedicated to the proof of Theorem 1. The theorem is re-stated below.

Theorem 1. The optimal value function of the attacker, for the system (3.1) where the

operator assumes IID packet drops represented by V A
k , is defined as

fN (XN) ∆= E
[
XT

NQXXN

∣∣∣AN

]
, (A.33a)

fk (Xk) ∆= max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k QXXk + V A∗

k X̂T
k KT

k QUKkX̂k

+fk+1 (Xk+1)| Ak]}} , (A.33b)

where it is known that the minimising Kk is (3.30). It is shown that (A.33) is equivalent

to

fk(Xk) ∆= E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, k = N, . . . , 0, (A.34)

where the matrix Rk ∈ Rn×n and the scalar dk ∈ R are recursively calculated according to

Rk = ATRk+1A + QX + V A∗

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
, (A.35)

dk = V A∗

k tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (ΣW Rk+1) + E[dk+1|Ak], (A.36)

where V A∗
k represents the optimal realisation at time k that maximises the cost function

of the operator and K∗
k is the optimal time varying gain that the operator implements at

time k. The realisation of V A∗
k is determined by the inequality

V A∗

k
∆=


1 for X̂T

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
X̂k > 0,

0 Otherwise,
(A.37)

K∗
k

∆=
(
QU + BTSk+1B

)−1
BTSk+1A. (A.38)

Proof. The following proof takes the form of an induction proof. Namely, after showing

the initial conditions hold true it is assumed that (A.34) holds true for time instant k + 1.



A.3 Theorem 1 246

After which it is shown that it holds true for the time instant k, in doing so the recursive

form of Rk and dk are revealed. Proceeding with the dynamic programming algorithm,

with initial conditions RN = W and dN = 0 the optimal value function at time N is

fN(XN) = E
[
XT

NRNXN

∣∣∣AN

]
+ dN = E

[
XT

NQXXN

∣∣∣AN

]
= J0(X0, P0). (A.39)

Therefore, due to the equivalence, the initial conditions hold. By assuming the definition

of the value function holds for the k + 1th time instance it shall be proved to hold for

the kth.

fk (Xk) = max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k WXk + V A
k X̂

T
k KT

k UKkX̂k

+fk+1 (Xk+1)| Ak]}}, (A.40)

= max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k WXk + V A
k X̂

T
k KT

k UKkX̂k

+XT
k+1Rk+1Xk+1

∣∣∣Ak

]}}
, (A.41)

= max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k WXk + V A
k X̂

T
k KT

k UKkX̂k + dk+1

+
(
AXk − V A

k BKkX̂k +Wk

)T
Rk+1

(
AXk − V A

k BKkX̂k +Wk

)∣∣∣∣Ak

]}}
, (A.42)

= max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k

(
ATRk+1A + W

)
Xk

∣∣∣Ak

]
+ tr (ΣW Rk+1)

+E [dk+1|Ak] + V A
k X̂

T
k

(
KT

k

(
U + BTRk+1B

)
Kk − 2 KT

k BTRk+1A
)
X̂k

}}
,(A.43)

where the minimising Kk is calculated from (3.30) or is known by assumption. Therefore,

with substitution of the optimal control gain, K∗
k, (A.43) becomes

fk (Xk) = max
V A

k
=f(Ak)

{
E
[
XT

k

(
ATRk+1A + W

)
Xk

∣∣∣Ak

]
+ tr (ΣW Rk+1) + E [dk+1|Ak]

+V A
k X̂

T
k

(
KT∗

k

(
U + BTRk+1B

)
K∗

k − 2ATRk+1BK∗
k

)
X̂k

}
. (A.44)

To maximise the value function with respect to V A
k the fourth term should only be allowed

to contribute to the overall value of the function when the term is positive. This decision
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corresponds to (A.37). Therefore, (A.44) becomes

fk (Xk) =E
[
XT

k

(
ATRk+1A + W + V A∗

k

(
KT∗

k

(
U + BTRk+1B

)
K∗

k − 2ATRk+1BK∗
k

))
Xk

∣∣∣Ak

]
+tr (ΣW Rk+1) + E [dk+1|Ak]

−V A∗

k tr
((
KT∗

k

(
U + BTRk+1B

)
K∗

k − 2ATRk+1BK∗
k

)
Pk|k

)
, (A.45)

where (A.45) is achieved through use of [65, lemma 1(b)]. The proof of this step is reported

in Appendix A.4. Therefore, if Rk and dk are defined recursively as

Rk = ATRk+1A + QX + V A∗

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
, (A.46)

dk =V A∗

k tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (ΣW Rk+1) + E[dk+1|Ak], (A.47)

then (A.45) becomes

fk (Xk) =E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, k = N, . . . , 0, (A.48)

as required. This concludes the proof.

A.4 Lemma 1(b) [65]

This Appendix is dedicated to the proof of Lemma 1(b) reported within [65].

Lemma 1(b) ([65]). The following facts are true:

E
[
XT

k RXk

∣∣∣Ak

]
= X̂T

k RX̂k + tr
(
R Pk|k

)
(A.49)

Proof. Using standard algebraic operations
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E
[
XT

k RXk

∣∣∣Ak

]
=E

[(
Xk + X̂k − X̂k

)T
R
(
Xk + X̂k − X̂k

) ∣∣∣Ak

]
, (A.50)

= X̂T
k RX̂k + E

[(
Xk − X̂k

)T
R
(
Xk − X̂k

) ∣∣∣Ak

]
+2E

[
X̂T

k R
(
Xk − X̂k

) ∣∣∣Ak

]
, (A.51)

= X̂T
k RX̂k + tr

(
RE

[(
Xk − X̂k

) (
Xk − X̂k

)T ∣∣∣Ak

])
+2tr

(
RE

[(
Xk − X̂k

)
X̂T

k

∣∣∣Ak

])
, (A.52)

= X̂T
k RX̂k + tr

(
RE

[
ek|ke

T
k|k

∣∣∣Ak

])
+2 tr

(
RE

[
XkX̂

T
k − X̂kX̂

T
k

∣∣∣Ak

])
, (A.53)

= X̂T
k RX̂k + tr

(
R Pk|k

)
+ 2 tr

(
R
(
X̂kX̂

T
k − X̂kX̂

T
k

))
, (A.54)

E
[
XT

k RXk

∣∣∣Ak

]
= X̂T

k RX̂k + tr
(
R Pk|k

)
. (A.55)

This concludes the proof.

Remark . The derivations in Chapter 3 use this relation with a re-arrangement such that

X̂T
k RX̂k = E

[
XT

k RXk

∣∣∣Ak

]
− tr

(
R Pk|k

)
. (A.56)

A.5 Lemma 6

This Appendix is dedicated to the proof of Lemma 6. The lemma is re-stated below.

Lemma 6. The optimal value function for the attack on the system system (3.20), where

the operator assumes IID packet drops, with a time varying detection constraint is defined

as

fN (XN) ∆= E
[
XT

NQXXN

∣∣∣AN

]
, (A.57a)

fk (Xk) ∆= max
V A

k
=fk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k K′∗

k QUK∗
kX̂k + X̂T

k t (Λk) X̂k

+ fk+1 (Xk+1)
∣∣∣∣Ak

]}
, (A.57b)
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where Λk is defined as

Λk = ΛRk+1
√
k. (A.58)

It holds that (A.5) is equivalent to

fk(Xk) ∆= E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, k = N, . . . , 0, (A.59)

where the matrix Rk ∈ Mn and dk ∈ R are recursively calculated according to

Rk = ATRk+1A + QX

+V A∗

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
, (A.60)

dk = V A∗

k tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (ΣW Rk+1) + E[dk+1|Ak]

−X̂kt (Λk) X̂k, (A.61)

where V A∗
k represents the optimal decision of V A

i that maximises the cost function of the

operator. The decision is determined by the inequality

V A∗

k
∆=


1 for (K∗′

k (QU + B′Rk+1B) K∗
k − 2K∗′

k B′Rk+1A) > t (Λk)

0 otherwise,
, (A.62)

Proof. The following takes the form of an induction proof. Namely, after showing the

initial conditions hold true it is assumed that (A.57) holds true for time instant k + 1.

After which it is shown that it holds true for the time instant k, in doing so the recursive

form of Rk and dk are revealed. Proceeding with the dynamic programming algorithm,

with initial conditions RN = QX and dN = 0 the optimal value function at time N is

fN(XN) = E
[
XT

NRNXN

∣∣∣AN

]
+ dN = E

[
XT

NQXXN

∣∣∣AN

]
= J0(X0, P0). (A.63)

Therefore, due to the equivalence, the initial conditions hold. By assuming the definition

of the value function holds for the k + 1th time instance it shall be proved to hold for
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the kth.

fk (Xk) = max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k K′

kQUK∗
kX̂k − X̂T

k t (Λk) X̂k

+ dk+1 + fk+1 (Xk+1)
∣∣∣∣Ak

]}}
, (A.64)

= max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k K′

kQUKkX̂k − X̂T
k t (Λk) X̂k

+XT
k+1Rk+1Xk+1

∣∣∣∣Ak

]}}
, (A.65)

= max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k QXXk + V A
k X̂

T
k K′

kQUKkX̂k − X̂T
k t (Λk) X̂k + dk+1

+
(
AXk − V A

k BKkX̂k +Wk

)T
Rk+1

(
AXk − V A

k BKkX̂k +Wk

)∣∣∣∣Ak

]}}
, (A.66)

= max
V A

k
=fk(Ak)

{
min

Kk=gk(Ak)

{
E
[
XT

k

(
ATRk+1A + W

)
Xk

∣∣∣Ak

]
+ tr (ΣW Rk+1)

−X̂T
k t (Λk) X̂k + E [dk+1|Ak]

+V A
k X̂

T
k

(
KT

k

(
U + BTRk+1B

)
Kk − 2KT

k BTRk+1A
)
X̂k

}}
, (A.67)

the minimising Kk is calculated from (3.30) or is known by assumption. Therefore, with

substitution of the optimal control gain, K∗
k, (A.67) becomes

fk (Xk) = max
V A

k
=f(Ak)

{
E
[
XT

k

(
ATRk+1A + W

)
Xk

∣∣∣Ak

]
+ tr (ΣW Rk+1) + E [dk+1|Ak]

−X̂T
k t (Λk) X̂k + V A

k X̂
T
k

(
KT∗

k

(
U + BTRk+1B

)
K∗

k − 2ATRk+1BK∗
k

)
X̂k

}
. (A.68)

To maximise the value function with respect to V A
k only two terms depend on V A

k . The

decision therefore, depends on

X̂T
k

(
KT∗

k

(
U + BTRk+1B

)
K∗

k − 2ATRk+1BK∗
k

)
X̂k − X̂T

k t (Λk) X̂k > 0, (A.69)

(A.70)

or equivalently

X̂T
k

(
KT∗

k

(
U + BTRk+1B

)
K∗

k − 2ATRk+1BK∗
k

)
X̂k >X̂

T
k t (Λk) X̂k. (A.71)



A.5 Lemma 6 251

Note that due to the fact that both terms are scaled by a quadratic in X̂k the above

definition is equivalent (A.62). Therefore, with the maximisation solved, (A.68) becomes

fk (Xk) =E
[
XT

k

(
ATRk+1A + W + V A∗

k

(
KT∗

k

(
U + BTRk+1B

)
K∗

k − 2ATRk+1BK∗
k

))
Xk

∣∣∣Ak

]
−X̂T

k t (Λk) X̂k + tr (ΣW Rk+1) + E [dk+1|Ak]

−V A∗

k tr
((

KT∗
k

(
U + BTRk+1B

)
K∗

k − 2ATRk+1BK∗
k

)
Pk|k

)
, (A.72)

where (A.72) is achieved through use of [65, lemma 1(b)]. The proof of this step is reported

in Appendix A.4. Therefore, if Rk and dk are defined recursively as

Rk = ATRk+1A + QX

+V A∗

k

(
K∗T

k

(
QU + BTRk+1B

)
K∗

k − 2K∗T
k BTRk+1A

)
, (A.73)

dk =V A∗

k tr
((

ATRk+1A + QX − Rk

)
Pk|k

)
+ tr (ΣW Rk+1) + E[dk+1|Ak]

−X̂kt (Λk) X̂k, (A.74)

Substitution of these definitions results in

fk (Xk) =E
[
XT

k RkXk

∣∣∣Ak

]
+ dk, (A.75)

where

V A∗

k
∆=


1 for (K∗′

k (QU + B′Rk+1B) K∗
k − 2K∗′

k B′Rk+1A) > t (Λk)

0 otherwise,
, (A.76)

as required. This concludes the proof.



Appendix B

Chapter 4

B.1 Lemma 7

Lemma 7. Consider the system modelled by (4.1) with access to the information sets

given by (4.2). Then the following holds

E
[
ET

k ΩEk

∣∣∣∣Fk

]
= tr (ΩlΣW) , (B.1a)

E
[
ET

k ΩEk

∣∣∣∣Gk

]
=Uk ( Gk)TΥ (I ⊙ Ωg)

(
I − Υ

)
Uk ( Gk) + tr (ΩlΣW) , (B.1b)

where Ωl = ΛΩΛ.

The proof is split into two parts, one for the TCP-like protocol and one for the UDP-like

protocol, respectively.

Proof. TCP-like protocol

The expected error in TCP-like follows from (4.8a). Substituting this into the left-hand

side of (4.15a) yields

E
[
ET

k ΩEk

∣∣∣∣Fk

]
= E

[
WT

k ΩlWk

∣∣∣∣Fk

]
(B.2)

= tr (ΩlΣW) . (B.3)

This completes the TCP-like part of the proof.
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UDP-like protocol

The error in UDP-like estimation follows from (4.8b). Substituting this into the left-hand

side of (4.15b) gives

E
[
ET

kΩEk

∣∣∣∣Gk

]
= E

[
Uk

T
(
Υk − Υ

)
Ωg

(
Υk − Υ

)
Uk

∣∣∣∣Gk

]
+ E

[
WT

k ΛΩΛWk

∣∣∣∣Gk

]
, (B.4)

where we use the fact that Wk is zero mean to eliminate the cross terms. Note that the

second term is identical to the TCP-like case, in (B.2). Therefore, we have that

E
[
ET

k ΩEk

∣∣∣∣Gk

]
= E

[
Uk

TΥkΩgΥkUk

∣∣∣∣Gk

]
− Uk ( Gk)TΥΩgΥUk ( Gk) + tr (ΩlΣW) . (B.5)

It follows from Lemma 21 that

E
[
ET

k ΩEk

∣∣∣ Gk

]
= Uk ( Gk)T Υ (I ⊙ Ωg)

(
I − Υ

)
Uk ( Gk) + tr (ΩlΣW) . (B.6)

This concludes the proof.

B.2 Lemma 21

Lemma 21. It holds that

E
[
Uk

TΥk
TΩgΥkUk

∣∣∣∣Gk

]
= Uk ( Gk)TΥΩgΥUk ( Gk)

+Uk ( Gk)TΥ (I ⊙ Ωg)
(
I − Υ

)
Uk ( Gk), (B.7)

where I is the identity matrix and ⊙ is the element wise Hadamard product.
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Proof. The left hand side of (B.7) is scalar, and therefore

E
[
Uk ( Gk)T Υk

TΩgΥkUk ( Gk)
∣∣∣∣Gk

]
= E

[
U0 ( Gk) V0 (Ωg)1,1 V0U0 ( Gk)

∣∣∣∣Gk

]
+E

[
U0 ( Gk) V0 (Ωg)1,2 V1U1 ( Gk)

∣∣∣∣Gk

]
· · · + E

[
UNm−1 ( Gk) VNm−1 (Ωg)Nm,Nm VNm−1UNm−1 ( Gk)

∣∣∣∣Gk

]
(B.8)

=
Nm∑
i=1

Ui−1 ( Gk) Mi−1 (Ωg)i,i Ui−1 ( Gk)

+
Nm∑

j=1,j ̸=i

Ui−1 ( Gk) Mi−1 (Ωg)i,j Mj−1Uj−1 ( Gk)
 (B.9)

=
Nm∑
i=1

Nm∑
j=1

Ui−1 ( Gk) Mi−1 (Ωg)i,i (1 − Mi−1)Ui−1 ( Gk)

+Ui−1 ( Gk) Mi−1 (Ωg)i,j Mj−1Uj−1 ( Gk) (B.10)

=Uk ( Gk)TΥ (I ⊙ Ωg)
(
I − Υ

)
Uk ( Gk) + Uk ( Gk)TΥΩgΥUk ( Gk), (B.11)

where (Ωg)i,i represents the (i, j)-th element of Ωg. This concludes the proof.

B.3 Theorem 2

Theorem 2. Consider the closed-loop system with plant dynamics given in (4.1), protocol

dependent information sets given in (4.2) and controller cost function given in (4.10).

Then the optimal cost for the TCP-like protocol is

J∗ (Fk) = XT
k (Q + Ωp)Xk + tr (ΣWΩl) −XT

k FTG−1 (Fk) ΥFXk, (B.12)

and the optimal cost for the UDP-like protocol is

J∗ ( Gk) = XT
k (Q + Ωp)Xk + tr (ΣWΩl) −XT

k FTG−1 ( Gk) ΥFXk. (B.13)

As with Lemma 7 the proof is split into two parts to account for both protocols.
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Proof. Optimal Cost for the TCP-like Protocol

Substituting (4.15a) into (4.14), noting that under the TCP-like protocol the error term

does not depend on Uk, gives

J∗ (Fk) =XT
k (Q + Ωp)Xk + tr (ΩlΣW)

+ min
Uk( Gk)

{
Uk ( Gk)T Υ

(
2FXk +

(
ΩgΥ + Ψ

)
Uk ( Gk)

)}
. (B.14)

Note that
(
ΩgΥ + Ψ

)
is positive definite, and therefore, (B.14) is convex. Taking the

derivative of the cost with respect to Uk yields

∂J∗ (Fk)
∂Uk

= 2Υ
(
FXk +

(
ΩgΥ + Ψ

)
Uk (Fk)

)
. (B.15)

Solving for all Υ ̸= 0, the minimising value of Uk (Fk) is

U ∗
k (Fk) ∆= −

(
ΩgΥ + Ψ

)−1
FXk. (B.16)

Denoting
(
ΩgΥ + Ψ

)
by G−1 (Fk) and substituting Υ∗

k|Fk
into (B.14) results in the optimal

expected cost for the operator:

J∗ (Fk) = XT
k (Q + Ωp)Xk + tr (ΣWΩl) −XT

k FTG−1 (Fk) ΥFXk.

This concludes the TCP-like part of the proof.

Optimal Cost for the UDP-like Protocol

Combining (4.15b) and (4.14) the optimal cost function for the UDP-like protocol is given

by

J∗ ( Gk) =XT
k (Q + Ωp)Xk + tr (ΩlΣW)

+ min
Uk( Gk)

{
Uk ( Gk)T Υ

(
2FXk +

(
ΩgΥ + Ψ + (I ⊙ Ωg)

(
I − Υ

))
Uk ( Gk)

)}
.(B.17)
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Following the same process as with the TCP-like case, noting that(
ΩgΥ + Ψ + (I ⊙ Ωg)

(
I − Υ

))
is positive definite, and that therefore the minimisation is

convex, yields

∂J∗ ( Gk)
∂Uk

= 2Υ
(
FXk +

(
ΩgΥ + Ψ + (I ⊙ Ωg)

(
I − Υ

))
Uk ( Gk)

)
,

with the optimal value of U ∗
k ( Gk) given by

U ∗
k ( Gk) ∆= −

(
Ψ + (I ⊙ Ωg)

(
I − Υ

)
+ ΩgΥ

)−1
FXk. (B.18)

Re-labelling
(
Ψ + (I ⊙ Ωg)

(
I − Υ

)
+ ΩgΥ

)
as G ( Gk) and substituting U ∗

k ( Gk) into (B.14)

yields the optimal expected cost for the operator:

J∗ ( Gk) = XT
k (Q + Ωp)Xk + tr (ΣWΩl) −XT

k FTG−1 ( Gk) ΥFXk. (B.19)

This concludes the proof.

B.4 Lemma 8

Lemma 8. Let us define the cost difference between the UDP-like and the TCP-like

protocols as

J∗
∆

(
Υ
) ∆= J∗ ( Gk) − J∗ (Fk) > 0. (B.20)

The derivative of this cost difference is

∂J∗
∆

(
Υ
)

∂Υ
=XT

k FT
(

G−1 ( Gk)
( (

1 − 2Υ
)

Ωd

−Υ
(
1−Υ

) [
ΩhG−1 ( Gk) Ωd + ΩdG−1 (Fk) Ωg

])
G−1 (Fk)

)
FXk, (B.21)

where Ωd = (I ⊙ Ωg) and Υ ∈ [0, 1].
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Proof. In order to proceed with the proof we analyse the matrices G−1 (Fk) and G−1 ( Gk).

We define the mapping GI (α,A,B) : R×RnN×nN ×RnN×nN → RnN×nN

GI (α,A,B) = (αA + B)−1 , (B.22)

where α ∈ [0, 1], A ∈ RnN×nN , and B ∈ RnN×nN . Note that GI (α,Ωg,Ψ) = G−1(Fk)

and GI (α,Ωh, [Ωd + Ψ]) = G−1( Gk). Additionally, all arguments of GI (α,A,B) are

symmetric and B is a diagonal positive definite matrix for both protocols. From this

point, due to the fact that the matrices A and B are constants, we simplify the notation

to GI (α) and note that the results below apply to both the UDP-like and the TCP-like

protocols. The first derivative of the function GI (α) is

∂

∂β
GI (β) = ∂

∂β
(βA + B)−1

= − (βA + B)−1
[
∂

∂β
(βA + B)

]
(βA + B)−1, (B.23)

where in (B.23) the derivative is recast according to [30, 17.3(a)]. The derivative results in

∂

∂β
GI (β) = −GI (β) AGI (β) . (B.24)

In view of this the derivative of the cost difference is

∂J∗
∆

(
Υ
)

∂Υ
=
[
∂

∂Υ
Υ
(
1 − Υ

)
tr
(
GG

(
Υ
)

ΩdGF
(
Υ
)

L
)]

(B.25)

=
[
∂

∂Υ
Υ
(
1 − Υ

)]
tr
(
GG

(
Υ
)

ΩdGF
(
Υ
)

L
)

+Υ
(
1 − Υ

)
tr
∂GG

(
Υ
)

∂Υ

ΩdGF
(
Υ
)

L


+Υ

(
1 − Υ

)
tr
GG

(
Υ
)

Ωd

∂GF
(
Υ
)

∂Υ

L

 , (B.26)
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where (B.26) follows from applying property [30, 17.5] in conjunction with the product

rule. At this stage, implementing the result seen in (B.24) yields

∂J∗
∆

(
Υ
)

∂Υ
=XT

k FT
[
GG

(
Υ
) [(

1 − 2Υ
)

Ωd

−Υ
(
1−Υ

) [
ΩhGG

(
Υ
)

Ωd + ΩdGF
(
Υ
)

Ωg

]]
GF

(
Υ
)]

FXk, (B.27)

which corresponds to (4.36). This concludes the proof.

B.5 Lemma 9

Lemma 9. The relation

det
(

GG
(
Υ
) [(

1 − 2Υ
)

Ωd

−Υ
(
1−Υ

) [
ΩhGG

(
Υ
)

Ωd + ΩdGF
(
Υ
)

Ωg

]]
GF

(
Υ
) )

= 0 (B.28)

has 2Nm many solutions. Specifically:

ΥD
2i−1 = 1

1 +
√

1 + λi

, (B.29a)

ΥD
2i = 1

1 −
√

1 + λi

, (B.29b)

where ΥD
i correspondences to the i-th solution for (4.38) and λi is the i-th eigenvalue of

the matrix,

(
ΩgΩ−1

d (Ωg + Ψ) + ΨΩ−1
d Ωh

)
(Ωg + Ψ)−1 ΩdΨ−1. (B.30)

Proof. Multiplying (4.38) from the left and right by det
(
Ω−1

d

)
det

(
G−1

G

(
Υ
))

and

det
(
G−1

F

(
Υ
))

det
(
Ω−1

d

)
respectively gives

det
( [(

1−2Υ
)

Ω−1
d −Υ

(
1−Υ

) [
Ω−1

d ΩhGG
(
Υ
)

+ GF
(
Υ
)

ΩgΩ−1
d

]] )
= 0.
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Multiplying the left by det
(
G−1

F

(
Υ
))

and the right by det
(
G−1

G

(
Υ
))

and then re arranging

yields

det
(

Υ2
[
ΩgΩ−1

d [Ωg + Ψ] + ΨΩ−1
d Ωh

]
+2ΥΨΩ−1

d (Ωd + Ψ) − ΨΩ−1
d (Ωd + Ψ)

)
= 0. (B.31)

The above is a quadratic in the, Υ. However, note that due to the determinant (B.31) is

of order Nm in Υ. To see this, operate the determinant as follows

ΥNmdet
(

− 1
Υ2 ΨΩ−1

d (Ωd + Ψ) + 2 1
Υ

ΨΩ−1
d (Ωd + Ψ)

+
[
ΩgΩ−1

d [Ωg + Ψ] + ΨΩ−1
d Ωh

] )
= 0. (B.32)

Additionally, by assumption Υ ̸= 0 , and therefore, dividing by −ΥNm gives

det
( ( 1

Υ2 − 2 1
Υ

) [
ΨΩ−1

d (Ωd + Ψ)
]

︸ ︷︷ ︸
H

−
[
ΩgΩ−1

d [Ωg + Ψ] + ΨΩ−1
d Ωh

]
︸ ︷︷ ︸

T

)
= 0. (B.33)

From the above it follows that the matrix H is positive definite and diagonal. Additionally,

some manipulation reveals that T is symmetric. Therefore, multiplying the left and right

by det
(
ST
)

and det (S) respectively gives [30, 16.51(c)]

det
( 1

Υ2 I − 2 1
Υ

I − Λ
)
= 0, (B.34)

where Λ is the diagonal matrix where the diagonal entries λi are the eigenvalues of the

matrix TH−1. The above is equivalent to

Nm∏
i=1

( 1
Υ2 − 2 1

Υ
− λi

)
= 0. (B.35)
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Note that (B.35) a polynomials on Υ of order Nm with solutions

ΥD
2i−1 = 1

1 +
√

1 + λi

,

ΥD
2i = 1

1 −
√

1 + λi

, (B.36)

where ΥD
i is the i-th solution of (4.38). This concludes the proof.



Appendix C

Chapter 5

C.1 Lemma 12

This Appendix is dedicated to the proof of Lemma 12. The lemma is re-stated below.

Lemma 12. Let (5.23) be concave in α over C (µ, ϵ). Then the maximum of the function

is given by

max{f(α)} = max
{
f(min{ C (µ, ϵ)}), f(max{ C (µ, ϵ)}), f(1C(µ,ϵ)αmax)

}
(C.1)

where 1B denotes the indicator function over the set B.

Proof. In the concave case a global maximum exists, but is not necessarily within the

interval C (µ, ϵ), and therefore, we restrict the domain to the safe operation region with

the indicator function

1C(µ,ϵ) =


1 α ∈ C (µ, ϵ)

0 α /∈ C (µ, ϵ)
. (C.2)

The concavity of the function implies

f ′(α) = Υ∗T
k ( Gk) (2αΩg + (1 − 2α) (I ⊙ Ωg) + Ψ − 2G ( Gk)) Υ∗

k ( Gk) , (C.3)

f ′′(α) = 2Υ∗T
k ( Gk) (Ωg − (I ⊙ Ωg)) Υ∗

k ( Gk) < 0, (C.4)
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where (C.4) follows from the strict concavity of (5.23). Setting (C.3) equal to zero gives

Υ∗T
k ( Gk) (2αΩg + (1 − 2α) (I ⊙ Ωg) + Ψ − 2G ( Gk)) Υ∗

k ( Gk) = 0,

which results in

2αXT
k ΩT

gpG−1 ( Gk) (Ωg − (I ⊙ Ωg)) G−1 ( Gk) ΩgpXk =

XT
k ΩT

gpG−1 ( Gk) (2G ( Gk) − Ψ − (I ⊙ Ωg)) G−1 ( Gk) ΩgpXk. (C.5)

It follows from the strict concavity of (5.23), as in (C.4), that

XT
k ΩT

gpG−1 ( Gk) (Ωg − (I ⊙ Ωg)) G−1 ( Gk) ΩgpXk ̸= 0, (C.6)

and therefore, (C.5) can be solved for α yielding

αmax = 1
2h

−1
UDP

(
XT

k ΩT
gpG−1 ( Gk) (2G ( Gk) − Ψ − (I ⊙ Ωg)) G−1 ( Gk) ΩgpXk

)
, (C.7)

where hUDP
∆= Υ∗T

k ( Gk) (Ωg − (I ⊙ Ωg)) Υ∗
k ( Gk). The global maximum is the solution

when αmax ∈ C (µ, ϵ), i.e. the term αmax1C(µ,ϵ) in (C.1). When αmax /∈ C (µ, ϵ) the

solution follows as in the convex scenario by noticing that the inequality is strict and in

the opposite direction. Therefore, when αmax /∈ C (µ, ϵ) the attack construction reverts

to selecting the value of α on the maximising boundary. For a concave function this is

equivalent to finding the boundary that is closest to αmax. Let a, b ∈ C (µ, ϵ) and assume

f(a) > f(b) and |a− αmax| < |b− αmax|, then

f(b) < tf(a) + (1 − t)f(αmax). (C.8)

However, this line segment lies above the function which contradicts the fact that this

function is concave, and therefore, the maximising α is on the boundary that is closest to

αmax. This concludes the proof.
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C.2 Lemma 15

This Appendix is dedicated to the proof of Lemma 15. The lemma is re-stated below.

Lemma 15. The maximisation defined in (5.58) is convex in Υα.

Proof. We begin by defining a function that is equivalent to the cost function that which

we are attempting to maximise:

T
(
Υα
)

= tr
([

ΥαΩgΥα − Υα
(
2ΥΩg + Ψ

)]
U ∗

k (Fk)U ∗T
k (Fk)

)
. (C.9)

We proceed by showing the above function is convex, after which we obtain the global

minimum of (C.9). To that end the first derivative of T
(
Υα
)

with respect to Υα is defined

as

∂T
(
Υα
)

∂Υα
=
∂tr

(
ΥαΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

)
∂Υα

−
∂tr

(
Υα

(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

)
∂Υα

. (C.10)

The second term is linear in Υα and is easier to evaluate. Notice that

∂tr
(
Υα

(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

)
∂Υα

=
∂tr

(
ΥαKH

)
∂Υα

, (C.11)

where U ∗
k (Fk)U ∗T

k (Fk) = H and
(
2ΥΩg + Ψ

)
= K. Using the cyclic properties of the

trace operator and the fact that Υα is diagonal, it follows from [30, pg 366. 17.39] that

∂tr
(
ΥαKH

)
∂Υα

=
∂tr

(
KΥαH

)
∂Υα

, (C.12)

= I ⊙
[
HK + KTHT − I ⊙ [HK]

]
, (C.13)

= I ⊙ [HK] + I ⊙
[
KTHT

]
− I ⊙ I ⊙ [HK] , (C.14)

= I ⊙
[
KTH

]
, (C.15)

= I ⊙
[
2
(
ΩgΥ + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

]
, (C.16)
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where (C.13) follows from the diagonal constraint of Υα and (C.15) is a result of the

symmetry of K. Therefore, (C.10) becomes

∂T
(
Υα
)

∂Υα
=
∂tr

(
ΥαΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

)
∂Υα

− I ⊙
[(

2ΩgΥ + Ψ
)
U ∗

k (Fk)U ∗T
k (Fk)

]
.(C.17)

Similar to the previous term, through use of [30, pg. 367, 17.41],

∂tr
(
ΥαΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

)
∂Υα

=
∂tr

(
ΥαΩgΥαH

)
∂Υα

(C.18)

= I ⊙
[
HΥαΩg + ΩgΥαH +

(
HΥαΩg + ΩgΥαH

)T

−I ⊙
[
HΥαΩg + ΩgΥαH

]]
(C.19)

= I ⊙
[
HΥαΩg + ΩgΥαH

]
+ I ⊙

[(
HΥαΩg + ΩgΥαH

)T
]

−I ⊙ I ⊙
[
HΥαΩg + ΩgΥαH

]
(C.20)

= I ⊙
[(

HΥαΩg + ΩgΥαH
)T
]

(C.21)

= I ⊙
[
HΥαΩT

g + ΩT
g ΥαH

]
(C.22)

= I ⊙
[
U ∗

k (Fk)U ∗T
k (Fk) ΥαΩg

]
+I ⊙

[
ΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

]
(C.23)

where (C.22) follows from the symmetry of H and Ωg. Therefore, the first derivative

of (C.10) is

∂T
(
Υα
)

∂Υα
= I ⊙

[
U ∗

k (Fk)U ∗T
k (Fk) ΥαΩg + ΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

]
−I ⊙

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

]
= I ⊙

[
2ΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

]
− I ⊙

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

]
.(C.24)

Only the first term of (C.24) depends on Υα, and therefore, the second derivative is

equivalent to

∂2T
(
Υα
)

∂Υα∂Υα
=
∂
(
I ⊙

[
2ΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

])
∂Υα

. (C.25)
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It should be noted that performing a derivative twice with respect to a matrix is equivalent

to

∂2T
(
Υα
)

∂Υα∂Υα
=

∂2T
(
Υα
)

∂vec
(
Υα
)
∂vec

(
Υα
)T =

∂T
(
Υα
)

∂
(
Υα ⊗ Υα

) , (C.26)

where the vec (·) operator yields a vector that is formed with the stacked columns of

the matrix input [30]. From this interpretation it becomes clear that to find the second

derivative one must simply perform the derivative with respect the diagonal and symmetric

matrix Υα ⊗ Υα of size N2m2. Therefore,

∂2tr
(
ΥαΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

)
∂Υα∂Υα

=
∂tr

(
ΥαΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

)
∂
(
Υα ⊗ Υα

) . (C.27)

This is now equivalent to finding a single derivative of a scalar function, and therefore,

results in a matrix of size N2m2. As before note that

∂tr
(
ΥαΩgΥαU ∗

k (Fk)U ∗T
k (Fk)

)
∂
(
Υα ⊗ Υα

) =
∂tr

(
ΥαΩgΥαH

)
∂
(
Υα ⊗ Υα

) . (C.28)
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Then the derivative is

∂tr
(
ΥαΩgΥαH

)
∂
(
Υα ⊗ Υα

) =



∂tr(Υ αΩg Υ αH)
∂(Υ α⊗Υ α)1,1

∂tr(Υ αΩg Υ αH)
∂(Υ α⊗Υ α)1,2

. . .
∂tr(Υ αΩg Υ αH)

∂(Υ α⊗Υ α)1,N2m2

∂tr(Υ αΩg Υ αH)
∂(Υ α⊗Υ α)2,1

∂tr(Υ αΩg Υ αH)
∂(Υ α⊗Υ α)2,2

. . .
∂tr(Υ αΩg Υ αH)

∂(Υ α⊗Υ α)2,N2m2

... ... . . . ...
∂tr(Υ αΩg Υ αH)

∂(Υ α⊗Υ α)
N2m2,1

∂tr(Υ αΩg Υ αH)
∂(Υ α⊗Υ α)

N2m2,2
. . .

∂tr(Υ αΩg Υ αH)
∂(Υ α⊗Υ α)

N2m2,N2m2



=



∂tr(Υ αΩg Υ αH)
∂(Υ α⊗Υ α)1,1

0 . . . 0

0 ∂tr(Υ αΩg Υ αH)
∂(Υ α⊗Υ α)2,2

. . . 0

... ... . . . ...

0 0 . . .
∂tr(Υ αΩg Υ αH)

∂(Υ α⊗Υ α)
N2m2,N2m2



=



∂tr(Υ αΩg Υ αH)
∂(Υ α

1 Υ α
1 ) 0 . . . 0

0 ∂tr(Υ αΩg Υ αH)
∂(Υ α

1 Υ α
2 ) . . . 0

... ... . . . ...

0 0 . . .
∂tr(Υ αΩg Υ αH)
∂(Υ α

Nm Υ α
Nm)



=



Ωg1,1H1,1 0 . . . 0

0 Ωg1,1H2,2 . . . 0
... ... . . . ...

0 0 . . . ΩgNm,NmHNm,Nm


(C.29)

= I ⊙ (Ωg ⊗ H) (C.30)

= I ⊙
[
Ωg ⊗

(
U ∗

k (Fk)U ∗T
k (Fk)

)]
, (C.31)

from this it can be seen that

∂2T
(
Υα
)

∂Υα∂Υα
= I ⊙

[
Ωg ⊗

(
U ∗

k (Fk)U ∗T
k (Fk)

)]
≻ 0, (C.32)
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where second derivative is strictly positive definite assuming the i-th element of Uk (Fk) is

non-zero for all i ∈ {1, . . . , Nm}. This assumption is true with probability 1 as the initial

condition is a zero mean Gaussian, i.e. P [Xk = 0] = 0. Therefore, from the strict positive

definiteness of the second derivative the function (5.57) is convex in Υα almost surely.

This concludes the proof.

C.3 Corollary 6

This Appendix is dedicated to the proof of Corollary 6. The corollary is re-stated below.

Corollary 6. There exists a global minimum of the function (5.58) that is defined as

Υα
min = 1

2
(
I ⊙ Ω−1

g

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

]) (
I ⊙

[
U ∗

k (Fk)U ∗T
k (Fk)

])−1
. (C.33)

This is not equal to operator’s postulate IID variable, Υ.

Proof. From Lemma 15 it follows that there exists a single global minimum of (5.58).

This is found from the solution of the first derivative of (5.58). The minimising solution

of (C.24) is found as follows

∂T
(
Υα
)

∂Υα
= I ⊙

[
2ΩgΥα

minU ∗
k (Fk)U ∗T

k (Fk)
]

− I ⊙
[(

2ΥΩg + Ψ
)
U ∗

k (Fk)U ∗T
k (Fk)

]
. (C.34)

Setting this equal to 0 and solving yields

I ⊙
[
2ΩgΥα

minU ∗
k (Fk)U ∗T

k (Fk)
]
= I ⊙

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

]
. (C.35)

Converting the Hadamard products to Kronecker products yields [30, pg. 251, 11.38ai]

φ
(
I ⊗

[
2ΩgΥα

minU ∗
k (Fk)U ∗T

k (Fk)
])
φT

= φ
(
I ⊗

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

])
φT, (C.36)
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where φ = ∑N2m2

i=1 ei (ei ⊗ ei)T. From the positive definiteness of Ωg its inverse exists and

therefore

φ
(
I ⊗ Ω−1

g

)
φTφ

(
I ⊗

[
2ΩgΥα

minU ∗
k (Fk)U ∗T

k (Fk)
])
φT

= φ
(
I ⊗ Ω−1

g

)
φTφ

(
I ⊗

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

])
φT, (C.37)

φ
(
I ⊗ Ω−1

g

) (
I ⊗

[
2ΩgΥα

minU ∗
k (Fk)U ∗T

k (Fk)
])
φT

= φ
(
I ⊗ Ω−1

g

) (
I ⊗

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

])
φT. (C.38)

Through use of [30, pg. 238, 11.11] in (C.38) it is seen that

φ
(
I ⊗ Ω−1

g

[
2ΩgΥα

minU ∗
k (Fk)U ∗T

k (Fk)
])
φT

= φ
(
I ⊗ Ω−1

g

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

])
φT, (C.39)

φ
(
I ⊗ 2

[
Υα

minU ∗
k (Fk)U ∗T

k (Fk)
])
φT

= φ
(
I ⊗ Ω−1

g

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

])
φT, (C.40)

2Υα
min

(
I ⊙

[
U ∗

k (Fk)U ∗T
k (Fk)

])
= φ

(
I ⊗ Ω−1

g

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

])
φT. (C.41)

As stated before
(
I ⊙

[
U ∗

k (Fk)U ∗T
k (Fk)

])
is positive definite and therefore its inverse

exists, which results in

Υα
min = 1

2φ
(
I ⊗ Ω−1

g

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

])
φT

(
I ⊙

[
U ∗

k (Fk)U ∗T
k (Fk)

])−1
(C.42)

= 1
2
(
I ⊙ Ω−1

g

[(
2ΥΩg + Ψ

)
U ∗

k (Fk)U ∗T
k (Fk)

]) (
I ⊙

[
U ∗

k (Fk)U ∗T
k (Fk)

])−1
. (C.43)

Therefore, the global minimum of (5.58) is (5.59). This concludes the proof.

C.4 Lemma 16

This Appendix is dedicated to the proof of Lemma 16. The lemma is re-stated below.
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Lemma 16. The objective function of the optimisation problem

max
Υ α

tr
([

ΥαΩHΥα − Υα
(
(I ⊙ Ωg) + Ψ + 2ΥΩH

)]
U ∗

k ( Gk)U ∗T
k ( Gk)

)
,

s.t. Mα
k ∈ Cϵ (M,L) for k ∈ N, (C.44)

is neither convex nor concave in Υα and the second derivative is equal to 0.

Proof. We define the function

W
(
Υα
) ∆= tr

([
ΥαΩHΥα − Υα

(
(I ⊙ Ωg) + Ψ + 2ΥΩH

)]
U ∗

k ( Gk)U ∗T
k ( Gk)

)
. (C.45)
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The second derivative of (C.45) with respect to Υα is

∂tr
(
ΥαΩHΥαH

)
∂
(
Υα ⊗ Υα

) =



∂tr(Υ αΩH Υ αH)
∂(Υ α⊗Υ α)1,1

∂tr(Υ αΩH Υ αH)
∂(Υ α⊗Υ α)1,2

. . .
∂tr(Υ αΩH Υ αH)

∂(Υ α⊗Υ α)1,N2m2

∂tr(Υ αΩH Υ αH)
∂(Υ α⊗Υ α)2,1

∂tr(Υ αΩH Υ αH)
∂(Υ α⊗Υ α)2,2

. . .
∂tr(Υ αΩH Υ αH)

∂(Υ α⊗Υ α)2,N2m2

... ... . . . ...
∂tr(Υ αΩH Υ αH)

∂(Υ α⊗Υ α)
N2m2,1

∂tr(Υ αΩH Υ αH)
∂(Υ α⊗Υ α)

N2m2,2
. . .

∂tr(Υ αΩH Υ αH)
∂(Υ α⊗Υ α)

N2m2,N2m2



=



∂tr(Υ αΩH Υ αH)
∂(Υ α⊗Υ α)1,1

0 . . . 0

0 ∂tr(Υ αΩH Υ αH)
∂(Υ α⊗Υ α)2,2

. . . 0

... ... . . . ...

0 0 . . .
∂tr(Υ αΩH Υ αH)

∂(Υ α⊗Υ α)
N2m2,N2m2



=



∂tr(Υ αΩH Υ αH)
∂(Υ α

1 Υ α
1 ) 0 . . . 0

0 ∂tr(Υ αΩH Υ αH)
∂(Υ α

1 Υ α
2 ) . . . 0

... ... . . . ...

0 0 . . .
∂tr(Υ αΩH Υ αH)

∂(Υ α
Nm Υ α

Nm)



=



ΩH1,1H1,1 0 . . . 0

0 ΩH1,1H2,2 . . . 0
... ... . . . ...

0 0 . . . ΩHNm,NmHNm,Nm


= I ⊙ (ΩH ⊗ H)

= I ⊙
[
ΩH ⊗

(
U ∗

k (Fk)U ∗T
k (Fk)

)]
, (C.46)

from this it follows that

∂2T
(
Υα
)

∂Υα∂Υα
= I ⊙

[
ΩH ⊗

(
U ∗

k (Fk)U ∗T
k (Fk)

)]
. (C.47)
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Unfortunately, the Kronecker product of the hollow matrix ΩH , with any other matrix

produces another hollow matrix. Therefore, the term on the right hand side in (C.47) is

hollow. When the Hadamard product is then applied all non-diagonal elements become

zero. This means the above derivative is the zero matrix, that is

∂2T
(
Υα
)

∂Υα∂Υα
=0 (C.48)

The objective function is neither convex nor concave. This concludes the proof.

C.5 Theorem 12

This Appendix is dedicated to the proof of Theorem 12. The theorem is re-stated below.

Theorem 12. The minimising value of λ for the function

ΨTk
(λ) = log

(
E
[
eλZk

])
. (C.49)

For a centered sequence of Bernoulli random variables is

λT = log
(T

k
+ Mα

)
(I − Mα)

(
I − T

k
− Mα

)−1
(Mα)−1

 . (C.50)

Proof. For the centered Bernoulli sequence

ΨTk
(λ) = log

(
k∏

i=1
E
[
eλ(V A

i −Mα)
])

(C.51)

=
k∑

i=1
log

(
E
[
eλ(V A

i −Mα)
])

(C.52)

= −kλMα +
k∑

i=1
log

(
P
[
V A

i = I
]
eλ·I + P

[
V A

i = 0

]
eλ0
)

(C.53)

= −kλMα +
k∑

i=1
log

(
Mαeλ + (I − Mα)

)
(C.54)

= k
(
log

(
Mαeλ + (I − Mα)

)
− λMα

)
. (C.55)
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The next object to be computed is λT. It should be noted however that for our case we

have parallelised the probability of detection for each channel. Therefore, the following

derivative follows a slight abuse of notation. This is due to the fact that we are actually

performing m separate scalar differentiations and not a single matrix differentiation.

Performing this derivative yields

T = ∂ΨTk
(λ)

∂λ
(C.56)

=
∂
∑k

i=1 log
(
Mαeλ + (I − Mα)

)
∂λ

− kMα (C.57)

=
k∑

i=1

∂ log
(
Mαeλ + (I − Mα)

)
∂λ

− kMα (C.58)

T + kMα =
k∑

i=1

(
Mαeλ + (I − Mα)

)−1 ∂
(
Mαeλ + (I − Mα)

)
∂λ

(C.59)

T + kMα = k
(
Mαeλ + (I − Mα)

)−1
Mαeλ (C.60)

After performing the derivative, rearranging to give the λT yields

T
k

+ Mα =
(
Mαeλ + (I − Mα)

)−1
Mαeλ (C.61)

Mαeλ =
(T
k

+ Mα
) (

Mαeλ + (I − Mα)
)

− Mαeλ (C.62)

eλMα
(

I − T
k

− Mα
)

=
(T
k

+ Mα
)

(I − Mα) (C.63)

λT = log
(T

k
+ Mα

)
(I − Mα)

(
I − T

k
− Mα

)−1
(Mα)−1

 . (C.64)

C.6 Theorem 13

This Appendix is dedicated to the proof of Theorem 13. The theorem is re-stated below.
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Theorem 13. The minimising value of λT results in the following probability of detection

bound

PD ≤ e−kD( ⌊k(M+L)⌋
k ∥Mα) + e−kD( ⌈k(M−L)⌉

k ∥Mα). (C.65)

Proof. We begin with the substitution of the optimal λT into the definition of the optimal

function

Ψ ∗
Tk

(T) =λTT − ΨTk
(λT) (C.66)

= T log
(T

k
+ Mα

)
(I − Mα)

(
I − T

k
− Mα

)−1
(Mα)−1


+k

(
log

(
MαeλT + (I − Mα)

)
− λTMα

)
(C.67)

= T log
(T

k
+ Mα

)
(I − Mα)

(
I − T

k
− Mα

)−1
(Mα)−1


+k log

(T
k

+ Mα
)

(I − Mα)
(

I − T
k

− Mα
)−1

+ (I − Mα)


−kMα log
(T

k
+ Mα

)
(I − Mα)

(
I − T

k
− Mα

)−1
(Mα)−1

. (C.68)
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Dividing through by k and noting that the first and last logarithm contain the same terms

within yields

1
k
Ψ ∗

Tk
(t) =

(T
k

+ Mα
)

log
(T

k
+ Mα

)
(I − Mα)

(
I − T

k
− Mα

)−1
(Mα)−1


+ log

(T
k

+ Mα
)(

I − T
k

− Mα
)−1

+ I

 (I − Mα)
 (C.69)

=
(T
k

+ Mα
)

log
(T

k
+ Mα

)
(I − Mα)

(
I − T

k
− Mα

)−1
(Mα)−1


+ log

(I − Mα)
(

I − T
k

− Mα
)−1

 (C.70)

=
(T
k

+ Mα
)

log
((T

k
+ Mα

)
(Mα)−1

)

+
(

I + T
k

+ Mα
)

log
(I − Mα)

(
I − T

k
− Mα

)−1
 . (C.71)

At this stage we substitute the variable T for the region we want the probability of

detection to be calculated for. We first calculate the probability for the region governed by

the event θ1. The derivation of the secondary event follows trivially. With that in mind,

we set T = ⌊k (M + L)⌋ − kMα. Substitution of this yields

1
k
Ψ ∗

Tk
(⌊k (M + L)⌋ − kMα) =

(
⌊k (M + L)⌋

k

)
log

((
⌊k (M + L)⌋

k

)
(Mα)−1

)

+
(

I + ⌊k (M + L)⌋
k

)
log

(I − Mα)
(

I − ⌊k (M + L)⌋
k

)−1
 . (C.72)

Making substitution of Q = ⌊k(M+L)⌋
k

.

1
k
Ψ ∗

Tk
(⌊k (M + L)⌋ − kMα) = Q log

(
Q (Mα)−1

)
+ (I + Q) log

(
(I − Mα) (I − Q)−1

)
. (C.73)
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The above relation is actually the KL divergence between two distributions. Therefore, we

have shown that

Ψ ∗
Tk

(⌊k (M + L)⌋ − kMα) = kD (Q∥ Mα) (C.74)

= kD
(

⌊k (M + L)⌋
k

∥∥∥∥∥Mα

)
, (C.75)

where through a slight abuse of notation we have expressed the KL divergence of m scalar

distributions as a single KL-divergence between matrix inputs. This abuse of notation has

originated from the choice to solve the probabilities of detection in a parallelised fashion.

By substitution, the probability of detection is upper bounded by

P1
D = P [Tk ≥ ⌊k (M + L)⌋ − kMα] ≤ e−kD( ⌊k(M+L)⌋

k ∥Mα). (C.76)

Note that due to (5.67) we have a closed form expression for the optimal value of Mα.

Substitution of this into the bound above yields

P1
D ≤ e−kD( ⌊k(M+L)⌋

k ∥M+βϵL). (C.77)

In order to obtain the bound for the lower half of the hypercube, we utilise the fact that

the distribution of Tk is symmetric. Note however, that the region is not symmetric.

Therefore,

P2
D = P [Tk ≤ ⌈k (M − L)⌉ − kMα] = P [Tk ≥ ⌈k (M − L)⌉ − kMα] . (C.78)

From this it follows that

P2
D = P [Tk ≤ ⌈k (M − L)⌉ − kMα] ≤ e−kD( ⌈k(M−L)⌉

k ∥M+βϵL). (C.79)

Combining (C.77) and (C.79) yields

PD ≤ e−kD( ⌊k(M+L)⌋
k ∥M+βϵL) + e−kD( ⌈k(M−L)⌉

k ∥M+βϵL). (C.80)
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This concludes the proof.



Appendix D

Chapter 6

D.1 Theorem 15

This Section is dedicated to the proof of Theorem 15. The Theorem is re-stated below.

Theorem 15. The updated state estimate

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (D.1)

is equivalent to the fully observed state space system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.2a)

Ŷk = X̂k

(
PD

k

)
, (D.2b)

where W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= GEU

k + Lk

(
H
(
FEX

k

(
PD

k

)
+Wk

)
+ Vk+1

)
, (D.3)

and Lk is the optimal Kalman filter gain at time step k.

Proof. In the standard Kalman filter the state estimate is updated according to

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk+1 − HX̂k+1

(
PD

k

))
, (D.4)
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where Lk is defined as,

Lk = RkHT
(
HRkHT + ΣV ′

)−1
, (D.5)

and Rk is the Algebraic Ricatti Equation

Rk+1 = FRkFT + ΣW − FRkHT
(
HRkHT + ΣV ′

)−1
HRkFT. (D.6)

Note the dependence on the statistics of the random variables Wk and V ′
k . This is due to

the fact that the Kalman filter is designed to mitigate the effect of these variables and

not the effect of the channels. As a result of this the optimal Kalman filter is designed

independently of the system architecture. Substitution of Yk into the state estimate update

yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
HXk+1 + Vk+1 − HX̂k+1

(
PD

k

))
(D.7)

= X̂k+1
(
PD

k

)
+ LkH

(
FXk + GUk + W̃k − FX̂k

(
PD

k

)
− GUk −W k

(
PD

k

))
+LkVk+1. (D.8)

Substituting the values for W k

(
PD

k

)
and W̃k yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
F
(
EX

k

(
PD

k

)
− E

[
EX

k

(
PD

k

)∣∣∣PD
k+1

])
+G

(
EU

k − E
[
EU

k

∣∣∣PD
k+1

])
+
(
Wk − E

[
Wk|PD

k+1

]))
+ LkVk+1. (D.9)

Note that in (D.9) the set PD
k+1 contains the variable Ũk and therefore the expectation

does not go to zero and the two actuation error terms cancel one another. Operating the

expectation operator for each other random variable yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
FEX

k

(
PD

k

)
+Wk

)
+ LkVk+1. (D.10)
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At this stage the predicted state trajectory can be expanded according to (6.20) to give

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
+ LkH

(
FEX

k

(
PD

k

)
+Wk

)
+ LkVk+1(D.11)

= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.12)

where W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= GEU

k + LkH
(
FEX

k

(
PD

k

)
+Wk

)
+ LkVk+1. (D.13)

This is now in the form of a fully observed state space system. Namely, the state space

system

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.14a)

Ŷk = X̂k

(
PD

k

)
. (D.14b)

This concludes the proof.

D.2 Lemma 17

This Section is dedicated to the proof of Lemma 17. The Lemma is re-stated below.

Lemma 17. All of the variables within W k are uncorrelated.

Proof. The actuation error is defined as

EU
k = Ũk − Uk = Zk. (D.15)

Therefore, the actuation error EU
k is independent of the control law Uk. By definition Zk

is independent of all other random variables. Therefore, the actuation error EU
k is

independent of the predicted state estimation error EX
k+1

(
PD

k

)
and the process noise Wk

for all k. Similarly, Wk and Vk are defined as independent of all other random variables.
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The predicted estimation error is

EX
k+1

(
PD

k

)
=Xk+1 − X̂k+1

(
PD

k

)
(D.16)

=
(
FXk + GUk + W̃k

)
−
(
FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

))
(D.17)

= F
(
EX

k

(
PD

k

)
− E

[
FEX

k

(
PD

k

)∣∣∣PD
k

])
+ G

(
EU

k −E
[
EU

k

∣∣∣PD
k

])
+
(
Wk − E

[
Wk

∣∣∣PD
k

])
(D.18)

= FEX
k

(
PD

k

)
+ GEU

k +Wk. (D.19)

As shown in [71], the prediction estimate is uncorrelated with the process noise, Wk.

Additionally, due to knowledge of the realisation of Ũk the error corresponding to this

term is removed entirely, which results in

EX
k+1

(
PD

k+1

)
=Xk+1 − X̂k+1

(
PD

k+1

)
(D.20)

= FXk + GUk + W̃k −
(
FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

))
(D.21)

= FEX
k

(
PD

k

)
+ W̃k −W k

(
PD

k

)
(D.22)

= (I − LkH)
(
FEX

k

(
PD

k

)
+Wk

)
− LkVk+1. (D.23)

The state estimation error is uncorrelated with the process noise Wk. In our scenario

there are additional random variables present within the updated state error. The results

presented in [71] still hold and the state estimation error is uncorrelated with all other

random variables, provided they are independent, which as shown above, holds. To see

this note that (D.23) is rewritten as

EX
k+1

(
PD

k+1

)
= F̃EX

k

(
PD

k

)
+ ˜̃
W k, (D.24)

where F̃ = (I − LkH) F and

˜̃
W k = (I − LkH)Wk − LkVk+1. (D.25)
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The proof of Lemma 3.2 in [71] holds with a change of variables. Therefore, the updated

error is uncorrelated with all other random variables. This concludes the proof.

D.3 Theorem 16

This Section is dedicated to the proof of Theorem 16. The Theorem is re-stated below.

Theorem 16. The updated state estimate

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (D.26)

is equivalent to the state space system

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.27a)

Ŷk = X̂k

(
PD

k

)
, (D.27b)

where W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= LkH

(
FEX

k

(
PD

k

)
+ GEU

k +Wk

)
+ LkVk+1, (D.28)

and Lk is the optimal Kalman filter gain at time step k.

Proof. The standard Kalman filter is adopted as is defined in (D.5). As mentioned before

this optimal Kalman filter design is the same irregardless of the system architecture. The

updated state estimate is therefore defined as

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk+1 − HX̂k+1

(
PD

k

))
. (D.29)
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Substitution of Yk into the state estimate update yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
H (Xk+1 + Vk+1) − HX̂k+1

(
PD

k

))
(D.30)

= X̂k+1
(
PD

k

)
+ LkH

(
FXk + GUk + W̃k −

(
FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)))
+LkVk+1. (D.31)

Substituting in the values for W k

(
PD

k

)
and W̃k while noting the information set for the

expectation yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
F
(
EX

k

(
PD

k

)
− E

[
EX

k

(
PD

k

)∣∣∣PD
k

])
+G

(
EU

k − E
[
EU

k

∣∣∣PD
k

])
+
(
Wk − E

[
Wk|PD

k

]))
+ LkVk+1. (D.32)

Operating the expectation operator for each random variable within (D.32) yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
FEX

k

(
PD

k

)
+ GEU

k +Wk

)
+ LkVk+1. (D.33)

At this stage the predicted state trajectory can be expanded according to (6.44) to give

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
+ LkH

(
FEX

k

(
PD

k

)
+ GEU

k +Wk

)
+LkVk+1 (D.34)

= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.35)

where it should be noted that W k

(
PD

k

)
is a zero mean random variable and therefore has

expectation 0, and W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= LkH

(
FEX

k

(
PD

k

)
+ GEU

k +Wk

)
+ LkVk+1. (D.36)
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This is now in the form of a fully observed state space system. Namely, the state space

system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.37a)

Ŷk = X̂k

(
PD

k

)
. (D.37b)

This concludes the proof.

D.4 Theorem 17

This Section is dedicated to the proof of Theorem 17. The Theorem is re-stated below.

Theorem 17. The updated state estimate

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
, (D.38)

is equivalent to the state space system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.39a)

Ŷk = X̂k

(
PD

k

)
, (D.39b)

where W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= LkH

(
FEX

k

(
PD

k

)
+ GTk +Wk

)
+ LkVk+1, (D.40)

and Tk is the zero mean AWGN introduced by the imperfect auxiliary communication

channel with covariance ΣT .

Proof. In the standard Kalman filter the state estimate is updated according to

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk+1 − HX̂k+1

(
PD

k

))
(D.41)



D.4 Theorem 17 284

where Lk is defined in (D.5). Substitution of Yk into the state estimate update yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
H (Xk+1 + Vk+1) − HX̂k+1

(
PD

k

))
(D.42)

= X̂k+1
(
PD

k

)
+ LkH

(
FXk + GUk + W̃k −

(
FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)))
+LkVk+1. (D.43)

Substituting in the values for W k

(
PD

k

)
and W̃k while noting the information set for the

expectation yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
F
(
EX

k

(
PD

k

)
− E

[
EX

k

(
PD

k

)∣∣∣PD
k

])
+G

(
EU

k − E
[
EU

k

∣∣∣PD
k

])
+
(
Wk − E

[
Wk|PD

k

]))
+ LkVk+1. (D.44)

This is where the derivation diverges from the previous two. This is due to the fact that

at this point the operator has access to the measurement of the signal Ũk. However, it is

corrupted by the noise within the imperfect auxiliary communication channel. Specifically,

the operator has the variable ˜̃
Uk. This variable is defined as

˜̃
Uk = Ũk + Tk, (D.45)

where Tk ∈ Rm is a vector of Gaussian distributed variables with mean 0 and covariance ΣT .

Therefore, with this information available to the operator they can remove the effect of

the noisy actuation signal from the estimate at the cost of introducing the detrimental

effect of the random variable Tk. Performing this substitution in tandem with computing

the expectation for each random variable yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
FEX

k

(
PD

k

)
− GTk +Wk

)
+ LkVk+1. (D.46)
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Note that the operator introduces the addition of a zero mean random variable. Therefore,

the predicted state estimate is expanded according to (6.44) to give

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
+ LkH

(
FEX

k

(
PD

k

)
+ GTk +Wk

)
+LkVk+1 (D.47)

= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.48)

where it should be noted that W k

(
PD

k

)
is a zero mean random variable and therefore has

expectation 0. Additionally, W k

(
PD

k

)
is defined as

W k

(
PD

k

)
= LkH

(
FEX

k

(
PD

k

)
+ GTk +Wk

)
+ LkVk+1. (D.49)

It is seen that (D.48) is in the form of a fully observed state space system. Namely, the

state space system

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W k

(
PD

k

)
, (D.50a)

Ŷk = X̂k

(
PD

k

)
. (D.50b)

This concludes the proof.



Appendix E

Chapter 7

E.1 Theorem 22

This Section is dedicated to the proof of Theorem 22. The Theorem is re-stated below.

Theorem E.1. The updated state estimate of the system under attack,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
. (E.1)

Is equivalent to the state space system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (E.2a)

Ŷk = X̂k

(
PD

k

)
. (E.2b)

where W
A

k

(
PD

k

)
is defined as

W
A

k

(
PD

k

)
= GEUA

k + LkH
(
FEXA

k

(
PD

k

)
+Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
, (E.3)

and Lk is the optimal Kalman filter gain at time step k, as defined in Theorem 15.

Proof. The Kalman filter gain remains unchanged during the attack as the operator is

unaware of the attack and its statistics. Therefore, substitution of Yk into the state
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estimate update yields,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
HXk+1 + Vk+1 + AX

k+1 − HX̂k+1
(
PD

k

))
(E.4)

= X̂k+1
(
PD

k

)
+ LkH

(
FXk + GUk + W̃A

k −
(
FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)))
+Lk

(
Vk+1 + AX

k+1

)
. (E.5)

Substituting in the values for WA

k

(
PD

k

)
and W̃A

k while noting the information set for the

expectation yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
F
(
EXA

k

(
PD

k

)
− E

[
EXA

k

(
PD

k

)∣∣∣PD
k+1

])
+G

(
EU

k + AU
k − E

[
EU

k + AU
k

∣∣∣PD
k+1

])
+
(
Wk − E

[
Wk|PD

k

]))
+Lk

(
Vk+1 + AX

k+1

)
. (E.6)

Operating the expectation for each random variable, once again noting the information

available at this stage yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
FEXA

k

(
PD

k

)
+Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
. (E.7)

At this stage the predicted state trajectory can be expanded according to (7.27) to give,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
+LkH

(
FEXA

k

(
PD

k

)
+ GEUA

k +Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
. (E.8)

= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (E.9)

where, it should be noted once again that W k

(
PD

k

)
now has access to the realisation of the

actuation that entered the plant, which includes the attack variable. Additionally, W
A

k

(
PD

k

)
is defined as

W
A

k

(
PD

k

)
= GEUA

k + LkH
(
FEXA

k

(
PD

k

)
+Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
. (E.10)
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This is now in the form of a fully observed state space system. Namely, the state space

system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (E.11a)

Ŷk = X̂k

(
PD

k

)
. (E.11b)

This concludes the proof.

E.2 Lemma 18

This Section is dedicated to the proof of Lemma 18. The Lemma is re-stated below.

Lemma 18. All of the variables within W
A

k

(
PD

k

)
are uncorrelated.

Proof. The actuation error is

EUA

k+1 = ŨA
k+1 − Uk+1 (E.12)

=Uk+1 + Zk+1 + AU
k+1 − Uk+1 (E.13)

=EU
k + AU

k+1. (E.14)

As seen in the proof of Lemma 17 EU
k+1 is independent of all other random variables.

Additionally, the actuation communication channel attack variable, AU
k+1, is defined as

independent of all other random variables. Therefore, the actuation error when under

attack, (E.14), is independent of the predicted state estimation error and the plant noise.
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The predicted state estimation error is

EXA

k+1

(
PD

k

)
=Xk+1 − X̂k+1

(
PD

k

)
(E.15)

= FXk + GUk + W̃A
k −

(
FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

))
(E.16)

= FEXA

k

(
PD

k

)
+ GAU

k + W̃k −W
A
k

(
PD

k

)
(E.17)

= FEXA

k

(
PD

k

)
+ GAU

k + GEU
k +Wk

−E
[
FEXA

k

(
PD

k

)
+ G

(
EU

k + AU
k

)
+Wk

∣∣∣PD
k

]
(E.18)

= F
(
EXA

k

(
PD

k

)
− E

[
EXA

k

(
PD

k

)∣∣∣PD
k

])
+ G

(
AU

k − E
[
AU

k

∣∣∣PD
k

])
+G

(
EU

k − E
[
EU

k

∣∣∣PD
k

])
+Wk (E.19)

= FEXA

k

(
PD

k

)
+ GAU

k + GEU
k +Wk. (E.20)

Note that the actuation communication channel attack effects the predicted state error.

This is due to the fact that this data injection attack actually enters the system whereas

the sensory communication channel only effects the measurements of the states. The

updated state estimate is defined as

EXA

k+1

(
PD

k+1

)
=Xk+1 − X̂k+1

(
PD

k+1

)
(E.21)

= FXk + GUk + W̃A
k −

(
FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

))
(E.22)

= FEXA

k

(
PD

k

)
+ W̃A

k −W
A

k

(
PD

k

)
(E.23)

= FEXA

k

(
PD

k

)
+ GAU

k + GEU
k +Wk − GEUA

k − LkH
(
FEXA

k

(
PD

k

)
+Wk

)
−Lk

(
Vk+1 + AX

k+1

)
(E.24)

= L̃k

(
FEXA

k

(
PD

k

)
+Wk

)
− Lk

(
AX

k+1 + Vk+1
)
, (E.25)

In (E.25) the error is in the same form as (D.23). Therefore, the results from Lemma 3.2

in [71] holds with a change of variables. Thus, all random variables are uncorrelated. This

concludes the proof.
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E.3 Lemma 19

This Section is dedicated to the proof of Lemma 19. The Lemma is re-stated below.

Lemma 19. The derivative of

f (A) = tr (BA) + α
(
tr
(
C−1A

)
− log

∣∣∣I + C−1A
∣∣∣− β

)
, (E.26)

with respect to the matrix A ∈ Sn
+ is

∂f (A)
∂A

= B + BT + 2αC−1 − α
[
I + C−1A

]−1
C−1 − αC−1

[
I + C−1A

]−1

−I ⊙
[
B + αC−1 − α

[
I + C−1A

]−1
C−1

]
, (E.27)

where ⊙ is the Hadamard product, and therefore, I ⊙ (·) = diag(·).

Proof. The first two terms within (7.58) and the last are trivial to compute and the

derivative is expressed as

∂f (A)
∂A

= B + BT + 2αC−1 − I ⊙
[
B + αC−1

]
−
∂ log

∣∣∣I + C−1A
∣∣∣

∂A
, (E.28)

where the additional terms arise due to the symmetry of A. Within the determinant there

is a matrix function of A, let this be defined as M (A). Therefore, the remaining term to

be evaluated is,

∂ log |M (A)|
∂A

(E.29)

As seen in [30, 17.52, pg. 369] the derivative of the nesting of functions log ◦det is simplified

to

∂

∂A
log |M (A)| = |M (A)|−1 ∂ |M (A)|

∂A
(E.30)
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From this stage, the derivative of the determinant needs to be calculated. This is

∂ |M (A)|
∂A

= |M (A)| tr
(

M (A)−1 ∂M (A)
∂A

)
. (E.31)

Executing the above identities, while noting that the determinants cancel, gives

∂

∂A
log |M (A)| = M (A)−1 C−1 + C−1TM (A)−1T

− I ⊙
[
M (A)−1 C−1

]
. (E.32)

Note that the terms M (A) and C are symmetric. Utilising this fact in (E.28) yields

∂f (A)
∂A

= B + BT + 2αC−1−I ⊙
[
B + αC−1

]
−αM (A)−1 C−1 − αC−1TM (A)−1T

+I ⊙
[
αM (A)−1 C−1

]
. (E.33)

Simplification and substitution of the function M (A) gives

∂f (A)
∂A

= B + BT + 2αC−1 − α
[
I + C−1A

]−1
C−1 − αC−1

[
I + C−1A

]−1

−I ⊙
[
B + αC−1 − α

[
I + C−1A

]−1
C−1

]
. (E.34)

Which corresponds to (7.59). This concludes the proof.

E.4 Lemma 20

This Section is dedicated to the proof of Lemma 20. The Lemma is re-stated below.

Lemma 20. It is to be shown that solving

0= B + BT + 2αC−1 − α
[
I + C−1A

]−1
C−1 − αC−1

[
I + C−1A

]−1

−I ⊙
[
B + αC−1 − α

[
I + C−1A

]−1
C−1

]
, (E.35)
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is equivalent to solving

2B + 2αC−1 − 2α
[
I + C−1A

]−1
C−1 = 0 (E.36)

Proof. Initially, it is seen that (7.62) is simplified through the fact that B, in this setting,

is symmetric. Therefore, (7.62) becomes

0= 2B + 2αC−1 − α
[
I + C−1A

]−1
C−1 − αC−1

[
I + C−1A

]−1

−I ⊙
[
B + αC−1 − α

[
I + C−1A

]−1
C−1

]
. (E.37)

At this stage the second line poses the largest issue with simplification. We begin by

simplifying the first line of (E.37). In the following it is shown that
[
I + C−1A

]−1
and C−1

commute. To see this note that it is know that
[
I + C−1A

]−1
is non-negative definite

and C−1 is positive definite. Therefore, linear combinations of the two matrices exist that

which are positive definite. Trivially, an example is

[
I + Σ−1

Z ΣAU

]−1
+ Σ−1

Z ≻ 0. (E.38)

If a real linear combination of two matrices exists that is positive definite then these two

matrices are simultaneously diagonalisable [30, 16.51(b) pg.345]. This required condition

holds, as seen in (E.38). Therefore, an R ∈ Rn×n exists such that
[
I + C−1A

]−1
=

RTD
[

I+C−1A
]−1

R and simultaneously C−1 = RTDC−1R, where D
[

I+C−1A
]−1

and DC−1



E.5 Theorem 23 293

are diagonal matrices. From this, it is seen that

[
I + C−1A

]−1
C−1 = RTD

[
I+C−1A

]−1

RRTDC−1R (E.39)

= RTD
[

I+C−1A
]−1

DC−1R (E.40)

= RTDC−1D
[

I+C−1A
]−1

R (E.41)

= RTDC−1RRTD
[

I+C−1A
]−1

R (E.42)

= C−1
[
I + C−1A

]−1
. (E.43)

Therefore, these matrices commute. This fact allows (E.37) to be simplified once more

0= 2B + 2αC−1 − 2α
[
I + C−1A

]−1
C−1

−I ⊙
[
B + αC−1 − α

[
I + C−1A

]−1
C−1

]
. (E.44)

In (E.44), all terms within the diagonal operator are a scalar multiple of the terms outside

of the diagonal operator. This means that if the terms outside of the diagonal operator

sum to the 0 matrix then necessarily the terms inside of the operator also sum to the 0

matrix. In light of this, (7.60) is simplified to

2B + 2αC−1 − 2α
[
I + C−1A

]−1
C−1 =0. (E.45)

Which corresponds to (7.63). This concludes the proof.

E.5 Theorem 23

This Section is dedicated to the proof of Theorem 23. The Theorem is re-stated below.

Theorem 23. The updated state estimate of the system under attack,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
. (E.46)
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Is equivalent to the state space system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (E.47a)

Ŷk = X̂k

(
PD

k

)
, (E.47b)

where W
A

k

(
PD

k

)
is defined as

W
A

k

(
PD

k

)
= LkH

(
FEXA

k

(
PD

k

)
+ GEUA

k +Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
, (E.48)

and Lk is the optimal Kalman filter gain at time step k.

Proof. The Kalman filter gain remains unchanged during the attack as the operator is

unaware of the attack and its statistics. Therefore, substitution of Yk into the state

estimate update yields,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
HXk+1 + Vk+1 + AX

k+1 − HX̂k+1
(
PD

k

))
(E.49)

= X̂k+1
(
PD

k

)
+ LkH

(
FXk + GUk + W̃A

k −
(
FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)))
+Lk

(
Vk+1 + AX

k+1

)
, (E.50)

substituting in the values for WA

k

(
PD

k

)
and W̃A

k while noting the information set for the

expectation yields,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
F
(
EXA

k

(
PD

k

)
− E

[
EXA

k

(
PD

k

)∣∣∣PD
k

])
+
(
Wk − E

[
Wk|PD

k

])
+ G

(
EU

k + AU
k − E

[
EU

k + AU
k

∣∣∣PD
k

]))
+Lk

(
Vk+1 + AX

k+1

)
. (E.51)

Operating the expectation operator for each random variable yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
FEXA

k

(
PD

k

)
+ GEUA

k +Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
.(E.52)
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At this stage the predicted state trajectory can be expanded according to (7.120) to give,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A
k

(
PD

k

)
+ LkH

(
FEXA

k

(
PD

k

)
+ GEUA

k +Wk

)
+Lk

(
Vk+1 + AX

k+1

)
, (E.53)

= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (E.54)

where it should be noted that WA

k

(
PD

k

)
is a zero mean random variable and W

A

k

(
PD

k

)
is

defined as

W
A

k

(
PD

k

)
= LkH

(
FEXA

k

(
PD

k

)
+ GEUA

k +Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
. (E.55)

This is now in the form of a fully observed state space system. Namely, the state space

system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (E.56a)

Ŷk = X̂k

(
PD

k

)
. (E.56b)

This concludes the proof.

E.6 Theorem 24

This Section is dedicated to the proof of Theorem 24. The Theorem is re-stated below.

Theorem 24. The updated state estimate,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk − HX̂k+1

(
PD

k

))
. (E.57)

Is equivalent to the state space system,

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (E.58a)

Ŷk = X̂k

(
PD

k

)
, (E.58b)
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where W k

(
PD

k

)
is defined as

W
A(

PD
k

)
= LkH

(
FEXA

k

(
PD

k

)
+ G

(
Tk + AA

k

)
+Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
. (E.59)

Proof. In the standard Kalman filter the state estimate is updated according to,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
Yk+1 − HX̂k+1

(
PD

k

))
, (E.60)

where Lk is defined in (D.5). Substitution of Yk into the state estimate update yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ Lk

(
HXk+1 + Vk+1 + AX

k − HX̂k+1
(
PD

k

))
(E.61)

= X̂k+1
(
PD

k

)
+ LkH

(
FXk + GUk + W̃A

k −
(
FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)))
+Lk

(
Vk+1 + AX

k+1

)
. (E.62)

Substituting in the values for WA

k

(
PD

k

)
and W̃A

k while noting the information set for the

expectation yields,

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
F
(
EXA

k

(
PD

k

)
− E

[
EXA

k

(
PD

k

)∣∣∣PD
k

])
+G

(
EUA

k − E
[
EUA

k

∣∣∣PD
k

])
+
(
Wk − E

[
Wk|PD

k

]))
+ Lk

(
Vk+1 + AX

k

)
.

This is where the derivation diverges from the previous two. This is due to the fact that

at this point the operator has access to the measurement of the signal ŨA
k . However, it is

corrupted by the noise within the imperfect auxiliary communication channel. Additionally,

it is also corrupted by the additional attack vector, AA
k . Specifically, the operator has the

variable ˜̃
U

A

k . This variable is defined as

˜̃
U

A

k = ŨA
k + Tk + AA

k , (E.63)

Therefore, with this information available to the operator they can remove the effect of the

attacked noisy actuation signal from the estimate at the cost of introducing the detrimental
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effect of the random variables Tk and AA
k . Performing this substitution in tandem with

operating the expectation operator for each other random variable yields

X̂k+1
(
PD

k+1

)
= X̂k+1

(
PD

k

)
+ LkH

(
FEX

k

(
PD

k

)
+G

(
EU

k + AU
k − EU

k − AU
K − Tk − AA

k

)
+Wk

)
+ Lk

(
Vk+1 + AX

k

)
. (E.64)

The negation of a zero mean Gaussian random variable is equivalent to the addition of a

zero mean Gaussian random variable. Therefore, the predicted state estimate is expanded

according to (7.120) to give

X̂k+1
(
PD

k+1

)
= FX̂k

(
PD

k

)
+ GUk +W

A
k

(
PD

k

)
+ LkH

(
FEX

k

(
PD

k

)
+ G

(
Tk + AA

k

)
+Wk

)
+Lk

(
Vk+1 + AX

k

)
(E.65)

= FX̂k

(
PD

k

)
+ GUk +W

A

k

(
PD

k

)
, (E.66)

where WA

k

(
PD

k

)
is a zero mean random variable and W

A

k

(
PD

k

)
is defined as

W
A(

PD
k

)
= LkH

(
FEXA

k

(
PD

k

)
+ G

(
Tk + AA

k

)
+Wk

)
+ Lk

(
Vk+1 + AX

k+1

)
. (E.67)

It is seen that (E.66) is in the form of a fully observed state space system. Namely, the

state space system,

X̂k+1
(
PD
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(
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k
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+ GUk +W

A

k

(
PD

k

)
, (E.68a)

Ŷk = X̂k

(
PD

k

)
. (E.68b)

This concludes the proof.
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