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Abstract

Natural Flood Management (NFM) is an increasingly popular ap-

proach to flood risk management which aims to slow and store flood

water in the landscape by restoring natural hydrological and geomor-

phological processes.

Due to difficulties in obtaining precise hydrological data, a lack of ro-

bust, empirical evidence describing the effectiveness of NFM measures

at reducing downstream flood risk currently undermines confidence in

its efficacy and limits its adoption. Furthermore, uncertainty about

the risks associated with NFM features can present a barrier to im-

plementation.

This research quantifies the benefits and risks of installing engineered

leaky dams for the purpose of NFM in an upland, headwater catch-

ment in North Yorkshire, England. To overcome difficulties associated

with the empirical quantification of leaky dam impacts on flood peak

magnitude, hydrological data from a three year Before-After-Control-

Impact style monitoring campaign was combined with a data-based

time series modelling approach.

The results quantify, for the first time, the impact of a series of eight

channel-spanning leaky dams on flood peak magnitude for a range

of events. The leaky dams reduced flood peak magnitude of events

with a return period up to one year by 10% on average, but their

impacts were highly variable. In order for the benefits provided by

leaky dams to be evaluated against their potential hazards the study

included assessment of the failure probability of leaky dams based on

observations of leaky dam failures from five UK sites. The empirical



fragility analysis showed that leaky dam failure rates were lower than

naturally occurring large wood mobility rates reported in literature.

The novel application of both the data-based timeseries modelling ap-

proach and empirical fragility analysis to assess the potential of leaky

dams for NFM demonstrates the opportunities that these techniques

offer to quantify leaky dam impacts on downstream flood risk.
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Chapter 1

Introduction

1.1 Drivers of increased flood risk in the UK

Increased autumn and winter rainfall has led to increased flooding across north-

west Europe (Blöschl et al., 2019). Although it is difficult to obtain definitive

conclusions attributing increased flood risk to climate change (Hannaford, 2015;

Kay et al., 2011; Schaller et al., 2016), it is generally accepted that flood risk is

increasing globally due to the effects of climate change (Hirabayashi et al., 2013)

and socio-economic drivers such as land-use change (Winsemius et al., 2016). In

the UK, climate change projections predict increases in the frequency of extreme

rainfall events with increases in both short, high intensity rainfall and prolonged

rainfall events (Defra, 2018; Defra et al., 2018; Thompson et al., 2017) which lead

to pluvial, fluvial and groundwater flooding (Committee on Climate Change,

2017). The Committee on Climate Change has listed increases in flood risk as

one of the greatest climate change related threats facing the UK (Committee on

Climate Change, 2017).

Non-climatic factors affecting flood risk in the UK are two-fold; firstly, it is

widely accepted that increased urbanisation and development have increased the

risk and economic impacts of floods worldwide (Jackson et al., 2008; Mudelsee

et al., 2003; Wheater, 2006). Secondly, agricultural intensification and land man-

agement change are perceived to increase flooding (Evrard et al., 2007; Jackson

et al., 2008; O’Connell et al., 2007; Pinter et al., 2006; Wheater, 2006). Such
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practices included removing hedgerows to create larger fields, cultivation prac-

tices which compact soils, land drains and ditches which increase drainage, chan-

nelising rivers and removal of their riparian buffer zones (O’Connell et al., 2007).

These major land use and management changes were supported by agricultural

subsidies following a drive for self sufficiency in food production after the sec-

ond World War (O’Connell et al., 2007). As a result, large parts of the UK may

not generate and route runoff, or hydrologically function, as natural landscapes

(O’Connell et al., 2007).

1.2 Flood risk management policy in the UK

Although it is widely accepted that the drivers of increased flood risk are socio-

environmental, flood risk is most commonly managed in the UK by physically

altering rivers and floodplains (Cook et al., 2016; Lane et al., 2011; Purseglove,

2015; Wescoat and White, 2003), particularly favouring hard-engineered defences

(Brown and Damery, 2002; Wilby et al., 2008). However, catchment scale ap-

proaches, which allow the effects of land use and management to be taken into

account, are increasingly being considered in the UK’s approach to flood risk

management (Wilby et al., 2008).

In 2007 the wettest summer on record was recorded in England (Pitt, 2008).

The flooding resulted in 13 fatalities, 55,000 flooded properties and over £3 bil-

lion in pay out by the insurance industry (Pitt, 2008). The devastation was so

widespread that the floods were professed to be the country’s “largest peacetime

emergency since World War II” (Pitt, 2008, p. vii). In response to this, the Gov-

ernment requested a comprehensive, independent review to be carried out into

the 2007 floods. The highly influential policy review, ‘Learning lessons from the

2007 floods’, was completed by Sir Michael Pitt in 2008. The review emphasised

the potential of flood defences which work with natural processes to store water

away from urban areas to slow down and reduce runoff. Reducing flood risk by

restoring or emulating natural floodplain, river and coastal processes is termed

Working with Natural Processes (WwNP) to reduce flood risk (Burgess-Gamble

et al., 2017). One of the recommendations of the report was that the UK Govern-

ment’s Department for Environment and Rural Affairs (Defra), the Environment
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Agency (EA) and Natural England should work with their partners to establish

a programme to deliver greater working with natural processes to reduce flood

risk. (Pitt, 2008).

Many of the recommendations made in the review have been written into

flood management policy. The Flood Water and Management Act (England and

Wales) 2010 advocates working with natural processes and in Scotland the Flood

Risk Management Act (Scotland) 2009 made it a requirement to consider working

with natural processes in flood management schemes. In 2009, Defra funded

three multi-objective flood management demonstration projects with the aim to

generate quantitative evidence to demonstrate the effectiveness of implementing

a range of measures which work with natural processes to reduce flood risk,

alongside delivering a range of environmental and social benefits for communities

(National Trust, 2015).

More recently, the National Flood Resilience Review was composed in re-

sponse to extensive flooding in December 2015, which caused half a billion pounds

of direct damages (Calderdale Council, 2016). It drew attention to the impor-

tance of better management of rainfall in the natural environment to relieve both

flood risk and water stress (Government, 2016). The review stated that changes

would be made to the way funding was allocated for flood risk management so

that Natural Flood Management (NFM) would be able to compete against engi-

neered defences (Government, 2016). NFM is a term which has been coined to

describe working with natural processes to reduce flood risk. Natural flood man-

agement measures aim to manage the sources and pathways of flood waters by

working with and restoring the natural hydrological and morphological processes

of catchments (Forbes et al., 2015).

The Environment, Food and Rural Affairs Committee (EFRA), commissioned

by the House of Commons, called for an overhaul of the Government’s approach

to flood risk management by proposing a new governance model (House of Com-

mons Environment Food and Rural Affairs Committee, 2016). One of the three

main flood management problems identified in the report was the need for greater

adoption of catchment management measures. Specifically, EFRA called on De-

fra to launch a catchment wide study into Natural Flood Management (NFM)
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measures and to work with the National Farmers Union (NFU) to develop a sys-

tem by which farmers could be incentivised to store flood water on their land

(House of Commons Environment Food and Rural Affairs Committee, 2016).

The latter point was, in part, addressed by an update of countryside stew-

ardship agreements. In 2011 Defra completed an upland policy review which

identified the multiple benefits, including flood risk management, which can be

provided by the uplands. Defra made a commitment to supporting hill farmers

to diversify “as managers of the natural resources and ecosystems of the uplands”

(Defra, 2011b, p. 4). As a result new Countryside Stewardship agreements, active

since 2016, included a range of options for natural flood management.

The 2000 Water Framework Directive (WFD) and 2007 EU Floods Directive

already required the coordinated production and implementation of river basin

management plans and flood risk management plans respectively. Over the past

two decades the WFD, which requires that all waterbodies meet good ecological

status or potential by 2027, has been the key legislative driver for river restoration

in the UK (England et al., 2008; Skinner and Bruce-Burgess, 2005; Smith et al.,

2014). The WFD and EU Floods Directive, together with Defra’s vision set out

in the 2011 White Paper, to value the services and resources that nature provides

(Defra, 2011a), led to a more integrated, catchment based approach to managing

the water environment. The Catchment Based Approach (CaBA) aimed to bridge

the gap between the national scale river basin management plans, and local scale

restoration opportunities by establishing a clear, evidence based agenda at the

catchment scale, which is implemented through a variety of projects at smaller

geographical scales (Defra, 2013). The CaBA was thereby designed to change the

way river restoration was initiated from opportunistic, as observed by Skinner and

Bruce-Burgess (2005) in the early stages of the WFD, to a more co-ordinated,

concept driven approach.

The Woodland for Water project is an example of such a co-ordinated ap-

proach; it mapped opportunities for the reduction of pollution and/or flood risk

through tree planting at a nation wide scale. In Yorkshire and North East Eng-

land over 3000 km2 of priority areas for planting for flood risk reduction were

identified, including in upland areas in the Yorkshire Dales and Cheviot Hills

(Broadmeadow and Nisbet, 2013).
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Following the UK’s exit from the European Union (EU), the Environment

Bill, House of Commons (57, 2019-21 & 2021-22), and the Agriculture Act (2020)

aim to legislate the intention to take a holistic approach to land and water man-

agement (Klaar et al., 2020). The Government have proposed to replace the EU’s

Common Agricultural Policy (CAP) with the Environmental Land Management

Scheme (ELMS) which aims to pay landowners directly for the provision of public

goods, including flood risk management (Defra, 2020). ELMS aims to fulfil the

requirements of the Government’s 25 year Environment plan to reduce the risk of

harm from flooding whilst using natural resources more sustainably, mitigating

climate change and protecting biodiversity and wildlife (Defra, 2018). Deriv-

ing such multiple benefits from ecosystem functions, termed ‘ecosystem services’

(Costanza et al., 1997), is encouraged by the proposed ‘public money for public

goods’ approach of the ELMS (Klaar et al., 2020). Hence, whilst NFM has been

evident in UK policy since 2005 (Defra, 2005) it is likely to become more main-

stream if the UK is able to successfully implement its “public money for public

goods” approach set out in the Agriculture Act.
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1.3 Natural Flood Management

Figure 1.1: Terminology used to denote methods which work with natural

processes to manage flood risk, from Burgess-Gamble et al. (2017, p. 4)

Working with natural processes (WwNP) is a broad term for work which pro-

tects, restores and emulates natural processes (Burgess-Gamble et al., 2017).

Nature Based Solution (NBS) is a subset of WwNP relating to works which

deliver environmental benefits, which can include flood risk management. Natu-

ral Flood Management (NFM) is a NBS which refers specifically to interventions

which intend to reduce flood risk. A consensus on the definition of the term
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NBS is lacking, and therefore the framework within which it is used can dif-

fer. Nesshöver et al. (2016) argue it is emerging as the catch-all term for actions

which use or are inspired by nature to address environmental, social and economic

issues, which includes WwNP and NFM. These terms, amongst others (Figure

1.1), are often used interchangeably to refer to NFM (Dadson et al., 2017).

NFM is underpinned by the principles of Catchment-Based Flood Manage-

ment (CBFM) in which changes are made to the wider catchment to manage

downstream flood risk, rather than managing flooding locally where it occurs

(Dadson et al., 2017). NFM aims to restore or emulate the natural functioning

of river catchments to increase infiltration, slow flows and store water (Forbes

et al., 2015). Alternative definitions include “the alteration, restoration, or use of

landscape features for the purposes of reducing flood risk” (Parliamentary Office

of Science and Technology, 2011, p. 1), or as a subset of CBFM which “seeks to

restore or enhances catchment processes that have been affected by human inter-

vention” (Dadson et al., 2017, p. 2). NFM measures can be grouped into three

main groups: Woodland creation, land management, and river and floodplain

restoration (Forbes et al., 2015). These measures, illustrated in Figure 1.2, re-

duce the rapid generation of runoff from hillslopes, store water during high flows

and ‘slow the flow’ by decreasing the connectivity between runoff sources and

areas susceptible to flooding (Lane, 2017).
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Figure 1.2: Measures which work with natural processes to reduce flood risk,

from Burgess-Gamble et al. (2017, p. 3)

Woodland creation includes catchment, floodplain and riparian tree planting.

The effectiveness of tree planting as a flood risk management measure has been

studied (Alila et al., 2009; Archer, 2007; Carrick et al., 2019; Lacombe et al., 2016;

Robinson, 1986; Robinson et al., 2003; Robinson and Dupeyrat, 2005), including

in the UK where planting of trees in buffer strips, along with reduced livestock

density in Pontbren, Wales, reduced surface runoff by 78% (Marshall et al., 2014;

Wynne-Jones, 2016). Although overall, the impact of woodland on downstream

flood risk is mixed, particularly in more extreme events (Bradshaw et al., 2007;

Soulsby et al., 2017; Stratford et al., 2017) and therefore their effectiveness re-

mains uncertain.

Land management measures aim to improve the hydrological function of the

land (Hess et al., 2010) and include measures such as blocking field drains and

ditches, improving the water holding capacity of soils (e.g. by increasing soil

organic matter, aeration or avoiding compaction) and installing non-floodplain
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wetlands. Whilst soil improvements have led to mixed results, modification of

headwater ditches and restoration of bare peatland have been shown to reduce

storm discharge (Alderson et al., 2019; Grand-Clement et al., 2013; Holden et al.,

2006; Shuttleworth et al., 2019).

River and floodplain restoration includes measures such as river re-meandering,

river bank restoration and installing instream structures, which increase flood-

plain connectivity and the time taken for flood water to travel downstream (Gre-

gory et al., 1985; Keys et al., 2018; Sholtes and Doyle, 2011).

Alongside aiming to deliver flood risk management, NFM measures may have

multiple benefits ranging from environmental impacts such as water quality im-

provement, habitat provision and climate regulation to social and cultural impacts

such as air quality improvement, health benefits and enhancement of recreational

activities (Burgess-Gamble et al., 2017). The range of ecosystem services de-

livered by NFM measures makes them particularly suitable for implementation

under the UK Government’s proposed environmental land management scheme

(Klaar et al., 2020).

1.3.1 Opportunities for NFM in upland catchments

Although there is no official definition of upland areas (Defra, 2011b) the term

refers to areas which are typically over 250–400 m above sea level, and are above

the limit of enclosed agriculture (Defra, 2015). Typically low intensity farming,

sparse human population, and flood prone communities which do not qualify for

traditional flood defence schemes present extensive opportunities for the imple-

mentation of NFM schemes in upland catchments. Uplands cover 17% of the total

land area of England (2.2 Million ha), which is equivalent to the land area of Wales

(Defra, 2011b). Large areas of the uplands consist of estates which are owned

by a single landowner; simplifying delivery of large schemes (Wingfield et al.,

2019). The impact NFM measures could have on the flood hydrograph in upland

catchments is particularly critical because of the opportunities and risks offered

by the potential to synchronise or de-synchronise tributary flows (Dixon et al.,

2016). Pattison et al. (2014) showed that delaying tributary flows to be asyn-
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chronous from the main channel flood peak reduced downstream flood magnitude

and could, if designed well, play an important role in flood risk management.

1.4 Large wood in rivers

A widely implemented NFM measure in upland catchments is the use of engi-

neered leaky dams which emulate the hydrological functions of natural large wood

in rivers (Abbe et al., 2003; Grabowski et al., 2019; Kail et al., 2007). Engineered

leaky dams consist of large wood pieces which are installed across the the channel

and extend onto the floodplain. Leaky dams aim to restore the natural functions

of large wood in rivers by locally increasing hydraulic roughness (Buffington and

Montgomery, 1999; David et al., 2011), hydraulic resistance (in the form of spills)

(Curran and Wohl, 2003; Dust and Wohl, 2012; Kitts, 2010) and floodplain con-

nectivity (Keys et al., 2018).

1.4.1 Naturally occurring instream wood

Large wood, defined as having length >1 m and diameter >0.1 m (Piegay and

Gurnell, 1997), also referred to as large woody debris, log jams or snags are

naturally occurring features of watercourses in forested ecoregions which influence

a large number of stream ecosystem processes across a range of spatial scales (Kail

et al., 2007; Wohl et al., 2016) (Figure 1.3). Large wood affects a watercourse’s

geomorphology, hydrology, channel hydraulics and ecosystems (Abbe et al., 2003).

Large wood enters a stream through processes such as bank erosion, fallen

trees, and transport of wood from upstream (Gurnell et al., 2002; Keller and

Swanson, 1979). It can accumulate to form ‘active’, ‘complete’ or ‘partial’ dams

depending on their position in the stream (Gregory et al., 1985). Active dams,

also known as ‘overflow accumulations’ (Wallerstein et al., 1997), form a barrier to

flows and sediment movement and create a step in the channel profile. Complete

dams form a barrier to flow and sediment movement without the accompanying

step in the channel profile. Partial dams do not fully span the channel and are

known as ‘deflector accumulations’, as they deflect flows. Additionally, wood can
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Figure 1.3: Schematic of the benefits of instream wood at a range of spatial

scales, from Wohl et al. (2016, p. 318)
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form ‘underflow accumulations’ which span the channel but only affect the flow

during high flows (Wallerstein et al., 1997).

Ecological benefits of large wood rely on it to be stable for long enough for its

interaction with hydrological processes to alter the local geomorphology (Milling-

ton and Sear, 2007). Large wood can leave the system by decay, transport down-

stream or anthropogenic removal (Gurnell et al., 2002). The majority of large

wood in streams is highly mobile (Dixon and Sear, 2014; Gregory et al., 1985;

Gurnell et al., 2002), but pieces greater than 2.5 times the channel width have

been observed to be functionally immobile (Dixon and Sear, 2014). Although

wood accumulations are often unstable, active dams are relatively stable and can

form more permanent features of watercourses (Gregory et al., 1985).

Instream wood is known to locally increase hydraulic roughness, decrease flow

velocities and increase water levels (Curran and Wohl, 2003; Shields and Gippel,

1995) which has been shown to increase flood wave travel time (Black et al., 2021;

Gregory et al., 1985; Kitts, 2010) and floodplain connectivity (Keys et al., 2018;

Sear et al., 2010). By locally increasing water levels upstream of instream wood,

overbank flows occur during lower discharges and earlier in flood events (Sear

et al., 2010). Instream wood increases roughness in the channel by presenting an

obstruction to flow which exerts drag forces (Buffington and Montgomery, 1999;

David et al., 2011) but the largest increases in hydraulic resistance have been

observed for active dams which cause a drop in the channel bed causing a spill

(Curran and Wohl, 2003; Kitts, 2010), which effectively acts as a broadcrested

weir (Dust and Wohl, 2012).

The influences on the local hydraulics exerted by instream wood can lead to

beneficial changes in patterns of deposition and erosion. Instream wood features

have long been shown to be linked with the formation of scour pools and bars

in the Pacific Northwest and Alaska (Montgomery et al., 2003), and in central

European streams (Gregory et al., 1985; Kail, 2003; Piegay and Gurnell, 1997).

The backwater effect caused by instream wood slows flows sufficiently to decrease

the transport competence of the channel which results in the deposition of sedi-

ment in bars (Buffington et al., 2004). Conversely, scour pools are formed where

instream wood increases erosion by forcing flows towards the river bed (Beschta,
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1983; Hogan, 1986; Robison and Beschta, 1990; Schalko et al., 2019; Wallerstein

and Thorne, 2004; Wood-Smith and Buffington, 1996).

Scour pools, riffles and bars increase habitat diversity, providing habitat for

both juvenile and adult fish (Linstead, 2001). Instream wood has been observed

to increase fish (Montgomery et al., 2003; Peters et al., 1998) and invertebrate

density (Coe et al., 2006; Deane et al., 2021) by dramatically increasing organic

matter availability (Gurnell et al., 2002; Piegay and Gurnell, 1997; Trotter, 1990).

Overland flows induced by instream wood can scour the river bank (Wohl,

2013), introduce secondary channels (Jeffries et al., 2003; Sear et al., 2010) and

deposit fine sediment on the floodplain (Collins and Montgomery, 2002). Such

floodplain features can provide highly biodiverse habitats in features such as tem-

porary pools (Davis et al., 2007) and wet woodlands (Braccia and Batzer, 2008).

Given these ecological benefits, in Europe, the main aim of the reintroduction

of instream wood in river restoration works has been to increase structural com-

plexity of watercourses (Kail et al., 2007).

1.4.2 Reintroducing large wood in rivers

Widespread deforestation and past management practices which recommended

the removal of wood from rivers has depleted naturally occurring instream wood

in the UK (Linstead and Gurnell, 1999). Traditionally, instream wood was rou-

tinely removed from watercourses to allow for navigation, prevent bank erosion,

and ensure the hydraulic capacity of channels was maintained (Gippel et al.,

1996). However, since the early 1980s research on the wider environmental ben-

efits has changed attitudes towards the management of instream wood (Gippel

et al., 1996). The Environment Agency now recommends that woody debris

should not be removed from watercourses unless it increases flood risk, increases

bank erosion or is a hazard to navigation (Environment Agency, 2010b). In

Scotland this is extended to a recommendation that its reintroduction should be

considered in watercourses which have been depleted of instream wood (SEPA,

2009). Indeed, instream wood has been reintroduced to restore the ecological

and hydromorphological status of rivers in the UK (River Restoration Centre,

2017), Central Europe (Kail et al., 2007) and America (Bernhardt et al., 2005).
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Increasingly, instream wood is being installed in UK rivers in the form of engi-

neered ‘leaky dams’ to restore hydrological processes for the purpose of flood risk

management (Dodd et al., 2016; Hester et al., 2016; National Trust, 2015; Nisbet

et al., 2015b; Uttley and Skinner, 2017).

Engineered leaky dams consist of wood placed in the river channel and on

the river banks to mimic the function of natural accumulations of large wood in

rivers. Large wood has been widely used in river restoration to protect banks

from erosion, control sediment movement, increase habitat for aquatic species,

and accelerate hydrogeomorphological processes (Abbe et al., 2003; Addy and

Wilkinson, 2016; Bernhardt et al., 2005; Kail et al., 2007). It is only in recent

years that its use as a NFM measures has been trialled (Grabowski et al., 2019)

and its design has been adapted for the primary purpose of delaying and reducing

the magnitude of flood events.

For river restoration applications large wood is usually installed on the river

bed or bank, doesn’t span the channel width, and often has the rootwad attached

(Abbe and Brooks, 2011) (Figure 1.4). Leaky dams installed for the purpose of

NFM, on the other hand, consist of channel-spanning logs which may extend onto

the floodplain and are placed perpendicular to the flow, often raised above the

channel bed to allow for fish passage (Dodd et al., 2016; Hester et al., 2016; Na-

tional Trust, 2015; Nisbet et al., 2015b; Uttley and Skinner, 2017) (Figure 1.5).

Some leaky dam designs aim to replicate natural wood accumulations whilst

others take a more uniform, engineered approach. Research has shown that en-

gineered instream wood features which mimic natural features (e.g. not fixed so

that types and sizes of dams can form where they naturally would) have greater

environmental benefits than more engineered structures (Kail et al., 2007).
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Figure 1.4: Examples of the use of instream wood from the RRC manual of

river restoration techniques (a) Fixing whole trees into the river bank for flow

diversity on the river Avon, England, from RRC (2009, p.2) (b) Bank protection

using root wads on the River Dulais, Wales, from RRC (2013, p.1)

(a) (b)

Figure 1.5: Examples of engineered leaky dams (a) A leaky dam in Belford,

England which replicates natural wood accumulations, from Quinn et al. (2013,

p.12) and (b) A uniform, engineered leaky dam in Pickering, England, from North

York Moors National Park (2015)
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1.4.3 Design guidelines for leaky dams

Instream wood has primarily been used for habitat creation in river restoration,

therefore, the majority of existing guidance focuses on designing instream wood

structures to optimise geomorphological and ecological benefits. Guidance for the

design, installation and monitoring of instream wood for flood risk management

within the UK remains fragmented.

In Scotland the Scottish Environmental Protection Agency (SEPA) provides

general guidance in the Natural Flood Management Handbook (Forbes et al.,

2015) and specific guidance on leaky dams in the document ‘Conceptual Design

Guidelines - application of engineered logjams’, which draws on experiences from

the US (Herrera Environmental Consultants, 2006). Advice is also available in

Scotland for the design of instream wood features for the passage of fish (Dodd

et al., 2016).

In England and Wales general guidance on how to manage and implement

NFM projects is given by the Environment Agency (CBEC Eco Engineering,

2017) but in the absence of specific national NFM leaky dam design guidance

various local guidance documents have been produced by practitioners (e.g. Mott,

2006; Woodland Trust, 2016; Yorkshire Dales National Park Authority et al.,

2017; Yorkshire Dales Rivers Trust, 2018). These guidelines are generally in

agreement that leaky dams should be 1.5 times the channel width in length, be

raised approximately 0.3 m above baseflow to allow for passage of fish, be placed

perpendicular to the direction of flow, extend onto the floodplain and be anchored

to the river banks. The RRC draws on experiences in the UK to present some

project specific guidance in the form of case studies in their Manual of River

Restoration Techniques (e.g. RRC, 2009).

There is detailed design guidance from locations where the discipline is more

mature, such as the United States and Australia. For example, Washington State

(USA), provides comprehensive Stream Habitat Restoration Guidelines (Cramer,

2012) which give in-depth information about the design, installation and monitor-

ing of instream wood features. Abbe and Brooks’s (2011) chapter ‘Geomorphic,

engineering, and ecological considerations when using wood in river restoration’

provides detailed information for taking an engineering approach to the design
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of instream wood features. However, these guidelines aim to provide guidance

for the restoration of habitat rather than flood risk management and are based

on research carried out in the US, therefore, their applicability to UK upland

watercourses may be limited.

The Environment Agency commissioned report of Linstead and Gumell (1999),

‘Large Woody Debris in British Headwater Rivers - Physical Habitat Role and

Management Guidelines’, remains one of few documents which specifically ad-

dresses instream wood in upland watercourses and questions the applicability of

research from the US to UK headwater streams. However, guidance on natural

flood management is due to be published in the UK by the Construction Indus-

try Research and Information Association (CIRIA). The guidance will include

information about the design philosophy, objectives and criteria for leaky dams

installed for the purpose of flood risk management (CIRIA, 2021).

1.4.4 Hazards of instream wood

It is crucial for the success of leaky dams and river restoration activities that

not only the benefits, but also the hazards of introducing large wood to rivers

is taken into account (Dixon and Sear, 2014; Wohl et al., 2016). Instream wood

can present hazards to people, infrastructure and properties, especially if it is

present in or near urban areas (Mazzorana et al., 2011; Ruiz-Villanueva et al.,

2014; Schmocker and Weitbrecht, 2013). Wood in rivers present three main haz-

ards: increased water levels during floods, altering erosion and deposition regimes

and mobile wood (Wohl et al., 2016). Mobile wood can become trapped behind

structures such as bridges and culverts (Fenn et al., 2005; Lagasse et al., 2009)

(Figure 1.6), reducing the cross-sectional area of the channel (Ruiz-Villanueva

et al., 2014). Blockage of bridges has led to floodplain inundation, bed aggrada-

tion, channel avulsion, scouring and collapse of embankments and bridges (Comiti

et al., 2006, 2008; Diehl, 1997; Lyn et al., 2007; Mao and Comiti, 2010), and

increased upstream flooding (Lagasse et al., 2009; Schmocker and Weitbrecht,

2013).

Even without blocking structures, the impacts of large wood on localised

sediment dynamics can induce aggradation or scour, accelerate bank erosion and
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Figure 1.6: Woody debris blocking a bridge in Boscastle, Cornwall, during

floods in 2004 (Environment Agency, 2007b, p. 1)
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encourage lateral movement of the channel (Brummer et al., 2006; Collins et al.,

2012; Montgomery and Buffington, 1997; Wohl and Cadol, 2011) causing flooding

and presenting a hazard to infrastructure (Wohl et al., 2016). Large wood can

also present entrapment hazards to recreational river users such as swimmers or

kayakers (Wohl et al., 2016). Furthermore, if wood becomes mobile during high

flows it can collide with watercraft, bridges and pipelines (Wohl et al., 2016). The

collapse of beaver dams, which consist of accumulations of large wood, have led

to outburst floods on numerous occasions which have been linked to the deaths

of 13 people and damage to infrastructure in the US and Canada (Butler and

Malanson, 2005).

As discussed in Section 1.4.3, there is little guidance about the design and

consideration of stability of leaky dams applicable to UK rivers. There is a need

to address the potential hazards of introducing large wood to rivers to avoid

inadvertently exposing downstream communities at risk (Hankin et al., 2020),

and to allow risk management authorities, such as the Environment Agency and

lead local flood authorities in England & Wales, to assess the risks as well as

the benefits of installing leaky dams (Wohl et al., 2016). Failure to do so can

exacerbate negative perceptions of leaky dams, and ultimately rejection of NFM

measures by flood prone communities (Gapinski et al., 2021; Waylen et al., 2018).

1.5 Impact of leaky dams on the flood hydro-

graph

Despite monitoring efforts, the impact of NFM style leaky dams on flood peak

magnitude and timing has not been quantified in steep watercourses (Burgess-

Gamble et al., 2017; Moors for the Future Partnership, 2015). Previous research

has generally focused on using either an empirical approach or a numerical hy-

draulic or hydrological modelling approach to detect NFM impacts on down-

stream flood risk, but neither has been able to quantify impacts of leaky dams on

flood hydrograph in upland watercourses for a range of flows. Empirical studies

have not been able to draw conclusive results because of a lack of comparable

events in the before and after monitoring period (Connelly et al., 2020) or high
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levels of uncertainty which mask the signal of the intervention (Black et al., 2021;

Gebrehiwot et al., 2019; Lane, 2017). As a result, there is a lack of data with

which to validate the way leaky dams are represented in hydraulic and hydro-

logical models which means that confidence in the outputs of modelling studies

remains low (Addy and Wilkinson, 2019).

1.5.1 Evidence from empirical studies

There is little empirical evidence to assess whether leaky dams can affect flood

peaks, especially at larger scales (Burgess-Gamble et al., 2017). The stochastic

nature of flood events, long timescales associated with monitoring of flood events

has led to both limited pre and post intervention data, often producing only a

small number of comparable flood hydrographs before and after placement of

interventions (National Trust, 2015; Nisbet et al., 2015b; Thomas and Nisbet,

2007). Empirical results are site, scale and event specific compounding the com-

parison and generalisation of results. Furthermore, monitoring is often carried

out on combined NFM measures (e.g. National Trust, 2015; Nisbet et al., 2015b)

preventing isolation of the impacts of leaky dams (Connelly et al., 2020).

Two studies in which artificial flood waves were released through controlled

reservoir releases have offered some insight into the impacts of instream wood on

the flood peak magnitude and timing (Keys et al., 2018; Wenzel et al., 2014).

The studies were limited to small streams (bankfull channel width <1 m) and

the types of large wood associated with river restoration. The instream wood in

both studies was placed on the river bed, rather than above baseflow, were in line

rather than perpendicular to the flow, and did not extend onto the floodplain

(Figure 1.7).

The placement of nine spruce tops (average length 8 m, average maximum

trunk diameter 0.2 m) longitudinally in a 282 m first order, headwater stream

reach (gradient 3.7%, width 0.8 m and average flow depth 0.3 m) in the Ore

Mountains in south eastern Germany delayed the peak of an artificial 3.5 year

return period flood event by 166 seconds, which equates to 10 minutes over a 1

km reach (Wenzel et al., 2014). The flood peak was reduced by only 2.2%, but

the 30 m3 of additional storage altered the shape of the flood hydrograph so that
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(a) (b)

(c) (d)

Figure 1.7: Instream wood researched in (a) the Ore Mountains, Germany, from

Wenzel et al. (2014); (b) mid-Atlantic region of the United States, from Keys et al.

(2018); (c) Eddleston Water, Sottish Borders (Black et al., 2021), from Interreg

North Sea Region Programme (2017) (d) Coverdale, North Yorkshire (from this

study)

21



1.5 Impact of leaky dams on the flood hydrograph

22% of the flow volume no longer coincided with the most erosive part of the

flood peak (Wenzel et al., 2014). Three pieces of large wood with their rootwad

facing upstream in a 50 m reach of a headwater stream in the mid-Atlantic region

of the United States reduced peak magnitude by 8% for an artificial <1-in-1 year

flood event (Keys et al., 2018).

It is known from observations of instream wood in a low gradient, headwater

stream in the New Forest, Hampshire that the delaying effect of the large wood on

the flood peak declined during more extreme events (Gregory et al., 1985; Kitts,

2010), likely due to overtopping of the wood (Dixon et al., 2016). This effect

may also apply to the impact on event peak magnitude (Dadson et al., 2017;

Lane, 2017) but as neither reservoir release study assessed instream wood impacts

on more than one event magnitude their results are of limited use. Moreover,

by testing only one, single peaked event hydrograph the impact of antecedent

conditions or different event types (e.g. multi peaked) cannot be assessed. Finally,

because the instream wood was not designed as NFM leaky dams the timing and

impact on the flood hydrograph is likely to differ and may not be applicable to

leaky dams installed for the purpose of NFM.

Recently, progress has been made in quantifying the impact of NFM features,

including leaky dams, on event peak timing at a range of spatial scales (Black

et al., 2021). In the 69 km2 Eddleston water catchment in the Scottish Bor-

ders of the United Kingdom, a combination of leaky dams, on-line ponds and

riparian tree planting increased lag time by up to 7.3 hours for sub-catchments

up to 26 km2 (Black et al., 2021). The study provides much needed empirical

evidence to support the results of modelling studies which suggest that NFM

measures can have significant impacts on the flood peak at the catchment scale

by de-synchronising tributary flows (e.g. Dixon et al., 2016; Pattison et al., 2014).

Impacts on flood peak magnitude were not quantified, however, due to significant

uncertainty in the flow data (Black et al., 2021).
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1.5.2 Evidence from hydraulic and hydrological modelling

studies

Models have been used to address key evidence gaps of NFM: impacts at larger

spatial scales; impacts on more extreme flood events; and the effects of tributary

(de-)synchronisation (Dadson et al., 2017; Lane, 2017). Such studies are also

providing insights about strategic placement of leaky dams in the catchment

(Hankin et al., 2020).

Although early empirical research showed that the impact of instream wood

features was drowned out in large flood events (e.g. Gregory et al., 1985), mod-

elling studies suggest they may be effective in high exceedance probability events;

for example, Thomas and Nisbet (2012) found a delay in flood peak of 15 minutes

over a 0.5 km reach of a small tributary in Wales in a 1-in-100 year event. Mod-

elling of instream wood in an upland, headwater catchment in the mid-Atlantic

region of the United States which was empirically shown to reduce peak magni-

tude during a <1-in-1 year event, showed that effects could be seen for events

with a return period of up to 25 years (Keys et al., 2018). In some cases model

results indicate that the effectiveness of leaky dams combined with river restora-

tion measures can increase with event peak magnitude (Odoni and Lane, 2010;

Thomas and Nisbet, 2012). This is attributed to ‘expandable field storage’, or

increased use of storage on the floodplain during larger events (Black et al., 2021;

Hankin et al., 2020; Kay et al., 2019; Odoni and Lane, 2010; Thomas and Nisbet,

2012).

Coupled hydrological-hydraulic models are being used to gain a better under-

standing of the flood peak response to instream wood features at the catchment

scale. Metcalfe et al. (2017) used a coupled semi-distributed hydrological model

with a hydraulic channel model to assess the impact of upstream in-channel mea-

sures on the flood hydrograph at a catchment scale (up to 100km2) to show

that 70,000m3 of storage could reduce the flood peak by 11% in moderate events

(Metcalfe et al., 2017). The study found that fewer larger structures lower in

the catchment were more effective at reducing and attenuating peak flows than

a larger number of small, upland features, because more floodplain storage was
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available. However, the study considered only one event which is acknowledged

as a limitation (Metcalfe et al., 2017).

At the catchment scale, relative tributary timing is a crucial factor in de-

termining the magnitude of the downstream flood peak (Pattison et al., 2014).

Using a reduced complexity hydrological model Dixon et al. (2016) found that

instream wood features had a highly variable impact on the downstream flood

peak at the catchment scale, depending on whether the subcatchment flows were

synchronised or desynchronised as a result of the intervention. Whilst Odoni and

Lane (2010) found that interventions were more effective in the upper reaches

of the catchment, Dixon et al. (2016) found that interventions in the lower and

mid-catchment had the greatest impact on the flood peak.

By developing a system performance model of a catchment with different

configurations of between 10 and 20 leaky dams Hankin et al. (2020) showed that

the strategic placement of leaky dams in shallower sections of streams enhanced

storage capacity and avoided storage provided by dams being underutilised. The

model included consideration of failure of leaky dams and concluded that cascade

failure of dams could be avoided by placing them on tributaries rather than on

the main channel (Hankin et al., 2020).

Although modelling studies provide insights about the functioning of leaky

dams at the catchment scale, confidence in modelling results is generally low

(Addy and Wilkinson, 2019). Validation data has been available in relatively

few studies, which means representation of leaky dams in models is generally

heuristic (Addy and Wilkinson, 2019). Misrepresenting leaky dams in models

can cause erroneous and misleading results at the local, reach and catchment

scale (Addy and Wilkinson, 2019). Yet, to date, there is a lack of guidance on

how to represent leaky dams in hydraulic and hydrological models (Addy and

Wilkinson, 2019; Burgess-Gamble et al., 2017; Metcalfe et al., 2018; Pinto et al.,

2019).
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1.6 Monitoring of river restoration projects and

natural flood management

The importance of monitoring river restoration projects is widely accepted (Boon,

1998). Monitoring allows the success of a scheme in meeting its objectives to

be evaluated; provides evidence for environmental benefits of river restoration;

ensures compliance with the WFD and other legislation; and allows changes in

the scheme to be monitored over time (Environment Agency, 2007a). Actively

monitoring a scheme also reduces overall project risk as unexpected impacts of the

scheme can be perceived as they arise (England et al., 2008). This is important in

informing funders, other stakeholders and the public of the impacts of the project

(Skinner and Bruce-Burgess, 2005).

However, despite the importance of monitoring being emphasised in restora-

tion guidance (e.g. Forbes et al., 2015; Mott, 2011; Woodland Trust, 2016) it is

not generally carried out (Hammond et al., 2011). In a study of 50 restoration

projects involving wood in Central Europe only 44% of projects were subject

to monitoring (excluding photographs and visual inspections) whilst changes in

channel morphology and biological quality measures were monitored in only 26%

of projects (Kail et al., 2007). Monitoring is often limited by the resources that

are available (England et al., 2008). Where resources are limited it is recom-

mended that fewer schemes are monitored well, rather than compromising sci-

entific standards by attempting to monitor all schemes (England et al., 2008).

Poorly designed monitoring schemes can waste resources and add little to the

scientific knowledge base (England et al., 2008).

In impact assessment an environmental impact is defined as a change in means

which can be correlated to the start of some human activity (Smith, 2002). To

demonstrate that the restoration has had an environmental impact the monitor-

ing design aims to provide data which allows a change in means to be detected,

and attributed to the restoration activity. It is therefore advised to use a Before

After Control Impact (BACI) procedure (Underwood, 1994) to monitor the im-

pact of NFM measures on the flood hydrograph (Ellis et al., 2021) which requires

the collection of baseline and control site data. Baseline data describes the eco-

logical and physical condition of the site before project implementation; this is
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important as it allows the impact of the project to be quantified once it has been

implemented (Skinner and Bruce-Burgess, 2005). A control site is a site which is

similar to the restoration site but has not been impacted by the restoration ac-

tivity; this allows the impacts of the restoration to be separated from background

changes in the monitored data, such as seasonal trends (England et al., 2008).

In a BACI experiment a relationship is established between the response of a

control and impact catchment during baseline monitoring (before impact); after

the impact a change in this relationship can be attributed to the impact mea-

sure (Clausen and Spooner, 1993). Although the impact and control catchments

should be “comparable in size, topography, vegetation and climate” (Clausen and

Spooner, 1993) this approach does not require the two catchments to be the same,

it only requires the response of the catchments to be correlated (Clausen and

Spooner, 1993) thereby overcoming many of the inherent difficulties of working

in the natural environment. This statistical control means that not all variables

which could cause a change need to be monitored and background hydrological

and climatic variability can be separated from the impact measure (Clausen and

Spooner, 1993; England et al., 2008; Ssegane et al., 2013).

However, designing BACI experiments with flood peak data presents chal-

lenges. Alila et al. (2010) argue that the BACI method is flawed because it does

not take into account the relationship between flood magnitude and frequency;

suggesting a paradigm shift to frequency, rather than chronologically based com-

parison of events (Alila et al., 2009). Further concerns include the lack of true

replication, applicability of results to other watersheds and the impact of extreme

climatic events during the impact monitoring period (Ssegane et al., 2013). Tem-

poral autocorrelation of hydrological data can occur where hydrological BACI

data has a fine temporal resolution, because measurements are not independent

(Som et al., 2012). However, this can be overcome by using appropriate statis-

tical methods (Som et al., 2012). Spatial and temporal replication increase the

reliability of the BACI experiment results but is limited by available resources;

time and money to design, install and monitor instream wood structures.
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1.7 Evidence Gaps

Leaky dams are increasingly being installed with the aim of delaying and re-

ducing the magnitude of flood peaks for the purpose of flood risk management

(Grabowski et al., 2019). However, confidence in their efficacy as a flood risk

management measure is low because of a lack of empirical evidence (Burgess-

Gamble et al., 2017; Ellis et al., 2021). Recently, leaky dams have been shown to

delay flood peaks at a range of spatial scales, and for a range of event magnitudes

(Black et al., 2021). However, due to high levels of uncertainty in hydrological

data, and lack of baseline data combined with the stochastic nature of flood events

(Connelly et al., 2020; Ellis et al., 2021; Lane, 2017), their impacts on flood peak

magnitude have not yet been empirically quantified for a range of event types

and magnitudes, even at the stream scale. To mainstream leaky dams as flood

risk management measures empirical evidence for their effectiveness is required

for a range of environments, in the same way there is for traditional flood de-

fences (Ellis et al., 2021). Increased confidence in their impacts would allow their

benefits to be quantified for implementation in flood risk management schemes,

and environmental land management under the current CAP and the proposed

ELMS.

Crucially, as well as the benefits, the risks associated with introducing wood

to rivers need to be addressed (Dixon and Sear, 2014). Hazards presented by

instream wood are well documented, particularly in steep environments (Ruiz-

Villanueva et al., 2014; Schmocker and Weitbrecht, 2013; Swanson et al., 2021).

However, there is not yet any quantification of the resilience of leaky dams during

flood events. Progress has been made in including the potential for leaky dams

to fail in models, which has led to insights about strategic placement of leaky

dams (Hankin et al., 2020). However, such models are limited by basing their

predictions of leaky dam failures on assumptions, rather than quantification of

leaky dam fragility (Hankin et al., 2020). Being able to predict the rate of failure

of leaky dams, and therefore supply of mobile wood is crucial to the success of

leaky dams as flood risk management measures (Dixon and Sear, 2014) and to

avoid inadvertently placing downstream communities at increased risk of flooding

(Hankin et al., 2020).
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1.8 Research questions

The UK’s proposed Environmental Land Management Scheme provides an op-

portunity for the UK to become a world leader in sustainable land management

(Klaar et al., 2020). However, to be able to do this, the benefits and trade-offs

within and between ecosystem services need to be taken into account (Ellis et al.,

2021; Vira and Adams, 2009). For leaky dams, trade-offs exist within flood risk

management because of their potential to change the shape of the flood hydro-

graph (Black et al., 2021; Gregory et al., 1985; Kitts, 2010), and their potential to

present a hazard in case of structural failure (Ruiz-Villanueva et al., 2014; Wohl

et al., 2016). Because uncertainty in the benefits and risks of installing leaky

dams for flood risk management is high (Burgess-Gamble et al., 2017; Ellis et al.,

2021; Hankin et al., 2020; Lane, 2017), it is difficult for risk management author-

ities to assess whether the benefits of installing leaky dams in upland catchments

outweigh the risks. Assessing whether the benefits of an intervention outweigh the

risks is essential to ensure that communities are not inadvertently being exposed

to increased risk (Hankin et al., 2020; Wohl et al., 2016).

This research aims to quantify the impact of installing leaky dams in steep,

upland streams on downstream flood risk, both in terms of its impacts on the

flood hydrograph, and the probability of failure of engineered leaky dams.

Aim: To quantify the risks and benefits for flood risk management of installing

engineered leaky dams in steep, upland streams.

The first part of the aim, quantifying the impact of leaky dams on the flood

hydrograph in upland streams, was addressed by setting up an empirical BACI

study in an upland, headwater catchment in North Yorkshire, England. An

extensive hydrological monitoring network was installed to monitor stage at the

upstream and downstream extent of 5 stream reaches for a three year period.

Halfway through the monitoring period a series of six to eight leaky dams were

built on four of the streams, leaving one stream as a control.

Although notable flood events occurred during the monitoring period, it was

not possible to assess the impact the leaky dams had on the flood hydrographs

because uncertainty in the data masked the signal of the leaky dams. Particularly,
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changes in the stage datum, brought about by erosion or deposition of material

in or near the gauging cross-sections, precluded comparison of flood hydrographs

recorded before and after the leaky dams were installed.

High levels of uncertainty are common in the type of empirical hydrological

data collected in this study (Black et al., 2021; Gebrehiwot et al., 2019; Lane,

2017; Wilkinson et al., 2014). To address this problem, the value of applying a

data based time series modelling technique to detect the impact of NFM leaky

dams from uncertain empirical data was assessed in this study. Data based time

series models are chosen based on the statistical properties of the data (Hipel and

McLeod, 1994) and therefore allow some data quality problems to be overcome.

Specifically, by applying data transformations the model can be made indepen-

dent of the stage datum, thereby avoiding problems associated with changes in

the stage datum.

Given an upstream flood hydrograph, a validated data based time series model

fitted to the baseline data of a stream can be used to make predictions of the down-

stream flood hydrograph to a known level of accuracy (von Asmuth et al., 2002).

Every flood hydrograph recorded after an intervention is made in the stream can

therefore be compared to the simulated baseline response of the stream, allowing

the impact of the intervention to be detected. Although this approach has been

applied to assessing impacts on hydrological processes (e.g. Dickson et al., 2012;

Gomi et al., 2006; Watson et al., 2001) it has not yet been used to quantify leaky

dam impacts on the flood hydrograph. To assess whether this methodological

approach is of value for the detection of the impact of NFM measures such as

leaky dams on the flood hydrograph the following research questions, Q1 and

Q2, are addressed in Chapters 2 and 3.

To assess whether the benefits associated with installing leaky dams in streams

outweigh the risks, a robust, evidence based approach to quantifying their capac-

ity to resist failure is needed. When failure modes are not well understood or

consist of complex interactions, empirical fragility analysis can be used to esti-

mate failure probability, conditional on a loading condition, based on observations

of leaky dam resilience and failure (Schultz et al., 2010). Fragility analysis is more

widely used in earthquake engineering (Porter et al., 2007) but has recently been

shown to be valuable in quantifying the failure probability of railway bridge assets
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conditional on the flood return period (Lamb et al., 2019). Hence, their applica-

bility to quantifying leaky dam resilience is addressed in research question Q3,

in Chapter 4. The three research questions addressed in this study are:

Q1: What role could data-based time series modelling techniques play in quan-

tifying NFM impacts from short and uncertain BACI data?

Q2: In upland streams, what is the impact of leaky dams on the flood peak

magnitude of a range of flood events?

Q3: What potential does empirical fragility analysis have for quantifying the

resilience of engineered leaky dams during extreme flood events?
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Chapter 2

Using a data-based modelling

approach to assess leaky dam

impacts on downstream flood risk

Part I– model fitting and

validation

2.1 Introduction

It is generally accepted that flood risk is increasing in temperate climates due

to the effects of climate change (Blöschl et al., 2019; Hirabayashi et al., 2013)

and socio-economic drivers such as land-use change (Winsemius et al., 2016).

Increased flooding has been recorded across northwest Europe in the last five

decades due to higher levels of autumn and winter rainfall (Blöschl et al., 2019).

In the UK, this trend is highly likely to continue, with unprecedented levels of

rainfall predicted to be recorded every winter (Thompson et al., 2017). In re-

sponse there has been a shift towards holistic, catchment wide approaches to

flood risk management across Europe (Commission of the European Communi-

ties, 2009). Working with natural processes (WWNP) to manage flood risk, also

referred to as Natural Flood Management (NFM), aims to restore or emulate the

natural functioning of river catchments to increase infiltration, slow flows and
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store water (Forbes et al., 2015). NFM techniques include woodland creation,

improved land management, and river and floodplain restoration (Forbes et al.,

2015). It is used alongside traditional flood defences and is particularly suited to

sparsely populated rural and upland areas where traditional flood defence schemes

are less feasible (Sayers et al., 2002). In the UK, the move towards integrating

Natural Flood Management into flood risk management policy has been evident

since 2005 (Defra, 2005); yet the efficacy of many NFM measures at reducing

downstream flood risk remains unquantified (Burgess-Gamble et al., 2017; Lane,

2017; Wilkinson et al., 2019).

Understanding the level of protection offered by NFM interventions is in-

creasingly important as the UK Government is set to replace the EU’s Common

Agricultural Policy (CAP) with the Environmental Land Management Scheme

(ELMS) in England (Klaar et al., 2020). ELMS aims to fulfil the requirements of

the Government’s 25 year plan for the environment using the principle of public

money for public goods (Defra, 2020). This ‘payments for outcomes’ approach

includes making payments to farmers and land managers for protection from en-

vironmental hazards such as flooding (Defra, 2020). However, in the absence of

quantitative evidence of the level of protection delivered by interventions, the

‘public goods’ delivered by an NFM scheme are difficult to quantify. Similarly,

England’s Environment Agency calls for WWNP to be considered in all pub-

licly funded Flood and Coastal Erosion Risk Management (FCERM) strategies

(Environment Agency, 2010a), but the spending of public funds requires a cost

benefit approach to be taken (Defra, 2009), which requires the quantification

of the performance of NFM measures as flood risk management assets. Further-

more, uncertainty about the efficacy of NFM features presents a barrier to uptake

amongst stakeholders such as farmers and land managers whose support is key

for the implementation of NFM (Bark et al., 2021).

A lack of sufficient baseline data has been identified as a key barrier to quan-

tifying the hydrological impacts of NFM measures (Connelly et al., 2020; Ellis

et al., 2021; Lane, 2017) and validation of the technique as a whole (Dadson et al.,

2017). To address this evidence gap a Before-After-Control-Impact (BACI) mon-

itoring methodology, which is common practice in the field of ecology, is recom-

mended (Ellis et al., 2021). The BACI methodology was originally developed for
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ecological monitoring (Stewart-Oaten et al., 1986) and extends the comparison

of observation before and after an impact to include information from a control

site which accounts for natural variation so that causal inference can be made

(Smith, 2002). The BACI monitoring methodology has been widely applied in

hydrology, for example, to assess the impacts of land use change and stormwater

management measures on streamflow (e.g. Alila et al., 2009; Hughes et al., 2020;

Rhea et al., 2015; Shuster and Rhea, 2013). However, it has not yet been success-

fully applied to assessing the impacts of leaky dams on flood peak magnitude in

upland watercourses (Burgess-Gamble et al., 2017; Ellis et al., 2021). There are

two main challenges with applying the BACI approach to the monitoring of NFM

impacts on flood peak magnitude and timing. Firstly, the opportunistic nature of

NFM projects means there is a lack of lead time to collect long enough periods of

baseline data to account for the stochastic nature of floods (Connelly et al., 2020;

Ellis et al., 2021). For example, despite best efforts, a paucity of high flow events

observed during the monitoring period hampered the empirical quantification of

NFM impacts of two of the three government funded pilot projects initiated in

2009 (National Trust, 2015; Nisbet et al., 2015a) and continues to affect the col-

lection of evidence from the £15 million worth of NFM projects funded by the UK

government in 2017 (Environment Agency, 2019). Secondly, even when baseline

data is available, high levels of uncertainty typical of hydrological data can mask

reach scale impacts of NFM measures (Ellis et al., 2021; Lane, 2017).

As a result of the difficulties associated with collecting hydrological data there

are few empirical studies which have successfully quantified the impacts of leaky

dams in upland watercourses on downstream flood risk. Recent reviews of both

the academic and ‘grey’ literature identified only two studies in which the impact

of instream wood on the flood hydrograph was successfully quantified (Addy

and Wilkinson, 2019; Burgess-Gamble et al., 2017). In both of these studies

the problems presented by the stochastic nature of flood events were avoided by

generating artificial reservoir releases to emulate flood events (Keys et al., 2018;

Wenzel et al., 2014).

In the Ore Mountains in Southeastern Germany nine spruce treetops with an

average length of 8.5 m and diameter of 0.2 m were placed lengthways in a first

order, high gradient stream with average bankfull width of 0.3 m. Flood surges
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equivalent to a 3.5 year return period event were released before and after the

treetops were placed in the stream and discharge was measured at one second

intervals at the upstream and downstream extent of the 282 m test reach. The

treetops had a small but significant impact on the flood peak magnitude and

timing; flood peak magnitude was reduced by 2.3% and the peak was delayed

by 2.8 minutes, although the accuracy of the gauging equipment was not stated.

However, 22% of the total flow volume was relocated from the most erosive peak

of the event to lower discharges (Wenzel et al., 2014).

A similar experiment was conducted in a 50 m reach of a headwater stream

with an average bank full width 0f 0.93 m in the Mid-Atlantic region of the United

States. Three pieces of large wood, which spanned the channel width, were placed

horizontally on the channel bed with their rootwads facing upstream. Artificial

flood waves equivalent to a <1 year return period event were released before and

after the large wood was installed and discharge was measured at the upstream

and downstream extent of the test reach. The large wood reduced event peak

discharge by 8% and increased floodplain inundation extent by 34% (Keys et al.,

2018).

Although both of these studies indicate that large wood in rivers can have

significant impacts on flood peak magnitude and timing, neither study assessed

the types of engineered large wood typically installed for NFM, often referred to as

leaky dams. These engineered leaky dams differ from the type of large wood used

in the studies of Wenzel et al. (2014) and Keys et al. (2018) in that (i) they were

placed perpendicular to the direction of flow, rather than lengthways, to maximise

friction effects (Gippel et al., 1996; Shields and Alonso, 2012); (ii) they were raised

above baseflow level, rather than placed on the stream bed, so that their storage

capacity was not used up during normal flows; and (iii) they extended onto the

river banks to increase their storage capacity and interaction with flood flows

(Forbes et al., 2015; Herrera Environmental Consultants, 2006; Yorkshire Dales

Rivers Trust, 2018). Furthermore, each study empirically assessed impacts of

large wood on only one flood event each, limiting understanding of its performance

during different magnitudes and types of events.

In the UK, Black et al. (2021) empirically quantified the impact of leaky dams

installed for the purpose of NFM on flood peak timing at multiple spatial scales.
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The study monitored the 69 km2 Eddleston catchment (Scottish Borders, UK) in

13 locations for a period of nine years and found significant delays in headwater

catchments upto 26 km2 (Black et al., 2021). However, interventions in the head-

water catchments also included on-line ponds and riparian planting and therefore

the impacts cannot be attributed to leaky dams alone. Furthermore, due to high

levels of uncertainty in the hydrological data the impact on flood peak magnitude

was not quantified (Black et al., 2021).

The majority of attempts to overcome the difficulties associated with em-

pirically quantifying leaky dam impacts have been made using numerical fluvial

hydraulic and hydrological models (Burgess-Gamble et al., 2017) which rely on a

priori assumptions about the physical processes governing the impacts of leaky

dams. These processes are poorly understood (Dixon et al., 2016; Lane, 2017)

and the lack of quantitative validation data means the representation of leaky

dams in numerical hydraulic and hydrological models remains heuristic (Addy

and Wilkinson, 2019). Critics of this reductionist, or ‘bottom up’ approach to

hydrological modelling have long argued that a priori conceptions of how the sys-

tem works based on academic judgement and intuition can lead to overconfidence

in the resulting models (Young, 1978).

An alternative is to follow an inductive, ‘top-down’ approach, which minimises

the need for a priori assumptions. This approach, described by Beven (2001) as

‘doing hydrology backwards’ uses statistical time series modelling methods to

infer model structure and parameter values from empirical data (Young, 2003).

Once the model structure and parameters have been determined from the data

the model represents the dynamical properties of the system and can therefore

be used to make predictions of the values of the output series and its uncertainty

for unobserved periods (von Asmuth et al., 2002).

By definition, this type of modelling requires the underlying processes which

generate the time series to be stationary, or in a state of ‘statistical equilibrium’

over time. If the statistical properties of the time series changed over time the

inferences, forecasts or simulations generated using the fitted model would not be

valid unless the underlying non-stationarity of the data was taken into account.

There is an array of time series modelling approaches and techniques to account

for underlying non-stationarity; artificial neural networks (Dorofki et al., 2012;
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Piotrowski and Napiorkowski, 2013; Thirumalaiah and Deo, 1998), support vector

machines (Han et al., 2007; Lin et al., 2006), classification and regression trees

(Noymanee and Theeramunkong, 2019; Yin et al., 2018) and transfer function

models (Beven et al., 2008; Leedal et al., 2010; Romanowicz et al., 2008; Young,

2003) have all been applied to the modelling of hydrological data. The appropriate

model is chosen based on the statistical properties of the data (Hipel and McLeod,

1994) to handle features such as seasonality, non-stationarity, and autocorrelation

typical of hydrological data (Beven and Westerberg, 2011).

The transfer function noise (TFN) family of models are predominantly used

when a time series can be modelled by linearly transforming one or more predictor

time series and the resulting residuals of that transformation are autocorrelated.

TFN models are therefore particularly well suited to modelling hydrological data

(von Asmuth et al., 2002). They are more widely applied in the fields of systems

engineering, econometrics and the social sciences (Okiy et al., 2015) but have been

used to model hydrological data for several decades (e.g. Dooge, 1959; Jakeman

et al., 1990; Young, 1986). In hydrology, TFN models are most commonly used

to model the rainfall-runoff relationship (e.g. Katimon et al., 2013; Ratto et al.,

2007; Young, 2003), but they have also been used to fill gaps in hydrological

records (Tencaliec et al., 2015), real-time level to level forecasting (Leedal et al.,

2010; Young, 2002), modelling groundwater fluctuations (von Asmuth et al., 2002)

and to detect impacts on hydrological processes (Dickson et al., 2012; Katimon

et al., 2013; O’Driscoll et al., 2016). Transfer functions have been shown to

produce simulations of peak event magnitude to a high level of accuracy; based on

upstream stage series a transfer function model was able to simulate downstream

stage on the River Severn to within 0.006 m to 0.139 m (0.1%–3.7%) for varying

lead times (between 2 and 14 hours) at the peak of an event (Romanowicz et al.,

2008). They have been shown to produce accurate simulations of stage (R2 =

0.94) even when fitted and validated using only a short period (20 days) of data

(Young, 2003).

Transfer function noise modelling and other top-down, data-based time series

modelling techniques present an opportunity to extract information from typically

short periods of baseline data collected before NFM interventions are installed.

This would allow for comparison between pre and post-intervention response of
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a stream even if directly comparable flood hydrographs were not captured in

both monitoring periods. Given the difficulties in monitoring and processing

hydrological data typically collected in NFM projects (Arnott et al., 2018), this

research addresses the following research question:

Q: What role could data-based time series modelling techniques play in quanti-

fying NFM impacts from short and uncertain BACI data?

by addressing the objectives:

O1: Assess the potential of linear TFN modelling to present a solution to the

problem of quantifying NFM impacts from short and uncertain baseline and

post-intervention data.

O2: Assess whether linear TFN models are able to simulate the pre-intervention

level to level response of upland streams during flood events to a high enough

degree of accuracy to inform the baseline conditions prior to the installation

of in-stream NFM interventions.

To answer these questions, TFN modelling techniques were applied to fit and

validate models to baseline stage time series collected during a BACI monitoring

campaign in three steep, upland streams. The BACI monitoring campaign was

designed to assess the impacts of leaky dams on flood peak magnitude and timing

in upland streams.

This chapter forms the first part of two linked chapters in which the leaky

dam impacts on downstream flood risk were assessed using a data-based time

series modelling approach. This chapter (part I) details how the BACI data

were collected, fitting of the linear TFN models and the blocked out of sam-

ple cross-validation approach used to assess the predictive skill of the models.

In the next chapter (part II, Chapter 3) the fitted and validated TFN models

were used to simulate the baseline stage response of the streams for all high flow

events observed in the post-intervention monitoring period. By taking this ap-

proach, differences in the simulated peak stage and observed peak stage could be

attributed to the leaky dams.
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2.2 Methods

Three years of hydrological data were collected from three streams located in a

small, upland catchment in North Yorkshire, UK. The data comprised of 1-minute

stage data for a period of 18 months collected on a control stream and prior to

the installation of 7–8 leaky dams on two impact streams. Due to high levels

of uncertainty and a lack of stationarity in the data, a TFN model was fitted

to the data from each stream to simulate the pre-intervention response of the

streams. Simulations of pre-intervention response of the streams are used in the

next chapter (Chapter 3) to assess the change in peak magnitude of flood events

observed after leaky dams were installed in the impact streams. A summary of

the model fitting and validation process is given in Figure 2.1. First an overview

of the study site and field methods is given, then the steps taken to prepare the

data for modelling are outlined, followed by a description of the tests for station-

arity. Thereafter a brief summary of the form of transfer function noise models is

provided followed by details of the data driven procedures followed to fit a parsi-

monious model. Finally, the blocked out of sample cross-validation approach used

to assess the accuracy of the model and estimate empirical prediction intervals is

described.

The first step was to collect stage series upstream and downstream of three

streams before and after the installation of leaky dams on the impact streams.

The second step was to prepare the data for modelling by performing a thorough

quality assurance process which is detailed in Appendix B. The time series mod-

elling approach requires the assumption to be made that the properties of the

forecast and predictor series do not vary with time, in other words, the series

are required to be stationary. This means that the data do not have predictable

patterns in the long term such as trends or seasonality, and that it has constant

variance (Hyndman and Athanasopoulos, 2018). Hence, following data collection

and quality assurance, in the third step, the non-stationary stage series data was

transformed by taking the first order difference to make it stationary. First order

differencing had the benefit of making the model independent of errors in the

stage datum which contributed high levels of uncertainty in the stage data (see

Appendix B).
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Figure 2.1: Summary of the data-based model fitting and validation process
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The fourth step was to fit a time series model to the observed data with

downstream stage as the forecast (dependent) variable and upstream stage as

the predictor (explanatory) variable. The model was fit to the baseline, pre-

intervention data so that, given the upstream stage series of any high flow event,

it could simulate the downstream peak stage response of the stream with no

leaky dams. To assess the accuracy of the model at simulating downstream peak

stage, in the fifth step, the model was validated using events recorded during the

baseline monitoring period, i.e., when there were no leaky dams in the stream

so that the simulations should match the observations. To do this, each of the

events in the baseline data was removed in turn, and the model, which was fitted

to the remaining data, was used to simulate its peak stage. The simulated peak

stage was compared to the observed peak stage to assess the accuracy of the

simulation. By repeating this for all 45 events the model’s ability to simulate

out of sample peak stage was assessed for every event in the baseline monitoring

period. Finally, the distribution of the model error at predicting peak stage was

used to estimate empirical prediction intervals for each stream model.

2.2.1 Study site

The study site is located in the headwaters of the River Cover (54.20045 N, -

1.98617 E) on the Eastern flank of the Yorkshire Dales National Park, North

Yorkshire, England (Figure 2.2). The climate is cool and wet, with an average

annual rainfall of 1270 mm (Environment Agency rain gauging station 57426

data 1988-2018, Figure 2.2). The River Cover flows in a north-easterly direction

through a number of settlements including Carlton, West Scrafton and Melmerby

towards a confluence with the River Ure approximately 20 km downstream of the

study site. The Ure passes many larger settlements including Masham, Ripon and

Boroughbridge before it flows through the city of York as the River Ouse. The

glacial valley of Coverdale overlies Great Scar limestone with rocks of the Yoredale

series forming the valley sides (Yorkshire Dales National Park Authority, 2002).

The headwaters are formed of many small, parallel streams which flow into the

River Cover at an altitude of 400 m AOD. The study focuses on three of these

streams, with a combined catchment area of 4.7 km2. The watercourses are of
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Figure 2.2: Location of study site in Coverdale, North Yorkshire, UK, and

nearest Environment Agency operated flow and rainfall gauging stations
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type A in the Rosgen classification; steep, partially entrenched and cascading

with step-pool streams (Rosgen, 1994). Land use in the catchment is pastoral

agriculture on open, unimproved grassland whilst the moorland is managed for

grouse shooting. Since 2001 changes in management practice such as grip blocking

and reductions in stock grazing have had impacts (anecdotally) on the hydrology

and geomorphology of the river; better storage of water in the moorland has

decreased large scale bed movements in the river and reduced grazing pressure

has increased marginal vegetation which has stabilised the river banks (Wild

Trout Trust, 2013). Desk-based studies and walk-over surveys were conducted

prior to project initiation to choose streams with similar catchment area, land-

use, steepness and typology. The hydrological characteristics of the streams are

summarised in Table 2.1. Catchment area was calculated using a 30 m resolution

digital elevation map in the global information system ArcMap, version 10.6. and

manually adjusted based on elevation data from OS maps. The monitored stream

lengths were chosen to avoid including lateral inflows within the monitored reach.

Table 2.1: Stream characteristics

Stream Gradient Catchment Monitored Mean

(m/m) Area (km2) length (m) width (m)

1 0.13 1.1 280 2.6

2 (control) 0.11 1.9 260 3.0

3 0.09 1.7 250 2.7

Water stage data, defined as water level above the gauge datum, were collected

following a Before After Control Impact (BACI) methodology as described by

Smith (2002). Figure 2.3 shows the control stream (Stream 2) and two impact

streams (stream 1 and 3) in which leaky dams were installed at the end of the

baseline monitoring period. Baseline data were collected between March 2017

and September 2018 for a period of 18 months before leaky dams were placed

in the impact streams. Post-intervention stage data were collected for a further

17 months between September 2018 and February 2020. Stage was monitored

at one-minute intervals using In-Situ Inc. (Redditch, UK) Rugged TROLL 100

non-vented pressure transducers (±0.05% full scale accuracy) in stilling wells at
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Figure 2.3: Water level monitoring upstream and downstream of two impact

streams (navy) and one control stream (red) in the headwaters of the river Cover,

Coverdale, North Yorkshire, UK
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the upstream and downstream extent of the study reaches on each stream, Figure

2.3. The pressure readings from the transducers were corrected for atmospheric

pressure using an In-Situ Inc. (Redditch, UK) Rugged BaroTROLL atmospheric

pressure gauge (±0.05% full scale accuracy) which was installed near the bottom

of stream 1, at a similar elevation to the non-vented pressure transducers. The

stream labelled as the control stream in Figure 2.3 was monitored throughout the

baseline and post-intervention monitoring periods without the placement of any

interventions.

2.2.2 Data preparation

The data were visualised, prepared and analysed using R version 4.0.2 (R Core

Team, 2020) throughout the study. Data preparation consisted of three steps:

data smoothing, quality assurance and aggregating the data. The data were

smoothed to discern the shape of the hydrograph from the noise in the data caused

by fluctuations of up to ± 0.10 m in water level. Due to the large volume of data

the computationally efficient locally weighted scatterplot smoothing (LOESS)

method was used (Sharma et al., 2015). A second order polynomial LOESS was

used to avoid problems of underestimating in regions of curvature (i.e. flood

peaks) associated with linear weighted models (Hastie et al., 2017). The package

paleoMAS v.2.0-1 (Correa-Metrio et al., 2012) and base R package stats v.4.0.2

were used to smooth the data.

To identify and, where possible, correct for data errors, quality assurance of

the data was carried out by visual inspection of the smoothed data, as recom-

mended by Crochemore et al. (2020). After Pastorello et al. (2014), general trends

and patterns were identified in the data to detect anomalous values through single

variable inspection, multi-variable inspection of correlated variables, and detailed

relationship examination. Where errors in the data were identified, evidence was

sought from field observations, field notes, photography, spot discharge gaugings

and aerial photography to form hypotheses about the source of the errors. Where

sufficient evidence was available to support these hypotheses and calculate the

magnitude of error a correction was made to the stage series (details given in Ap-

pendix B). For example, in one case the collapse of a cattle bridge downstream
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of a stage gauge had a backwater effect which was corrected by comparing spot

discharge gaugings made before and after the collapse of the bridge. The periods

of data error lasted between 1 hour and 11 months (where a permanent change

to a cross section occurred) but the majority lasted less than one week. Fur-

ther details are provided in Appendix B. The data were interactively visualised

at different scales and timeframes using the R package Plotly v.4.9.2.1 (Sievert,

2020). Finally, to reduce the computational burden and complexity of the model

the data were aggregated from 1-minute to 15-minute time-steps by taking the

maximum value of the cleaned and smoothed data in each 15-minute period. The

maximum rather than mean values were taken to preserve the maximum event

peak magnitudes in the stage series.

2.2.3 Data transformation

To fit a TFN model to the stage time series data the data had to meet the require-

ments of stationarity (Hipel and McLeod, 1994). The condition of stationarity

in the upstream and downstream stage time series data for each stream was

tested using a unit root test, the Augmented Dickey Fuller (ADF) test (Fuller,

1996) and a stationarity test, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

(Kwiatkowski et al., 1992). The presence of a unit root in the data indicates the

presence of a stochastic trend. The KPSS test was used to test the null-hypothesis

that the data series was stationary against the alternative of a unit-root; reject-

ing the null-hypothesis indicated that the data series was non-stationary. The

null-hypothesis was rejected if the test statistic was greater than the critical value

for the 95% confidence level (Kwiatkowski et al., 1992).

As the KPSS test has a high rate of type I errors (rejecting the null-hypothesis

erroneously) (Caner and Kilian, 2001) it was combined with the ADF test for

stationarity. Conversely to the KPSS test the ADF test was used to test for the

presence of a unit root. Rejecting the hypothesis that a unit root was present

in the data indicated that the data would be unlikely if there was a unit root

(non-stationarity). The ADF test required the selection of the appropriate lag

length to avoid biasing the results or reducing the power of the test. The lag

length, lmax, (in number of timesteps) was chosen following the rule in Equation
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2.1 suggested by (Schwert, 2002), where T is the sample size and square brackets

indicate the integer value. Following Ng and Perron (1995) the ADF statistic was

calculated for every lag up to lmax and the p value was reported for the biggest

lag length at which the absolute value of the statistic was <1.6, or the smallest

value of the statistic where all values >1.6 (after Ng and Perron (1995).

lmax = [12.(
T

100
)
1
4 ] (2.1)

Both the upstream stage series, U, and downstream stage series, D, in metres,

from all streams were transformed to satisfy the requirement of stationarity by

taking the first order difference after Box and Jenkins (1976) as shown in equa-

tions 2.2 and 2.3, where the subscript ‘t’ denotes the time-step, ‘t-1’ denotes the

previous 15 minute timestep and the integrated upstream and downstream stage

series are denoted U* and D* respectively (in metres). The KPSS and ADF unit

root tests were performed on the differenced upstream and downstream stage se-

ries, U* and D*, which verified that they were stationary as a result of the data

transformation (Table 2.2).

U∗
t = Ut − Ut−1 (2.2)

D∗
t = Dt −Dt−1 (2.3)

Table 2.2: Results of the unit root tests for stationarity. ** indicates significance

to 1% level, * indicates significance to 5% level

Upstream Downstream

(predictor variable) (forecast variable)

KPSS test ADF test KPSS test ADF test

Stream 1 Stage 39.6663** -2.03* 35.6453** -1.23

Stream 2 Stage 9.4579** -1.75 9.0565** -1.43

Stream 3 Stage 39.6663** -3.51* 35.6453** -1.61

Stream 1 Differenced Stage 0.0089 -33.1** 0.0116 -32.9.1**

Stream 2 Differenced Stage 0.0032 -44.9** 0.0026 -45.0**

Stream 3 Differenced Stage 0.0089 -41.3** 0.0116 -40.9**
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2.2.4 Linear Transfer Function Noise models

Following confirmation of stationarity, transfer function noise models were iden-

tified as an appropriate class of models to represent the relationship between U*

and D*. Transfer function noise models with application to hydrological data

are described in detail by Hipel and McLeod (1994) and are therefore only sum-

marised here. Linear transfer functions mathematically describe the dynamic

linear relationship between a given input and output. The transfer function, or

dynamic component of the model, is similar to a multiple linear regression, but

one in which the predictive variables can include one or more lagged versions

of a variable. Autocorrelation in the residual series, which would not meet the

assumptions of independence required in linear regression, is taken into account

by fitting a time series model to the residual series in the noise component of the

model. Hence, the transfer function model consisted of a dynamic component

and a noise component:

output = dynamic component+ noise (2.4)

The dynamic component of the TFN model was a linear function in which the

forecast variable, D*, was regressed against the predictive variable, U* and k

number of lagged values of U* ; thereby representing how the input, (U*t), dy-

namically affects the output, (D*t):

D∗
t = U∗

t + v1U
∗
t−1 + v2U

∗
t−2 + ...+ vkU

∗
t−k (2.5)

The parsimonious number of dynamic regression terms (lagged values of U* ),

k, required to simulate D* was determined by inference from the data as described

in Section 2.2.5. Using the backshift operator ’B’, a notational device which

denotes the number of periods by which the data is shifted back, or lagged, this

can be written as:

D∗
t = v(B)U∗

t (2.6)

where v(B) = (v0+v1B+v2B
2+...+vkB

k) is the transfer function, the coefficients

v0,v1,v2,vk, are the impulse response weights, and k is the maximum number of

lags used. As for the number of lagged terms, k, the impulse response weights
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were inferred from the data as described in Section 2.2.5. Influences other than

the input series Ut which affect the output, Dt, were captured in the noise term,

Nt, hence, in its simplest form, for series with zero mean, the transfer function

noise model is:

D∗
t = v(B)U∗

t +Nt (2.7)

the noise term, Nt, was represented by a time series model. As the model error of

hydrological data is often auto-correlated (Hipel and McLeod, 1994) it is usually

represented using an autoregressive moving average (ARMA) model (Bell et al.,

2001; Katimon et al., 2013; Yuan et al., 2009). For the stationary noise series the

ARMA model was of the form:

Nt =

p∑
j=1

ϕjNt−j +

q∑
j=1

θjat−j + at (2.8)

where at ∼ N(0, σ2)

where ϕj = (ϕ1, ϕ2, ..., ϕp) and θj = (θ1, θ2, ..., θq) are the vectors of model coeffi-

cients of order p and q, which denote the number of autoregressive and moving

average parameters respectively, ‘j ’ is the autoregressive or moving average term

between one and p or q respectively, and at is the residual series. To obtain esti-

mates for the model parameters, at was required to be independent and normally

distributed with zero mean and fixed variance, which is denoted N(0, σ2) in time

series modelling convention. Using the backshift operator, B, Equation 2.8 can

be denoted:

Nt =
θ(B)

ϕ(B)
at (2.9)

where θ(B) is the moving average (MA) term of order q, ϕ(B) is the autoregressive

(AR) term of order p. The number of terms, p and q, in the ARMA model were

determined by inference from the data as described in Section 2.2.5. The transfer

function and noise terms were combined to simultaneously model the dynamic

and noise components of the transfer function noise model with zero mean:

D∗
t = v(B)U∗

t +
θ(B)

ϕ(B)
at (2.10)

48



2.2 Methods

2.2.5 Model Fitting

To fit the TFN model in Equation 2.10 the Minimum Akaike Information Crite-

rion Estimation (MAICE) procedure introduced by Akaike (1973) was followed.

The MAICE procedure is an adaptation of Box and Jenkin’s model fitting proce-

dure (Box and Jenkins, 1976) which uses the Akaike Information Criterion (AIC)

as an indicator of predictive ability to discriminate between models. The AIC is

defined in Equation 2.11, where lnML is the value of the maximised log likelihood

function of the model and k is the number of model parameters. The lowest AIC

score was used to implement the principles of model parsimony by penalising the

statistical fit measure (lnML) for the number of model parameters, k, used to

obtain the fit. Hurvich and Tsai (1989) have shown the application of AIC score

to the fitting of ARMA models.

AIC = −2lnML+ 2k (2.11)

Fitting a parsimonious model, obtaining a good statistical fit to the data with

the fewest number of parameters possible (Checkland, 1981), was relevant as the

forecasting skill of the data driven model would be reduced if too much or too

little of the complexity of the data was captured by the model (Astrup et al.,

2008; Bailey et al., 2015; Wagener et al., 2001). The AIC score was used to de-

termine which model parameters were useful in increasing the model’s predictive

ability in favour of approaches which use the statistical significance of parameter

estimates because p-values are not a good indicator of predictive ability for time

series models (Hyndman and Athanasopoulos, 2018). Furthermore, as p-values

can be misleading when predictors are correlated, they could not be used to de-

termine statistical significance of the dynamic regression parameters (Hyndman

and Athanasopoulos, 2018).

The two parts of the transfer function noise model were fitted simultaneously.

The dynamic linear regression component of the model, given by Equation 2.5 and

the ARMA noise model given by Equation 2.8 were fitted by maximum likelihood

estimation (MLE) using the package forecast in R (Hyndman and Khandakar,

2008).
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Specifying range of parameters

To fit Equation 2.10 to the data, the number of lagged regressors, k, in the transfer

function and the order, p and q of the ARMA noise were determined by inference

from the data. The cross correlation function was used to assess the correlation

between upstream and downstream stage. The cross-correlation function plot be-

tween U* and D* had its highest value at lag zero, the value decreased gradually

to near zero by a lag of 20 timesteps (five hours) but remained significant and

positive, for higher lags it remained significant but oscillated around zero taking

both positive and negative values. Based on the form of the cross-correlation

function between U* and D* the dynamic regression terms considered were lag 0

to 12, lag 20, 30, 40 and 50. Lag 0 was the instantaneous value of stage, lag 1 was

the stage in the previous 15-minute time step, lag 2 was the stage two timesteps

previously (30 minutes) and so on to lag 50, the stage 12.5 hours previously.

Higher order lags were considered in case consideration of antecedent conditions

increased the predictive ability of the model. In the interest of model parsimony,

and interpretability the orders p and q of the ARMA noise model were restricted

to five. Models with both autoregressive (AR) and moving average (MA) terms

were considered because mixed models often require less parameters in total than

pure AR or MA models (Pollock, 1992).

Estimating parameters and AIC for each model

In the first stage of model fitting the number of dynamic regressors, k, was de-

termined using a forward stepwise approach after Hyndman and Athanasopoulos

(2018). It is acknowledged that a stepwise regression does not always result in

the best model fit, but it has been shown to almost always result in a good

model fit (James et al., 2014). At each step the full TFN model was estimated so

that the assumptions underlying the parameter estimation would not be broken.

Whilst performing the forward stepwise regression it was assumed that the noise

series was appropriately represented by an ARMA noise model obtained using an

automated AIC optimisation algorithm (Hyndman and Khandakar, 2008). The

AIC score was calculated for the best model at each step of the forward stepwise
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regression and plotted against the number of regressors, k, to identify the points

at which additional regressors had little impact on the AIC score.

Additionally, simple graphical methods of model identification of Box and

Jenkins (1976) were used to check whether the data exhibited a pure autoregres-

sive or moving average signature. Namely, the autocorrelation function (ACF)

and partial autocorrelation function (PACF) of the noise series were plotted along

with the approximate 95% confidence intervals for a white noise series, ±1.96
√
T ,

where T is the length of the series, to check whether the values of the ACF or

PACF were significantly different from zero. An autoregressive (AR) signature

was recognised by a cut-off in the PACF followed by no significant values of the

PACF with a gradually dampening ACF plot. A moving average (MA) signature

was signified by a gradually dampening PACF and a cut-off in the ACF with no

further significant values of the PACF at higher lags. A model with mixed AR

and MA terms was recognised by the absence of a clear AR or MA signature in

the data (Hipel and McLeod, 1994; Pollock, 1992). To fit a mixed model the auto-

mated algorithm developed by Hyndman and Khandakar (2008) was used to test

all possible combinations of AR and MA orders to optimise the AIC score. After

Hipel and McLeod (1994) the model was checked for overfitting by comparing the

optimised AIC score to that of the model with one less AR term and one less MA

term in turn to check whether the model complexity could be reduced without

significantly impacting the model fit. Underfitting was checked by comparing the

optimised AIC score to that of the model with one more AR, one more MA term

and one more of each of the terms in turn to check whether the AIC score was

improved.

The algorithm simultaneously fitted the dynamic regression component of the

model, with number of lagged predictors, k (determined in the stepwise forward

regression) and carried out a search over the ARMA model order space to iden-

tify the optimum combination of terms by minimising the Akaike Information

Criterion (AIC) score. The ARMA noise model was fit by maximum likelihood

estimation (MLE). The Forecast v.8.12 package (Hyndman et al., 2020) was used

to fit the models.
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Residual diagnostic checks

Before attaching confidence to the results, the statistical assumptions of the

model were validated. Namely, the residuals were checked for autocorrelation,

heteroscedasticity, and non-normal distribution. Residuals were checked for au-

tocorrelation by studying the ACF plots and carrying out the Breusch-Godfrey

test for serial correlation (Godfrey, 1978). Unlike other tests for serial correla-

tion such as the Ljung-Box test and Durbin Watson test, the Breusch-Godfrey

test allows for lagged dependent variables and could therefore be used on the

residuals of the autoregressive model (Maddala and Lahiri, 2009). Normality and

heteroscedasticity of the residuals were checked using standard residual diagnostic

plots. Non-normality of the residuals would not invalidate the model simulations,

but would affect the validity of the theoretical prediction intervals (Hyndman and

Athanasopoulos, 2018).

2.2.6 Model validation

A blocked cross validation procedure was used to assess whether the models were

suitable for the intended purpose of simulating the pre-intervention downstream

stage response to high flow events. Similar to models used for forecasting into the

future, the model required good predictive skill in simulating downstream stage

response to flood events which were not used to train the model. This is known

as ‘out of sample’ testing and is preferred to goodness of fit measures based on

‘in sample’ data used to train the model (Bartolomei and Sweet, 1989; Pant and

Starbuck, 1990; Tashman, 2000) which have been shown to underestimate the

forecasting error (Makridakis et al., 1982). Out of sample data for validation is

commonly obtained by retaining a portion of the collected time series data from

the end of the monitoring period (Tashman, 2000). However, this approach has

been criticised for not making full use of the available data for model training,

particularly for relatively short datasets (Bergmeir and Beńıtez, 2012). For this

reason cross-validation is commonly used to evaluate the performance of machine

learning and other regression models (Bergmeir and Beńıtez, 2012). Similar to

other statistical methods, cross-validation methods can be adapted for application
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to time series data by carrying out a blocked form of cross-validation (Bergmeir

and Beńıtez, 2012; Roberts et al., 2017)

Based on the recommendations of Bergmeir and Beńıtez (2012) & Roberts

et al. (2017) multiple out of sample time series were simulated by removing one

ten-hour block of data from the series at a time and testing the model trained

on the remaining data on the excluded block. The block length of ten hours was

chosen because the simulation error for every timestep is additive and is therefore

reduced by keeping the length of the simulation to a minimum (Hyndman and

Athanasopoulos, 2018; Tashman, 2000). The blocks were centred on the peak of

discrete high flow events so that the skill of the model at predicting the out of

sample event peak magnitude could be assessed using the goodness of fit measures

described in this section. Every high flow event in the baseline data was included

in the removed data block in turn so that an out of sample prediction of the event

peak stage was available for each event whilst using the most complete dataset

for training the model as possible.

Identifying discrete high flow events

A consistent, objective rule-based method was used after Deasy et al. (2009);

Glendell et al. (2014) to identify discrete high flow events in the stage series by

requiring the following two criteria to be met: (1) A stage peak was considered

a discrete high flow event if it was part of a defined flow event with duration

>60 minutes and the upstream peak stage exceeded the mean stage recorded on

the stream; (2) Events were classed as independent if they were separated by

at least 15 minutes of stage below or within 10% of baseflow stage. Following

the approach of Bezak et al. (2015) a consistent estimate of the baseflow stage

series was obtained using the methods described in the World Meteorological

Organisation’s manual on low-flow estimation and prediction (WMO, 2009). The

method identifies turning points based on minima found in five day time windows

of daily time-series and was successfully used by Bezak et al. (2015) to separate

over 2,500 events from daily streamflow records. The accompanying R package

‘lfstat’ v. 0.9.4 (Koffler et al., 2016) was used to implement the method. To

account for the flashy nature of the streams a three-day time window and turning
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point factor of 0.95 was used. Finally, a visual inspection of the time series data

was used to check that all events were extracted from the data and that the

identified events were independent. The Hydrological Model Assessment and

Development (HydroMAD) v.0.9-26 R package (Andrews and Guillaume, 2018)

was used to identify discrete storm events using the above criteria.

Goodness of fit measures

Goodness of fit measures were calculated for each of the out of sample event

simulations. Although there has been much discussion of appropriate choice of

forecast error statistic for the comparison of models (e.g. Armstrong and Collopy,

1992; Tashman, 2000) this study was concerned primarily with the goodness of

fit of the simulated event peak magnitude. Therefore, following similar studies

(e.g. Katimon et al., 2013; Padiyedath Gopalan et al., 2019; Romanowicz et al.,

2008) the measures used to assess model performance were absolute peak error

(PE), peak error percentage (PEP), peak timing error (PTE), root mean square

error (RMSE) and Nash-Sutcliffe Efficiency (NSE) given by Equations 2.12 to

2.16, where D̂peak is the model simulated peak magnitude, Dpeak is the observed

peak magnitude, D̂ is the model predicted stage, D is the observed stage and N

is the number of observations. T̂peak and Tpeak are the simulated and observed

event peak timing respectively. PE, PEP and PTE describe the ability of the

model to predict the event peak magnitude, whilst the RMSE and NSE describe

the goodness of fit of the simulation to the observed data throughout the event.

Although the NSE requires the assumption that the errors are independent to be

met it is used here because of its wide application to assess the goodness of fit of

hydrological models (McCuen et al., 2006).

PE = D̂peak −Dpeak (2.12)

PEP =
(D̂peak −Dpeak)

Dpeak

(2.13)

PTE = T̂peak − Tpeak (2.14)

54



2.2 Methods

RMSE =

√√√√ N∑
i=l

(D̂ −D)2

N
(2.15)

NSE = 1−
∑N(D̂ −D)2∑

(D − D̄)2
(2.16)

Skill of the model at predicting event peak magnitude

To assess the model’s overall performance at predicting event peak magnitude for

the range of events tested the observed peak magnitudes were linearly regressed

against the simulated peak magnitudes and the confidence interval of the relation-

ship was calculated based on the standard errors of the linear relationship. The

confidence interval describes the uncertainty associated with a population param-

eter such as the mean or a regression coefficient (Hahn and Meeker, 1991). It was

therefore expected to be narrower than the prediction intervals, which quantify

the uncertainty associated with the prediction of an individual data point. The

NSEp (Equation 2.17), which has been widely used to assess goodness of fit of

hydrological models (McCuen et al., 2006), was used to test the closeness of the

relationship to the one-to-one line. In Equation 2.17 n is the total number of

events and D̄peak is the mean of the observed values of peak magnitude.

NSEp = 1−
∑N(D̂peak −Dpeak)

2∑
(Dpeak − D̄peak)2

(2.17)

2.2.7 Empirical prediction intervals

Theoretical prediction intervals are calculated based on the standard error of

the innovation series and the residuals of the fitted model (Chatfield, 2001; Lee

and Scholtes, 2014) under the assumption that the model is correctly specified,

residual errors follow a normal distribution and that they are independent and

identically distributed (Hyndman and Athanasopoulos, 2018). However, although

they are commonly used, it is widely accepted that theoretical prediction inter-

vals are almost always too narrow in practice because they account only for the

uncertainty due to random error (Hyndman et al., 2002; Makridakis and Win-

kler, 1989) and may not provide adequate cover if the assumptions of normal,
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independent and identically distributed residuals are not strictly met (Hyndman

and Athanasopoulos, 2018). Therefore, a common alternative approach was used

to calculate prediction intervals based on the empirical out of sample forecasts

which account for random, parameter and model specification errors whilst only

assuming that the error distribution of future simulations is similar to the error

distribution of the out of sample simulations (Lee and Scholtes, 2014; Williams

and Goodman, 1971). Empirical prediction intervals have been successfully ap-

plied in a wide range of fields (Isengildina-Massa et al., 2011; Lee and Scholtes,

2014; Rayer et al., 2009). After Williams and Goodman (1971), who introduced

the approach, the prediction interval at each forecasting timestep was estimated

using specified quantiles of the empirical error distribution at that timestep. As

the error for multiple step ahead simulations was additive (Hyndman and Athana-

sopoulos, 2018) the simulation window was centred on the peak of the event so

that the event peak estimation error was always calculated for the same timestep

(N
2
), where N was the number of simulation timesteps. The 95% prediction in-

terval, and the 80% prediction interval were calculated in this way. Although the

95% prediction interval is more stringent, the 80% prediction interval has been

recommended for use with error distributions with outliers, or ‘tail problems’

(Chatfield, 2001).

2.3 Results

The stage data collected in three small, upland streams were prone to datum

errors which made the data too uncertain to assess leaky dam impacts directly

(Appendix B). However, by transforming the data to meet the requirements of

stationarity and fitting a time series model the data were used to simulate the

baseline response of the streams. For one of the impact streams the model over-

estimated peak stage, particularly for the largest events, but on the other impact

stream the model was able to accurately replicate event peak stage across the

range of events observed during the baseline monitoring period. On the control

stream the simulations were similarly accurate for all but the six largest observed

events. Empirical prediction intervals obtained from the model simulations indi-

cate the accuracy with which the models will be able to predict what downstream
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event peak magnitude would have been had no leaky dams been installed in the

post-intervention monitoring period.

2.3.1 Baseline model training data

The upstream and downstream baseline stage series collected on the two impact

streams and the control stream are shown in Figure 2.4, along with their first

order differenced series which form the predictor and forecast series of the model.

The range of stage collected during the baseline monitoring period was between

0.45 m and 0.79 m and varied between gauging stations depending on the shape of

the gauging cross section (Figure 2.4). Negative values of stage resulted from the

correction of the non-vented pressure transducer data with atmospheric pressure

recorded closer to the altitude of the downstream gauges than the upstream

gauges. The downstream stage was highly cross-correlated to upstream stage at

lag zero (i.e. instantaneously) (CCF 0.97-0.99) on all three streams reflecting the

steep nature of the catchment. Seasonality was present in all three streams with

periods of lower baseflows in the summer months, particularly in summer of 2018,

which was exceptionally dry across the UK (Met Office, 2018). Apart from the

summer of 2018, high flow events were recorded regularly throughout the baseline

monitoring period (Figure 2.4). The highest stage peaks were recorded during

Storm Aileen (13 September 2017), ex-hurricane Ophelia (14 October 2017) and

Storm Bronagh (20 September 2018). Rainfall totals and peak discharge recorded

at the downstream Environment Agency operated gauging stations for the ten

largest events recorded on the impact stream can be found in Table 3.5 in Chapter

3. Storm Aileen and Storm Bronagh caused significant flooding of transport links

and properties in North Yorkshire (Flood List, 2020). Not all events were recorded

on all three streams because equipment failure led to periods of missing data on

each of the streams.

During the quality assurance process high levels of uncertainty were identified

in the stage data. Whilst some error sources could be corrected (e.g. the backwa-

ter effect from the collapse of a cattle bridge downstream of a gauging station),

others could not. Small, gradual changes in the relationship between upstream

and downstream stage of magnitude up to ± 0.05 m were identified frequently
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Figure 2.4: Upstream (U ) and Downstream (D) stage series collected in the

three study streams with first order differenced series U* and D*

but as these changes were gradual rather than instantaneous, they could not be

readily corrected. Because the errors were constant over the range of stage (i.e.,

when there was a shift of 0.05 m at baseflow there was also a shift of 0.05 m at the

peak) they were assumed to be ‘datum errors’ brought about by a change in the

reference datum or flow conditions at the gauging station. Based on field observa-

tions the most likely source of datum error was frequent blockage of the gauging

stations with material on the outside of the gauge stilling well, and sediment on

the inside of the stilling well.

The upstream (U ) and downstream (D) stage series (Figure 2.4) were non-

stationary and were therefore transformed by first order differencing. The dif-

ferenced stage time series fluctuated about a mean of zero between -0.06 m and

0.09 m meaning that the biggest recorded rise in maximum stage in a 15-minute
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period was 0.09 m. The differenced stage series, U* and D* passed the ADF

and KPSS tests for stationarity (Table 2.2) and form the predictor and forecast

series used to train the time series model. Spikes in the differenced stage series

were found to relate to steep rises in the event hydrographs and were generally

positive because the stage fell more gradually after the peak of an event than it

rose. Where a positive or negative spike occurred in U* it was accompanied by

an equivalent spike in D* and is therefore likely to reflect actual changes in water

level, rather than errors in the data. Because the differenced data was the rate

of change of stage in each 15-minute time step, rather than the absolute stage,

it had the benefit of being independent of the datum errors identified during the

quality assurance process.

2.3.2 Parsimonious TFN model form

For stream 1, the first five regression terms notably improved the model AIC score

whilst beyond five terms adding more regressors had little impact on the AIC score

(Figure 2.5). The assumption of independence of the regression residuals was met

only when the 6th regressor was added to the model. For stream 2 (control) the

AIC value was decreased by including lags 1 to 4, but beyond k = 5 there was

little improvement to the AIC score and little change in the form of the ACF

plot. On stream 3 there was a more gradual decrease in the AIC score, with up

to eight regressors notably improving the AIC score and little difference in the

ACF plots. To check for overfitting, the results of model validation for the model

with k = 8 were compared to the results of the model with k = 7, 6, 5, 4, and 3

in turn. There was little improvement in the model fit for the model with k >4

and so the k = 4 model was taken forward. Hence, the data for stream 1, stream

2 (control) and stream 3 were modelled with six, five and four dynamic regression

terms, respectively. The model for stream 1 included lag 0 to 3, lag 11 and lag

20. The model for stream 2 (control) included lag 0 to 4 and lag 11. The model

for stream 3 included lag 0, 1, 3, and 4.

The ACF and PACF plots for the noise series of the transfer function, Nt, for

each stream (Figure 2.6) indicated that it was necessary to use mixed AR and

MA models to represent the data as none of the plots exhibited a pure AR or MA
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Figure 2.5: Results of forward stepwise regression to find the appropriate num-

ber of dynamic regression terms for a parsimonious form of the transfer function.

The order of the noise model was allowed to vary up to p=5 and q=5 at each

step. Each point shows the regressor which added the most predictive skill (model

with lowest AIC score) to the model for each stream at each step of the forward

stepwise regression
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Figure 2.6: ACF (first row) and PACF (second row) of regression noise series for

all three streams, blue dotted lines indicate significance level. A noise series with

an autoregressive signature has a cut-off in the PACF followed by no significant

values, and a gradually dampening ACF plot. A noise series with a moving

average signature has a gradually dampening PACF and a cut-off in the ACF

followed by no significant values.
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signature. By testing all possible combinations of AR and MA terms for each

noise series the model with minimum AIC score was found to be the ARMA (5,

0, 3) model for stream 1, the ARMA (4, 0, 2) model for stream 2 (control) and

the ARMA (2, 0, 3) model for stream 3.

2.3.3 Modelling assumption checks

Diagnostic plots (Figure 2.7) show that the assumptions of independence and ho-

moscedasticity underlying the innovation series were approximated by the resid-

uals of the models. The model for stream 1 met all of the assumptions; there

were two significant values of the ACF (Figure 2.8), but this is permissible at the

95% confidence limit. The residuals of stream 2 (control) and stream 3 contained

significant values of the ACF at higher order lags. Results of the Breusch-Godfrey

test indicate that residuals were uncorrelated up to order 7, 14 and 18 for stream

1, 2 and 3 respectively. There was some heteroscedasticity in the fit of the data on

stream 2 (control) and stream 3 but further transforming the data, using different

lagged regressors or changing the order of the ARMA model did not improve the

autocorrelation or heteroscedasticity present in the data from stream 2 (control)

and stream 3.
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Figure 2.7: Residual diagnostic plots for fully fitted TFN models
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Figure 2.8: Autocorrelations in residuals of the fully fitted TFN models

2.3.4 TFN model equations

The TFN models describing baseflow conditions in stream 1, stream 2 (control)

and stream 3 are given in Equations 2.18–2.20. The coefficients of the identified

TFN model parameters were estimated by MLE and are given in Table 2.3 along

with their standard error. The close fit of the data to the one-to-one line on the

plots of fitted against observed values in Figure 2.9 show that the good in-sample

fit of the model to the data (RMSE 0.00097 m).
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Figure 2.9: Points of fitted downstream stage plotted against observed down-

stream stage with the one-to-one line for reference.

Stream 1:

D∗
t = 0.687U∗

t + 0.332U∗
t−1 + 0.165U∗

t−2 + 0.102U∗
t−3 − 0.014U∗

t−11

−0.01U∗
t−20 +Nt

Nt = 0.893Nt−1 + 0.179Nt−2 − 0.437Nt−3 + 0.288Nt−4 − 0.162Nt−5

−0.554at−1 − 0.654at−2 + 0.453at−3 + at

(2.18)

Stream 2 (Control):

D∗
t = 0.430U∗

t + 0.198U∗
t−1 + 0.114U∗

t−2 + 0.083U∗
t−3

+0.042U∗
t−4 +Nt

Nt = 1.035Nt−1 − 0.196Nt−2 + 0.173Nt−3 − 0.062Nt−4 − 0.739at−1

−0.253at−2 + at

(2.19)

Stream 3:

D∗
t = 0.582U∗

t + 0.0386U∗
t−1 + 0.0396U∗

t−3 + 0.0404U∗
t−4 +Nt

Nt = 1.147Nt−1 − 0.441Nt−2 − 0.865at−1 − 0.021at−2 + 0.030at−3 + at
(2.20)

2.3.5 Simulations of downstream baseline stage during high

flow events

Between 32 and 54 high flow events were identified in the data on each of the

streams. Different numbers of high flow events were identified on the streams
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Table 2.3: Parsimonious TFN model parameter coefficients; coeff. = coefficient,

s.e. = standard error in metres

Stream 1 Stream 2 (control) Stream 3

Parameter coeff. s.e coeff. s.e. coeff. s.e.

Transfer U*t 0.687 0.005 0.430 0.003 0.583 0.003

Function U*t-1 0.332 0.005 0.198 0.003 0.039 0.004

Parameters U*t-2 0.165 0.005 0.114 0.003 - -

U*t-3 0.102 0.005 0.083 0.003 0.040 0.004

U*t-4 - - 0.042 0.003 0.040 0.004

U*t-11 -0.014 0.004 - - - -

U*t-20 -0.010 0.003 - - - -

AR terms Nt-1 0.893 0.083 1.035 0.039 1.147 0.040

Nt-2 0.179 0.097 -0.196 0.050 -0.441 0.037

Nt-3 -0.437 0.061 0.173 0.020 - -

Nt-4 0.288 0.032 -0.062 0.008 - -

Nt-5 -0.162 0.014 - - - -

MA terms at-1 -0.554 0.083 -0.739 0.039 -0.865 0.039

at-2 -0.654 0.074 -0.253 0.039 0.021 0.030

at-3 0.453 0.051 - - 0.229 0.011

because of periods of missing data, and due to the interventions being installed a

few months earlier in stream 3 than in stream 1. To validate the model simulations

using data which were not used to train the model, each event was removed in

turn and the model coefficients were re-estimated on the remaining data. The

downstream stage of the ‘hold out’ event was then simulated by providing the

model with the upstream stage series of the ‘hold out’ event. The simulated

downstream stage was compared to the downstream stage observed during the

event to assess the accuracy of the simulation. Overall, the model simulations fit

the observed stage well (NSE 0.996–0.976), but it can be seen (Figure 2.10) that

the peak of the event was not always captured by the model. Figure 2.10 gives

examples of a large, medium and small event simulation on each stream together

with the empirical prediction intervals and the observed downstream stage.
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Figure 2.10: Observed (solid line) and simulated (dashed line) downstream

stage during a large (first column), medium (second column), and small (third

column) high flow event with 80% (light blue shading) and 95% (dark blue shad-

ing) empirical prediction intervals. Note the changing y-axis on the plots.
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2.3.6 Skill of the model at simulating out of sample down-

stream peak magnitude

To assess how well each of the models performed at simulating the downstream

peak magnitude of events the peak error (PE), and peak error percentage (PEP)

were calculated (Figure 2.11). The error in simulating event peak magnitude was

smaller than ± 0.03 m for all but four of the simulated events. On stream 1 the

PE was smallest and was distributed evenly above and below zero, indicating that

the simulations were not biased. On stream 2 (control) and stream 3 the range in

PE and PEP was larger, and although the median value of PE was close to zero,

the majority of event magnitudes were under predicted on stream 2 (control), and

over predicted on stream 3. Whilst the PEP was below ± 5% for all simulations

on stream 1, it was up to ± 11% on stream 2 (control) and ± 9% on stream 3.

The interquartile range (IQR) of PEP was within ± 3%, for all three streams,

with the IQR on stream 1 being as low as ± 1%.

By plotting the observed event peak magnitude against the simulated event

peak magnitude (Figure 2.12), it can be seen that the points lay close to the

one-to-one line for stream 1 (NSE 0.994) with a residual standard error of 0.008

m. The simulated peak magnitudes were both over and under predicted and were

not affected by the event peak magnitude. On stream 2 (control), however, it

can be seen that the PE was relatively small (RMSE 0.006 m) for events below

0.35 m but increased to a RMSE of 0.027 m and 0.036 m for events with peak

magnitude greater than 0.35 m and 0.40 m respectively. For the largest events the

peak magnitude was under predicted more frequently than it was over predicted,

resulting in a linear relationship which lay below the one-to-one line (NSE 0.97).

There was a relationship between PE and event magnitude on stream 3; events

with peak magnitude below 0.25 m were under predicted whilst events with peak

magnitude greater than 0.25 m were over predicted. Although the NSE was

relatively high (0.98) the coefficients of the linear regression reflect the bias in

the model simulations.
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Figure 2.11: Skill of TFN models at predicting out of sample event peak mag-

nitude. Peak error (PE) and Percentage error in peak (PEP) is the difference

between the observed and simulated downstream peak stage.
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Figure 2.12: Goodness of fit of out of sample simulations of event peak stage

with theoretical prediction intervals. The shaded areas shows the confidence

interval of the linear relationship between simulated and observed peak magnitude

and the dashed line shows the 1-to-1 relationship
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2.3.7 Skill of the model at simulating out of sample down-

stream peak timing

For each high flow event the peak of the event recorded upstream occurred at

the 20th timestep, five hours into the simulation. The majority of observed

downstream event peaks occurred after the upstream event peak, as expected

at timesteps >20. However, it can be seen in Figure 2.13 that the model had

little skill at simulating the timing of the downstream event peak; peak timing

of the majority of events was predicted to be earlier than they occurred in the

observed data. However, this may be related to issues with event peak timing

identified in the data described in Appendix B.
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Figure 2.13: Skill of the model at simulating event peak timing given by peak

timing error, the difference between the observed and simulated peak timing given

in number of 15-minute timesteps
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2.3.8 Empirical prediction intervals for out of sample sim-

ulations of baseline stage

The peak error (PE) distributions shown in Figure 2.14 were used to determine

the magnitude of the empirical 80% and 95% prediction intervals at the peak

of the simulated events given in Table 2.4. By definition the simulated peak

magnitude prediction intervals captured the observed peak magnitude for 80%

and 95% of the events. In comparison, the theoretical prediction intervals at peak

were on average 0.019 m, 0.015 m, 0.02 m for stream 1, 2 and 3 respectively and

captured the peak two thirds of the time.

Table 2.4: Empirical prediction interval width at event peak; PI = prediction

interval

Lower Upper Lower Upper

95% PI 95% PI 80% PI 80% PI

Stream 1 -0.017 0.012 -0.011 0.008

Stream 2 (control) -0.051 0.027 -0.018 0.007

Stream 3 -0.016 0.032 -0.009 0.017
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Figure 2.14: Empirical prediction intervals at 80% and 95% confidence level

determined from distribution of the peak error (PE)
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2.4 Discussion

Efforts to address the lack of quantitative evidence of leaky dam impacts on flood

peak magnitude (Burgess-Gamble et al., 2017) have been hampered by lack of

baseline data (Burgess-Gamble et al., 2017; Ellis et al., 2021), lack of comparable

events monitored before and after the installation of leaky dams (National Trust,

2015), and high level of uncertainty in stage and/or discharge series (Connelly

et al., 2020; Lane, 2017). This study has demonstrated that data-based time

series modelling can be used to overcome the barriers presented by poor quality,

relatively short baseline data series.

The potential of using a TFN model to extract useful information about flood

peak magnitude and timing from highly uncertain baseline data was demonstrated

using data from three hydraulically similar upland streams. The stage time series,

collected using a BACI experimental design, were prone to shifts in the stage

datum which meant the peak stage magnitude of the events recorded during the

monitoring period were too uncertain to directly detect changes in peak stage

magnitude before and after the installation of 7–8 leaky dams in the impact

streams. Instead, the stage time series data from the control and impact streams

was used to fit and validate a class of time series models called transfer function

noise (TFN) models to make accurate simulations of baseline response of the

streams to high flow events.

The TFN models were able to simulate downstream stage for events which

had not been used to fit the model to within ± 2 cm at the peak of the event at

the 80% confidence limit. The model for one of the impact streams performed

particularly well, simulating downstream event peak magnitude to within ± 2 cm

at the 95% confidence level across the range of stage. There were some issues with

bias and heteroscedastic errors in the other two models, indicating a different

type of model or data transformation may be more suitable on these streams.

Nevertheless, the model for the control stream was found to perform well (NSE

0.97) for all but the six largest of 54 observed events despite its relatively poorer

fit at higher flows. All three models were less effective at simulating the timing

of the event peak, with errors of up to two hours.
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Stage data uncertainty

In this study small datum shifts (<0.05 m) were common in the stage time series

data and could not be readily corrected because they were small and gradual

(Wilby et al., 2017). Field observations imply that these small datum shifts were

commonly caused by deposition of coarse material on the outside of the stilling

well and deposition of fine material within the stilling well. Frequent inspection,

maintenance and calibration of gauging stations could mitigate these problems

where sufficient resource is available. This has implications for resource allocation

to the monitoring of NFM pilot schemes, the results of which are key in securing

future funding (Hammond et al., 2011).

The finding that hydrological data was highly uncertain is not unique to this

study; it has long been acknowledged that hydrological data is ‘messy’ (Beven and

Westerberg, 2011). As a result, a wide range of methods have been developed to

quantify the uncertainty in streamflow series (see Coz (2012) & Kiang et al. (2018)

for recent reviews) but these methods are largely focused on how the uncertainty

in the rating relationship propagates to the discharge series (Kiang et al., 2018)

without taking into account the uncertainty in the stage series (Guerrero et al.,

2012) which can be one of the most significant sources of error (Di Baldassarre

and Montanari, 2009).

For example, Westerberg et al. (2011) found changes of ± 20% at intermediate

to high flows in the gauging station of an alluvial river with a catchment area of

1766 km2 and (Guerrero et al., 2012) found that discharge for a given stage could

vary by a factor of two or more in a temporal study of six gauging stations for

river basins which varied in size by two orders of magnitude in the same area. For

six hydrometric stations in France with catchment areas ranging from 54 km2 to

11,000 km2 systematic stage errors in the stage series measurements of between

± 0.5 cm and ± 6.8 cm accounted for uncertainty equivalent to 4% to 12% of the

daily average discharge (Horner et al., 2018).

Stage datum errors are often assumed to be negligible (Horner et al., 2018)

but as for gauging stations in larger catchments in the above examples, the stage

datum errors at all gauging stations in the study site outweighed the uncertainty
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introduced by the error in the rating relationships (see Appendix B). Identify-

ing such errors necessitates a thorough quality assurance process which requires

sufficient resource allocation to post-processing of the data.

This study has demonstrated that valuable information can be extracted from

such highly uncertain data by using time series modelling techniques, which re-

quires further resource. Crucially, it has shown that the use of an empirical BACI

experimental approach, which is recommended for the assessment of natural flood

impacts on flood peak magnitude (Ellis et al., 2021) alone is not sufficient unless

very low levels of monitoring uncertainty are achieved. The findings of this study

are in agreement with the monitoring guidance developed for the UK Government

funded £15 million worth of NFM pilot projects (HM Treasury, 2016) that proper

specialist resource, such as an academic study or report, is required to monitor

the extent to which the NFM measures reduce downstream flood risk (Arnott

et al., 2018) but would extend this recommendation to include post-processing

and analysis of the data.

Model accuracy

It is difficult to make comparisons between levels of accuracy achieved by TFN

models in different studies because it depends on many factors including the

quality of the input data; model timestep and model structure (Sene and Til-

ford, 2004). The accuracy of the models were therefore assessed in terms of

the intended purpose of the model: simulating downstream stage under baseline

conditions to a high enough degree of accuracy to be able to compare it to obser-

vations of downstream stage response after the leaky dams were installed. This

presents difficulties as the impacts of leaky dams in upland watercourses are not

yet known (Burgess-Gamble et al., 2017). However, it is known that wood placed

in upland channels for the purpose of river restoration reduced event peak magni-

tude by 8% and 2.2% in steep watercourses (Keys et al., 2018; Wenzel et al., 2014)

and in lowland rivers peak magnitude reductions of 21% have been observed for

combined planform and large wood restoration (Kitts, 2010).

The previous research of Kitts (2010); Wenzel et al. (2014) & Keys et al.

(2018) suggests that simulating event peaks to within ± 5% on stream 1 may be
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sufficiently accurate to detect leaky dam impacts on individual events. Further-

more, by combining the simulations of all events and calculating the confidence

interval of the relationship between observed and simulated stage it becomes clear

that there is a very high level of confidence in the ability of the model to replicate

downstream event peak magnitude on average, particularly on stream 1.

The results on stream 1 demonstrate the potential that linear TFN models

have for extracting information about peak magnitude from highly uncertain

baseline data. Further work is required to identify models which provide a better

fit to the data on stream 2 (control) and stream 3. It is likely that the lack of fit

is due to non-linearity in the response (e.g. due to differences in the geometry of

the gauging cross-sections (Romanowicz et al., 2008)), which can be incorporated

in the TFN approach by including a non-linear transform to the data. The

DBM approach, for example, has been developed to model typically non-linear

relationship between rainfall and runoff (Young, 2003) and has been successfully

applied to model non-linear level to level responses (Beven et al., 2008; Leedal

et al., 2010; Romanowicz et al., 2008; Young, 2002).

2.4.1 Implications

Whilst there are many examples of the high level of predictive ability achieved

using transfer functions in hydrology the majority of applications are in rainfall

runoff modelling (see for example, Katimon et al. (2013); Ratto et al. (2007) &

Young (2003)). This study shows that it is possible to achieve sufficiently high

levels of accuracy in predictions of the level-to-level response of small upland wa-

tercourses to detect leaky dam impacts. The implication of being able to make

highly accurate simulations is that observations of post-intervention events can be

compared to simulations of the baseline scenario with a high degree of confidence.

Assuming stationarity in the first difference into the future and given adequate

control data, any differences in the simulated baseline response and observed in-

tervention response can be attributed to the NFM interventions. Notably, base-

line and post-intervention monitoring datasets are therefore not required to con-

tain events which are so similar that their responses can be compared directly.
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This is significant as the stochastic nature of flood events has precluded the as-

sessment of NFM impacts in several studies (Kitts, 2010; National Trust, 2015),

or provided evidence of only one or two comparable events (Nisbet et al., 2015a;

Thomas and Nisbet, 2007; Wilkinson et al., 2010). By simulating downstream

baseline stage, the impact of interventions can be assessed for every event in the

post-intervention monitoring period providing replicates and allowing impacts to

be assessed at a range of event magnitudes.

The problem of capturing a range of events may not always be overcome by

using this approach; in this study several notable high flow events were captured,

but baseline data which does not contain many high flow events cannot be used

to train a model to simulate high flow events. However, Young (2003) showed

for the case of rainfall-runoff modelling that high levels of accuracy (R2 = 0.94)

can be achieved using a model fitted and validated using only 20 days of hourly

observations. Hence, by using a data-based modelling approach assessing the

impacts of NFM measures, even where only very short periods of baseline data

are available, may become viable.

Increasing the quantitative evidence base of NFM impacts is crucial for mea-

sures such as leaky dams to become more mainstream in flood risk management

(Ellis et al., 2021) and environmental land management, particularly following

the UK’s exit from the EU (Klaar et al., 2020). Quantitative evidence of leaky

dam effectiveness is needed to assess whether they are a viable flood risk manage-

ment technique in upland catchments, during what types of flood events they are

effective, and to inform the design of natural flood management schemes. Further-

more, empirical evidence is needed to validate the representation of leaky dams

in hydraulic and hydrological models (Addy and Wilkinson, 2019) which can be

used to design and assess the effectiveness of flood risk management schemes at a

range of spatial scales. Such models can be used to take into account the poten-

tial for synchronisation or de-synchronisation of relative tributary flows which can

have significant impacts on downstream flood risk (Dixon et al., 2016; Pattison

et al., 2014).
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2.4.2 Limitations of the approach

The linear transfer function model was able to provide a good fit to the data on

stream 1 but violated the assumptions of independent and identically distributed

residuals on the other two streams. This was reflected in the out of sample per-

formance of these models; when used to simulate events which had not been used

to train the model the error in peak magnitude increased with peak magnitude

on both stream 2 (control) and stream 3, with an obvious bias in the peak es-

timates of stream 3. The relationship between peak magnitude and peak error

on both streams undermined confidence in the model fit and its simulations on

these streams.

The lack of fit of the models to the data recorded on stream 2 (control) and

stream 3 serves to demonstrate some of the limitations of the relatively simplistic

linear TFN family of time series models. Linear rather than non-linear TFN

models were applied, in the first instance, in the interest of model parsimony. In

future work the knowledge gained by applying linear TFN models to the data in

this study will inform the choice of model needed to improve the model fit. The

lack of fit on stream 2 and 3 is a limitation of the single input linear TFN approach

taken here, rather than a limitation of the data-based modelling approach more

generally; it is likely that the model fit could be improved by using a different

type of time series model.

The dependence observed in the residuals of the stream 2 (control) and stream

3 models indicates that there was information present in the data which was

not captured by the model. This suggests that the models may have been mis-

specified (Hipel and McLeod, 1994), either by not including important parame-

ters, or by not fitting the right type of model. However, Hyndman and Athana-

sopoulos (2018) state that, whilst autocorrelated residuals affect the coverage of

the theoretical prediction intervals they do not bias the model but merely indicate

a more efficient model could be found.

The lack of fit of out of sample simulation on stream 2 and 3 is, therefore,

more likely to stem from the violation of the assumption of identically distributed

residuals. Larger error at larger values of stage indicate that there may be non-

linearity in the downstream stage response at different magnitudes of stage (Beven
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et al., 2008). Non-linearity of the stream level to level response could be due to

the geometry of the cross-sections of the stream, particularly where there are dif-

ferences in the form of the stream between the upstream and downstream gauging

cross section (Romanowicz et al., 2008). The use of a non-linear transform, such

as the state dependent parameter (SDP) of the data-based mechanistic (DBM)

modelling approach described by Young (2002) may provide a better fit to the

data and improve the model’s predictive ability. Alternatively, a class of mod-

els which accounts for non-constant variance, such as autoregressive conditional

heteroscedasticity (ARCH) models could be used. Applying a Box-Cox transfor-

mation, which accounts for non-constant variance by transforming variables to

approximate a normal distribution (Hipel and McLeod, 1994) did not improve

the model fit.

Another explanation for the lack of fit of out of sample simulations observed

on stream 2 (control) and stream 3 is that this could be taken as a sign of model

overfitting. Overfitting occurs when too many model parameters are included in

the model which captures too much of the complexity of the training data and

deteriorates the model’s generalisability (Piotrowski and Napiorkowski, 2013).

There is a consensus that simulation models with an intermediate level of com-

plexity outperform the simplest and most complex models (Astrup et al., 2008;

Beven, 1989; Jakeman and Hornberger, 1993). For rainfall-runoff models Beven

(1989) argues that the information in hydrological records should be modelled

using 3–5 model parameters, adding that over-parametrized models have many

different sets of plausible parameters leading to problems of equifinality (Beven,

2001; Young, 2003), particularly in specifying the order of the dynamic compo-

nent of the model (Young, 2003).

To avoid overfitting, model identification was carried out using the MAICE

procedure, which combines an iterative approach to model fitting with an auto-

mated selection criterion, the AIC score. The AIC score is one of the most used

selection criteria (von Asmuth et al., 2002) but has been criticised for selecting

models with too many parameters (Shibata, 1976). To select a more parsimonious

model a selection criteria with higher penalties for at higher model orders, such

as the finite sample information criterion (FSIC) of Wensink and Broersen (1994)

could be used in future. Alternatively, the DBM approach limits the number of
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parameters by specifying that as well as using a statistically objective method,

such as the AIC, to determine the model order, all parameters should have a valid

physical interpretation (von Asmuth et al., 2002; Young, 2003).

Even where a good enough model fit is found to use the model for its intended

purpose of assessing the impact of leaky dams, the assumption has to be made

that there would have been no change in the relationship between upstream and

downstream stage between the baseline and post-intervention monitoring period

had the interventions not been installed. In other words, the output data is

assumed to be stationary in the first difference into the future. Factors which

affect all streams, such as land-use or climatic factors are controlled for by looking

for differences between the baseline and post-intervention monitoring period in

the control stream. However, changes which affect streams individually, such as

changes in the rating relationship, cannot be controlled for. Homoscedasticity

over time of both the in-sample residuals, and out of sample forecasting errors

provides some basis for the assumption that the relationship will continue to be

stationary into the future.

Datum change errors (small datum shifts at the stage gauge <0.05 m), which

were the most commonly observed factor to affect individual streams were avoided

by taking the first order difference. However, first order differencing does not

avoid changes which affect the rate of change of stage, such as a change in the

shape of the cross section. Therefore, it is important that the data be subjected

to a thorough quality assurance process before applying a data-based time se-

ries modelling approach. This has implications for the resource required for the

monitoring of NFM pilot schemes, the results of which are key in securing future

funding (Hammond et al., 2011).

The prediction intervals of the models were calculated based on the empirical

approach introduced by Williams and Goodman (1971) which takes into account

random, parameter and model specification errors without making assumptions

about the error distribution. Lee and Scholtes (2014) showed that empirical

prediction intervals are not affected by model misspecification and are therefore

robust despite the possible implications of the lack of fit indicated by residual

diagnostics. They were therefore appropriate despite autocorrelation and het-

eroscedasticity in the residuals. However, although the method is robust it can
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result in prediction intervals which are too wide to be informative. This is con-

founded by the limitation that this approach is not conditional on the state of

the system, which resulted in overestimates of the uncertainty for smaller events

on stream 2 (control) and stream 3. As suggested by Lee and Scholtes (2014) the

empirical prediction intervals could be improved by taking an adaptive approach

conditional on the recent state of the system to reduce the prediction interval

width.

Another limitation of the empirical prediction interval approach is that it

relies on the availability of sufficient data points (events) to estimate the error

distribution (Isengildina-Massa et al., 2011). The number of data points needed

depends on the required accuracy (Taylor and Bunn, 1999); Lee and Scholtes

(2014) suggest a minimum of 120 data points are required, whilst Taylor and Bunn

(1999) recommend 50 data points and Williams and Goodman (1971) found just

24 data points provided sufficient accuracy at the 80% confidence level, although

including more observations improved accuracy at the 90% and 95% level. Hence,

it is possible that some of the prediction intervals calculated in the study reflect

model-fitting errors rather than true out of sample forecast errors (Bowerman

and Koehler, 1989).

2.4.3 Further work

The development of a model with known accuracy allows for comparison of pre

and post-intervention peak stage response of the stream. The next step is to

use the models to simulate baseline peak stage for comparison to observations

of peak stage after leaky dams are installed in the streams. Thereby impacts

of leaky dams greater than the model error can be assessed for every event in

the post-intervention monitoring period. Ideally, further work would be done to

identify time series models which provide as good a fit to the data as was found

for stream 1 on all three streams. This would allow high flow event peaks of the

full range of magnitudes to be simulated with a high degree of accuracy on all

three streams. However, the level of accuracy for the full range of stage on stream

1, and for all but the six largest events on the control stream is high enough to

assess leaky dam impacts on stream 1 in Chapter 3.
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2.5 Conclusion

Whilst previous research has focused on using either an empirical approach or a

deterministic modelling approach to detect NFM impacts on downstream flood

risk, this research demonstrates that where uncertainty masks the signal of the

intervention, a top-down data-based time series modelling approach can pro-

vide the tools to make a meaningful comparison between empirical baseline and

post-intervention data. Although different types of time series models may be

necessary to demonstrate the full benefits of data-based time series modelling ap-

proaches, this study provides evidence that, where the underlying data generating

processes are linear, TFN modelling can reproduce observed stage hydrographs

to a high degree of accuracy. Given the upstream stage series, the baseline, pre-

intervention response of a stream can therefore be accurately simulated for any

chosen high flow event. This means that for every flood peak observed after an

NFM intervention is made the baseline flood peak magnitude can be simulated for

comparison to a high degree of confidence. The impact of the NFM intervention

can thereby be quantified for the full range of events observed after the interven-

tions are installed. Hereby it is demonstrated that, by using a data-based time

series modelling approach, BACI data can be used to assess the impact of NFM

features such as leaky dams on downstream flood peak magnitude, even when

lead times to collect baseline data are short, the data are highly uncertain and

comparable high flow events are not observed before and after the interventions

are installed. Data-based time series modelling techniques, therefore, provide

a promising solution to the problems associated with quantifying the flood risk

management benefits of NFM interventions.
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Chapter 3

Using a data-based modelling

approach to assess leaky dam

impacts on downstream flood risk

Part II Leaky dam impacts on

flood peak magnitude

3.1 Introduction

In recognition of the increasing flood risks posed by climate change and land-use

change (Blöschl et al., 2019; Winsemius et al., 2016), policy in the UK and across

Europe is moving towards a more holistic, landscape-scale approach to flood risk

management (Commission of the European Communities, 2009). Working with

natural processes to reduce flood risk, or natural flood management (NFM), is

used alongside traditional engineered defences to restore processes which retain

and slow water in the landscape (Forbes et al., 2015). NFM delivers multiple

benefits including ecological, geomorphological and water quality improvements

alongside aiming to reduce flood risk (Abbe and Brooks, 2011; Burgess-Gamble

et al., 2017; Dadson et al., 2017; Lane, 2017). NFM may provide significant

opportunities for flood risk management (Black et al., 2021; Dixon et al., 2016),

however, the use of natural flood management as a mainstream management
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approach is limited by a lack of confidence in the effects on downstream flood

risk (Burgess-Gamble et al., 2017; Ellis et al., 2021). Quantifying the benefits of

NFM for flood risk management is paramount to stakeholder buy-in (Bark et al.,

2021) and for authorities to fulfil their obligations of cost-benefit analysis for the

spending of public funds (Defra, 2009).

Natural flood management creates and restores features of catchments which

slow, store or attenuate water in the landscape (Dadson et al., 2017). NFM

includes measures such as improving the water retention capacity of soils, inter-

cepting overland flows by planting buffer strips, and restoring the natural function

of wood in rivers to slow fluvial flows (Yorkshire Dales National Park Authority

et al., 2017). In the UK, flood risk management legislation requires that the

inclusion of NFM measures is considered in all publicly funded flood and coastal

erosion risk management strategies (Environment Agency, 2010a). Furthermore,

following the UK’s exit from the EU, the UK Government have proposed to re-

place the EU’s Common Agricultural Policy (CAP) with the Environment Bill

House of Commons (57, 2019-21 & 2021-22) and Agriculture Act (2020) which

support integrated catchment management approaches such as NFM (Klaar et al.,

2020). The Agriculture Act (2020) sets out the Environmental Land Management

Scheme (ELMS) which aims to pay landowners directly for the provision of public

goods, including flood risk management (Defra, 2020). Hence, whilst NFM has

been evident in UK policy since 2005 (Defra, 2005), it is likely to become more

mainstream if the UK is able to successfully implement its “public money for

public goods” approach set out in the Agriculture Act (2020).

To be able to implement a payments for outcomes approach it is necessary to

quantify the benefits delivered by NFM measures. Likewise, its use in publicly

funded flood and coastal erosion management strategies requires the quantifica-

tion of the performance of NFM interventions as flood risk management assets

(Defra, 2009). Uptake of the approach depends on buy in of stakeholders (Wing-

field et al., 2019) who see uncertainty in the efficacy of NFM measures as a key

barrier to their implementation (Bark et al., 2021). Hence, the quantification

of natural flood management impacts on flood peak magnitude and timing is

paramount to support a paradigm shift in the way that flood risk and the envi-

ronment are managed in the UK.
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To generate quantitative evidence to demonstrate the effectiveness of working

with natural processes to reduce flood risk, the UK government’s Department

for Environment and Rural Affairs (Defra) invested £1.7 million in three multi-

objective flood management projects in 2009 (Moors for the Future Partnership,

2015). Two of these projects included the use of leaky dams in upland catchments

(National Trust, 2015; Nisbet et al., 2015b). Leaky dams consist of one or more

pieces of large wood installed across small streams perpendicular to the direction

of flow. They typically extend onto the floodplain and are raised above baseflow

to allow for passage of fish (Burgess-Gamble et al., 2017; Forbes et al., 2015).

Although they are traditionally used for river restoration (Grabowski et al., 2019;

Kail et al., 2007), they are increasingly being installed in rivers for the purpose of

flood risk management (Grabowski et al., 2019). Leaky dams have been installed

in upland streams across the UK (National Trust, 2015; Nisbet et al., 2011; Slow

the Flow Calderdale, 2017) and can range from a small number of interventions

placed in one stream to hundreds of interventions spread across a catchment (The

Rivers Trust, 2021). In England and Wales, their installation for the purpose

of flood risk management in uplands has been incentivised through agricultural

subsidies (Defra et al., 2016).

Leaky dams are thought to delay the flood peak and reduce its magnitude

because they increase in-channel roughness, reduce flow velocity and increase

floodplain connectivity (Abbe and Brooks, 2011; Gregory et al., 1985; Keys et al.,

2018). Leaky dams differ from the type of in-stream wood typically installed for

river restoration in that they are designed to maximise interaction with the flood

peak by spanning the channel and extending onto the floodplain to increase stor-

age potential, blockage ratio and overbank routing/roughness gains (Woodland

Trust, 2016). By being raised above baseflow, their storage capacity is not de-

pleted under baseflow conditions so that it is available during flood events, and by

being perpendicular to the direction of flow they maximise friction effects (Gippel

et al., 1996). Their impacts on flood peak magnitude are therefore expected to be

greater than those of in-stream wood installed for the purpose of river restoration.

Leaky dams have been shown to delay flood peak timing at a range of spatial

scales (Black et al., 2021; Gregory et al., 1985; Kitts, 2010) but their impact on

downstream flood peak magnitude remains unquantified. The impact on flood
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peak magnitude of in-stream wood placed longitudinally on the channel bed,

however, has been measured in an upland test catchment in the mid-Atlantic

region of the United States (Keys et al., 2018), and in the Ore Mountains of

Germany (Wenzel et al., 2014). In both cases the impacts of the in-stream wood

on the magnitude of an artificial flood wave, generated using reservoir releases,

was measured. In the US, the magnitude of a <1-in-1 year flood event was

reduced by 8% (Keys et al., 2018), whilst a 1-in-3.5 year flood event was reduced

by 2.2% in the Ore Mountains (Wenzel et al., 2014). Because the studies tested

different event magnitudes it is unclear whether the results varied due to the

event magnitude, or because of site or wood specific factors, such as the channel

geomorphology or the size of the wood relative to the channel.

Modelling of leaky dam schemes at the catchment scale suggests that leaky

dams in tributaries with a high gradient (>0.005 m/m) have little impact on

event peak magnitude (Dixon et al., 2016; Thomas and Nisbet, 2012) because

hydraulic resistance has less effect on flood waves in steep rivers (Sholtes and

Doyle, 2011), and the available storage volume sharply declines (Thomas and

Nisbet, 2012). However, confidence in the results of modelling studies is low

because the representation of leaky dams is usually not validated (Addy and

Wilkinson, 2019). To increase confidence in the impacts of leaky dams on event

peak magnitude, empirical data from a range of environments is needed, in a

similar manner to traditional engineered defences (Ellis et al., 2021).

Applying a Before After Control Impact (BACI) monitoring methodology to

the collection of hydrological data has been identified as a way to gather the

evidence required to mainstream NFM approaches (Ellis et al., 2021). However,

the BACI approach alone is unlikely to overcome the difficulties associated with

quantifying the impacts of leaky dams and other NFM measures. Difficulties in

isolating impacts of one type of measure, variation in a measure’s effectiveness

with event magnitude, insufficiently long monitoring timescales, and complexities

of context and scale of interventions all contribute to the uncertainty in quantify-

ing their impacts (Connelly et al., 2020). For example, of the three Defra-funded

multi-objective flood management demonstration projects initiated in 2009 two

reported that a lack of comparable high flow events during the monitoring pe-

riod precluded the assessment of NFM impacts, despite the use of a BACI style
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monitoring approach (National Trust, 2015; Nisbet et al., 2015b). This issue con-

tinues to hamper efforts to collect evidence from the £15 million of NFM projects

funded by the UK government in 2017 (Environment Agency, 2019) and presents

a common problem as many NFM studies are based on short periods of obser-

vation (Connelly et al., 2020). Additionally, even when sufficient flood events

are recorded, the signal of an intervention can be masked by the high levels of

uncertainty typical of hydrological data (Black et al., 2021; Gebrehiwot et al.,

2019; Lane, 2017; Wilkinson et al., 2014).

The stochastic nature of flood events further compounds the comparison of

impacts between sites and catchments as they have varying characteristics (Wing-

field et al., 2019). Impacts on different types of events, such as typically intense

summer and long winter storms could have important economic implications for

flooding of agricultural land which is most vulnerable during the summer months

(Morris and Brewin, 2014; Posthumus et al., 2009). Furthermore, modelling sug-

gests that considering the impacts of multi-peaked events on leaky dams can

lead to dramatically different conclusions due to the time required for the system

to recover its effectiveness between peaks (Metcalfe et al., 2017). To manage

expectations of NFM efficacy, which has been identified repeatedly as key to sus-

taining efforts to mainstream NFM (Collentine and Futter, 2018; Nisbet et al.,

2015b; Wells et al., 2020), a clearer picture is needed of the impacts on single and

multi-peaked events with a range of peak magnitudes and event characteristics.

In light of the difficulties associated with collecting empirical evidence, re-

searchers have employed fluvial hydraulic based models to gain a better under-

standing of leaky dam impacts (Burgess-Gamble et al., 2017). These modelling

studies have been carried out using a ‘bottom up’ or ‘reductionist’ approach in

which subjective a priori assumptions about model structure and parameters

are made based on academic judgement and intuition (Young, 2003). Young

(1978) argued that such a priori conceptions of how the system works can lead

to overconfidence in the resulting models. This is a particularly pertinent point

when considering the impacts of NFM features because the physical basis of the

processes governing their impacts are poorly understood (Lane, 2017) and there

is little evidence based guidance as to the representation of leaky dams in such

models (Addy and Wilkinson, 2019). Instead, a different approach to quantifying
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leaky dam impacts on flood peak magnitude is suggested here in which empirical

data, collected using a BACI design, is combined with a data-based time series

modelling approach.

Data-based time series modelling is a top-down approach which does not rely

on a priori assumptions about the model, but instead allows the data to guide

the form of the model. Because the type of model is chosen based on the sta-

tistical properties of the data they can handle data with different spectral prop-

erties (distribution of variance with frequency) and undesirable features such as

non-stationarity, non-constant variance and seasonality which confound change

detection (Hipel and McLeod, 1994). They can be trained using short periods

of data (Young, 2003) which means they do not rely on long periods of baseline

data to be collected before leaky dams are installed. Once the model structure

and parameters have been determined from the data, the model represents the

dynamical properties of the system and can be used to make predictions of the val-

ues of the output series and its uncertainty for unobserved periods (von Asmuth

et al., 2002). Hence, a data-based time series model can be trained to simulate

the downstream response of a stream without leaky dams to an upstream flood

hydrograph. These simulations can be compared to observations of the stream

response after leaky dams have been installed to assess the difference the leaky

dams have made to the stream response.

The approach of comparing simulated time series to observed time series to

quantify the effects of a treatment has been successfully applied to assess the

temperature response of a headwater stream in British Columbia, Canada to

changes in riparian vegetation (Gomi et al., 2006), changes in thermal response

of alpine rivers brought about by anthropogenic flow regulation (Dickson et al.,

2012), and to quantify the effect of different forest treatments on streamflow in

forested catchments in south-eastern Australia (Watson et al., 2001). Although

accurate models of level to level response have been developed for rivers in the

UK (Beven et al., 2008; Romanowicz et al., 2008; Young, 2003), the approach has

not yet been applied to the assessment of leaky dam impacts on downstream flood

peak magnitude. The results of Chapter 2 showed that the peak stage of high

flow events recorded during the baseline monitoring period of a BACI style study

could be simulated to within ±2 centimetres at the 80% confidence interval for an
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impact and a control stream. In this chapter, the data-based time series models

developed in Chapter 2 were used to simulate what peak stage would have been,

with two centimetre accuracy, had leaky dams not been installed in the impact

stream. Differences >2 cm were attributed to the effect of the leaky dams on

peak stage. Leaky dam effects were quantified using this approach, for the first

time, for events with a variety of peak magnitudes, durations, total volumes, and

numbers of event peaks. This chapter addresses the second research question

posed in the introduction:

Q: In upland streams, what is the impact of leaky dams on the flood peak mag-

nitude of a range of flood events?

by addressing the objectives:

O1: Compare and calculate differences between simulations of baseline stage

and observations of post-intervention stage at the peak of all flood events

observed during the post-intervention period on the impact and control

streams.

O2: Determine the statistical significance of the differences between simulated

and observed peak stage.

O3: Assess the variability of the effectiveness of leaky dams during different types

of high flow events, including single and multi-peaked events.

3.2 Methods

A semi empirical data-based time series modelling approach was taken, after

Dickson et al. (2012); Gomi et al. (2006); Watson et al. (2001) & O’Driscoll et al.

(2016), to assess the impact of installing eight leaky dams in an upland, headwater

stream in Coverdale, England, on the peak magnitude and timing of high flow

events. The study stream was one of five streams which were part of a larger

monitoring effort to empirically quantify the impact of leaky dams using four

impact streams and one control stream with a BACI experimental design. The

stage series were found to be too uncertain to directly assess leaky dams impacts
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on flood peak magnitude and timing (Appendix B) and therefore the data-based

time series approach summarised in Figure 3.1 was taken to assess the difference

between baseline and post-intervention reach response on an impact stream and

the control stream.

Figure 3.1: Data-based time series analysis approach used within this study

As summarised in Figure 3.1, the models were fitted and validated in the

previous chapter (Part I, Chapter 2), in this chapter (Part II) the models were

used to assess the impact of leaky dams on the peak magnitude of the flood

hydrograph. Following fitting and validation of the data-based time series models

outlined in Chapter 2 (Part I), the following steps were taken to assess the impacts

of leaky dams on event peak magnitude: (1) Identification of high flow events in

upstream, post-intervention stage series; (2) Simulation of downstream baseline

stage response to upstream event stage time series; (3) Calculation of differences

between simulated and observed downstream stage for both baseline and post-

intervention monitoring periods on the impact and control stream ;(4) Testing

for statistical differences between the simulated and observed response in the

baseline and post-intervention periods; (5) Analysis of the impact of high flow

event characteristics such as peak magnitude, duration and the number of peaks

in the event on leaky dam effectiveness.

3.2.1 Field Methods

The study site was located in the headwaters of the River Cover (54.20045 N,

-1.98617 E) on the Eastern flank of the Yorkshire Dales National Park, North

Yorkshire, England (Figure 3.2a). The climate is cool and wet, with an average

annual rainfall of 1270 mm (EA rain gauging station 57426 data 1988-2018). The
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(a)

(b)

Figure 3.2: (a) Location of study site in Coverdale, North Yorkshire, UK,

and nearest Environment Agency operated flow and rainfall gauging stations (b)

Water level/flow gauging network in Coverdale catchment
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glacial valley of Coverdale overlies Great Scar limestone with rocks of the Yoredale

series forming the valley sides (Yorkshire Dales National Park Authority, 2002).

Land use in the catchment is pastoral agriculture on open, unimproved grassland

whilst the moorland is managed for grouse shooting. The headwaters are formed

of many small, parallel watercourses which flow into the River Cover at an altitude

of 400 m AOD. This study focuses on two of these watercourses; an impact stream

(Stream 1) and a control stream (Stream 2), shown in Figure 3.2b, with similar

hydrological characteristics (Table 3.1) and no established lateral inflows within

the monitored reach. The watercourses are of type A in the Rosgen classification;

steep, partially entrenched and cascading with step/pool streams (Rosgen, 1994).

Table 3.1: Characteristics of the study streams

Stream Gradient Catchment Monitored Mean leaky dams

(m/m) Area (km2) length (m) width (m) (count)

1 (impact) 0.13 1.1 280 2.6 8

2 (control) 0.11 1.9 260 3.0 0

River stage was recorded at the upstream and downstream extent of both

streams from September 2017 to February 2020 at one-minute intervals using In-

Situ Rugged TROLL 100 (Redditch, UK) non-vented pressure transducers with

0.05% full scale accuracy (± 0.0045 m) in stilling wells corrected using an In-Situ

Rugged BaroTROLL (Redditch, UK) atmospheric pressure gauge (± 0.05% full

scale accuracy). Equipment failure resulted in some data gaps on the impact

stream, particularly a 72 day gap in summer 2018 (baseline) and the data from

both streams contained considerable uncertainty due to instabilities in the stage

datum at the gauges. Rating relationships were developed for each of the gauging

sites by calibrating 1D hydraulic models of the sites to measurements of stage-

discharge pairs at each site (Appendix A). Discharge was measured during a range

of high flow events using slug-injection dilution methods (Moore, 2005), with salt

pulses recorded using conductivity as a proxy for concentration at one second

intervals using a Campbell Scientific CR200 Data logger and conductivity probe.

There were no long-term flow or level gauging records available for the site;

however, an Environment Agency maintained flow gauging station is in operation
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at Kilgram Bridge (station number F2206), on the River Ure, 6 km downstream

of its confluence with the River Cover (Figure 3.2a). The figure also shows the lo-

cation of EA rainfall gauging station 7426 at Scar House (54.184828 N, -1.900625

E), 6 km east of the study site, from which 15-minute rainfall time series are

available from 1988 onwards. Peak Over Threshold (POT) and Annual Maxi-

mum (AMAX) series from Kilgram Bridge station F2206 were obtained from the

National River Flow Archive (UK Centre for Ecology and Hydrology, 2021). The

AMAX and POT series were used together with Met Office named storms (Met

Office, 2021) to contextualise the events observed during the study period.

(a) (b)

Figure 3.3: Photographs of (a) elevation and (b) plan view of typical leaky

dams on the impact stream

The leaky dams, shown in Figure 3.3, were built following the guidance of the

Yorkshire Dales Rivers Trust (2018) which was developed by local NFM practi-

tioners based on experience from catchments with similar hydraulic conditions

and site constraints. The design of the dams is shown in Figure 3.4 and the aver-

age as-built dimensions of the dams are given in Table 3.2. The dams were built

from 2-5 locally felled tree stems with a minimum length of 1.5 times channel

width. The stems were installed to span the channel perpendicular to the direc-

tion of flow. The dams had an average height of 0.8 m above the riverbed and

were installed to provide approximately 0.3 m clearance from baseflow for fish

passage. The dams were anchored using strainer posts and wire and brash was
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used to stuff the dams to enhance biodiversity impacts. To fulfil the consenting

requirements of the lead local flood authority a flood risk impact assessment was

carried out which considered the risk to downstream assets of structure blockage

and flood wave surge in case of failure.

Figure 3.4: Diagram of leaky dam dimensions (referred to in Table 3.2)

Table 3.2: Average as-built dimensions of leaky dams installed in the impact

stream, dimensions refer to Figure 3.4

Stream 1

Count of dams 8

Average of W1 (m) 4.58

Average of W2 (m) 2.61

Average of H1 (m) 0.86

Average of H2 (m) 0.3

Average dam spacing (m) 25

Decisions about the placement of leaky dams were made by balancing site

constraints such as material availability and site accessibility with water storage

potential arising from the site topography. Three types of flood water storage
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mechanisms were identified and opportunities were sought in the following prior-

ity order, designed to maximise flood storage volume: (1) Increased flood-plain

connectivity with opportunities for re-routing of flood water to offline storage ar-

eas; (2) Increased flood-plain connectivity with in-line (floodplain) storage areas;

(3) Increased in-channel storage. Figure 3.5 shows the location of the eight leaky

dams on the impact stream.

Figure 3.5: Location of leaky dams and stage gauges in the impact stream

3.2.2 Data Analysis

High flow events

High flow events were identified from the post-intervention stage time series using

a similar rules based methodology to Deasy et al. (2009) & Glendell et al. (2014)

as described in Chapter 2 Section 2.2.6. The following two criteria were used to

identify discrete high flow events: (1) A stage peak was considered a discrete high

flow event if it was of duration >60 minutes and the upstream peak stage exceeded
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the mean stage recorded on the stream during the monitoring period (mean stage

was 0.04 m on the impact stream and 0.15 m on the control stream); (2) Events

were classed as independent if they were separated by at least 15 minutes of

stage below baseflow stage +10%. Baseflow stage determined that start and

end points of the events and was calculated, after Bezak et al. (2015), using the

methods described in the World Meteorological Organisation’s manual on low-

flow estimation and prediction (WMO, 2009) using the accompanying R package

‘lfstat’ v. 0.9.4 (Koffler et al., 2016). The Hydrological Model Assessment and

Development (HydroMAD) v. 0.9-26 package (Andrews and Guillaume, 2018)

for the statistical computing environment R was used to identify discrete storm

events using the above criteria. High flow events were permitted to be single or

multi-peaked.

Characteristics describing the hydrograph were calculated for each of the dis-

crete storm events. The metrics used to describe the magnitude of the event were

peak stage, Sp, duration, D, and total stage, St. The peak stage was defined as

the maximum stage between the start and end of the event and was therefore

based on the largest peak of multi-peaked events. Event duration was calculated

as the time from the start to the end of the event and total stage was the sum

of stage from the start to the end of the event, which was used as a proxy for

event volume. After Potter (1991) the hydrograph rise time, Trise, defined as

the time between the start and peak of the event, was calculated to describe the

peakedness of the event. The time since the previous event, Da, was also calcu-

lated for each event. Correlations between the characteristics were assessed using

Spearman’s rank order correlation (Spearman, 1904).

Event simulations

Transfer function noise models were fitted to the stage time series collected in the

baseline, pre-intervention monitoring period on the impact and control stream.

Fitting and validation of the models is described in detail in Chapter 2. In sum-

mary, the models, given by Equation 3.1 and 3.2, were fitted to the baseline

stage time series on each stream using the upstream stage series as the predic-

tor variable and the downstream stage series as the forecast variable. The stage
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time series were aggregated from 1-minute to 15-minute temporal resolution by

taking the maximum stage in each 15-minute timestep. Both the upstream and

downstream stage series were transformed to meet the requirements of station-

arity by first order differencing. The fitted and validated models consisted of

a dynamic regression and ARMA noise component, the parsimonious form and

coefficients of the models were inferred from the data as described in Chapter

2. Blocked out of sample cross-validation showed that the models were able to

simulate high flow event peak stage to within ± 0.02m at the 80% confidence

level. In this chapter, the models in Equation 3.1 and 3.2, were used to simulate

downstream pre-intervention stage for high flow events in the post-intervention

monitoring period. The simulated pre-intervention stage was used as a basis for

comparison to observed post-intervention stage to assess differences in the pre-

and post-intervention response of the stream to high flows.

Simulations of baseline stage were made for every discrete high flow event in

the post-intervention monitoring period for the impact and control stream respec-

tively. The forecast variable was downstream stage, D∗
t , at time t, transformed

to be stationary by first order differencing. The upstream stage series at time

t formed the predictor variable, U∗
t , which was also transformed by first order

differencing. Nt was the autocorrelated noise term which was modelled using the

ARMA model, and at was a random noise term which was independently and

identically distributed. The package ‘forecast’ v.8.12 (Hyndman and Khandakar,

2008) was used in the statistical software programme, R v. 4.0.2 (R Core Team,

2020), to make simulations using the TFN models. The simulations were made

for 20-hour windows of upstream stage data at 15-minute timesteps centred on

the peak of the event as illustrated in Figure 3.6.

Impact Stream (Stream 1):

D∗
t = 0.687U∗

t + 0.332U∗
t−1 + 0.165U∗

t−2 + 0.102U∗
t−3 − 0.014U∗

t−11

−0.01U∗
t−20 +Nt

Nt = 0.893Nt−1 + 0.179Nt−2 − 0.437Nt−3 + 0.288Nt−4 − 0.162Nt−5

−0.554at−1 − 0.654at−2 + 0.453at−3 + at

(3.1)
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Control Stream (Stream 2):

D∗
t = 0.430U∗

t + 0.198U∗
t−1 + 0.114U∗

t−2 + 0.083U∗
t−3

+0.042U∗
t−4 +Nt

Nt = 1.035Nt−1 − 0.196Nt−2 + 0.173Nt−3 − 0.062Nt−4 − 0.739at−1

−0.253at−2 + at

(3.2)

Simulations of baseline peak stage and empirical prediction intervals were

taken from the blocked out of sample cross validation procedure described in

Chapter 2 Section 2.2.6. This approach was taken so that the model prediction

intervals were based on data which was not used to train the model.

Figure 3.6: Example of a 20-hour simulation window centred on the peak of an

event

Treatment Effect

The difference in peak stage with and without leaky dams was assessed by cal-

culating the difference between the simulated peak stage and the observed peak

stage (Dickson et al., 2012; Gomi et al., 2006) and was called the treatment effect,

(Te),

Te = Dpeak − D̂peak (3.3)
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where Dpeak is the observed downstream stage in metres at the peak of the event

(i.e., with leaky dams), and D̂peak is the simulated baseline downstream stage in

metres at the peak of the event (i.e., without leaky dams). To aid in comparability

between sites and studies the treatment effect was also expressed in terms of the

percentage change in peak discharge, TeQ. The simulated and observed peak

stage were converted to discharge, Qpeak and Q̂peak, respectively using the rating

relationships developed in Appendix A. The treatment effect was calculated as a

percentage difference in event peak discharge,

TeQ = 100(
(Qpeak − Q̂peak)

Qpeak

) (3.4)

Although expressing treatment effect in terms of percentage reduction in peak

discharge allowed the treatment effect to be compared to other sites, it introduced

uncertainties associated with the rating relationship and so statistical significance

testing and investigation of variation in treatment effect was conducted in terms

of peak stage alone. The model’s empirical prediction intervals were used to assess

whether the treatment effect was greater, lesser or within the same magnitude

as the expected model error at the peak of the event. The prediction intervals

were estimated in Chapter 2 based on the distribution of peak stage error in

the out of sample blocked cross-validation and were estimated at the 95% and

80% confidence levels. The 95% level of confidence interval was used because it

is the recommended Hydrometric Uncertainty Guidance ISO standard (ISO/TS

25377:2007) and the 80% prediction interval is recommended for prediction in-

tervals empirically estimated from data with outliers or tail problems (Chatfield,

2001).

As summarised in Table 3.3, a positive treatment effect, where Te is greater

than the upper model prediction interval, indicated that the peak magnitude was

reduced in the post-intervention monitoring period compared to pre-intervention

response of the stream. Treatment effect below the lower model prediction inter-

val indicated an increase in peak magnitude in the post-intervention monitoring

period, and treatment effect between the prediction intervals indicated that the

difference in pre and post-intervention peak stage response was too small to dis-

tinguish from model error. On the control stream a significantly negative or
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positive Te indicated that influences other than the leaky dams affected the peak

stage in the post-intervention monitoring period.

Table 3.3: Classification of treatment effect (PI = Prediction Interval)

Peak magnitude reduced beyond

Te > Upper PI Positive Te : expected model error in

post-intervention monitoring period

Peak magnitude increased beyond

Te < Lower PI Negative Te : expected model error in

post-intervention monitoring period

Lower PI Change in peak magnitude

≤ Te ≥ Insignificant Te : too small to distinguish

Upper PI from expected model error

Statistical test for significance

Like Gomi et al. (2006) & Dickson et al. (2012) an approximate assessment of sta-

tistical significance was given by adapting the methods of Watson et al. (2001).

Because each high flow event for which Te was calculated was assumed to be

independent, every value of Te was assumed to be independent and can be de-

scribed as the model error at the peak of the event. In the previous chapter

this concept was used to estimate the empirical prediction intervals of the model

simulations at the peak of the event. The null hypothesis of ‘no treatment effect’

would be accepted if the distributions of the disturbances, or treatment effect,

in the pre- and post-intervention monitoring periods were the same. To test

for significance in the difference between the distribution of treatment effect in

the pre-and post-intervention monitoring periods the non-parametric two-sample

Kolmogorov-Smirnov test was applied (Dickson et al., 2012; Gomi et al., 2006).

In the impact stream rejecting the null hypothesis of ‘no treatment effect’ would

indicate that downstream peak magnitude was significantly different in the post-

intervention monitoring period. In the control stream accepting the null hypothe-

sis of ‘no treatment effect’ would increase confidence in attributing this difference

to the leaky dams installed in the impact stream, rather than external impacts.
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Variation in treatment effect

To obtain an initial indication of whether treatment effect varied between seasons

boxplots of treatment effect were drawn grouped into seasons by the month dur-

ing which the event peak occurred (spring: March-May, summer: June-August,

autumn: September-November, winter: December-February). A statistical test

of differences was not performed because of the low number of events in some

seasons.

Association between the percentage change in peak discharge (treatment ef-

fect) and event peak magnitude was assessed by calculating the Pearson’s product

moment correlation (Freedman et al., 2007). Normality of the distribution of each

of the characteristics was checked using the Shapiro-Wilk test (appropriate for

small samples) in conjunction with QQ normality plots. The null hypothesis was

that treatment effect was not correlated with each of the event characteristics.

Where a significant association between treatment effect and peak magnitude was

found, and residuals were normally distributed, a linear regression was performed

to assess the form and strength of the relationship. The significance of the re-

lationship was assessed by testing whether the slope of the regression line was

significantly different from zero using the two-sided t-test at the 0.05 significance

level. The null hypothesis was that the slope of the regression line was equal to

zero. The coefficient of determination (R2) was used to assess what proportion of

the variation of treatment effect which was explained by the event characteristic.

The regression relationship and its 95% prediction intervals were used to make

predictions of treatment effect dependent on peak magnitude. The analysis was

performed using R v. 4.0.2 (R Core Team, 2020).

Event characteristics other than peak discharge were not normally distributed

and did not display a linear relationship with treatment effect, therefore, corre-

lations for these characteristics were not calculated. Instead, differences in the

median event characteristics of events which had a positive, negative or insignifi-

cant treatment effect according to the definitions in Table 3.3 were assessed. First,

the events were grouped depending on whether there was a positive, negative, or

insignificant treatment effect on the impact stream. The characteristics of the

events in each group were then compared using boxplots to give an indication as
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to whether leaky dams were more effective during some types of events than oth-

ers. Differences in the median of the groups were tested for statistical significance

using the non-parametric Mann Whitney U test (Mann and Whitney, 1947). The

characteristics tested were peak stage (Sp) in metres, total stage (St) in metres,

event duration (D) in hours, time since previous event, (Da), in hours, and after

Potter (1991), hydrograph rise time, Trise, was used to describe the duration of

the rising limb of the event. The number of days since the interventions were

installed, Tint was also assessed.

Figure 3.7: Example events to illustrate numbering of event peaks

The effect of leaky dams on event peak magnitude is thought to differ de-

pending on whether a peak is the first peak of an event (including single-peaked

events) and subsequent peaks of multi-peaked events (Metcalfe et al., 2017). As

numerous multi-peaked events were observed in the post-intervention monitor-

ing period boxplots were used to examine the effect of peak order on treatment

effect. As illustrated in Figure 3.7, event hydrographs could be multi-peaked

(Figure 3.7A) or single-peaked (Figure 3.7B). To examine whether the treatment

effect varied between the first peak in an event and subsequent peaks, Te was

calculated for each peak in multi-peaked events and grouped by peak order; de-

termined by whether they were the first (including single peaked events), second,

third, or subsequent peak within an event, as illustrated in Figure 3.7. Individual

peaks were deemed peaks of the same event if the stage fell below the level of the

leaky dams (0.3 m) between peaks but did not return to within 10% of baseflow.

Because the errors of multiple step ahead forecasts are additive, each peak was
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simulated at an equal number of time steps (10 hours) from the beginning of the

simulation to assess Te. For example, to calculate the treatment effect for all three

peaks in Figure 3.7A, the simulation was repeated three times, centred on each

peak in turn. This process was repeated for all events in the post-intervention

monitoring period. Te was calculated for every peak and grouped according to

whether they were the first, second, third or subsequent peak of the event and

differences in the median value of Te between the groups was assessed using the

Mann-Whitney-U test (Mann and Whitney, 1947).

3.3 Results

3.3.1 Characterisation of hydrological events

The post-intervention monitoring period was generally wetter than the baseline

monitoring period, with higher total and annual maximum daily rainfalls recorded

at the nearest Environment Agency (EA) operated rainfall gauge (Table 3.4). The

annual maximum (AMAX) flows recorded at a downstream flow gauge during the

post-intervention monitoring period were the third and ninth largest events since

records began in 1966. In total, the discharge exceeded the peak over threshold

(POT) for the gauge 10 times during the post-intervention monitoring period,

compared to three times during the baseline monitoring period.

Table 3.4: Climate data at Scar House and Kilgram gauge (*to March 2020),

water year is defined as 1st October to 30th September

Baseline Post-intervention

Water Year 2016-2017 2017-2018 2018-2019 2019-2020

Total precipitation (mm) 881 940 1129 755*

max daily rainfall (mm) 35.1 34.8 38.9 54.5*

AMAX flow (m3/s) 3.1 3.9 4.7 5.4

AMAX rank 48 30 9 3

Number of POT events 1 2 5 5
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Figure 3.8: Study site rainfall (EA gauge 7426) and discharge recorded at

upstream extent of study streams, ‘S’ indicates storms named by the UK Met

Office, and those which affected the study site are labelled along the upper margin.

Points indicate high flow events identified in the data, asterisks indicate discharge

>2 m3/s which are likely erroneous (Appendix B)
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Table 3.5: Top ten high flow events recorded on the impact stream during

the monitoring period based on peak stage. The numbers in brackets indicate

the rank of the equivalent POT event on the downstream Kilgram gauge, where

relevant. Total rainfall indicates the total rainfall recorded in the 72 hours up to

and including the event date

Impact Control Kilgram Scar House

Storm Peak Peak Peak Total

Rank Date Name Stage (m) Stage (m) Flow (m3/s) Rainfall (mm)

Baseline monitoring period

1 13/09/2017 Aileen 0.58 0.50 171 (226) 35.4

2 14/10/2017 Ophelia 0.54 0.45 173 (222) 42.2

3 08/02/2018 0.52 0.40 104 13.0

4 23/01/2018 Georgina 0.51 0.41 159 31.4

5 03/04/2018 0.50 0.40 130 36.2

6 11/10/2017 0.49 0.36 162 27.2

7 21/10/2017 Brian 0.48 0.38 103 50

8 13/12/2017 0.48 0.37 92 21.2

9 03/01/2018 Eleanor 0.47 0.39 131 50.8

10 15/01/2018 Fionn 0.47 0.38 118 24.0

Post-intervention monitoring period

1 09/02/2020 Ciara 0.63 0.62 361 (3) 113.0

2 15/02/2020 Dennis 0.60 0.73 292 (14) 56.2

3 16/03/2019 Gareth 0.58 0.59 303 (10) 72.4

4 18/12/2018 Deirdre 0.55 0.42 118 41.4

5 07/12/2018 0.55 0.38 130 37.2

6 09/02/2019 Erik 0.54 0.40 165 (251) 55.2

7 29/09/2019 0.53 0.44 179 (192) 76

8 05/12/2019 Atiyah 0.52 0.39 121 22.8

9 09/08/2019 0.51 0.42 174 (215) 36.8

10 19/12/2019 0.51 0.42 100 27

The ten events with the highest peak stage observed during the baseline and

post-intervention monitoring periods on the impact and control stream are given
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in Table 3.5. As expected from the downstream EA operated gauges, the largest

events in the study streams were recorded during the post-intervention monitoring

period, and median peak magnitude was higher overall (Figure 3.8). Rainfall in

the UK is higher in the autumn and winter months (Met Office, 2020) and this is

reflected in the seasonal differences in the distribution of event peak magnitude.

The median peak magnitude was similar across seasons, with the exception of the

summer of 2018 in the baseline monitoring period, which was exceptionally dry

(Met Office, 2018), and the spring of the post-intervention monitoring period in

which only five events were recorded on the control stream, although this included

Storm Gareth (3 March 2019) which caused regional flooding (Flood List, 2020).

Seasonal variation in event duration (Figure 3.9B) and total stage (Figure

3.9C) were evident in the data from the control stream. Although peak stage

(Figure 3.9A) was correlated with event duration and total stage (r >0.7) the

same seasonal pattern was not evident in peak stage. Rising limb duration (D)

was lowest in summer and highest in autumn. Furthermore, median peak stage

recorded in each season was similar in the baseline and post-intervention monitor-

ing periods, with the exception of the summer of 2018 in the baseline monitoring

period, which was exceptionally dry (Met Office, 2018). Median event duration

in each season differed between the baseline and post-intervention monitoring pe-

riods; in spring and winter events had a longer median duration in the baseline

monitoring period, whilst in summer and autumn events with a longer median

duration were recorded in the post-intervention period. Total stage differed in the

same way between the baseline and post-intervention monitoring periods. The

rising limb duration was lowest in summer and differed between the baseline and

post-intervention monitoring periods, particularly in the autumn months.

Overall, spring events had a lower peak stage, event duration, total stage, and

rising limb duration in the post-intervention monitoring period. Summer events

had a higher peak stage, event duration and total stage in the post-intervention

period, but rising limb duration was similar. Autumn events had a higher event

duration and rising limb duration in the post-intervention monitoring period but

peak stage and total stage were similar to the baseline monitoring period. Winter

events had a lower event duration, total stage, and rising limb duration in the

post-intervention monitoring period but peak stage was similar. Event peak stage
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Figure 3.9: Seasonal variation of event peak stage (plot A), duration (plot B),

Total stage (plot C) and Rising limb duration (D) on the control stream
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was highly correlated with event duration and total stage (r >0.7) and moderately

correlated with rising limb duration (r >0.5).

Figure 3.10: Peak stage for the first, second and third peak of high flow events in

the baseline and post-intervention monitoring periods measured at the upstream

extent of each study stream, jittered points illustrate the number of event peaks

in each group.

During both the baseline and post-intervention monitoring periods, single,

double, triple, and multi-peaked events were observed. On both the control and

impact stream the distribution of upstream peak stage was similar regardless of

whether the peak was the first, second or third in the event, in the baseline or

post-intervention monitoring period (Figure 3.10). Events with up to eight peaks

were observed but there was not enough data to include these in the analysis.

3.3.2 Event Simulations

The TFN models were fitted and validated in Chapter 2. In summary, the control

stream was represented by a transfer function with five dynamic regression terms,

and an ARMA noise model with four autoregressive terms and two moving aver-

age terms. The impact stream was modelled using five dynamic regression terms

and an ARMA noise model with five autoregressive terms and three moving av-

erage terms. Both models performed well in validation with simulations of event

peak magnitude within 2 cm across the whole range of event magnitudes for 95%
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of events on the impact stream (Stream 1). On the control stream a high level

of accuracy was achieved for events with a peak magnitude below 0.45 m, but

errors for simulations of events with peak magnitude >0.45 m increased the 95%

prediction interval to 5 cm. Nevertheless, because the model worked well for the

majority of events, the 80% prediction interval was within 2 cm, similar to the

accuracy achieved on the impact stream. This level of accuracy was sufficient to

identify treatment effects which exceeded 2 cm to the 95% and 80% confidence

level on the impact and control stream respectively.

The models were used in this chapter to simulate what the pre-intervention

downstream stage response of the streams would have been for events observed

in the post-intervention monitoring period. On the impact stream the observed

stage was consistently lower than the simulated downstream stage (Figure 3.11)

which meant that the post-intervention downstream stage response of the stream

during the events in Figure 3.11 was lower than it would have been pre-intervention.

On the control stream, the observed and simulated stage were similar, as expected,

because no leaky dams were installed in the stream in the post-intervention mon-

itoring period.

For all events the observed stage (with leaky dams) was similar to the simu-

lated baseline stage up to 0.3 m (Figure 3.12, Table 3.3), the approximate height

of the gap beneath the leaky dams. When the rising limb of the event exceeded a

stage of 0.3 m and interacted with the leaky dams the observed stage was lower

than the predicted baseline stage on the rising limb, falling limb and peak of the

event. For events during which the treatment effect at the peak of the event was

negligible or negative the observed hydrograph was almost identical (within the

95% prediction interval) to the simulated stage without leaky dams throughout

the event (Figure 3.12).
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Figure 3.11: Four examples of event peaks observed in the impact and control

streams after leaky dams were installed in the impact stream. The events had

a return period <1 year and were ranked 12th,15th,18th and 22nd respectively in

terms of peak stage on the impact stream. The solid line gives the observed stage

(with leaky dam on the impact stream) and the dashed line gives the simulated

baseline response of the streams (i.e., without leaky dams). The model prediction

intervals are given by grey shading.
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Figure 3.12: Simulated stage (without leaky dams) plotted against observed

stage (with leaky dams) for the stage hydrograph of every event in the post-

intervention monitoring period (solid grey lines) with its peak stage (black points)

on the impact stream. The dashed line is 1-to-1-line and dotted lines are 95%

model prediction intervals
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3.3.3 Statistical significance of treatment effect

The treatment effect, Te in the control stream was close to zero and almost always

within the prediction limits of the model in both the pre-and post-intervention

monitoring period, because no leaky dams were installed in the control stream

(Figure 3.13). In the impact stream, however, the treatment effect following

leaky dam installation was often larger than the 80% and 95% prediction lim-

its of the model and was therefore attributed to the interventions, rather than

model uncertainty. The two-sample Kolmogorov-Smirnov test was used to test

whether the distribution of treatment effect was significantly different in the pre-

intervention and post-intervention monitoring periods. The null hypothesis that

the distributions of Te came from the same population before and after the leaky

dams were installed was rejected on the impact stream (p <0.01) indicating that

the leaky dams statistically significantly reduced event peak magnitude. On the

control stream, the null hypothesis that the distribution of Te in the pre- and

post-intervention monitoring period came from the same population was not re-

jected (p >0.05) indicating that downstream peak stage response of the control

stream was not significantly different in the two monitoring periods.
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Figure 3.13: Treatment effect on peak stage in metres for high flow events

observed in baseline and post-intervention monitoring periods on the impact and

control stream. The dashed and dotted lines indicate the empirical 95% and 80%

prediction intervals respectively.
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3.3.4 Magnitude of treatment effect

High flow events with return periods between <1 and 6 years were observed on

the impact stream (Appendix C). The magnitude of the treatment effect, TeQ

varied with the peak magnitude, (Qp) of the high flow events (Figure 3.14).

After installation of leaky dams on the impact stream, overall, peak magnitude

was reduced by 8% on average for events with a peak magnitude of up to 1.2

m3/s and by 10% on average for high flow events with a return period of up

to 1 year (peak discharge 1.0 m3/s). The linear relationship between treatment

effect and peak discharge was significant (p-value = 0.02) but explained little

of the variation in treatment effect (R2=0.13, RSE = 15.9 ). The treatment

effect was greatest for the most frequent, smaller events which interacted with

the leaky dams (peak discharge ≥0.3 m3/s) which were reduced by 16% (±8%)

(Table 3.6). As the peak magnitude increased the reduction in peak magnitude

decreased to 10% (±6%) for events with peak magnitude of 0.6 m3/s, 5% (±6%)

for events with a peak magnitude of 0.9m3/s. For events with a peak magnitude

of 1.2 m3/s peak magnitude was decreased by 1% on average but increased or

decreased by 11% within the 95% confidence intervals. Although they are not

presented here, for events on the impact stream with a peak discharge below

0.3 m3/s, which flowed through the gap beneath the leaky dams, the observed

and simulated peak magnitudes were similar in the pre- and post-intervention

monitoring periods.

Similarly to the percentage change in peak discharge, on average absolute peak

discharge reduction was greater for smaller events (Figure 3.14). However, the

largest reductions in absolute peak discharge (>0.2 m3/s) for individual events

were observed for three events with a peak magnitude of 0.7–0.9 m3/s.

On the control stream there was a treatment effect of -2% on average in the

pre-intervention monitoring period and -10% on average in the post-intervention

monitoring period indicating that downstream peak magnitude on the control

stream was higher in the post-intervention monitoring period than it would have

been in the pre-intervention monitoring period. However, the two sample KS-test

indicated that unlike the difference on the impact stream, the difference in the

control stream was not significant (p >0.05).
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Figure 3.14: Treatment effect on peak discharge in percentage of peak discharge

and absolute peak discharge for high flow events observed in baseline and post-

intervention monitoring periods on the impact and control stream. A positive

treatment effect indicates that the peak magnitude was reduced compared to the

baseline scenario
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Table 3.6: Percentage reduction in event peak discharge for events with peak

discharge between 0.3 m3/s and 1.0 m3/s based on linear relationship between

treatment effect and event peak magnitude

Peak

Discharge 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Mean

(m3/s)

Reduction

in peak 16 14 12 10 9 7 5 3 1 1 8

discharge (%)

lower 95%

confidence 8 8 7 5 4 1 -1 -4 -7 -10 1

limit (%)

upper 95%

confidence 24 21 18 16 13 12 11 10 9 8 14

limit (%)

3.3.5 Variation of treatment effect

The treatment effect expressed as the reduction in peak discharge (TEQ) varied

between -30% and 51% on the impact stream (Figure 3.14) reflecting that, for

the range of flows in which the interventions were observed, they could increase,

decrease, or have a negligible impact on the event peak discharge compared to the

baseline scenario. On the impact stream the leaky dams had a positive effect of

reducing peak magnitude in almost a third (32%) of events at the 95% prediction

intervals, and almost half (46%) of events at the 80% prediction interval (Table

3.7, Figure 3.13. On the control stream treatment effect of 87% of events was

within the 80% prediction intervals, as expected.

Seasonal effects

The boxplots of treatment effect grouped by season (Figure 3.15) indicate that

treatment effect was higher in the summer and autumn months on the impact

stream (median Te 0.014 m and 0.01 m respectively) and had negligible effects

during spring and winter (median Te -0.005 m and -0.002 m respectively). On
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Table 3.7: Number of events with positive, none, or negative treatment effect

(PI= Prediction interval), a positive treatment effect indicates a reduction in

event peak magnitude.

Stream Te > PI PI < Te > PI Te < PI Total

positive effect no effect negative effect

95% prediction interval

Impact 16 31 3 50

Control 0 78 0 78

80% prediction interval

Impact 23 22 5 50

Control 6 68 4 78

the control stream, treatment effect was generally within the model prediction

intervals for every season. No formal statistical tests were performed because of

the low number of events in some seasons, and because the peaks of multi-peaked

events were not independent.

Impact of event characteristics on treatment effect

A positive treatment effect (i.e., points above the model prediction intervals) was

observed for events with a shorter duration (D), lower total stage (St) and shorter

time to rise (Trise) (Figure 3.16). Time since previous event (Da) did not affect

the magnitude of treatment effect. Similarly, the change in peak stage, when

expressed as an absolute value rather than a percentage of the peak magnitude,

was similar for almost the whole range of stage. The number of days since the

interventions were installed in the impact stream (Tint) shows that a positive

treatment effect was observed only after 250 days of the dams being installed.

The majority of events with a positive treatment effect had short durations (D

= 37-52 hours) and had a total stage between 241 m and 346 m whilst the majority

of events during which the treatment effect was negligible spanned a wider range

of durations (D = 32-77 hours) and total stage (St = 186-550 m) (Figure 3.17).

However, there was no significant difference between the median of any of the

event characteristics of events with a positive treatment effect or an insignificant
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Figure 3.15: Seasonal variation of Te for all event peaks, dotted lines indicate

80% and 95% empirical prediction intervals, dashed line indicates zero treatment

effect and jittered points indicate the peaks in each group
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Figure 3.16: Effect of event characteristics on treatment effect, where (A) D is

event duration, (B) Da is time since previous event, (C) St is the total stage (as

a proxy for event volume), (D) Trise is the time taken for the rising limb to reach

the peak of the event, (E) Sp is the peak stage and (F) Tint is the time since the

interventions were installed in the impact stream.
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treatment effect (p > 0.05 Wilcoxon-Mann-Whitney test). Treatment effect was

negative for only three events and was therefore not included in the analysis.

Figure 3.17: Distribution of event characteristics, duration (D), time since

previous event (Da), time to rise (Trise), total stage (St), peak stage (Sp) and

time since interventions were installed in the impact stream (Tint)

Impact of peak order on treatment effect

During the combined baseline and post-intervention monitoring periods there

were 144 peaks within 75 events on the impact stream and 115 peaks in 54 events

with a peak magnitude greater than 0.3 m on the control stream. During the

baseline monitoring period the observed peak magnitude and simulated peak

magnitude was similar, and close to zero, for the first, second and third peak

of events on both the impact and control streams (Figure 3.18), as expected.

Following the installation of leaky dams on the impact stream, the treatment

effect for the first peak increased significantly (p < 0.01 Wilcoxon-Mann-Whitney

test) but remained similar for subsequent peaks (p > 0.05). On the control stream

treatment effects in the post-intervention monitoring period were significantly
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lower than in the baseline monitoring period for the first peak (p = 0.04), but

not for subsequent peaks (p > 0.05).

Figure 3.18: Impact of peak order on treatment effect, jittered points illustrate

the number of event peaks in each group.

3.4 Discussion

Leaky dams are increasingly being installed in upland watercourses as a low-cost,

sustainable solution to frequent flooding of rural communities. However, there is a

paucity of information about their impact on the flood hydrograph, particularly

in upland catchments, which presents a barrier to scheme design, cost-benefit

analysis, and stakeholder buy-in. A BACI-style monitoring approach combined

with data-based time series modelling techniques has shown how leaky dam inter-

ventions statistically significantly reduced flood peak magnitude for 32% of high

flow events. Treatment effect-size was highly variable, but on average, flood peak

magnitude was reduced by 10% for events up to a 1-in-1 year return period. This

dataset is the first of its kind and offers insights for increases confidence in the

use of leaky dams and for the design and assessment of NFM schemes.

3.4.1 Effect of leaky dams on flood peak magnitude

This study has shown, for the first time, that leaky dams installed for the purpose

of NFM can statistically significantly reduce the peak magnitude of high flow
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Figure 3.19: Comparison of Coverdale leaky dam impacts (denoted ‘van

Leeuwen 2021’) to previous research (Keys et al., 2018; Wenzel et al., 2014).

The size of the blue circles indicates the event return period of 3.5 years (Wenzel

et al., 2014), 1 year (this study) and considerably less than 1 year (Keys et al.,

2018). Points on the y-axis in figure (C) indicate events with a return period <

1 year.
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events at the stream scale. The study quantified the impact of leaky dams on

larger, steeper streams than previous research (Figure 3.19A), which focused on

in-stream wood installed for the purpose of river restoration, rather than flood

risk management. The average reduction in event peak magnitude was similar to

the findings of Keys et al. (2018) who found just three pieces of large wood in a

50 m section of a steep, headwater stream in the Mid-Atlantic region of the US

decreased flood peak magnitude by 8% for a < 1-in-1 year event. Similarly, the

findings were in agreement with Wenzel et al. (2014), who assessed the impact of

nine spruce tops placed in a small, steep stream in the Ore mountains, Germany,

that for a more extreme event (1-in-3.5 year) the impact on flood peak magnitude

was negligible (Figure 3.19C).

Leaky dams installed for the purpose of NFM are designed to maximise flood

attenuation and were therefore expected to have a larger impact on flood peak

magnitude than the type of wood installed by Wenzel et al. (2014) & Keys et al.

(2018). However, the comparison of the effectiveness of different types of in-

stream wood is confounded by differences in structures, sites and flood events.

The streams in the study site were considerably steeper and wider than the other

studies (Figure 3.19A), and although the events had a similar flood return period,

the peak discharge of the events tested by Wenzel et al. (2014) & Keys et al.

(2018) were much smaller (<0.2 m3/s). Nonetheless, similarity in the impact on

flood peak magnitude for different types of instream wood structures, as seen

between these studies, could have implications for leaky dam design. It may be

possible to design instream wood for the purpose of natural flood management

which optimises its geomorphological impacts for ecological (Pilotto et al., 2014;

Roni et al., 2014; Wohl et al., 2015), water quality (Janes et al., 2017) or erosion

control (Blanckaert et al., 2012) benefits, and has similar impacts on flood peak

magnitude as the types of leaky dams tested in this study.

Contrary to the findings of modelling studies (Dixon et al., 2016; Thomas

and Nisbet, 2012), comparison of the evidence from this study to existing litera-

ture suggests that the impact of leaky dams on event peak magnitude does not

necessarily decrease with increasing stream gradient (Figure 3.19B). The limit

of effectiveness of leaky dams in the study streams was for events with a peak

discharge of 1 m3/s, the same magnitude as the limit of effectiveness of leaky

126



3.4 Discussion

dams at delaying flood peak timing in a low gradient (0.0075 m/m), headwater

stream with similar dimensions (channel width 3 m, bank height 1.2 m) in the

New Forest, UK (Gregory et al., 1985; Kitts, 2010). The limit of effectiveness

equated to a 1-in-1 year event in the study site and a 1-in-2 year event in the

New Forest. However, as there are few studies differences and similarities in the

empirical findings could be due to a combination of site, structure, and event spe-

cific factors, rather than the stream gradient. Additionally, differences between

model and empirical findings could be due to the lack of validation of the way

in which leaky dams are represented in hydraulic and hydrological models (Addy

and Wilkinson, 2019). Hence, without empirical data from a larger number of

studies and validated representation of leaky dams in hydraulic and hydrological

models it remains difficult to move on from site specific knowledge of leaky dam

impacts. Crucially, this study has demonstrated that it is possible to robustly

address this evidence gap using a data-based time series modelling approach.

Unlike Wenzel et al. (2014) & Keys et al. (2018) who studied just one type

and magnitude of event, the data-based time series modelling approach taken

in this study allowed the variability of leaky dam impacts in the stream to be

studied for 50 different storm events with a range of characteristics such as peak

magnitude, duration, number of event peaks and time since previous event. The

variability in leaky dam effectiveness in this study indicates that it is not only site

specific considerations, but also event specific consideration which confound the

comparison and quantification of leaky dam impacts on flood peak magnitude.

Like Gregory et al. (1985) & Kitts (2010), the current study observed decreasing

impacts of leaky dams with event peak magnitude at the stream scale, supporting

reviews of the NFM approach (Burgess-Gamble et al., 2017; Dadson et al., 2017;

Lane, 2017) in questioning leaky dam impacts at higher event magnitudes. This

conclusion could be a product of the the number and size of interventions tested

in this study and elsewhere (Ellis et al., 2021), although modelling has shown

that adding more leaky dams in steep streams does not necessarily mean their

storage will be utilised (Hankin et al., 2020).

Field observations support the hypothesis of Dixon et al. (2016) that the

limit on effectiveness is due to overtopping, or drowning out of the structures

and their friction effects. However, evidence is emerging that this effect may
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be stream specific; within the same catchment leaky dams have been observed

to have increasing impacts on flood peak timing in some sub-catchments, and

not in others (Black et al., 2021). Increased leaky dams effectiveness at higher

return periods has also been observed in modelling studies (Thomas and Nisbet,

2012) and is attributed to increased flood plain connectivity and expandable field

storage during higher return period events (Black et al., 2021; Hankin et al., 2020;

Kay et al., 2019; Thomas and Nisbet, 2012).

Although there was a relationship between treatment effect and peak mag-

nitude, the variability in effectiveness in the study site was not explained by

peak magnitude alone. Whilst leaky dams did reduce event peak magnitude of

some events, their effectiveness was highly variable, and could both decrease and

increase downstream peak magnitude. Variability in leaky dam scheme effective-

ness was found in a catchment scale model of leaky dam impacts (Dixon et al.,

2016), but was attributed to varying interactions of sub-catchments which did

not play a role at the stream-wide scale of this study. None of the flood event

characteristics (event duration, time since previous event, time to rise, total event

stage or peak stage), seasonal effects or peak order alone determined during which

events reductions in peak magnitude were or were not observed. For example,

84% of peaks which were significantly reduced occurred in summer and autumn

and 80% were the first peak of an event. However, 45% of events in which there

was no discernible impact, or a negative impact also occurred in summer and

autumn, and 46% were the first peak of an event. There was considerable co-

linearity between event peak magnitude and many of the event characteristics,

including seasonality which indicates that it is not clear which characteristic, or

combination of characteristics determined whether the leaky dams significantly

reduced event peak magnitude or not. Because the dataset did not span several

years there was not enough data to separate seasonal effects from event charac-

teristics or the time since the leaky dams were installed. Continued monitoring

to obtain a larger number of events would provide the data required to perform

a formal statistical analysis to determine which event characteristics are useful

predictors of leaky dam effectiveness. This would help to ascertain, for example,

whether it was the typically short, intense nature of summer storms, which made

the interventions more effective during the summer months, or whether this was
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down to seasonal effects, such as leaf litter reducing leaky dam porosity in the

autumn months, as hypothesised by Thomas and Nisbet (2012).

The results, nevertheless, empirically showed that leaky dams were more likely

to be effective during single peaked events, and the first peak of multi-peaked

events, than during subsequent peaks. This indicates that the effectiveness of

leaky dams in the study site was affected by the availability of a finite amount

of storage volume, which could not be used if the conditions for the system to

drain had not been met between event peaks. This implies that, unlike the

leaky dams observed by Black et al. (2021) and modelled by Thomas and Nisbet

(2012), the leaky dams were not able to utilise expandable field storage and relied

on the system draining between event peaks. The importance of meeting the

conditions for the system to drain between event peaks was noted in a catchment

scale modelling study of the impact of 59 in-channel interventions on a double

peaked flood event in Brompton, North Yorkshire (Metcalfe et al., 2017) and

is an important factor to consider in the design and assessment of leaky dam

effectiveness.

The variability in leaky dam effectiveness highlights the importance of assess-

ing leaky dam impacts on a large range and variety of events, which is made

possible by the data-based time series modelling approach used in this study.

Comparisons of a small number of similar events monitored in the baseline and

post-intervention monitoring period, or one type and magnitude of artificial flood

peak can be misrepresentative and may distort expectations of leaky dam effec-

tiveness. Similarly, this study provides empirical evidence to support the conclu-

sion drawn from catchment scale modelling that multi-peaked events should be

considered in the design and assessment of leaky dam efficacy (Metcalfe et al.,

2017), even when considering their impacts at the stream scale. Had the study

considered only events with well-defined peaks, as for example Gregory et al.

(1985) did, it may have concluded considerably higher average leaky dam im-

pacts despite the majority of events being multi-peaked. The assessment of leaky

dam impacts on a range of events helps to manage expectations, which is crucial

to avoid over-reliance of communities on NFM measures (Wells et al., 2020), and

to sustain confidence in new paradigms in the long term (Vira and Adams, 2009).
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3.4.2 Implications for downstream flood risk

The interventions had a negligible local impact on peak magnitude during events

which caused significant flooding of properties and transport links in North York-

shire (flood return period > 1 year). Nevertheless, whilst it remains to be seen

what impact reduced peak flows in headwater streams have further downstream,

the more frequent, small-scale flood events which were impacted by the interven-

tions can cause localised flooding which can result in waterlogging, bank erosion

and debris deposition on downstream agricultural land (Posthumus et al., 2008).

The vulnerability of agricultural land depends on land use and the frequency, du-

ration, depth and seasonality of the flood event (Morris and Hess, 1988). Whilst

grassland used for livestock can tolerate winter flooding, summer floods can de-

stroy an entire harvest (Morris and Brewin, 2014; Posthumus et al., 2009). The

indication that leaky dams may be particularly effective in reducing event peak

magnitude during summer storms is promising for the reduction of economic costs

of flooding to farmers. Flooding and waterlogging of agricultural land was es-

timated to have an average economic cost of £12,000 per hectare, or £90,000

per farm, albeit during the extreme 2007 UK floods (Posthumus et al., 2009).

Furthermore, placing leaky dams in upland watercourses reduces the reliance on

flooding of productive agricultural land as temporary flood storage areas which

can reduce the costs associated with compensation payments under schemes such

as the UK’s proposed Environmental Land Management Scheme (ELMS).

Although leaky dam impacts may be small at the stream scale, by desynchro-

nising tributary flows, downstream flood risk during large floods can be signif-

icantly reduced (Pattison et al., 2014). Modelling has shown that leaky dams,

in combination with reforestation, could have considerable impacts on catchment

scale flood risk (Dixon et al., 2016). Although catchment scale impacts were not

assessed in this study, it has provided a validation dataset needed to increase con-

fidence in the representation of leaky dams in hydraulic and hydrological models

which can be used to assess impacts on downstream flood risk (Addy and Wilkin-

son, 2019).
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3.4.3 Limitations of BACI design and the data-based time

series modelling approach

BACI monitoring design is proposed as the cornerstone of a research framework

to collect the evidence required to increase confidence in NFM (Ellis et al., 2021).

However, this study showed that high levels of uncertainty, which are typical of

hydrological data (Beven, 2016), present a limitation to the use of BACI designs

to detect NFM impacts. Changes in event peak magnitude or timing could not

be directly assessed from the data collected on any of the streams due to frequent

errors in stage datum which led to high levels of uncertainty in peak stage. This

type of error is common (Guerrero et al., 2012; Searcy and Hardison, 1960; Shaw

et al., 2011; Westerberg et al., 2011), and cannot necessarily be overcome by

using artificial gauging structures such as flumes or weirs due to considerations of

cost, drowning out or bypassing of the structure during flood flows, and potential

undesirable ecological effects such as blockage to fish passage (Gordon et al., 2004;

Shaw et al., 2011). The time series modelling approach taken reduced the impact

of such errors and allowed remaining uncertainty to be represented by empirical

prediction intervals. However, of the three streams modelled only the model for

one of the impact streams was sufficiently accurate to be able to assess whether

leaky dams had an impact across the whole range of observed peak stage. This

means that, although leaky dam impacts were assessed for many events, they were

assessed for only one impact stream. Replicates within the catchment would have

increased confidence in the findings and would have allowed the transferability of

findings between streams to be assessed.

A better fit of the control stream model to the largest events on the control

stream would have increased confidence in the model overall but would not have

affected the results of the study as the model was adequate at simulating peak

stage of events in the range in which leaky dams affected peak flows on the impact

stream. The control stream allowed wider impacts such as land-use change, which

would impact both streams to be isolated from the impact of the interventions.

However, without further replicates of the impact stream, confidence in attribut-

ing change to leaky dams relies more heavily on the assumption that there were

no other changes in the impact stream or its gauging stations. This assumption
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was backed up by a thorough quality assurance process (Appendix B) and lo-

cal knowledge of changes which could affect the hydrology of individual streams

such as stocking density or harvesting of the commercial riparian forest on the

streams, gained through frequent field observations and correspondence with the

landowner. However, replicates of impact streams, and/or the control stream

(Underwood, 1994) would have increased confidence in attribution of change in

the impact stream to the leaky dams.

This study has provided insights, for the first time, of leaky dam impacts on

a large number and variety of events with a range of characteristics. Changes

in peak magnitude were assessed for 50 high flow events with a return period

ranging from < 1 year to 6 year and up to eight event peaks. Whilst the findings

illustrated the variability of leaky dam efficacy during different types of events,

a larger number of events observed over a longer time period, or from a larger

number of impact streams are needed to perform a formal statistical analysis

to assess the sources of variation. The visual analysis of seasonal effects, event

characteristics and peak order in this study are exploratory and give an indication

of avenues for further research. The data-based time series modelling approach

allowed multiple data issues to be overcome, but it was not able to accurately

simulate the timing of the event peak and could therefore not be used to assess

the efficacy of upland leaky dams at delaying the flood peak. The impact of

leaky dams on flood peak timing is arguably more important than their impact

on flood peak magnitude in headwater catchments due to the potential to affect

relative tributary timing, which can significantly increase or decrease catchment

scale flood risk (Black et al., 2021; Dixon et al., 2016; Pattison et al., 2014).

3.4.4 Recommendations for next steps

For leaky dams to be used as a mainstream flood risk management measure

evidence of their impacts on the flood hydrograph is required in a range of envi-

ronments and at a range of spatial scales (Dadson et al., 2017; Ellis et al., 2021;

Lane, 2017). This study has shown that it is possible to assess stream scale im-

pacts of leaky dams using a data-based time series modelling approach. This

approach overcomes difficulties associated with short lead times, high levels of
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uncertainty in hydrological data and lack of comparable events before and after

intervention. By applying this approach to data from other catchments, evidence

could be gathered for a range of high flow events in a range of environments and

leaky dam designs which would provide the evidence needed to move on from

understanding of site-specific impacts of leaky dams only.

Development of hydraulic and hydrological models of the study site is rec-

ommended so that the representation of leaky dams can be assessed against the

findings from this study. Hydraulic and hydrological models are used to design

and assess the impacts of flood risk management interventions. However, because

of the lack empirical validation data there is little guidance as to how to repre-

sent leaky dams appropriately in numerical models, leading to low confidence

in their outputs (Addy and Wilkinson, 2019). This study provides one of the

most comprehensive quantifications of leaky dams impacts to date, spanning a

range of peak magnitudes and event types, providing a diverse validation dataset

with which to assess the representation of artificial large wood in in hydraulic

and hydrological models in steep upland rivers. Increased confidence in the rep-

resentation of leaky dams in hydraulic and hydrological models is particularly

important to be able to address questions about the impacts of NFM measures

at larger spatial scales (Burgess-Gamble et al., 2017; Dadson et al., 2017; Ellis

et al., 2021; Lane, 2017).

3.5 Conclusion

Leaky dams have the potential to decrease the magnitude of some frequent flood

peaks (up to 1 year return period) on high gradient streams by 10% on average,

but their effects are highly variable. The data-based time series modelling ap-

proach allowed the impacts of leaky dams during a large number and range of

event types to be assessed, for the first time. The results have important impli-

cations for the design and assessment of leaky dam schemes. Whilst event peak

magnitude is an important factor to consider when designing leaky dam schemes,

the conditions required for the system to recover between event peaks are also

important. Whether assessing the impact of leaky dams empirically or using

numerical models, the results show that an assessment of leaky dam impacts is
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not complete without considering a range of event types as well as event peak

magnitudes. Leaky dam schemes which are assessed using single-peaked design

storms only are likely to overpromise and underdeliver on flood risk management

benefits. By supporting the BACI approach with data-based time series mod-

elling, the challenges associated with quantifying NFM effectiveness in a range of

environments can be overcome.
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Chapter 4

A method for assessing the

resilience of leaky dam networks

4.1 Introduction

Natural Flood Management (NFM), also known as ‘Working with Natural Pro-

cesses’ (WwNP) to reduce flood risk, is gaining popularity, especially in com-

munities which do not qualify for funding of traditional flood defence schemes

(Wilkinson et al., 2019). NFM measures are thought to reduce and delay flood

peaks alongside providing multiple benefits such as habitat creation and sediment

management (Burgess-Gamble et al., 2017). A common feature of NFM schemes

is the re-introduction of instream wood to watercourses in the form of channel

spanning ‘leaky dams’. Leaky dams interfere with high flows by increasing chan-

nel roughness and floodplain connectivity (Grabowski et al., 2019).

Whilst work is on-going to quantify the benefits of NFM schemes (e.g. Lan-

caster Environment Centre, 2021; University of Reading, 2021), little is known

about the risks and resilience of NFM features (Environment Agency, 2018).

Without knowing the resilience of NFM features to flood induced structural fail-

ure it is difficult for risk management authorities, such as the Environment Agency

and lead local flood authorities in the UK, to make informed decisions about the

impact of features on downstream flood risk. This presents a barrier to imple-

mentation, particularly in the case of leaky dams which are perceived to present a
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potential blockage risk to downstream infrastructure (Waylen et al., 2018). Fur-

thermore, because leaky dam benefits cannot be quantified robustly without a

better understanding of their resilience, confidence regarding their use in strate-

gic level planning and investment decisions is limited. The quantification of the

system performance of leaky dams is pertinent in light of the intended Environ-

mental Land Management scheme (ELMS) in England and Wales which will likely

see increased implementation of integrated catchment management approaches

such as NFM (Klaar et al., 2020).

Failures of leaky dams have been observed in various locations throughout

the UK (e.g. Hankin et al., 2020). Damaged infrastructure and 13 fatalities

are attributed to outburst floods caused by beaver dam failures in the US and

Canada (Butler and Malanson, 2005) and exacerbated localised flooding due to

large wood pieces blocking structures such as bridges and weirs is well documented

in the UK and worldwide (e.g. Comiti et al., 2006, 2008; Diehl, 1997; Fenn et al.,

2005; Lyn et al., 2007; Ruiz-Villanueva et al., 2014). Understanding the risks

posed to infrastructure by large wood is crucial for managing wood in rivers

(Ruiz-Villanueva et al., 2016), and its mobility is therefore studied for naturally

occurring large wood (e.g. Dixon and Sear, 2014; Gurnell et al., 2002; Ruiz-

Villanueva et al., 2014). Whilst insights from this research have been used to

inform the design of leaky dams (e.g. Yorkshire Dales Rivers Trust, 2018), little is

known about the resilience and mobility of engineered leaky dams. As pointed out

by Dixon and Sear (2014), being able to forecast the stability of wood structures is

crucial to the success of engineered leaky dams for flood risk management. Failure

of leaky dams could not only provide material for downstream blockage, but could

also reduce the effectiveness of the NFM scheme and potentially release a water

surge (Hankin et al., 2020), similar to a traditional dam break flow albeit on a

reduced scale. A better understanding of leaky dam failure rates, mechanisms

and impact on the flood hydrograph would allow for mitigation of these risks

by informing inspection and maintenance regimes as well as dam scheme design.

Furthermore, it would lead to a more informed debate around issues of liability,

which can limit the uptake of NFM measures in a similar way in which it has

limited the adoption of sustainable urban drainage systems (Wingfield et al.,

2019).
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Hazard assessment is needed to assure flood risk managers, stakeholders and

affected communities that the benefits of an NFM scheme outweigh the potential

hazards in both the short and long term (Wohl et al., 2016). Robust design and

understanding of risk reduction strategies is needed to account for the residual

risk associated with failure of a flood defence to perform as intended and avoid

inadvertently exposing communities to risk (Hankin et al., 2020). For example,

network analysis of a series of eight leaky dams in West Cumbria, UK, was used

to inform effective placement of dams to utilise dynamic storage and reduce the

risk of breach and cascade failure (Hankin et al., 2020). The authors argued that

the risk of cascade failure was more important for dam placement decisions than

optimising the placement for reductions in peak magnitude. Assumptions about

the conditions under which leaky dam failures occur are therefore key for network

analysis and could be improved by an evidence based fragility function (Hankin

et al., 2020).

Fragility functions are central to the methods used at a strategic planning

level in the UK to assess the resilience of flood risk management assets in a risk

based framework (Ramsbottom et al., 2005). A fragility function expresses the

probability that an asset reaches or exceeds an undesirable limit state as a func-

tion of an environmental loading condition (Porter, 2020). They are used by the

Environment Agency (EA) as a tool to support risk based strategic flood man-

agement planning in England (Ramsbottom et al., 2005), including the National

Flood Risk Assessment (NaFRA), and in flood management, are typically based

on failure mode analysis of structures. Fragility curves can also be estimated

based on statistical analysis of observations of failure when failure modes are not

well understood or consist of complex interactions (Schultz et al., 2010). This

is a commonly used approach in earthquake engineering (Porter et al., 2007).

One of the advantages of this method is that the analysis requires minimal data

input. For each structure only a measurement or estimate of the largest loading

condition that was withstood or that caused failure is required.

Reporting incidences of leaky dam failure forms part of the monitoring re-

quirements of £15m Defra funded NFM projects (Arnott et al., 2018) and will

be openly accessible through the Rivers Trust NFM monitoring and evaluation

tool (The Rivers Trust, 2021). For asset failures related to flood events, Lamb
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et al. (2019) demonstrated that the loading condition of fragility functions can

be expressed as a relative measure of extremeness of the flood event. The rel-

ative extremeness of a flood event is usually expressed as its return period in

years, or equivalently, its annual exceedance probability, and relates to physical

drivers of failure such as water depth and velocity (Lamb et al., 2019). Estimates

of a flood’s return period can be made based on the probability distribution of

the peak over threshold or annual maximum series (Shaw et al., 2011) which are

readily available for flow or stage gauging stations around the UK (UK Centre

for Ecology and Hydrology, 2021). Hence, the information needed to estimate

national fragility functions for leaky dams is starting to become readily available

for sites in the UK.

The aim of this chapter is to address the following research question by eval-

uating the resilience of NFM leaky dams installed in the UK:

Q What potential does empirical fragility analysis have for quantifying the re-

silience of engineered leaky dams during extreme flood events?

This will be achieved via the following specific objectives:

O1 to compile direct observations and practitioner experience of leaky dam fail-

ures and resilience;

O2 to demonstrate a novel method to infer fragility functions from failure obser-

vations of leaky dams; and

O3 to present a pilot study of leaky dam fragility based on data pooled from

NFM projects around the UK.

4.2 Methods

The resilience of leaky dams was assessed by estimating a fragility function based

on observations of leaky dam failure, partial failure and resilience from UK Nat-

ural Flood Management projects. Fragility functions are useful where the ca-

pacity of an asset to resist failure or damage is uncertain and lend themselves
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to risk-based analysis because they represent the uncertainty using a probability

distribution.

This chapter comprises two stages of analysis, representing scenarios of vary-

ing data availability. The first stage estimates a fragility function of NFM dams

in a well-monitored upland catchment (Section 4.2.2). In the second stage, in-

formation from the closely monitored leaky dam study site is combined with

information from other NFM sites from responses to a UK wide survey of prac-

titioners. Estimates of the fragility function were made both by treating data

from each site individually and by pooling data from all sites using, in both

cases, a two-stage optimisation procedure of the lognormal fragility distribution

as described in Lamb et al. (2019).

The information required to estimate the fragility function for a site is the

total number of assets, the number of assets which have reached a limit state

(i.e. failed or partially failed, see Section 4.2.2) and the loading condition which

induced the limit state, or the highest loading condition to which the asset was

resilient if it had not reached the limit state (Section 4.2.3). The fragility analysis

is briefly explained in Section 4.2.1. Section 4.2.2 gives details of the Coverdale

field site in which leaky dams were built and closely monitored over a three year

period. It also provides details of a survey of leaky dam practitioners to obtain

information about leaky dam failures across the UK. Section 4.2.3 explains how

the loading conditions used to estimate the fragility functions were obtained.

4.2.1 Fragility analysis

In a fragility function, the probability that an asset fails is expressed in terms of

a function of the uncertain physical loading conditions that would cause failure.

The uncertain loading condition is defined as a random variable, X. A particular

observation of the loading condition is X = x. Uncertainty about X is charac-

terised by the probability density function fX(x). The probability that X takes

a value not exceeding an observed value, x = xa, is the cumulative distribution

function, FX(xa), evaluated at xa, and is given by integrating the density function

from minus infinity (−∞) to xa, such that
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P [X ≤ xa] = FX(xa) =

∫ xa

x=−∞
fX(x) dx (4.1)

An alternative and equivalent (Porter, 2020) interpretation of the fragility

analysis is that X represents the uncertain “strength” of an asset, which is mea-

sured in terms of the limiting load, or some function of the load. For example,

the strength of leaky dams could be expressed in terms of the limiting hydraulic

forces that cause failure, which are in turn functions of the measurable quantities

such as water levels or flow rates. If the uncertain limiting load (strength) is

less than or equal to a particular observed load, then the leaky dam will fail.

Hence, the chance of failure given an observed load, x, is the probability that the

uncertain strength, X, does not exceed x. This failure probability is P [X ≤ x], as

defined in Equation (4.1), and FX(x) is a fragility function. The fragility function

for leaky dams was approximated using a lognormal distribution, which has two

parameters, θ, the central tendency (median), and β, the dispersion (logarithmic

standard deviation), such that

FX(x) = ϕ

(
ln(x

θ
)

β

)
(4.2)

where ϕ(.) is the standard normal distribution function. The lognormal dis-

tribution was chosen for reasons given by Porter (2020), namely because of its

simplicity, because it has only two parameters to be estimated, because it can-

not take on values below zero, and because it assumes little prior knowledge.

There are several decades of precedent for using the lognormal distribution for

fragility analysis in earthquake engineering, and recently in analysis of railway

bridge vulnerability to flood induced scour (Lamb et al., 2019).

In the following analysis, fragility functions were inferred by the method of

maximum likelihood estimation (MLE) using a two-stage optimisation procedure

described by Lamb et al. (2019), conditioned on data of how many leaky dams

failed and how many survived during observed storm events. Three separate sets

of fragility functions were estimated in this way for different locations, one set

representing complete failures of leaky dams, another being for partial failures

and finally one which included both complete and partial failures, as discussed in

the following section. In all three cases, the functional form was the lognormal
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distribution (Equation 4.2), but different values of the parameters, θ and β, were

estimated.

4.2.2 Leaky dam failures

Data about leaky dam failures were collected in two ways. The first consisted

of regular, detailed condition grade assessments of 26 leaky dams in a steep,

headwater catchment in Coverdale, North Yorkshire. The second involved a na-

tionwide survey of practitioners to capture information about leaky dam failure

and resilience across the UK.

Coverdale study site

The Coverdale study site is located in the headwaters of the River Cover (54.20045

N, -1.98617 E) on the Eastern flank of the Yorkshire Dales National Park, North

Yorkshire, England. The climate is cool and wet, with an average annual rainfall

of 1270 mm (EA rain gauging station 57426 data 1988-2018). The streams are of

type A in the Rosgen classification: steep, partially entrenched and cascading with

step/pool streams (Rosgen, 1994). The streams have catchment areas between

0.9 and 1.7 km2 and stream gradient ranging from 0.14 to 0.17 m/m. Land

use in the catchment is pastoral agriculture on open, unimproved grassland with

small amounts of coniferous plantation whilst the moorland is managed for grouse

shooting.

The leaky dam network in the Coverdale study site consisted of 26 channel-

spanning leaky dams constructed in autumn and winter 2018/19 on four reaches

of three steep streams (Figure 4.1). The furthest upstream tributary, Lock Gill,

was split into two reaches as the upper part was forested and fenced off from live-

stock whilst the lower reach was used for grazing. The leaky dam scheme design

was developed by balancing site constraints, such as material availability and site

accessibility, with water storage potential arising from the site topography. Site

constraints were identified through desk-top survey, walk-over surveys, consulta-

tion with the landowner and lead local flood authority. To fulfil the consenting

requirements of the lead local flood authority a flood risk impact assessment was

141



4.2 Methods

Figure 4.1: Study site map of (A) location of the study streams in the study

site (B) location of leaky dams in each of the study streams
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carried out which considered the risk to downstream assets of structure block-

age and flood wave surge in case of failure. The final scheme in Figure 4.1 was

obtained by periodically reviewing the scheme design during the build phase in

response to site conditions.

Table 4.1: Average (mean) as-built dimensions (referred to in Figure 4.2) of

leaky dams installed in the study streams

Stream Lock Gill Lock Gill Downs Gill Fall Gill

upper lower

Count of dams 5 6 8 7

Average of W1 (m) 4.84 4.89 4.58 4.86

Average of W2 (m) 3.00 2.37 2.61 2.67

Average of H1 (m) 0.77 0.95 0.86 0.76

Average of H2 (m) 0.17 0.44 0.30 0.31

Average dam spacing (m) 33 17 25 36

Figure 4.2: Diagram of leaky dam dimensions (referred to in Table 4.1)

The dams were built following the design guidelines of the Yorkshire Dales

Rivers Trust (Yorkshire Dales Rivers Trust, 2018) by a combination of volunteers
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and professionals. The design of the dams is shown in Figure 4.2, and the average

as-built dimensions of the dams on each stream are given in Table 4.1. The dams

were each built from 2-5 locally felled tree stems (untreated sitka spruce, beech

and sycamore) with a minimum length of 1.5 times the channel width. The stems

were installed to span the channel perpendicular to the direction of flow. The

dams had an average height of 0.8 m above the riverbed and were installed to

provide approximately 0.3 m clearance for fish passage. The dams were anchored

using treated timber strainer posts and fencing wire. Brash was used to stuff the

dams to enhance biodiversity impacts. The dams on Fall Gill differed from those

on Lock Gill and Downs Gill because the leaky dams on Lock Gill and Downs

Gill were built with the support of landscaping and forestry professionals which

meant larger trunks could be felled and manoeuvred using specialist equipment.

Stage data, defined as water level above the gauge datum, was monitored

upstream and downstream of the series of leaky dams on each stream at the lo-

cations shown in Figure 4.1. Stage was monitored at one-minute intervals using

In-Situ Inc. (Redditch, UK) Rugged TROLL 100 non-vented pressure transduc-

ers (±0.05% full scale accuracy) in stilling wells. The pressure readings from

the transducers were corrected for atmospheric pressure using an In-Situ Inc.

(Redditch, UK) Rugged BaroTROLL atmospheric pressure gauge (±0.05% full

scale accuracy) which was installed near the bottom of Downs Gill at a similar

elevation to the non-vented pressure transducers.

The resilience of the leaky dam network was assessed through post-event walk

over surveys following named storm events between September 2018 and February

2020. During the surveys, the condition of the dam was noted, including condition

of anchor posts, translation or rotation of the dam, blockage of the dam by

woody material, or sedimentation and scour of the bed and banks. Each dam was

assigned a condition grade of good, partially failed or failed, defined as follows. A

failed dam was defined as one which had been damaged to the point that it was

no longer carrying out its intended purpose of spanning the channel to interfere

with flood flows. A partially failed dam was a dam which had been damaged,

but which was still functional and able to carry out its intended purpose. A dam

which did not display any visual damage was given a condition grade of good.

Blockage of a dam with woody material was not considered as failed or partially
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failed as further woody material was thought to aid in interfering with flood flows.

Scouring of the bed or banks was only given a condition grade of ‘partially failed’

or ‘failed’ if the erosion affected the integrity of the structure. Deposition of

material, or ‘regrading’ of the channel upstream of the dam was classed as good

because of the intended effect of increased floodplain connectivity.

Practitioner survey of UK leaky dam sites

To gather information on the frequency of dam failures across the UK, a survey

was conducted asking for basic information about leaky dam projects. The survey

was widely distributed to practitioners through a number of channels including

social media, practitioner networks and blogs (RRC, Scottish NFM Network)

and was sent out to all projects which benefited from the Environment Agency’s

Natural Flood Defence budget announced in the 2016 Autumn Statement. To

avoid biasing responses towards practitioners who had experienced leaky dam

failures the survey was positioned to relate to leaky dam resilience, rather than

vulnerability. Only information about channel spanning leaky dams installed per-

pendicular to the flow for the purpose of natural flood management was included

in the analysis.

The survey included five questions; the first three pertained to the number

of dams installed, their location and the installation dates. The questions asked

were::

1. Location (e.g. catchment/watercourse name/OS Grid Reference)

2. Number of leaky dams installed

3. Date of installation

4. Number of leaky dams damaged or failed, if any, and date or event during

which the dam(s) were damaged.

5. Known water level (stage) or flow monitoring stations near the leaky dams

(e.g. local project monitoring devices, EA gauging stations).
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Survey responses were provided for fifteen projects in which leaky dams were

installed (Figure 4.3). A total of 1932 dams were reported on with the number

of leaky dams installed in each project ranging from 5 to 400 dams. In-depth

interviews were carried out with each of the respondents who reported a leaky

dam failure or partial failure to ensure the definitions of failure and partial failure

used for the Coverdale study site had consistently been applied.

Figure 4.3: Location of leaky dam sites for which survey responses were given
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4.2.3 Loading Condition

The loading condition is usually based on an observable, standardised, physical

quantity that relates directly to the failure mechanism of an asset (Kim et al.,

2017; Simm et al., 2009; van der Meer et al., 2008). For example, in the UK’s

national fragility dataset, the loading parameter for earthen fluvial levees was

related to the difference between the crest level of the levee and the water level

(Simm and Tarrant, 2018). However, for leaky dams, failure mechanisms are

not well understood (Dixon and Sear, 2014), there is variation in the physical

attributes and placement of assets, and there is a lack of structure scale mea-

surements (Burgess-Gamble et al., 2017) which means a physical interpretation

of the loading condition is not readily implemented.

After Lamb et al. (2019), the loading condition was, therefore, expressed as

a relative measure of the flood event extremeness. In the closely monitored

Coverdale study site it was possible to make a stream specific, normalised es-

timate of the severity of the flood event by calculating the z-scores of events

observed over the three year study period on each of the streams. However, such

site specific data was not available for the sites reported on by survey respondents

and therefore, following Lamb et al. (2019), the loading condition was expressed

as the flood return period in years, the inverse of annual exceedance probabil-

ity. Flood return period was used because it relates to physical drivers of failure

such as water depth and velocity, allowed the loading condition to be consistently

estimated for all assets, and is readily interpreted and widely used in flood risk

management to communicate flood frequency (Lamb et al., 2019). The availabil-

ity of stream specific data from the Coverdale study site allowed for validation

of the return period approach before application to the dataset obtained through

the practitioner survey.

Event z-score

Stage measurements made at the upstream extent of the leaky dam streams

(Figure 4.1) were used to calculate the z-score, a local measure of the loading

condition for each stream. The peak stage for high flow events on each of the

streams in the Coverdale study site was standardised by calculating the z-score
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using Equation (4.3), where xi is the event peak magnitude, x̄ is the sample

mean and σ is the sample standard deviation, all in metres. The z-scores were

calculated using R v.4.0.2 (R Core Team, 2020).

zi =
xi − x̄

σ
(4.3)

Event return period

Return period estimates were made using data from the nearest Environment

Agency operated gauging station to each of the sites (Figure 4.4). The gauging

stations were located between 5 and 19 km from each of the leaky dam sites

(Table 4.2) and, similarly to Kay et al. (2019), were assumed to be representative

of the extremeness of flows in the leaky dam sites due to their proximity.

Figure 4.4: Leaky dam site locations relative to EA operated gauging stations

of the five sites for which leaky dam failures were reported.
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Table 4.2: Environment Agency operated gauging stations

Site EA gauge Distance Record length Catchment

(km) (years) Area km2

Coverdale 27034 Ure 19 52 510

at Kilgram Bridge

Leck 33037 Bedford Ouse 18 49 800

at Newport Pagnell

Flasby 27035 Aire 18 52 282

at Kildwick Bridge

Pickering 27095 Pickering Beck 14 19 66

at Pickering

Shipston 54106 Stour 5 47 185

at Shipston

The return period estimates were made based on publicly available peak over

threshold (POT) and annual maximum (AMAX) data from the UK national river

flow archive (UK Centre for Ecology and Hydrology, 2021). Generalised extreme

value (GEV) and Generalised Pareto distributions were fitted to the AMAX and

POT series of the nearest downstream Environment Agency operated gauge with

a long-term record (>30 years or longest available) using Maximum Likelihood

Estimation (MLE). Following standard hydrology texts such as (Shaw et al.,

2011) goodness of fit plots, goodness of fit measures (Negative log-likelihood,

AIC, and BIC) and standard errors estimates were used to evaluate the fit of the

distributions to the data and choose the most appropriate distribution. Although

flood extremeness estimates are usually made from the annual maximum series

Shaw et al. (2011) a better fit at low return periods was found for the POT series

for some of the sites and the POT series was therefore identified as the most

appropriate data for estimating the return period of frequent events. For the

study site, where local discharge data were available, the correlation between the

mean daily and maximum daily discharge measured in the study streams and at

the downstream Environment Agency operated gauging station was assessed by

calculating the Spearman’s rank order correlation (Freedman et al., 2007). The
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package extRemes v. 2.0-12 was used (Gilleland and Katz, 2016) in R v.4.0.2 (R

Core Team, 2020) to fit the distributions.

4.3 Results

4.3.1 Coverdale study site

During the study period, 12 warnings of severe rain or wind weather events were

given by the UK’s Met Office (Met Office, 2021), five of which resulted in peak over

threshold events at the nearest downstream long-term gauging station (Figure

4.5). The highest flows in the study site were recorded during Storm Gareth (16

March 2019) which was the tenth largest event on record and caused significant

flooding of transport links and properties in North Yorkshire (Flood List, 2020).

Figure 4.5: Peak over threshold series of full period of record for Kilgram

gauging station, downstream of Coverdale field site. The dashed line indicates

when leaky dams were installed in the study site. Two storms during which leaky

dams failed in the study site are marked in blue.
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Leaky dam failures

A large number of dams in the Coverdale study site were damaged to the point

of partial or complete failure during named storm events in October 2018 and

March 2019 (Table 4.3, Figure 4.6). In October 2018 Storm Callum damaged

seven dams in total, two of which were in process of being constructed on Lock

Gill. Three of the damaged dams were on Fall Gill, in which the leaky dams had

been installed entirely by volunteers a month earlier. During Storm Gareth, in

March 2019, a further four failures and three partial failures occurred. Two of

the complete failures followed damage caused by Storm Callum.

Table 4.3: Coverdale study site leaky dam failures

Storm Callum Storm Gareth

1-in-1 year 1-in-6 year

31/10/2018 16/03/2019

Lock Gill (upper)
Failure 1 1

Partial Failure 1 0

Lock Gill (lower)
Failure 0 0

Partial Failure 0 1

Downs Gill
Failure 1 1

Partial Failure 1 1

Fall Gill
Failure 0 2

Partial Failure 3 1

Total

Failure 2 4

Partial Failure 5 3

Survival 19 14

Photographs of examples of failed and partially failed dams in the study site

are given in Figure 4.7. Overall, two dams failed on each stream except one, the

bottom reach of Lock Gill, which benefited from less clayey, more stable banks

than the upper reach. All six of the completely failed dams failed by the same

mechanism; failure of one of the strainer posts due to bank collapse. In each

case the leaky dam remained attached to the strainer post on the opposite bank

and rotated as a whole, so that the stems were more in-line with the flow, which
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Figure 4.6: Partially failed and failed leaky dams in the three study streams of

the Coverdale study site
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reduced the force on the remaining strainer post. Of the eight partially failed

dams, seven were classed as partially failed due to rotation or lateral movement

of one of the strainer posts, and two of these later failed completely.

Figure 4.7: Failed (top row) and partially failed (bottom row) leaky dams in

Coverdale study site. The blue arrows indicate the general direction of flow of

the stream.

Z-score loading condition

The failures in the Coverdale study site happened during two events; Storm

Callum in October 2018 and Storm Gareth in March 2019. Storm Callum was

one of the larger events recorded during the study period but had a lower event

peak than Storm Gareth which was the largest event recorded in Coverdale during

the study period. Other events of a similar magnitude were recorded during the
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study period on Downs gill and Fall gill, none of which damaged the leaky dam

network (Figure 4.8). Z-scores for the same event differed between streams, the

z-scores for Lock Gill were generally higher than those on Downs Gill and Fall

Gill. On Lock Gill Storm Callum and Storm Gareth had the second highest and

highest z-scores respectively.

Figure 4.8: Standardised peak event stage (z-score) for each of the POT events

in the post-intervention monitoring period

Return period loading condition

The downstream EA gauge record had a strong positive correlation with the

discharge measured in the study streams (Spearman’s correlation coefficient for

control stream is 0.89, p <0.01) (Figure 4.9). Results for Lock gill were not

included in Figure 4.9 because rating relationships were not available for the

gauging sites on this stream. The control stream tended to have the lowest mean

daily discharge and Downs Gill tended to have the highest mean daily discharge
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for a given mean daily discharge at the long-term gauge. For more extreme

events (Kilgram Bridge discharge >150 m3/s) the magnitude of the maximum

daily discharge on the three streams converged indicating that during Storm

Callum (157 m3/s peak flow) and Storm Gareth (303 m3/s peak flow) the dams

on different streams experienced similar loading conditions.

Figure 4.9: Discharge recorded at the Coverdale stream reaches compared with

that of the EA gauge at Kilgram Bridge: (A) mean daily discharge, (B) maximum

daily discharge with LOESS smooth.

Flood frequency estimates (Appendix C) indicate that the magnitude of the

events in the POT series observed in the study streams ranged from <1 year

return period event to a 6-year return period event. The return period for Storm

Callum was estimated 1 year, and for Storm Gareth as 6 years from the long-term

record.

4.3.2 UK leaky dam sites

One or more complete or partial failures of leaky dams was reported by five of the

survey respondents (Table 4.4). In total 23 dams failed, and 32 dams partially
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failed, or 1-2% of all dams. All the information required for analysis (answers to

all five questions in Section 4.2.2) was provided for all of the failed dams and 24 of

the 32 partially failed dams. Both complete and partial failures occurred during

storms with annual probabilities ranging from 1-in-13 to almost 1-in-1. Of the 47

dams which completely or partially failed, 40 (85%) were damaged during named

storm events, meaning the storm was assigned an amber or red weather warning

by the UK Met Office’s national severe weather warning service (Met Office,

2021). In each project the majority (94%) of dams were resilient to the event

peaks they were exposed to. The most extreme events which affected the sites

ranged from 1-in-4 to 1-in-33 annual probability events. Table 4.4 summarises

the observations and associated return period estimate for the five sites in which

partial or complete failures were reported. Details of the return period estimation

are given in Appendix C.
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Table 4.4: Complete and Partial Failures of leaky dams in five UK NFM

projects. Where applicable, numbers in brackets in the storm name column

indicate its POT ranking at the gauging station. (RP = Return Period)

Date Storm Type Number RP

name of dams (years)

Coverdale

Oct 2018 - Installation 26 -

13/10/2018 Callum
Failure 2 1.04

Partial Failure 6 1.04

16/03/2019 Gareth (10)
Failure 4 6.02

Partial Failure 3 6.02

16/03/2019 Gareth Survival 14 6.02

Leck

Summer 2019 - Installation 24 -

16/01/2020 Brendan (42)
Failure 1 5.18

Partial Failure 0 5.18

16/11/2019 (45)
Failure 0 2.62

Partial Failure 2 2.62

26/11/2019 Gareth Survival 21 10.20

Flasby

Early 2019 - Installation 135 -

17/03/2019 Gareth (14)
Failure 10 11.26

Partial Failure 0 11.26

31/10/2019 - Survival 125 32.72

Pickering

Jun 2010 - Installation 167 -

27/11/2012 (8)
Failure 1 12.94

Partial Failure 1 12.94

26/12/2015 Eva (10)
Failure 3 9.54

Partial Failure 11 9.54

27/11/2012 (8) Survival 151 12.94

Shipston

August 2017 - Installation 400 -

14/11/2019 (5)
Failure 2 4.12

Partial Failure 1 4.12

14/11/2019 (5) Survival 397 4.12
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4.3.3 Fragility Analysis

The fragility functions for the Coverdale field site estimated using normalised

stream peak stage (z-scores) as the loading condition (Figure 4.10) and the

fragility functions estimated using the event return period from the nearest long-

term EA operated gauging station (Figure 4.11) were sufficiently similar to in-

crease confidence in the use of return period estimated from a nearby EA gauging

station as the loading condition. Fragility functions estimated based on return

period loading for each site in which leaky dam failures had been reported (Figure

4.12) showed there was variability in conditional failure probability between sites.

Finally, the pooled fragility function based on data from all five sites combined

(Figure 4.13) serves as a proof of concept for a national estimate of leaky dam

fragility which could be extended and updated in future studies to build up re-

gional or national fragility functions. The fragility functions were estimated for

complete failures, partial failures and either complete or partial failures for each

site. The confidence intervals of the fragility functions overlapped considerably,

therefore it was not possible to assert whether differences in the fragility functions

for partial and complete failures were significant (Figure 4.10 - 4.13). Extrapola-

tion of the fragility functions beyond the highest observed loading condition on

each site was reflected in increasing width of the confidence intervals for higher

loading conditions.

Coverdale study site

There was considerable overlap in the confidence intervals of the three fragility

functions for the Coverdale study site, reflecting the variability in failure loads

(z-score) and lack of data at higher z-scores (Figure 4.10). Although differences

between the fragility functions may not be significant because of overlapping con-

fidence intervals, there was an indication that for a given loading condition the

likelihood of observing a partial failure was higher than observing a complete fail-

ure and observing either a partial or complete failure was most likely, as expected.

The normalised peak stage (z-score) for the events during which leaky dams failed

ranged between two and four on the streams and this is reflected in the form of

the fragility functions (Figure 4.10). The probability of failure for events with a
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z-score below two was close to zero, rising to >0.75 for events with a z-score higher

than four. For events with a z-score of six, the probability of failure approached

one, with increasing uncertainty, which reflects the lack of data for events with

a z-score beyond four. This served as a ‘sense check’ which indicated that the

fragility functions estimated from standardised event peak stage (z-scores) mea-

sured in the streams did represent the asset failure probability observed in the

Coverdale study site.

Figure 4.10: Fragility functions for Coverdale study site based on local loading

condition (z-score). The shaded regions indicate the confidence interval based

on the likelihood surface. The fragility curve for complete and partial failures

indicates the probability of either a complete or partial failure occurring.
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The fragility curves based on return period estimated from the nearest EA

operated gauging station (Figure 4.11) displayed a similar inter-relationship as

the fragility curves based on the locally derived z-scores (Figure 4.10). The events

during which leaky dam failures occurred had an event return period of 1 year

(Storm Callum) and 6 years (Storm Gareth), which is reflected in the shape of

the fragility functions in Figure 4.11. The probability of failure of a dam in the

network was low during frequent, higher annual probability events but increased

for less frequent events, with a probability of failure of 0.47 for a 1-in-10 year

event, or 0.68 for either a partial or complete failure (Table 4.5). During a 1-

in-100 year event the probability of failure was close to 1, indicating that a dam

in the Coverdale study site would be very likely to fail during such an extreme

event. As expected, the fragility functions reflect that partial failure was more

likely than complete failure for frequent events, but during more extreme events

(return period >34 years) complete failure was more probable than partial failure.

However, there is substantial overlap in the confidence intervals of the fragility

curves for complete and partial failures and therefore it is not possible to say that

these differences were significant. The sense checks increased confidence in the

use of return period derived from the nearest EA operated gauge as the loading

condition.

Table 4.5: Central estimates of probability of complete, partial, or either failure

for a dam in the Coverdale study site

Return Period (years)

1 5 10 20 50 100

Complete failure 0.02 0.25 0.47 0.70 0.90 0.97

Partial failure 0.09 0.39 0.57 0.73 0.89 0.95

Complete or Partial failure 0.09 0.47 0.68 0.85 0.96 0.99
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Figure 4.11: Fragility function for Coverdale study site based on nearest EA

gauge data with shaded confidence region for complete, partial, and combined

failures on the field site. The fragility curve for complete and partial failures

indicates the probability of either a complete or partial failure occurring
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UK leaky dam sites

The fragility functions were estimated for each of the sites individually (Figure

4.12) to put the failures observed in the Coverdale study site into context. In

context of the other sites, the Coverdale study site dams generally had a higher

probability of failure, especially during frequent events (<10 year return period)

(Table 4.6). For floods with a return period below 10 years the probability of

failure for the UK leaky dams sites was a magnitude lower (no more than 0.05)

than on the Coverdale field site, where probability of failure was 0.5 for a 1-in-10

year event.

The dams in the other sites were more resilient (failure probability no more

than 0.12) even for 1-in-20 year annual exceedance probability events, but failure

probability increased considerably for 1-in-50 year events in some sites (no more

than 0.67 in Pickering), but remained lower in Flasby (0.11), where the majority

of dams were resilient to a 1-in-33 year probability event. For the most extreme

loading condition considered, the 1-in-100 year flood, the fragility functions for

Pickering and the Coverdale study site indicated a probability of failure near 1,

but in Flasby and Leck this was lower at 0.19 and 0.46 respectively (Table 4.6).

The gradient of the fragility functions reflected the certainty about the loading

condition at which the leaky dams were able to resist failure. The fragility func-

tion for Pickering was steeper than the other three sites because failures occurred

during events of similar magnitude in Pickering (10 and 13 year return period).

Although 10 failures occurred during just one, 11 year return period event, in

Flasby, the majority of leaky dams were resilient to a much more extreme event

(33 year return period) and therefore the fragility function was shallow.

On all sites the probability of any damage occurring (partial or complete

failure) was highest, as expected, and approached 1.0 for a 1-in-100 year (or

greater) event. Uncertainty due to extrapolation beyond observed events was

reflected in the width of the confidence intervals. In the Coverdale study site

and Leck there was a suggestion that the probability of observing a complete

failure became higher than observing a partial failure at a return period of 34

and 31 years respectively, although overlap of the confidence intervals means

that this effect was not conclusive. For Flasby only the fragility function for
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Figure 4.12: Fragility curves for each catchment. Shipston is not included

because the fragility function could not be solved for only one magnitude of the

loading condition. The shaded regions indicate the confidence interval based

on the likelihood surface. The fragility curve for complete and partial failures

indicates the probability of either a complete or partial failure occurring.
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complete failures was solved because there were no partial failures on the site. The

fragility function for Shipston could not be solved because the loading condition

for failed and surviving dams was the same, but the data was included in the

pooled analysis.

Pooled analysis

The pooled fragility functions were estimated by combining data from all five

sites in which failures were reported (Figure 4.13). The fragility functions of

combined data serve as a proof of concept pilot study of a pooled leaky dam

failure curve, which could be extended and updated in future studies to build up

regional or national fragility functions. The pooled fragility functions were less

steep than the fragility functions for individual sites, reflecting the larger range of

events during which leaky dams failed and survived. The pooled fragility curves

indicate a considerably lower failure probability than was observed at Coverdale

for all loading conditions (Table 4.6). Although there was considerable overlap of

the confidence intervals, there was an indication that the probability of observing

a complete failure was higher than that of observing a partial failure for events

with a return period above 17 years. The fragility curves indicate that, for the

pooled analysis across multiple NFM sites, the probability of complete or partial

failure of a leaky dam in a 1-in-1 year event was close to zero. For a 1-in-100 year

event the probability of a complete or partial failure was estimated to be 0.33

(within lower and upper confidence intervals of 0.24 and 0.40).

164



4.3 Results

Figure 4.13: Fragility curves for failure data pooled from all sites (note that the

probability of failure on the y-axis is up to 0.5), points represent the estimated

loads at which complete or partial failures were observed.
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Table 4.6: Central estimates of probability of complete, partial or either failure

for all five UK leaky dam sites

Return period (years) 1 5 10 20 50 100

Site Probability of complete failure

Coverdale 0.02 0.25 0.47 0.70 0.90 0.97

Leck 0.00 0.01 0.05 0.11 0.28 0.46

Flasby 0.00 0.01 0.02 0.05 0.11 0.19

Pickering 0.00 0.00 0.01 0.12 0.67 0.95

Pooled 0.00 0.01 0.03 0.06 0.14 0.24

Site Probability of partial failure

Coverdale 0.09 0.39 0.57 0.73 0.89 0.95

Leck 0.01 0.05 0.09 0.14 0.24 0.33

Pickering 0.00 0.00 0.03 0.26 0.84 0.99

Pooled 0.00 0.02 0.03 0.06 0.11 0.17

Site Probability of complete or partial failure

Coverdale 0.09 0.47 0.68 0.85 0.96 0.99

Leck 0.01 0.07 0.13 0.22 0.37 0.51

Pickering 0.00 0.00 0.04 0.34 0.92 1.00

Pooled 0.00 0.03 0.06 0.11 0.22 0.33

4.4 Discussion

Leaky dams are increasingly being installed in rivers for the purpose of flood

risk management (Grabowski et al., 2019). Whilst efforts are being made to

quantify their benefits, little is known about the residual risks associated with

their potential failure, even though some failures have been observed. Failure of

leaky dams can undermine the intended performance of a flood risk management

scheme and can pose hazards to property, infrastructure and people (Wohl et al.,

2016). Furthermore there are concerns that cascade failure of leaky dams could

lead to a surge in water level as stored water is released simultaneously (Hankin

et al., 2020). A better understanding of leaky dam resilience is required to inform

risk analysis, network design and investment decisions from local to national levels

including the programming of maintenance. Observations of leaky dam resilience
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to a range of loading conditions are emerging from leaky dam sites around the

UK. This research provides a proof-of-concept for the use of empirical fragility

functions to quantify system risk at both local scale and pooled across multiple

sites.

4.4.1 Individual site resilience

UK practitioners reported that less than 2% of leaky dams had failed in 15 UK

sites covering almost 2000 leaky dams, the first of which were installed in 2010.

Complete and/or partial failures were reported for 5 sites, including the Coverdale

study site which was closely monitored. The fragility functions for the failure sites

showed that the loading conditions under which leaky dams failed were highly

variable between and within sites, although it is not yet clear how much this

reflects real differences in resilience as opposed to sampling effects. The leaky

dams in the Coverdale study site had a relatively high probability of failure com-

pared to the other sites which can be attributed to: (1) exposure of partially

constructed dams to loading; (2) unstable banks presenting difficulties in anchor-

ing leaky dams; (3) site conditions which precluded access with machinery and

manoeuvring of larger stems; (4) steep stream gradient leading to high stream

power per unit discharge. The failed leaky dams in the Coverdale study site all

resulted from failure of one anchor. Although there was a high rate of failure

the leaky dams were not mobilised as they remained tethered to the bank by the

remaining anchor. The failed dams rotated in line with the flow, which reduced

the forces exerted on the remaining anchor, and the likelihood of the dam being

transported downstream.

A trial and error approach has been taken to the design of leaky dams for

natural flood management in the UK (Hankin et al., 2020) with ‘rule of thumb’

guidelines about the spacing and size of leaky dams being taken from the large

wood mobility literature (Herrera Environmental Consultants, 2006; Linstead and

Gurnell, 1999; Thomas and Nisbet, 2007). For example, leaky dams are recom-

mended to be 1.5 times the channel width in best practice guidelines (Saldi-

Caromile et al., 2004; Yorkshire Dales Rivers Trust, 2018) based on observations

of stable key pieces of natural wood accumulations (Abbe et al., 2003; Keller
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and Swanson, 1979). However, observations from the Coverdale study site show

that this recommendation does not necessarily prevent failure of upland leaky

dams. In steep streams the length, diameter and strength of key pieces deter-

mine the stability of leaky dams (Abbe, 2000). Wood with a length 2.5 times

the channel width was functionally immobile in a low gradient, headwater river

in the UK (Dixon and Sear, 2014), but this ratio may be difficult to achieve in

practice because of site and material limitations. For example, upland, incised

streams can have steep banks and be inaccessible to machinery. The presence of

a rootwad has been identified as a key factor in determining large wood stability,

particularly when the rootwad faces upstream, which can stabilise the large wood

by burying the rootwad over time (Abbe et al., 2003). Whilst this type of large

wood is associated with river restoration activities, it has been demonstrated to

increase floodplain connectivity and has a similar impact on flood peak magni-

tude as leaky dams in one of the steep Coverdale study site streams (Keys et al.,

2018).

The observations from the Coverdale study site imply that leaky dam good

practice guidance could be built upon by incorporating perspectives from the

river restoration and wood mobility literature. For example, Abbe and Brooks

(2011) give guidelines for geomorphic, ecological and engineering considerations

of placing large wood in streams with emphasis on stability, and (Ruiz-Villanueva

et al., 2014) provide a tool for assessing risks associated with reintroducing large

wood to rivers, including consideration of the geomorphological and ecological

risks associated with not restoring it.

4.4.2 Pooled site resilience

Pooling information from geographically disperse data has been done previously

to obtain empirical fragility functions for assets such as railway bridges (Lamb

et al., 2019), overhead line components of electricity distribution networks (Dunn

et al., 2018), and expressway structures (Yamazaki et al., 1997). In this study,

fragility analysis was applied successfully to pooled data of leaky dam complete

failures, partial failures and resilience to assess the probability of failure during

flood events with a return period of up to 100 years. Failure probability varied
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between sites but, by pooling the data, an estimate of the resilience of dams

across the five sites was made. For a 10 year return period event the probability

of partial or complete failure for the five sites combined was 6% increasing to

11%, 22% and 33% for the 20, 50 and 100 year return period events.

The fragility functions were conservative because only data from sites in which

failures occurred were included in the analysis. Including data for sites in which

no failures occurred, such as the 10 sites included in the survey responses, would

likely considerably decrease the failure probabilities. Including this data was be-

yond the scope of this proof of concept study but is recommended for future

work. This means that the estimates are conditional fragility functions for the

probability of failure at sites where at least one failure has already occurred. If

most leaky dam sites never experience a leaky dam failure these fragility func-

tions will over-estimate leaky dam failure probability. However, given the recent

installation of leaky dams for NFM, the stochastic nature of flood events and the

return periods at which leaky dam failures have been observed, it is plausible that

leaky dam failures will occur in other leaky dam sites. By repeating the analysis

with data from more sites as data emerges, the fragility functions will stabilise

over time and the number of sites needed to obtain a representative sample will

become apparent. However, even though this was a pilot study, responses to the

informal survey already encompassed observations from 2000 leaky dams (failed

and non-failed), demonstrating both the feasibility of the analysis at scale and

the practitioner community’s interest. By including data from more UK leaky

dam sites, a national estimate of leaky dam fragility could readily be made using

the methodology demonstrated in this study, and progressively improved as ob-

servations of more flood events materialise over time. Crucially, this improvement

should include better quantification of the number of leaky dams that do not fail.

It is inconsequential to compare the vulnerability of leaky dams with that of

traditional, engineered flood defence assets because engineered structures have

been designed to withstand higher loads. For example, the probability of scour

induced failure of a railway bridge exposed to a 1-in-100 year event is small, and

less than 0.1 even for a 1-in-1000 year flood event (Lamb et al., 2019). Fur-

thermore, fragility functions for flood defence assets in the UK are developed

using an analytical, rather than empirical approach (Schultz et al., 2010). The

169



4.4 Discussion

analytical approach involves identifying and modelling all possible failure modes

and performing a series of reliability analyses (Simm and Tarrant, 2018). The

loading condition is related to the failure process, such as asset overtopping rate,

rather than the flood extremeness estimate (Simm and Tarrant, 2018) and so the

fragility functions are not directly comparable.

The failure rates of leaky dams are, instead, briefly compared to rates of large

wood mobility in small streams. Failure of leaky dams is related to large wood

mobility firstly in that the dams were mobilised to induce failure, and secondly,

because a number of the hazards associated with leaky dam failure, namely down-

stream blockage, require the leaky dams to be mobilised and transported after

failure. In small streams, log jams typically form which consist of at least one key

piece which is longer than the channel width (Abbe et al., 2003) and mobility is

influenced by extreme flood events, rather than being part of a continuous process

(Jochner et al., 2015), which means they are rarely transported (Bilby and Ward,

1989; Nakamura and Swanson, 1993). In a 1-in-50 year flood event all large wood

was removed from a steep, headwater stream in the Swiss pre-alps, whilst a 1-in-

20 year event removed only some of the 9 log jams which had formed since. The

residence time of large wood in the stream was between 1 and 13 years with a

mean of 4 years. Similarly, an incised mountain channel in Poland retained only

12.5% of large wood in a 1-in-20 year event (Wyżga et al., 2017), and 75% of

large wood was found to be mobile in a low gradient headwater stream in the UK

(Dixon and Sear, 2014). The rates of mobilisation are similar to leaky dam failure

rates observed on the Coverdale study site (failure probability 0.7 for a 1-in-20

year event, and 0.97 for a 1-in-50 year event) but pooled analysis suggests that

leaky dams are typically considerably more resilient, with a failure probability

of <0.01 for a 1-in-4 year event, 0.06 for a 1-in-20 year event and only 0.14 in a

1-in-50 year event. Hence, as expected, in general the fragility analysis implied

that although leaky dams can be expected to fail, they are less likely to fail or be

mobilised than natural log jams.
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4.4.3 Implications

The fragility functions developed for pooled site data may be a reasonable first

indication of failure probabilities for this type of leaky dam across the UK, al-

though that estimate should be refined and progressively updated by adding data

from more sites and events as it emerges. The relative failure probabilities can be

used by practitioners to increase confidence in budgeting and planning of inspec-

tion and maintenance of new and existing leaky dam schemes. As more resilience

data from leaky dam sites across the UK emerges, the fragility functions can be

extended and updated to form a robust regional or national picture of leaky dam

resilience.

Fragility functions have been used in flood risk assessment in the UK since

2002 (Simm and Tarrant, 2018). Rather than just having one fragility function

for each class of flood defence asset the fragility functions have been estimated

for five condition grades of each flood defence asset class. This allows the fragility

functions to be used to quantify the flood risk of the system in its current, im-

proved or deteriorated state to inform investment decisions and programming of

maintenance at both local and national scales (Simm and Tarrant, 2018). As

leaky dam resilience data emerges, empirical fragility functions for different leaky

dam types, condition grades and site conditions can be estimated, which would

allow them to be integrated in the cost, benefit and risk assessment frameworks

of traditional, engineered defences, a crucial step in aligning them to flood risk

management practice (Hankin et al., 2020). Fragility functions can also be esti-

mated using a hybrid approach in which understanding of failure mechanisms is

used to develop fragility functions with an analytical approach and then validated

using empirical observations (Pregnolato et al., 2015).

Currently, probabilistic reliability assessment methods are only used to pri-

oritise investment (Simm and Tarrant, 2018), but the large uncertainty associ-

ated with NFM presents challenges for deterministic design methods (Addy and

Wilkinson, 2019) and, therefore, the probabilistic framework is a useful tool for

design and optioneering (Hankin et al., 2020). For example, Hankin et al. (2020)

showed that cascade failure of leaky dams was more likely in some configurations

than others using a system performance model. Although the authors concluded
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that failure risk can be a more important factor to consider than impact on the

flood hydrograph for placement decisions, the fragility of the leaky dams in the

model was based on a critical state assumption, rather than empirical data. The

empirical fragility functions developed in this study, and national estimates for

different types of leaky dams, would help to constrain such an analysis so that

the flood risk and resilience of leaky dam systems can be assessed with more

confidence.

4.4.4 Limitations and further work

Generic, national fragility curves developed for flood defence assets are not in-

tended to be used to assess the performance of individual assets, but rather to

inform national scale investment decisions (Simm and Tarrant, 2018). However,

empirical fragility functions from various disciplines have been criticised for be-

ing specific to structures and situations (Pregnolato et al., 2015; Schultz et al.,

2010; Simm and Tarrant, 2018) because their use requires the assumption that

past damage of an asset type is representative of future damage of that asset

type exposed to the same loading (Pregnolato et al., 2015). This can lead to

difficulties in generalising between sites and does not consider variability in the

resilience of leaky dams within a site. In the Coverdale study site, Flasby, and

Pickering, for example, the leaky dam design was tweaked following failures, and

dams were re-built stronger (T Nisbet, 2020, personal communication, 8 January;

D Vine, 2020, personal communication, 17 January). As more data emerges it

may be possible to estimate fragility functions for different types of leaky dams,

site conditions and age, or condition of the leaky dams. Variation in the resilience

of leaky dams over time due to deterioration of the wood, for example, could be

accounted for by developing fragility functions for different condition grades, in

the same way they are for traditional flood defence assets (Simm and Tarrant,

2018). Collecting data about the streams, such as the catchment area and stream

gradient, would provide the opportunity to contextualise the observed variability

in leaky dam resilience. A hybrid approach in which analytical fragility functions

are validated using empirical data may be needed to reach this level of detail.

Once developed, the fragility functions can be incorporated in a hydraulic based
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system analysis model which will provide information about the reliability of the

system and allow dam failure to be incorporated in cost-benefit and risk analysis.

To increase confidence at higher return periods, data from more extreme

events should be included in the analysis. The fragility functions were extrapo-

lated beyond the observed data, particularly in the Coverdale study site where

the most extreme event was a 1-in-6 year event, but network failure probability

was estimated for a loading condition up to a 1-in-100 year event. Uncertainty

associated with the extrapolation was captured in the confidence intervals of the

fragility functions and would be reduced by including more data. Resilience of

the majority of leaky dams to a more extreme event (1-in-33 year) in Flasby re-

duced the failure probability for a given load predicted by the fragility function

considerably compared to the other sites. More data from a wide range of loading

conditions is therefore required to increase confidence in the conditional failure

probabilities. Due to the stochastic nature of flood events more time may be

needed before these data are available. The study demonstrated that fragility

functions can be estimated for pooled leaky dam sites but to make generalisable

national estimates of the fragility functions, data from more sites across the UK

is needed. For the fragility functions not to be biased these data should include

a representative sample of all sites in which no failures have occurred, as well as

a representative sample of sites in which failures have occurred.

4.5 Conclusion

Leaky dams installed for the purpose of NFM have been observed to fail in the

Coverdale study site and elsewhere (Hankin et al., 2020). However, the number

of leaky dams which have completely or partially failed is relatively low compared

with the number of leaky dams which have been installed in the UK. This study

demonstrates that observations of leaky dam failure and resilience can be used

to derive quantitative fragility functions which describe the failure probability of

leaky dams conditional on flood event return period. The probability of complete

or partial failure of leaky dams was 0.03 in a frequent (5 year return period) event

and increased to 0.33 for a 1-in-100 year event. The estimates were conservative

because only data from sites in which failures were observed were included, but
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could be readily improved using the same methods by including data from more

leaky dam sites and more flood events. This data will become available in due

course as it forms part of the monitoring requirements of all Defra funded NFM

projects (Arnott et al., 2018). Although challenges remain regarding generalis-

ability of fragility functions and data availability, this study provides a proof of

concept for the use of empirical fragility functions to assess leaky dam system

vulnerability and resilience to extreme flood events at a regional and national

scale.
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Chapter 5

Discussion & Conclusion

5.1 Research Summary

The management of wood in rivers requires the benefits provided for downstream

flood risk to be weighed up against the potential for large wood to become mobile

and present hazards (Wohl et al., 2016). However, there is little empirical evidence

of the impact of leaky dams on downstream flood peak magnitude (Addy and

Wilkinson, 2019; Burgess-Gamble et al., 2017; Dadson et al., 2017; Ellis et al.,

2021; Lane, 2017), and no empirical quantification of their likelihood to fail during

flood events at all (Hankin et al., 2020). Uncertainty in the effects of leaky dams

and other NFMmeasures on downstream flood risk undermines confidence in their

uptake and limits its adoption (Bark et al., 2021; Waylen et al., 2018; Wingfield

et al., 2019). A robust evidence base is required to increase confidence in the

implementation of NFM measures, such as leaky dams, for flood risk management

(Cook et al., 2016; Dadson et al., 2017; Ellis et al., 2021; Iacob et al., 2017; Lane,

2017; McLean et al., 2013; Waylen et al., 2018).

This study has increased understanding of both the benefits for flood risk

management in upland catchments and the resilience of engineered leaky dams.

The aim of the study was addressed by the novel application of cross-disciplinary

methods to observations from a UK upland, headwater catchment in which leaky

dams were installed. The use of these methods not only allowed the research

questions to be answered, but also provides a proof of concept for application

of the approaches to data from other environments, NFM interventions, and
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spatial scales, which is crucial if NFM is to be used as a mainstream flood risk

management measure (Ellis et al., 2021).

5.1.1 Q1: What role could data-based time series mod-

elling techniques play in quantifying NFM impacts

from short and uncertain BACI data?

The lack of empirical quantification of the impacts of NFM on the flood hydro-

graph is attributed to difficulties in isolating the effects of NFM measures, short

monitoring periods, the low frequency of extreme flood events and the influence

of context and scale (Connelly et al., 2020; Wingfield et al., 2019). Furthermore,

uncertainty in empirical hydrological data can mask the signal of NFM interven-

tions (Lane, 2017), particularly for implementation at small spatial study extents

(Ellis et al., 2021).

Data-based time series modelling techniques have long been used in hydrology

(e.g. Dooge, 1959; Hipel and McLeod, 1994; Young, 1986). Transfer function

noise (TFN) models, in particular, have been used to model the rainfall-runoff

relationship (Young, 2003), detect the signal of land use change (e.g. Katimon

et al., 2013; Watson et al., 2001) and real time modelling of river stage for flood

warning (e.g. Leedal et al., 2010; Young, 2002).

In this study, the applicability of linear TFN models to modelling the base-

line relationship between upstream and downstream stage of three steep, upland

streams was assessed. Where the underlying processes were linear, the models

were able to simulate the peaks of flood events to within ±2 cm accuracy for 95%

of events.

Although the linear TFN family of models was chosen based on the statistical

properties of the data, such a good fit to the data was not found for all three

streams. Data-based time series modelling is an iterative process (Hipel and

McLeod, 1994), given the necessary resources, and the insights gained from this

study, it may be possible to find an appropriate family of time series models to

fit the data from these streams with a similar level of accuracy. There are many

other types of data-based time series models (Beven, 2001), including non-linear

variations of the TFN approach (Young, 2003), which could be trialled, given
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the necessary resources. Nevertheless, by achieving a high level of simulation

accuracy on one of the streams, the study demonstrated that data-based time

series modelling can be applied to extract valuable information for assessing leaky

dam impacts on flood peak magnitude.

5.1.2 Q2: In upland streams, what is the impact of leaky

dams on the flood peak magnitude of a range of

flood events?

Fifty flood events with a return period between <1 year and 6 years were observed

in the study site after the installation of seven leaky dams in a 280 m reach of a

0.13 m/m gradient stream. Both single and multi peaked events were recorded,

with up to eight event peaks and durations ranging from hours to days.

Leaky dams reduced peak stage by more than the expected simulation error of

a third of the flood peaks recorded, most of which were single peaked events, or the

first peak of multi-peaked events. The biggest percentage reductions (16±8%) in

peak discharge were observed for small events (peak discharge of 0.3 m3/s, return

period <1 year), but were negligible (3 ±7 %) for events >1.0 m3/s, which had a

1 year return period. Absolute peak discharge reductions were, similarly, greatest

for smaller events on average, but the largest individual reductions in absolute

peak discharge were observed for events with a peak magnitude of 0.7–0.9 m3/s.

Peaks recorded in the stream during events which caused downstream flooding

of infrastructure and properties were higher than 1 m3/s and were not reduced

by the leaky dams. On average for all events with a return period up to 1 year,

peak discharge was reduced by 10%.

The results were in agreement with the impacts observed by Wenzel et al.

(2014) & Keys et al. (2018) in smaller, lower gradient streams but did not neces-

sarily support conclusions from modelling studies that leaky dams in high gradient

streams are less effective than leaky dams in low gradient streams (Dixon et al.,

2016; Thomas and Nisbet, 2012). The limit of effectiveness of leaky dams (1.0

m3/s, 1 year return period event) in the study stream was similar to the limit of

effectiveness of leaky dams at delaying flood peak magnitude in a low gradient,

headwater stream (1.0 m3/s, 2 year return period event) (Gregory et al., 1985;
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Kitts, 2010). Comparison of findings between studies is confounded, however, by

site, flood event and structure specific factors.

Leaky dam impacts were highly variable, which emphasises the importance of

assessing NFM impacts for events with a range of characteristics which include

not just different peak magnitudes, but also event durations, total volumes and

events with more than one peak. Failure to do so could lead to overpromising

and underdelivering on the efficacy of leaky dam NFM schemes, which could

lead to over-reliance of communities on NFM measures (Wells et al., 2020) and

ultimately lead to abandonment of the paradigm shift towards integrating NFM

(Vira and Adams, 2009).

5.1.3 Q3: What potential does empirical fragility analy-

sis have for quantifying the resilience of engineered

leaky dams during extreme flood events?

There are concerns that failure of leaky dams installed for the purpose of NFM can

lead to release of flood surges, scheme under-performance and supply mobile wood

which could block downstream structures such as culverts and bridges (Hankin

et al., 2020; Ruiz-Villanueva et al., 2014; Wohl et al., 2016). Network risk models

are able to take into account leaky dam failure to inform strategic placement of

leaky dams but are based on assumptions of leaky dam resilience during flood

events, rather than observations (Hankin et al., 2020).

A survey of 15 UK leaky dam sites, covering almost 2000 in-stream leaky

dams, showed that for dams installed between 2010 and 2020, 2% had failed.

Based on observations of leaky dam resilience and failure from the five sites in

which leaky dam failures had occurred, the probability of failure of leaky dams

during flood events was estimated conditional on the flood return period. This

fragility analysis approach is more commonly used to estimate the resilience of

buildings during earthquakes, but is also used by the Environment Agency to

make investment decisions about flood defence assets at a strategic level (Simm

and Tarrant, 2018).

The fragility analysis showed that there was considerable variability in the

probability of failure for a given return period event between leaky dam sites,
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reflecting differences in site conditions, structure type and structure condition,

as well as the loading experienced by the dams. Data from the five sites was

pooled to estimate combined fragility functions for partial and complete leaky

dam failures. Probability of complete failure was 3% for a 10 year return period

event, increasing to 14% and 24% for a 50 and 100 year return period event

respectively. By updating the fragility functions as data emerges from UK leaky

dam sites, the fragility functions are likely to stabilise and present a national

picture of leaky dam fragility.

5.1.4 Interrelationship of findings

The aim of the research was to quantify the risks and benefits for flood risk

management of installing engineered leaky dams in steep, upland streams. The

first two research questions addressed the quantification of the intended flood risk

management benefits of leaky dams whilst the third addressed the quantification

of the probability of leaky dam failure. The highly variable effects of the leaky

dams on flood peak magnitude showed that, to have realistic expectations of the

effectiveness of leaky dams, analysis needs to take into account a range of event

types and magnitudes. Furthermore, the relatively high probability of failure of

leaky dams, compared to traditional engineered structures, found in this study

highlights the importance of taking into account resilience when assessing the

effectiveness of a proposed scheme.

Because the failed leaky dams were rebuilt following failure in this study, it

is not possible to say whether a reduction in the number of leaky dams due to

failure would have reduced the overall impact on flood peak magnitude in the

stream. The indication that the effectiveness of the leaky dams was linked to

their in-channel storage volume suggests that it would, because the in-channel

storage provided in the stream would be reduced. A reduced number of leaky

dams due to failure could lead to greater forces being exerted on downstream

leaky dams which, in turn, could increase their probability of failure. However,

the findings suggest that failure probability was relatively low for the types of

events during which the leaky dams were effective, and therefore this feedback
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effect is unlikely to have a pronounced impact on leaky dam failures in the study

site.

Leaky dams were likely to fail compared to traditional engineered defences and

therefore it is recommended that redundancy is built into the system to maintain

the intended level of protection. Although modelling suggests that adding a

greater number of leaky dams to a steep stream reach does not necessarily increase

its impact on flood peak magnitude due to underutilisation of storage (Hankin

et al., 2020), the additional leaky dams could become valuable when leaky dam

failures occur. Network risk models provide a method by which leaky dam failure

probability can be accounted for when assessing leaky dam effectiveness (Hankin

et al., 2020). Both the leaky dam impacts on flood peak magnitude, and failure

probability found in this study could be used to inform and validate such a model

to increase confidence in its results.

For high flow events with a return period up to one year the leaky dams

in the study site had a low probability of complete failure (0.02) and reduced

flood peak magnitude by 10% on average. However, for high flow events during

which downstream flooding of infrastructure and properties was recorded the

leaky dams did not reduce peak magnitude on the stream and were increasingly

likely to fail (0.25 for a 5 year return period event). The benefits of leaky dams

are therefore unlikely to outweigh the risks in the study site. However, the pooled

fragility analysis has shown that this is unlikely to be the case for leaky dam sites

around the UK as leaky dam failure probability was generally considerably lower

than in the study site. Moreover, emerging empirical and modelling evidence

indicates that leaky dams can be effective during more extreme events where

extendable field storage is available (Black et al., 2021; Hankin et al., 2020). It is

therefore recommended that to increase leaky dam effectiveness in the study site

their design could be adapted to extend further onto the floodplain to encourage

overland flow to offline storage areas. Increasing the length of the large wood

pieces used to build leaky dams in such unconfined sections of the stream is

also likely to decrease the risk of the wood being mobilised during flood events

(Dixon and Sear, 2014). As only large wood pieces with a length greater than

2.5 times the channel width are functionally immobile (Dixon and Sear, 2014),
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the recommendation is made that leaky dams should be built to be 2.5 times the

channel width to increase both their resilience and floodplain connectivity.

As leaky dam design is adapted to become more effective at reducing flood

peak stage, the signal of the interventions in monitored hydrological data will

become stronger, and its detection will therefore be less sensitive to uncertainty

in the data. As highlighted by Ellis et al. (2021) the impact on flood peak

magnitude, and therefore problems of detecting change from uncertain data, is

also related to the scale of implementation of NFM features. As uptake is limited

by lack of evidence of leaky dam effectiveness (Bark et al., 2021; Waylen et al.,

2018; Wingfield et al., 2019), and uncertainty about their risks (Waylen et al.,

2018), results such as those obtained in this study are valuable to break this cycle.

5.2 Significance and implications of findings

This study empirically quantified, for the first time, the impact of leaky dams

on flood peak magnitude for a range of events. It adds to the evidence base

required to increase confidence in the implementation of leaky dams for flood

risk management (Cook et al., 2016; Dadson et al., 2017; Ellis et al., 2021; Iacob

et al., 2017; Lane, 2017; McLean et al., 2013; Waylen et al., 2018). It has provided

completely new insights by considerably extending the empirical quantification

of Wenzel et al. (2014) & Keys et al. (2018) of the impact of instream wood

on two, artificial single peaked events in small streams, to the quantification of

the impacts of leaky dams installed for the purpose of NFM in a larger, steeper

stream on the peak magnitude of 50 high flow events.

The leaky dams did not reduce peak magnitude during flood events which

caused flooding of downstream infrastructure and property. The results from the

study site, therefore, support the conclusions of Dadson et al. (2017) that small

floods may be significantly reduced by leaky dams, but will not have a major effect

during more extreme events. These findings were in agreement with previous

research (Keys et al., 2018; Wenzel et al., 2014) from the US and Germany that

leaky dams could reduce peak magnitude of events with a return period less than

one year, but not during more extreme events. However, recent research in the

UK (Black et al., 2021) has empirically shown that the impact of leaky dams on
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flood peak timing can increase with event peak magnitude, illustrating the site

specific nature of these findings. Particularly, the availability of extendable field

storage appears to be a key factor (Hankin et al., 2020).

By quantifying the impact of leaky dams on single and multi-peaked events

with a range of durations, antecedent conditions and return periods ranging from

<1 year to 6 years, the study showed that the effectiveness of leaky dams was

highly variable, even for events with a similar peak magnitude. Whether the

event was single or multi-peaked had a particularly pronounced impact; gener-

ally, leaky dams reduced the magnitude of single peaked events and the first

peak of multi peaked events, but not subsequent event peaks. This supports the

conclusions drawn from modelling of leaky dams at the catchment scale, that

the time for the system to recover between flood peaks is an important design

consideration (Metcalfe et al., 2017). The study has shown that simplifying the

assessment of leaky dam impacts by considering single peaked events alone, as is

often the case in modelling studies (Hankin et al., 2020), but also in empirical

studies (e.g. Gregory et al., 1985), is likely to lead to misrepresentation of their

effectiveness. Realistic quantification of leaky dam effectiveness is paramount to

avoid over reliance of communities on leaky dams as flood risk management mea-

sures (Wells et al., 2020). Appreciation of the complexities of the effectiveness

of leaky dams, and other NFM measures, is needed because unrealistic expecta-

tions of new paradigms, such as the shift towards greater working with natural

processes, can lead to disappointment and premature abandonment (Vira and

Adams, 2009).

Crucially, this study showed that the difficulties associated with the stochas-

tic nature of flood events and high levels of uncertainty in hydrological data

which have previously precluded empirical quantification of leaky dam impacts

on flood peak magnitude (Black et al., 2021; Kitts, 2010; National Trust, 2015;

Nisbet et al., 2015b), can be overcome by taking a data-based time series mod-

elling approach. It therefore presents the opportunity to provide evidence of the

impacts of leaky dams in a range of environments, in a similar way as there is

for traditional flood defences (Ellis et al., 2021). Ellis et al. (2021) argued that

the problems associated with NFM quantification can be overcome by integrated

modelling and field observations at nested spatial scales. This study has shown
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that this recommendation could be extended to include a data-based time series

modelling step which allows the signal of NFM measures to be detected from field

observations.

This study presents the first dataset of UK leaky dam failures and quan-

tification of the vulnerability of leaky dams to complete or partial failure during

flood events. By being based on observations of failure and resilience, the fragility

functions developed improve on assumptions made about the failure probability of

leaky dams (Hankin et al., 2020). Quantification of their failure probability allows

the hazards of introducing large wood to streams in the form of engineered leaky

dams to be weighed up against the benefits, which is crucial for their management

(Wohl et al., 2016) and success (Dixon and Sear, 2014). The study provides a

proof of concept for the application of fragility analysis to observations of leaky

dam vulnerability and resilience from UK leaky dam sites. The proof of concept

means that, as data emerges from Defra funded NFM projects across the UK,

it can be incorporated in the fragility analysis to provide a national estimate of

the probability of failure of leaky dams during flood events. Such national level

fragility curves are used to make strategic investment decisions about flood risk

management assets in the UK (Simm and Tarrant, 2018).

5.3 Limitations of the study

The impact of leaky dams on flood peak magnitude was quantified for one type

of catchment and one type of instream wood. There are many site specific factors

which are likely to affect leaky dam effectiveness, ranging from landscape scale

differences, such as the underlying geology (Burgess-Gamble et al., 2017), catch-

ment area and landcover (Black et al., 2021), stream specific differences such as

slope and geomorphology (Dixon et al., 2016; Kitts, 2010), to structure specific

differences such as the complexity of the leaky dam (Wilcox and Wohl, 2006),

the availability of expandable field storage (potential for floodplain connectivity)

(Black et al., 2021; Hankin et al., 2020; Thomas and Nisbet, 2012), and the gap

beneath the dam (Gippel et al., 1996; Manners and Doyle, 2008; Shields and

Alonso, 2012). The results from this study can, therefore, not be generalised to
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other catchments and instream wood types. For leaky dams to become main-

stream flood risk management measures, evidence from a range of environments

is needed in the same way there is for traditional engineered defences (Ellis et al.,

2021). Crucially, the study has shown that it is possible to quantify leaky dam

impacts on flood peak magnitude by taking a data-based time series modelling

approach, which can be applied to data from other catchments.

Considerable expertise is required to apply data-based time series modelling

techniques because the type of model used depends on the statistical properties

of the data. As found in this study, data from adjacent streams with similar

hydrological properties in the same catchment may require different modelling

approaches. In this case, a linear TFN model was found to be able to simulate

event peak magnitude of the full range of events to within ±2 cm on one impact

stream, but systematically over and under predicted peak stage on another im-

pact stream, indicating that a non-linear model may have been more appropriate

for this stream. Hence, the data-based modelling approach requires expertise in

the application of different types of time series models. Whilst some hydrolo-

gists have specialised in applying this type of approach to hydrological data (e.g.

Hipel and McLeod, 1994), expertise in data-based time series modelling is more

commonplace in the fields of systems engineering and econometrics (Okiy et al.,

2015) and could therefore be enhanced by cross-disciplinary collaborations.

The timeframe of this doctoral research was a limiting factor in the amount

of baseline and post-intervention data that could be collected. By building leaky

dams specifically for the purpose of this monitoring study it was possible to

have an 18 month baseline monitoring period, but this limited the length of the

post-intervention monitoring period and the time available for the analysis of the

complete dataset. A longer post-intervention monitoring period, covering several

flood seasons could provide the data required to conduct a formal statistical anal-

ysis of the variability of leaky dam efficacy during different types of events. Bet-

ter understanding of the potential of seasonal effects, for example, could provide

valuable insights about the potential of leaky dams to reduce flooding during the

summer season, when agricultural land is most vulnerable (Morris and Brewin,

2014; Posthumus et al., 2009).
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The fragility functions developed in this study were limited by the amount

of data which was available. Whilst the empirical fragility functions improve

on assumptions about leaky dam resilience (Hankin et al., 2020), there was not

enough data to take into account variability in site conditions, leaky dam designs,

exposure to loading conditions and condition of the leaky dams. These factors

were, instead, represented in the width of the uncertainty bounds of the fragility

functions. Although generic, national scale fragility functions are not intended to

assess individual assets, but rather represent an average asset to inform national

scale decisions (Simm and Tarrant, 2018), some level of differentiation would be

informative. As data emerges, it will be possible to estimate fragility functions

for different leaky dam designs, site and leaky dam conditions. As for traditional

engineered flood defence assets (Simm and Tarrant, 2018), this will inform main-

tenance requirements and allow investment decisions to be made at local and

national scales.

This study focused on the potential of leaky dams for flood risk manage-

ment, but it is the potential to deliver multiple benefits and ecosystem services

which presents opportunities for their use alongside traditional engineered de-

fences (Connelly et al., 2020; Ellis et al., 2021; Klaar et al., 2020; Wilkinson

et al., 2019). Whilst the focus on their impact on flood risk management is

needed (Schanze, 2017), and their multiple benefits are being researched Deane

et al. (e.g. 2021); Lo et al. (e.g. 2021), approaching NFM measures as if they

were engineered flood defences is limiting. Rather than approaching NFM from

the point of view of ‘working with natural processes’, it may be beneficial for

the sustained success of NFM to approach it from the point of view of ‘working

for natural processes’. In such a framework the objective becomes restoring the

natural hydrological and geomorphological functioning of wood in rivers, rather

than a target reduction in flood peak magnitude. This is more likely to lead to

reasonable expectations of leaky dams and successful monitoring objectives, and

therefore sustained implementation of NFM measures (Nesshöver et al., 2016;

Schanze, 2017; Wells et al., 2020).
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5.4 Questions for further research

Further research is needed to assess the effectiveness and resilience of different

types of engineered leaky dams in a range of environments and at larger spatial

scales (Burgess-Gamble et al., 2017; Dadson et al., 2017; Ellis et al., 2021; Lane,

2017; Schanze, 2017; Wilkinson et al., 2019). Particularly, the ability of leaky

dams, and other NFM measures, to deliver flood risk management benefits at the

catchment scale, where NFM should preferably be implemented (Connelly et al.,

2020), is questioned (Dadson et al., 2017; Lane, 2017). To address this, three

avenues of further research are proposed:

1. Empirically quantify NFM impacts at the catchment scale using a

data-based time series modelling approach

Monitoring of leaky dam impacts at the catchment scale are proceeding (e.g.

Lancaster Environment Centre, 2021; University of Reading, 2021). Whilst such

efforts have led to successful quantification of leaky dam impacts on flood peak

timing, uncertainty in the hydrological data meant that quantification of leaky

dam impacts on flood peak magnitude was avoided (Black et al., 2021). As

demonstrated in this study, at the stream scale certain data uncertainty issues

can be overcome by taking a data-based time series modelling approach. This

approach may also present a solution to quantifying catchment scale impacts of

NFM measures. The underlying data generating processes are more complex at

the catchment scale than the stream scale because the impacts of heterogeneity

on hydrological processes cause uncertainty (Black et al., 2021), interactions be-

tween different parts of the catchment play a role (Dixon et al., 2016; Pattison

et al., 2014), and dominant hydrological processes change with scale (Ellis et al.,

2021). However, the ability of data-based time series modelling, such as neural

networks (Piotrowski and Napiorkowski, 2013), and the DBM approach (Young,

2003) to represent the complex processes of the rainfall-runoff relationship at the

catchment scale is promising. It is therefore recommended that the data-based

time series modelling approach is applied to detecting the impacts of leaky dams,

and other NFM measures, on flood peak magnitude at the catchment scale.
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2. Validate the representation of leaky dams in hydraulic and hydro-

logical models using the results of data-based time series modelling

studies

Questions of upscaling NFM interventions may also be addressed by using hy-

draulic and hydrological models (Dadson et al., 2017). Addy and Wilkinson

(2019) highlight the need for guidance about the representation of leaky dams in

hydraulic and hydrological models to increase confidence in their outputs. This

research presents a dataset of leaky dam impacts, and an approach by which

to quantify leaky dam impacts in other environments, which provides the data

needed to validate the representation of leaky dams in such models. For example,

leaky dam impacts on the flood peak magnitude of the 50 events observed on the

impact stream in the Coverdale study site could be used to validate the represen-

tation of the leaky dams in a hydraulic model of the stream. Given appropriate

consideration of the model’s ability to extrapolate beyond the validated scale

(Dadson et al., 2017), this representation of leaky dams could be used to assess

the impact of installing leaky dams in all of the hydraulically similar headwater

streams in the Coverdale catchment. This approach, particularly if applied us-

ing data from a range of leaky dam types and environments, could considerably

increase confidence in the results of catchment scale modelling studies.

3. Develop national scale fragility functions for leaky dams

As a result of the monitoring requirements of Defra funded NFM projects (Arnott

et al., 2018), observations of leaky dam failures and resilience during extreme

flood events are becoming available (The Rivers Trust, 2021). Such observations

can be used to calculate the failure probability of leaky dams during a flood

event, as demonstrated in this study, conditional on the flood return period. It

is recommended that, as data becomes available, national scale estimates of the

fragility functions of different leaky dam designs, environments, and condition

are made. National scale fragility functions inform programming of maintenance

and investment decisions at regional and national scales (Simm and Tarrant,

2018), and could be used for leaky dams in the same way they are for traditional

flood defences. Furthermore, decisions about the design of leaky dam schemes
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could be made with greater confidence by incorporating empirically based fragility

functions in network models (Hankin et al., 2020).

5.5 Concluding remarks

Leaky dams reduced flood peak magnitude of events with a return period up to

one year by 10% on average, but their efficacy was highly variable and only a

third of the event peaks observed in the study site were significantly reduced.

Observations from UK leaky dam sites indicated that the probability of complete

failure of leaky dams during frequent flood events was low (0.01 for a 1-in-5 year

event) but increased for more extreme events (0.24 for a 1-in-100 year event).

Unrealistic expectations are unlikely to lead to sustained adoption of new

paradigms (Adams and Hulme, 2001). By empirically demonstrating the vari-

ability of leaky dam impacts on downstream flood peak magnitude, and quanti-

fying the vulnerability of leaky dams to partial and complete failure during flood

events, this research presents a critical evaluation of the benefits and hazards of

leaky dams for flood risk management. By doing so, this study helps to manage

expectations which ultimately supports the sustained adoption of working with

natural processes in flood risk management.
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Alila, Y., Hudson, R., Kuraś, P.K., Schnorbus, M., Rasouli, K. (2010). Reply to

comment by Jack Lewis et al. on “Forests and floods: A new paradigm sheds

light on age-old controversies”. Water Resources Research, 46(5).

Alila, Y., Kuras, P.K., Schnorbus, M., Hudson, R. (2009). Forests and floods: A

new paradigm sheds light on age-old controversies. Water Resources Research,

45(8), pp. 1–24.

Andrews, F., Guillaume, J. (2018). hydromad: Hydrological Model Assessment

and Development.

[Online] Available from: http://hydromad.catchment.org/

Archer, D.R. (2007). The use of flow variability analysis to assess the impact of

land use change on the paired Plynlimon catchments, mid-Wales. Journal of

Hydrology, 347(3-4), pp. 487–496.

Armstrong, J., Collopy, F. (1992). Error measures for generalizing about fore-

casting methods: Empirical comparisons. International Journal of Forecasting,

8(1), pp. 69–80.

Arnott, S., Burgess-Gamble, L., Dunsford, D., Webb, L., Johnson, D., Andison,

E., Slaney, A., Vaughan, M., Ngai, R., Rose, S., Maslen, S. (2018). Monitor-

ing and evaluating the DEFRA funded Natural Flood Management projects.

Technical Report July, Environment Agency.

[Online] Available from: http://www.gov.uk/government/publications

Astrup, R., Coates, K.D., Hall, E. (2008). Finding the appropriate level of com-

plexity for a simulation model: An example with a forest growth model. Forest

Ecology and Management, 256(10), pp. 1659–1665.

190



REFERENCES

Bailey, D.H., Ger, S., Lopez de Prado, M., Sim, A. (2015). Statistical Overfitting

and Backtest Performance. Elsevier.

Bark, R.H., Martin-Ortega, J., Waylen, K.A. (2021). Stakeholders’ views on nat-

ural flood management: Implications for the nature-based solutions paradigm

shift? Environmental Science & Policy, 115, pp. 91–98.

Bartolomei, S.M., Sweet, A.L. (1989). A note on a comparison of exponential

smoothing methods for forecasting seasonal series. International Journal of

Forecasting, 5(1), pp. 111–116.

Bell, V.A., Carrington, D.S., Moore, R.J. (2001). Comparison of Rainfall-Runoff

Models for Flood Forecasting Part 2: Calibration and evaluation of models.

Technical report, Environment Agency, Bristol.
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Appendix A

Stage-Discharge Rating

Relationships

The smoothed and quality assured stage time series were converted to discharge

through the means of rating relationships. The rating relationships were devel-

oped by calibrating 1D hydraulic models of the gauging sites to field measure-

ments of discharge. All references for citations in the appendices are included in

the references section in the main body of the thesis (p.189).

A.1 Method

Due to the small and turbulent nature of the study reaches, discharge mea-

surements were measured using slug-injection dilution methods, following Moore

(2005). Salt pulses were recorded using conductivity as a proxy at 1 second in-

tervals using Campbell Scientific CR200 Data logger with a conductivity probe.

A qualitative and a quantitative review of the suitability of the observed ratings

for rating curve extension were carried out following the Environment Agency’s

best practice guidance (Ramsbottom and Whitlow, 2003)

To extrapolate the rating relationships beyond the gauged discharge the gaug-

ing sites were modelled using 1D hydraulic models. The channel cross-sections

which formed the basis of the hydraulic models were surveyed in the Autumn-

Winter of 2019/20 using a Leica TS15i total station (TPS) with a prism reflector.
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A.1 Method

Samuels’ equation (Samuels, 1989) was used to determine the survey extent nec-

essary to capture the length of backwater affecting the gauging location. The

co-ordinates were recorded in a local co-ordinate system linked to the stage time

series data by surveying the water level at the gauge.

The gauging sites were represented as 1D steady state models in HEC-RAS

5.0.7 (USACE, 2020), which solves the De Saint Venant equations for unsteady

open channel flow. HEC-RAS is an industry standard hydraulic modelling soft-

ware (USACE, 2020) which has been shown to reliably represent flood hydro-

graphs in natural watercourses (Castellarin et al., 2009; Di Baldassarre and Mon-

tanari, 2009; Horritt and Bates, 2002) including steep watercourses (Reistad et al.,

2007). The sites were represented as 1D features because in-channel and out of

bank flows were approximately parallel and the steep gradient of the watercourse

made hysteresis in the rating curves unlikely. HEC-RAS’ mixed flow regime op-

tion was used to represent the subcritical and supercritical flows found in the

modelled reaches.

The hydraulic loss coefficients were calibrated using the observed stage-discharge

pairs. The friction coefficient, Manning’s n was varied between 0.04 and 0.07

based on the values for mountain streams recommended by Chow (1959). In the

step-pool reaches there were significant changes in elevation in bed level. In order

to stabilise the models these were computationally represented as weir structures,

as recommended in HEC-RAS documentation (Brunner, 2000). For each weir the

shape of the surveyed cross-section was used as the weir geometry and the weir

coefficient was calibrated within the range for natural weirs. The boundary con-

dition at the furthest downstream cross-section were set as the hydraulic slope,

assumed to be parallel to the surveyed bed-slope.

The fit of the modelled rating relationship to the data was assessed using the

Pearson’s correlation coefficient and root mean square error (RMSE). Bias in the

relationships with respect to the gauged points was assessed visually. For each

gauging site the best calibration run was chosen to provide a fit with the least

bias at high flows with low RMSE and high Pearson’s correlation coefficient.
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A.2 Results

A.1.1 Rating Relationship Uncertainty

Confidence intervals to represent the degree of uncertainty in the rating relation-

ships were calculated using the methodology presented by Lamb et al. (2003) for

the Environment Agency’s river gauging station data quality (GSDQ) classifica-

tion.

The standard error of the mean relationship (SMR) was calculated using

Equations (A.1)-(A.2) in log space by comparing the gauged value of discharge,

q∗i (m3/s), to the value of discharge estimated from the rating relationship, q̂∗

(m3/s), for each gauged value of stage, h∗
i (m). Finally, to obtain the 95% con-

fidence interval the SMR at each value of gauged stage was multiplied by t95,

the critical value of the two-tailed Student t distribution with N − 2 degrees of

freedom, where N is the number of gauged points (equation (A.3)).

The SMR, and therefore the width of the confidence interval, is designed to

vary with the distance of the stage of interest from the mean stage, h∗, of the

gauged stage-discharge pairs to capture the increase in uncertainty further from

the centre of the range of gauged stage. The 95% level of confidence interval

was used because it is the recommended Hydrometric Uncertainty Guidance ISO

standard (ISO/TS 25377:2007).

SEE =

√∑
i(q

∗
i − q̂∗)2

N − 2
(A.1)

SMR = SEE

√
1

N
+

(h∗ − E(h∗
i ))

2∑
(h∗

i − E(h∗
i ))

2
(A.2)

q̂∗ ± t95(SMRlnh) (A.3)

A.2 Results

A total of 146 stage - discharge pairs were collected across the study and main

channel reaches over the monitoring period. The reaches LB6 (Downs Gill), LB7

(control) and LB8 (Fall Gill) were prioritised, resulting in an empirical rating

curves with 10 to 26 points for each gauge. For the LB5 (Lock Gill) and main
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A.2 Results

channel gauges 7 points each were collected on average, covering less of the ob-

served range (see Table A.1). Fitting either a power law or exponential curve

to the data gives high values of R2 for the gauged range; Table A.1 reports the

highest R2 of the two fits.

Table A.1: Summary of empirical rating data, R2 refers to fit of power law or

exponential relationship

Reach gauging Range of stage Number of stage- R2

station gauged (%) discharge pairs

LB5 Upstream 6 8 NA

(Lock Gill) Middle 13 7 0.92

Downstream 23 8 0.46

LB6 Upstream 70 20 0.95

(Downs Gill) Downstream 76 26 0.98, 0.97

LB7 Upstream 46 21 0.92

(Control) Downstream 38 10 0.98

LB8 Upstream 66 14 0.96

(Fall Gill) Downstream 32 19 0.85

Rather than extrapolating relationships fitted to the stage-discharge pairs the

rating curves for LB6, LB7, and LB8 were extended using 1D hydraulic models

calibrated to the stage-discharge observations. The models were calibrated to

the gauged data points using Manning’s n of the channel and floodplain and weir

coefficient of the hydraulic structures used to represent steps in bed level.

Goodness of fit measures were calculated for all of the model runs. Hence, the

best fit could be determined based on the highest Pearson’s correlation coefficient,

or the lowest root mean square error (RMSE). However, as there are more data

points at lower flows these measures give a better indication of the model fit

at low flows than at high flows. As high flows are of particular interest in this

study calibration runs which showed a better fit at high flows were chosen over

calibration runs with the highest Pearson’s correlation coefficient or lowest RMSE.

Figure A.1 shows the rating relationships with the calibration data. The goodness

of fit measures for the relationships are shown in Table A.2.
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A.2 Results

Figure A.1: Modelled and calibrated rating relationships with 95% Confidence

Intervals (gauged points shown as blue ‘x’, dotted line indicates maximum ob-

served stage)
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A.2 Results

Table A.2: Model calibration run with best fit at high flows

logger channel weir flood- Pearson’s d.o.f. p value RMSE

n coefficient plain n cor. coef.

LB6U 0.06 1.4 0.03 0.97 16 5.88E-11 0.062

LB6L 0.06 1.4 0.03 0.93 15 4.03E-08 0.117

LB7U 0.07 1.4 0.03 0.98 19 1.41E-15 0.053

LB7L 0.07 1.4 0.03 0.97 9 1.16E-06 0.053

LB8U 0.06 1.4 0.03 0.99 12 1.49E-10 0.087

LB8L 0.06 1.4 0.03 0.85 17 3.15E-06 0.100
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Appendix B

Data Quality

B.1 Introduction

To avoid data quality issues which can result in incorrect or misleading statistics

(Rahm and Do, 2000) the data was subjected to a quality control process and

potential sources of error were identified from the literature and field observations.

Although the majority of uncertainty in discharge time series is usually attributed

to the uncertainty in the rating curve the error in stage measurement can be

significant (Horner et al., 2018). Sauer and Turnipseed (2010) identify datum

errors due to vertical movements, stage reading errors due to water surge and

instrument errors amongst the most common sources of error in the collection

of stage data. All references for citations in the appendices are included in the

references section in the main body of the thesis (p.189).

B.2 Quality Assurance Process

As recommended by Crochemore et al. (2020) quality assurance of the data was

carried out by visual inspection of the data. After Pastorello et al. (2014), general

trends and patterns were identified in the data to detect anomalous values through

both single variable inspections/multi-variable inspection of correlated variables

and detailed relationship examination. Single and multiple variable inspection

was carried out using the free software environment R (R Core Team, 2020)
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B.2 Quality Assurance Process

the data were interactively visualised at different scales and timeframes using

the R package Plotly (Sievert, 2020). Detailed examination of the relationship

between the upstream and downstream stage time series of each reach enabled

the detection and inspection of anomalies in detail so that hypotheses could be

developed about possible causes. Evidence was sought from field observations,

notes, photography, spot discharge gaugings, aerial photography to support or

reject the hypotheses. In the case of datum errors and rating relationship change,

where sufficient evidence was available to support these hypotheses, a datum

correction was made to the stage data.

First, all upstream stage data was plotted against all downstream stage data

recorded on each stream during the baseline and post intervention monitoring

periods (Figure B.1). Changes in the relationship between upstream and down-

stream stage can already be identified in Figure B.1. Assessing changes in the

relationship between upstream and downstream stage as a quantification of the

error in the data requires the assumption that the relationship between upstream

and downstream stage is constant and does not vary for different types of events

(e.g. short/long duration, single/multi-peaked, antecedent conditions) and the

rising or falling limb of the hydrograph. These conditions relate to storage within

the reach and are most likely satisfied due to the steep nature of the watercourses.

In the post-intervention period, however, storage elements are introduced to the

watercourse which may account for some of the spread in the data.

B.2.1 Downs Gill Example

To identify when these changes in the relationship occurred the upstream stage

was plotted against the downstream stage for each month in the monitoring period

for Downs Gill (Figure B.2). For example, Figure B.2 clearly shows that there

was a shift in the relationship on Downs Gill during March 2019 which persisted

to the end of the monitoring period.

The third step was to plot detailed plots of events during which changes in

the relationship occurred at a range of temporal resolutions to identify the start

and end point of the change if applicable. From here on the data QA process is
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B.2 Quality Assurance Process

Figure B.1: Baseline and post-intervention monitoring period relationships be-

tween upstream and downstream stage on the study streams
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B.2 Quality Assurance Process

Figure B.2: Upstream stage plotted against downstream stage for every month

in the post-intervention monitoring period on Downs Gill, the data for each month

is given in black, overlying the data for the whole monitoring period in grey. LB6U

refers to the upstream gauge, and LB6L refers to the downstream gauge on the

stream
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B.2 Quality Assurance Process

illustrated using a change which occurred on Downs Gill during Storm Gareth in

March 2019 in the post-intervention monitoring period.

It can be seen in Figure B.3 that a datum change of approximately 0.1m

occurred between the rising and falling limb of the hydrograph of Storm Gareth

in March 2019. The time series plots shows that whilst the downstream logger

returned to its original level by the 20th of March, the upstream logger dropped

to a level approximately 0.1 m lower than its original stage. There can be three

explanations for this change; either the upstream datum decreased by 0.1 m,

the downstream datum increased by 0.1 m, or a combination of the two. The

datum remained changed until the end of the monitoring period, so the change

was permanent. To determine which of these changes had occurred physical

explanations were sought.

An increase in the datum could be caused by damage to the stilling well, sed-

imentation or blockage of the stilling well, deposition of material in the gauging

cross-section, or the backwater effect from a downstream blockage or cross section

change. At the upstream logger a decrease in datum could be caused by scouring

of the cross section, the removal of sedimentation or blockage at the gauge, or

the removal of a downstream blockage causing a backwater effect. At the up-

stream logger scouring is unlikely as the gauging location is largely on bedrock,

a backwater effect is also unlikely as there is a large drop in bed level after the

gauge. Blockage at the gauge is unlikely as wrack was cleared from the loggers at

every download and would have had to be present throughout the monitoring pe-

riod before this point. Equally, sedimentation impacting the hanger length would

have been noticeable at data download and has not been noted at this logger.

Damage to the stilling well is the only remaining explanation for a permanent

drop in datum at the logger. This has not been observed but could be too subtle

to detect by eye. At the downstream logger an increase in stage can be explained

by a backwater effect caused by the collapse of a footbridge approximately 5 m

downstream of the logger (Figure B.4).

A change in datum is equivalent to a change in the rating relationship. The

same discharge would have a different stage associated with it before and after

the change in datum. The discharge-stage pairs spot-gauged before and after

Storm Gareth are shown in Figure B.5 for both the upstream and downstream
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B.2 Quality Assurance Process

Figure B.3: Downs Gill Diagnostic plot for Storm Gareth (16 March 2019) The

legend for the colours in the first plot are given as the time series shown in the

second plot
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B.2 Quality Assurance Process

Figure B.4: Collapsed footbridge causing a backwater effect at the downstream

gauge on Downs Gill
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B.2 Quality Assurance Process

gauge. Fitting curves to the points shows that there is indeed a change in the

rating relationship at the downstream gauge, and not at the upstream gauge. The

magnitude of the change varies with stage, as would be expected as the backwater

effect increases as more of the collapsed bridge becomes submerged. At the top of

the gauged range (1.3 m3/s) the difference in stage before and after storm Gareth

is 0.17 m, although the relationship is extrapolated above 0.9 m3/s before Storm

Gareth. At the top of the range gauged in both periods (0.9 m3/s) the difference

in stage is 0.15 m. Within the gauged range at 0.6 m3/s the difference is 0.13

m, further reducing to 0.10 m and 0.04 m at 0.3 m3/s and 0.1 m3/s respectively.

To improve confidence in the extrapolated relationship before Storm Gareth the

rating curve is modelled in HEC-RAS 1D and a high flow point (2 m3/s) is added

and used to fit the logarithmic relationship. The rating curve after Storm Gareth

is not added to for two reasons; higher flows (1.3 m3/s) have been gauged after

Storm Gareth so less extrapolation is required and modelling of the collapsed

bridge in HEC-RAS 1D introduces uncertainties.

Fitting linear regression relationships to the data before and after Storm

Gareth shows that whilst the data from the period before Storm Gareth is ap-

proximately linear (R2 = 0.99), the data after Storm Gareth is less well explained

by the linear relationship (R2 = 0.91). This makes sense, as the impact of the

collapsed bridge has not been observed to be linear in the rating relationships

(Figure B.6).

Whether this difference in stage can be attributed to the difference in the

rating relationship at the lower logger is assessed by comparing the differences

in the two linear relationships shown in Figure B.6 with the difference between

the logarithmic rating relationships at the downstream logger shown in Figure

B.5. The differences are shown in Table B.1, it can be seen that at the bottom

of the range of stage gauged on the lower gauge of Downs Gill the difference in

the rating relationship and the difference in the upstream to downstream stage

relationship before and after Storm Gareth is similar. At higher stages the rating

relationship gives a smaller difference before and after Storm Gareth than the

linear relationships between upstream and downstream logger suggest. However,

as can be seen in Figure B.6 the linear relationships over-estimate the difference

at high stage. This fit could be improved by fitting non-linear relationships to the
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Figure B.5: Rating Curves showing spot gaugings and their exponential rela-

tionship before and after Storm Gareth
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Figure B.6: Linear regression before and after Storm Gareth
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data. However, the data is adjusted using the difference in the rating relationship,

not the difference in upstream to downstream stage. This comparison merely

serves as a sense check to ascertain that the magnitude of change is comparable

so that the physical explanation can be deemed as viable.

Table B.1: Difference in lower gauge stage on Downs Gill before and after Storm

Gareth

Lower Stage difference in difference in upstream to

(m) rating relationship (m) downstream stage relationship (m)

0.65 0.11 0.17

0.6 0.10 0.15

0.5 0.09 0.13

0.4 0.09 0.11

0.3 0.08 0.09

By plotting the event peak in detail it becomes apparent that there is a drop in

stage at the upstream logger during the event. The data drops by approximately

0.1 m on the upper logger, but then jumps back up, by about 0.05 m 20 minutes

later so that the level goes from fluctuating around 0.36 m, to 0.30 m to 0.34 m

whilst the lower logger goes from fluctuating around 0.63 m to 0.64 m. Whilst it

is possible that this change persists the assumption is made here that the data

drops and returns to normal during the event. This is a key assumption. If the

datum was adjusted for this change it would make the upstream peak magnitude

of this event and all subsequent events 0.1 m greater. However, as can be seen in

Figure B.5 the rating relationship before and after Storm Gareth is reasonably

constant, so it is unlikely that a permanent change occurred at the upstream

logger.

Finally, the downstream logger data was adjusted from Storm Gareth (16

March 2019) to the end of the monitoring period. It is reasoned that the change

in relationship between the upstream and downstream time series was brought

about by the varying backwater effect of a footbridge which collapsed into the

channel downstream of the downstream logger during Storm Gareth. Stage-

discharge spot-gaugings taken before and after Storm Gareth, and extrapolated
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Figure B.7: Peak of Storm Gareth

using a HEC-RAS 1D hydraulic model are used to adjust the time series data

after storm Gareth. As shown in Figure B.5 the relationship between stage (x)

and discharge (Q) is described well by a logarithmic equation both before and

after Storm Gareth (R2 ≥ 0.97). Equation (B.1) and (B.2) give the relationship

between stage (x) and discharge (Q) before and after Storm Gareth, B and b are

exponents of the logarithmic relationship of the data before Storm Gareth and A

and a are exponents of the logarithmic relationship after Storm Gareth.

Q = Bebxbefore (B.1)

Q = Aeaxafter (B.2)

As Q is equal in both equations it follows that the adjustment required to

change xafter into xbefore is given by equation B.4.

Bebxbefore = Aeaxafter (B.3)

xbefore =
Aeaxafter

B

1

B
(B.4)
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Figure B.8: Downs Gill Diagnostic plot of the rising limb and peak of Storm

Gareth used to detect the point in time at which the change in the relationship

occurred
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It should be noted that as this adjustment is derived from gauged flows un-

certainties are introduced, especially beyond the range of gauged flows where

the relationship is extrapolated (stage >0.47 m before Storm Gareth, and Stage

>0.65 m after Storm Gareth). The highest stage recorded during the monitoring

period at the lower gauge on Downs Gill is 0.77 m in unadjusted terms. To im-

prove the extrapolated relationship the rating curve at the lower gauge on Downs

Gill was modelled in HEC-RAS 1D. A high flow point (2 m3/s) was obtained

from the model and added to the observed rating curve to increase confidence

in the extrapolated relationship. This results in the adjustment shown in Figure

B.9. Additionally, the erroneous data recorded in February 2020 was removed

following a similar evidence gathering procedure. Figure B.9 shows the original

and adjusted data for Downs Gill.

Table B.2: Data adjustments for Downs Gill

Gauge from to adjustment

Upper 2019-02-03 00:00 2019-02-03 07:00 Data removed

Lower 2019-03-16 09:25 2020-02-17 Non-linear datum adjustment

(end of monitoring period) using equation (B.4) with

B = 0.0005

b = 16.441

A = 0.0036

a = 9.0608

B.2.2 Fall Gill Example

Figure B.10 gives an example of the changing relationship between upstream and

downstream stage during the baseline monitoring period. For the first 10 months

the relationship appears relatively constant, but in January 2018 the downstream

stage was 0.07 m lower for a given upstream stage than in the preceding months

and this continues into February before changing back to its original level in

March 2018. The change coincided with the dates on which the data on the

downstream stage logger was downloaded so it was assumed that it was due to
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Figure B.9: Upstream stage plotted against downstream stage on Downs Gill

for the post-intervention monitoring period before and after data adjustment
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a change in the hanger length due to improper replacement of the logger and

an appropriate correction was made to the data. In Figure B.11 a sudden drop

in stage at the upstream logger on stream 3 during Storm Gareth (16th March

2019) in the post-intervention monitoring period can be seen. The start and end

points of this change could be identified by plotting upstream against downstream

stage for the event, and so the data was corrected. It was possible to correct the

data in the above examples because it was clear at which logger the change had

occurred and start and end points could readily be identified because the changes

were sudden rather than gradual. For example, in Figure B.12 it can be seen

that there is a small change (<0.05 m) in the relationship between upstream and

downstream stage which occurred when the upstream stage was around 0.30 m,

however, there was no step change in the time series plot for the event and so a

correction to the data could not be justified.

B.2.3 Data Corrections

This process was repeated for all identified changes in the relationship between

upstream and downstream stage for all streams and for both the baseline and

post-intervention monitoring period. A summary of the data adjustments is given

in Table B.3. Errors below 0.05 m were common but were too small to be detected

using the methods described here because they often gradual rather than sudden

which made their start and end points difficult to detect, particularly where they

were a similar magnitude to the natural fluctuations of the water level.

Gauge from to adjustment period

LB5U 17/03/2018 17:00 18/03/2018 12:00 Data removed before
LB5U 12/02/2018 00:00 15/02/2018 00:00 Data removed before
LB5U 07/01/2018 18:00 09/01/2019 00:00 Data removed before
LB5U 08/12/2017 08:00 11/12/2017 00:00 Data removed before
LB5U 16/12/2017 04:00 16/12/2017 12:30 Data removed before
LB5L 12/02/2018 00:00 15/02/2018 00:00 Data removed before
LB5L 28/12/2017 20:00 29/12/2017 18:00 Data removed before
LB7U 13/09/2017 02:28 13/09/2017 03:20 Data not to be used before

in magnitude analysis
LB8L 12/12/2017 16:00 02/02/2018 20:15 +0.066 m before
LB8L 18/01/2018 00:00 18/01/2018 23:59 Data removed before
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LB8U 27/07/2018 16:00 27/09/2018 10:04 Data removed before
LB8L 27/07/2018 16:00 27/09/2018 10:04 Data removed before
LB5U 17/01/2019 19:00 18/01/2019 17:30 Data removed after
LB5U 22/01/2019 22:00 24/01/2019 14:30 Data removed after
LB5U 28/01/2019 07:00 01/02/2019 09:00 Data removed after

LB5M U 16/03/2019 07:46 17/02/2020 10:34 -0.06m after
LB5M L 16/03/2019 07:46 17/02/2020 10:34 -0.06m after
LB5U 18/11/2019 17:30 19/11/2019 13:30 Data removed after
LB5U 01/12/2019 18:30 02/12/2019 00:00 Data removed after
LB5L 17/01/2019 22:00 18/01/2019 12:00 Data removed after
LB5L 23/01/2019 03:00 23/01/2019 12:00 Data removed after

LB5M U 16/03/2019 07:46 17/02/2020 10:34 -0.06m after
LB5M L 16/03/2019 07:46 17/02/2020 10:34 -0.06m after
LB5L 14/05/2019 00:00 05/07/2019 00:00 Data not to be used after

in timing analysis
LB6U 03/02/2019 00:00 03/02/2019 07:00 Data removed after
LB6L 16/03/2019 09:25 17/02/2020 10:34 Non-linear datum after

adjustment
LB7U 09/02/2020 02:37 17/02/2020 10:34 Data not to be used after

in magnitude analysis
LB7U 16/03/2019 08:58 16/03/2019 17:35 Data not to be used after

in magnitude analysis
LB7L 09/02/2020 02:37 17/02/2020 10:34 Data not to be used after

in magnitude analysis
LB8U 12/09/2018 00:00 27/09/2018 09:00 +0.146 m after
LB8L 12/09/2018 00:00 27/09/2018 09:00 +0.146 m after
LB8U 16/03/2019 09:16 16/03/2019 18:55 +0.09 m after
LB8L 09/02/2020 10:28 17/02/2020 10:34 +0.08 m after
LB8L 09/02/2020 03:15 17/02/2020 10:34 +0.08 m after

Table B.3: Summary of data corrections, U= upper gauge, M = middle gauge,

L= lower gauge, LB5= Lock Gill, LB6 = Downs Gill, LB8= Fall Gill
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Figure B.10: Upstream stage (labelled LB8U) plotted against downstream stage

(labeled LB8L) on Fall Gill for every month in the baseline monitoring period per

month in black, overlying the data from the entire baseline monitoring period in

grey
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Figure B.11: Upstream (LB8U) and downstream (LB8L) stage measured on

Fall Gill during Storm Gareth
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Figure B.12: Detailed relationship examination of upstream and downstream

stage data collected on the control stream, West Gill, during a high flow event.

The colouring of the time series plots provides the legend for the scatter plot.
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B.3 Impact of uncertainty on quantifying change

in peak stage magnitude and timing

Errors in the stage data identified during the QA process led to high levels of un-

certainty in the peak magnitudes observed in the baseline and post-intervention

data. Three types of common data quality issues were identified in the data.

Namely, problems of shifting control (datum errors), changes in the rating rela-

tionship and missing data. Figure B.13 shows field observations of some of the

sources of these errors. Figure B.13A illustrates the problem of monitoring high

flows which cause afflux at the gauge and cause large fluctuations in the recorded

stage levels. The fluctuations, or noise, increased with the magnitude of the stage

up to a magnitude of ±0.1 m. However, the level fluctuated about a mean stage

and so the data could be smoothed using the procedure described in Section 2.2.

In Figure B.13B it can be seen that the gauges were prone to blockage by coarse

woody material, which affected the readings of stage at the gauge by changing

the local dynamics (e.g. afflux as seen in Figure B.13A). Additionally, silt was

deposited in the bottom of stilling wells which could lead to the logger no longer

being suspended at the correct level. Erosion of the river banks was observed at

the upstream gauge on Fall Gill (Figure B.13D) but the impacts of this could

not be discerned from the data. The collapse of a footbridge 5 m downstream of

Downs Gill (Figure B.13C), on the other hand, caused a backwater effect which

affected the logger during high flows. As described in the previous section spot

discharge gaugings performed before and after the collapse of the footbridge were

used to calculate the magnitude of the backwater effect at a range of flows. The

data collected following the bridge collapse were adjusted accordingly.

The error which was most commonly identified in the stage data was sudden

or gradual ‘jumps’ in the water level, or ‘datum errors’. The distinction made

here between datum errors and rating relationship errors is that datum errors

were of constant magnitude across the range of flows, whereas for changes in

the rating relationship the magnitude of the stage error varied with the stage

magnitude. Datum errors occurred on all of the reaches, in both the pre and post

intervention monitoring periods. The magnitude of the datum errors varied from

<0.05 m to 0.15 m. Where start and end points could be readily identified by
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Figure B.13: Site observations of sources of data quality problems. A: Afflux at

stilling well during high flows. B: Material deposited on stilling well. C: Gauging

station affected by backwater effect due to collapsed footbridge. D: Bank collapse

at gauging station
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detailed examination of time series and the relationship between upstream and

downstream stage these datum errors were corrected. However, this was often not

possible as the changes occurred gradually rather than instantaneously making

them difficult to detect, particularly if they were of a similar magnitude to natural

fluctuations in the data. Consequently, datum errors <0.05 m could not be

corrected and are common in the data. To take this uncertainty into account the

stage measurements (h) are presented with an estimated error (Eest) of h±0.05m.

Errors in timing due to the internal clock on the upstream and downstream gauge

manifested themselves as loops in plots of upstream against downstream stage.

Timing errors were not common and were therefore not corrected.

B.3.1 Propagation of stage datum errors to stage-discharge

rating relationship

The stage data uncertainty was reflected to some degree in the scatter and confi-

dence intervals of the stage-discharge pair measurements, shown in Figure B.14.

The uncertainty in the rating relationships varied between gauging stations due

to the number and spread of the stage-discharge pairs. When only considering

the uncertainty associated with the rating relationship at a discharge of 1 m3/s

the width of the 95% uncertainty bound varied from 0.05 m3/s to 1.33 m3/s, or

5% to 133% of the flow. Taking into account the uncertainty in the stage series

measurements, ±Eest, the error propagates to confidence interval widths >70%

of the flow at 1m3/s on all gauges.

B.3.2 Comparison of events before and after installation

of leaky dams

Two single-peaked events with an upstream peak magnitude of approximately

1 m3/s on Downs Gill were observed in each the baseline and post-intervention

monitoring period (Figure B.15). The change in peak magnitude and timing

from upstream to downstream for each event is given in Table B.4 and Table

B.5 respectively. By comparing events of similar magnitude before and after the

installation of leaky dams it can be seen that, when taking into account stage
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Figure B.14: Rating relationship uncertainty (dark grey is 95% CI based on

rating relationship uncertainty alone, light grey is the uncertainty incorporating

Eest, the error in the stage measurements
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datum errors, the uncertainty in the discharge data is too great to discern any

differences in the stream response. On stream 1 (Downs Gill) the data appears to

show that installing leaky dams increased downstream event peak magnitude, but

on the control stream the downstream peak magnitude response appears to have

decreased in the post-intervention monitoring period despite no leaky dams being

installed in the stream. On stream 3 (Fall Gill) downstream magnitude response

appears decreased during storm Erik but increased during storm Atiyah. Finally,

downstream discharge was smaller than upstream discharge during several of the

events (e.g. for all four events on Stream 3 (Fall Gill) in Figure B.15), indicating

further problems with the data or rating relationships.

Table B.4: Percentage change in peak magnitude from upstream to downstream

for events in Figure B.15. The error when only the rating curve uncertainty is

taken into account is given in brackets.

Baseline Post-intervention

∆Qp (%) ∆Qp (%)

Event Dec ‘17 Brian Erik Atiyah

Stream 1 7 ±95 (20) 10 ±95 (20) -43 ±90 (23) -37 ±94 (22)

Stream 2 (Control) 8 ±98 (15) 11 ±97 (15) 32 ±85 (17) 34 ±87 (16)

Stream 3 44 ±143 (63) 32 ±151 (67) 45 ±164 (76) 11 ±171 (74)

Table B.5: Change in event peak timing (mins) from upstream to downstream

for events in Figure B.15

Baseline Post-intervention

∆Qp (%) ∆Qp (%)

Event Dec ‘17 Brian Erik Atiyah

Stream 1 -13 18 7 -2

Stream 2 (Control) -4 -6 39 -9

Stream 3 -35 -17 14 28

By plotting the ∆Qp against Qp for all observed events (Figure B.17), along

with the confidence intervals it can be seen that positive and negative values
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Figure B.15: High flow events during baseline and post-intervention period.

In the first panel a high flow event on 13th of December 2017 and Storm Erik

(February 2019) are compared. In the second panel Storm Brian (October 2017)

and Storm Atiyah (December 2019) are compared. The shaded areas indicate

the 95% confidence intervals, the darker shading indicates uncertainty due to

discharge, and the lighter shading includes uncertainty due to stage datum errors
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of ∆Qp were observed on all three streams throughout the monitoring period,

indicating that the data problems illustrated in Figure B.15 are common in the

data. On the control stream and on stream 3 (Fall Gill) there appears to be

a trend of increasing ∆Qp with Qp whilst on stream 1 (Downs Gill) the ∆Qp

appears to decrease with Qp . However, in all cases the confidence intervals

are too wide to assess whether there was a change in stream response in the

post-intervention period. The results on Stream 1 (Downs Gill) illustrate the

importance of considering datum change errors as the points lie outside of the

rating relationship confidence interval.

Figure B.16: Peak magnitude change (upstream magnitude – downstream mag-

nitude) boxplots.
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Figure B.17: Uncertainty in the measurement of event peak magnitude is

greater than the change in peak magnitude from upstream to downstream of

the study reaches. Points indicate the change in peak magnitude from upstream

to downstream in the reach. The dark grey shaded area corresponds to the 95%

uncertainty interval in the rating relationships whilst the light grey shaded area

takes into account the uncertainty due to shifts up to ±0.05 m in the stage datum.

The median event peak timing increased by 5 minutes on every reach, in-

cluding the control reach between the baseline and post-intervention monitoring

period (Figure B.18). The change in timing of the centroid of the event, on the

other hand, differed between streams. On the control reach the event centroid

passed the downstream gauge 10 minutes earlier on average (median) during the

post intervention monitoring period, whilst on the impact reaches the centroid

travel time increased. On LB8 (Fall Gill) the centroid travel time increased by

4 minutes (not significant), but on LB6 (Downs Gill) the centroid travel time

increased by 40 minutes, a significant difference (p <0.05). However, in the base-

line monitoring period the median peak centroid travel time was -33 minutes,

suggesting that the event centroid passed the upstream gauge before the down-

stream gauge; indicative of further data problems. Although the median values

of peak delay were similar (with the exception of stream 1 (Downs Gill)) in the

baseline and post-intervention monitoring period the upper and lower quartiles

were higher in the post intervention monitoring period for both impact streams

using either method of defining peak delay (Figure B.18). The event peak timing

of the first quartile of events increased by 16 and 10 minutes on the two impact
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reaches, and the third quartile increased by 8 and 7 minutes whilst on the con-

trol reach the first and third quartile decreased by 5 and 4 minutes respectively.

This means that whilst the median peak delay was similar in the baseline and

post intervention monitoring periods, there were fewer short peak travel times

and more long peak travel times following the installation of leaky dams on the

impact reaches.

Figure B.18: Boxplots of (a) peak travel time; (b) event centroid travel time

Monotonic relationships between event peak delay and peak event magnitude

were not evident in either the baseline or post intervention data (Figure B.19);

the Spearman’s rank correlation was between -0.45 and 0.28 for all groups of

data. Inspection of the results is not complete without an appreciation of the

uncertainties in the underlying stage data. During the quality assurance process

inconsistencies in the stage datum and rating relationships were noted. Where

these inconsistencies were large (>0.05 m) the data was corrected based on phys-

ical evidence and repeat discharge measurements. However, smaller datum errors

(<0.05 m) could not be corrected as it was difficult to detect when they gradu-

ally started or ended. These smaller errors were found to be common in the data

from all of the gauging stations and are thought to be due to blockage of the

logger or river cross section with material carried by the stream during high flow

events. The stage data (h) series were therefore given a range of h± 0.05 before

being converted to discharge using the rating relationships with 95% confidence

intervals developed in Appendix A.
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The level of uncertainty associated with the stage time series and rating re-

lationship, shaded grey and dark grey respectively in Figure B.17, precludes the

assessment of leaky dam impacts on event peak magnitude. It can be seen in

Figure B.17 that the difference between the upstream and downstream peak mag-

nitude is smaller (generally <±0.5 m3/s) than the uncertainty in the data, which

is >0.5m3/s for all but the smallest events.

The majority of the points lie within the 95% uncertainty bounds of the rating

relationship, indicating that even without taking the datum errors into account

the results would be inconclusive. On Downs Gill the changes in peak magnitude

recorded after the installation of leaky dams are larger than the uncertainty as-

sociated with the rating relationship. However, the change in peak magnitude is

smaller than the uncertainty in the stage datum. Field evidence and inspection

of the event hydrographs indicates that the apparent change in the relationship

on Downs Gill (Figure B.17a) is likely to be due to a datum error following Storm

Callum, which coincided with the installation of the dams.
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Figure B.19: Correlation of event characteristics a) peak travel time (b) event

centroid travel time

265



Appendix C

Flood Frequency Estimation

Introduction

Flood frequency estimation was used to assess the extremeness of flood events

(expressed as return period) based on long term records of annual maximum

and peak over threshold data from Environment Agency operated hydrological

monitoring stations.

The analysis followed the methodology presented in the standard hydrology

text of Shaw et al. (2011). Generalised extreme value and Pareto distributions

were fitted by maximum likelihood estimation to both the annual maximum and

peak over threshold data to determine the best fit for estimating flood return

period of the studied flood events. Goodness of fit plots, goodness of fit measures

and standard errors estimates were used to evaluate the fit of the distributions

to the data.

This appendix presents flood frequency estimation analysis for each Environ-

ment Agency operated hydrological monitoring station used in this study in the

form of R markdown output. The R markdown displays R code alongside its

outputs, including figures and narrative text.
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Flood Frequency Estimation – Kilgram 

Zora van Leeuwen 

11/02/2020 

C.1 Introduction 

A GEV Distribution is estimated for the AMAX series downloaded from the 

National River Flow Archive https://nrfa.ceh.ac.uk/ using the MLE method. 

Goodness of fit plots are produced to evaluate the fit of the data along with 
goodness of fit measures such as the Negative log-likelihood, AIC and BIC. 

Standard Error Estimates are also provided. The fitted parameters are used to 
calculate the Annual Exceedance Probability (AEP) and Return Period (RP), the 
inverse of the AEP for a given level. 

C.2 AMAX Data 

Data file: Input/Other catchments/27034 - Ure at Kilgram Bridge AMAX.csv 

setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
AMAX_data<-read.csv(params$filename) 
head(AMAX_data) 

##   Rank Water.Year       Date  Time Stage..m. Flow..m3.s.   Rating 
## 1  N/A  1966-1967 18/08/1967 00:00     3.500     204.126  Extrap. 
## 2    6  1967-1968 23/03/1968 00:00     5.170     340.544  Extrap. 
## 3   32  1968-1969 31/10/1968 00:00     3.690     219.195  Extrap. 
## 4   45  1969-1970 11/11/1969 00:00     3.260     185.287  Extrap. 
## 5   38  1970-1971 12/02/1971 00:00     3.550     208.079 In Range 
## 6   47  1971-1972 19/01/1972 09:45     3.038     168.069 In Range 
##            Source Ref Comments 
## 1           Chart  A1       NA 
## 2           Chart  A1       NA 
## 3           Chart  A1       NA 
## 4           Chart  A1       NA 
## 5           Chart  B3       NA 
## 6 Digital Archive  B3       NA 

https://nrfa.ceh.ac.uk/


C.3 Flood Frequency Estimation – Kilgram 
 

268 
 

 

Plot of the AMAX series which is used to fit the GEV distribution 

The plot shows the AMAX series contained in the Input/Other 
catchments/27034 - Ure at Kilgram Bridge AMAX.csv dataset. 

C.3 Fit GEV to AMAX series 

The Package extRemes is used ( Eric Gilleland, Richard W. Katz (2016). 

extRemes 2.0: An Extreme Value Analysis Package in R. Journal of Statistical 
Software, 72(8), 1-39. doi:10.18637/jss.v072.i08). The estimated shape 

parameter < 0, indicating a Weibull distribution. 

library(extRemes) 

fit<-fevd(AMAX_data$Flow..m3.s.,type="GEV") 
fit 
## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Estimation Method used: MLE" 
##  
##  Negative Log-Likelihood Value:  282.7625  
##  
##  Estimated parameters: 
##    location       scale       shape  
## 225.8527167  52.0108047  -0.1676668  
##  
##  Standard Error Estimates: 

doi:10.18637/jss.v072.i08
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##  location     scale     shape  
## 8.0960274 5.7053478 0.1024526  
##  
##  Estimated parameter covariance matrix. 
##            location      scale       shape 
## location 65.5456589  8.8436137 -0.32775934 
## scale     8.8436137 32.5509937 -0.27895267 
## shape    -0.3277593 -0.2789527  0.01049654 
##  
##  AIC = 571.525  
##  BIC = 577.3787 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI    Estimate 95% upper CI 
## location  209.9847947 225.8527167 241.72063873 
## scale      40.8285284  52.0108047  63.19308092 
## shape      -0.3684703  -0.1676668   0.03313672 

Plotting the diagnostic plots shows a reasonable fit is achieved. 

plot(fit) 
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 ## AMAX 
Results The parameter fit and 95% confidence intervals shown in the return 

level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit,type="rl") 
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return.level(fit,do.ci=TRUE) 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##                       95% lower CI Estimate 95% upper CI 
## 2-year return level       227.5725 244.3414     261.1104 
## 20-year return level      316.6359 347.5322     378.4284 
## 100-year return level     336.6664 392.6134     448.5604 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:157, 303. 

level_from_GEV_fun<-function(fit,level){ 
  #Get parameters 
  u<-fit$results$`par`[["location"]] 
  d<-fit$results$`par`[["scale"]] 
  e<-fit$results$`par`[["shape"]] 
  z<-level 
   
  #calculate from Gumbel distribution equation 
  a<-e*((z-u)/d)#intermediate 
  b<-(1+a)^(-1/e)#intermediate 
  P<-exp(-b)# Probability 
   
  return(P) #Return the probability 
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} 
 
#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit) 
P 

## [1] 0.03668397 0.83386077 

AEP<-1-P 
AEP 

## [1] 0.9633160 0.1661392 

RP<-1/AEP #return period (years) 
RP  

## [1] 1.038081 6.019048 

For small return period events (<5 years) the distribution obtained using the 
AMAX and POT series are different (see http://evidence.environment-

agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4). 
Hence, Fit a Generalised Pareto Distribution to the POT data instead. 

C.4 Fit distribution to POT data 

##POT Data Data file: Input/Other catchments/27034 - Ure at Kilgram 
Bridge POT.csv 

setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
POT_data<-read.csv(params$filename_POT) 
POT_data$Date<-as.Date(POT_data$Date, format="%d/%m/%Y") 
 
head(POT_data) 

##   Rank       Date  Time Stage..m. Flow..m3.s.  Rating Source Ref Comments 
## 1  111 1967-08-18 00:00      3.50     204.126 Extrap.  Chart  A1       NA 
## 2  163 1967-10-01 00:00      3.26     185.287 Extrap.  Chart  A1       NA 
## 3  182 1967-10-03 00:00      3.19     179.836 Extrap.  Chart  A1       NA 
## 4  236 1967-10-07 00:00      3.04     168.223 Extrap.  Chart  A1       NA 
## 5  147 1967-10-09 00:00      3.34     191.542 Extrap.  Chart  A1       NA 
## 6  118 1967-10-14 00:00      3.45     200.183 Extrap.  Chart  A1       NA 

summary(POT_data$Flow..m3.s.) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   162.5   177.5   197.4   209.6   228.9   380.4 

http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
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 First, try to fit a 
Generalised-Pareto Distribution 

#estimate number of years in POT series 
library(zoo) 
years<-as.yearmon(max(POT_data$Date))-as.yearmon(min(POT_data$Date)) 
 
#Terrible fit with the GP 
fit_POT_GP<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GP",span=years) 
plot(fit_POT_GP) 
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GP Distribution does not fit the data, hence the GEV distribution is used again. 

#Try GEV instead 
fit_POT_GEV<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GEV",span=years) 
fit_POT_GEV 
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##  
## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Estimation Method used: MLE" 
##  
##  
##  Negative Log-Likelihood Value:  1268.453  
##  
##  
##  Estimated parameters: 
##    location       scale       shape  
## 185.8352492  22.4679962   0.4056559  
##  
##  Standard Error Estimates: 
##  location     scale     shape  
## 1.7240597 1.5540468 0.0790239  
##  
##  Estimated parameter covariance matrix. 
##             location       scale        shape 
## location  2.97238181  1.97830455 -0.058661191 
## scale     1.97830455  2.41506147 -0.023340759 
## shape    -0.05866119 -0.02334076  0.006244777 
##  
##  AIC = 2542.906  
##  
##  BIC = 2553.565 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI    Estimate 95% upper CI 
## location  209.9847947 225.8527167 241.72063873 
## scale      40.8285284  52.0108047  63.19308092 
## shape      -0.3684703  -0.1676668   0.03313672 

plot(fit_POT_GEV) 
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The GEV Distribution produces a reasonable fit at lower return periods.The 
estimated shape parameter is >0, indicating a Frechet distribution is likely. 

##POT Results The parameter fit and 95% confidence intervals shown in the 
return level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit_POT_GEV,type="rl") 
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return.level(fit_POT_GEV,do.ci=TRUE) 

## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Normal Approx." 
##                     95% lower CI Estimate 95% upper CI 
## 2-year return level       190.4628 194.7137     198.9646 
## 20-year return level      278.7249 315.2383     351.7516 
## 100-year return level     351.3596 488.4078     625.4560 

The GEV distribution equation is used to calculate the AEP and RP for the 

required return levels:157, 303. 

#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit_POT_GEV) 
P 

## [1] 0.002185829 0.941074948 

AEP<-1-P 
AEP 

## [1] 0.99781417 0.05892505 

RP<-1/AEP #return period (years) 
RP  

## [1]  1.002191 16.970711  
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Flood Frequency Estimation - Leck 

Zora van Leeuwen 

11/02/2020 

C.5 Introduction 

A GEV Distribution is estimated for the AMAX series downloaded from the 

National River Flow Archive https://nrfa.ceh.ac.uk/ using the MLE method. 

Goodness of fit plots are produced to evaluate the fit of the data along with 

goodness of fit measures such as the Negative log-likelihood, AIC and BIC. 
Standard Error Estimates are also provided. The fitted parameters are used to 
calculate the Annual Exceedance Probability (AEP) and Return Period (RP), the 

inverse of the AEP for a given level. 

C.6 AMAX Data 

Data file: Input/Other catchments/Leck/33037 - Bedford Ouse at Newport 
Pagnell AMAX.csv 

setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
AMAX_data<-read.csv(params$filename) 
head(AMAX_data) 

##   Rank Water.Year       Date  Time Stage..m. Flow..m3.s. Rating          S
ource 
## 1    1  1997-1998 10/04/1998 10:30       N/A       133.0    N/A Digital Ar
chive 
## 2   10  2000-2001 13/02/2001 17:45       N/A        82.5    N/A Digital Ar
chive 
## 3   11  1980-1981 28/04/1981 07:30       N/A        82.3    N/A Digital Ar
chive 
## 4   12  2015-2016 10/03/2016 12:15       N/A        78.4    N/A Digital Ar
chive 
## 5   13  2007-2008 17/01/2008 01:00       N/A        77.5    N/A Digital Ar
chive 
## 6   14  1985-1986 11/01/1986 14:45       N/A        74.0    N/A Digital Ar
chive 
##   Ref Comments 
## 1 N/A          
## 2 N/A          
## 3 N/A          
## 4 N/A          
## 5 N/A          
## 6 N/A 

https://nrfa.ceh.ac.uk/
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Plot of the AMAX series which is used to fit the GEV distribution 

The plot shows the AMAX series contained in the Input/Other 
catchments/Leck/33037 - Bedford Ouse at Newport Pagnell AMAX.csv 

dataset. 

C.7 Fit GEV to AMAX series 

The Package extRemes is used ( Eric Gilleland, Richard W. Katz (2016). 

extRemes 2.0: An Extreme Value Analysis Package in R. Journal of Statistical 
Software, 72(8), 1-39. doi:10.18637/jss.v072.i08). The estimated shape 

parameter < 0, indicating a Weibull distribution. 

library(extRemes) 

fit<-fevd(AMAX_data$Flow..m3.s.,type="GEV") 
fit 

##  
## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Estimation Method used: MLE" 
##  
##  Negative Log-Likelihood Value:  228.1423  
##  
##  Estimated parameters: 
##   location      scale      shape  

doi:10.18637/jss.v072.i08
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## 51.1756567 24.6094379 -0.2076387  
##  
##  Standard Error Estimates: 
##   location      scale      shape  
## 3.84791293 2.65009226 0.07807907  
##  
##  Estimated parameter covariance matrix. 
##            location      scale        shape 
## location 14.8064339  0.9574219 -0.104519878 
## scale     0.9574219  7.0229890 -0.101435204 
## shape    -0.1045199 -0.1014352  0.006096341 
##  
##  AIC = 462.2847  
##  BIC = 467.9601 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI   Estimate 95% upper CI 
## location   43.6338859 51.1756567  58.71742742 
## scale      19.4153526 24.6094379  29.80352334 
## shape      -0.3606709 -0.2076387  -0.05460654 

Plotting the diagnostic plots shows a reasonable fit is achieved. 

plot(fit) 
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 ## AMAX 
Results The parameter fit and 95% confidence intervals shown in the return 

level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit,type="rl") 
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return.level(fit,do.ci=TRUE) 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##                       95% lower CI  Estimate 95% upper CI 
## 2-year return level       52.03774  59.86067     67.68359 
## 20-year return level      93.66325 105.72971    117.79618 
## 100-year return level    105.55448 124.09572    142.63696 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:51.23, 63.7. 

level_from_GEV_fun<-function(fit,level){ 
  #Get parameters 
  u<-fit$results$`par`[["location"]] 
  d<-fit$results$`par`[["scale"]] 
  e<-fit$results$`par`[["shape"]] 
  z<-level 
   
  #calculate from Gumbel distribution equation 
  a<-e*((z-u)/d)#intermediate 
  b<-(1+a)^(-1/e)#intermediate 
  P<-exp(-b)# Probability 
   
  return(P) #Return the probability 



C.8 Flood Frequency Estimation - Leck 
 

283 
 

} 
 
#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit) 
P 

## [1] 0.3686920 0.5576691 

AEP<-1-P 
AEP 

## [1] 0.6313080 0.4423309 

RP<-1/AEP #return period (years) 
RP  

## [1] 1.584013 2.260751 

For small return period events (<5 years) the distribution obtained using the 
AMAX and POT series are different (see http://evidence.environment-

agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4). 
Hence, Fit a Generalised Pareto Distribution to the POT data instead. 

C.8 Fit distribution to POT data 

##POT Data Data file: Input/Other catchments/Leck/33037 - Bedford Ouse at 
Newport Pagnell POT.csv 

setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
POT_data<-read.csv(params$filename_POT) 
POT_data$Date<-as.Date(POT_data$Date, format="%d/%m/%Y") 
 
head(POT_data) 

##   Rank       Date  Time Stage..m. Flow..m3.s. Rating          Source Ref 
## 1    7 1979-12-15 08:45       N/A        87.1    N/A Digital Archive N/A 
## 2    6 1979-12-29 02:30       N/A        88.6    N/A Digital Archive N/A 
## 3   34 1980-08-16 20:15       N/A        65.2    N/A Digital Archive N/A 
## 4  116 1980-12-21 03:30       N/A        41.2    N/A Digital Archive N/A 
## 5   75 1981-03-03 15:00       N/A        49.7    N/A Digital Archive N/A 
## 6   50 1981-03-12 20:45       N/A        57.5    N/A Digital Archive N/A 
##   Comments 
## 1       NA 
## 2       NA 
## 3       NA 
## 4       NA 
## 5       NA 
## 6       NA 

summary(POT_data$Flow..m3.s.) 

http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
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##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   34.30   39.33   47.30   53.58   62.67  133.00 

 First, try to fit a 
Generalised-Pareto Distribution 

#estimate number of years in POT series 
library(zoo) 
years<-as.yearmon(max(POT_data$Date))-as.yearmon(min(POT_data$Date)) 
 
#Terrible fit with the GP 
fit_POT_GP<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GP",span=years) 
plot(fit_POT_GP) 
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GP Distribution does not fit the data, hence the GEV distribution is used again. 

#Try GEV instead 
fit_POT_GEV<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GEV",span=years) 
fit_POT_GEV 
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##  
## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Estimation Method used: MLE" 
##  
##  
##  Negative Log-Likelihood Value:  524.5709  
##  
##  
##  Estimated parameters: 
##   location      scale      shape  
## 43.3700558  9.0314601  0.4652176  
##  
##  Standard Error Estimates: 
##  location     scale     shape  
## 0.9943562 0.9259065 0.1198595  
##  
##  Estimated parameter covariance matrix. 
##             location       scale       shape 
## location  0.98874429  0.70784591 -0.05338889 
## scale     0.70784591  0.85730292 -0.02181819 
## shape    -0.05338889 -0.02181819  0.01436631 
##  
##  AIC = 1055.142  
##  
##  BIC = 1063.744 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI   Estimate 95% upper CI 
## location   43.6338859 51.1756567  58.71742742 
## scale      19.4153526 24.6094379  29.80352334 
## shape      -0.3606709 -0.2076387  -0.05460654 

plot(fit_POT_GEV) 
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The GEV Distribution produces a reasonable fit at lower return periods.The 
estimated shape parameter is >0, indicating a Frechet distribution is likely. 

##POT Results The parameter fit and 95% confidence intervals shown in the 
return level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit_POT_GEV,type="rl") 
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return.level(fit_POT_GEV,do.ci=TRUE) 

## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Normal Approx." 
##  
##                       95% lower CI  Estimate 95% upper CI 
## 2-year return level       44.48951  46.97915      49.4688 
## 20-year return level      76.19617 101.26107     126.3260 
## 100-year return level     86.29556 188.97132     291.6471 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:51.23, 63.7. 

#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit_POT_GEV) 
P 

## [1] 0.6178190 0.8070569 

AEP<-1-P 
AEP 

## [1] 0.3821810 0.1929431 

RP<-1/AEP #return period (years) 
RP ## [1] 2.616561 5.182876  
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Flood Frequency Estimation - Pickering 

Zora van Leeuwen 

11/02/2020 

C.9 Introduction 

A GEV Distribution is estimated for the AMAX series downloaded from the 

National River Flow Archive https://nrfa.ceh.ac.uk/ using the MLE method. 

Goodness of fit plots are produced to evaluate the fit of the data along with 

goodness of fit measures such as the Negative log-likelihood, AIC and BIC. 
Standard Error Estimates are also provided. The fitted parameters are used to 
calculate the Annual Exceedance Probability (AEP) and Return Period (RP), the 

inverse of the AEP for a given level. 

C.10 AMAX Data 

Data file: Input/Other catchments/27095 - Pickering Beck at 
Pickering_AMAX.csv 

setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
AMAX_data<-read.csv(params$filename) 
head(AMAX_data) 

##   Rank Water.Year       Date  Time Stage..m. Flow..m3.s.   Rating 
## 1  N/A  1999-2000 20/09/2000 13:30     0.845       7.766 In Range 
## 2    2  2000-2001 08/11/2000 10:30     1.532      16.897 In Range 
## 3    3  2001-2002 02/08/2002 14:45     1.340      13.491 In Range 
## 4   10  2002-2003 03/11/2002 10:45     0.890       8.261 In Range 
## 5    7  2003-2004 01/02/2004 01:45     1.060      10.180 In Range 
## 6   16  2004-2005 16/04/2005 08:00     0.610       5.284 In Range 
##            Source Ref Comments 
## 1 Digital Archive  B2       NA 
## 2 Digital Archive  B3       NA 
## 3 Digital Archive  B2       NA 
## 4 Digital Archive  B2       NA 
## 5 Digital Archive  B2       NA 
## 6 Digital Archive  B2       NA 

https://nrfa.ceh.ac.uk/
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Plot of the AMAX series which is used to fit the GEV distribution 

The plot shows the AMAX series contained in the Input/Other 
catchments/27095 - Pickering Beck at Pickering_AMAX.csv dataset. 

C.11 Fit GEV to AMAX series 

The Package extRemes is used ( Eric Gilleland, Richard W. Katz (2016). 

extRemes 2.0: An Extreme Value Analysis Package in R. Journal of Statistical 
Software, 72(8), 1-39. doi:10.18637/jss.v072.i08). The estimated shape 

parameter < 0, indicating a Weibull distribution. 

library(extRemes) 

fit<-fevd(AMAX_data$Flow..m3.s.,type="GEV") 
fit 
## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Estimation Method used: MLE" 
##  
##  Negative Log-Likelihood Value:  54.35152  
##  
##  Estimated parameters: 
##  location     scale     shape  
## 7.1707517 3.2576790 0.1780202  
##  
##  Standard Error Estimates: 

doi:10.18637/jss.v072.i08
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##  location     scale     shape  
## 0.8498189 0.6657188 0.1881403  
##  
##  Estimated parameter covariance matrix. 
##             location       scale       shape 
## location  0.72219223  0.31210645 -0.05162366 
## scale     0.31210645  0.44318152 -0.01371584 
## shape    -0.05162366 -0.01371584  0.03539677 
##  
##  AIC = 114.703   
##  BIC = 117.5363 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI  Estimate 95% upper CI 
## location     5.505137 7.1707517    8.8363662 
## scale        1.952894 3.2576790    4.5624639 
## shape       -0.190728 0.1780202    0.5467684 

Plotting the diagnostic plots shows a reasonable fit is achieved. 

plot(fit) 
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 ## AMAX 
Results The parameter fit and 95% confidence intervals shown in the return 

level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit,type="rl") 
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return.level(fit,do.ci=TRUE) 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##                       95% lower CI  Estimate 95% upper CI 
## 2-year return level       6.446495  8.404546     10.36260 
## 20-year return level     11.018741 19.922168     28.82559 
## 100-year return level     7.230037 30.375384     53.52073 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:9.916, 11.778. 

level_from_GEV_fun<-function(fit,level){ 
  #Get parameters 
  u<-fit$results$`par`[["location"]] 
  d<-fit$results$`par`[["scale"]] 
  e<-fit$results$`par`[["shape"]] 
  z<-level 
   
  #calculate from Gumbel distribution equation 
  a<-e*((z-u)/d)#intermediate 
  b<-(1+a)^(-1/e)#intermediate 
  P<-exp(-b)# Probability 
   
  return(P) #Return the probability 
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} 
 
#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit) 
P 

## [1] 0.6337891 0.7533299 

AEP<-1-P 
AEP 

## [1] 0.3662109 0.2466701 

RP<-1/AEP #return period (years) 
RP  

## [1] 2.730667 4.053997 

For small return period events (<5 years) the distribution obtained using the 
AMAX and POT series are different (see http://evidence.environment-

agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4). 
Hence, Fit a Generalised Pareto Distribution to the POT data instead. 

C.12 Fit distribution to POT data 

##POT Data Data file: Input/Other catchments/27095 - Pickering Beck at 
Pickering_POT.csv 

setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
POT_data<-read.csv(params$filename_POT) 
POT_data$Date<-as.Date(POT_data$Date, format="%d/%m/%Y") 
 
head(POT_data) 

##   Rank       Date  Time Stage..m. Flow..m3.s.   Rating          Source Ref 
## 1   17 2000-09-20 13:30     0.845       7.766 In Range Digital Archive  B2 
## 2    3 2000-10-31 08:30     1.501      16.230 In Range Digital Archive  B3 
## 3    5 2000-11-03 11:00     1.273      12.683 In Range Digital Archive  B2 
## 4    2 2000-11-08 10:30     1.532      16.897 In Range Digital Archive  B3 
## 5   41 2000-12-08 21:45     0.592       5.101 In Range Digital Archive  B2 
## 6   71 2001-01-02 23:45     0.498       4.086 In Range Digital Archive  B1 
##   Comments 
## 1       NA 
## 2       NA 
## 3       NA 
## 4       NA 
## 5       NA 
## 6       NA 

summary(POT_data$Flow..m3.s.) 

http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
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##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   3.806   4.338   5.061   6.305   6.896  27.942 

 First, try to fit a 
Generalised-Pareto Distribution 

#estimate number of years in POT series 
library(zoo) 
years<-as.yearmon(max(POT_data$Date))-as.yearmon(min(POT_data$Date)) 
 
#Terrible fit with the GP 
fit_POT_GP<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GP",span=years) 
plot(fit_POT_GP) 
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GP Distribution does not fit the data, hence the GEV distribution is used again. 

#Try GEV instead 
fit_POT_GEV<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GEV",span=years) 
fit_POT_GEV 
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##  
## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Estimation Method used: MLE" 
##  
##  
##  Negative Log-Likelihood Value:  164.1223  
##  
##  
##  Estimated parameters: 
##  location     scale     shape  
## 4.5561686 0.9037904 0.7890557  
##  
##  Standard Error Estimates: 
##  location     scale     shape  
## 0.1204020 0.1352730 0.1608015  
##  
##  Estimated parameter covariance matrix. 
##              location        scale         shape 
## location  0.014496641 0.0136412978 -0.0069591258 
## scale     0.013641298 0.0182987895  0.0002755753 
## shape    -0.006959126 0.0002755753  0.0258571081 
##  
##  AIC = 334.2446  
##  
##  BIC = 341.6076 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI  Estimate 95% upper CI 
## location     5.505137 7.1707517    8.8363662 
## scale        1.952894 3.2576790    4.5624639 
## shape       -0.190728 0.1780202    0.5467684 

plot(fit_POT_GEV) 
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The GEV Distribution produces a reasonable fit at lower return periods.The 
estimated shape parameter is >0, indicating a Frechet distribution is likely. 

##POT Results The parameter fit and 95% confidence intervals shown in the 
return level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit_POT_GEV,type="rl") 
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return.level(fit_POT_GEV,do.ci=TRUE) 

## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Normal Approx." 
##  
##                       95% lower CI Estimate 95% upper CI 
## 2-year return level      4.6092438  4.94029     5.271336 
## 20-year return level     7.7422265 15.34498    22.947738 
## 100-year return level   -0.9742641 46.59754    94.169347 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:9.916, 11.778. 

#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit_POT_GEV) 
P 

## [1] 0.8952311 0.9227056 

AEP<-1-P 
AEP 

## [1] 0.10476889 0.07729437 

RP<-1/AEP #return period (years) 
RP ## [1]  9.544818 12.937554 
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Flood Frequency Estimation - Flasby 

Zora van Leeuwen 

11/02/2020 

C.13 Introduction 

A GEV Distribution is estimated for the AMAX series downloaded from the 

National River Flow Archive https://nrfa.ceh.ac.uk/ using the MLE method. 

Goodness of fit plots are produced to evaluate the fit of the data along with 
goodness of fit measures such as the Negative log-likelihood, AIC and BIC. 

Standard Error Estimates are also provided. The fitted parameters are used to 
calculate the Annual Exceedance Probability (AEP) and Return Period (RP), the 
inverse of the AEP for a given level. 

C.14 AMAX Data 

Data file: Input/Other catchments/Aire/27035 - Aire at Kildwick 
Bridge_AMAX.csv 

setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
AMAX_data<-read.csv(params$filename) 
head(AMAX_data) 

##   Rank Water.Year       Date  Time Stage..m. Flow..m3.s.   Rating 
## 1   48  1966-1967 01/10/1967 00:00     1.780      47.889 In Range 
## 2    9  1967-1968 17/10/1967 00:00     2.990      78.757  Extrap. 
## 3   34  1968-1969 31/03/1969 00:00     2.020      54.567 In Range 
## 4   14  1969-1970 11/11/1969 00:00     2.360      63.481  Extrap. 
## 5   22  1970-1971 30/10/1970 00:00     2.220      59.879  Extrap. 
## 6   37  1971-1972 19/10/1971 11:15     2.239      53.000 In Range 
##            Source Ref Comments 
## 1       CEH Files  1b       NA 
## 2       CEH Files  1b       NA 
## 3       CEH Files  1b       NA 
## 4       CEH Files  1b       NA 
## 5       CEH Files  1b       NA 
## 6 Digital Archive  C3       NA 

https://nrfa.ceh.ac.uk/
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Plot of the AMAX series which is used to fit the GEV distribution 

The plot shows the AMAX series contained in the Input/Other 
catchments/Aire/27035 - Aire at Kildwick Bridge_AMAX.csv dataset. 

C.15 Fit GEV to AMAX series 

The Package extRemes is used ( Eric Gilleland, Richard W. Katz (2016). 

extRemes 2.0: An Extreme Value Analysis Package in R. Journal of Statistical 
Software, 72(8), 1-39. doi:10.18637/jss.v072.i08). The estimated shape 

parameter < 0, indicating a Weibull distribution. 

library(extRemes) 

fit<-fevd(AMAX_data$Flow..m3.s.,type="GEV") 
fit 
## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Estimation Method used: MLE" 
##  
##  Negative Log-Likelihood Value:  220.3542  
##  
##  Estimated parameters: 
##   location      scale      shape  
## 54.6819808 12.9910227  0.1642523  
##  
##  Standard Error Estimates: 

doi:10.18637/jss.v072.i08
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##   location      scale      shape  
## 1.95108379 1.47648299 0.07734388  
##  
##  Estimated parameter covariance matrix. 
##             location      scale        shape 
## location  3.80672796 1.37979688 -0.026915191 
## scale     1.37979688 2.18000201  0.021267510 
## shape    -0.02691519 0.02126751  0.005982075 
##  
##  AIC = 446.7085  
##  BIC = 452.5622 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI   Estimate 95% upper CI 
## location  50.85792689 54.6819808   58.5060348 
## scale     10.09716924 12.9910227   15.8848762 
## shape      0.01266112  0.1642523    0.3158435 

Plotting the diagnostic plots shows a reasonable fit is achieved. 

plot(fit) 
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 ## AMAX 
Results The parameter fit and 95% confidence intervals shown in the return 

level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit,type="rl") 
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return.level(fit,do.ci=TRUE) 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##                       95% lower CI Estimate 95% upper CI 
## 2-year return level       55.14996  59.5896     64.02923 
## 20-year return level      85.49943 104.4173    123.33508 
## 100-year return level    100.14032 143.9654    187.79046 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:75.662, 107. 

level_from_GEV_fun<-function(fit,level){ 
  #Get parameters 
  u<-fit$results$`par`[["location"]] 
  d<-fit$results$`par`[["scale"]] 
  e<-fit$results$`par`[["shape"]] 
  z<-level 
   
  #calculate from Gumbel distribution equation 
  a<-e*((z-u)/d)#intermediate 
  b<-(1+a)^(-1/e)#intermediate 
  P<-exp(-b)# Probability 
   
  return(P) #Return the probability 
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} 
 
#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit) 
P 

## [1] 0.7876276 0.9555631 

AEP<-1-P 
AEP 

## [1] 0.21237239 0.04443686 

RP<-1/AEP #return period (years) 
RP  

## [1]  4.70871 22.50384 

For small return period events (<5 years) the distribution obtained using the 
AMAX and POT series are different (see http://evidence.environment-

agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4). 
Hence, Fit a Generalised Pareto Distribution to the POT data instead. 

C.16 Fit distribution to POT data 

##POT Data Data file: Input/Other catchments/Aire/27035 - Aire at 
Kildwick Bridge_POT.csv 

setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
POT_data<-read.csv(params$filename_POT) 
POT_data$Date<-as.Date(POT_data$Date, format="%d/%m/%Y") 
 
head(POT_data) 

##   Rank       Date  Time Stage..m. Flow..m3.s.   Rating    Source Ref Comme
nts 
## 1   10 1967-10-17 00:00      2.99      78.757  Extrap. CEH Files  1b       
NA 
## 2   76 1968-01-16 00:00      2.02      54.567 In Range CEH Files  1b       
NA 
## 3   87 1968-03-19 00:00      2.00      54.024 In Range CEH Files  1b       
NA 
## 4   24 1968-03-23 00:00      2.29      61.691  Extrap. CEH Files  1b       
NA 
## 5   45 1968-03-24 00:00      2.14      57.779 In Range CEH Files  1b       
NA 
## 6  100 1968-07-01 00:00      1.96      52.932 In Range CEH Files  1b       
NA 

summary(POT_data$Flow..m3.s.) 

http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
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##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   52.70   54.53   56.88   62.60   61.25  157.00 

 First, try to fit a 
Generalised-Pareto Distribution 

#estimate number of years in POT series 
library(zoo) 
years<-as.yearmon(max(POT_data$Date))-as.yearmon(min(POT_data$Date)) 
 
#Terrible fit with the GP 
fit_POT_GP<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GP",span=years) 
plot(fit_POT_GP) 
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GP Distribution does not fit the data, hence the GEV distribution is used again. 

#Try GEV instead 
fit_POT_GEV<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GEV",span=years) 
fit_POT_GEV 
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##  
## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Estimation Method used: MLE" 
##  
##  
##  Negative Log-Likelihood Value:  321.582  
##  
##  
##  Estimated parameters: 
##   location      scale      shape  
## 55.4269156  3.0474042  0.7555805  
##  
##  Standard Error Estimates: 
##  location     scale     shape  
## 0.3508209 0.3942199 0.1232556  
##  
##  Estimated parameter covariance matrix. 
##             location       scale        shape 
## location  0.12307533 0.112826703 -0.010724024 
## scale     0.11282670 0.155409349  0.007920718 
## shape    -0.01072402 0.007920718  0.015191937 
##  
##  AIC = 649.164  
##  
##  BIC = 657.0682 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI   Estimate 95% upper CI 
## location  50.85792689 54.6819808   58.5060348 
## scale     10.09716924 12.9910227   15.8848762 
## shape      0.01266112  0.1642523    0.3158435 

plot(fit_POT_GEV) 
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The GEV Distribution produces a reasonable fit at lower return periods.The 
estimated shape parameter is >0, indicating a Frechet distribution is likely. 

##POT Results The parameter fit and 95% confidence intervals shown in the 
return level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit_POT_GEV,type="rl") 
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return.level(fit_POT_GEV,do.ci=TRUE) 

## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Normal Approx." 
##  
##                       95% lower CI  Estimate 95% upper CI 
## 2-year return level       55.74692  56.71380     57.68069 
## 20-year return level      69.56843  89.43914    109.30985 
## 100-year return level     67.59093 181.75923    295.92753 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:75.662, 107. 

#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit_POT_GEV) 
P 

## [1] 0.9111923 0.9694368 

AEP<-1-P 
AEP 

## [1] 0.08880766 0.03056321 

RP<-1/AEP #return period (years) 
RP ## [1] 11.26029 32.71908 
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Flood Frequency Estimation- Shipston 

Zora van Leeuwen 

11/02/2020 

1.2 Introduction 

A GEV Distribution is estimated for the AMAX series downloaded from the 

National River Flow Archive https://nrfa.ceh.ac.uk/ using the MLE method. 

Goodness of fit plots are produced to evaluate the fit of the data along with 
goodness of fit measures such as the Negative log-likelihood, AIC and BIC. 

Standard Error Estimates are also provided. The fitted parameters are used to 
calculate the Annual Exceedance Probability (AEP) and Return Period (RP), the 

inverse of the AEP for a given level. 

1.3 AMAX Data 

Data file: Input/Other catchments/Shipston/54106 Stour at Shipston 
AMAX.csv 

#setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
AMAX_data<-read.csv(params$filename) 
head(AMAX_data) 

##   Rank Water.Year       Date  Time Stage..m. Flow..m3.s.   Rating 
## 1   46  1971-1972 24/04/1972 13:15     0.522       1.790 In Range 
## 2   20  1972-1973 07/12/1972 03:15     2.984      32.460  Extrap. 
## 3   41  1973-1974 16/01/1974 21:30     1.864      12.980 In Range 
## 4   12  1974-1975 09/03/1975 14:00     3.287      43.470  Extrap. 
## 5   45  1975-1976 26/09/1976 10:45     0.784       3.455 In Range 
## 6    9  1976-1977 14/06/1977 19:30     3.368      46.780  Extrap. 
##            Source Ref Comments 
## 1 Digital Archive  2b       NA 
## 2 Digital Archive  2d       NA 
## 3 Digital Archive  2c       NA 
## 4 Digital Archive  2d       NA 
## 5 Digital Archive  2c       NA 
## 6 Digital Archive  2d       NA 

https://nrfa.ceh.ac.uk/
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Plot of the AMAX series which is used to fit the GEV distribution 

The plot shows the AMAX series contained in the Input/Other 
catchments/Shipston/54106 Stour at Shipston AMAX.csv dataset. 

1.4 Fit GEV to AMAX series 

The Package extRemes is used ( Eric Gilleland, Richard W. Katz (2016). 
extRemes 2.0: An Extreme Value Analysis Package in R. Journal of Statistical 
Software, 72(8), 1-39. doi:10.18637/jss.v072.i08). The estimated shape 

parameter < 0, indicating a Weibull distribution. 

library(extRemes) 

fit<-fevd(AMAX_data$Flow..m3.s.,type="GEV") 
fit 
## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Estimation Method used: MLE" 
##  
##  Negative Log-Likelihood Value:  205.6712  
##  
##  Estimated parameters: 
## location    scale    shape  
## 22.12814 14.88673  0.17633  
##  
##  Standard Error Estimates: 

doi:10.18637/jss.v072.i08
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##  location     scale     shape  
## 2.4334090 1.8928589 0.1071306  
##  
##  Estimated parameter covariance matrix. 
##             location        scale        shape 
## location  5.92147918  2.471555682 -0.073617874 
## scale     2.47155568  3.582914874 -0.008288524 
## shape    -0.07361787 -0.008288524  0.011476975 
##  
##  AIC = 417.3423  
##  BIC = 422.8928 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI Estimate 95% upper CI 
## location  17.35874566 22.12814   26.8975335 
## scale     11.17679574 14.88673   18.5966663 
## shape     -0.03364222  0.17633    0.3863022 

Plotting the diagnostic plots shows a reasonable fit is achieved. 

plot(fit) 
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 ## AMAX 
Results The parameter fit and 95% confidence intervals shown in the return 

level plot are used to calculate the AEP and RP for the levels of interest. 

plot(fit,type="rl") 
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return.level(fit,do.ci=TRUE) 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##                       95% lower CI  Estimate 95% upper CI 
## 2-year return level       22.16610  27.76449     33.36288 
## 20-year return level      55.37738  80.23991    105.10244 
## 100-year return level     65.16271 127.70056    190.23841 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:43.509. 

level_from_GEV_fun<-function(fit,level){ 
  #Get parameters 
  u<-fit$results$`par`[["location"]] 
  d<-fit$results$`par`[["scale"]] 
  e<-fit$results$`par`[["shape"]] 
  z<-level 
   
  #calculate from Gumbel distribution equation 
  a<-e*((z-u)/d)#intermediate 
  b<-(1+a)^(-1/e)#intermediate 
  P<-exp(-b)# Probability 
   
  return(P) #Return the probability 



C.16 Flood Frequency Estimation- Shipston 
 

316 
 

} 
 
#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit) 
P 

## [1] 0.7573151 

AEP<-1-P 
AEP 

## [1] 0.2426849 

RP<-1/AEP #return period (years) 
RP  

## [1] 4.12057 

For small return period events (<5 years) the distribution obtained using the 
AMAX and POT series are different (see http://evidence.environment-

agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4). 
Hence, Fit a Generalised Pareto Distribution to the POT data instead. 

1.5 Fit distribution to POT data 

##POT Data Data file: Input/Other catchments/Shipston/54106 Stour at 
Shipston POT.csv 

#setwd("D:/OneDrive - University of Leeds/Fragility_Curves") 
POT_data<-read.csv(params$filename_POT) 
POT_data$Date<-as.Date(POT_data$Date, format="%d/%m/%Y") 
 
head(POT_data) 

##   Rank       Date  Time Stage..m. Flow..m3.s.   Rating          Source Ref 
## 1  137 1986-01-10 15:00     2.022      14.312 In Range Digital Archive  2c 
## 2  124 1986-12-15 18:45     2.142      15.295 In Range Digital Archive  2c 
## 3  144 1987-04-05 02:30     1.979      13.959 In Range Digital Archive  2c 
## 4  148 1987-04-07 19:45     1.962      13.819 In Range Digital Archive  2c 
## 5   34 1987-11-19 22:15     2.965      31.836  Extrap. Digital Archive  2d 
## 6   80 1988-01-06 19:45     2.535      19.816 In Range Digital Archive  2c 
##   Comments 
## 1       NA 
## 2       NA 
## 3       NA 
## 4       NA 
## 5       NA 
## 6       NA 

summary(POT_data$Flow..m3.s.) 

http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
http://evidence.environment-agency.gov.uk/FCERM/en/FluvialDesignGuide/Chapter2.aspx?pagenum=4
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##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   13.12   15.69   20.07   25.02   28.64  175.33 

 First, try to fit a 
Generalised-Pareto Distribution 

#estimate number of years in POT series 
library(zoo) 
years<-as.yearmon(max(POT_data$Date))-as.yearmon(min(POT_data$Date)) 
 
#Terrible fit with the GP 
fit_POT_GP<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GP",span=years) 

plot(fit_POT_GP) 
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POT GP Diagnostic plots for estimated parameter fit 

GP Distribution does not fit the data, hence the GEV distribution is used again. 

#Try GEV instead 
fit_POT_GEV<-fevd(POT_data$Flow..m3.s.,threshold=0,type="GEV",span=years) 
fit_POT_GEV 
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##  
## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
##  
## [1] "Estimation Method used: MLE" 
##  
##  
##  Negative Log-Likelihood Value:  549.1664  
##  
##  
##  Estimated parameters: 
##   location      scale      shape  
## 17.2606931  4.6584833  0.6983897  
##  
##  Standard Error Estimates: 
##  location     scale     shape  
## 0.4606097 0.4910527 0.1146866  
##  
##  Estimated parameter covariance matrix. 
##             location        scale        shape 
## location  0.21216128  0.186217113 -0.020025740 
## scale     0.18621711  0.241132719 -0.001890565 
## shape    -0.02002574 -0.001890565  0.013153005 
##  
##  AIC = 1104.333  
##  
##  BIC = 1113.502 

ci(fit,type="parameter") 

## fevd(x = AMAX_data$Flow..m3.s., type = "GEV") 
##  
## [1] "Normal Approx." 
##  
##          95% lower CI Estimate 95% upper CI 
## location  17.35874566 22.12814   26.8975335 
## scale     11.17679574 14.88673   18.5966663 
## shape     -0.03364222  0.17633    0.3863022 

plot(fit_POT_GEV) 
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POT GEV Diagnostic plots for estimated parameter fit 

The GEV Distribution produces a reasonable fit at lower return periods.The 
estimated shape parameter is >0, indicating a Frechet distribution is likely. 

##POT Results The parameter fit and 95% confidence intervals shown in the 
return level plot are used to calculate the AEP and RP for the levels of interest. 
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plot(fit_POT_GEV,type="rl") 

 

return.level(fit_POT_GEV,do.ci=TRUE) 

## fevd(x = POT_data$Flow..m3.s., threshold = 0, type = "GEV", span = years) 
## [1] "Normal Approx." 
##                       95% lower CI  Estimate 95% upper CI 
## 2-year return level       17.97292  19.20651     20.44010 
## 20-year return level      41.31508  63.68213     86.04919 
## 100-year return level     52.93414 176.32118    299.70822 

The GEV distribution equation is used to calculate the AEP and RP for the 
required return levels:43.509. 

#Apply the function to the levels of interest 
P<-sapply(params$levels,level_from_GEV_fun,fit=fit_POT_GEV) 
P 

## [1] 0.903306 

AEP<-1-P 
AEP 

## [1] 0.096694 

RP<-1/AEP #return period (years) 
RP  

## [1] 10.3419 

 


