
Quantum Compilers for Reducing

Non-Clifford Gate Counts

Luke E. Heyfron

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

The University of Sheffield
Faculty of Science

Department of Physics and Astronomy

January 2021

Acknowledgements

The research presented in this PhD thesis was funded by the Engineering and
Physical Sciences Research Council (EPSRC) through grant EP/M024261/1.

I would like to thank the following people for their support during this
project. First, I would like to thank my family: Diane Lewis, Lawrence Heyfron,
Amy Heyfron and Val Heyfron. I would like thank and celebrate the memory of
“Nanny” Barbara Joan Lewis, Victor Heyfron, David Paul Lewis and Rhonda
Lewis (née Alexander), who have passed away since I started the PhD. I would
like to thank the following people whose support and friendship have been in-
valuable over the years: Olly Hall, John Harvey, James Collier, Wei-Yu Chen,
Max Albrecht, Emily, Jeff, Eve and Anna van Zyl, Tamás Varga, Prea Singh,
David Hurst, Jasminder Sidhu, Giuseppe Buonaiuto, Scott Vinay, Mark Pearce,
Mark Howard, Emiliano Cancellieri, Pieter Kok, Joschka Roffe, Padraic Calpin
and Mike Vasmer. Finally, I would like to thank my supervisor Dr. Earl T.
Campbell, without whose guidance, professionalism and patience I would not
have been able to complete this project.

i

Abstract

Quantum computers can solve certain problems much faster than classical com-
puters. However, in order to benefit from the speed-up granted by quantum
algorithms, they must first be rendered as hardware-level instructions (i.e. quan-
tum circuits) in a process known as quantum compiling. Any choice of discrete
gate set from which our compilation result is constructed should be both univer-
sal and fault-tolerant, such that any quantum algorithm can be compiled and
successfully executed despite the presence of environmental noise. From these
requirements, it follows that it is impossible to avoid including at least one gate
that is disproportionately expensive relative to the others. Many leading pro-
posals for the first generation of qubit-based quantum computers designate the
T gate, otherwise known as the π

8 gate, to be this necessary yet costly gate.
In this thesis, we present novel algorithms for compiling quantum circuits that
reduce the T count of input circuits. In addition, we present analogous compi-
lation algorithms for qudit-based quantum computers, for which the M gate is
the designated expensive gate.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

Declaration iv

1 Introduction 1

2 Basics of Quantum Computation 4
2.1 Quantum States . 4
2.2 Quantum Operators . 5

2.2.1 Pauli Group . 5
2.2.2 The Clifford Group . 6
2.2.3 The T Gate . 6

2.3 Quantum Circuit Model . 7
2.4 Mixed States and the Density Operator 8

3 The Clifford + T Cost Model 9
3.1 Universal Quantum Computation 9

3.1.1 What Does Universality Mean? 9
3.1.2 Clifford Gates are Not Universal 10
3.1.3 CNOT + Single Qubit Rotation is Universal 11
3.1.4 H + T approximates any Single Qubit Rotation 13

3.2 Fault-Tolerant Quantum Computation 14
3.2.1 Quantum Error Correction 15
3.2.2 Transversal Gates . 19
3.2.3 Magic State Distillation 23

4 An Efficient Quantum Compiler that Reduces T Count 27

5 A Quantum Compiler for Qudits of Prime Dimension Greater
than 3 49

6 Conclusion 64
[1]

iii

Declaration

I, Luke E. Heyfron, confirm that this thesis is my own work. I am aware of the
University’s Guidance on the Use of Unfair Means (www.sheffield.ac.uk/ssid/unfair-
means). This work has not been previously been presented for an award at this,
or any other, university.

iv

Chapter 1

Introduction

Quantum computers are able to perform certain tasks much faster than classical
computers. For example, Shor’s quantum algorithm for prime factorisation
finds the solution in polynomial time with respect to the size of the input. This
problem is believed to be intractable for classical computers [2], a property which
is exploited by internet security protocols such as RSA public key encryption
[3].

The superior efficiency of quantum algorithms makes it a highly desirable
prospect to build quantum computers that are able to perform any operation
that the quantum programmers of the future could possibly wish to perform.
Such a quantum computer would be universal in quantum computation, mean-
ing the set of elementary quantum logic gates that the computer can perform
(or gate set) is sufficient to implement any quantum algorithm up to an error
that diminishes with the length of the gate sequence. The Gottesman-Knill
theorem proves that a quantum computer is classical simulable if the gate set
is restricted to members a particular group of quantum operators called the
Clifford group [4]. This implies that the Clifford group alone is not sufficient for
universal quantum computation, unless a universal quantum computer can be
simulated by a classical computer. It follows that at least one non-Clifford op-
eration must be included in the gate set of any universal quantum architecture.
A conventional choice for the non-Clifford gate is the π

8 phase gate also known
as the T gate.

Quantum computers are highly susceptible to decoherence due to mecha-
nisms such as interactions with the environment, imperfect quantum gates and
initial state preparation. The fragile nature of quantum systems gave rise to
the theory of fault-tolerant quantum computation, a key result of which is the
threshold theorem, which states that the probability of an error occurring in a
quantum state encoded using a so called quantum error correction (QEC) code
reduces to zero asymptotically with an increase in resource overhead (i.e. the
number of redundant qubits) provided the per-gate error probability is below a
certain threshold probability [5]. Otherwise, quantum memory decoheres to the
maximally mixed state and the outcome of any quantum algorithm is meaning-
less. The value of the threshold depends on the quantum error correction used
to encode the logical quantum state, as well as the error model.

While QEC codes overcome the problem of noise, they impose constraints
upon the definitions of encoded quantum gates. In particular, they determine
which encoded gates are transversal. By definition, an encoded gate that is

1

transversal contains no entangling gates within the same code block of its phys-
ical implementation. Transversality is sufficient for fault-tolerance [6] and ad-
ditionally ensures that the overhead associated with a transversal gate is ‘low’
as its cost is upper-bounded by a linear function of the code size. One of the
most promising classes of quantum error correction codes are the topological
codes due to their high thresholds (such as the toric code with a threshold of
nearly 1% [7]) and transversal Clifford gates [8]. However, the T gate is not
transversal for the toric code and its implementation requires many additional
steps compared to that of the Clifford gates. A T gate may be implemented by
first preparing special ancillary states known as T -type magic states and then
applying a teleportation gadget to the magic state and the input state [9]. The
preparation of magic states is expensive, requiring the consumption of many
noisy raw magic states in recursive distillation processes such as [10] and [11]
where additional layers of recursion suppress the error sufficiently but cause the
number of elementary operations used to blow up considerably. This disparity
between the required number of elementary gates for Clifford and T gates moti-
vates the the Clifford + T model for quantum compilation, where Clifford gates
are considered ‘free’ with a cost of 0 and T gates are considered ‘expensive’ with
a cost of 1. In this case, the gate synthesis problem reduces to the problem of
minimizing the number of T gates in the circuit.

It might seem highly unrealistic to assume that logical (i.e. fault-tolerant)
Clifford gates are free since logical Clifford gates are far from “cheap” in an
absolute sense (especially from an experimental perspective). However, we em-
phasise that each logical T gate synthesised using magic state distillation (MSD)
requires an amount of logical Clifford gates (including CNOT’s and Hadamards)
that scales with the “overhead”, or the number of raw T -type magic states re-
quired per logical T gate. The value of the overhead depends on architectural
assumptions but tends to be between 50-1000 [12, 13, 14, 15] and typically in-
creases with the desired accuracy of the logical T gate. Therefore, in the Clifford
+ T magic states model of quantum computation, a logical Clifford gate will in-
variably have a cost that is significantly lower than that of a logical T gate. One
potential pitfall of this argument is if a T -count optimizer were to introduce an
amount of Clifford gates that diverges as the T -count is decreased. In fact, for
so-called “phase-polynomial” type T -optimizers for CNOT + T circuits such as
[16, 17] and those introduced in this thesis (see chapters 4 and 5), we find that
the opposite is the case. The number of CNOT gates required to implement an
n-qubit phase-polynomial is O(nm) in the worst case, where m is the number of
linear boolean functions with non-zero coefficient (modulo 8). In the worst case,
the value of m receives a contribution of O(n) due to Clifford phases [18, 19]
and of O(n2) due to non-Clifford phases [17, 19], so m = O(n2)+O(n) = O(n2)
and in practice we find that m ≈ τ , where τ is the T -count. It follows that the
worst-case scaling of the Clifford gate-count actually decreases as the T -count
decreases. Additionally, in leading models of fault-tolerant quantum computa-
tion such as Pauli-based computation through lattice surgery [20, 21, 22, 23],
Clifford gates have exactly zero cost as they are only performed implicitly by
adapting the basis in which Pauli measurements are made.

2

It is important that a gate-synthesis algorithm is efficient. Fast algorithms
have already been found for compiling single qubit circuits in the Clifford + T
basis [24, 25, 26, 27], so our focus will be on multi-qubit gate synthesis algo-
rithms for Clifford + T circuits. There have been a number of recent develop-
ments in the field of multi-qubit T gate optimization. Amy, Maslov, Mosca and
Roetteler devised an algorithm for optimizing the T -depth, which is a related
metric to the T count and is equal to the minimal number of parallel columns of
T gates found in any Clifford + T circuit implementing a particular unitary [28].
Their algorithm involves an exhaustive search over the space of circuits, Sd, im-
plementable in depth d over a certain fixed gate set G. The search is performed
in lexicographic order over an alphabet Vn,G composed of all possible depth-one
n-qubit circuits on G. By dividing the target unitary, U = VW , into two fac-
tors V and W of roughly equal depth and using a set relation (lemma 1 of [28]),
an exhaustive search as described above can determine the existence of, and
produce a depth-minimal circuit for unitaries of depth up to 2d. This so called
“meet-in-the-middle” approach is nearly quadratically faster than a brute force
search over S2d. However, the execution time remains exponential in both n
and |G|, so is impractical for large circuits.

Later, Amy, Maslov and Mosca developed a scheme for reducing the T depth
and T count for Clifford + T circuits based on matroid partitioning [16]. It
was this work that introduced the circuit-polynomial correspondence for multi-
qubit CNOT + T circuits that would later be used in [17, 29, 19, 30], as well
as chapters 4 and 5 of this thesis. This work contains the first instance of an
efficient general purpose quantum compiler (known as T-Par) on the Clifford
+ T gate set that reduces the T count.

This was followed by Gosset, Kliuchnikov and Mosca’s work [31], in which
an algorithm is proposed that provides T count optimal solutions for circuits on
the Clifford + T gate set. This was used to provide the first proof that the 7 T
gate implementation of the Toffoli gate is optimal. Although the algorithm is
optimal, it is inefficient with runtime that scales as O (2nmpoly (2n,m)) where n
is the number of qubits and m is the T count, rendering it infeasible for scalable
quantum computers.

More recently, Amy and Mosca discovered an equivalence between T gate
optimization on n-qubit CNOT + T circuits and minimum distance decoding
of the n-bit punctured Reed-Muller code of order n − 4 [17]. This equivalence
reveals new applications for previous work on fast near-optimal Reed-Muller
decoders and strengthens the notion that T count optimization of general multi-
qubit Clifford + T circuits is an intractable problem.

The remainder of this thesis is structured as follows. In chapter 2 we review
the basics of quantum computation, introducing terminology and notation used
throughout the thesis. Then in chapter 3, we motivate the Clifford + T cost
model. In chapters, 4 and 5 we provide original work on T gate optimization
using some of the observations from Amy and Mosca’s work as a starting point.
Finally, we conclude in chapter 6.

3

Chapter 2

Basics of Quantum Compu-
tation

In this chapter, we introduce theory and terminology necessary to understand
the remainder of the thesis.

2.1 Quantum States

Qubits are elementary units of quantum information that are binary, much like
bits, their classical cousins. A qubit lives in a 2-dimensional Hilbert space,
H2, which, by convention, is spanned by the orthonormal computational basis,
whose basis states are labelled with the classical bits “0” and “1”. As these
states are vectors, we place their labels inside ‘kets’ |0〉 and |1〉, according to the
conventions of Dirac notation. The state of a qubit is a quantum superposition of
the computational basis states, so a general state, |ψ〉, is given by the following:

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where α, β ∈ C. The norm of |ψ〉 is defined to be:

| |ψ〉 | =
√
〈ψ | ψ〉 =

√
|α|2 + |β|2 (2.2)

If |ψ〉 is normalised, then α and β are probability amplitudes, whose modulus
squared gives the probability of yielding a 0 or 1, respectively, upon measuring
|ψ〉 in the “native” computational basis. The state |ψ〉 is said to be normalised
iff the sum of the moduli squared of the probability amplitudes is equal to one:

|α|2 + |β|2 = 1. (2.3)

In general, a quantum computer will require multiple qubits. An n-qubit
quantum memory can be described in terms of a 2n dimensional Hilbert space,
H⊗n2 , formed from the n-fold tensor product of the single qubit Hilbert space.
It follows that the state of an n-qubit quantum computer is spanned by the
n-qubit computational basis states, which take the following form:

|x〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 , (2.4)

4

where the binary vector x ∈ Zn2 . Therefore, a general state of an n-qubit
quantum computer, |ψ〉 ∈ H⊗n2 , is written as

|ψ〉 =
∑

x∈Zn2

cx |x〉

= c00...0 |00 . . . 0〉+ c00...1 |00 . . . 1〉+ · · ·+ c11...1 |11 . . . 1〉 ,
(2.5)

where the cx ∈ C are the complex probability amplitudes; the norm is defined
as

| |ψ〉 | =
√∑

x∈Zn2

|cx|2 (2.6)

and the normalization condition is

| |ψ〉 |2 = 1. (2.7)

2.2 Quantum Operators

The dynamics of a quantum system are characterised by quantum operators,
which are mathematical objects that map quantum states to other quantum
states. Quantum operators are linear and norm preserving. Therefore, an n
qubit quantum operator can be represented explicitly as n by n unitary matrix
on C. We refer to the set of all n-qubit unitary operators as Un and will use the
terms “quantum operator” or “operator” and “unitary” interchangeably.

2.2.1 Pauli Group

The single qubit Pauli operators are important for quantum computation and
are given by the following matrices in the computational basis:

X =

(
0 1
1 0

)
, (2.8)

Y =

(
0 −i
i 0

)
, (2.9)

Z =

(
1 0
0 −1

)
. (2.10)

It is intuitive to see that Pauli X behaves as the quantum version of the
classical ‘inverter’ or NOT operator as an X applied to a |0〉 yields a |1〉 and
an X applied to a |1〉 yields a |0〉. The Pauli Z operator also behaves as an
inverter, albeit in a different basis. It acts as follows: |0〉 → |0〉 and |1〉 → − |1〉.
So if we define |+〉 := |0〉+|1〉√

2
and |−〉 := |0〉−|1〉√

2
, then the Pauli Z acts as an

inverter between the orthonormal |+〉 and |−〉 states. The Pauli Y operator is
acts as a Pauli X and Pauli Z applied in sequence (with an undetectable global
phase) i.e. Y = −iZX.

5

The n-qubit Pauli group, Pn, is the set of all n-fold tensor products of the
single qubit Pauli operators, X, Y , Z and the operators ±iI. Note that all
Pauli operators either commute or anti-commute.

2.2.2 The Clifford Group

Another trio of important operators are the Hadamard, H, operator, the phase
operator, S, and the CNOT operator, which are given by the following matrices,

H =
1√
2

(
1 1
1 −1

)
, (2.11)

S =

(
1 0
0 i

)
, (2.12)

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.13)

These operators all belong to the Clifford group, which is defined as the nor-
malizer of the Pauli group:

Cn := {U | U†PU = P ′, P ′ ∈ Pn ∀ P ∈ Pn}. (2.14)

For example, the Pauli X operator conjugates to Pauli Z under the Hadamard
operator (H†XH = Z) and to negative Pauli Y under the phase operator
(S†XS = −Y). Furthermore, the operators H, S and CNOT form a mini-
mum generating set of operators for the Clifford group.

2.2.3 The T Gate

The T gate, which is defined as

T =

(
1 0
0 ei

π
4

)
(2.15)

is central to the study of fault-tolerant quantum compilation and to this the-
sis. As we will see in section 3.1.1, the Clifford group must be extended by a
non-Clifford gate in order to form a universal gate set. Due to results from fault-
tolerant quantum computation, this gate is commonly chosen to be the T gate.
Although T gates provide universality, fault-tolerant T gates are much more ex-
pensive than fault-tolerant Clifford gates because extra processes are required
such as resource state preparation, magic state distillation and gate teleporta-
tion (see section 3.2.3). Hence, it is vital to consider T gate optimization in
any Clifford + T quantum architecture.

The T gate belongs to the 3rd level of the Clifford hierarchy where the lth

level of the Clifford hierarchy on n qubits is defined recursively as follows:

Cn,l = {U | U†PU = Q, Q ∈ Cn,l−1 ∀ P ∈ Pn}, (2.16)

6

where recursion terminates with Cn,1 = Pn. Note that Cn,2 = Cn, the Clifford
group. It follows from the definition of the Clifford hierarchy that the T gate
conjugates to a Clifford gate under conjugation by a Pauli operator. This prop-
erty is exploited in chapter 4 to reformulate input Clifford + T circuits into a
T gate optimization friendly format (see fig. 2 of chapter 4).

2.3 Quantum Circuit Model

In the quantum circuit model, a quantum circuit is a time-ordered set of quan-
tum operators taken from a discrete gate set G = {G1, G2, . . . , Gm} ⊆ Un where
the qubit(s) to which each gate is applied has been specified. Quantum wires
represent individual qubits and carry quantum information between inputs and
outputs (either of the circuit or of individual gates). An example quantum
circuit implementing the Toffoli gate is shown in figure 2.1.

H

T

T

T T†

T†

T

T†

H

x
1

x
2

x
3 x3⊕x1x2

x
1

x
2

Figure 2.1: An example quantum circuit that implements the Toffoli gate,
whose action on basis state |x1, x2, x3〉 is defined as UToff |x1, x2, x3〉 =
|x1, x2, x3 ⊕ x1x2〉. Time flows from left to right. Each quantum wire repre-
sents a qubit and is labelled according to its input/output states. Single qubit
quantum gates are boxes and act on the connected qubit with the contained
unitary. The CNOT gate is a solid circle representing the control qubit, con-
nected by vertical wire to an ⊕ representing the target. Multi-qubit gates can
also be represented as labelled boxes but are absent in this example.

Let U be an n-qubit unitary for some quantum algorithm, and let

C = U1 ◦ U2 ◦ · · · ◦ UN (2.17)

be a circuit of lengthN where the gate Ut at time-step t implements some unitary
Ut ∈ 〈G〉 and the operator ◦ performs circuit-concatenation with time ascending
in left-to-right order. We say that the circuit C implements the unitary U if

U = UNUN−1 . . . U1. (2.18)

Here we emphasize the distinction between unitaries and quantum circuits that
implement said unitaries. In other areas of study, it is common to use these
terms interchangeably. However, in the study of quantum compilation where
the cost of specific circuit decompositions is a key metric, it is worth clarifying
this distinction.

7

2.4 Mixed States and the Density Operator

So far we have dealt exclusively with pure states, which are quantum super-
positions over a set of orthonormal basis states. It is also possible to describe
classical mixtures of an ensemble of pure states using density operators. Let
|ψ1〉 , |ψ2〉 , . . . , |ψm〉 be an ensemble of pure states and p1, p2, . . . , pm be their
respective classical probabilities. The density operator that describes this sys-
tem is given by:

ρ =

m∑

i=1

pi |ψi〉 〈ψi| , (2.19)

and the normalisation condition is

m∑

i=1

pi = Tr(ρ) = 1, (2.20)

where Tr(ρ) denotes the trace of ρ. Density operators allow us to describe the
dynamics of open quantum systems such as those affected by environmental
noise or quantum measurement, which will become relevant in section 3.2.

8

Chapter 3

The Clifford + T Cost Model

As the original work presented in this thesis is concerned with T gate optimiza-
tion, it is imperative to motivate the Clifford + T model for gate synthesis and
in particular to motivate the T count. In this spirit, this chapter is divided
into two parts. The first section demonstrates how the T gate - or any other
non-Clifford gate - is necessary for universal quantum computation. The sec-
ond section is dedicated to showing why T gates are unavoidably expensive in
comparison to the other (Clifford) operations available in the quantum circuit
model.

3.1 Universal Quantum Computation

The purpose of this section is to show how the Clifford + T gate set is universal
for quantum computation. First, we will explain what universality means when
describing a discrete quantum gate set and provide a definition for universality
that allows for approximation. Then we show that Clifford gates by themselves
are not universal, which implies that a non-Clifford gate is required for univer-
sality. Finally, we show that augmenting a generating set for the Clifford group
with the T gate is sufficient for universal quantum computation. We do this
in two stages: first, proving that CNOT + single qubit gate is universal; and
second, by proving that single qubit Cliffords + T is universal for single qubits.
Universality of Clifford + T follows trivially as a corollary of these two parts.

3.1.1 What Does Universality Mean?

Universality is a desirable property of a quantum architecture that allows for
any quantum operation to be performed. Specifically, in the quantum circuit
model, universality means that any unitary can be constructed using only gates
provided by the quantum architecture.

More concretely, let U be the target unitary and G = {G1, G2, . . . , GN} be
the discrete gate set provided by the quantum architecture. We say that G is
universal for quantum computation if any U can be written as follows:

U = UkUk−1 . . . U1, (3.1)

where each of the k gates Ui ∈ G, for any choice of U ∈ U .
In general, it is not possible to generate the full continuous space of quantum

operators using a discrete gate set. That is, given a unitary U , one cannot

9

necessarily expect any sequence of gates as in eq. (3.1) to implement U exactly
(except in special cases). However, for most purposes, it suffices to find a gate
sequence that implements U approximately.

We say that a unitary V approximates another unitary U up to an approx-
imation error ε if it satisfies the following condition:

E(U, V) ≡ max
|ψ〉∈H

[|U |ψ〉 − V |ψ〉 |] ≤ ε. (3.2)

Now we can establish a more practical definition of universality that allows
approximation.

Let G be the gate set provided by the quantum architecture and ε be the
desired accuracy. We say that G is universal for quantum computation if, for
any choice of target unitary U ∈ U and ε > 0, there exists a unitary V such
that E(U, V) ≤ ε, and V can be decomposed as a sequence of gates from G, as
in:

V = VkVk−1 . . . V1, (3.3)

where each of the k gates Vi ∈ G.
Now that we have a working definition of universality, in the following section

we will see that a discrete gate set formed of only Clifford gates fails this criteria
and so is not universal by itself. Moreover, the Gottesman-Knill theorem states
that any quantum circuit composed of only Clifford operations can be simulated
efficiently on a classical computer, which implies that at least one non-Clifford
gate is required in any universal gate set (unless a quantum computer can be
efficiently simulated on a classical computer).

As well as being universal, a gate set should be efficient in that the number of
gates required to approximate a given unitary should not blow up exponentially
as the approximation error tends to zero. Let G be a universal gate set such that
G† = G. The Solovay-Kitaev theorem proves that any U can be approximated
with error ε using k = O

(
ln
(

1
ε

)c)
gates from G where c ≈ 2 is a constant [32,

33]. In other words, the Solovay-Kitaev theorem implies that universal gate sets
are also efficient, universal gate sets.

3.1.2 Clifford Gates are Not Universal

Ignoring global phases, there are 6 states reachable by applying single-qubit
Clifford gates to the state |0〉. These so called stabilizer states are: |0〉, |1〉,
|+〉, |−〉, |0〉+i|1〉√

2
and |0〉−i|1〉√

2
. Clearly, since there are only a finite number of

reachable states, we can intuitively see that the single-qubit Clifford gates are
not universal. Furthermore, we shall see from the following simple example that
the universality criteria defined in section (3.1.1) fails.

Let our target unitary U 6= I be some unitary that maps |0〉 to some state
|ψ〉 6= |0〉, i.e.:

U |0〉 = |ψ〉 , (3.4)

10

such that | |0〉 − |ψ〉 | = δ > 0. Let us assume that |0〉 is the closest stabilizer
state to |ψ〉 so that our best implementation using Cliffords is V = I. It follows
that E(U, V) ≥ | |0〉− |ψ〉 | = δ. Now if we choose an accuracy of ε < δ, we have
E(U, V) > ε so the universality criteria from section 3.1.1 fails.

We have sketched a proof for single qubit Clifford operators, but a similar
argument can be made for the general case of n-qubit Clifford operations. For
any value of n, there are finitely many distinct stabilizer states, which are states
accessible by applying U to |0〉 for all U ∈ C. Therefore, one can always find a
point on the Bloch hypersphere with a distance greater than ε from any stabilizer
state in the limit ε → 0. By construction, such a state cannot be prepared to
arbitrary accuracy using only Clifford gates and so Clifford operations are non-
universal.

3.1.3 CNOT + Single Qubit Rotation is Universal

In this section, we will show that the CNOT gate and the single qubit rotation
gate Rn̂(θ) form a universal gate set. This will be done in two parts: first, we
will show that an arbitrary n-qubit unitary can be constructed from a sequence
of 2-level unitaries. Secondly, we will show that any 2-level unitary can be
formed from the single qubit rotation and the CNOT gate.

Let U be the target n-qubit unitary. If we can find a sequence of unitaries
U1, U2, . . . , Um that transforms U into the identity, i.e:

UmUm−1 . . . U1U = I, (3.5)

then we can recover a decomposition of U in terms of the Ui using the following:

U = U†1U
†
2 . . . U

†
m. (3.6)

Suppose each Ui were a 2-level unitary, by which we mean an n-qubit unitary
that acts non-trivially on a 2-dimensional subspace. As U†i is also a 2-level
unitary, it would follow that we can decompose U as a sequence of 2-level uni-
taries. In a process reminiscent of Gaussian elimination, our strategy is to find
a formula for such Ui unitaries, each bringing U iteratively closer to I.

We proceed by constructing a template unitary, V (U, k, l), which sets a sin-
gle off-diagonal element of U to zero. More precisely, V (U, k, l) performs the
transformation U → U ′ such that U ′k,l = 0. We wish V (U, k, l) to be a 2-level
unitary, which enforces constraints. Assume |k〉 and |l〉 are the two computa-
tional basis states that span the space upon which V (U, k, l) acts non-trivially.
These constraints can be expressed as follows:

(V (U, k, l))i,j =





a i = j = l

b i = k, j = l

c i = l, j = k

d i = j = k

δi,j otherwise,

(3.7)

11

where a, b, c, d ∈ C and δi,j is the Kronecker delta. It remains to find values for
a, b, c and d. Let

Ṽ (U, k, l) =

(
a c
b d

)
=

1√
|Ul,l|2 + |Uk,l|2

(
U∗l,l U∗k,l
−Uk,l Ul,l

)
, (3.8)

be a matrix that is unitary and well-defined if |Uk,l|2 6= 0 or |Ul,l|2 6= 0. One
can verify that the values of a, b, c and d implied by eq. (3.8) lead to a unitary
V (U, k, l) as in eq. (3.7) that performs the transformation U ′ = V (U, k, l)U such
that U ′k,l = 0. Note that in addition to setting U ′k,l = 0, the entire kth and lth

rows of U ′ may differ from U . Otherwise, the elements of U ′ and U are identical.
Now that we have a unitary that sets off-diagonal elements to zero, let us

construct a template unitary, W (U, k) that sets the kth diagonal element equal
to one. If we assume that Ui,j = 0 for all i ∈ [1, 2n] \ j, then

(W (U, k))i,j =

{
U∗k,k i = j = k

δi,j otherwise
. (3.9)

We can now describe the full procedure to construct an arbitrary unitary
from 2-level gates. Start by initializing an empty ordered list of 2-level unitaries
that we denote as C. For each column of U , starting with the 1st column
and proceeding in ascending order where j is the current column index, for

each i ∈ [(j + 1), 2n], if
(

(
∏|C|
t=1 Ct) U

)
i,j

= 0, then continue to the next value

of i. Otherwise, append V (U, i, j) to C. Having iterated over all i values, if(
(
∏|C|
t=1 Ct) U

)
j,j

= 1, then continue to the next j value. Otherwise, append

W (U, j) to C. Having iterated over all j values, C now contains an ordered
list of 2-level unitaries whose right-to-left product is U†. Finally, replace each
element of C with its conjugate and reverse the order of C to recover U .

We have now shown that an arbitrary n-qubit unitary can be decomposed
as a sequence of 2-level unitaries. We will now show that any 2-level unitary
can be implemented as a circuit of CNOT gates and single qubit gates.

Let V be the 2-level unitary and |x〉 and |y〉 be the two basis states that
span the space upon which V acts non-trivially, where x and y are binary
strings. Let Ṽ be a single qubit unitary formed by removing the trivial rows
and columns from V . If x and y are different in only one bit location, then V can
be implemented by applying a controlled-Ṽ gate whose target is the differing bit
and is conditioned on the remaining bits being identical. Note that a controlled
version of any unitary can be simulated using only CNOT and single qubit
gates [34].

In general, x and y are different in up to n locations. But we can form a
circuit using only CNOT s and single qubit gates that permute the basis states
such that |x〉 is swapped with a basis state, |z〉, where z is different to y in
only one location. We do this by first forming a Gray code, C, between x
and y, which is sequence of binary strings terminating with x and y such that
each pair of subsequent elements of C is different at exactly one bit location.

12

We can swap each subsequent pair of elements of C by performing a multiply-
controlled Pauli-X gate conditioned on the remaining bits being identical. By
concatenating such a gate for every subsequent pair of elements of C \ y, we
construct a circuit that implements the permutation, UP , |x〉 ↔ |z〉. The final

circuit is thus UP followed by the multiply-controlled Ṽ gate followed by U†P ,
which is UP with the gates reversed and implements the ‘uncompute’ step.

3.1.4 H + T approximates any Single Qubit Rotation

In this section we show how an arbitrary single qubit rotation can be constructed
using only H and T gates. Let n̂ be a real unit vector and σ = (X,Y, Z). The
rotation operator Rn̂(θ) is a single qubit gate that performs a rotation on the
Bloch sphere of θ radians around the n̂-axis and is given by:

Rn̂(θ) = exp(−iθ
2
σ · n̂) = cos

θ

2
I − i sin

θ

2
(nxX + nyY + nzZ) . (3.10)

Up to an unimportant global phase, the T gate can be written in the form of
equation (3.10) as:

T = exp
(
−iπ

8
Z
)

= cos
π

8
I − i sin

π

8
Z (3.11)

The operator HTH can be written as:

HTH = cos
π

8
I − i sin

π

8
X (3.12)

Consider the composite operator (T)(HTH), which we can construct by multi-
plying eq. (3.11) by eq. (3.12)

(T)(HTH) =
(

cos
π

8
I − i sin

π

8
Z
)(

cos
π

8
I − i sin

π

8
X
)

= cos2 π

8
I − sin2 π

8
ZX − i sin

π

8
cos

π

8
(Z +X)

= cos2 π

8
I − i sin

π

8

[
cos

π

8
X + sin

π

8
Y + cos

π

8
Z
]

(3.13)

So the composite operator (T)(HTH) is given by:

(T)(HTH) = exp(−iθ
2
σ · n̂) (3.14)

where
θ = 2 arccos

(
cos2

(π
8

))
(3.15)

and

n̂ =

√
12− 2

√
2

17




cos π8
sin π

8
cos π8


 (3.16)

13

and σ := (X,Y, Z)T . In summary, the rotation (T)(HTH) is a rotation about
the n̂ axis of an angle θ that is an irrational multiple of 2π.

Since θ is an irrational multiple of 2π, the set {nθ (mod 2π) | n ∈ Z}
can be identified with the interval [0, 2π]. To see this, let j and k be distinct
integers. The argument is that if θ

2π /∈ Q, then jθ (mod 2π) 6= kθ (mod 2π) for
any choice of j and k such that j 6= k. If this were not true, then jθ = kθ+ 2πp
for some integer p. Rearrange this and we have

θ

2π
=

p

j − k , (3.17)

and since j 6= k, this contradicts the previously stated non-membership of θ
2π

in the rationals. This means that the choice of n is unique for a given value of
nθ (mod 2π) implying that the latter provides a dense cover over the interval
[0, 2π]. Therefore, using only H and T , we can construct an arbitrary rotation
around the n̂ axis: Rn̂(α) = Ran̂(θ) where α ∈ [0, 2π] is any angle and a ∈ Z is
any integer such that |α− θa| (mod 2π) ≤ δ, our accuracy parameter.

It can be shown that a rotation of φ radians about an arbitrary axis, m̂,
can be constructed from rotations around any two distinct axes. Since we can
construct a rotation about an axis perpendicular to n̂ by conjugating Rn̂(α)
with Hadamard gates, we have:

Rm̂(φ) = Rn̂(α)HRn̂(β)HRn̂(γ)

= Ran̂(θ)HRbn̂(θ)HRcn̂(θ)
, (3.18)

where the angles α, β and γ are fixed by m̂ and φ, and in turn, the integers a, b
and c can be found for their corresponding angles. Note that any gate (not just
T) that effects a rotation of an irrational multiple of π about some axis can be
used in the above construction of universality.

3.2 Fault-Tolerant Quantum Computation

Quantum computers are highly sensitive to environmental noise. Although a
closed quantum system evolves unitarily, it is impossible to decouple any system
from its environment entirely. As far as we can tell, the universe is a closed
system, and it is composed of the quantum computer and everything that is not
the quantum computer, that latter of which we call the ‘environment’. When we
trace out the environment, it effects a noisy channel that makes the quantum
state more ‘mixed’ or classical. This phenomenon is called decoherence, and
in experimental settings is significant enough that unprotected qubits decohere
too rapidly for any useful computation to be performed.

The situation is especially dire when compared to classical computers. Clas-
sical computers are inherently protected from noise because classical information
is fundamentally discrete. The elementary values of ‘0’ and ‘1’ are represented by
different voltage bands whose separation is typically much larger than the am-
plitude of the noise produced by background electromagnetic radiation sources.

14

Although classical computers suffer much less from noise, error correction
codes have been developed to protect the transmission of classical information
over noisy channels, over large distances, in RAM or to store information on
hardware that may be more vulnerable to damage such as optical discs. These
codes cannot be directly repurposed for quantum computers, as we will see, but
ideas from the classical realm have driven the development of quantum error
correction (QEC) codes that can successfully overcome the obstacle of quantum
noise.

3.2.1 Quantum Error Correction

In this section, we will introduce quantum error correction codes by first look-
ing at a simple example of a classical error correction code: the repetition code.
Then we will discuss why quantum mechanics forbids the direct usage of such
codes and describe these differences in terms of the closest quantum analogue
of the three qubit repetition code. Then we introduce the stabilizer formalism,
a powerful tool for concisely describing quantum error correction codes and the
constraints it places on the physical implementation of encoded quantum oper-
ators. Finally, we introduce the notion of fault-tolerant quantum computation
and the transversality property of quantum operators and see that the latter
property is fixed by the definition of the QEC code.

Suppose we wish to transmit a single classical bit with value x across a noisy
channel. For concreteness we will consider the binary symmetric channel, which
flips the bit with probability p, otherwise it leaves the bit unchanged:

0→
{

0 (1− p)
1 p

, (3.19)

1→
{

1 (1− p)
0 p

. (3.20)

The 3-bit repetition code protects x by appending 2 redundant copies of x to
the message to be transmitted:

0L → 000 (3.21)

1L → 111 (3.22)

where the subscript L denotes that the bit is the ‘logical’ or encoded version
of that bit value. The strings of ‘physical’ bits, 000 and 111, used to represent
each logical bit is called a codeword.

The noisy channel affects each bit independently. Suppose we want to trans-
mit xL = 0L. We would encode our message giving 000. The received message
after the noisy channel has affected our bit string could be any of the 23 = 8
different 3-bit strings. Say 010 is received. We can recover the original message
by taking the majority function Maj(010) = 0. This process is an example of
a decoder, whose task it is to determine the most likely error that has occurred

15

and apply an appropriate correction operator, in this case flipping the 2nd bit.
The assumption here is that an error has occurred on a single bit. If instead the
first two bits were flipped by the noisy channel, then the received message would
be 110 so our decoder would determine the original message was Maj(110) = 1,
which is incorrect. We say that this is a logical error. Fortunately, the prob-
ability of this occurring is p2 < p, so the code has successfully suppressed the
effect of noise on our system.

The above example of classical error correction relies on two key facts: that
we can create copies of any binary value, and that we can evaluate the values of
bits. Unfortunately, we cannot create copies of an arbitrary unknown quantum
state due to the no-cloning theorem [35]. Furthermore, evaluating a qubit’s
‘value’ requires measurement, which destroys entanglement between qubits and
should only be done at the end of the qubit’s usefulness in a given quantum al-
gorithm. In addition, only classical information can be extracted from quantum
measurement and the quantum information stored in the probability amplitudes
would be destroyed.

Now we will construct a QEC code that can correct a single quantum bit flip,
or Pauli-X error. Say we want to send a single qubit, |ψ〉 = α |0〉+β |1〉, down a
binary symmetric channel that experiences a Pauli-X error with probability p.
We can protect |ψ〉 by encoding the basis states using the quantum repetition
code:

|0L〉 → |000〉 (3.23)

|1L〉 → |111〉 (3.24)

so that |ψL〉 = α |000〉 + β |111〉. This can be done using CNOT gates in a
circuit such as in fig. 3.1.

|ψ>

|0>

|0>
}|ψL>

Figure 3.1: Circuit that encodes the 3-qubit repetition code.

Now suppose a Pauli-X error occurs on the 2nd qubit. The state is now

|ψ′L〉 = α |010〉+ β |101〉 . (3.25)

We cannot simply measure each qubit as we might naively expect from the
classical code as this will collapse the state into |010〉 or |101〉, destroying the
quantum information contained within the probability amplitudes α and β.
However, we can perform non-destructive projective measurement of the oper-
ators Z ⊗ Z ⊗ I and I ⊗ Z ⊗ Z using a circuit such as in fig. (3.2), which yield
eigenvalues m1,m2 ∈ {+1,−1} that allow us to determine upon which qubit the

16

single qubit Pauli-X error occurred. The pair (m1,m2) is an example of a syn-
drome and the process of using syndromes to determine the required recovery
operator is called decoding. In our example, measuring |ψ′L〉 = α |010〉+ β |101〉
yields the syndrome (−1,−1), which corresponds to a single qubit Pauli-X er-
ror acting on the 2nd qubit with probability p or two errors (on the 1st and
3rd qubits) with probability p2. Assuming the most likely error occurred, we
can recover the original state by applying the recovery, or correction operator,
I ⊗X ⊗ I. This protocol fails with probability p2 < p, which means the noise
has been effectively suppressed.

|x1>

|x2>

|x3>

|0>

|0>

Z m1
Z m2

m1 m2 E
+1 +1 I
-1 +1 X1

-1 -1 X2

+1 -1 X3

Figure 3.2: A circuit that measures the parity operators Z⊗Z⊗I and I⊗Z⊗Z,
whose eigenvalues m1 and m2, respectively, allows one to determine the most
likely single qubit Pauli-X error, E, that occurred on the 3-qubit repetition
code.

We have demonstrated a simple quantum error correction code that corrects
a single Pauli-X error. A similar code can be constructed that corrects Pauli-Z
errors by using |0L〉 = |+ + +〉 and |1L〉 = |− − −〉. We can then concatenate
the two types of repetition code to form a code that can correct both Pauli-X
and Z errors:

|0L〉 = |+L′ +L′ +L′〉

=
1

2
√

2
(|0L′〉+ |1L′〉)⊗ (|0L′〉+ |1L′〉)⊗ (|0L′〉+ |1L′〉)

=
1

2
√

2
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

(3.26)

17

|1L〉 = |−L′ −L′ −L′〉

=
1

2
√

2
(|0L′〉 − |1L′〉)⊗ (|0L′〉 − |1L′〉)⊗ (|0L′〉 − |1L′〉)

=
1

2
√

2
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)

(3.27)

The resulting code is Shor’s 9-qubit code and can be decoded by measuring the
operators

Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z
X X X X X X I I I
I I I X X X X X X

(3.28)

We have given an example QEC code that we have defined in terms of
encoded quantum states. One can describe QEC codes more concisely in terms
of quantum operators using the stabilizer formalism. In the stabilizer formalism,
a quantum code is defined in terms of a special set of operators called the
stabilizer. The stabilizer is an abelian subgroup of the Pauli group on n qubits,
excluding −I. Elements of the stabilizer are called stabilizer operators and are
defined to be the set of operators that act trivially on encoded states:

S = {s|s |ψL〉 = |ψL〉} ⊂ Pn. (3.29)

For example, the rows in equation (3.28) are elements of the stabilizer for Shor’s
9-qubit code. In fact, they form a minimum generating set for the “full” stabi-
lizer.

The above definition can be used in reverse: given a stabilizer, the protected
space is spanned by the intersection of the +1 eigenstates of each member of
the stabilizer. An [[n, k, d]] stabilizer code is defined by a set of independent
stabilizer generators 〈s1, s2, . . . , sl〉 ⊂ Pn where l = n− k and a set encoded (or
logical) Pauli-X and Z operators {XL,1, ZL,1, XL,2, ZL,2, . . . , XL,k, ZL,k}. Note
that n is the number of physical qubits, k is the number of encoded qubits and
d is the distance of the code, which is the minimum weight over the set of all
operators that transform one encoded basis state into another, where the weight
of an operator is the number of qubits with non-trivial support. The logical
operators must commute with the stabilizer. Otherwise, measuring the stabilizer
would interfere with the encoded state. Each pair of logical operators must obey
the commutation relations of the operators that they encode. For instance, XL

must anticommute with ZL. In fact, there are 2l physical implementations of
each logical Pauli as SZL |ψ〉 = ZLS |ψL〉 = ZL |ψL〉, so SZL is also a logical
Pauli-Z. Having defined a stabilizer code, including the logical Paulis, the
encoded versions of other operators are also fixed by their conjugation relations
E.g. HL must be implemented so that HLXLH

†
L = ZL and so on.

18

Figure 3.3: An example error propagation process is shown. Errors represented
by crosses can multiply by conjugating through entangling gates, such as the
CNOT gate.

We have seen how a well defined QEC code fixes the definition of encoded
quantum operators by their conjugation relations. However, the existence of
such a definition is not our sole concern; it is also essential that each encoded
gate can be performed fault-tolerantly. In the fault-tolerant quantum compu-
tation (FTQC) model, we have a register of logical qubits, each of which is
represented by a number of physical qubits that contribute toward the state
space of a QEC code. Each bundle of physical qubits that is used to imple-
ment an independent instance of a QEC code is called a codeblock. The primary
concern of fault-tolerant quantum computation is to ensure that errors do not
propagate (i.e. multiply within the same codeblock) when the dynamics of a
quantum computer is effected by encoded operators. If this were allowed, then
the act of executing a quantum algorithm would cause errors to accumulate and
eventually overwhelm the QEC code’s capabilities. We say that an encoded gate
is fault-tolerant iff, failure of a single component of the encoded gate leads to
failure on at most a single physical qubit in the same codeblock after the en-
coded gate has been applied. For example, HL for the Steane code is H⊗7 [36,
37]. This operator does not propagate errors due to the bit-wise nature of its
physical implementation. If an encoded operator (as above) has a physical im-
plementation involving only physical components that act independently (i.e. in
a bitwise fashion) on each physical qubit within the same code block, then we
say that the encoded operator is transversal. From construction, transversality
is sufficient for fault-tolerance. In the next section, we will see that for ‘good’
codes, Clifford gates have transversal implementations, whereas the T gate does
not.

3.2.2 Transversal Gates

In the previous section, we saw that QEC codes are necessary to protect quan-
tum computers from noise and that the specific code used fixes the encoded
gates, and in particular, their transversality properties, which determine how
(and how cheaply) an encoded gate can be implemented fault-tolerantly. As
well as how costly it is to effect fault-tolerant gates, it is necessary to consider
how effective a QEC code is at combating noise. To this end, we will intro-
duce the notion of the ‘threshold’ as a metric for determining a QEC code’s
efficacy, culminating in a statement of the ‘threshold theorem’. We will then
introduce the ‘toric code’, provide its definition including its stabilizer genera-

19

tors and logical Pauli-X and Z gates. Then we will show how the toric code
has a high threshold and a transversal CNOT gate and inexpensive (albeit not
transversal) fault-tolerant S and H gates. Finally, we show how, despite these
desirable properties, the toric code lacks a transversal implementation of the
T gate, implying another method must be used that must be fault-tolerant in
order to obtain the full universal gate set of H, S, CNOT and T . We will
conclude the section with the more general result of Eastin-Knill, which states
that there exists no non-trivial QEC code that permits a gate set which is both
universal and transversal.

Consider an [[n, k, d]] stabilizer code, S. One can imagine taking each of
the n physical qubits used as input for S and replacing it with a logical qubit,
itself encoded with another instance of S that we denote as S′. Each of the n
physical qubits of the S′s can in turn be replaced by a further instance of S,
called S′′ and so forth ad infinitum. This process of recursive nesting of QEC
codes is called concatenation and allows for the construction of very large codes
from relatively simple descriptions.

But how do additional concatenation layers affect the probability of failure
of the resulting QEC code when compared to the original? One might naively
think that a larger code increases protection against noise. However, if each
component introduces noise to the system, then increasing code size also in-
creases noise. One can imagine that below a certain per-gate physical noise
level (or threshold), increasing the code size by a single level will reduce the
logical failure probability more than the additional noise increases it. It would
follow that increasing the code size asymptotically reduces the logical error rate
to zero. Conversely, above the threshold, increasing the code size introduces
more noise than the additional protection can cope with. So asymptotically,
the logical failure rate tends to unity. The threshold theorem states that this is
indeed the case and every family of codes has a threshold for a given noise model.

Threshold theorem for quantum computation.
The following statement of the threshold theorem is taken verbatim from [38].

A quantum circuit containing p(n) gates may be simulated with
probability of error at most ε using

O (poly (log (p(n)/ε)) p(n)) (3.30)

gates on hardware whose components fail with probability at most
p, provided p is below some constant threshold, p < pth and given
reasonable assumptions about the noise in the underlying hardware.

One family of codes is the toric code, which is defined on an N ×N square
lattice, where qubits live on the edges. The lattice has periodic boundary (hence
toric), so the (N + 1)th horizontal (vertical) grid line is identified with the 1st

horizontal (vertical) grid line etc.
The stabilizer generators come in two forms: stars and plaquettes. The star

operators are centred on each vertex of the lattice and are composed of Pauli-X

20

Z

Z

Z

Z

Z

Z

Z

X XX X X X X X

X X

X

X

Z

Z

Z

Z

XZ

Figure 3.4: The toric code for N = 7 along with a representative for each species
of stabilizer generator, star and plaquette, bounded by dotted and dashed boxes,
respectively. The Logical Pauli X and Z operators are shown as dotted and
dashed lines, respectively, which span the lattice.

gates applied to each of the 4 adjoining edges. Plaquettes are similarly defined
but are centred on the body of each square in the lattice. It is straightforward
to see that the stabilizer generators all mutually commute: either they are same
type (vertex or plaquette) or they are not. If they are, they commute trivially
as they are each composed of either Pauli-X or Pauli-Z’s, and all operators
self-commute. If they are not the same type, then they either share non-trivial
support one or more qubit, or they do not. If they share no qubits then they
trivially commute. Otherwise, consider a plaquette with a star on the top-
right. They share support on 2 qubits, each contributing a factor of −1 to
the phase, so they commute. By rotational symmetry, all other overlapping

21

Figure 3.5: Visualisation of the N = 16 toric code.

pairs of plaquettes and stars commute. It remains to define the logical Pauli
operators. These are strings that circumnavigate the periodic lattice along a
particular axis: the Pauli-Z’s along lines and X’s through plaquettes. There are
2 equivalence classes of logical Pauli: one for each orientation, horizontal and
vertical, meaning the toric code encodes two qubits. Note that a pair of logical
Pauli-Z and Pauli-X gates with odd overlap (i.e. strings of physical Pauli-Z’s
and Pauli-X’s that traverse opposite axes in the toric lattice) belong to the
same equivalence class and those with even overlap do not. One can verify that
the logical Pauli-X’s and Z’s have even overlap with the plaquettes and stars,
respectively, so they commute with the stabilizer generators and therefore the
full stabilizer. Conversely, the logical Pauli’s of the same equivalence class share
an odd overlap so anticommute, as required, and Pauli’s of opposite equivalence
class commute.

22

Now we have established that the toric code is a valid stabilizer code, we refer
the reader to evidence from previous work that the toric code has a high thresh-
old of ≈ 10−2 [13]. This is much higher than the concatenated Steane code,
for instance, which has a threshold of between 10−5 and 10−6. Given that the
toric code has a high threshold, it is desirable to find fault-tolerant implemen-
tations of gates for the toric code that form a universal gate set. The CNOT
gate has a transversal implementation. A logical CNOT is implemented by
physical CNOT ’s applied where the targets and controls are applied in strings
circumnavigating the target and control code blocks, respectively. Targets are
strings through plaquettes and controls are strings along grid lines. The S
gate does not have a transversal implementation for the toric code. However,
it can be implemented using magic state distillation (see section 3.2.3) using
slightly cheaper resource states than with the T gate or by code deformation
techniques [39]. A logical H gate is implemented by a Hadamard on each qubit
followed by a reflection along the lattice diagonal. Although the first part of the
procedure is transversal, the second part is not. However, this implementation
is still fault-tolerant as the reflection only requires swap gates between physical
qubits in the same code block, so does not propagate errors. In addition, this
implementation is ‘cheap’ in that it requires a quantity of gates that is linear in
n.

In summary, we have fault-tolerant and cheap (albeit not necessarily transver-
sal) definitions of the CNOT , H and S gate, which generate the Clifford group
on n qubits, each gate using no more than O(n2) physical gates. It remains
to find a fault-tolerant implementation of the T gate. According to Bravyi-
Koenig [40], no 2D topological code has a transversal T gate. In fact, there
is a more general result of Eastin-Knill [41], which proves that no non-trivial
code has a gate set that is both universal and transversal. Fortunately, we can
implement a fault-tolerant T gate using a gate teleportation circuit such as in
figure 3.6, provided a supply of high fidelity T states. As we will see in the next
section, the latter can be provided in a fault-tolerant manner using magic state
distillation.

3.2.3 Magic State Distillation

In the previous section, we saw how QEC codes with otherwise desirable prop-
erties lack a transversal implementation of any non-Clifford gate, such as the T
gate, which is necessary for universal quantum computation. This implies some
other method must be used to obtain a fault tolerant T gate. In this section,
we describe such a method by first demonstrating the existence of a circuit that
simulates an ideal T gate using only Clifford gates and a single copy of a pure
ancilla |T 〉 := T |+〉 state. Second, we account for noise by assuming the re-
source state is a ‘noisy’ mixed state ρ with a certain fidelity with |T 〉. We show
for which values of fidelity of ρ we can achieve a given desired total accuracy for
a circuit with NT T gates. Next, we show that multiple copies of ρraw can be
consumed to create fewer ρ with arbitrarily high fidelity, provided the fidelity
of ρraw is greater than a certain threshold, and that this can be achieved in so

23

called magic state distillation (MSD) protocols. We go on to describe the high
level overview of a typical MSD subroutine, such as the 15→ 1 subroutine from
[10] or triorthogonal codes from [11]. We conclude this section by discussing the
high cost the T gate relative to Clifford gates and introduce the T count as a
key metric for approximating the cost of quantum circuits.

The T gate can be simulated by a circuit such as in figure 3.6, which uses
only Clifford gates and a single copy of the pure state

|T 〉 := T |+〉 =
1√
2

(
|0〉+ ei

π
4 |1〉

)
. (3.31)

One can verify that this circuit, which we will call the ‘T gadget’, effects the T
gate.

SX

Z

T

ψ

ψT

Figure 3.6: Circuit for implementing the T gate using Clifford gates and an
ancillary |T 〉 state.

The T gadget requires a supply of pure T -type magic states to implement
an ideal T gate. These assumptions are unrealistic. So to account for noise,
we update our model such that the ancilla is actually a mixed state ρ with a
certain fidelity with respect to |T 〉

F (ρ) = max
U∈C1

√
〈T |U†ρU |T 〉, (3.32)

where C1 is the single qubit Clifford group.
To verify that the T gadget with noisy ancilla is fault-tolerant, consider

uncorrelated noise occurring on the top qubit line at the beginning of the circuit.
With probability pz, the pure |T 〉 ancilla is affected by a Pauli-Z error and with
probability px, it is affected by a Pauli X error. If a Z error occurs, it commutes
through the control of the CNOT gate and, up to a global phase, to the end
of the circuit. If an X error occurs, commuting it through the CNOT gate
propagates an additional error to the bottom line. However, the bottom qubit
is subsequently measured, so the propagated X error only affects whether the
SX correction is applied to the top line. Therefore, failure on a single component
only introduces an error on a single qubit and the T gadget satisfies the criteria
for fault-tolerance.

The mixed state ρ can be expressed as

ρ = (1− ε) |T 〉 〈T |+ ε |T−〉 〈T−| , (3.33)

where |T−〉 = T |−〉 and ε ∈ [0, 1] is the infidelity of ρ with respect to |T 〉.
Suppose we wish to implement a circuit with accuracy εtotal composed of some

24

number of Clifford gates and NT T gates. As noise combines linearly, each
resource T state, ρ, should have a fidelity of

F ≥
√

1 + ε

2
=

√
1 + εtotal

NT

2
. (3.34)

The problem of implementing a fault-tolerant T gate has been reduced to
the problem of preparing sufficiently high-fidelity T states for a given quantum
algorithm. Magic state distillation allows us to convert large numbers of low-
fidelity T states to a small number of high-fidelity T states. The fact that the
T state possesses both the ability to efficiently implement a universal gate set
and the ability to be distilled to arbitrarily high fidelity is why they are known
as magic states.

A typical magic state distillation subroutine consists of the following five
steps. First, a register of k qubits is prepared in the stabilizer state |+〉⊗d.
Secondly, the register is then encoded using Clifford gates into an [[n, k, d]]
stabilizer code for which exists a transversal logical T gate, which is applied
to the encoded register in the third step. Each unencoded T gate in step 3 is
implemented using the circuit from fig. (3.6), consuming a T -type magic state
and introduces noise in situ. Hence in step 4, the Pauli X stabilizer generators
are measured non-destructively and a correction operation is applied to the
encoded register, conditioned on the measured syndrome. In the final step, the
register is decoded and if the last n − k qubits are in any state other than

|0〉⊗(n−k)
, then an error has been detected and the result is discarded and the

process must be restarted from the beginning. Otherwise, the subroutine has
succeeded and the first k qubits are each in the mixed state

ρ′ = (1− ε′) |T 〉 〈T |+ ε′ |T−〉 〈T−| , (3.35)

where ε′ ≈ εd < ε for sufficiently small values of ε, so increases the fidelity. In
general, the fidelity is increased provided that ε < εth for some threshold value
that depends on the code used and the noise model. For example, the 15-to-1
code has a threshold of εth ≈ 0.141 and has a failure probability of pout ≈ 35p3

in.
If we assume an input error probability of pin ≈ 10−2, then a single round of the
15-to-1 code yields an output error probability of ppout ≈ 35p3

in = 3.5 × 10−5,
which remains too noisy for most applications. However, we can concatenate
MSD subroutines together by using the output ρ states of one instance as the
input resource state of another. By nesting MSD protocols together in this way,
we can reduce noise to arbitrarily low levels. Again using the 15-to-1 code as
an example, it takes two rounds and a total of 225 resource T states to reduce
the noise for a single output T state from pin = 10−2 to pout ≈ 1.5 × 10−12,
which begins to approach the per-bit error rates of modern classical computers
of ≈ 10−15. The number of resource states required per output magic state for
a given physical error rate and target error rate is called the overhead. We refer
the reader to references [11, 14] for insight into how overhead scales with these
parameters for various configurations of concatenated MSD subroutines.

25

While the overhead is sensitive to the precise configuration of MSD proto-
col used, it remains high (> 100) for practical output error probabilities. We
remind the reader that the overhead reflects only a portion of the total cost of
implementing a fault-tolerant T gate, as many Clifford gates are required at all
stages of each recursion: to perform the encoding, syndrome measurement and
decoding stages etc. In order to fairly compare the relative costs of the T gate
and Clifford gates one must perform a full space-time cost analysis. However,
this is a highly involved calculation and depends on architectural assumptions.
As such, it falls beyond the scope of this thesis. But in practice, the overhead
typically exceeds ≈ 1000 [12]. This disparity in cost between the fault-tolerant T
gate and Clifford operations motivates the Clifford + T cost model for quantum
circuits, in which it is assumed that Clifford gates are ‘free’ and T gates have
unit cost. Following naturally from the definition of the Clifford + T model is
the problem of T gate optimization, which is the primary concern of this thesis.
In the following chapters we provide novel methods for solving this problem,
including the TODD algorithm in chapter 4 and a similar algorithm for qudits
in chapter 5.

++ ρ

++ ρ

0

0

0

++ ρ

0

0

0

E
nc

od
e

C
li

ff
or

d
C

or
re

ct
io

n

M
ea

su
re

 X
-S

ta
bi

li
ze

rs

P
os

t-
S

el
ec

t T
ri

vi
al

 S
yn

dr
om

e

D
ec
o
d
e

T

T

T

T

T

T

Zp

Zp

ZpZp

Zp

Zp

Zp

Figure 3.7: High-level overview of a circuit that implements a typical the magic
state distillation protocol, such as the 15-to-1 code from reference [10] or the
protocol from reference [11] based on triorthogonal codes.

26

Chapter 4

An Efficient Quantum Com-
piler that Reduces T Count

The following journal article is an original work by the present author and Dr.
Earl T. Campbell that was published in Quantum Science and Technology on
12th September 2018 [30]. The full text is provided below in partial fulfilment
of the requirements for the degree of Doctor of Philosophy. The source code for
the quantum compiler “TOpt” described in this chapter is available here: [42].

27

Quantum Science and Technology

PAPER

An efficient quantum compiler that reduces T
count
To cite this article: Luke E Heyfron and Earl T Campbell 2019 Quantum Sci. Technol. 4 015004

View the article online for updates and enhancements.

Recent citations
Methods for classically simulating noisy
networked quantum architectures
Iskren Vankov et al

-

This content was downloaded from IP address 90.213.19.64 on 20/01/2020 at 16:23

QuantumSci. Technol. 4 (2019) 015004 https://doi.org/10.1088/2058-9565/aad604

PAPER

An efficient quantum compiler that reduces T count

Luke EHeyfron1 and Earl TCampbell
Department of Physics andAstronomy,University of Sheffield, Sheffield, United Kingdom
1 Author towhomany correspondence should be addressed.

E-mail: leheyfron1@sheffield.ac.uk and earltcampbell@gmail.com

Keywords: quantum computation, gate synthesis, quantum compiler, quantum circuits, fault-tolerance, qubits, symmetric tensors

Abstract
Before executing a quantumalgorithm, onemustfirst decompose the algorithm intomachine-level
instructions compatiblewith the architecture of the quantumcomputer, a process knownasquantum
compiling. There aremanydifferent quantumcircuit decompositions for the same algorithmbut it is
desirable to compile leaner circuits. A fundamentally important costmetric is theT count—the number
ofT gates in a circuit. For the single qubit case, optimal compiling is essentially a solved problem.
However,multi-qubit compiling is a harder problemwithoptimal algorithms requiring classical
runtime exponential in the number of qubits.Here, wepresent and compare several efficient quantum
compilers formulti-qubit Clifford+T circuits.We implementedour compilers inC++ and
benchmarked themon randomcircuits, fromwhichwedetermine that ourTODDcompiler yields the
lowestT counts on average.We also benchmarkedTODDon a library of reversible logic circuits that
appear in quantumalgorithms and found that it reduced theT count for 97%of the circuitswith an
averageT-count saving of 20%when compared against thebest of all previous circuit decompositions.

Compiling is the conversion of an algorithm into a series of hardware level commands or elementary gates.
Better compilers can implement the same algorithmusing fewer hardware level instructions, reducing runtime
and other resources. Quantumcompiling or gate-synthesis is the analogous task for a quantum computer and is
especially important given the current expense of quantumhardware. Early in the field, Solovay andKitaev
proposed a general purpose compiler for any universal set of elementary gates [1–3]. Newer compilers exploit
the specific structure of theClifford+ T gate set and have reduced quantum circuit depths by several orders of
magnitude [4–7], often improving the classical compile time. TheClifford+ T gate set is natural since it is the
fault-tolerant logical gate set in almost every computing architecture [8].Moreover, fault-tolerance protocols
have been proposed such asmagic state distillation [9] that lead to a cost perT gate which is several hundred
times larger than that of Clifford gates [10–12], which suggestsT count as the keymetric of compiler
performance. Furthermore, theT count is an importantmetric beyond the standard compiling problembecause
it relates to the classical overhead of simulating quantum circuits [13–15] as well as the distillation cost of
synthillation [16]. For these reasons, it is clear that developingmethods forminimizing theT count is crucial for
a variety of applications in quantum computation.

Significant progress has beenmade on synthesis of single-qubit unitaries fromClifford+ T gates. For purely
unitary synthesis, the problem is essentially solved sincewe have a compiler that is asymptotically optimal and
efficient [4, 7]. Although further improvements are possible beyond unitary circuits, bymaking use of ancilla
qubits andmeasurements [13, 17–19] or adding an element of randomness to compiling [20, 21]. On the other
hand, themulti-qubit problem ismuchmore challenging. An algorithm formulti-qubit unitary synthesis over
theClifford+ T gate set is known that is provably optimal in terms of theT count but the compile runtime is
exponential in the number of qubits [6, 22]. Compilers with efficient runtimes have been proposed butwith no
promise ofT count optimality [23, 24].We seek a compiler that runs efficiently and yields circuits withT counts
that are as low as practically achievable.

A useful strategy is to take an initial Clifford+ T circuit and split it into subcircuits containingHadamards
and subcircuits containingCNOT, S andT gates. One can then attempt to reduce the number ofT gates within

RECEIVED

15December 2017

REVISED

4 July 2018

ACCEPTED FOR PUBLICATION

26 July 2018

PUBLISHED

12 September 2018

© 2018 IOPPublishing Ltd

just the latter type of subcircuit. Amy andMosca recently showed that this restricted problem is formally
equivalent to error decoding on a class of Reed–Muller codes [25], which is in turn equivalent tofinding the
symmetric tensor rank of a 3-tensor [26]. Unfortunately, even this easier sub-problem is difficult to solve
optimally. Nevertheless, it ismore amenable to efficient solvers that offer reductions inT count. Amy andMosca
proved that an n-qubit subcircuit (containingCNOT, S andT gates) has an optimal decomposition into
n O n22 + ()T gates. At the time, known efficient compilers could only promise an output circuit with nomore
thanO(n3)T gates. Later, Campbell andHoward [16] sketched a compiler that is efficient and promises an
output circuit with atmost n O n22 + ()T gates. This shows efficient compilers can in this sense be ‘near-
optimal’with respect toworst case scaling. On themathematical level, Campbell andHoward exploited a
previously known efficient and optimal solver for a related 2-tensor problem [27] but suitablymodified so that it
nearly-optimally solves the required 3-tensor problem.

This paper develops several different compilers that have polynomial runtime in n and are near-optimal in
the above sensewhen restricted toCNOT+ T circuits.Wemodify the compiler to also accommodate
Hadamard gates using a gadgetisation trick that requires additional resources (measurements, feed-forward and
ancillas) andfind that it performswell in practice.We provide thefirst implementations of such compilers (the
source code is available here [28]) and compare performance against: a family of random circuits; and a library of
benchmark circuits that implement actual quantumalgorithms. For random circuits, we observe O n2() scaling
inT count for all variants of our compiling approach comparedwith O n3() scaling for compilers based on earlier
work.Quantumalgorithms are highly structured and far from random, so the number ofT gates can not be
meaningfully comparedwith theworst case scaling. Instead, we benchmark against the best previously known
results and found on average a 20%T count reduction. In one instance, our compiler gave a 51%T count
reduction and it performed better than previous results for all but one of the benchmarked circuits. Of course,
theT count is not the onlymetric relevant to gate synthesis.We discuss the limitations of theT count, as well as
othermetrics in section 4.3.

All of the near-optimal compilers described in this paper look for inspiration in algorithms for the related
2-tensor problem,whichwe call Lempel’s algorithm.We give specific details for a compiler here called TOOL
(target optimal by order lowering) that comes in two different flavours (with andwithout feedback). The TOOL
compilers can be considered concrete versions of the approach outlined byCampbell andHoward [16]. Also
described in this paper is the TODD (third order duplicate and destroy) compiler, which is again inspired by
Lempel but in amore direct and elegantway thanTOOL. In benchmarking, we find that TODDoften achieved
even lowerT count thanTOOL.

1. Preliminaries

The Pauli group on n qubits n is the set of all n-fold tensor products of the single qubit Pauli operators
X Y Z, , , { }with allowed coefficients i1,Î  { }. The kth level of theClifford hierarchy k

n is defined as
follows,

U U U , 1k
n n

k
n

1  = Í -{ ∣ } ()†

with recursion terminated by n n
1 = . TheClifford group on n qubits n is the normalizer of n .We define

k
n to be the diagonal elements of TCNOT,á ñ.Wewill omit the superscript nwhen the number of qubits is

obvious from context.We defineClifford to be any generating set for theClifford group on n qubits such as
H SCNOT, ,{ }.We define theCNOT+T gate set to be S TCNOT, ,{ }, wherewe include the phase gate S T 2=

as a separate gate due to themagic states costmodel for gate synthesis [9]. A quantum circuit decomposition for a
unitaryU is denoted ; conversely we say that  implementsU. Similarly, a circuit  implements non-unitary
channel r e r ().We refer to a circuit  that implements aU 3Î as a diagonalCNOT+T circuit.

2.Work-flowoverview

In this section, we give a high level work-flowof our approach to compiling as sketched infigure 1. In stages 1–3,
some simple circuit preprocessing is performed so that a Clifford+ T circuit is converted into a formwhere the
only non-Clifford part is a diagonal CNOT+ T gate (an element of 3). Section 2.1 describes this preprocessing.
In stages 4–6, the technically difficult aspect of compiling is addressed using a series of different algebraic
representations of the circuit and these stages are described in section 2.2.

2.1. Circuit preprocessing
The input circuit TClifford,in Î á ñ implements some unitaryU. It acts on a register we denote x, which is
composed of n qubits and spans theHilbert space x . The output of our compiler is a circuit out composed of

2

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Clifford andT gates but additionally allows: the preparation of +ñ∣ states;measurement in the Pauli-X basis, and
classical feedforward. To account for ancilla +ñ∣ qubits, we include a register labelled y that is composed of h
qubits and spans theHilbert space y . The circuit out will realize the input unitary after the y register is traced
out

V VTr Tr , 2h
y out x y post xe r e r= Ä +ñá+ Ä[()] [((∣ ∣)))] ()†

U U , 3xr= ()†

where xr is the densitymatrix for an arbitrary input pure state on x . Furthermore,V 3Î is the unitary
portion of out , and poste is a quantum channel that is associatedwith the sequence of Pauli-Xmeasurements and
subsequent classically controlledClifford gates, C C C, , , h1 2 ¼ , seen infigure 1.

We emphasize that later stages of compilingwillmake use of a framework valid only for CNOT+ T circuits,
whichmakesHadamard gates an obstacle. There are two commonly usedmethods for dealingwithHadamard
gates:first, we can partition the quantum circuit into alternating TCNOT,á ñand Há ñ subcircuits and optimize
eachCNOT+T subcircuit independently [23]. The secondway is to replace eachHadamard gatewith a gadget
(see for example [29, 30]) thatmakes use of extra resources (ancillas,measurements and feedforward). The
central portion of the gadget contains all of the non-Clifford behaviour and is in theCNOT+T gate set, so is
directly compatible with ourT-optimizers. The remainder of this section focusses on the secondmethod
(Hadamard gadgetization), but we discuss theHadamard-bounded partitioningmethod inmore detail in
appendix A.

Each2 of the hHadamard gates is replaced by aHadamard-gadget (as shown in panel 1) offigure 2. A
Hadamard-gadget consists of a CNOT+Tblock followed by a Pauli-X gate conditioned on the outcome of
measuring aHadamard-ancilla (a qubit in the y register initialized in the +ñ∣ state) in the Pauli-X basis, so the size
of the y register is h. AfterHadamard-gadgetisation, we commute the classically controlled Pauli-X gates to the
end of the circuit, starting with the right-most and iteratively working ourway left (see panel 3 offigure 2). The
end result is a circuit composed of a single CNOT+ Tblock on n+h qubits, followed by a sequence of
classically controlled Clifford operators conditioned on Pauli-Xmeasurements. The latter sequence of non-
unitary gates constitutes the circuit post . Thismethod of circumventingHadamards is preferred over forming
Hadamard-bounded partitions as in previousworks [23] because it allows us to convertmost of the input circuit
into the optimization-compatible gate set, whichwefind leads to better performance of theT-Optimizer
subroutine (see appendix A for numerical evidence of this).

Once the internalHadamards are removed, we are left with aCNOT+T circuit that implements unitaryV,
whose action on the computational basis is fully described [16, 23, 25, 31] by twomathematical objects: a phase

Figure 1.The high level work-flowof theT gate optimization protocol is shown. AClifford+T circuit is converted to theCNOT + T
gate set by introducing ancillas and performing classically controlledClifford gates. A non-Clifford phase gate is extracted, which
maps to a signature tensor uponwhich the core optimization algorithm is performed. The optimized symmetric tensor decomposition
is then converted back into a circuit of the form in panel (2) yielding an implementation of the original Clifford+T circuit with
reducedT count.

2
To be precise, gadgets are only need for internalHadamards. The externalHadamards that appear at the beginning and end of the circuit do

not need to be replacedwithHadamard gadgets.

3

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

function, f : n
2 8  , and an invertiblematrix E n n

2
,Î (), such that

V Ex x , 4f xwñ = ñ∣ ∣ ()()

where ei 4w = p
. It has been shown [16, 25] thatV U UE f= whereUf 3Î can be implementedwith a diagonal

CNOT+T circuit and gives the phase

U x x , 5f
f xwñ = ñ∣ ∣ ()()

andUE can be implementedwithCNOTs.

2.2.Diagonal CNOT+ T framework
In section 2.1, we isolated all the non-Clifford behaviour of a Clifford+T circuit within a diagonal CNOT+T
circuit defined on a larger qubit register. Thismethod allows us tomap theT gate optimization problem for any
Clifford+T circuit to the following.

Problem2.1. (T-OPT)Given a unitaryUf 3Î ,find a circuit decomposition CNOT T S, ,f Î á ñ that
implementsUfwithminimal uses of theT gate.

This section describes howwemap theT-OPTproblem from the quantum circuit picture to an algebraic
problem following stages 4–6 offigure 1. Throughout this sectionwe use the framework for diagonal CNOT+ T
circuits (also called linear phase operators [25]) introduced in [31] and built upon in [16, 23, 25].We proceed by
recalling from equation (5) that the action of anyUf 3Î on the computational basis is given by

U x xf
f xwñ = ñ∣ ∣() and thatUfis completely characterized by the phase function, f. A phase function can be

decomposed into a sumof linear, quadratic and cubicmonomials on the Boolean variables xi. Eachmonomial of
order r has a coefficient in 8 and is weighted by a factor 2r 1- , as in the following:

f l x q x x c x x xx 2 4 mod 8 , 6
n n n

1
, , ,å å å= + +

a
a a

a b
a b a b

a b g
a b g a b g

= < < <

() () ()

where l q c, ,, , , 8Îa a b a b g .We refer to decompositions of fthat take the formof equation (6) asweighted
polynomials as in [16], inwhich it was shown thatU Uf f2

2
2= Î for anyweighted polynomial, f. This implies

that any two unitaries withweighted polynomials whose coefficients all have the same parity are Clifford
equivalent. Note that theweighted polynomial can be lifted directly from the circuit definition ofUfif wework
in the T CS CCZ, ,{ }basis, as each kind of gate corresponds to the linear, quadratic and cubic terms,
respectively.

In stage 4 offigure 1, we define the signature tensor, S U n n n
2

, ,f Î() (), to be a symmetric tensor of order 3whose
elements are equal to the parity of theweighted polynomial coefficients ofUfaccording to the following
relations:

S S l amod 2 , 7a a a, , , ,= =s a a a a () ()()

Figure 2.Hadamard gates are replaced byHadamard-gadgets according to the rewrite in the upper part of panel (1). In the lower part,
we define notation for the phase-swap gate and provide an example decomposition into theCNOT+T gate set. Panel (2) shows an
example of aHadamard gate swapped for aHadamard-gadget where the classically controlled Pauli-X gate is commuted throughUf2

to the end. TheCNOT+T—only region increases as shown by the dotted lines. AsUf 32
Î , it follows thatU XUf f 22 2

Î† as per

equation (1), so has aT-count of 0. The example in panel (3) shows the same process as (2) but for 2 internalHadamards. As 3 is a
group, the operator V 3Î and the secondPauli-X gate can also commute to the end to form aClifford. This leads to a decomposition
of the form in panel (2) offigure 1.

4

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

S S q bmod 2 , 7, , , , ,= =s a b b s a a b a b () ()() ()

S c cmod 2 7, , , ,=s a b g a b g () ()()

for all permutations of the indices, denotedσ. It follows that any two unitaries with the same signature tensor are
Clifford equivalent.

We recall the definition of gate synthesismatrices from [16], where amatrix,A in n m
2

,(), is a gate synthesis
matrix for a unitaryUfif it satisfies,

f A A xx x mod 8 mod 8 , 8T

j i
i j i,å= =

⎡
⎣⎢

⎤
⎦⎥() ∣ ∣() ⨁ () ()

where .∣ ∣ is theHammingweight of a binary vector. Notice that inside the square brackets is evaluatedmodulo 2
and outside is evaluatedmodulo 8.

Obtaining a gate synthesismatrix from a quantum circuit is best understood via the phase polynomial
representation. A phase polynomial of a phase function, f, is a set, P a a a, , , , ..., ,f p p1 1 2 2l l l= {{ } { } { }}, of
linear boolean functions xkl (), together with coefficients ak 8Î such that

f ax x mod 8 . 9
k

P

k k
1

f

å l=
=

() ()() ()

Aphase polynomial can be extracted from a diagonal CNOT+T circuit by tracking the action of each gate on
the computational basis states through the circuit [23, 31].We thenmapPfto anAmatrix with a procedure such
as the following. Start with an emptyAmatrix. Then for each a P,k k fl Î{ } ,

1. Define column vector, v n
2Î , such that v x v x v xx ...k n n1 1 2 2l = Å Å Å() .

2. Append ak copies of v to the right-hand end ofA.

We define a proper gate synthesismatrix to be anAmatrix with no all-zero or repeated columns, andwe define
the function proper such that A Aproper¢ = () is the proper gate synthesismatrix formed by removing all all-
zero columns and pairs of repeated columns fromA. The purpose of this function is to strip away theClifford
behaviour from the gate synthesismatrix.

Wewill exploit the key property ofAmatrices described in the following lemma, which is a corollary of
lemma 2 of [31].

Lemma2.1. LetUf 3Î be a unitary with phase function f Ax xT=() ∣ ∣and A Aproper n m
2

,¢ = Î() (). It follows
that one can generate a circuit that implements Ufwith m Acol= ¢() uses of the T gate.

Proof. First, we note from the definition ofA in equation (8) that the jth columnofA leads to a factor of xjwl ()

appearing in the diagonal elements ofUfaswritten in equation (5), where jl is a reversible linear Boolean
function given by,

A x A x A xx 10j j j n j n1, 1 2, 2 ,l = Å Å Å() ()

The action of a circuit generated byCNOTgates on computational basis state xñ∣ is to replace the value of each
qubit with a reversible linear Boolean function on x x x, , ..., n1 2 . Next, we showhow to add the phase xjwl ().We
defineBj to be aCNOTunitary such that after applyingBj thefirst qubit ismapped x xj1 lñ  ñ∣ ∣ () . AT gate
subsequently applied to this qubit will nowproduce the desired phase.We then uncomputeBj by reversing the
order of the CNOT gates. This procedure is repeated for every j until all columns ofA have been implemented in
this way.Only the columns ofA that also appear in A¢ require the use of aT gate as all other columns have
duplicates, where any pair of duplicates can be implemented by replacing theT gate with an S gate in the above
procedure. Therefore theT count is equal to m Acol= ¢(). ,

The signature tensor ofUfcan be determined from anAmatrix ofUfusing the following relation,

S A A A mod 2 . 11A

j

m

j j j, ,
1

, , ,å=a b g a b g
=

() ()()

Therefore, the gate synthesis problemT-OPT reduces to the following tensor rank problem.

Problem2.2. (3-STR)Given a symmetric tensor of order 3, S n n n
2

, ,Î (),find amatrix A n m
2

,Î () that satisfies
equation (11)withminimalm.

5

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Any algorithm attempting to solve 3-STR can be used in stage 5 offigure 1. The observation that T-OPT
reduces to 3-STR is not new as it follows directly from earlier work. Amy andMosca [25] proved that T-OPT is
equivalent tominimumdistance decoding of the punctured Reed–Muller code of order n 4- and length n
(oftenwritten as n nRM 4,* -()). Furthermore, in 1980 Seroussi and Lempel [26] recognized that this Reed–
Muller decoding problem is equivalent to 3-STR and conjectured that this is a hard computational task. A non-
symmetric generalization of 3-STRhas been proved to beNP-complete [32], giving furtherweight to the
conjecture. This imposes a practical upper bound on the number of qubits, nRM, over which circuits can be
optimally synthesized.

The problem 3-STR is closely related to

Problem2.3. (2-STR)Given a symmetric tensor of order 2, S n n
2

,Î (),find amatrix A n m
2

,Î () that satisfies

S A A mod 2 . 12A

j

m

j j,
1

, ,å=a b a b
=

() ()()

withminimalm.

This could also be stated as amatrix factorization S AAT= problem. As such, we say anyA satisfying
S AAT= is a factor of S and aminimal factor is onewith theminimumpossible number of columns. As is often
the case in complexity theory, thematrix variant of the problem is considerably simpler than the higher order
tensor variant. Lempel gave an algorithm that finds an optimal solution to 2-STR in polynomial time [27].We
call this Lempel’s factoring algorithm and for completeness describe it in appendix B.Ourmain strategy toT
count optimization is to take insights fromLempel’s algorithm for 2-STR and apply them to 3-STR. In doing so,
our compilers will be efficient but lose the promise of optimality, instead providing approximate solutions to
3-STR andT-OPT.

In thefinal stage (see 6 offigure 1), wemap the outputmatrix of stage 5 back to a diagonal CNOT+T circuit,

f ¢, that comprisesm instances of theT gate using lemma 2.1. The circuit f ¢ implements a unitary
U U Uf f Clifford=¢ , whereUClifford is a diagonal Clifford factor. The inputweighted polynomial stored since step 4

contains sufficient information to generate a circuit forUClifford
† (see appendixD), hencewe recover the original

unitary,U U Uf f Clifford= ¢
† . Thefinal part of step 6 constitutes replacing f with fClifford  ¢(◦)† . At this stage, the

protocol terminates returning the final output, f Eout Clifford post    = ¢(◦ ◦ ◦)† .

3.T-optimizer

Until now theT-optimizer subroutine of our protocol has been treated as a black boxwhose input is a signature
tensor S and the output is a gate synthesismatrixAwith few columns. In this section, we describe the inner
workings of the variousT-optimizers we have implemented in this work.

3.1. Reed–Muller decoder (RM)
AlthoughReed–Muller decoding is believed to be hard, a brute force solver can be implemented for a small
number of qubits.We implement such a brute force decoder and found its limit to be n 6RM = . To gain some
intuition for the complexity of the problem, consider the following. The number of codespace generators for

n nRM 4,* -() is equal to N
n

r
G r

n
1
4= å =

- ⎜ ⎟⎛
⎝

⎞
⎠. Therefore, the size of the search space is N 2N

search G= . On a

processor with a clock speed of 3.20 GHz, generously assumingwe can check one codeword per clock cycle, it
would take over 91 years to exhaustively search this space for n=7. Performing the same back-of-the-envelope
calculation for n=6, it would take 7 10 4» ´ - seconds. In practice, wefind the brute force decoder executes in
around 10minutes for n=6, so the time for n=7would be significantly worse. Clearly, we need to develop
heuristics for this problem.

3.2. Recursive expansion (RE)
The simplestmeans of efficiently obtaining anAmatrix for a given signature tensor S is tomake use of the
modulo identity ab a b a b2 = + - Å .More concretely, for each non-zero coefficient in theweighted
polynomial lα, q ,a b, c , ,a b g , make the following substitutions to the correspondingmonomials:

x x , 13a a ()

x x x x x x2 , 14 + - Åa b a b a b() ()

6

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

x x x x x x x x x x x x x x x4 , 15 + + - Å - Å - Å + Å Åa b g a b g a b a g b g a b g() () () () ()

fromwhich the correspondingAmatrix can be easily extracted.We call this the RE algorithm,which has been
shown to yield worst-caseT counts of O n3(). It is straightforward to understand this cubic scaling because any
proper gate synthesismatrix resulting from the RE algorithmmay include any column ofHammingweight 3 or

less. There are
n

k
O nk 1

3 3å == ⎜ ⎟⎛
⎝

⎞
⎠ () such columns so from lemma 2.1 there can be atmost O n3()T gates in the

corresponding circuit decomposition.

3.3. Target optimal by order lowering (TOOL)
Campbell andHoward [16] proposed an efficient heuristic for T-OPT that requires atmost O n2()T gates
compared to O n3() of the best previous (RE) optimizer. In the quantum circuit picture, the algorithm involves
decomposing the input CNOT+T circuit into a cascade of control-U f2 ˜ operators where f̃ is quadratic rather
than cubic. Lowering the order in this waymeans that each control-U f2 ˜ can be synthesized both efficiently and
optimally using Lempel’s factoring algorithm. For this reasonwe call it the TOOL algorithm. Figure 3 shows a
single step of howTOOLpulls out a single control-U f2 ˜ operator, reducing the number of qubits non-trivially
affected by the remaining unitary. The process is repeated until the circuit is small enough to be solved using the
RMalgorithm. The core of the algorithmwas already outlined in previouswork [16] but for completeness
appendix Cdescribes both plain TOOL and a variant called TOOL (with feedback). This paper presents the first
numerical results obtained from an implementation of TOOL.

3.4. Third order duplicate anddestroy (TODD)
In this section, we present an algorithmbased on Lempel’s factoring algorithm [27] that is extended towork for
order 3 tensors. Since this algorithmdoes not appear in any previous work, wewill provide an extended
explanation here. This algorithm requires some initialAmatrix to be generated by another algorithm such as RE
or TOOL, then it reduces the number of columns of the initial gate synthesismatrix iteratively until exit. In
section 4, we present numerical evidence that it is the best efficient solver of the T-OPTproblemdeveloped so
far.We call this the TODDalgorithmbecause,much like the villainous Victorian barber, it shaves away at the
columns of the inputAmatrix iteratively until the algorithmfinishes execution. Pseudo-code is provided in
appendix E.

We begin by introducing the keymechanism throughwhichTODD reduces theT count of quantum
circuits: by destroying pairs of duplicate columns of a gate synthesismatrix, a process throughwhich the
signature tensor is unchanged, as shown in the following lemma.

Lemma3.1. Let A n m,Î () be a gate synthesis matrix whose ath and bth columns are duplicates. Let
A n m

des
, 2Î -() be a gate synthesis matrix formed by removing the ath and bth columns of A. It follows that

S SA Ades=() () for any such A and Ades.

Figure 3.A sketch of one round of TOOL (without feedback).We identify a sub-circuitUfc with a single control qubit and then use
that such a subcircuit can be efficiently and optimally compiled using Lempel’s algorithm. The remaining circuitU Uf f

c

† contains one

fewer qubit and so the process can be iterated until the circuit is down to 6 qubits when it can be optimally compiled by brute force.

7

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Proof.We start bywriting the signature tensor in terms of the elements ofA according to equation (11),

S A A A mod 2 , 16A

k

m

k k k, ,
1

, , ,å=a b g a b g
=

() ()()

and separating the terms associatedwith a b, from the rest of the summation,

S A A A A A A A A A mod 2 , 17A

j
j j j a a a b b b, , , , , , , , , , ,


å= + +a b g a b g a b g a b g
Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ () ()()

where m a b1, , = []⧹{ }, so that

S S A A A A A A mod 2 , 18A A
a a a b b b, , , , , , , , , ,

des= + +a b g a b g a b g a b g () ()() ()

As stated in the lemma, the ath and bth columns ofA are duplicates and so

A A i n1, . 19i a i b, ,= " Î [] ()

Now substitute equation (19) into (18),

S S A A A2 mod 2 20A A
a a a, , , , , , ,

des= +a b g a b g a b g () ()() ()

S mod 2 , 21A
, ,

des= a b g () ()()

where the last step follows frommodulo 2 addition. ,

Lemma 3.1 gives us a simplemeans to remove columns from a gate synthesismatrix by destroying pairs of
duplicates columns and thereby reducing theT count of a CNOT+T circuit by 2.However, it is often the case
that theAmatrix does not already contain any duplicate columns. Therefore, wewish to perform some
transformation: A A ¢ such that

(a) A¢ has duplicate columns;

(b) the transformation preserves the signature tensor ofA.

In the following lemmawe introduce a class of transformations that duplicate a particular columnof anAmatrix
such that property (a) ismet.We then use lemma 3.3 to establishwhat conditionsmust be satisfied for the
duplication transformation to have property (b).

Lemma3.2. Let A n m
2

,Î () be a proper gate synthesis matrix. For some choice of a and b, let Aca() and Acb() denote
the ath and bth columns of A and define A Az c ca b= Å() () . Let y m

2Î be any vector such that y y 1a bÅ = .We
consider duplication transformations of the form A A A zyT ¢ = Å . It follows that the ath and bth columns of A¢
are duplicates and so property (a) holds.

Proof.Webegin byfinding expressions for thematrix elments of A¢ in terms ofA, z and y ,

A A z y , 22i j i j i j, ,¢ = Å ()

and substitute the definition of z ,

A A A A y . 23i j i j i a i b j, , , ,¢ = Å Å() ()

Nowwe canfind the elements of the columns a and b of A¢,

A A A A y , 24i a i a i a i b a, , , ,¢ = Å Å() ()

A A A A y . 25i b i b i a i b b, , , ,¢ = Å Å() ()

We substitute in the condition y y 1b a= Å into equation (25),

A A A A y

A A A y A A

A A A y

A

1

, 26

i b i b i a i b a

i b i a i b a i a i b

i a i a i b a

i a

, , , ,

, , , , ,

, , ,

,

¢ = Å Å Å
= Å Å Å Å
= Å Å

= ¢

()()
()
()

()

where the two Ai b, terms cancel in the second step of equation (26). ,

8

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Lemma3.3.Consider a duplication transformation of the form A A A zyT ¢ = Å where z , y are vectors of
appropriate length. It follows that S SA A= ¢() () (satisfying property (b)) if the following conditions hold true:

C1: y 0 mod 2=∣ ∣ ()

C2: Ay 0=

C3: A z y 0,c =() ,

wherewe define A z,c() as follows. Given some gate synthesismatrix,A, and a column vector z n
2Î letχ be a

matrix with rows labelled by , ,a b g() and of the form

z z zR r r r r r r , 27, , =  Å  Å b g g a a ba b g a b g() () () ()

where ra is the tha row ofA, and x y is the element-wise product of vectors x and y . The order of the rows inχ is
unimportant, butmust include every choice of , , na b g Î with no pair of indices being equal.

Proof.Webegin byfinding an expression for S A¢() using equation (11),

S A z y A z y A z y mod 2 , 28A

j

m

j j j j j j, ,
1

, , ,å= Å Å Åa b g a a b b g g
¢

=

()()()() ()()

and expanding the brackets,

S A A A z z z y

z z A y z z A y z z A y

z A A y z A A y z A A y mod 2 . 29

A

j

m

j j j j

j j j j j j

j j j j j j j j j

, ,
1

, , ,

, , ,

, , , , , ,

å= Å

Å Å Å

Å Å Å

a b g a b g a b g

a b g b g a g a b

a b g b g a g a b

¢

=

(

)() ()

()

Wecan see that the first termof equation (29) summed over all j is equal to S A(), by definition. The task is to show
that the remaining terms sum to zero under the specified conditions. Next, we sumover all j and substitute in the
definitions of y∣ ∣, Ay and A z y,c() ,

S S z z z z z A z z A z z Ay y y y R y . 30A A
, , , , , ,= Å Å Å Å Åa b g a b g a b g a b g b g a g a b a b g
¢ ∣ ∣ [] [] [] (·) ()() ()

By applying conditionC1, the second term is eliminated; by applying conditionC2, the next three terms are
eliminated, and by applying conditionC3, thefinal term is eliminated. ,

Having shown how to duplicate and destroy columns of a gate synthesismatrix, we are ready to describe the
TODDalgorithm, presented as pseudo-code in algorithm 1.Given an input gate synthesismatrixAwith
signature tensor S, we begin by iterating through all columnpairs ofA given by indices a b, .We construct the
vector z c ca b= Å where c j is the jth columnofA, as in lemma 3.2.We check to see if the conditions in
lemma 3.3 are satisfied for z by forming thematrix,

A
A
A z,

. 31c= ⎜ ⎟⎛
⎝

⎞
⎠˜

() ()

Any vector, y , in the null space of Ã simultaneously satisfies C2 andC3 of lemma 3.3.We scan through the null
space basis until wefind a y such that y y 1a bÅ = . At this stage we know that we can remove at least one column
fromA, depending on the following cases

i:If y 0 mod 2=∣ ∣ () then conditionC1 is satisfied andwe can perform the duplication transformation from
lemma 3.3;

ii:If y 1 mod 2=∣ ∣ () thenwe forceC1 to be satisfied by appending a 1 to y and an all-zero column toA before
applying the duplication transformation.

Finally, we use the function proper as in appendix E to destroy all duplicate pairs tomaximize efficiency. In case
i, at least two columns have been removed and in case ii at least one column has been removed3. This reduces the
number of columns ofA and therefore theT count ofUf.We now start again from the beginning, iterating over
columns of the newAmatrix. The algorithm terminates if every columnpair has been exhaustedwithout
success.

3
Other columnpairsmay be destroyed after the duplication transformation in addition to the ath and bth columns but only for the latter

pair is destruction guaranteed.

9

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

4. Results and discussion

We implemented our compiler, whichwe callTOpt, in C++ including each variant ofT-Optimizer described in
section 3, and tested it on two types of benchmark. First, we performed a randombenchmark, inwhichwe
randomly sampled signature tensors from a uniformprobability distribution for a range of n and used them as
input for the four versions ofT-optimizer: RE, TOOL (feedback), TOOL (without feedback) andTODD. The
results for the randombenchmark are shown infigure 4. Second, we tested the compiler on a library of
benchmark circuits taken fromDmitriMaslov’s Reversible Logic Synthesis Benchmarks Page [33],Matthew
Amy’s GitHub repository for T-par [34] andNam et al’s GitHub repository [35] for [24]. These circuits
implement useful quantum algorithms includingGalois Fieldmultipliers, integer addition, nth prime,
Hamming coding functions and the hiddenweighted bit functions. The results for the quantumalgorithm
benchmark are listed in table 1. For all benchmarks, the results were obtained on theUniversity of Sheffield’s
IcebergHPC cluster[36].

4.1. Random circuit benchmark
Weperformed the randombenchmark in order to determine the average case scaling of theT-countwith respect
to n for each computationally efficient version ofT-optimizerwith results shown infigure 4. For both versions of
TOOL,wefind that the numerical results for theT count follow the expected analytical scaling of O n2() and
correspondingly the results for RE scales as O n3().We see that TODD slightly outperforms the next best
algorithm, TOOL (without feedback) and is therefore the preferred algorithm in settings where classical runtime
is not an issue. Furthermore, for all compilers the distribution ofT-counts (forfixed n) concentrates around the
mean value. Figure 4 includes error bars showing the distribution but they are too small to be clearly visible, so
for one data point we highlight this with an inset histogram. Therefore, TODDperforms better, not just on
average, but on the vastmajority of random circuits so far tested.While both have a polynomial runtime, we
foundTOOL runs faster thanTODD. Therefore, TOOLmay have some advantage for larger circuits that are
impractically large for TODD.However, TODDcan always partition a very large circuit into several smaller
circuits at the cost of being slightly less effective at reducingT count. Consequently, for very large circuits, it is
unclear which compiler will work best and running both is recommended.

The randombenchmark effectively uses diagonal CNOT+T circuits. This gate set is not universal and
therefore is computationally limited.However, these circuits are generated by T CS CCZ, ,{ }, which all
commute. Thismeans such circuits lie in the computational complexity class IQP (which stands for
instantaneous quantum polynomial-time) that feature in proposals for quantum supremacy experiments
[29, 37, 38]. Low cost designs of IQP circuits provided by our compiler would therefore be an asset for achieving
quantum supremacy.

4.2.Quantumalgorithms benchmark
The results in table 1 show that the TODDalgorithm reduced or preserved theT count for every input quantum
circuit uponwhich it was tested, as expected. Additionally, TODDyields a positive saving over the best previous

Figure 4.Circuits generated by the CNOT andT gate were randomly generated for varying number of qubits n then optimized by our
implementations of RE, TOOL andTODD. The averageT-count for each n overmany random circuits are shown on the vertical axis.
TODDproduces circuit decompositionswith the smallestT-counts on average but scales the same as the next best algorithm, TOOL
(Feedback). Both of these algorithms are better thanREby a factor n. The difference between theT-counts for TODDandTOOL
(Feedback) converge to a constant 5.5±0.7 for large n.

10

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Table 1.T-counts of Clifford+T benchmark circuits for the TODD, TOOL(F) (with feedback) andTOOL(NF) (without feedback) variants of the TOpt compiler are shown. Results for other variants can be seen in table A1 of appendix A.
Columns n and nh show the number of qubits for the input circuit and the number ofHadamard ancillas, respectively. TheT-count for the circuit is given: before optimization (Pre-Opt.); after optimization using the best previous
algorithm (Best prev.); and post-optimization using our implementation of TODD, TOOL(F) andTOOL(NF). The best previous algorithm is given in theAlg. columnwhere: T-par is from [23]; RMmandRMr are themajority and recursive
Reed–Muller optimizers, respectively, both from [25]; andAutoH is the heavy version of the algorithm from [24].We show theT-count saving for eachTOpt variant over the best previous algorithm in the s columns and the execution time
as run on the IcebergHPC cluster in the t columns. Results where the execution time ismarkedwith†were obtained using an alternative implementation of TODD that is faster but less stable. The row Positive saving shows the proportion of
the benchmark circuits, as a percentage, for which the corresponding compiler yields a positive saving over the best previous result.

Pre-Opt. Best prev.
TOpt

TODD TOOL(F) TOOL(NF)

Circuit n T T Alg. nh T t (s) s(%) T t (s) s (%) T t (s) s (%)

Mod54 [34] 5 28 16 T-par 6 16 0.04 0 19 0.38 −18.75 19 0.37 −18.75

8-bit adder [34] 24 399 213 RMm 71 129 40914.1 39.44 279 71886.1 −30.99 284 55574.6 −33.33

CSLA-MUX3 [35] 16 70 58 RMr 17 52 30.41 10.34 84 122.95 −44.83 73 84.54 −25.86

CSUM-MUX9 [35] 30 196 76 RMr 12 72 587.21 5.26 83 2081.13 −9.21 104 340.19 −36.84

GF(24)-mult [34] 12 112 68 T-par 7 54 8.88 20.59 75 5.96 −10.29 75 2.38 −10.29

GF(25)-mult [34] 15 175 101 RMr 9 87 66.83 13.86 109 17.6 −7.92 107 28.27 −5.94

GF(26)-mult [34] 18 252 144 RMr 11 126 521.86 12.50 165 82.52 −14.58 157 60.16 −9.03

GF(27)-mult [34] 21 343 208 RMr 13 189 2541.4 9.13 277 226.4 −33.17 209 122.17 −0.48

GF(28)-mult [34] 24 448 237 RMr 15 230 36335.7 2.95 370 379.97 −56.12 281 322.83 −18.57

GF(29)-mult [34] 27 567 301 RMr 17 295 50671.1 1.99 454 1463.02 −50.83 351 816.04 −16.61

GF(210)-mult [34] 30 700 410 T-par 19 350 15860.3† 14.63 550 7074.29 −34.15 434 988.04 −5.85

GF(216)-mult [34] 48 1792 1040 T-par 31 — 1723 75204.8 −65.67 1089 30061.1 −4.71

Grover5 [34] 9 52 52 T-par 23 44 17.07 15.38 106 110.29 −103.85 83 117.39 −59.62

Hamming15 (low) [34] 17 161 97 T-par 34 75 902.69 22.68 161 2787 −65.98 132 1041.22 −36.08

Hamming15 (med) [34] 17 574 230 T-par 85 162 12410.8† 29.57 727 176275 −216.09 277 59112.2 −20.43

HWB6 [33] 7 105 71 T-par 24 51 55.66 28.17 189 140.79 −166.20 149 59.24 −109.86

Mod-Mult55 [34] 9 49 35 RMm&r 10 17 0.26 51.43 35 5.45 0 19 0.92 45.71

Mod-Red21 [34] 11 119 73 T-par 17 55 25.78 24.66 68 40.82 6.85 71 19.76 2.74

nth-prime6 [33] 9 567 400 RMm&r 97 208 37348† 48 830 205869 −107.50 344 135165 14

QCLA-Adder10 [34] 36 238 162 T-par 28 116 5496.66 28.40 167 7544.58 −3.09 180 4560.78 −11.11

QCLA-Com7 [34] 24 203 94 RMm 19 59 198.55 37.23 79 420.95 15.96 125 465.41 −32.98

QCLA-Mod7 [34] 26 413 235 AutoH 58 165 46574.3 29.79 295 35249.2 −25.53 310 22355.4 −31.91

QFT4 [34] 5 69 67 T-par 39 55 93.65 17.91 67 1602.91 0 59 2756.34 11.94

RC-Adder6 [34] 14 77 47 RMm&r 21 37 18.72 21.28 48 1238.12 −2.13 44 81.77 6.38

NCToff3 [34] 5 21 15 T-par 2 13 10 2< - 13.33 14 0.02 6.67 14 0.01 6.67

NCToff4 [34] 7 35 23 T-par 4 19 0.06 17.39 22 0.24 4.35 22 0.12 4.35

NCToff5 [34] 9 49 31 T-par 6 25 0.4 19.35 31 1146.04 0 29 0.67 6.45

NCToff10 [34] 19 119 71 T-par 16 55 44.78 22.54 65 1357.98 8.45 67 110.44 5.63

Barenco Toff3 [34] 5 28 16 T-par 3 14 10 2< - 12.50 16 0.02 0 16 0.03 0

Barenco Toff4 [34] 7 56 28 T-par 7 24 0.45 14.29 26 0.88 7.14 27 0.56 3.57
11

Q
uantum

Sci.T
echnol.4

(2019)015004
L
E
H
eyfron

an
d
E
T
C
am

pbell

Table 1. (Continued.)

Pre-Opt. Best prev.
TOpt

TODD TOOL(F) TOOL(NF)

Circuit n T T Alg. nh T t (s) s(%) T t (s) s (%) T t (s) s (%)

Barenco Toff5 [34] 9 84 40 T-par 11 34 1.94 15 42 12.6 −5 42 2.59 −5

Barenco Toff10 [34] 19 224 100 T-par 31 84 460.33 16 120 1938.01 −20 122 1269.03 −22

VBE-Adder3 [34] 10 70 24 T-par 4 20 0.15 16.67 24 1639.76 0 38 1.93 −58.33

Mean 19.76 −31.59 −14.13

Standard error 2.12 8.87 4.69

Min 0 −216.09 −109.86

Max 51.43 15.96 45.71

Positive saving (%) 96.88 18.18 30.30

12

Q
uantum

Sci.T
echnol.4

(2019)015004
L
E
H
eyfron

an
d
E
T
C
am

pbell

algorithm for all benchmarks exceptMod 54 with an average andmaximum saving of 20% and 51%,
respectively. This is immediately useful due to the lower cost associatedwith solving these problems.

Crucially, the output circuits of our protocol often require a considerable number of ancilla qubits due to
our use ofHadamard gadgets. This space-time trade-off is justifiable when the cost of introducing an additional
qubit is small in comparison to that of performing an additionalT gate [39]. Furthermore, our compilers can be
executedwith a cap, hcap, on the size of the ancilla register by dividing the circuit into subcircuits containing no
more than hcap Hadamard gates. A larger number ofHadamard gates generally leads to an increased classical
compilation time for TODDaswell as an increasedT count for TODD-part (see appendix A), which naturally
motivates future investigation intoHadamard gate optimization as a pre-processing step of TOpt-like
compilers. Finally, further reductions in the space (and other) resource requirementsmay be possible by back-
substituting theHadamard gadget identity from figure 2 post-optimization.

The TOOL algorithms (with andwithout feedback) reducedT counts below those of the best previous result
for 18% and 30%of the benchmark circuits, respectively. But for themajority, we find that TOOL actually
results in negative savings. This seems to contradict the result for the randombenchmark (seefigure 4) inwhich
TOOL (feedback)nearly performs aswell as TODD.We offer the following explanation for this apparent
contradiction. The circuits generated as input for the randombenchmark typically have optimalT counts close
to theworst-case bound of O n2(). TODDyieldsT counts very close to optimal because it only terminates when
nearly all avenues forT count reduction have been exhausted. The TOOL algorithmoutputsT counts below
O n2(), so closely competes with TODD for random circuits. However, for theClifford+T benchmark, the
optimalT count is typicallymuch less than theworst-case O n2() bound. It is important to recall at this stage that
TOOL is optimal for the special case where the circuit implements a control-Clifford. But even for this special
case, TOOLneeds to knowwhich qubit is the control qubit in order to take advantage of this special case
behaviour. Consequently, a general-purpose automated compiler without prior knowledge about the input
quantum circuitmust have access to an additional subroutinewhich determines the control qubit. For general
quantum circuits, the task is especially challenging because the circuitmust also be optimally partitioned into a
sequence of control-Cliffords. As such, we have left this task as an avenue of futurework.Our implementation of
TOOLuses a naive random control-qubit selection subroutine, so regardless of the lowoptimalT count, TOOL
will often outputT counts that remain close to theworst-case of O n2().We suggest that this is the principle cause
for the relatively poor performance seen in table 1, which has lead to negative savings not only over the best
previous result andTODD, but sometimes also over the input circuit, and conclude that a better control-qubit
selector would unlockmore of TOOL’sT-optimizing potential.

4.3. TheT count and othermetrics
Weacknowledge that theT count does not account for the full space-time cost of quantum computation. Recall
that we justified neglecting the cost of Clifford gates due to the high ratio between the cost of theT gate and that
of Clifford gates. The full space-time cost is highly sensitive to the architecture of the quantum computer, but for
the surface code, this ratio is estimated to be between 50 and 1000 [12, 40–42], depending on architectural
assumptions.

Note that while our protocol leads to circuits with lowT count, thefinal output often has an increasedCNOT
count. This is largely due to step 6 of our protocol wherewemap the phase polynomial back to a quantum circuit
using a naive approach. AlthoughT gates cost significantlymore thanCNOTs individually, the lower bound on
number of CNOT gates required to implement high complexity reversible functions exceeds the upper bound
on the number ofT gates required by an amount that grows exponentially in n [39]. So for large n, our focus
should turn instead toCNOToptimization. In this paper, we focus exclusively onT count optimization, which is
relevant not just to circuit optimization but also to classical simulation runtime [13–15] and distillation ofmagic
states [16]. For this reason, we omit theCNOT count fromour benchmark tables and leave the problemof
optimizingCNOT count as an avenue for future work.

5. Conclusions

In this work, we have developed a framework for compiling and optimizing Clifford+T quantum circuits that
reduces theT count. This schememaps the quantum circuit problem to an algebraic problem involving order 3
symmetric tensors, for whichwe have presented an efficient near-optimal solver, andwe have reviewed previous
methods.We implemented our protocol inC++ and used it to obtainT count data for quantum circuit
benchmarks. Each variant of the compiler hasmanaged to produce quantum circuits for quantumalgorithms
with lowerT-counts than any previous attempts known to us.However, wefind that the TODDcompiler with
Hadamard gadgets performs the best in practice. This lowers the cost of quantum computation and takes us
closer to achieving practical universal fault-tolerant quantum computation.

13

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Acknowledgments

Weacknowledge support by the Engineering and Physical Sciences ResearchCouncil (EPSRC) through grant
EP/M024261/1.We thankMarkHoward andMatthewAmy for valuable discussions, andDmitriMaslov for
comments on themanuscript.We thankQuanlongWang for spotting an error in an earlier draft of the
manuscript.

AppendixA. Clifford+Tbenchmarks for TODD-part andTODD-hcap

In order to investigate the relative effectiveness of theHadamard gadget andHadamard-bounded partition
methods for dealingwithHadamard gates, we repeated the benchmarks from table 1 but for the lattermethod.
The results are shown in the TODD-part column group of table A1. For theHadamard partitionmethod, we
found that the compiler runtime is significantly decreased,making the optimization of larger quantum circuits
feasible. However, the performance is worse in terms of rawT count reductions, often leading to higherT counts
than the best previous result. It is important to note that for a given input circuit, theT count is highly sensitive
on the choice ofHadamard partitioning, of which, in general, there aremany.Our implementation does not
optimize overHadamard partitioning choices, so there is potential for developing amore powerful version of
TODD-part thatmakes use of an advancedHadamard partitioning algorithm,whichmay lead to greaterT count
reductions.

The TODDcompiler completely gadgetizes eachHadamard gate, whereas the TODD-part compiler
completely partitions the circuit intoHadamard-bounded partitions. It is possible to interpolate between these
two approaches using a parameter hcap that enforces a cap on the number of availableHadamard ancillas. Upon
reaching this cap, the compiler synthesizes the circuit encountered so far, freeing up theHadamard ancillas for
the subsequentHadamard partition.We have implemented this feature, and in order to quantify the overhead
required to see aT count reduction, we ran each benchmark repeatedly, incrementing the value of hcap until we
saw a reduction over the best previous result. The results for this experiment are presented in table A1.We found
that the relationship between hcap andT count savings is favourable: relatively fewHadamard gadgets are
required to see a reduction over the best previous result. Over all the benchmark circuits, where the number of
qubits and theT count ranges up to n=36 andT=6671, respectively, we found that on average 9Hadamard
ancillas are required to see positive saving and atmost 23 ancillas are needed for all but one exceptional result
(Cycle 173), which requires 43. This suggests that, while TODDcombinedwith full Hadamard gadgetization is
clearly the forerunner amongst our compilers for reducing theT count, amodest improvement in the
Hadamard partitioning scheme, or adding a pre-processing step that looks forHadamard gate reductionsmay
lead to a better version of TODD that requires no non-unitary gadgets, has feasible compiler runtimes for large
circuits, and yields positiveT count savings.

Appendix B. Lempel’s factoring algorithm

Wedescribe Lempel’s factoring algorithm (originally from [27]) using conventions consistent with our
description of the TODDalgorithm tomore easily see howTODDgeneralizes Lempel’s algorithm for order 3
tensors. Lempel’s factoring algorithm takes as input a symmetric tensor of order 2 (amatrix), whichwe denote
S n n

2
,Î () and outputs amatrix A n m

2
,Î () where the elements ofA and S are related as follows:

S A A mod 2 . 32
k

m

k k,
1

, ,å=a b a b
=

() ()

Lempel proved that theminimal value ofm is equal to

S S S , 33m r d= +() () () ()

where Sr () is the rank ofmatrix S and

S
S n1 if 0 1,

0 otherwise.
34,d a

=
= " Îa a⎧⎨⎩() [] ()

Lempel’s algorithm solves the problemoffinding anAmatrix that obeys equation (32) for a given Smatrix such
that m Sm= (). Such anAmatrix is referred to as aminimal factor of S.

In the following, we denote the number of columns ofA as c(A) and the jth column ofA as Ac j(). Lempel’s
algorithm is the following:

1. Generate an initial (necessarily suboptimal)Amatrix for S.

14

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

TableA1.T-counts of Clifford+T benchmark circuits for the TODD-part andTODD-hcap variants of TOpt are shown.TODD-part usesHadamard-bounded partitions rather thanHadamard gadgets and ancillas andTODD-hcap sets a
fixed cap, hcap, on the number ofHadamard ancillas available to the compiler.Starting at h 1cap = , we iteratively incremented the value of hcap by 1 until obtaining thefirst result with a positiveT-count saving over the best previous
algorithm.The value of hcap forwhich this occured is reported in the hcap column, and the number of partitions,T-count, execution time and percentage saving for this result are detailed by column groupTODD-hcap. TODD-hcap results
that yield a positive saving for h 0cap = correspond to results for TODD-part and results that require h nhcap = Hadamard ancillas correspond to results for TODD.Aswe are strictly interested in intermediate values of hcap, we omit these
data and refer the reader to the appropriate result.The number ofHadamard partitions is given by the Np columns. As in table 1, n is the number of qubits for the input circuit;TareT-counts:for the circuit before optimization (Pre-Opt.);
due to the best previous algorithm (Best prev.); and post-optimization using variants of our compiler.The best previous algorithm is given in theAlg.columnwhere:T-par is from [23]; RMmandRMr are themajority and recursive Reed–
Muller optimizers, respectively, both from [25]; andAutoH is the heavy version of the algorithm from [24].We show theT-count saving for each TOpt variant over the best previous algorithm in the scolumns and the execution time as run
on the IcebergHPC cluster in the tcolumns.Results where the execution time ismarkedwith†were obtained using an alternative implementation of TODD that is faster but less stable.Positive savingshows the proportion of the
benchmark circuits, as a percentage, for which the corresponding compiler yields a positive saving over the best previous result.

Pre-Opt. Best prev. TODD-part TODD-hcap

Circuit n T T Alg. Np T t (s) s (%) hcap Np T t (s) s (%)

Mod54 [34] 5 28 16 T-par 7 18 10 2< - −12.50 1 4 16 10 2< - 0

8-bit adder [34] 24 399 213 RMm 20 283 12.63 −32.86 13 5 212 227.81 0.47

CSLA-MUX3 [35] 16 70 58 RMr 7 62 0.38 −6.90 5 3 54 3.73 6.90

CSUM-MUX9 [35] 30 196 76 RMr 3 76 20.31 0 4 2 74 36.57 2.63

Cycle 173 [34] 35 4739 1944 RMm 573 2625 1001.11 −35.03 43 15 1939 25507.5† 0.26

GF(24)-mult [34] 12 112 68 T-par 3 56 0.55 17.65 0 See result for TODD-part

GF(25)-mult [34] 15 175 101 RMr 3 90 6.96 10.89 0 See result for TODD-part

GF(26)-mult [34] 18 252 144 RMr 3 132 121.16 8.33 0 See result for TODD-part

GF(27)-mult [34] 21 343 208 RMr 3 185 153.75 11.06 0 See result for TODD-part

GF(28)-mult [34] 24 448 237 RMr 3 216 517.63 8.86 0 See result for TODD-part

GF(29)-mult [34] 27 567 301 RMr 3 301 2840.56 0 8 2 295 3212.53 1.99

GF(210)-mult [34] 30 700 410 T-par 3 351 23969.1 14.39 0 See result for TODD-part

GF(216)-mult [34] 48 1792 1040 T-par 3 922 76312.5† 11.35 —

Grover5 [34] 9 52 52 T-par 18 52 0.02 0 5 4 50 0.3 3.85

Hamming15 (low) [34] 17 161 97 T-par 22 113 0.53 −16.49 5 6 93 2.93 4.12

Hamming15 (med) [34] 17 574 230 T-par 59 322 1.57 −40 11 7 226 58.08 1.74

Hamming15 (high) [34] 20 2457 1019 T-par 256 1505 16.84 −47.69 13 24 1010 595.8 0.88

HWB6 [33] 7 105 71 T-par 15 82 0.01 −15.49 3 6 68 0.13 4.23

HWB8 [33] 12 5887 3531 RMm&r 709 4187 6.53 −18.58 9 110 3517 259.14 0.40

Mod-Adder1024 [34] 28 1995 1011 T-par 234 1165 98.8 −15.23 10 27 978 665.5 3.26

Mod-Adder1048576 [34] 0 0 7298 T-par 2030 9480 89486.5† −29.90 —

Mod-Mult55 [34] 9 49 35 RMm&r 6 28 0.02 20 0 See result for TODD-part

Mod-Red21 [34] 11 119 73 T-par 15 85 0.06 −16.44 4 5 69 0.59 5.48

nth-prime6 [33] 6 567 400 RMm&r 63 402 0.17 −0.50 2 29 384 0.98 4

nth-prime8 [33] 12 6671 4045 RMm&r 774 5034 8.4 −24.45 12 105 4043 898.98 0.05

QCLA-Adder10 [34] 36 238 162 T-par 6 184 223.25 −13.58 5 3 157 366.1 3.09

QCLA-Com7 [34] 24 203 94 RMm 7 135 11.62 −43.62 16 2 81 170.77 13.83

15

Q
uantum

Sci.T
echnol.4

(2019)015004
L
E
H
eyfron

an
d
E
T
C
am

pbell

TableA1. (Continued.)

Pre-Opt. Best prev. TODD-part TODD-hcap

Circuit n T T Alg. Np T t (s) s (%) hcap Np T t (s) s (%)

QCLA-Mod7 [34] 26 413 235 AutoH 15 305 34.76 −29.79 23 3 221 289.77† 5.96

QFT4 [34] 5 69 67 T-par 38 67 10 2< - 0 2 13 63 0.02 5.97

RC-Adder6 [34] 14 77 47 RMm&r 13 59 0.11 −25.53 6 3 45 0.97 4.26

NCToff3 [34] 5 21 15 T-par 3 15 10 2< - 0 2= nh See result for TODD

NCToff4 [34] 7 35 23 T-par 5 23 10 2< - 0 4 = nh See result for TODD

NCToff5 [34] 9 49 31 T-par 7 31 0.01 0 5 2 29 0.2 6.45

NCToff10 [34] 19 119 71 T-par 17 71 0.74 0 10 3 69 12.48 2.82

Barenco Toff3 [34] 5 28 16 T-par 4 22 10 2< - −37.50 2 2 14 10 2< - 12.50

Barenco Toff4 [34] 7 56 28 T-par 8 38 0.01 −35.71 4 2 26 0.06 7.14

Barenco Toff5 [34] 9 84 40 T-par 12 54 0.03 −35 6 2 38 0.35 5

Barenco Toff10 [34] 19 224 100 T-par 32 134 2.27 −34 16 2 98 54.75 2

VBE-Adder3 [34] 10 70 24 T-par 5 36 0.04 −50 4 = nh See result for TODD

Mean −13.19 9 4.05

Standard error 3.15 1.65 0.64

Min −50 1 0

Max 20 43 13.83

Positive saving (%) 20.51 96.30

16

Q
uantum

Sci.T
echnol.4

(2019)015004
L
E
H
eyfron

an
d
E
T
C
am

pbell

2. Check if c A Sm=() (). If true, exit and outputA. Otherwise, perform steps 3 to 7.

3. Find a y m
2Î such that Ay 0= and y c A0 < <∣ ∣ ().

4. If y 1 mod 2=∣ ∣ () then update y y , 1T T () and A A 0= ().

5. Find a pair of indices a b m a b, 1, ,Î ¹[] such that y y 1a bÅ = .

6. Apply transformation A A zyT Å , where A Az c ca b= Å() ().

7. Remove the ath and bth columns fromA, then go to step 2.

Note that the key difference between the Lempel andTODDalgorithm is that TODDadditionally requires
conditionC3 from lemma 3.3 to be satisfied.

AppendixC. TOOL algorithm

Herewe give a detailed description of TOOL,with themain idea illustrated by figure 3. TOOL is best explained
in terms of weighted polynomials (recall equation (6)). The algorithm is iterative, where each round consists of
thefive steps detailed below. Before the first round, we initialize an ‘empty’ output gate synthesis
matrix, A n

out 2
,0Î ().

1. Choose an integer c n1,Î [] such that there is at least one term in fwith xc as a factor. If no such c exists, the
algorithm terminates and outputs Aout.

2. Find fc̃ , the target polynomial of fwith respect to xc (see equation (35) below).

3. Determine the order 2 signature tensor, S̃ , of fc̃ .

4. Find Ã, aminimal factor of S̃ , using Lempel’s factoring algorithm.

5. Recover an order 3 gate synthesismatrix,A, for Ã, and append it to Aout. Replace fwith f A xT- ∣ ∣.

Each round of TOOL gives a new fthat depends on fewer x variables.When fdepends on only nRM or fewer
variables, we switch to the optimal brute force optimizer, RM.

Wewill now explain each step of the above description in detail, unpacking the contained definitions. In step
1, we select an index c, which corresponds to the control qubit of the control-U f2 c̃

operator shown infigure 3. The
order that we choose c for each round can affect the output and therefore is a parameter of TOOL. For all results,
we randomly selected cwith uniformprobability from the set of all indices c{ } for which xc is a factor of at least
one term in f.

Next, we observe that any fcan be decomposed into f f fc c
= + ¢, wherewe define fc as aweighted

polynomial containing all terms of fwith xc as a factor. The former part, fc, can be further decomposed as
follows,

f x f l x2 , 35c c c c c= +˜ ()

where fc̃ is quadratic and so can be optimally synthesized efficiently. In step 2, we extract fc̃ , which is implicitly

fixed by the above equations.We refer to fc̃ as a target polynomial because it corresponds to the target of a

control-U2f operator, where f fc= ˜ and xcñ∣ is the control qubit.
As an aside, we remark that the target polynomial is related to Shannon cofactors that appear in Boole’s

expansion theorem. Specifically, we have

f
f f l

2
, 36c

c c c
=

- -+ -
˜ ()

where f
c
+ and f

c
- are the positive and negative Shannon cofactors, respectively, of fwith respect to xc, and lc is

the linear coefficient of fassociatedwith xc.
In step 3, wemap fc̃ to a signature tensor of order 2 (amatrix) for usewith Lempel’s factoring algorithm. Let

l q, ,a a b
˜ ˜ be the linear and quadratic coefficients of fc̃ , respectively. For each c,a b ¹ , the elements of S̃ are
obtained as follows.

S
l

q

mod 2 if

mod 2 if .
37,

,

a b
a b

=
=
¹a b

a

a b

⎪

⎪

⎧
⎨
⎩

˜
˜ ()
˜ ()

()

17

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Finding aminimal factor of S ,a b˜ is the problem 2-STR. Therefore, we can use Lempel’s algorithm (see
appendix B) tofind amatrix A n m

2
,Î˜ (˜), which is aminimal factor of S̃ such that

f A A xx mod 8 . 38c
T

j

m

i

n

i j i
1 1

,å= =
= =

⎡
⎣⎢

⎤
⎦⎥

˜ ∣ ˜ ∣ ⨁ ˜ () ()
˜

By substituting equation (38) into (35)we obtain

f x A l xx2 , 39c c
T

c c= +∣ ˜ ∣ ()

x A x l x2 mod 8 , 40
j

m

c
i

n

i j i c c
1 1

,å= +
= =

⎡
⎣⎢

⎤
⎦⎥⨁ ˜ () ()

˜

wherewe have taken the factor 2xcwithin theHammingweight summation. Next, we use themodular identity
ab a b a b2 = + - Å with a xc= and b as the contents of the square brackets. This gives

f x A x x A x l x mod 8 , 41c
j

m

c
i

n

i j i c
i

n

i j i c c
1 1

,
1

,å= + - Å +
= = =

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟⨁ ˜ ⨁ ˜ () ()

˜

x m l A x x A x mod 8 , 42c c
j

m

i

n

i j i
j

m

c
i

n

i j i
1 1

,
1 1

,å å= + + - Å
= = = =

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥(˜) ⨁ ˜ ⨁ ˜ () ()

˜ ˜

x m l A A Bx x mod 8 , 43c c
T

c
T= + + - Å(˜) ∣ ˜ ∣ ∣(˜) ∣() ()

where Bc
n m

2
,Î () is amatrix with elements

B i c1 if
0 otherwise.

44c i j, = ={[] ()

This is now in the formof a phase polynomial (e.g. see equation (8))with nomore than m1 2+ ˜ terms, where m̃
was the optimal size of the factorization found using Lempel’s algorithm.

There are two versions of TOOL:with andwithout feedback. The difference between these versions
determines whether all of equation (43) is put into Aout orwhether parts are ‘fed back’ into ffor subsequent
rounds. This leads to two distinct definitions of theAmatrix referred to in step 5 of TOOL:

A
m l x A B

m l x A B A
x

x

x x

feedback

without feedback.
45T c c c

T

c c c
T T

=
+ - Å

+ - Å +

⎪

⎪

⎧
⎨
⎩∣ ∣

(˜) ∣(˜) ∣
(˜) ∣(˜) ∣ ∣ ˜ ∣

()

Notice that both m l xc c+(˜) and A B xc
TÅ∣(˜) ∣depend on xc, somust be sent to output. furthermore, they

comprise all the terms that depend on xc, which is why sending A xT∣ ˜ ∣ to output is optional, andwhy the number
of dependent variables is reduced by at least 1 each round. For the feedback version, A xT∣ ˜ ∣ is kept within fduring
step 5, whereas it is sent to output Aout in thewithout feedback version.

AppendixD. CalculatingClifford correction

Wewill nowdescribe how to determine theClifford correction required to restore the output ofT-Optimizer to
the input unitary. Let the input ofT-Optimizer be aweighted polynomial fthat implements unitaryUf 3Î ,
and let the output be aweighted polynomial g. Any fcan be split into the sum

f f f , 461 2= + ()

where the coefficients of f1 are in 2 and those of f2 are even. From the definition of T Optimiser‐ , we know the
coefficients of fand ghave the same parity i.e.

g g g f g , 471 2 1 2= + = + ()

where g g,1 2 are similarly defined for g. Using equations (46) and (47)wefind,

g f g f . 482 2= + -() ()

equation (48) implies thatU U g fClifford 22 2
= Î-() . Therefore, the Clifford correction is

U U Ug f f gClifford 2 2 2 2
= =- -

†
()
†

().We canmap f g2 2-() to a phase polynomial and subsequently to a quantum

circuit, Clifford † .

Appendix E. TODDpseudocode

Algorithm1.Third order duplicate-then-destroy (TODD) algorithm

18

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Input:Gate synthesismatrix A n m
2

,Î ().

Output:Gate synthesismatrix A n m
2

,¢ Î ¢() such that m m¢ and S SA A=¢() ().

• Let Acolj() be a function that returns the jth columnofA.

• Let Acols() be a function that returns the number of columns ofA.

• Let Anullspace() be a function that returns amatrixwhose columns generate the right null space of A.

• Let proper A() be a function that returnsmatrixAwith every pair of identical columns and every all-zero column removed.

procedureTODD
Initialize A A¢ ¬
start:
for all a b A1 cols < ¢() do
 A Az col cola b¬ ¢ + ¢() ()

A
A
A z,c¬ ¢
¢

⎛
⎝⎜

⎞
⎠⎟˜

()
N Anullspace¬ (˜)
for all k N1 cols  ()do
 Ny colk¬ ()
if y y 1a bÅ = then
if y 1 mod 2=∣ ∣ ()then
A A 0¢ ¬ ¢()
 y

y
1

¬ ()
A A zyT¢ ¬ ¢ +
A proper A¢ ¬ ¢()
goto start

Appendix F. Computational efficiency of TODD

In this appendix, we calculate an upper-bound on theworst-case computational efficiency of the TODD
algorithm as described in appendix E, in terms of the number of arithmetic operations onGF(2) required.

LetA be a gate synthesismatrix with n rows andm columns that is used as input for the TODDalgorithm.

The loop, L1, over each column pair (a, b) requires atmost
m

O m
2

2=⎜ ⎟
⎛
⎝

⎞
⎠ () iterations to complete. Inside L1,

there are four lines of pseudocode: a column addition, requiring nomore than n operations; amatrix
concatenation and calculation of A z,c(), requiringE1 operations; a nullspace calculation, requiring
O n O m n3 2+() () operations usingGaussian elimination; and finally a nested loop L2, requiring E2 operations.

From equation (27), we see that each rowof A z,c() can be calculatedwithO(m) operations. There are a

maximumof
n

3
⎜ ⎟⎛
⎝

⎞
⎠ rows in A z,c() so the total number of operations required to calculateχ is O n m3().

Combining this with thematrix concatenation, we find that E O n m nm O n m1
3 3= + =() ().

The loop L2 executes in atmost

A A m A m A m ncols nullspace colrank nullspace rank rank 49 = - - -((˜)) ≔ ((˜)) (˜) () ()

iterations. The identity between the column rank and the number of columns follows from the assertion that the
nullspace function outputs amatrix whose columns are a linearly independent basis for the nullspace ofA.

The loop L2 is composed of a conditional that requires 1 addition (bymerging thefirst line of L2 and the
conditional). The content of the conditional is only evaluated once, so can be considered as part of L1 for this
calculation. Therefore, the number of operations performed in L2 is E m n2 = - .

The nested conditional requires atmost m n 1+ + operations, where the terms are due to theHamming
weight of y∣ ∣, concatenating an all-zero column to A¢ and concatenating a one to y , respectively. The line
A A zyT¢ ¬ ¢ + requires atmost n m 1+() operations and the proper function can be computed using atmost
m operations by keeping track of all-zero columnswith a Boolean array, for a small physical overhead ofm.

The outermost loop (between start and goto start) by definition executes in nomore thanm−m′ iterations
where m¢ is the number of columns of the output. In this worst-case calculation, we assume m 0¢ = .

So the TODDalgorithm can be executed using

O m n O n m O n O m n m n m n n m m1 1 503 3 2+ + + + - + + + + + +([() () () () () ()]) ()

O m O n m O n O m n 513 3 2= + +([() () ()]) ()

O n m O nm 523 2 3= +() () ()

operations.

19

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Therefore, given a family of Clifford+T circuits with n qubits, hHadamard gates and t T gates, wewould
expect our compiler to execute in time asymptotically upper-bounded by a function of the following form

O n h t O n h t 533 2 3+ + +(()) (()) ()
O n t O h t O nt O ht , 543 2 3 2 3 3= + + +() () () () ()

wherewe havemade the reasonable assumption that the computational bottleneck is due to the TODD
algorithm, rather than the circuit preprocessing stages ormapping between different circuit representations, for
instance.

In practice, the actual runtimes for the benchmark quantum circuits seen in table 1 aremuch lower than this
worst-case upper-bound. Furthermore, the compiler runtime is dependent on the structure of the input
quantum circuit, rather than simply the number of qubits and gates fromwhich it is composed. Consequently,
we do not see a simple relation between circuit parameters n t h, , and the runtime for the benchmarks in table 1.

Note that in our calculation of the complexity, we assumed that wemust calculate every row of A z,c(). In
practice, wefind thatmany of the rows are identical. An algorithm that calculates only the unique rowsmay lead
to improved computational efficiency.

ORCID iDs

Luke EHeyfron https://orcid.org/0000-0003-1379-923X

References

[1] KitaevAY, ShenA andVyalyiMN2002Classical andQuantumComputation vol 47 (Providence, RI: AmericanMathematical Society)
[2] DawsonCMandNielsenMA2006Quantum Info. Comput. 6 81–95
[3] Fowler AG2011Quantum Inf. Comput. 11 867–73
[4] KliuchnikovV,MaslovD andMoscaM2013Phys. Rev. Lett. 110 190502
[5] Selinger P 2013Phys. Rev.A 87 042302
[6] Gosset D, KliuchnikovV,MoscaMandRussoV 2014Quantum Inf. Comput. 14 1261
[7] RossN J and Selinger P 2016Quantum Inf. Comput. 16 901
[8] Campbell E T, Terhal BMandVuillot C 2016Nature 549 172
[9] Bravyi S andKitaev A 2005Phys. Rev.A 71 022316
[10] Raussendorf R,Harrington J andGoyal K 2007New J. Phys. 9 199
[11] Fowler AG,MariantoniM,Martinis JM andClelandAN2012Phys. Rev.A 86 032324
[12] O’Gorman J andCampbell E T 2017Phys. Rev.A 95 032338
[13] HowardMandCampbell E 2017Phys. Rev. Lett. 118 090501
[14] Bravyi S, SmithG and Smolin J A 2016Phys. Rev.X 6 021043
[15] Bravyi S andGosset D 2016Phys. Rev. Lett. 116 250501
[16] Campbell E T andHowardM2017Phys. Rev.A 95
[17] PaetznickA and Svore KM2014Quantum Inf. Comput. 14 1277
[18] BocharovA, RoettelerMand Svore KM2015Phys. Rev.A 91 052317
[19] BocharovA, RoettelerMand Svore KM2015Phys. Rev. Lett. 114 080502
[20] Campbell E 2017Phys. Rev.A 95 042306
[21] HastingsMB2017Quantum Info. Comput. 17 5–6
[22] AmyM,MaslovD,MoscaMandRoettelerM2013 IEEETrans. Comput.-AidedDes. Integr. Circuits Syst. 32 818
[23] AmyM,MaslovD andMoscaM2014 IEEETrans. Comput.-AidedDes. Integr. Circuits Syst. 33 1476
[24] NamY, RossN J, Su Y, Childs AMandMaslovD 2018 npjQuantum Information 4 23
[25] AmyMandMoscaM2016 arXiv:1601.07363
[26] Seroussi G and Lempel A 1980 SIAM J. Comput. 9 758
[27] Lempel A 1975 SIAM J. Comput. 4 175–86
[28] Source code 10.1109/JPHOT.2014.2352635
[29] BremnerM J, Jozsa R and ShepherdD J 2011Proc. R. Soc.A 467 459–73
[30] MontanaroA 2017 J. Phys. A:Math. Theor. 50 084002
[31] AmyM,MaslovD,MoscaMandRoettelerM2013 IEEETrans. Comput.-AidedDes. Integr. Circuits Syst. 32 818
[32] Håstad J 1990 J. Algorithms 11 644
[33] MaslovD 2011Reversible logic synthesis benchmarks http://webhome.cs.uvic.ca/~dmaslov/
[34] AmyMT-parGitHub https://github.com/meamy/t-par
[35] NamY, RossN J, Su Y, Childs AMandMaslovDGitHub for [24], https://github.com/njross/optimizer
[36] IcebergHPCCluster https://sheffield.ac.uk/wrgrid/iceberg
[37] HarrowAWandMontanaroA 2017Nature 549 203
[38] ShepherdD andBremnerM J 2009Proc. R. Soc.A 465 1413
[39] MaslovD 2016Quant. Inf. Comp. 16 1096–112
[40] Raussendorf R,Harrington J andGoyal K 2007New J. Phys. 9 199
[41] Fowler AG,Devitt S J and Jones C 2013 Sci. Rep. 3 1939
[42] Fowler AG andDevitt S J 2012 arXiv:1209.0510

20

QuantumSci. Technol. 4 (2019) 015004 L EHeyfron and ETCampbell

Chapter 5

A Quantum Compiler for Qu-
dits of Prime Dimension Greater
than 3

The following manuscript is an original work by the present author and Dr. Earl
T. Campbell that was submitted to the online pre-print archive, arXiv.org, on
14th February 2019 [43]. The full text is provided below in partial fulfilment of
the requirements for the degree of Doctor of Philosophy.

49

A quantum compiler for qudits of prime dimension greater than 3

Luke E. Heyfron and Earl Campbell

Department of Physics and Astronomy, University of Sheffield, Sheffield, UK

Prevailing proposals for the first generation of quantum computers make use of 2-level
systems, or qubits, as the fundamental unit of quantum information. However, recent in-
novations in quantum error correction and magic state distillation protocols demonstrate
that there are advantages of using d-level quantum systems, known as qudits, over the qubit
analogues. When designing a quantum architecture, it is crucial to consider protocols for
compilation, the optimal conversion of high-level instructions used by programmers into low-
level instructions interpreted by the machine. In this work, we present a general purpose
automated compiler for multiqudit exact synthesis based on previous work on qubits that
uses an algebraic representation of quantum circuits called phase polynomials. We assume
Clifford gates are low-cost and aim to minimise the number of M gates in a Clifford+M
circuit, where M is the qudit analog for the qubit T or π/8 phase gate. A surprising result
that showcases our compiler’s capabilities is that we found a unitary implementation of the
CCZ or Toffoli gate that uses 4 M gates, which compares to 7 T gates for the qubit analogue.

I. INTRODUCTION

Despite its ubiquity in computing, the choice to use binary instead of ternary or some other
numeral system is almost arbitrary. From a purely information theoretic perspective, there is
no reason to prefer bits over d-value anologues, known as dits. In fact, successful experiments
into 3-value logic were realised in the form of the Setun, a ternary computer built in 1958 by
Sergei Sobolev and Nikolay Brustentsov at Moscow State University [1]. The near universal
adoption of binary can be explained from an engineering perspective in that it is much simpler
to manufacture binary components. However, since as early as the 1940’s with the biquinary
Collossus computer, it has been widely understood that there are intrinsic efficiency benefits
of using higher dimensional logic components in that fewer are required.

In the standard paradigm, there are three components required for a fault tolerant quan-
tum computing architecture: quantum error correction (QEC) codes; magic state distillation
(MSD) protocols; and finally, quantum compilers. For qudits, there has been progress showing
that both qudit QEC [2–6] and qudit MSD [7–11] offer a resource advantage in shifting from
qubits to qudits. However, surprisingly little work has been done on qudit compiling, except
for the special case of qutrits where d = 3 [12, 13]. Therefore, compiling is the crucial missing
piece in understanding quantum computing with qudit logic beyond d = 3.

A standard metric for quantum compilers to minimize is the number of expensive gates
that require magic state distillation. In the qubit case, the T gate is typically the designated
magic gate in the low-level instruction set and much progress has been made on gate syn-
thesis in this context. For single qubits, the Matsumoto-Amano normal form [14–16] leads
to decompositions of single qubit unitaries as sequences of gates from the Clifford + T gate
set that is optimal with regards to T count for a given approximation error. So for single
qubits, the problem is essentially “solved”. For multi-qubit operators, methods for T -optimal
exact compilation have been developed but suffer exponential runtime [17]. More recently,
efficient optimizers have been developed that successfully reduce T count, some of which are

ar
X

iv
:1

90
2.

05
63

4v
1

 [
qu

an
t-

ph
]

 1
4

Fe
b

20
19

2

FIG. 1. A unitary implementation of the CCZ gate that uses 4 non-Clifford Mk gates. Note that the
1
24 in the exponent of the Mk gates is the multiplicative inverse of 24 in the field Zd. Gates used here
are defined in Sec. II.

based on a correspondence between unitaries on a restricted gate set and so called phase-
polynomials [18–21], and others that are based on local rewrite rules [22]. For qudits, there
has been some work on single qutrit (three level systems) synthesis [23] that can be considered
a qutrit generalisation of the Matsumoto-Amano normal form.

In this work, we borrow ideas from the phase-polynomial style T count optimization pro-
tocols and apply these insights to qudits. We provide a general purpose compiler for exact
synthesis of multiqudit unitaries generated by M , Pl and SUM gates where the M gate is the
canonical “expensive” magic gate (i.e. the qudit analogue of the T gate). We present an ex-
ample of a M count reduction only possible for odd prime d > 3. This is the CCZ gate, which
is known to have optimal T count of 7 when synthesised unitarily using qubit based quantum
computers, whereas our decomposition has M count of 4. Until now, this reduced cost has
only been achieved in the qubit setting using non-unitary gadgets that exploit ancillas [24].

II. PRELIMINARIES

Let d > 3 be a prime integer. We define a Hilbert space on n qudits spanned by the
computational basis vectors {|x〉 | ∀x ∈ Znd}. We define the single qudit Pauli operators
X :=

∑
x∈Zd |x+ 1〉 〈x|, where addition is performed modulo d; Z :=

∑
x∈Zd ω

x |x〉 〈x|, where

ω := expi
2π
d is a primitive dthroot of unity. The set of all n qudit unitaries generated by X

and Z form the Pauli group, P.

The Clifford group, C, is the normalizer of the Pauli group and is generated by:

H :=
1√
d

∑

x,y∈Zd
ωxy |y〉 〈x| (1)

SUM :=
∑

c,t∈Zd
|c, t+ c〉 〈c, t| (2)

S :=
∑

x∈Zd
ωx

2 |x〉 〈x| (3)

We refer to H as the Hadamard; the Hadamard gate, SUM is the two-qudit SUM gate; and
S is the phase gate. Note that the Z and S gates are both diagonal and correspond to linear
and quadratic terms, respectively, appearing in the exponent of the phase.

We further define the Clifford unitaries

Pl :=
∑

x∈Zd
|lx〉 〈x| (4)

3

for all integer l 6= 0, which we call product operators as they perform field multiplication
between the input basis states and a non-zero field element, l. It can be shown that all
product operators are in the Clifford group.

As in previous works [8, 25, 26], we define the canonical non-Clifford gate to be

M :=
∑

x∈Zd
ωx

3 |x〉 〈x| , (5)

which lies in the third level of the Clifford hierarchy and in standard fault tolerant architectures
are much more costly than Clifford gates due to the need for MSD.

III. THE COMPILING PROBLEM

A compiler converts high-level instructions into low-levels ones. In this paper, we concern
ourselves with high-level instructions that take the form of n-qudit unitaries which can be
exactly synthesised by a discrete gate set, G. By low-level instructions, we specifically refer
to quantum circuits, which are represented as netlists, or time-ordered lists of gates taken
from G where the qudits to which they apply (as well as any other gate parameters) are
specified for each gate. The unitary that a particular quantum circuit implements is simply
the right-to-left matrix product of each gate in the netlist extracted in time-order.

Problem 1. (Compiling Problem). Given a unitary U ∈ G, find a quantum circuit that
implements U with the lowest cost.

Note that the compiling problem is ill-defined and depends on the definition of cost. The
most accurate metric of quantum circuit cost is the full space-time volume, which is the number
of machine level operations multiplied by the number of physical qubits. The calculation
required to determine the full space-time volume is lengthy and is highly sensitive to the
choice of architecture [27–29]. The M count, or the number of Mk gates in a quantum circuit,
is an alternative cost metric that gives a good approximation to the full cost and can be easily
read off compiler-level quantum circuits. Using the M count in problem 1, we obtain a well
defined compiling problem.

Problem 2. (M -Minimization). Given a unitary U ∈ G, find a quantum circuit that imple-
ments U with the fewest Mk gates.

We choose our gate set to be G = {Z, S,Mk, Pl, SUM} for all available choices of k and l.
While we would ideally work with a universal gate set such as Clifford + M , the compiling
problem is known to be intractable in the universal case so we focus on this simpler sub-
problem. For the selection of gates in G, we have taken inspiration from previous work [18–
21], where it was demonstrated that such a restriction leads to an algebraic reformulation of
the compiler problem that is more amenable to computational methods, including efficient
heuristics.

IV. PHASE POLYNOMIAL FORMALISM

The formalism described in this section allows us to reframe the M -minimization problem
as a computationally-friendly problem on integer matrices. It applies strictly to unitaries

4

U ∈ 〈Z, S,Mk, Pl, SUM〉 and is a straightforward generalisation of previous work [18–21].
We proceed with a lemma that establishes a correspondence between unitaries generated by
G and cubic polynomials that we call phase polynomials.

Lemma 1. Any n qudit unitary Uf ∈ 〈G〉 can be expressed as follows:

Uf =
∑

x∈Znd

ωf(x) |Ex〉 〈x| , (6)

where E is an invertible matrix implementable with SUM gates, and f : Znd 7→ Zd is a
polynomial of order less than or equal to 3.

Proof. To prove the first part, we first show that each gate in the generating set can be written
in the above form, then show that the set generated by these operators form a group. From
the definitions provided in section II, we have that Z, S and M gate applied to the tth qudit
can be written in the form of equation (6) with f(x) = xt, x

2
t , x

3
t , respectively, and with E = I.

Pl applied to the tth qudit has f(x) = 0 (as does the SUM gate) and E = I + ((l− 1)δi,tδj,t)
with inverse E−1 = I + ((1l − 1)δi,tδj,t). Finally, the SUM gate whose control and target are
the cth and tth qudits, respectively, has E = I+(δi,tδj,c), which has inverse E−1 = I−(δi,tδj,c).
By definition, the set generated by G is closed under multiplication and as each generator is
a unitary matrix, the associative property holds. Finally, I, Z†, S†,M † ∈ 〈G〉 so the identity
and inverse group axioms are satisfied.

To prove the second part, that f(x) is cubic, we note that the only gates which contribute
to f(x) are Z, S and M , which add a term equal to the state of the acted-upon qudit raised
to the first, second and third power, respectively. Because the Z, S and M gates are diagonal,
the state of any qudit at any point in the circuit can only change due to the Pl and SUM
gates, which together map the state of each qudit to linear functions of the input states with
coefficients in Zd. The linear functions can, at most, be raised to the 3rd power (due to the M
gate), before contributing a term to f(x). Therefore, the order of f(x) is at most cubic.

The linear and quadratic terms of any f(x) can be implemented using just Clifford opera-
tions, which cost considerably less than the cubic terms that require M gates. Therefore, we
assume that f(x) is a homogeneous cubic polynomial. It follows that f(x) can be decomposed
in the monomial basis as follows:

f(x) =

n∑

α,β,γ=1

Sα,β,γxαxβxγ , (7)

where S ∈ Z(n,n,n)
d . Since every choice of (α, β, γ) for α ≤ β ≤ γ corresponds to a different

linearly independent monomial, if we enforce that S is symmetric, it follows that the elements
of S uniquely determine the function f(x). For this reason, we call it the signature tensor.

The phase polynomial f(x) can also be decomposed as a sum over linear forms raised to
the third power, as in the following:

f(x) =

m∑

j=1

λj

(
n∑

i=1

Ai,jxi

)3

, (8)

5

where λ ∈ (Zd \ {0})m and A ∈ Z(n,m)
d such that for each column in A, there is at least one

non-zero element. It is straightforward to calculate the signature tensor from the elements of
A and λ using the following relation,

Sα,β,γ =
m∑

j=1

λjAα,jAβ,jAγ,j . (9)

Definition 1. Implementation. Let Uf be a unitary with signature tensor S ∈ Z(n,n,n)
d .

Let A ∈ Z(n,m)
d and λ ∈ (Zd \ {0})m. We say that the tuple (A, λ) is an implementation of S

if it satisfies equation (9).

We refer to the tuple (A, λ) as an implementation because it reveals information sufficient
to construct a quantum circuit that implements Uf with known M count, as stated in the
following lemma.

Lemma 2. Let Uf be a unitary with an implementation (A, λ) that has m columns. It follows
that a quantum circuit can be efficiently generated which implements Uf using no more than
m M gates.

As proof of lemma 2, we provide in appendix A an explicit algorithm for efficiently con-
verting an implementation with m columns into a quantum circuit with m Mk gates.

The connection between column count of implementations and M count of quantum cir-
cuits is central to the understanding of this work and leads to a restatement of the compiler
problem that is more amenable to computational solvers.

Problem 3. (Column-minimization). Let S be a signature tensor. Find an implementation
(A, λ) that implements S with minimal columns.

V. EXAMPLE: CCZ GATE

Take the CCZ gate as an example, which acts upon the computational basis as follows.

CCZ |x1, x2, x3〉 = ωx1x2x3 |x1, x2, x3〉 . (10)

In the monomial basis, the phase polynomial can be read off directly as f(x) = x1x2x3, which
corresponds to a signature tensor with Sσ(1,2,3) = 1

6 for all permutations σ and Sα,β,γ = 0 for
all other elements. However, to generate a quantum circuit for Uf = CCZ, we first need to
find an implementation for S. By applying knowledge of the qubit version of the CCZ gate
to qudits [18–21], we arrive at the following implementation[30] that has an M count of 7:

(
A

λ

)
=




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1
6

1
6

1
6 −1

6 −1
6 −1

6
1
6


 , (11)

which corresponds to the phase polynomial,

f(x) =
1

6
x31 +

1

6
x32 +

1

6
x33 −

1

6
(x1 + x2)

3

− 1

6
(x1 + x3)

3 − 1

6
(x2 + x3)

3 +
1

6
(x1 + x2 + x3)

3.

(12)

6

We remind the reader that all elements of an implementation are in Zd, so the fraction 1
6 =

x ∈ Zd where x solves 6x = 1 (mod d). One can easily verify that the above implementation,
(A, λ), satisfies equation (9) for every element of the signature tensor, Sa,b,c, confirming that
it implements the CCZ gate.

Using a computer aided discovery method described in section VI, we have found an
implementation with M count 4 that works for all choices of d. This is a key result of the
present work and is provided below.

(
A

λ

)
=




1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1
24

1
24

1
24

1
24


 . (13)

This corresponds to the phase polynomial

f(x) =
1

24
(x1 + x2 + x3)

3 +
1

24
(x1 − x2 − x3)3

+
1

24
(x2 − x1 − x3)3 +

1

24
(x3 − x1 − x2)3.

(14)

An explicit quantum circuit for the above implementation of the CCZ gate is provided in
figure 1.

VI. COMPILERS

A. Brute-Force

In order to construct an M -optimal implementation for a given phase polynomial, one can
perform a brute-force search over all possible implementations, checking in polynomial-time
in each case that it corresponds to the correct signature tensor using equation (9). However,
the size of the search space scales as O(d(n+1)m), which makes execution times impractical,
even for modest sized inputs. However, by searching in m-order where m is the candidate
number of M gates, we can optimally compile unitaries on n = 3 ququints (d = 5) with M
count of up to 4 (and lower bound unitaries with an implicitly higher optimal M count). It
was through this brute-force method that we were able to discover the implementation of
CCZ with M count of 4 presented in equation (13).

B. Monomial Substitution

It is critically important that a general-purpose compiler is efficient. Fortunately, there is a
simple method to map a phase polynomial in the monomial basis to an implementation. There
are three kinds of monomial that may appear in a phase polynomial, which are distinguished
by the number of variables they take. These are x3a, xax

2
b and xaxbxc. As each monomial is

linearly independent, if we can find a prototypical implementation for each kind of monomial,
then it follows that we can compile an implementation for a general phase polynomial by
substituting instances of the prototypes for each monomial. Again using [21] as inspiration,
we provide prototype implementations for the three kinds of monomial below.

7

x3a → x3a (15)

xax
2
b →

1

6
(xa + xb)

3 +
1

6
(xa − xb)3 −

1

3
x3a (16)

xaxbxc →
1

24
(x1 + x2 + x3)

3 +
1

24
(x1 − x2 − x3)3 +

1

24
(x2 − x1 − x3)3 +

1

24
(x3 − x1 − x2)3,

(17)

where we have used the implementation from equation (14) for the xaxbxc prototype. Of
course, we can also use the “legacy” M -count 7 implementation from equation (12), which
for certain input unitaries (e.g. ones that contain many gates on the same qudit lines) lead
to lower M count implementations due to column merging (see section VI C).

We call the above method monomial substitution, which executes in time that scales as
O(n3) in the worst case, making it efficient. However, the output M count should be consid-
ered a crude initial guess at the optimal M count and can be significantly improved by the
optimization methods described in remainder of this section.

C. M-Optimization

One approach to solving problem 3 is to try and ‘merge’ columns of an existing implemen-
tation. A pair of columns can be merged if they are duplicates of one another. This is because
we can collect like terms in the phase polynomial where the coefficients combine linearly. An
illustrative example is the following. Let f be a phase polynomial with two terms, hence has
implementation matrix A with two columns,

f(x) = λ1(A1,1x1 +A2,1x2 + · · ·+An,1xn)3 (18)

+ λ2(A1,2x1 +A2,2x2 + · · ·+An,2xn)3 (19)

if the two columns of A are duplicates, then we have Ai,1 = Ai,2 ∀ i ∈ [1, n]. And so

f(x) = (λ1 + λ2)(A1,1x1 +A2,1x2 + · · ·+An,1xn)3, (20)

which needs only a single column to represent it, and therefore only a single magic state to
implement it.

Of course, it is often the case that an A matrix does not contain any duplicates. In this
case, we wish to transform A in some way in order to make it contain duplicates, and in
such a way that it does not alter the unitary it implements. In appendix B, we describe an
M -optimizer that systemically searches for and performs such “duplication transformations”,
and subsequently merges the duplicated columns. For this reason, we call it the Duplicate
And Merge (DAM) algorithm.

The algorithm runs in time that scales as O(mn3dm) so is inefficient. However, in practice,
it executes much faster than the brute-force compiler and often outputs M -optimal imple-
mentations, albeit non-deterministically, and is useful for raising the practical limit on input
circuits.

8

3 4 5 6 7

M-Count

0

100

200

300

400

500

600

700

FIG. 2. The distribution of M -counts for DAM run on a single random implementation with d = 5,
n = 3 and known optimal M -count of 3 performed 1000 times.

VII. BENCHMARKS

In order to determine the speed benefits of using DAM over a brute force search (BFS)
and to assess the inevitable drop in M -optimality, we performed a benchmark on randomly
generated implementations with an M -count of 3 for d = 5 and n = 3. These parameters were
chosen as they are the largest parameters that are feasible for BFS where many repetitions
are required. Each of the 100 random implementations were first compiled by BFS, then the
legacy monomial substitution compiler was run using the signature tensor as input, which
was subsequently optimized using DAM 1000 times. The distribution of M -counts after
optimization with DAM was recorded and an example of a single random instance is shown
in figure 2.

We have performed a number of benchmarks on larger circuits in order to compare the
monomial substitution, legacy monomial substitution and DAM compilers, which are shown
in table I. From the data we see that MS is the preferred compiler for low depth circuits such as
the CCZ⊗k family, which is to be expected as it is likely that the optimal M -count in this case
is 4k. In contrast, the DAM compiler consistently outperforms MS and Legacy for random
circuits. Unfortunately, DAM is too inefficient to be practically useful for scalable quantum
computers as we see from the large execution times. The computational bottleneck for DAM
is due to the hardness of solving the multivariate cubic system of equations in equation (35).
Our implementation uses a search over the space of all vectors on Zd that are of length m in
the worst case (for details see appendix B). Therefore, the search consists of O(dm) iterations
and as all other parts of the DAM algorithm executes in polynomial time, this is the sole
source of inefficiency. It follows that if one had access to an efficient heuristic that solves the
system of equations in (35), then DAM immediately becomes efficient. Although, it would
probably be the case that as a consequence of it being a heuristic, not all column mergings

9

would be discoverable.
As DAM is a non-deterministic heuristic, it is important to quantify the stability of its

output. We used the results to estimate the probability that DAM produces an M -optimal
implementation of an unknown quantum circuit for the given circuit parameters and found
it to be popt := p(optimal | d = 5, n = 3,m = 3) = 0.47 ± 0.02. This probability should in
no way be interpreted as representative of DAM’s performance in general (esp. not for larger
circuits) but instead suggests that a best-of-N approach (i.e. where DAM is run N times
and the implementation with the minimum M -count is returned) would be effective and may
return M -optimal solutions.

The probability of optimality can be used to estimate the minimum number of DAM
repetitions, N , that one should perform in order to reach a desired confidence threshold,
pconf, using the following:

N =

⌈
ln(1− pconf)
ln(1− popt)

⌉
. (21)

Using our results for popt and a confidence threshold of pconf = 0.95, we arrive at N = 5. The
mean execution time[31] for a single run of DAM was 0.119s ± 0.006s compared to 91s ± 6s
for BFS. Therefore, the best-of-5 DAM compiler remains faster than BFS by two orders of
magnitude.

TABLE I. Benchmark table for the Monomial Substitution (MS), Legacy (Leg.) and Duplicate And
Merge (DAM) compilers. For each benchmark, a best-of-10 method was used for DAM. The M -counts
are shown in the Mcompiler columns and the executions times in the tcompiler columns. The executions
times were obtained on the Iceberg HPC Cluster at the University of Sheffield. The “Random” circuits
are randomly generated signature tensors where each element is a non-zero value with 50% probability
the subsequent value is selected uniformly. All M -counts and execution times reported in these rows
are mean values taken over 100 random circuits, or as many circuits as could be synthesised within
a 24 hour window. The notation CCZ#m refers to a circuit with m CCZ gates where they all share
exactly 1 control qudit in common.

Circuit d n MLeg. MMS MDAM tLeg. (s) tMS (s) tDAM (s)
CCZ 5 3 7 4 5 0.10 0.02 0.98
CCZ⊗2 5 6 14 8 10 0.03 0.01 20.87
CCZ⊗3 5 9 21 12 16 0.02 <0.01 813.02
CCZ 7 3 7 4 7 0.08 0.03 6.99
CCZ⊗2 7 6 14 8 10 0.04 0.01 182.69
CCZ 11 3 7 4 7 0.09 0.04 38.81
CCZ⊗2 11 6 14 8 12 0.04 0.01 11489.15
CCZ#2 5 5 13 8 8 0.09 0.02 34.9
CCZ#3 5 7 19 12 12 0.04 0.01 2219.68
CCZ#2 7 5 13 8 8 0.08 0.02 214.09
CCZ#3 7 7 19 12 12 0.04 0.01 23950.64
CCZ#2 11 5 13 8 8 0.08 0.02 7976.43
Random 5 3 8.26 11.38 4.52 <0.01 <0.01 1.40
Random 5 4 16.93 28.86 7.21 <0.01 <0.01 825.4959
Random 7 3 8.68 11.59 4.38 <0.01 <0.01 11.76
Random 7 4 16.88 28.75 7.13 <0.01 <0.01 10416.00
Random 11 3 9.08 12.05 4.38 <0.01 <0.01 185.46

10

VIII. CONCLUSIONS AND ACKNOWLEDGEMENTS

In this work we have generalised the phase polynomial type optimizers to qudit based
quantum computers and have used it to demonstrate cost savings only possible in the qudit
picture. This motivates serious discussion into fundamental questions regarding the nature of
first generation fault-tolerant architectures, namely whether they use qubits or qudits.

We acknowledge support by the Engineering and Physical Sciences Research Council (EP-
SRC) through grant EP/M024261/1. We thank Mark Howard for discussions throughout the
project.

Appendices

A. PROOF OF LEMMA 2

Let Uf ∈ 〈G〉 be a unitary and (A, λ) be an implementation for f with m columns. We
can efficiently generate a circuit, C, on G that implements Uf from (A, λ) using m M gates
with the following algorithm:

1. Initialize an empty circuit, C.

2. For each j ∈ [1,m]:

(a) Initialize an empty circuit, D.

(b) Let H := {i | Ai,j 6= 0}.
(c) Arbitrarily choose a t ∈ H.

(d) Append PAt,j on qudit line t to D.

(e) For each c ∈ H \ {t}:
i. Append PAc,j on qudit line c to D.

ii. Append SUMc,t to D.

iii. Append P 1
Ac,j

on qudit line c to D.

(f) Append P 1
At,j

on qudit line t to D.

(g) Append D to C.

(h) Append Mλj on qudit line t to C.

(i) Append D† to C.

First, observe steps 2d to 2f, which creates a subcircuit D using only Pl and SUM gates that
maps the state of the tth qudit to a linear function of the n input qudits x1, x2, . . . , xn that
has coefficients given by the jth column of A. After D is appended to the output circuit, C,
step 2h applies an Mk gate with k = λj , which adds a term to the phase polynomial f(x)
equal to the aforementioned linear function cubed multiplied by λj , as required. Finally, in
step 2i, the linear function is uncomputed by D†. The whole process is repeated for each of

11

the m columns of A. Each iteration requires only one Mk gate so the total number of M
gates required is m. The algorithm executes in O(mn) steps and so is efficient. We end this
appendix with the disclamation that the above algorithm is not intended to be optimal with
respect to the number of Clifford gates (i.e. Pl and SUM) used.

B. THE DUPLICATE AND MERGE OPTIMIZER

The following is a direct generalisation of the TODD compiler from reference [21] to qudits.
The key difference is that the the null space step from TODD is replaced with a multivariate
cubic system, for which a common root must be found. We refer the reader to Section 3.4 and
Algorithm 1 of [21] for an overview of the TODD compiler, which may aid in understanding
DAM.

Definition 2. Duplication Transformation. Let A ∈ Z(n,m)
d be an implementation and

y ∈ Zmd be a vector. We define the duplication transformation as follows:

A→ A+ (cb − ca)y
T , (22)

where cj is the jth column of A.

We can use this transformation to ‘create’ duplicates as the following lemma shows.

Lemma 3. Let A′ = A+ (cb − ca)y
T and assume that ya − yb = 1. It follows that c′a = c′b.

Proof. From the definition of A′,

A′i,j = Ai,j + ziyj , (23)

now substitute in zi ≡ Ai,b −Ai,a,

A′i,j = Ai,j + (Ai,b −Ai,a)yj . (24)

Apply equation (24) to both (ca)i ≡ A′i,a and (cb)i ≡ A′i,b,

A′i,b = Ai,b + (Ai,b −Ai,a)yb, (25)

A′i,a = Ai,a + (Ai,b −Ai,a)ya. (26)

Substitute ya = yb + 1 into equation (26) and rearrange,

A′i,a = Ai,a + (Ai,b −Ai,a)(yb + 1) (27)

= Ai,a + (Ai,b −Ai,a)yb +Ai,b −Ai,a (28)

= Ai,b + (Ai,b −Ai,a)yb = A′i,b. (29)

∀ i ∈ [1, n] so c′a = c′b.

12

The duplication transformation must not alter f . This leads to the condition S′α,β,γ =
Sα,β,γ ∀ α, β, γ ∈ [1, n], where S′ and S are the signature tensors for A′ and A, respectively.
So,

S′α,β,γ =

m∑

j=1

λjA
′
α,jA

′
β,jA

′
γ,j , (30)

=

m∑

j=1

λj(Aβ,j + zβyj)(Aβ,j + zβyj)(Aγ,j + zγyj), (31)

=

m∑

j=1

λjAα,jAβ,jAγ,j + ∆α,β,γ = Sα,β,γ + ∆α,β,γ , (32)

where we define,

∆α,β,γ :=
m∑

j=1

λj(Aα,jAβ,jzγyj +Aβ,jAγ,jzαyj +Aγ,jAα,jzβyj

+Aα,jzβzγy
2
j +Aβ,jzγzαy

2
j +Aγ,jzαzβy

2
j + zαzβzγy

3
j),

(33)

and z := cb − ca. In order for S′ = S, we require that

∆α,β,γ = 0 ∀ α, β, γ ∈ [1, n]. (34)

This leads to a system of
∑3

i=1

(
n
i

)
cubic polynomials on r variables (y1, y2, . . . , ym) that can

be rewritten as follows:

m∑

j=1

(
lα,β,γ,jyj + qα,β,γ,jy

2
j + cα,β,γ,jy

3
j

)
= 0, (35)

ya − yb − 1 = 0 (36)

where the linear, quadratic and cubic coefficients for variable t are given by,

lα,β,γ,j = λj(Aα,jAβ,jzγ +Aβ,jAγ,jzα +Aγ,jAα,jzβ) (37)

qα,β,γ,j = λj(Aα,jzβzγ +Aβ,jzγzα +Aγ,jzαzβ) (38)

cα,β,γ,j = λjzαzβzγ , (39)

respectively.
Any y that is a simultaneous solution to equations (35) and equation (36) allows us to

reduce the number of columns of A using the duplication transformation from definition (2).
Unfortunately, the problem of solving a general multivariate cubic system such as this is known
to be NP-complete. A brute-force solver that searches through every possible y runs in O(dm)
time. However, we can significantly speed up the search using the following relinearisation
technique. First, we introduce new variables, ym+1, ym+2, . . . , y3m, such that

ym+j = y2j , (40)

y2m+j = y3j , (41)

(42)

13

for all j ∈ [1,m]. The system of equations from (35) becomes:

m∑

j=1

lα,β,γ,jyj +

2m∑

k=m+1

qα,β,γ,kyk +

3m∑

l=2m+1

cα,β,γ,lyl = 0, (43)

which is linear in the {yj}. Let D be the coefficient matrix defined as follows: For each triple
{(α, β, γ) | α ≤ β ≤ γ ∈ [1, n], there exists a row in D of the following form:

Rowα,β,γ(D) =
(
(lα,β,γ,j) (qα,β,γ,j) (cα,β,γ,j)

)
. (44)

Now we can calculate a complete basis for the solutions to equation (43) by calculating the
right null space of D, which we denote ND. We can think of the columns of ND as a basis
for the ‘partial’ solutions of the system of equations (35). In order to promote them to ‘full’
solutions, we need to enforce conditions from equations (40) and (36), which we do using the
following algorithm.

1. Form N ′D by erasing all but the first m rows of ND.

2. Form N ′′D by column-reducing N ′D and subsequently removing every all-zero column.

3. Let µ := Cols(N ′′D).

4. For each x ∈ Zµd :

(a) Construct yx = N ′′Dx

(b) Construct y′x =




yx

y2
x

y3
x




(c) If Dy′x = 0 and (36) holds, then return yx.

5. Return “No Solution”.

In effect, the relinearlisation method replaces a search over every y ∈ Zmd with a search
over every x ∈ Zµd , so it only runs faster if µ < m. It is certainly the case that µ ≤ m as
µ is the column rank of N ′D, which has m rows. Whether or not the strict inequality holds
depends on the input circuit but in practice, we often find that it does hold and leads to
significant speed-up over the naive brute force approach.

[1] N. P. Brusentsov and J. Ramil Alvarez, IFIP Advances in Information and Communication Tech-
nology , 74 (2011).

[2] G. Duclos-Cianci and D. Poulin, Phys. Rev. A 87, 062338 (2013).
[3] H. Anwar, B. J. Brown, E. T. Campbell, and D. E. Browne, New Journal of Physics 16, 063038

(2014).
[4] A. Hutter, D. Loss, and J. R. Wootton, New Journal of Physics 17, 035017 (2015).
[5] F. H. E. Watson, E. T. Campbell, H. Anwar, and D. E. Browne, Phys. Rev. A 92, 022312 (2015).
[6] F. H. E. Watson, H. Anwar, and D. E. Browne, Phys. Rev. A 92, 032309 (2015).

14

[7] H. Anwar, E. T. Campbell, and D. E. Browne, New Journal of Physics 14, 063006 (2012).
[8] E. T. Campbell, H. Anwar, and D. E. Browne, Phys. Rev. X 2, 041021 (2012).
[9] E. T. Campbell, Phys. Rev. Lett. 113, 230501 (2014).

[10] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, Quantum 1, 31 (2017).
[11] A. Krishna and J.-P. Tillich, arXiv preprint arXiv:1811.08461 (2018).
[12] F. S. Khan and M. Perkowski, arXiv preprint quant-ph/0511041 (2005).
[13] A. Bocharov, M. Roetteler, and K. M. Svore, Physical Review A 96, 012306 (2017).
[14] K. Matsumoto and K. Amano, Pre-print arXiv:0806.3834 (2008).
[15] B. Giles and P. Selinger, Pre-print arXiv:1312.6584 (2013).
[16] V. Kliuchnikov, D. Maslov, and M. Mosca, Quantum Info. Comput. 13, 607 (2013).
[17] D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo, Quantum Info. Comput. 14, 1261 (2014).
[18] M. Amy, D. Maslov, and M. Mosca, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 33, 1476 (2014).
[19] M. Amy and M. Mosca, Pre-print arXiv:1601.07363 (2016).
[20] E. T. Campbell and M. Howard, Phys. Rev. A 95, 022316 (2017).
[21] L. E. Heyfron and E. T. Campbell, Quantum Science and Technology 4, 015004 (2019).
[22] Y. Nam, N. J. Ross, Y. Su, A. Childs, and D. Maslov, npj Quantum Information 4 (2017),

10.1038/s41534-018-0072-4.
[23] A. N. Glaudell, N. J. Ross, and J. M. Taylor, Pre-print arXiv:1803.05047 (2018).
[24] C. Jones, Physical Review A 87, 022328 (2013).
[25] M. Howard and J. Vala, Physical Review A 86, 022316 (2012).
[26] S. X. Cui, D. Gottesman, and A. Krishna, Phys. Rev. A 95, 012329 (2017).
[27] A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, Physical review letters 108, 180501 (2012).
[28] J. O’Gorman and E. T. Campbell, Physical Review A 95, 032338 (2017).
[29] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven,

arXiv preprint arXiv:1805.03662 (2018).
[30] Note that for notational convenience, we often write an implementation as a single matrix where

λ is the final row and the rest is the A matrix with a separating horizontal line between them.
[31] Execution times were obtained on a laptop with an Intel Core i7 2.40GHz processor, 12GB of

RAM running Microsoft Windows 10 Home edition.

Chapter 6

Conclusion

In this thesis we have investigated quantum compilation methods that reduce
the cost of executing quantum algorithms in the context of fault-tolerant quan-
tum computing. In particular, we have developed methods for minimizing the
number of expensive non-Clifford gates in quantum circuits. We have done this
in two distinct cases: for qubit-based and qudit-based architectures. In the case
of qubit-based architectures, the non-Clifford gate under investigation was the
T -gate and in the qudits case, it was the M gate. In each case, we developed
general purpose multi-qubit/qudit compilers that take as input quantum cir-
cuits that are exactly synthesisable on the native gate set and return specific
circuit decompositions with non-Clifford gate counts that are less than or equal
to that of the input.

It is known that the problem of decomposing a general multi-qubit/qudit
unitary into a circuit that is optimal with respect to the non-Clifford gate count
is intractable. As such, an object of this thesis has been to discover heuris-
tics that are favourable in both the non-Clifford gate count reductions and the
asymptotic behaviour of classical compiler execution times. In the qubit case, we
were able to devise a compiler which successfully yields reduced T counts when
tested on standard benchmark circuits and executes in time that is polynomial
in the number of qubits and the provisional T count of the input circuit. This
has led to implementations of useful quantum algorithms with lower T counts
than any previous effort. The compiler has been implemented as a command-
line utility called TOpt that was written in C++ whose source code is freely
available under an open source GNU license. Several subsequent works have
already been built following on from our compiling approach that have used
TOpt as a subroutine, including references [44, 45]. Both of these works make
use of the ZX-calculus to overcome or bypass the obstacle that Hadamard gates
pose to phase-polynomial style T count optimizers, while reducing the T count
by eliminating or fusing “phase-gadgets” that correspond to the columns of a
gate synthesis matrix such as A in equation (8) of chapter 4. Both works use
the TODD algorithm as a post-processing stage after having isolated CNOT +
T subcircuits from the input Clifford + T circuit and in many cases, TODD
successfully managed to reduce the T count below that of the reported results
without TODD. The “PyZX” compiler in reference [44] focussed specifically on
ancilla-free optimization and in this special case, many circuits produced by
PyZX combined with TODD have lower T counts than those produced by any
previous compiler, including TOpt. Since then, the compiler from reference [45]

64

has managed to reduce the T count for some circuits (notably the GF(2n)-
mult family) even further, while TODD with fully gadgetized Hadamard gates
still holds the record for lowest T count for many other benchmark circuits.
Hopefully, the availability of the code will lead to further usage of the quan-
tum compiler in research projects and to continued development of the compiler
itself.

Although the T count optimization component of the compiler runs in time
polynomial in the size of the circuit, we found that in practice, the order of
the polynomial is prohibitively large for very large circuits. This meant we
were unable to obtain results for the largest of the standard benchmark circuits
and the highest execution times for completed runs were in the order of days.
We have demonstrated that partitions can be used to mitigate this problem
at the cost of T count optimization performance. However, we emphasise the
pertinence of a more in-depth exploration into the trade-off between classical
compile time and magic state resource savings. In this vein, we suggest that an
area of future work could be to devise algorithms for automating the partitioning
of quantum circuits into pareto optimal partitions with respect to both classical
compile time and T count. The T optimization subroutine (e.g. TOOL, TODD
or even some as-yet undiscovered heuristic) would be a parameter of such an
investigation.

In the case of qudits, we were able to obtain a unitary quantum circuit for
the Toffoli gate that uses only 4 M gates, which is an improvement over the
best previous unitary implementation that uses 7 M gates. As well as offering
immediate cost savings for many quantum algorithms, this discovery reveals a
distinct advantage of using a qudit based quantum computing paradigm. This
is because the 4 M gate circuit is optimal for d-level qudits where d is a prime
number greater than 3, but by comparison, the optimal unitary T count for
the qubit-based Toffoli gate is 7. It remains an area of further investigation to
discover other such ‘super-optimal’ qudit circuits and to quantify the relative
compilation efficiency of different qudit paradigms over varying values of d. It
should be noted that qubit-based Toffoli gates can be synthesised using only 4 T
gates through non-unitary methods that involve ancilla and measurements [46].
However, methods for incorporating non-unitary processes into a general frame-
work for quantum compilation remains poorly understood and open to future
development. The aforementioned 4 M gate unitary implementation of the
qudit-based Toffoli gate raises the question as to whether the dependence of the
optimal T (or M) count on the inclusion of non-unitary gates is a property ex-
clusive to the qubit paradigm, or at least a property that is absent for qudits of
prime dimension greater than 3. Such a question is open and subject to further
study. Despite these successes, we were unable to devise a qudit compiler which
reduces the non-Clifford gate count that is computationally efficient, so this also
remains an area of further study.

It is unclear at this stage whether qudits or qubits will become the domi-
nant paradigm for the first generation of quantum computers, but hopefully the
quantum circuits and optimization methods presented in this thesis will take us
one step closer to witnessing the outcome first-hand.

65

Bibliography

[1] Further references can be found on page 20 of Chapter 4 and page 13 of
Chapter 5.

[2] Peter Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM Rev. 41.2 (1999),
pp. 303–332.

[3] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital
Signatures and Public-key Cryptosystems”. In: Commun. ACM 21.2 (Feb.
1978), pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342. url:
http://doi.acm.org.sheffield.idm.oclc.org/10.1145/359340.

359342.

[4] Daniel Gottesman. “Stabilizer Codes and Quantum Error Correction”.
PhD thesis. Pasadena, California: California Institute of Technology, 1997.

[5] Emanuel Knill, Raymond Laflamme, and Wojciech H. Zurek. “Resilient
Quantum Computation”. In: Science 279.5349 (1998), pp. 342–345.

[6] Daniel Gottesman. “Theory of fault-tolerant quantum computation”. In:
Physical Review A 57.1 (1997).

[7] D.S. Wang et al. “Threshold Error Rates for the Toric and Surface Codes”.
In: Quant. Inf. Comput. 10.5 & 6 (2010), pp. 456–469. doi: 10.26421/
QIC10.5-6-6. url: http://www.rintonpress.com/xxqic10/qic-10-
56/0456-0469.pdf.

[8] Eric Dennis et al. “Topological Quantum Memory”. In: Journal of Math-
ematical Physics 43.4452 (2002).

[9] Daniel Gottesman and Isaac L. Chuang. “Demonstrating the viability of
universal quantum computation using teleportation and single-qubit op-
erations”. In: Nature 402 (1999), pp. 390–393.

[10] Sergey Bravyi and Alexei Kitaev. “Universal quantum computation with
ideal Clifford gates and noisy ancillas”. In: Physical Review A 71.022316
(2005).

[11] Sergey Bravyi and Jeongwan Haah. “Magic-state distillation with low
overhead”. In: Physical Review A 86.052329 (2012).

[12] Joe O’Gorman and Earl T. Campbell. “Quantum computation with real-
istic magic-state factories”. In: Phys. Rev. A 95 (3 2017), p. 032338. doi:
10.1103/PhysRevA.95.032338. url: https://link.aps.org/doi/10.
1103/PhysRevA.95.032338.

[13] R Raussendorf, J Harrington, and K Goyal. “Topological fault-tolerance
in cluster state quantum computation”. In: New Journal of Physics 9.6
(2007), pp. 199–199. doi: 10.1088/1367-2630/9/6/199.

66

https://doi.org/10.1145/359340.359342
http://doi.acm.org.sheffield.idm.oclc.org/10.1145/359340.359342
http://doi.acm.org.sheffield.idm.oclc.org/10.1145/359340.359342
https://doi.org/10.26421/QIC10.5-6-6
https://doi.org/10.26421/QIC10.5-6-6
http://www.rintonpress.com/xxqic10/qic-10-56/0456-0469.pdf
http://www.rintonpress.com/xxqic10/qic-10-56/0456-0469.pdf
https://doi.org/10.1103/PhysRevA.95.032338
https://link.aps.org/doi/10.1103/PhysRevA.95.032338
https://link.aps.org/doi/10.1103/PhysRevA.95.032338
https://doi.org/10.1088/1367-2630/9/6/199

[14] Austin G. Fowler, Simon J. Devitt, and Cody Jones. “Surface code im-
plementation of block code state distillation”. In: Scientific Reports 3.1
(2013). doi: 10.1038/srep01939.

[15] Austin G. Fowler and Simon J. Devitt. A bridge to lower overhead quan-
tum computation. 2013. arXiv: 1209.0510 [quant-ph].

[16] M. Amy, D. Maslov, and M. Mosca. “Polynomial-Time T-Depth Op-
timization of Clifford+T Circuits Via Matroid Partitioning”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 33.10 (2014), pp. 1476–1489. doi: 10.1109/TCAD.2014.2341953.

[17] M. Amy and M. Mosca. “T-Count Optimization and Reed–Muller Codes”.
In: IEEE Transactions on Information Theory 65.8 (2019), pp. 4771–4784.
doi: 10.1109/TIT.2019.2906374.

[18] Abraham Lempel. “Matrix Factorization over GF(2) and Trace-Orthogonal
Bases of GF(2n)”. In: SIAM J. Comput. 4.2 (1975), pp. 175–186.

[19] Earl T Campbell and Mark Howard. “Unifying Gate Synthesis and Magic
State Distillation”. In: Phys. Rev. Lett. 118.060501 (2017).

[20] Christopher Chamberland et al. Building a fault-tolerant quantum com-
puter using concatenated cat codes. 2020. arXiv: 2012.04108 [quant-ph].

[21] Sergey Bravyi, Graeme Smith, and John A. Smolin. “Trading Classical
and Quantum Computational Resources”. In: Physical Review X 6.2 (June
2016). issn: 2160-3308. doi: 10.1103/physrevx.6.021043. url: http:
//dx.doi.org/10.1103/PhysRevX.6.021043.

[22] Daniel Litinski. “A Game of Surface Codes: Large-Scale Quantum Com-
puting with Lattice Surgery”. In: Quantum 3 (Mar. 2019), p. 128. issn:
2521-327X. doi: 10.22331/q-2019-03-05-128. url: http://dx.doi.
org/10.22331/q-2019-03-05-128.

[23] Daniel Litinski. “Magic State Distillation: Not as Costly as You Think”.
In: Quantum 3 (Dec. 2019), p. 205. issn: 2521-327X. doi: 10.22331/q-
2019-12-02-205. url: http://dx.doi.org/10.22331/q-2019-12-02-
205.

[24] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. “Fast and Effi-
cient Exact Synthesis of Single-Qubit Unitaries Generated by Clifford and
T Gates”. In: Quantum Info. Comput. 13.7–8 (July 2013), pp. 607–630.
issn: 1533-7146.

[25] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. “Asymptotically
Optimal Approximation of Single Qubit Unitaries by Clifford andTCir-
cuits Using a Constant Number of Ancillary Qubits”. In: Physical Review
Letters 110.19 (May 2013). issn: 1079-7114. doi: 10.1103/physrevlett.
110.190502. url: http://dx.doi.org/10.1103/PhysRevLett.110.
190502.

67

https://doi.org/10.1038/srep01939
https://arxiv.org/abs/1209.0510
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TIT.2019.2906374
https://arxiv.org/abs/2012.04108
https://doi.org/10.1103/physrevx.6.021043
http://dx.doi.org/10.1103/PhysRevX.6.021043
http://dx.doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.22331/q-2019-03-05-128
http://dx.doi.org/10.22331/q-2019-03-05-128
http://dx.doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.22331/q-2019-12-02-205
http://dx.doi.org/10.22331/q-2019-12-02-205
http://dx.doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.1103/physrevlett.110.190502
https://doi.org/10.1103/physrevlett.110.190502
http://dx.doi.org/10.1103/PhysRevLett.110.190502
http://dx.doi.org/10.1103/PhysRevLett.110.190502

[26] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. “Practical Ap-
proximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford
and T Circuits”. In: IEEE Transactions on Computers 65.1 (Jan. 2016),
pp. 161–172. issn: 0018-9340. doi: 10.1109/tc.2015.2409842. url:
http://dx.doi.org/10.1109/TC.2015.2409842.

[27] Neil J. Ross and Peter Selinger. “Optimal ancilla-free Clifford+T ap-
proximation of z -rotations”. In: Quantum Inf. Comput. 16.11&12 (2016),
pp. 901–953. url: http://www.rintonpress.com/xxqic16/qic-16-
1112/0901-0953.pdf.

[28] M. Amy et al. “A Meet-in-the-Middle Algorithm for Fast Synthesis of
Depth-Optimal Quantum Circuits”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32.6 (2013), pp. 818–830.
doi: 10.1109/TCAD.2013.2244643.

[29] Earl T Campbell and Mark Howard. “Unified framework for magic state
distillation and multiqubit gate synthesis with reduced resource cost”. In:
Phys. Rev. A 95.022316 (2017).

[30] Luke E Heyfron and Earl T Campbell. “An efficient quantum compiler
that reduces T count”. In: Quantum Science and Technology 4.1 (2018),
p. 015004. doi: 10.1088/2058-9565/aad604. url: https://doi.org/
10.1088%2F2058-9565%2Faad604.

[31] David Gosset et al. “An algorithm for the T-count”. In: Quantum In-
formation & Computation 14 (Nov. 2014), pp. 1261–1276. url: https:
//www.microsoft.com/en-us/research/publication/an-algorithm-

for-the-t-count/.

[32] A Yu Kitaev. “Quantum computations: algorithms and error correction”.
In: Russian Mathematical Surveys 52.6 (1997), pp. 1191–1249. doi: 10.
1070/rm1997v052n06abeh002155. url: https://doi.org/10.1070%
2Frm1997v052n06abeh002155.

[33] Christopher M. Dawson and Michael A. Nielsen. “The Solovay-Kitaev
Algorithm”. In: Quantum Info. Comput. 6.1 (2006), pp. 81–95. issn: 1533-
7146.

[34] Adriano Barenco et al. “Elementary gates for quantum computation”. In:
Phys. Rev. A 52 (5 Nov. 1995), pp. 3457–3467. doi: 10.1103/PhysRevA.
52.3457. url: https://link.aps.org/doi/10.1103/PhysRevA.52.
3457.

[35] W. K. Wootters and W. H. Zurek. “A single quantum cannot be cloned”.
In: Nature 299.5886 (1982), pp. 802–803. doi: 10.1038/299802a0.

[36] Andrew Steane. “Multiple-particle interference and quantum error correc-
tion”. In: Proceedings of the Royal Society of London. Series A: Mathemat-
ical, Physical and Engineering Sciences 452.1954 (1996), pp. 2551–2577.
doi: 10.1098/rspa.1996.0136. url: https://royalsocietypublishing.
org/doi/abs/10.1098/rspa.1996.0136.

68

https://doi.org/10.1109/tc.2015.2409842
http://dx.doi.org/10.1109/TC.2015.2409842
http://www.rintonpress.com/xxqic16/qic-16-1112/0901-0953.pdf
http://www.rintonpress.com/xxqic16/qic-16-1112/0901-0953.pdf
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1088/2058-9565/aad604
https://doi.org/10.1088%2F2058-9565%2Faad604
https://doi.org/10.1088%2F2058-9565%2Faad604
https://www.microsoft.com/en-us/research/publication/an-algorithm-for-the-t-count/
https://www.microsoft.com/en-us/research/publication/an-algorithm-for-the-t-count/
https://www.microsoft.com/en-us/research/publication/an-algorithm-for-the-t-count/
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1070%2Frm1997v052n06abeh002155
https://doi.org/10.1070%2Frm1997v052n06abeh002155
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://doi.org/10.1038/299802a0
https://doi.org/10.1098/rspa.1996.0136
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0136
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0136

[37] A. M. Steane. “Error Correcting Codes in Quantum Theory”. In: Phys.
Rev. Lett. 77 (5 1996), pp. 793–797. doi: 10.1103/PhysRevLett.77.793.
url: https://link.aps.org/doi/10.1103/PhysRevLett.77.793.

[38] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. 10th. New York, NY,
USA: Cambridge University Press, 2011. isbn: 1107002176, 9781107002173.

[39] Benjamin J. Brown et al. “Poking Holes and Cutting Corners to Achieve
Clifford Gates with the Surface Code”. In: Phys. Rev. X 7 (2 2017),
p. 021029. doi: 10.1103/PhysRevX.7.021029. url: https://link.

aps.org/doi/10.1103/PhysRevX.7.021029.

[40] Sergey Bravyi and Robert König. “Classification of Topologically Pro-
tected Gates for Local Stabilizer Codes”. In: Physical Review Letters
110.17 (2013). doi: 10.1103/physrevlett.110.170503.

[41] Bryan Eastin and Emanuel Knill. “Restrictions on Transversal Encoded
Quantum Gate Sets”. In: Physical Review Letters 102.11 (2009). doi: 10.
1103/physrevlett.102.110502.

[42] Luke Heyfron. Source code for “TOpt”. doi: 10.5281/zenodo.1345084.

[43] Luke Heyfron and Earl T. Campbell. “A quantum compiler for qudits of
prime dimension greater than 3”. In: arXiv arXiv:1902.05634 [quant-ph]
(2019). url: https://arxiv.org/abs/1902.05634.

[44] Aleks Kissinger and John van de Wetering. “Reducing the number of
non-Clifford gates in quantum circuits”. In: Phys. Rev. A 102 (2 Aug.
2020), p. 022406. doi: 10.1103/PhysRevA.102.022406. url: https:

//link.aps.org/doi/10.1103/PhysRevA.102.022406.

[45] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. “Techniques to
Reduce π/4-Parity-Phase Circuits, Motivated by the ZX Calculus”. In:
Electronic Proceedings in Theoretical Computer Science 318 (May 2020),
pp. 131–149. issn: 2075-2180. doi: 10.4204/eptcs.318.9. url: http:
//dx.doi.org/10.4204/EPTCS.318.9.

[46] Cody Jones. “Low-overhead constructions for the fault-tolerant Toffoli
gate”. In: Phys. Rev. A 87.022328 (2013).

69

https://doi.org/10.1103/PhysRevLett.77.793
https://link.aps.org/doi/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevX.7.021029
https://link.aps.org/doi/10.1103/PhysRevX.7.021029
https://link.aps.org/doi/10.1103/PhysRevX.7.021029
https://doi.org/10.1103/physrevlett.110.170503
https://doi.org/10.1103/physrevlett.102.110502
https://doi.org/10.1103/physrevlett.102.110502
https://doi.org/10.5281/zenodo.1345084
https://arxiv.org/abs/1902.05634
https://doi.org/10.1103/PhysRevA.102.022406
https://link.aps.org/doi/10.1103/PhysRevA.102.022406
https://link.aps.org/doi/10.1103/PhysRevA.102.022406
https://doi.org/10.4204/eptcs.318.9
http://dx.doi.org/10.4204/EPTCS.318.9
http://dx.doi.org/10.4204/EPTCS.318.9

	Acknowledgements
	Abstract
	Contents
	Declaration
	Introduction
	Basics of Quantum Computation
	Quantum States
	Quantum Operators
	Pauli Group
	The Clifford Group
	The T Gate

	Quantum Circuit Model
	Mixed States and the Density Operator

	The Clifford + T Cost Model
	Universal Quantum Computation
	What Does Universality Mean?
	Clifford Gates are Not Universal
	CNOT + Single Qubit Rotation is Universal
	H + T approximates any Single Qubit Rotation

	Fault-Tolerant Quantum Computation
	Quantum Error Correction
	Transversal Gates
	Magic State Distillation

	An Efficient Quantum Compiler that Reduces T Count
	A Quantum Compiler for Qudits of Prime Dimension Greater than 3
	Conclusion

