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Summary

Background: Zebrafish are an excellent model to study cardiovascular development and
disease. Transgenic reporter lines and state-of-the-art microscopy allow 3D visualization of
the vasculature in vivo. Previous studies relied on subjective visual interpretation of vascular
topology without objective quantification. Thus, there is the need to develop analysis
approaches that model and quantify the zebrafish vasculature to understand the effect of
development, genetic manipulation or drug treatment.

Aim: To establish an image analysis pipeline to extract quantitative 3D parameters
describing the shape and topology of the zebrafish vasculature, and examine how these are
impacted during development, disease, and by chemicals.

Methods: Experiments were performed in zebrafish embryos, conforming with UK Home
Office regulations. Image acquisition of transgenic zebrafish was performed using a Z.1 Zeiss
light-sheet fluorescence microscope. Pre-processing, enhancement, registration,
segmentation, and quantification methods were developed and optimised using open-source
software, Fiji (Fiji 1.51p; National Institutes of Health, Bethesda, USA).

Results: Motion correction was successfully applied using Scale Invariant Feature
Transform (SIFT), and vascular enhancement based on vessel tubularity (Sato filter) exceeded
general filter outcomes. Following evaluation and optimisation of a variety of segmentation
methods, intensity-based segmentation (Otsu thresholding) was found to deliver the most
reliable segmentation, allowing 3D vascular volume measurement. Following successful
segmentation of the cerebral vasculature, a workflow to quantify left-right intra-sample
symmetry was developed, finding no difference from 2-to-5dpf. Next, the first vascular
inter-sample registration using a manual landmark-based approach was developed and it was
found that conjugate direction search allowed automatic inter-sample registration. This
enabled extraction of age-specific regions of similarity and variability between different
individual embryos from 2-to-5dpf. A workflow was developed to quantify vascular network
length, branching points, diameter, and complexity, showing reductions in zebrafish without
blood flow. Also, I discovered and characterised a previously undescribed endothelial cell
membrane behaviour termed kugeln.

Conclusion: A workflow that successfully extracts the zebrafish vasculature and enables
detailed quantification of a wide variety of vascular parameters was developed.
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1 Introduction

1.1 Relevance of vascular quantification

The vasculature is pivotal throughout an organism’s lifespan, ensuring balanced supply of life-

essential compounds. In the physiological context, the vasculature is needed for wound healing,

regeneration, immune response, menstrual cycle, and pregnancy [6, 7, 8]. In the pathological

context, it plays a role in chronic inflammatory disease, stroke, and vasculopathies [9], as well

as cancer growth, progression, and metastasis [10].

The geometric and structural appearance of the vasculature can be used as a readout of

physiology and pathology and is often clinically relevant [9, 11]. Examples are

hyper-vascularization in cancer, hypo-vascularization in diabetes, or structural changes in

hypoxia [10, 12, 13], which can be quantified as changes in vascular network volume, length,

branching points, or patterning. Similarly, in vascular diseases such as stenosis, local vessel

diameter changes are quantified to describe the disease status and support surgical planning.

Reliable interpretation of the vascular status as indicator of vascular health requires objective

quantification which is unbiased and reliably extracts even subtle changes. This is of particular

interest when wanting to examine patient disease progression or response to treatment over

time.

Besides this relevance in the clinical setting, vascular geometry can be used to describe

morphogenic changes during development, as gradual vascularization occurs in parallel to

body plan establishment to supply organisms with oxygen, nutrients, and signalling cues [14].

The geometric vascular framework can be used to model blood flow, which is increasingly

applied to study the local impact of blood flow on vascular biomechanics and genetics [15, 16].

Together, it becomes clear that objective quantification of vascular anatomy and architecture

is needed to reliably investigate vascular development, disease status, disease progression, as

well as treatment responses. To achieve this, the medical field has made a concerted effort in

the last decade to produce image analysis pipelines which allow for these quantifications to be

conducted and thus vascular architecture to become quantifiable.

This is exemplified by major scientific projects, such as the AI-driven research on diabetic

retinopathy, which aims to use artificial intelligence to assess the retinal microvascular

architecture to assess disease status prevent diabetes induced vision loss [17, 18].

However, the availability of myriads of data acquisition techniques, clinical questions, and

analysis approaches limit the applicability of specifically designed approaches to particular
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Figure 1.1: Zebrafish are a suitable model organism to study fundamental biology.
Intrinsic biological characteristics and effective experimental design make zebrafish
a suitable model to study cardiovascular development and disease (modified from
[14]).

medical questions. Similarly, quantification approaches for the vascular architecture in

pre-clinical models is still lacking.

1.2 Zebrafish are a suitable pre-clinical model to study the

cardiovascular system

The zebrafish, Danio rerio, is a widely used vertebrate model organism to study development

and disease [19, 20, 21, 22]. Characteristics such as high fecundity, larval transparency, sexual

maturity after three months, and ex utero development allow cost-effective and high- throughput

experimental design (Fig. 1.1) [14].

Zebrafish have become an established model to study vascular development, homoeostasis,

and pathology [23, 24, 25]. The availability of gene specific fluorescent transgenic markers

and well-established experimental techniques allows cutting-edge non-invasive in vivo image

acquisition over prolonged periods of time [14, 26]. Moreover, small embryonic size during the

first days of development enables passive diffusion to supply the embryo with oxygen in the

absence of blood flow, allowing the study of the impact of absent flow on vascular development

[27, 28].

In zebrafish the first functioning organ is the heart [29], blood development starts at 12 hours

post fertilization (hpf) [25], and at 17hpf arterio-venous markers are expressed [30]. At 22hpf
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the newly formed vasculature becomes lumenized, and at 24hpf the two main axial vessels,

the dorsal aorta (DA) and posterior cardinal vein (PCV), are formed by vasculogenesis [30, 31].

At 24-26hpf heart contraction starts, which induces vascular perfusion with blood to ensure

the systemic supply of gas, nutrients, metabolites, hormones and components of the immune-

system [32, 33]. A description of the early developing zebrafish vascular architecture, including

the vessel nomenclature used in this thesis, was published by Isogai et al. for the cranial and

trunk vasculature [31, 34].

1.2.1 Embryonic development of the vascular system in zebrafish

Establishing a functional vascular network requires a fine-tuned orchestration on multiple

levels [35, 36]. Morphogenic processes such as cell differentiation, migration, lumenization,

and cell-cell interactions are governed by the integration of several key signalling pathways

such as vascular endothelial growth factor (VEGF) or Notch [37]. Importantly, many of the

basic underlying vasculogenic and angiogenic mechanisms are highly conserved in

vertebrates, allowing clinical translation from zebrafish to human.

The formation of the vascular network can be classified into vasculogenesis and

angiogenesis [38]. Vasculogenesis, is de novo vessel formation by migration and coalescence

of precursor cells, called haemangioblasts, from the lateral plate mesoderm (LPM) during

embryonic development [39, 40]. Angiogenesis remodels and refines pre-existing vessels by

sprouting, anastomosis, and pruning [9, 40, 41].

For more detailed reviews about vasculogenesis and angiogenesis in zebrafish the reader

is referred to the following: cranial vasculature formation in [31], trunk vasculature formation in

[34], molecular pathway review [42], vascular heterogeneity review [43].

Trunk vasculature.

In zebrafish the trunk vasculature is a highly studied vascular bed due to its stereotypic and

reproducible growth pattern.

Cell lineage-restriction of angioblasts is considered to start during mid-gastrula at about 7

hpf by cloche [44, 45]. Angioblast migration towards the embryonic midline is guided by elabela

from the notochord, which is sensed by angioblasts (receptors aplnr1a and aplnr1b) [46]. These

angioblasts coalesce and form primordia for the two main axial vessels, DA and PCV [45, 47].

Cellular assembly, for vessel formation, is accompanied by progressing cell-fate specification

by arterio-venous differentiation [24, 43, 48].

How vascular lumenization is achieved in each vascular bed remains to be elucidated [37],

but it is known that cell polarity establishment is required prior to functional lumen formation
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[49, 50, 51, 52, 53, 54].

Intersegmental vessels (ISVs) start to sprout dorsally as the first angiogenic vessels from

the DA and migrate in parallel to vertical somite boundaries. Tip cells sense the guidance

cue VEGF, which is provided by somites, for migration by vascular endothelial growth factor

receptor 2 (vegfr2) (or kdrl) and vegfr3, leading to increased expression of the cell-membrane-

bound Notch ligand delta-like ligand 4 (dll4) in the tip cell. This in turn leads to induction of

stalk-cell fate in neighbouring cells by lateral inhibition. In stalk cells, Notch signalling and

vegfr1 expression are increased, while vegfr2 and vegfr3 are downregulated [55, 56].

Besides this molecular distinction (VEGF vs. Notch signalling), tip and stalk cells can be

morphologically and functionally distinguished. Tip cells extend protruding lamellipodia and

filopodia to sense migrational guidance cues, and are highly motile [57, 58], while stalk cells

are proliferative lumenized trailing cells which serve a mechanically stabilizing function [57, 59].

After reaching the dorsal surface of the neural tube, ISVs grow anterio-posteriorly,

anastomose with neighbouring ISVs, and fuse to form the dorsal longitudinal anastomotic

vessel (DLAV) [60].

Cranial vasculature.

The primitive cranial architecture is established during early vasculogenesis [61].

The origin of vascular precursors from the LPM was shown to be based on the relative

anatomical position of cells. Cells for future cranial vessels and the myeloid lineage

(monocytes) are derived from the anterior LPM, while cells for axial vessels and the erythroid

lineage derive from the posterior LPM [62]. This leads to the establishment of two organizing

centres, namely the rostral organizing centre (ROC) and midbrain organizing centre (MOC),

which are joined by posterior migration from the ROC and anterior migration from MOC to

form the primordial midbrain channel (PMBC) and primitive internal carotid artery (PICA) at

about 24hpf [63].

After the initially separate formation of the cranial and spinal vasculature the two vascular

beds are joined via a connection of the DA (trunk) and primordial hindbrain channel (PHBC)

(cranial) via the first pair of ISVs at around 2days post fertilization (dpf) [64].

The cranial and trunk vasculature show conservation of basic signalling pathways, but the

molecular interpretation of signals is highly complex and context-dependent [65, 66, 67].

Moreover, recent findings suggest that there are substantial differences between the cranial

and trunk vasculature [1, 68], making it particularly interesting to study these two vascular

beds in the same organism.
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1.2.2 Limitations of zebrafish as pre-clinical model

Whole genome studies showed that zebrafish and humans share about 70% genomic

similarity [69]. However, zebrafish have undergone a partial genome duplication [70], which

can complicate the investigation of certain genes by functional redundancy of paralogous

genes.

Anatomically, there are obvious differences between zebrafish and human, such as the

difference in the respiratory system. Vascular-specific this is exemplified by the following:

Firstly, zebrafish do not have an anatomical homologue to the human Circle of Willis, which is

the central vascular bed for cranial blood supply in humans [31]. Secondly, blood flow

modelling in embryonic zebrafish embryos has so far not received much attention, but it is

becoming increasingly clear that differences exist with regard to hematocrit, vascular scale,

and flow regimes [71, 72].

Lastly, some experimental limitations of zebrafish still exist. For example, the development

and availability of antibodies for immunohistochemistry is still less well adapted than in other

pre-clinical models, such as mice [14].

Thus, it has to be acknowledged that one model organism can never fulfil all needs in pre-

clinical research, but that complementary integration across model organisms and disciplines

is required to understand cardiovascular development and disease.

1.2.3 Visualization of the vascular system in zebrafish

The vasculature can be visualized using microangiography in which contrast medium is injected

to visualize the blood, and therefore perfused vessels [73]. However, this is labour-intensive as

well as prone to signal-loss due to clearance of injected contrast. Hence, different transgenic

reporter lines, which express fluorescent proteins in vascular-specific cell types, have become

the gold standard for vessel visualization (Fig. 1.3A) [74].

Vascular reporter lines visualize endothelial cells (ECs) which outline the vascular lumen,

leading to a cross-sectional double-peak intensity distribution in perfused vessels, while small

or unperfused vessels show a single-peak distribution. In microangiography and Magnetic

Resonance Imaging (MRI), the cross-sectional intensity distribution is typically a Gaussian

single-peak (Fig. 1.3B) [5]. Therefore, when working with transgenic lines, both double- and

single-peak intensity distributions have to be considered equally.

In the last decades, fluorescence microscopy techniques have developed towards higher

resolution, increased tissue penetration depth, and a reduction of image acquisition artefacts

(Fig. 1.3C). This is typified by light-sheet fluorescence microscopy (LSFM) in which the
10
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illumination (excitation) and detection (emission) paths are uncoupled. A sheet of light is

detected orthogonally (Fig. 1.2B) [75] so that only a thin specimen section is illuminated, while

the whole plane is detected. Thus, allowing rapid acquisition with high tissue penetration,

minimal photobleaching, and phototoxicity [76, 77]. LSFM also has the advantage that sample

embedding in an agarose block enables free rotation during acquisition (Fig. 1.2C), while the

sample chamber setup allows maintenance of physiological conditions and application of

drugs/anaesthetic. Together, LSFM allows image acquisition at a greater anatomical depth,

and imaging duration of hours-to-days [76, 78, 79].

Figure 1.2: Principle and sample embedding in LSFM. (A) In confocal microscopy excitation
(illumination) and emission (detection) share the same lightpath. (B) Lightpaths are
uncoupled in LSFM, allowing for optical sectioning with higher penetration depth
and reduced photobleaching. (C) LSFM sample embedding in an agarose block
allows free 360° sample rotation for image acquisition.

While quantitative image analysis is widely applied in the medical field, it has received less

attention in zebrafish vascular studies. If image analysis approaches applied in the medical

field are to be adapted for LSFM in zebrafish, two major aspects have to be considered. First,

zebrafish embryonic vessels are at the scale of about 10-20µm [80, 81], whereas the diameter

of human vessels range from 2.5cm arteries, 2-9mm veins, to a few µm for capillaries [82].

Secondly, voxel size in LSFM is around 0.33x0.33x0.5µm with a field-of-view (FOV) of about

1920x1920x500 voxels, which allows the detection of about 30 voxels across a vessel and the

detection of small scale details. In standard clinical MRI, the voxel size is about 1x1x1mm,

resulting in a lower data load, but also the likelihood of missing smaller vessels during image
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acquisition due to resolution limitations.

Figure 1.3: (A) Vascular fluorescent transgenic reporter lines visualize endothelial cells which
outline the vascular lumen. (B) Cross-sectional intensity distribution in perfused
vessels in transgenic reporter lines show a double-peak. In small/unperfused
vessels and microangiography, intensity distribution is typically single-peak
Gaussian. (C) Image quality in fluorescence microscopy can be influenced by
artefacts such as noise, background/autofluorescence, point spread function (PSF),
uneven excitation, or acquisition artefacts (i.e. shadowing or stripe artefacts; A and
B reproduced with permission from [5] under licence 4415821037994).

1.3 Descriptive modelling of the cardiovascular system in zebrafish

To produce a model of the zebrafish cardiovascular system, an interdisciplinary approach is

needed to combine experimental and computational findings. One challenge of interdisciplinary

work is a lack of common semantics between disciplines (for example the word "model" means

something different in biology, cardiology, mathematics, or to the public) [83].
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Figure 1.4: Common mathematical shape descriptors can be applied to describe the local and
global vascular architecture.

Here, the term modelling is used to describe a set of parameters that characterise the

vascular architecture and its changes during development, disease, and after application of

drugs. This phenotypic outread is usually considered to allow the understanding of the

underlying biological processes. Hence, describing the vascular architecture helps to

understand, define, and visualize biological processes in zebrafish as a pre-clinical model in

cardiovascular research.

Parameters that describe the vascular anatomy To describe the vascular topology (global

features) and geometry (local features), common mathematical descriptors can be utilized (Fig.

1.4).

Volume: Enclosed vascular space, which can be computationally derived following voxel-

classification as vascular and non-vascular, called segmentation. Density: Ratio of local

vascular coverage to total volume of interest. Segment length: Length of individual vessels.

Computationally defined as the length between branching points or between one branching

point and a vascular end point. Diameter: Vascular local thickness given by the distance from

local centreline (or vessel radius midpoint) to corresponding vessel walls. Surface area:

Vascular edges or walls, being the interface between the vessel and surrounding tissue.

Branching points: Point where vessel splits up into two (bifurcation) or more daughter

branches. The relationship between individual network components can be described using

branching angles or hierarchical classification. End points: Anatomical local vascular

termination. Curvature: Measure of local vascular bending, or deviation from straight line.
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1.3.1 Current approaches to vascular quantification

With the advent of new experimental techniques and image acquisition methods, image

analysis became beyond the scope of commercially available software. Thus, a variety of

analytical approaches have been developed to address the needs of image processing in the

research fields of development, toxicology, or phenotype assessment via the application of

recognition, tracking, or behavioural analysis [84].

Publications which address vascular quantification in vivo in a 3D context are discussed

here (further reviews [85, 86, 87]). Papers discussed here use a variety of different imaging

modalities, model organisms, analytical methodologies and quantitative approaches; see Fig.

1.1. Studies which solely describe image acquisition, pre-processing, segmentation, vascular

reconstruction, or redundant methodological application were excluded from in-depth

discussion.

First, methodologies that enhance images prior to analysis which can be applied to increase

image quality by suppressing non-vascular and enhancing vascular information will be briefly

listed. Subsequently, publications are discussed which derive object centrelines by object

thinning as a foundation for quantitative vessel measurements. Iterative thinning to derive

centrelines of objects was the first approach to be described (grassfire transform, [88, 89]) and

only requires limited a priori knowledge. Thus, myriads of approaches and algorithms based

on object thinning have been described previously [90, 91, 92, 93, 94].

Next, approaches based on mathematical modelling to obtain quantitative parameters are

discussed. In this section, methods are classified into those based on the following: (i)

techniques based on the Hessian matrix, (ii) energy regularization and evolution, and (iii)

mathematical shapes. These methods are computationally more demanding and require

optimized parameter settings with a priori knowledge. Thus, their application is usually limited

to specific biological applications and refinement is more in-depth.

In recent years machine learning for automated image classification and quantification came

into scientific focus, but will only briefly be discussed.

Lastly, current approaches for zebrafish vascular quantification will be discussed.

Vessel enhancement

Vessel enhancement, prior to vessel extraction, can be applied as a pre-processing step to

attempt to increase vascular information, while reducing non-informative image noise or

background. Approaches for vascular enhancement can be classified based on their objective,

imaging modality, and mathematical foundation, including the use of: (i) image filtering [95],
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Table 1.1: This table summarises the characteristics of each study discussed here, according
to imaging modality, investigated species, and vascular bed. Also, it indicates
whether image pre-processing, segmentation, visualization or quantification were
performed (grey - applicable/performed; white - not performed). “Growth metric”
indicates whether developmental vascular changes were studied, while “biological
comparison” depicts if normal and abnormal (eg. stenosis, ischemia, or mutation)
vasculature phenotypes were investigated. Abbreviations: AC: artificial chamber,
CM: Confocal Microscopy, CT: Computer Tomography, H: human, M: mouse, MA:
microangiography, MO: monkey, MRA: Magnetic Resonance Angiography, R: rat, P:
phantom, SC: stem cells, U: unspecified, V: vasculature, Z: zebrafish;
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(ii) derivatives [96], (iii) Hessian matrix [97, 98, 99, 100, 101], (iv) point-spread-function

deconvolution [102], (v) mathematical morphology [103, 104], (vi) frequency [105, 106], (vii)

anisotropic diffusion [107, 108], (viii) flux [109], and (iix) structure tensor [110, 111] (reviewed

in [86]).

Segmentation

Subsequent to vessel enhancement, image segmentation is applied to distinguish vascular

from non-vascular information. Detailed coverage of the myriad of segmentation approaches is

beyond the scope of this thesis and has been extensively described [85, 112, 113, 114].

Quantitative characterisation based on iterative thinning to extract vascular centrelines

Centrelines are an abstraction and simplification to describe the geometry of objects (vs.

implicit volume representation of shape) [115]. They can be used, together with vascular wall

information, to quantify vessel properties such as diameter, length, curvature and branching

points.

Iterative thinning was the first approach to be described to extract vascular centrelines

(grassfire transform, [88, 89]). Hence, many centreline approaches and algorithms have been

developed based on thinning of binarized objects to extract centrelines after object

segmentation [90, 91, 92, 93, 94].

Generally, iterative thinning is based on the removal of so called simple points at the object

border [116, 117, 118, 119, 120] (object border voxel definition: [115]), similar to peeling off

layer after layer (Fig. 1.5A). According to the centreline requirements proposed in [121], the

removal of simple points shall not interfere with the overall object geometry or topology.

Thinness is achieved by the stopping criterium of one-voxel-thickness.

It has been shown previously that thinning of 3D tubular objects (which a vessel can be

locally considered to be) is applicable [92, 122], whereas special conditions have to be met for

the extraction, representation, and quantification of true object cavities (such as vascular loops)

[123, 124].

Application of object thinning for vascular centreline extraction prior to vascular

quantification has been applied in the following studies: To globally quantify the influence of

ischemia in the rodent hindlimb vasculature from in vivo Magnetic Resonance

Angiography (MRA) and micro-Computed Tomography (CT) images Marks et al. [125]

extended existing Fiji Plugins for object skeletonization and analysis [91, 126, 127].

Additionally, a semi-automatic Plugin was established to measure the total vascular volume.
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This method is applicable to measure substantial differences between samples, but manual

annotation is needed to investigate individual vessels, making it unsuitable for in-depth

analysis - especially in complex vascular beds. Also, as MRA and micro-CT were used as

image acquisition modalities, pre-processing and segmentation would need to be altered for

other modalities and vascular beds to allow application of this method.

Kelch et al. [128] investigated the vasculature in murine lymph nodes after visualization with

immunohistochemistry and the use of ’Extended Volume Imaging System’ (EVIS) [129], which

employs automatic tissue sectioning during fluorescence microscopy image acquisition. After

pre-processing, including the suppression of background and noise as well as 3D

reconstruction, image binarization was achieved by local thresholding, followed by a

custom-made hole-filling step to overcome structural artefacts. Centrelines were extracted,

based on tubular vessel modelling, with subsequent post-processing steps to remove spurious

branches by length-to-diameter-thresholding. Delivered quantification encompassed individual

vessel diameter, number, branching points, and distance information, as well as overall

network length, volume and density. Although this proposed workflow delivered an in-depth

quantification of the lymph node vasculature in mice, the use of three commercial and two

creative-commons software tools is a major drawback of this analysis pipeline. Nevertheless,

the implementation of local adaptive thresholding to overcome local uneven vessel illumination

as well as the proposed hole-filling approach prior to volume measurements seem to be a

reasonable approach and generalizable to zebrafish vascular quantification. Also, the

suggested length-to-diameter thresholding for pruning of spurious branches may well be

useful in the zebrafish cranial vasculature, although it would need testing and optimization.

In Peeters et al. [130], a quantification approach for the rat liver vasculature was presented.

CT (after corrosion casting) and confocal microscopy images (immunohistochemistry) were

analysed. Image pre-processing of confocal microscopy data was performed with Fiji [127],

including depth-intensity correction, bleaching correction, denoising, PSF deconvolution [131],

and local contrast enhancement [132]. Quantification was conducted with the custom-made

software DeLiver which utilized graph theory [133, 134] after thinning of binarized objects, to

obtain segment radius, curvature, porosity and length. The use of graph theory to

hierarchically describe and analyse the vasculature provided an elegant way to describing the

vascular network. However, due to the use of LSFM, the need for depth-intensity correction

and bleaching seemed dispensable. Unfortunately, as the DeLiver code for quantification is

not readily available, the exact steps of this analysis are not reproducible.

Milde et al. [135] studied developmental remodelling and maturation in embryonic and adult
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murine retinas. Visualization of vascular endothelium was by multiphoton image acquisition

after isolectin staining. After image pre-processing, including background and noise removal,

local adaptive thresholding was used for segmentation. Based on manual vessel annotation

a custom-made Matlab program was used to quantify vascular area, density, circumference,

and intersprout distance. Topology measurements, such as vessel length or diameter, were

not conducted, but this study contributed to the understanding of vasculature remodelling and

maturation processes, presenting an intuitive visualization and representation approach using

area, perimeter and intervascular spaces [136]. Such representations are of particular interest

for the investigation and visualization of individual vessels during development or disease.

To increase the geometry and topology conservation during iterative 3D thinning, Tan et al.

[137] presented an advanced method of object thinning. Data were obtained from the mouse

liver via synchrotron-radiation-based micro-tomography (SR-µCT) [138]. After 3D binarization,

vessel root and endpoints were detected and fixed by automatic voxel coding. Thus, object

thinning [91] was solely applied to vascular segments, leading to increased topology

preservation. This study is of particular interest due to it’s 3D implementation, as most thinning

approaches are based on 2D mathematical constraints due to implementation and definition

constraints. However, the zebrafish vasculature is considered to be an enclosed vascular

circulatory system. Therefore, it is unclear whether vessel root and endpoint detection would

be needed to overcome artificial vascular pruning, which can be introduced by thinning.

Summary and discussion The majority of centreline extraction approaches, based on

iterative thinning, are reliant on 2D mathematical constraints, whilst 3D constraints are

generally considered to be more suitable to preserve the original object geometry and

structure [139].

Moreover, iterative thinning to obtain vascular centrelines was previously shown to be

sensitive to small surface heterogeneities [140]. Thus, spurious branches may be produced,

which can lead to false quantification of branching points, number of segments, length, or

diameter.

Therefore, post-processing techniques may need to be implemented, such as pruning, to

derive accurate centrelines after thinning. Pruning can be achieved, for example by length-

thresholding (as suggested in [128]), angle-constraints, length-surface-ratios [141, 142, 143,

144], or surface smoothing prior to iterative thinning may decrease the amount of spurious

branches [145].

In conclusion, object thinning can be applied to a variety of objects without a priori

knowledge and should be suitable for use on the zebrafish cranial vasculature, but detailed
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visual inspection is likely to be necessary to evaluate applicability and accuracy as vessel

segment shortening or spurious branch production may occur. If required, an appropriate

method of spurious branch removal would need to be developed.

Quantitative characterisation based on mathematical modelling

Methods for quantifying the vascular architecture described in this section use mathematical

constraints with the aim of delivering comprehensive and robust results. Mathematical

modelling is often very sophisticated with regard to model development, initialization, and

refinement, but a priori knowledge is needed for accurate parameter selection. Moreover,

modelling approaches tend to be computationally more demanding and require customization

as well as optimization for specific applications.

Techniques based on the Hessian matrix The local structure of images can be described

by first- and second-order partial derivatives of image intensities [146]. The 3D composition of

these can be arranged in matrix structures such as the Jacobian and Hessian respectively.

Within these matrices the local orientation of image gradients can be described via

eigenvectors (e1, e2, e3); and their respective size (magnitude) via eigenvalues (λ1, λ2, λ3).

Utilizing this vectorial information allows the vasculature to be described (Fig. 1.5B) and

enhanced locally by utilization of geometric descriptors, such as blobs, tubes, lines, or plates

[99, 101, 147]. Integration of vessels of different size is generally achieved by inclusion of the

maximum response of multiscale filtering, based on scale space theory [148, 149, 150].

Using eigenvectors and eigenvalues, a model for the human carotid aorta in 3D, visualized

by MRA, was established by Frangi et al. [151, 152]. After manual initialization of vessel walls,

centrelines were derived from spline-fitting using all three eigenvectors and eigenvalues of the

Hessian matrix [153, 154]. Vessel walls were fitted based on the derived centreline; while

vessel diameters were estimated via local full width 10% maximum (FWTM) measurements of

intensity-distributions of vessel cross-sections. The vascular enhancement filter, based on

[99], was optimized for MRI images. Hence, a Gaussian intensity distribution across vessels is

assumed. As described in section 1.2.3., the cross-vessel intensity distribution in zebrafish

vascular transgenic reporter lines often resembles a double-peak [5], so it is unclear whether

the proposed enhancement method will enhance vascular edges or the whole vessel over

background. The use of three eigenvectors and three parameters suggest that this approach

would need in-depth assessment and parameter optimization to be applicable to zebrafish

data. Furthermore, the use of spline fitting for the vascular centreline and walls can lead to
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over- or under-fitting, especially in high-curvature regions and at branching points.

Techniques based on energy regularization and evolution To extract features or objects

of interest, energy regularization of deformable curves can be used. This was originally

proposed by the use of snakes as deformable contours, which would be deformed based on

two energy components, namely an internal and external component, leading to an energy

minimization problem solved by an iterative fitting approach [154, 155, 156, 157] (Fig. 1.5C).

The internal force is considered to be an inflating balloon force which expands more strongly

in homogeneous regions to ensure continuity and smoothness. The external energy is mainly

driven by image intrinsic properties, such as gradients and intensity, to steer the deformable

contour towards regions of interest by counterbalancing the internal energy of continuous

inflation.

Rytlewski et al. [158] published an analysis pipeline to quantify vessels in two different in

vitro angiogenesis assays, visualized with confocal fluorescent microscopy. After

pre-processing and vessel enhancement, based on the maximum response of eigenvectors

and eigenvalues [99, 159], segmentation was performed via fast marching level set evolution

starting from manually placed seeds [160, 161, 162]. Vascular centreline endpoints were,

again, chosen manually and 3D Voronoi diagram implementation was used to derive

centrelines (Delaunay’s tesselation) [160, 161, 163]. Quantification of vessel volume, length,

and branching degree were performed using Matlab. Despite extensive documentation it is not

clear whether this approach would be applicable to other data types. Three different software

kits (Fiji, VTK, and Matlab) were used, hindering the dissemination of the approach to

biologists not fluent with these analysis programmes. It should also be noted that the authors

mentioned the occurrence of a global pruning error, but gave no further details. Thus, it can

not be excluded that global underestimations occurred.

Hernandez-Hoyos et al. [164, 165] used a hybrid approach of energy regularization and

geometric features in self-developed software, Magnetic Resonance Angiography Computer

Assisted Analysis (MARACAS), for stenosis quantification. Centrelines were extracted based

on manual seeding and local ray casting from vessel surfaces. Based on this, vessel walls were

initialized via local tubular geometry and refined by deformable active contours (Fig. 1.5C)

[164, 166]. Quantitative parameters measured included vessel diameter, perimeter and area,

with a special focus on stenosis. As this method was developed for MRA data, centreline

extraction relied on the cross-section intensity peak being in the centre of vessels. For the

reasons described previously, this would not always be true for zebrafish data. Similarly, ray

casting would need to be optimized to fit the double-peak intensity distribution with an inverse
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intensity in comparison to MRA. Moreover, the study reported issues with noise and bifurcation

sensitivity.

The Seeded Region Growing (SRG) [167] method starts from seed points (manually or

automatically placed) and relies on an iterative voxel-inclusion to distinguish between vascular

and non-vascular voxels (Fig. 1.5D). The algorithms can be categorized as greedy, and mainly

rely on inclusion criteria based on voxel-connectedness and intensity value similarity. To avoid

leakage or false-positive voxel inclusion, more stringent inclusion criteria to separate fore- and

background can be applied [86]. Also, the actual seeding, voxel-labelling, and voxel-wise

growing procedure can be refined to yield higher accuracy [168].

The level set approach [169, 170] is based on the principle of region growing, but utilizes

partial differential equations (PDE) for the propagation of a wave front or boundary, rather than

single-voxel decisions. Hence, locally more homogeneous results can be achieved.

Kurugol et al. [171] performed vascular and calcification quantification in human aorta CT

images. Vessel walls were extracted after manual anatomical landmark selection and template

application (’aorta tubular candy cane shape’) via circularity similarity measures (Hough

transform; [172]). Following, fast marching level set evolution was applied for vessel wall

refinement [169, 170, 173]. Vascular centrelines were derived via parametrized iterative

thinning, and subsequent spline fitting, as well as interpolation at high curvature regions

[154, 174, 175]. Calcification plaques were extracted via intensity-based thresholding and

returned together with vessel radius, curvature and length measurements. This method was

specifically tailored for the analysis of the human carotid aorta, thus template fitting and

refinement are not easily applicable to other vascular beds; but the concept of similarity

measures to extract vascular walls, as well as the parametrized thinning with subsequent

spline fitting could probably be generalized. It must be mentioned that the presented method

was applied to an individual vessel segment lumen, meaning application to more

complex/bigger vascular beds is likely to be more challenging.

Manniesing et al. [108] studied the human Circle of Willis, visualized by Computed

Tomography Angiography (CTA). First, bone masking was performed by subtraction of a rigidly

registered additional low-dose image. Level set evolution in a user defined volume of

interest (VOI), optimized via previous training of parameters, was used to segment the

vasculature based on image intensity. Local vessel diameters were extracted via 2D iterative

thinning [93]. The authors stated that the acquisition of low-dose images, to perform bone

masking, came with the downside of additional patient radiation as well as the possibility of

inaccuracies occurring during rigid registration for bone masking. Also, the local diameter
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measurement was performed based on 2D constraints, which does not consider requirements

needed for 3D centreline extraction. Lastly, no further details were given about the handling of

vessel diameter measurement in vessels at an oblique angle in images. As each step (bone

masking, speed function, and level set) was optimized for CTA images, it is unlikely that this

method could be directly translated to fluorescence microscopy images of the zebrafish

vasculature.

An advanced approach, namely via Artificial Life (AL), in the form of unguided 3D deformable

bodies, was developed by McIntosh et al. [176] for the analysis of MRA images of the human

Circle of Willis and phantom CTA data of nylon tubes in silicon gel. After manual initialization,

front propagation was based on local tubular geometry extracted by eigenvalues [99, 149].

Front propagation was driven on AL layers, including cognition, behaviour, locomotion and

geometry, which are fed by input of sensory modules. Quantification included vessel radius,

branching points, volume, branch hierarchy, and branching angles. Considering the complexity

of the method, it can be assumed that extensive a priori knowledge is needed to transfer this

AL approach to images from fluorescent transgenic reporter lines. Moreover, the method was

applied to vascular trees, which implies that an additional sensory layer for the detection of

loops or vascular plexi would be required. As the method was optimized for vessels with

Gaussian intensity distribution, the double-peak distribution found in transgenic lines would

require additional pre-processing to achieve a single-peak intensity.

Techniques utilizing mathematical geometry The methods described in this section all

section utilized mathematical geometry descriptors to model and/or quantify the vasculature.

Most commonly vessels are assumed to be locally tube-, cylinder-, line-, or circle-like; meaning

the vessel diameter can be quantified by a local radius measurement.

Shingrani et al. [177] studied vessel diameter changes upon hypoxia in images of rat lungs

acquired with CT. Image segmentation, based on intensity-based binarization, was followed

by 3D hole filling and 3D object thinning to obtain vascular centrelines [139]. Centreline

connectivity was tested prior to analyis to remove unconnected components. This was

followed by hierarchical ordering and indexing of branches. Diameter quantification was done

after calibration using a tube with known diameter filled with contrast medium by a

combination of the full width half maximum (FWHM) and the brightness area product (BAP)

[178]. Fitting was performed using a modified Gaussian function with non-linear least squares

fitting [179]. Oblique vessels were excluded from diameter measurements by inclusion of a

circularity threshold, which also ensured also that diameters were not estimated at branching

point regions, which displayed an elliptical circumference. This paper delivered excellent
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documentation, validation against an operator-guided technique, and future plans for image

registration. As this method was optimized for CT images, again optimization for our data

would be required, but the general theoretical principle (such as circularity threshold or branch

indexing) seem reasonable and generalizable.

Lugo-Hernandez et al. [180] investigated the vasculature in locally ischemic mouse brains

after tissue clearing [181] in images acquired with LSFM [75]. Pre-processing of images, to

reduce noise and background, was performed using ImageJ software (National Institutes of

Health, Bethesda, MD, USA). Vessel enhancement, based on eigenvector and eigenvalues [99]

was done using Vascular Modelling ToolKit (VMTK) software [160]. Quantification of vessel

diameter, network length and volume were conducted using the commercial software Imaris

(Imaris, Bitplane AG, Zurich; module 3D filament tracer). No specifications about analysis

steps towards segmentation or vessel quantification were given, thus comprehensibility and

reproducibility is fairly limited.

Barber et al. [182] published the Trace3D software, which was used to quantify the

vasculature in rat and mice back skin fold vessels, visualized via multiphoton acquisition after

tracer injection [183]. After manual vessel selection in the XY-direction, the software

performed semi-automatic tracking in the Z-direction. Based on vascular wall extraction via

Sobel edge detection [184], vessel centrelines were determined as the centre of mass of a

fitted circularity measure (Hough transform; [172]). Further specifications of additional

software features, such as PSF deconvolution, or software support were not provided.

Generally, manual vessel tracking in XY provides a very laborious approach and similarity

measurements, based on circularity, may be falsified in oblique vessels. Additionally, the

extraction of centre of mass in XY may lead to unsmooth or unconnected centrelines.

Risser et al. [185] quantified the vasculature from subregions of primate brains, visualized

in biopsies of neonatal and adult monkey specimens. After image segmentation (unspecified

method), vessel centrelines were obtained via 3D iterative thinning [92]. Vessel diameters

were approximated via spheres (sphere centre located at centreline candidates, Fig. 1.5E)

extending 10% over the vascular edge. Here, the authors stated that the 10% threshold was

empirically determined, but did not give any further specifications. The vascular surface was

derived by surface summation of fitted cylinders. No specification about branching point criteria

or vessel length quantification was given. Moreover, shrinkage artefacts, due to tissue fixation,

were generally corrected by a factor of 1.4, which may lead to global data falsifications.

Summary and discussion Methods for initialization, refinement, training, as well as the

iterations needed for sufficient quantification and modelling were found to be highly variable in
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the published literature. Moreover, most vascular structures analysed displayed a simpler

architecture in comparison to the zebrafish vasculature, which shows a high degree of

complexity due to regions of high curvature and branching point density.

Vessel segment centreline smoothing via spline fitting is a commonly used approach within

the literature and may be more accurate than purely voxel-based approaches, as voxel-based

approaches could be affected by pixelation or staircasing artefacts [154, 186].

The majority of vascular modelling approaches performed to-date have focused on vascular

subregions and were customized to specific applications based on the respective imaging

modality, vessel architecture, and analytical requirements. Thus, a direct translation of

published approaches to the quantification of the embryonic zebrafish vasculature seems

unlikely. Nevertheless, the described principles could form the basis for an image analysis

pipeline optimized for the requirements of images from the zebrafish vasculature obtained

from transgenic reporter lines with LSFM.

1.3.2 Machine Learning

Although machine learning has become a widely applied approach to segment and quantify

images [187, 188, 189, 190], few publications consider generalizability of the proposed

approach (eg. acquisition with machines from different manufacturers; imaging modalities;

application to other diseases). Similarly, often output validation and in-depth quantification are

lacking. Machine learning approaches for vascular segmentation are especially challenging

due to complex vascular topology and the establishment of training data being very

labour-intensive.

In 2019, a machine learning approach for data of the cranial vasculature in mice was

described [191]. Although data were acquired after immunohistochemistry rather than in vivo,

data were acquired with LSFM. Machine learning was used for vascular segmentation and the

vascular topology subsequently quantified.

1.3.3 3D vasculature quantification in embryonic zebrafish

3D quantification and modelling of the embryonic zebrafish trunk vasculature in

microangiography images was addressed by Feng et al. [192, 193, 194, 195]. In the

relational-tubular deformable model (ReTu) [192] and the statistical assembled model for

tubular structureness (Samtus) [194], energy deformations based on active contours were

used to model a subregion of the trunk vasculature in embryonic zebrafish [156]. Whilst both

models relied on the assumption of tubular structures for model initialization, Samtus included

24



3D quantification of the developing zebrafish cranial vasculature

model-training to reach higher accuracy. Additionally, Feng et al. developed Zebvars software

[193] to analyse images from the embryonic trunk vasculature via edge tracking and graph

representations [196, 197]. As all of these proposed models were applied on

microangiography data, it is unclear whether these would be applicable to data from

transgenic reporter lines. Also, the trunk vasculature consists of fewer and less complex

vessels than the cranial vasculature, and regions of high curvature may be prone to errors

during active contour fitting.

In Tam et al. [198], the role of two death receptors (DR6/TNFRSF21 and TROY/TNFRSF19)

in dorsal brain vasculature development and brain-blood-barrier (BBB) formation was studied

in mice with micro-CT, as well as in zebrafish with fluorescence confocal microscopy

(transgenic reporter line, microangiography, and antibody stainings). Quantification in 3dpf

zebrafish focused on the left dorsal cranial vasculature innervating the hindbrain (central

arteries (CtAs)). Measurements of vascular density and diameter were performed after

deconvolution using Imaris software. As no further specification was given about

pre-processing steps or parameter settings, replication of this quantification method is not

possible. Moreover, reported density measurements were normalized to an approximated

local brain volume (assumption of cubic volume, rather than actual brain volume), suggesting

biased measurement outcomes. Regarding 3D rendering and volume measurements, the

authors mentioned the need for manual refinement, but, again, did not specify further details.

Lastly, it is not clear whether all quantification was performed in the left anatomical half of the

vasculature only, and which anatomical position was chosen to be the left-right discriminator.

3D in vivo quantification of the embryonic zebrafish cerebral vasculature development in

images acquired with confocal microscopy in transgenic lines was demonstrated by Chen et

al. [80]. Vessel length, branching hierarchy [133], existence of loops, and vascular pruning

events were quantified in the cranial vasculature by the use of commercial software

Neurolucida. As no further description about image pre-processing, extraction of vascular

centrelines, branching point definition, or diameter estimation (expansion of spheres) was

given, an in-depth assessment of this method is not possible. Also, testing of the suggested

workflow by Chen et al. [80] was not possible due to Neurolucida licencing requirements and

dataset differences. Methodologically, segment length was measured as minimum Euclidean

distance between endpoints, rather than actual length, which may lead to an underestimation

of actual vascular segment length in vessels with high curvature. Lastly, the analysis

presented in Chen et al. [80] focused only on two vessel segments in the anterior cranial

vascular bed (middle mesencephalic central artery (MMCtA) and posterior mesencephalic
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central artery (PMCtA)). This limitation to two segments is likely to be caused by limitations in

tissue penetration depth using confocal microscopy, which can be overcome in LSFM (section

1.2.3).

In 2019 two new methods to segment the zebrafish vasculature were suggested. Zhang et

al. [199] presented a machine learning based approach to segment the trunk vasculature (dual

ResUNet), but poor writing and documentation made it unclear whether the segmentation was

performed in 3D or in maximum intensity projections (MIPs) in 3D.

Daetwyler et al. [200] presented cerebral vascular segmentation using voxel feature maps

and thresholding using the triangle algorithm. To establish voxel feature maps in the

transgenic Tg(kdrl:eGFP) a second transgenic line was used to visualize luminal signal,

namely Tg(gata1:dsRed) labeling RBCs. As the authors themselves state, not all vessels are

perfused at the examined time-points and Tg(gata1:dsRed) only labels RBCs, not the whole

blood volume. Thus, using a double-transgenic for segmentation was not very intuitive.

Additionally, documentation of the analysis workflow is incomplete.

Unfortunately, neither method included any validation of the proposed segmentation or

further quantification of vascular features, so it is difficult to determine how robust or reliable

the segmentations were. Interestingly, Daetwyler et al. was the first publication to suggest

using vascular segmentation to examine vascular left-right symmetry.

Summary and discussion The above presented methods all addressed 3D quantification of

the zebrafish vasculature, but details of approaches and validation are scarce.

This lack of a previously developed and readily available analysis approach to quantify the

zebrafish cerebral vasculature is likely to be caused by the following:

(i) state-of-the-art microscopy such as LSFM is a relatively new technique, and became

commercially available only in recent years [201, 202], and (ii) while zebrafish are now an

established pre-clinical model in cardiovascular development [14, 21], they were first proposed

as model organism for haematopoiesis [33] and angiogenesis [203] less than 20 years ago.

Together, it becomes clear that none of the current studies addressed an in-depth

assessment of data properties or investigated the quality and robustness of the proposed

approach. Generalization to bigger vascular beds or other transgenic lines was never studied;

limiting applicability and dissemination of the suggested methods. The overall lack of

documentation makes it impossible to reproduce most of these methods and it is unclear what

the computational limitations/requirements of these methods are.

In conclusion, no segmentation and quantification method applicable to experimental data for

the zebrafish vasculature exists. Objective quantification of vascular topology and its changes
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Figure 1.5: Methods to derive vascular centrelines vary widely in their underlying objectives.
(A) Iterative thinning needs no a priori knowledge, but can be sensitive to
surface inhomogeneities [88, 91, 140]. (B) Eigenvectors and eigenvalues are
widely applied in applications of vascular enhancement as well as modelling
[99, 151, 152]. (C,D) Modelling based on energy deformation or region growing
require a priori knowledge and parametrization in order to deliver accurate results.
(E) Mathematical components, such as spheres or tubes can be used to locally
describe vascular topology as well as diameter measurements or centreline
predictions. (F) Intensity ridges or valleys in vessels can be used to extract the
vascular centreline and wall candidates.

in development and disease are needed. Especially examinations of inter-sample similarity and

variability by registration and intra-sample left-right symmetry have lacked attention so far.

1.3.4 Discussion of vasculature quantification

With the emergence of full 3D data sets and the goal of establishing 3D image analysis, not just

data load, but also the complexity in computational requirements, changed dramatically [204].

While some sophisticated vascular quantification methodologies have been implemented,

most papers lack sufficient documentation about the steps taken to assess data properties,

segmentation, and centreline connectedness/characteristics. Also, quantification robustness

and inter-sample comparisons were incompletely addressed. This is likely to be caused by the

fact that analysis gold-standards are lacking for pre-clinical models, and most validation is still

reliant on observer-based assessments.

Developed image analysis approaches use either data sets from post-mortem or in vivo

acquisitions. The first often requires tissue preservation and clearance techniques, which may

lead to tissue distortion [205, 206, 207], while the latter can be subject to sample-induced

motion artefacts [208, 209].
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Most analytical approaches have been developed for specific applications. Thus, it is not

clear whether these would be transferable to other vascular beds, distinct imaging modalities,

or model organisms. Similarly, most quantitative approaches focused on data acquired from

a single time-point and did not consider or evaluate vascular pattern changes over time or

biological inter-sample heterogeneity [210, 211].

Based on the knowledge gained from the literature, the 3D quantification of zebrafish

vasculature in images obtained from transgenic reporter lines with LSFM has to take the

following into account:

(i) Transgenic vascular endothelial reporter lines display a distinctive cross-sectional

intensity profile in comparison to imaging modalities such as microangiography (Fig. 1.3A) [5].

Additionally, investigations of vessels at various scales and data from different transgenic

reporter line constructs have received less attention so far.

(ii) Visualization with fluorescence microscopy can cause image acquisition artefacts such

as point-spread-function, noise, autofluorescence, scattering, bleaching, etc. (Fig. 1.3B) [212,

213, 214].

(iii) The cerebral vascular architecture in zebrafish displays a high complexity, due to

vascular loops, pruning, and remodelling, as well as potential scale variations within and

between organisms [215, 216, 217].

(iv) The rapid development of the embryonic vascular system in zebrafish is likely to require a

fine-meshed temporal image acquisition sampling rate to fully describe remodelling processes.

Therefore, it is likely that a bespoke and novel image analysis workflow will need to be

implemented to provide reliable and reproducible quantitative insights into the zebrafish cranial

vasculature.

1.4 Endothelial cell membrane behaviours

ECs and other cells are known to form a variety of membrane protrusions [218], including and

lamellipodia, filopodia [219, 220], as well as spherical protrusions such as apoptotic bodies

(1-4 µm diameter), microvesicles (0.15-1 µm diameter), and exosomes (40-150nm diameter)

[221, 222].

Of special interest are membrane blebs and the cell volume changes induced by blebbing,

which play a role in cell migration, polarization, as well as apoptosis [223, 224, 225]. Cell

blebs are typically formed by individual cells and are driven by cytosolic pressure [226]. There

is increasing evidence that these cellular protrusions also play important roles in intracellular

signalling [227], vascular development [57], and in vascular diseases such as atherosclerosis
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[228]. Due to their biological relevance, a lot is known about cell blebs in particular.

Blebs form outwards from cells and usually have a constriction at their base, called neck.

These necks can be either formed by localized membrane growth or global cortex contraction

[229, 230, 231]. Their life-cycle is staged into the following: nucleation/seeding, protrusion,

maintenance, and retraction, with dynamic shape changes of oscillation around the main cell

body called "circus movement" being observed in some blebs [232].

Blebs are formed following actin cortex breaks and cytosolic pressure leading to the outward

movement of the membrane, while their retraction highly depends on Myosin II which allows

actin cortex re-assambly and its re-attachment to the cell membrane [233, 234].

The membrane required for protrusion formation can be provided by either membrane

storage via folding [235, 236] or alternatively by localized recruitment of exo- and endocytosis

[231].

EC-specifically, atypical membrane blebbing was shown during mitosis and lumenization in

zebrafish trunk angiogenesis [224, 225].

Also, blood vessel protrusion are found on a larger scale (centimetres) as aneurysms, which

are blood-filled, formed by multiple cells, and occur at regions of vascular wall thinning [237,

238, 239].

In the scope of this project a so far undescribed endothelial cell (EC) membrane behaviour,

termed kugeln, was discovered. Due to the versatile roles of membrane protrusions in general,

understanding kugeln was of both biological and clinical significance.

1.5 Thesis aims and objectives

Previous literature has demonstrated that the extraction of meaningful parameters to describe

the geometry and topology of the vascular architecture is feasible and can be used to

understand vascular development and disease.

I hypothesise that it will be possible to establish an image analysis pipeline to quantify the

zebrafish cerebrovascular architecture in 3D which provides new insights into cardiovascular

development and disease.

Thus, the aim of this project is to establish an image analysis pipeline to quantify the 3D

in vivo vascular architecture in zebrafish (Fig. 1.6; 1.7) which will enhance the potential of

zebrafish as a pre-clinical model for vascular development and disease.

Firstly, intrinsic image features, such as vascular signal, noise patterns, cross-sectional

vessel edge responses, and vessel scale should be assessed to gather insights into the

analytical requirement of images acquired with LSFM in different transgenic vascular reporter
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Figure 1.6: After image pre-processing and segmentation, quantification of vessel diameter,
length, curvature and branching points will be extracted. Patterns of structural
similarity will be investigated via image registration and establishment of a vascular
development template. Subsequently, data can be integrated into a descriptive
vascular model to investigate alterations during development, in pathologies, or
after experimental manipulation of the vasculature in zebrafish.

Figure 1.7: Detailed steps of vasculature quantification workflow.
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lines. Based on this, a pre-processing pipeline will be established to enhance vascular

information and reduce background. This will be the foundation for subsequent image

segmentation to distinguish vascular from non-vascular voxels in images. Based on

successful image segmentation, the total vascular volume should be derived as the first

meaningful quantitative vasculature measure.

Secondly, automatic 3D inter-sample registration will deliver information about regions of

structural similarity and variability of the vasculature, allowing the comparison between

embryonic zebrafish. To achieve this, an initial assessment of similarity (based on growth

metric measurements and manual landmark-based registration) will inform later automatic

registration. Successful inter-sample registration will be used to establish age-specific

vasculature templates to investigate regions of anatomical homology and/or heterogeneity

between samples as well as changes during early embryonic development. Using

experimental data, it should be examined how these patterns may be influenced by selected

drugs or genetic alterations.

Thirdly, based on successful vasculature segmentation, the aim will be to extract quantitative

shape descriptors such as vasculature branching points, segment length, and diameter. This

will be addressed by the extraction of vascular centrelines from the segmented vasculature as

a foundation for individual vessel identification. Following this, measurements of diameter and

length of individual vessels will be performed. Global vascular information will be extracted

based on summation and averaging of individual vessel information.

Fourthly, in the scope of this project a so far undescribed EC membrane behaviour was

discovered and will be characterised. As these novel structures are spherical in shape they

were termed kugeln (German for sphere; singular kugel). Studies will include the

characterisation of their morphology, dynamics, and role in vascular development, as well as

understanding their vascular bed, anatomical location, dynamic behaviour, and cellular

components. Experiments addressing the role of blood flow and parent vessel specification

will be performed to understand the biology of kugel-formation in-depth. Furthermore, the role

of osmotic pressure, membrane rigidity, as well as selected key signalling pathways (VEGF

and Notch) in kugel-formation will be studied.

This thesis contains four results chapters with separate sections for "Material and Methods".

Together, the integration of image understanding, pre-processing, inter-sample registration,

and vascular quantification will fuel our understanding of vascular development and disease in

zebrafish to support their use as a pre-clinical model for translational biology. The established

image analysis pipeline will allow novel insights into the 3D vascular architecture and inter-
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sample biological variability. Implementing the image analysis pipeline in Fiji [127], which is

the most widely used open-source image analysis software in the biology community, will allow

dissemination and further development.
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2 Segmentation of the Vasculature

Parts of this work were published in: [5], [2], and [4] and figures reproduced with permission

under licences 4415821037994, CC, and 4764790544144, respectively.

2.1 Introduction

Image segmentation can be used to distinguish vascular from non-vascular tissue (reviews see

[85, 112, 240]).

Successfully segmented images are the foundation of meaningful image quantification. This

allows total vascular volume measurements from binarized images, and many aspects of

subsequent geometric quantifications (such as vessel length or diameter) are reliant on clear

object-to-background distinction. Thus, image segmentation is often considered as the

foundation of successful geometric measurements in 3D image analysis.

Prior to segmentation, image enhancement can be used to reduce image acquisition

artefacts (such as noise or signal non-uniformity) and increase data quality, which can raise

the accuracy of subsequent object segmentation [241]. In fluorescence microscopy images,

the most commonly applied pre-processing methods include the removal of small-scale noise

artefacts and speckles [95], as well as the suppression of large-scale artefacts, such as

autofluorescence.

During image pre-processing, motion artefacts also have to be considered. These artefacts

can be introduced by the sample itself (eg. cardiac pulsation or muscle tone), by gravity (eg.

sample embedding), image acquisition system instabilities, or motion-like artefacts such as

focus drift [242]. As these motions may distort the representation of the actual biological

architecture, and therefore are prone to falsify subsequent analysis, motion correction is used

to restore vascular integrity.

Segmentation methods can be classified into two major groups, intensity-based or

model-based. Whilst intensity-based segmentation can be applied to a broad variety of

vascular phenotypes and imaging modalities with limited a priori knowledge, model-based

segmentation relies on mathematical modelling and tends to be more comprehensive and

robust. However, the models used can be specific to a particular mode of acquisition or

vascular bed and, thus, are often not directly transferable to other biological/medical

questions.

Using transgenic lines it is possible to visualize expression patterns of specific genes with

33



3D quantification of the developing zebrafish cranial vasculature

different fluorophores. In this Chapter, the focus is on three specific transgenic lines. Firstly,

Tg(kdrl:HRAS-mCherry)s916[243, 244] expresses a membrane-tagged mCherry fluorophore

under the endothelial-specific promotor kdrl (synonyms: vegfr2 or fetal liver kinase 1 (flk1)).

Secondly, Tg(fli1a:eGFP)y1[74] expresses cytosolic eGFP under the pan-neural promotor fli1a,

resulting in endothelial specific and non-specific gene expression. These two transgenic lines

were chosen as they are the most widely used transgenic reporter lines in zebrafish

cardiovascular research. Thirdly, Tg(fli1a:LifeAct-mClover)sh467 [245] visualizes endothelial

filamentous actin (F-actin), again using the pan-endothelial fli1a promotor but with an mClover

fluorophore. No systematic analysis of image properties in these transgenic lines has been

previously conducted. Therefore, prior to this study, only differences regarding biological

expression (fluorophore subcellular localization and promotor-based tissue specificity of

expression) were known and not whether different computational approaches would be

required for their analysis.

As discussed in the introduction (section 1.3.3), previously suggested vascular

quantification approaches in zebrafish were mostly performed after microangiography, focused

on the trunk vasculature, or only quantified small sub-regions of vessels in the cranial

vasculature. No study existed which addresses data properties, enhancement, or

segmentation in different transgenic lines or during vascular development. Also, no study

addressed motion artefact assessment and correction in the zebrafish vasculature, which is

especially important considering that in vivo image acquisition is usually performed. Lastly, no

study addressed the lack of a segmentation gold-standard for the zebrafish vasculature,

making data output interpretation perceptive to human bias.

This gap of knowledge in data understanding is addressed in this Chapter as follows:

(i) Image properties are studied and quantified in different transgenic lines, in a range of

vessels, as well as during early embryonic development to assess whether different

approaches for analysis might be required.

(ii) The extent of motion artefacts is assessed in time-lapse (x,y,t) as well as 3D

single-time-point acquisitions (x,y,z) and intra-stack motion correction is evaluated for

applicability as well as it’s performance in different transgenic lines.

(iii) We examine image noise, as one step to successful vasculature segmentation is to

suppress local noise peaks/valleys [95, 213, 246] as well as large-scale signal fluctuations

such as scattering, shadowing, or autofluorescence [214, 247].

Subsequent to this data understanding, image enhancement methods are tested to suppress

image noise and enhance vascular signal as a step towards improved image segmentation in
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section 2.3.3. General filters (such as Wiener or Median) as well as geometry-based filters are

tested (based on "Vessel Enhancement Filtering" as proposed by Sato et al. and Frangi et al.

[98, 99]).

Sato and Frangi filters mathematical background

Eigenvectors and eigenvalues

Local image gradients (Fig. 2.1A) can be described as a local intensity function (Fig.

2.1B). The sensitivity to change of this intensity function can be described by the first

derivative (image gradient ; stored in a Jacobian matrix; Fig. 2.1C) and the second

derivative (change of gradient ; stored in a Hessian matrix; Fig. 2.1D,E).

The change of gradient in the image I(x,y,z) can be derived after Gaussian convolution

and stored in the Hessian matrix (H; Fig. 2.1E), which describes the local

neighbourhood. To describe the local curvature in the Hessian matrix eigenvectors

(λ1, λ2, λ3) and their respective eigenvalues (e1, e2, e3) can be used. For more detailed

explanations the interested reader is referred to the following references:

[97, 98, 99, 100, 101].

Line/tube and ellipsoidal model

Eigenvectors and eigenvalues can be used to describe local structures, such as

sheets/plates, tubes/lines, or blobs/spheres (Fig. 2.1F).

Two fundamental approaches to enhance vessels, based on the use of Hessian matrix

information, were examined here:

(a) the line/tube model proposed by Sato et al. [98];

(b) the ellipsoidal model proposed by Frangi et al. [99].

Both methods use local eigenvectors and eigenvalues to describe local image

structures. Sato et al. [98] only used 2 out of 3 eigenvectors for calculations with

eigenvalues sorted as λ3 ≤ λ2 ≤ λ1. Frangi et al. [99] utilize the absolute values of

|λ1| ≤ |λ2| ≤ |λ3|. Due to the use of absolute values, the Frangi filter is functions when

bright vessels are found on dark background and vice versa when dark vessel are found

on bright background.

As seen in Fig. 2.1F, an ideal tubular structure in 3D could be described with:

• |λ1| ≈ 0, pointing along the vessel

• |λ1| ≤ |λ2|

• |λ2| ≈ |λ3|, spanning the vessel cross section perpendicular

In the Frangi filter sheets/plates and tubes/ lines (Eq. 2.1, Ra) and blobs/ spheres (Eq.

2.2, Rb) are defined as follows [99]:
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Ra =
|λ2|
|λ3|

=
(largest cross− sectional area/π)

(largest axis)2
(2.1)

Rb =
|λ1|√
|λ2λ3|

=
volume/(4π/3)

(largest cross− sectional area/π)3/2
(2.2)

Additionally, the Frangi filter takes so called "structureness" of the image into account,

describing grey level variations (Eq. 2.3):

S = ||H||F =

√∑
j≤D

λ2j (2.3)

Together, the filter defines so called "vesselness" with the following function:

With α, β, and γ controlling filter sensitivity, with α and β being set to 0.5, and γ

depending on image grey-scale.

The Sato filter [98] relies on two eigenvectors:

and uses two parameters α1 = 0.5 and α2 = 2.0 to enable cross-sectional filter

asymmetry.

Shape extraction and enhancement

While the filter of Sato et al. [98] is based on line-structure enhancement, Frangi et al.

[99] include three components for structure distinctions, namely blob, line vs. plates, and

so called "structureness".

Parameterization

The Sato filter uses two parameters (α1 and α2 control cross-sectional filter asymmetry),

while Frangi filter uses three parameters (α, β, γ control sensitivity of filter components).

Maximum scale response

Both approaches consider multi-scale responses with parametrization (scale space

theory [149, 150, 248]). Multi-scale response is achieved by convolution with various
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Figure 2.1: Theory of vessel enhancement filtering, based on the Hessian Matrix. (A)
The local image gradient can be described as a local intensity function (B). (C)
The sensitivity to change of the intensity function can be described via the first
derivative (image gradient; Jacobian matrix) or (D) the second derivative (change of
gradient; Hessian matrix (E)). (F) Structures can be described by the composition,
directionality and magnitude of eigenvectors, which can be approximated via
second order image derivatives.

Gaussian kernel sizes (sigma) and extraction of maximum response at the respective

scale (Eq. 2.4).

R(x, y, z) = maxR(x, y, z;σ) (2.4)

Filter implementations

Additional complexity is added by the fact that filters can be computationally implemented

in different ways to solve the above mathematical questions. This is exemplified by two

implementations of the Frangi filter in the image analysis software Fiji as "Frangi Filter"

(https://imagej.net/Tubeness) and "FrangiExp" (https://imagej.net/Frangi).

A paper comparing the Sato and Frangi filter was written by Drechsler and Laura [249].

As these methods were successfully applied in the medical field, there was the rationale

to test their suitability and efficacy in images of the zebrafish vasculature. As these vessel

enhancement filters were originally implemented for MRI data, the following had to be

considered:
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• MRI data showed a different intensity distribution across vessels in comparison to

transgenic lines (Fig. 1.3B). Therefore, vessel enhancement filters were generally

optimized for signal peaks to be located at the vessel centre.

• Data acquired with LSFM delivered a higher image resolution and data load, which

could especially impact the extraction of 3D second derivates.

(iv) Different segmentation methods are tested subsequent to image enhancement for

image binarization and the extraction of the vasculature.

(v) While in the medical field gold standards for object segmentation are sometimes available

(although with varying quality), these are completely lacking for the zebrafish vasculature.

Generally, such gold standards can be derived by the use of phantom models, manual

segmentation, or the comparison of existing methods. Here, enhancement and segmentation

robustness are studied in images with controlled decrease of vascular contrast-to-noise

ratio (CNR), double-transgenic reporter lines, and scenarios of pre- vs. post-exsanguination

(blood letting).

Using the above image enhancement and segmentation pipeline, the following two

biological applications were examined in greater detail:

(a) Cerebral vascular volume during embryonic development.

(b) The effect of Notch and VEGF signalling inhibition on the cranial vascular volume.

These signalling pathways were chosen to be investigated as they are known to be key

signalling pathways, inhibiting and promoting vasculogenesis, respectively [55, 56, 58, 250].

Thus, were ideal candidates to examine the applicability of our analysis pipeline to biologically

relevant datasets, i.e. zebrafish treated with VEGF inhibitors are expected to show reduced

vascular volume and length.

2.2 Material and methods

2.2.1 Zebrafish strains, handling, and husbandry

Studies were performed under the Home Office Project Licence 70/8588 held by Prof. Chico.

Maintenance of adult zebrafish (Danio rerio) in the Bateson Centre Zebrafish Facility of the

University of Sheffield was conducted according to previously described husbandry standard

protocols at 28 °C with a 14:10 hours light:dark cycle [251]. Fertilized eggs, obtained from

controlled pair-mating or controlled group-mating, were retained in E3 buffer (5mM NaCl,

0.17mM KCl, 0.33mM CaCl and 0.33mM MgSO4 diluted to 1X E3 with distilled H2O) with
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methylene blue at 26-30 °C and staged according to Kimmel et al. [44]. Embryo

dechorionation prior to 3dpf was performed manually. Anaesthesia for sample mounting and

imaging was done with E3 holding 0.01% tricaine (MS-222, Sigma-Aldrich).

Transgenic lines used were: Tg(kdrl:HRAS-mCherry)s916 [244], Tg(fli1a:eGFP)y1 [74], and

Tg(fli1a:LifeAct-mClover)sh467 [245].

2.2.2 Image acquisition

Microscope settings

Images were obtained with Zeiss Z.1 LSFM with a scientific complementary metal-oxide

semiconductor (sCMOS) detection unit. During image acquisition pivot scan, dual-side

illumination, and online fusion were activated. 16-bit image depth, 1920x1920 pixel (px) image

size and minimum z-stack interval were chosen for data acquisition (voxel dimensions were in

the range of 0.33x0.33x0.5µm to 0.5x0.5x1.5µm in x,y,z, respectively). Multi-colour images

were acquired in sequential mode. Calibration of light-sheet positioning was performed using

the Zeiss Software default implementation [252]. The Zeiss Z.1 medium-filled image

acquisition chamber was fitted with a water-dipping detection-objective (Plan-Apochromat

20x/1.0 Corr nd=1.38). System incubation during image acquisition was done at 28°C, if not

otherwise stated in text. Sample embedding was performed using 2%-low melting point (LMP)

agarose (Sigma-Aldrich) in E3 with 0.01 % tricaine for short-time image stack acquisition, or

1% LMP-agarose with 0.01 % tricaine (MS-222, Sigma-Aldrich) for long-time image

acquisition (agarose refractive index 1.33 [253]).

Optimised data acquisition

The following steps were performed to ensure data quality and inter-sample comparability to

be as high as possible:

• time-points: Embryos were collected at the same times for all experimental repeats

(ie. 0830-0900. Staging was conducted at approximately 5hpf and 24hpf. Imaging was

conducted at the same timepoints for all experimental repeats with a 1.5h cut-off.

• sample embedding: Samples were embedded as straight as possible into agarose with

2-4 samples per capillary. The top-most sample was imaged first to expose all fish to the

surrounding medium, the agarose block was then moved upwards to image the next fish.

• imaging angle: Coarse sample positioning was achieved with "locate capillary" setting.

Following, "locate sample" was used to align sample dorsally (left and right eye mirrored
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to each other and brain ventricles orthogonal to lens) or laterally (midbrain-hindbrain

boundary to be orthogonal to lens) in the brightfield. Lastly, using fluorescent signal, fine

alignment was achieved by assuring left and right PMBC being mirrored to each other.

• imaging depth: The dorsal longitudinal vein (DLV) was used as dorsal cut-off, while the

basilary artery (BA) was used as ventral cut-off.

• lightsheet position: Both lightsheets were used to visualize vessels and calibration with

"autocorrection" performed to assure accurate beam waste positioning.

• data settings: Optimum z-stack intervals and 1920x1920px (x and y) were used.

Although this produced rather large data, data could be reduced during image

processing (eg. downsampling in x, y, or z).

Data handling

As LSFM produces large datasets, data handling is an important consideration to store and

process data effectively.

The used commercial Zeiss Z.1 setup has an internal 40Tb data storage, which was used

for temporary raw data storage during data acquisition. For data processing, data were stored

on 8Tb Seagate external hard drives which were used to store converted .tiff raw and

processed datafiles (permanent storage). Long-term storage was conducted by storage on

GDrive TeamDrives (storage until 10 years after research ends) provided by the University of

Sheffield and lab-internal Synology Servers.

Data naming and processing was conducted as follows:

• dataset naming:

DD-MM-YYYY_Xdpf_Treatment/MO/gene_Transgenic_additionalComments

• data folder convention: raw>tiff(3D and MIPs)>TF>TH>Reg>512x512>analysed

• analysis files naming: DD-MM-YYYY_Experiment (colour coding for experimental

repeats in respective files)

• code naming: version control by date

• lab book: progress control and cross-referencing by date

2.2.3 Manual Signal-to-Noise and Contrast-to-Noise measurement

Manual measurements of embryo growth, vessel diameters, and vessel length were conducted

using the line region of interest (ROI) tool in Fiji [127]. Signal-to-Noise ratio (SNR, Eq. 2.5)

[254] was measured using the mean vascular intensity (µv) divided by the intensity standard-

deviation of the image background (σ; Fig. 2.2). Contrast-to-Noise ratio (CNR, Eq. 2.6) was
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calculated via the difference of mean vascular (µv) and non-vascular signal (µnv), divided by

background signal standard-deviation (σ). Mean intensity was measured in a ROI placed inside

vessels, spanning the vascular cross-section along a 5µm length from anterior-to-posterior.

Non-vascular mean intensity was measured in a similarly sized non-vascularized brain region

at the same anatomical depth as the vessel of interest, while background standard-deviation of

intensity was estimated outside of fish (see also Appendix A).

SNR =
µv
σ

=
mean vascular signal

standard deviation of background
(2.5)

CNR =
µv − µnv

σ
=
mean vascular signal −mean non-vascular signal

standard deviation of background
(2.6)

Figure 2.2: ROIs for vascular SNR and CNR quantification. SNR was measured using the
vascular mean intensity divided by the intensity standard-deviation of the image
background. CNR was calculated via the difference of mean vascular and non-
vascular signal, divided by background signal standard-deviation.

2.2.4 Motion artefact quantification and correction

Estimation of motion artefacts was performed in 80 second (sec) and 10 minute (min)

time-lapses acquired with 3 second intervals, resulting in 27 and 200 frames, respectively.

Correlation analysis was performed using Pearson’s correlation coefficient (ρ) and Mean

Square Error (MSE) (MSE) between the first (A) and last frame (B) of the image series (Eq.
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2.7; Eq. 3.5). Cov describes covariance and σ the respective standard-deviation.

ρA,B =
cov(A,B)

σAσB
(2.7)

MSEA,B =
n∑

i=1

|A−B| (2.8)

Motion artefact correction was performed with intra-stack registration using the Fiji [127]

Plugin "Linear Stack Alignment with SIFT" based on [255]. Parameters were set as follows,

after optimization: 1.6px Gaussian blur, 5 steps per scale octave, 30px minimum image size,

1920px maximum image size, 8 feature descriptors, 0.98 closest/next ratio, 3/10 px maximum

alignment error, 0.05 inlier ratio, rigid transform and without interpolation.

2.2.5 Signal noise, filtering, and segmentation

Noise assessment and reduction

Occurrence of periodic stationary noise artefacts (stripe noise) was evaluated by intensity

measurement outside of samples (in 2% LM-agarose (Sigma) of sample embedding) using a

700µm line ROI in Fiji [127].

Removal of spike and shot noise was evaluated using Gaussian, Wiener, and Median filter,

which reduce local high frequency signal domains (noise and speckles) by spatial filtering

while considered to leave edges intact [256]. Closer examinations were performed for the

Median filter with different radii [95, 246, 257, 258]. Local contrast enhancement to increase

background-foreground contrast for subsequent segmentation was evaluated using Contrast

Limited Adaptive Histogram Equalization (CLAHE) [132]. To examine the impact of image

background (eg. autofluorescence, uneven excitation, etc.) the rolling ball algorithm was

studied for large-scale artefact removal [247]. To examine signal distributions across vessels,

cross-sectional intensity profiles were produced with 15µm line regions of interest (ROIs)

[127].

Object-based enhancement

Enhancement of vessels based on their tube-like structure (see [98, 99]; discussed below) was

examined using the following available Fiji implementations [127]:

• "Tubeness Filter" Plugin implemented by Jean-Yves Tinevez, Mark Longair, Stephan

Preibisch and Johannes Schindelin based on [98] (https://imagej.net/Tubeness)

• "Frangi Filter" (Process>Filters>Frangi Vesselness) based on [99]
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• "FrangiExp" implemented by Curtis Rueden, Mark Longair, Johannes Schindelin, and

Mark Hiner based on [99] (https://imagej.net/Frangi)

Assessment of intensity response in Difference of Gaussian (DoG) with different sigma size

was performed by application of Gaussian filter with user-specified sigma and subsequent

image subtraction.

Intensity-based segmentation

Intensity-based vasculature binarization of 16-bit images was evaluated using the Auto

Threshold Plugin implemented in Fiji [127] (https://imagej.net/Auto_Threshold).

Advanced segmentation methods

Segmentation using k-means clustering [127, 259], based on pixel proximity, was done using

16-bit images after pre-processing with Median filter (radius 6) and application of rolling ball

algorithm (size 200). As by default, 48 randomized seeds were automatically placed by the

k-means++ algorithm [260, 261]. Additional parameters were set as follows: 0.0001 cluster

center tolerance, interpretation as 3D stack, and detection of four clusters (this was found to

deliver reliable results, especially after tubular filtering (TF; one background cluster and three

vessel clusters with varying brightness)).

Statistical region merging segmentation [262, 263], which computes objects based on

statistical property homogeneity, was done in 8-bit images due to input requirements. It was

performed with pre-processing as above, detection of two regions (fore- and background) and

delivery of absolute values (calculation of absolute pixel value differences, independent of sign

[264]).

Level set segmentation [170], based on gradually evolving active contours to find object

boundaries based on intensity differences found on object edges, was done in 8-bit images (to

achieve more sufficient processing times) with 50 user-specified vasculature seeds, using the

"Fast Marching" option with a distance threshold of zero and user-selected image-specific grey

value thresholds.

Segmented images classified vasculature as black voxels (intensity 255) on white

background (intensity 0).

Modelled Tubes. Modelled tubes (hollow, filled and Gaussian blurred) were produced

manually with uniform signal intensity of 255 against zero background intensity circular ROI

selection using Fiji [127]. Tubes were produced to resemble the following biological settings:

(i) hollow tubes - 20µm outer diameter (1.13µm wall thickness), 8.3µm outer diameter (0.8

µm wall thickness), 5µm outer diameter (0.6µm wall thickness); resembling lumenized

vessels; (ii) filled tubes - resembling unlumenized vessels (with the same outer diameter as
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above); (iii) Gaussian blurred tubes - Gaussian filter with sigma 5vx; resembling a more

realistic intensity distribution of fluorescence; (iv) increasing noise - Gaussian white noise

with standard deviation 25, 50 or 100 (zero background intensity); resembling

autofluorescence and background noise.

2.2.6 Total cerebrovascular volume measurement

The total vascular volume (Vol, Eq. 2.9) was quantified in a region of interest which was

determined dorsal-ventral during image acquisition using the dorsal aorta (DA) as the most

ventral boundary, while the dorsal longitudinal vein (DLV) constituted the most dorsal. Lateral

exclusion of unspecified regions, such as the eye was done via manual ROI selection

(user-defined free-hand selection in original maximum intensity projection (MIP), Fig. 2.3).

Anterior and posterior inclusion were based on prosencephalic artery (PrA) and posterior

cerebral vein (PCeV), respectively.

The vascular volume (Eq. 2.9) within this region of interest was derived from the histogram

black voxel count (Vblack) and the respective voxel volume (Vx,y,z).

V ol = Vblack ∗ Vx,y,z (2.9)

Figure 2.3: Anatomical region for cranial vascular volume measurement. Dorsal cranial
volume was measured in the region indicated by white boxes. (A) During image
acquisition the dorsal aorta (DA) was chosen as the most ventral boundary, while
the dorsal longitudinal vein (DLV) constituted the most dorsal. (B) Exclusion of
unspecified regions, such as the eye (indicated with asterisk) was done via manual
ROI selection. Anterior and posterior inclusion were based on prosencephalic
artery (PrA) and posterior cerebral vein (PCeV), respectively (figure reproduced
with permission from [5] under licence 4415821037994).
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2.2.7 Evaluation of segmentation robustness and sensitivity

Vessel diameter and FWHM measurements

Manual diameter measurements of a variety of vessels were performed in original images.

Intensity profiles were plotted using line ROI in original, enhanced, and segmented images.

FWHM was quantified from extracted cross-sectional intensity distributions using Matlab.

Controlled CNR changes

Segmentation robustness was studied by measuring the total cranial vascular volume (as

described above; Eq. 2.9) in images with varying CNR levels. Decreasing CNR levels were

induced by consecutive image acquisition of 4dpf Tg(kdrl:HRAS-mCherry)s916 [244] embryos

with a laser power of 1.2%, 0.8%, and 0.4%. CNR was measured in BA as described above

(Eq. 2.6; n=10).

Segmentation in double-transgenic line

Data acquisition was performed in 4dpf double-transgenic Tg(fli1a:eGFP)y1,

Tg(kdrl:HRAS-mCherry)s916 [74, 244] (n=21 embryos; 2 experimental repeats) with separate

colour tracks. Image enhancement and segmentation was performed independently for the

two colour channels, with selection of ROI in original MIP of red (kdrl) channel.

Segmentation in pre- and post-exsanguinated samples

Data acquisition was performed in 4dpf Tg(kdrl:HRAS-mCherry)s916 [244] (n=16 larvae; 2

experimental repeats). Cessation of blood flow was achieved by mechanical opening of the

heart cavity with forceps. Control of blood cessation was performed by visual assessment of

lack of heart contraction and blood flow. The ROI for volume measurement was separately

determined for pre- and post-cessation images using the procedure described in Section

2.2.6.

2.2.8 Biological application datasets

Vascular development Tg(kdrl:HRAS-mCherry)s916 [244] samples were imaged from 2-5dpf

(n=17 from 2 experimental repeats).

Inhibition of Notch signalling Inhibition of γ-secretase in the Notch signalling cascade was

achieved by application of 50µM N-[N-(3,5-Diflurophenaacetyl-L-alanyl)]

-S-phenylglycine tButyl Ester (DAPT) for 12h between 84-98hpf (Sigma-Aldrich; D4952) [265]

(4dpf; control n=21, DAPT n= 22; 3 experimental repeats).

Inhibition of VEGF signalling Inhibition of VEGF signalling was conducted by application of

the VEGF-receptor inhibitor AV951 at a concentration of 250nM for 2-4h between 96-98hpf or

96-100hpf (Selleckchem; S1207; Tivozanib - AVEO pharmaceuticals) [266] (4dpf; control n=21,
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AV951 n= 23; 3 experimental repeats).

2.2.9 Developed image analysis macros

See Appendix B for workflow overview, Appendix C for individual macros, and Appendix D for

GUI.

2.2.10 Statistics and data display

Gaussian distribution conformity of data was tested using the D’Agostino-Pearson omnibus

test [267]. Statistical analysis of normally distributed data was performed using a One-Way

ANOVA to compare multiple groups, or Students t-test to compare two groups. Non-gaussian

distributed data were analysed with a Kruskal-Wallis test to compare multiple groups or Mann-

Whitney tests to compare two groups. Analysis was performed in GraphPad Prism Version 7

(GraphPad Software, La Jolla California USA; https://www.graphpad.com). P values in the text

are displayed as follows: p<0.05 *, p<0.01 **, p<0.001 ***, p<0.0001 ****. Data representations

use mean values and standard deviation, if not otherwise stated in text. Correlation analysis

was performed with the Pearson’s correlation coefficient.

Image representation was done with GNU Image Manipulation Program Version 2.8 (GIMP;

https://www.gimp.org) or Inkscape Version 0.48 (https://www.inkscape.org). Visualized data

are MIPs, displaying either grey (single channel) or red/green (multi-channel) colour

representations (using Fiji [127]). Intensity inversion was applied, as appropriate, to give

clearest rendering of relevant structures. Similarly, time-lapse visualization was done using

MIPs and intensity inversions.

In the subsequent sections, experimental repeats refer to multiple measurements during the

same image acquisition session, while experimental replicates are measurements from

different image acquisition sessions.

2.3 Results and discussion

2.3.1 Vascular Contrast-to-Noise ratio (CNR) differs in transgenic lines, but not

over time or vessels of different size

As it was not known whether different transgenic reporter lines (different promotor,

fluorophore, and cellular localization of fluorophore) have different image properties, CNR

levels and vascular cross-sectional intensity distribution were assessed in the following three
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transgenic lines: Tg(kdrl:HRAS-mCherry)s916 [244], Tg(fli1a:eGFP)y1 [74], and

Tg(fli1a:LifeAct-mClover)sh467 [245].

Tg(kdrl:HRAS-mCherry)s916 had the highest CNR level (48.26±19.35; Fig. 2.4A), being

higher than Tg(fli1a:eGFP)y1 (26.92±9.91) or Tg(fli1a:LifeAct-mClover)sh467 (18.74±14.20),

with p<0.0001 for each (n=20 4dpf larvae; 3 experimental repeats; One-Way ANOVA).

Assessment of the vascular cross-sectional intensity distribution of the MMCtA showed a

double-peak for all three transgenic lines (Fig. 2.4B). This was in accordance with the fact that

endothelial cells, which express the fluorophore of interest, outline the vascular lumen,

reinforcing the assumption that lumenized vessels would resemble hollow tubes. Studying

edge response strength visually, it was found to be the highest for Tg(kdrl:HRAS-mCherry)s916

and lower for Tg(fli1a:eGFP)y1 as well as Tg(fli1a:LifeAct-mClover)sh467; in agreement with

Tg(kdrl:HRAS-mCherry)s916 having the highest CNR.

Visual assessment furthermore confirmed that vascular structures were clearly observed in

Tg(kdrl:HRAS-mCherry)s916, while less specific structures such as skin were visualized in

Tg(fli1a:eGFP)y1 and Tg(fli1a:LifeAct-mClover)sh467 (Fig. 2.4; white arrowheads). This was

assumed to be due to the lower CNR in Tg(fli1a:eGFP)y1 and Tg(fli1a:LifeAct-mClover)sh467

requiring a higher laser power for image acquisition, which ultimately resulted in increased

image scattering, autofluorescence, and reflection of non-vascular tissues as well as

pan-endothelial expression under the fli1a promoter.

The observed variability within the examined transgenics was likely to be caused by

differences in allele insertion numbers for which the samples were not controlled. For the

following experiments animals were selected based on the brightest fluorescence at 24hpf.

Together, these data indicated that Tg(kdrl:HRAS-mCherry)s916 had the highest CNR, the

clearest edge response, and the most specific expression pattern, suggesting that

segmentation would be computationally less demanding in this transgenic, compared to the

other transgenic reporter lines tested.

To assess whether image quality changes during early vascular development, CNR was

quantified in the BA from 2-5dpf in Tg(kdrl:HRAS-mCherry)s916. A trend towards decrease

was found from 2-5dpf (Fig. 2.5A; p 0.1032; n=15-17; 3dpf; 2 experimental repeats;

Kruskal-Wallis test), suggesting that vascular segmentation should be equally successful

during this developmental time-frame as image quality did not change dramatically. CNR was

most variable at 2dpf with a coefficient of variation (CoV) of 105.11% (n=15; CoV

3dpf=56.87% n=16, 4dpf=60.86% n=17, 5dpf=76.33% n =17; 2 experimental repeats).

Following this, vessels of different size were examined to analyse whether CNR patterns
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would be similar and thus be detected with a similar likelihood. As shown in Fig. 2.5B,C

vascular CNR was not different in vessels of different diameter (p 0.3007; n=16 3dpf larvae;

2 experimental repeats; Kruskal-Wallis test). This suggested that successful segmentation of

vessels of different diameter should be equally feasible.
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Figure 2.4: CNR differs depending on the transgenic line. (A) Comparing the CNR in the
BA of different transgenic lines (1,2,3; reproduced with permission from [5] under
licence 4415821037994) showed varying CNR levels depending on the transgenic
construct. A difference was found between (1) and (2), as well as between (1)
and (3), with p<0.0001 for both. No difference was found between (2) and (3) with
p 0.0898 (n=20 4dpf larvae; 3 experimental repeats; One-Way ANOVA). Moreover,
more unspecific signal was visualized in (2) and (3), indicated with white arrowhead.
(B) Intensity distribution across vessels showed a double-peak for all three studied
transgenic lines at vascular edges. The highest intensity and edge-response was
found in (1), while edge-responses were lower in (2) and (3). (average is solid line;
standard deviation is dotted line)

2.3.2 Motion artefacts can be corrected using SIFT

As motion artefacts could interfere with subsequent vascular quantification the extent of motion

occurring in our image acquisition setup was assessed, and it was tested whether the occurring

motions could be sufficiently corrected.

48



3D quantification of the developing zebrafish cranial vasculature

(n = 16)

A

B

2dpf 3dpf 4dpf 5dpf 
0

100

200

300

400

500

600

700

C
N

R

ns

(n = 15) (n = 16) (n = 17) (n = 17)

DA BA
ACeV

M
M

CtA
0

100

200

300

400

C
N

R

ns

DA BA
ACeV

M
M

CtA

0

10

20

30

40

D
ia

m
et

er
 [

µ
m

]

****
******** ns

(n = 16)

C

Figure 2.5: CNR is similar in vessels of different size. (A) Measurement of the CNR in
the BA during early vascular development in Tg(kdrl:HRAS-mCherry)s916, showed
no difference between 2-5dpf (p 0.1032; 2dpf n=15, 3dpf n=16, 4dpf n=17, and
5dpf n=17 larvae; Kruskal Wallis test), indicating that vascular segmentation should
be equally successful for all timepoints of the investigated timeframe. CNR
measurement in candidate vessels of different diameter (B) showed no difference
(C), suggesting that vessels of different size should be segmented with the same
likelihood (B and C: n=16 3dpf larvae from 2 experimental repeats; B - One-Way
ANOVA; C - Kruskal Wallis; graphs reproduced under CC licence from [2]). Abbr.:
ACeV - anterior cerebral vein, BA - basal aorta, DA - dorsal aorta, MMCtA - middle
mesencephalic central artery;
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Linear Stack Alignment with SIFT in (x,y,t)

Depending on the image acquisition setup an average 3D single-time point acquisition takes

about 80sec. Thus, it was measured whether motion artefacts would occur within 80sec using

single plane acquisition (x,y,t). The correlation between the first and last slice was

0.971±0.01839, suggesting that motion does happen and possibly could interfere with later

quantification. After application of "Linear Stack Alignment with SIFT", correlation between

first and last slice was increased to 0.993±0.001341. Similarly, the MSE was decreased from

13.35±10.24 to 2.692±0.7006 (n=5 3dpf larvae; 1 experimental repeat). Together, these data

suggested that motion could occur in this short time-frame, but can be corrected with the

suggested motion correction approach, based on scale invariant features.

To evaluate if more extensive motion artefacts could be equally corrected and whether

SIFT-based stack alignment would be applicable to transgenic lines with different CNR levels

(Fig. 2.4A), alignment was applied to 10min time-lapse acquisitions in

Tg(kdrl:HRAS-mCherry)s916 [244] and Tg(fli1a:eGFP)y1 [74] (Fig. 2.6 A,B). Correlation

between the first and last slice was increased by linear stack alignment based on SIFT from

0.503±0.275 to 0.879±0.904 (p<0.0001; n=15; 3dpf; 2 experimental repeats) in

Tg(kdrl:HRAS-mCherry)s916 [244] (Fig. 2.6C). Similarly, correlation was increased in

Tg(fli1a:eGFP)y1 [74] from 0.722±0.202 to 0.927±0.046 (Fig. 2.6D; p 0.0008; n=15; 3dpf; 2

experimental repeats).

Higher correlation after motion correction was achieved in Tg(fli1a:eGFP)y1 [74]. We suggest

that this was due to higher signal abundance based on the pan-endothelial expression under

the fli1a promoter.

Together, these data suggest that motion correction, based on scale invariant features, can

correct for larger-scale motion artefacts. Additionally, this was applicable to transgenics with

different CNR levels, indicating applicability to a variety of transgenic lines. Future work might

examine whether iterative application of linear stack alignment results in further improvement

of motion correction.

Linear Stack Alignment with SIFT in (x,y,z)

Next, motion correction was applied to image stacks (x,y,z) to assess whether the proposed

approach would be applicable in the 3D context. Motion artefacts were corrected to a high

degree, upon visual inspection, and structures appeared less blurred in MIP images (Fig. 2.7).

Quantification of stack motion correction was performed, but data not included here, correlation

analysis was inconclusive in terms of what differences between slices were biological or motion.
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Figure 2.6: SIFT-based motion correction is applicable to data in (x,y,t). (A) Motion
artefacts were evaluated in 10min time-lapse acquisitions in Tg(kdrl:HRAS-
mCherry)s916 [244] and (B) Tg(fli1a:eGFP)y1 [74]. (C,D) Quantification
of correlation between the first and last slices of time-lapses showed a
increase after the application of linear-stack alignment, based on scale-invariant
feature transformation (SIFT), in both Tg(kdrl:HRAS-mCherry)s916 [244] and
Tg(fli1a:eGFP)y1 [74] (A,B inverted MIP; paired Students t-test; n=15 3dpf larvae; 2
experimental repeats; C p<0.0001; D p 0.0008; graph C reproduced with permission
from [5] under licence 4415821037994; graph D reproduced under CC licence from
[2]).
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Figure 2.7: SIFT-based motion correction is applicable to data in (x,y,z). Motion correction
in 3D stacks showed overall enhancement of vascular structures. Colours in (B)-(E)
correspond to the height of indicated sagittal plane in (A). (B) Sample data of stack
before alignment. (D) Sample data after intra-stack alignment with SIFT for motion
correction. (C,E) Close-up of (B) pre- and (D) post-alignment, respectively. Asterisk
indicates increased structure correspondence due to linear stack alignment.

As no gold-standard was available, no threshold could be set between biological or motion-

induced differences in correlation.

2.3.3 Enhancement of the cerebral vasculature to improve image quality

Testing image filtering for image enhancement

The structure of background noise was assessed to understand whether structured/patterned

noise would be found in our images, and whether this would require specific correction during

image pre-processing. Assessment of image background noise showed that noise was random

rather than structured, suggesting that there was no need to correct for patterned noise (Fig.

2.8A).

As the reduction of local high frequency signal domains (noise and speckles) is commonly

approached by image filtering or local smoothing [95] using filters such as Gaussian, Wiener or

Median [256], these different filtering methods were tested.

Median filtering with a radius of 6 (13-by-13 neighbourhood) showed the best results

regarding high frequency smoothing efficiency, while preserving the intensity-distribution and
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Figure 2.8: Examination of parameter sizes for pre-processing steps. (A) Periodic noise
was not found to occur in images (n=5 3dpf larvae). (B) Median filtering was
assessed for its potential reduce spike and shot noise. Application of Median
filter with a radius of 6 delivered smoothed, but preserved, cross-vessel intensity
distribution. (C) The rolling ball algorithm (RB) efficiently suppressed non-vascular
background signal, whilst not interfering with vascular signal. (D) Local intensity
enhancement with Contrast Limited Adaptive Histogram Equalization (CLAHE)
produced equally increased vascular and non-vascular signal.

edge-response of vessels (Fig. 2.8B). The subtraction of background noise was attempted

using a rolling ball algorithm [247], which sufficiently suppressed larger-scale non-vascular

signal (Fig. 2.8C). Setting the parameter size to 200 was most applicable to images from

different samples and acquisition settings. Testing local contrast enhancement with CLAHE

[132] showed an overall enhancement of intensities without obvious improvement of vascular

structures and, therefore, was excluded from further investigation (Fig. 2.8D).

Based on the above, 13-by-13 Median filtering with subsequent application of the rolling ball

algorithm (size 200) was applied to images and the CNR pre- and post-enhancement

measured in the BA. This filtering sequence increased CNR (Fig. 2.9; p<0.0001; n=20; 3dpf; 3

experimental repeats; paired Student’s t-test).

Testing tubular filtering for image enhancement

In the framework of the bioimage analysis software Fiji [127] three already implemented "Vessel

Enhancement Filters" were available and were tested for their applicability to images of the
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Figure 2.9: Application of Median filter and Rolling Ball increases vascular CNR. (A)
Application of image pre-processing, by median filtering and rolling ball algorithm,
increased the vascular CNR in the BA (B). Pre-processing based on Median Filter
and Rolling Ball increased vascular signals (C). (A inverted MIP; B n=20 3dpf larvae
from 3 experimental repeats; paired Student’s t-test; p<0.0001; figure B reproduced
with permission from [5] under licence 4415821037994)
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Figure 2.10: Initial assessment of vessel enhancement filters implemented in Fiji. (A)
Enhancement of vascular structure was tested by application of filters to original
data of 4dpf Tg(kdrl:HRAS-mCherry)s916. (B) Application of "FrangiExp" resulted
in suppression of dimmer vessels (black arrowheads) and globally grainier
structures. (C) "Frangi Filter" also delivered an unsatisfactory outcome with,
again, dim vessels being suppressed and vessels overall appearing blurred. (D)
Application of "Tubeness Filter" returned enhanced vessel without the loss of
dimmer structures.

zebrafish vasculature acquired with LSFM.

For an initial assessment, the filters were applied at scale sizes similar to the average vessel

size to images of 4dpf Tg(kdrl:HRAS-mCherry)s916 with the assumption that a maximum scale

response should occur at the scale of the examined vessels (Fig. 2.10A; scale 10µm). Upon

visual inspection, "FrangiExp" and "Frangi Filter" returned insufficiently enhanced vessels (Fig.

2.10B,C). Mainly, dimmer structures, such as the PMBC, were suppressed and the returned

images were low in detail. In comparison, "Tubeness Filter" application resulted in sufficiently

enhanced vasculature, without interference of original structures (Fig. 2.10D).

(a) Filter response - Vessel-to-background intensity

As the unsatisfactory outputs from "FrangiExp" and "Frangi Filter" were surprising as Frangi

filters are commonly used in the medical field, these filter responses were studied more in-

depth to understand what may have caused the observed issues. The examination of three

different vessels, namely PMBC, PMCtA and MMCtA, is presented here.

First, all filters were applied to bright vessels on a dark background as was the case in our

original data (Fig. 2.11A).

"FrangiExp" and "Frangi Filter" enhanced local fluorophore speckles as blobs (white

arrowheads). We anticipated that this was caused by the Frangi "blob"-detection term (Eq.

2.10; Rb), which enhanced fluorescent speckles due to their rounded structure (Fig. 2.11A;
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white arrowheads) [99].

Rb =
|λ1|√
|λ2λ3|

(2.10)

Additionally, a suppression of vascular signal was observed after both Frangi filter

implementations (Fig. 2.11A; black arrowheads), which was likely to be caused by the

illumination-dependent "structureness term" of the filter (Eq. 2.11; S).

S = ||H||F =

√∑
j≤D

λ2j (2.11)

Where Rb corresponds to local measure of sphericity (blob), λj denotes eigenvectors, S

denotes structureness term, and H denotes Hessian matrix. Again, enhancement via

"Tubeness Filter" (TF) delivered satisfactory enhancement, without information loss as

encountered by the other filters.

Following, filter response in the same images but with inverted intensity (dark vessels on

bright background) was examined. This was conducted because the Sato filter is not designed

to enhance under this intensity configuration [98], whereas Frangi filters are configured to be

independent of the dark-to-bright status of the vessel and background [99]. Thus, any deviation

from the theoretical framework may highlight any issue with the computational implementation

of the filters.

While the FrangiExp filter delivered more speckled data, the Frangi filter was comparable to

the bright-on-dark situation. As expected from the theory, TF was unable to enhance vessels

in this dark-on-bright state.

Together, our data suggested that the under-performance of the FrangiExp and Frangi Filters

was not due to the intensity status of images, while TF indeed required bright-on-dark vascular

information to enhance vessels.

(b) Filter response - 2D application

To further understand the different outcomes for the tested filters in 2D, filters were applied to

2D hollow circles of different size (4.95, 8.25 and 20µm) at the filter scale of 10µm. Hollow

tubes were chosen because lumenized vessels are visualized as hollow tubes in transgenic

zebrafish reporter lines (Fig. 1.3B). Only one scale size was assessed to gather initial insights

into the filter responses regardless of enhancement scale.

While no changes to the images were observed after FrangiExp and Frangi Filter (Fig. 2.12),

TF enhanced the circular structures, broadening the simulated vessel wall to the point where,

for the smaller circles (4.95 and 8.25µm), it returned a single-peak intensity distribution.

To further challenge this "ideal scenario", Gaussian noise was added in increasing
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Figure 2.11: Object-to-background colour filter response in selected vessels. (A)
In images with bright vessels on dark background, TF delivered the best
enhancement of vessels, while FrangiExp and Frangi Filter enhanced fluorophore
speckles and suppressed true vascular signal. (B) Application of filters to
images with dark vessel on bright background showed that TF was not delivering
enhanced vessels, as was assumed from the filter theory. Interestingly, FrangiExp
seemed even slightly worse, while Frangi Filter delivered similar results.
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Figure 2.12: Filter response - 2D application. TF delivered a single-peak intensity distribution
in smaller vessels and showed a low sensitivity to noise. FrangiExp was less noise
sensitive than the Frangi Filter.

increments. FrangiExp and TF were less sensitive to noise than the Frangi Filter, which

already delivered less satisfying results after the lowest addition of noise.

(c) Filter response - 3D application

Filters were applied to 3D hollow cylinders (same parameters as above) to understand

differences in the 2D and 3D filter responses. It was found that the 3D application of TF

delivered similar results to the 2D scenario (Fig. 2.13). On the other hand, the FrangiExp and

Frangi Filters both perturbed the original tube structure upon 3D filter application. It was

thought that this was due to λ1, which is the eigenvector corresponding to the vessel direction,

and was the highest along the vessel wall (z-axis) and, thus, the filters enhanced the

walls/edges. Interestingly, both filters were highly sensitive to pixelation, as enhancement of

the pole regions of circles was observed (Fig. 2.13, white arrowheads). Again, noise
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Figure 2.13: Filter response - 3D application. Frangi-based filters showed unsatisfactory
enhancement of 3D cylinders, suggesting that 3D application was not suitable.
Again, TF showed double-to-single peak conversion in smaller vessels and
sensitivity against noise was low.

sensitivity was most pronounced for the Frangi Filter, while FrangiExp and TF were less

influenced by the addition of simulated Gaussian noise.

(d) Filter response - variable model configurations

Based on the above findings and the fact that vessel enhancement filters were designed for

MRI images, which show a single-peak intensity distribution, there was the rationale to

examine whether the original hollow circle and tube models (ie. shape/intensity distribution)

would impact the filter outcome. Thus, the filter responses from 3D hollow cylinders were

further compared to filled cylinders and cylinders with Gaussian blurred edges. The latter was

assumed to be the most comparable to actual MRI data.

Enhancement via TF was similarly effective for the three different model configurations (Fig.

2.14A).
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In the case of filled cylinders, both Frangi enhancement methods seemed to enhance

vascular edges (Fig. 2.14B,C). FrangiExp did not enhance central "vascular" information at all,

whilst the Frangi filter enhanced edges, but the originally filled tube was returned with a

diagonal signal-dampening and fuzzy edges.

Studying the filter outcome after Gaussian blurring of filled tubes, FrangiExp now enhanced

the "lumen", but the overall shape was skewed towards an ellipsoidal rather then the original

shape. Again, the Frangi filter returned diagonal signal reduction, but fuzzy edges were

observed to be improved. This is of particular interest as the Frangi filter was developed for

MRI images, which actually do show this type of cross-sectional intensity profile. These

findings suggest that both of the Frangi filter are not working correctly, as the Frangi filter has

been used widely to enhance MRI images with a Gaussian vessel cross section. Due to time

constraints, this lack of expected performance was not further examined, but should be

examined in future research work.

Interestingly, all three filters delivered a signal dip in middle for the filled cylinder scenario in

the bigger tubes, which was counter-intuitive to the theoretical framework and further

examination is needed.

Despite the disappointing performance of the Frangi filters, TF delivered promising results

and will be explored further, while Frangi filters were excluded from further examination in the

scope of this project.

(e) CNR changes upon Tubular Filtering (TF)

To understand the impact of TF on CNR in our zebrafish vasculature data, CNR was quantified

before and after enhancement. An increase of CNR was found upon enhancement (Fig. 2.15;

p 0.0051; n=12; 3dpf; 2 experimental repeats; paired Student’s t-test; scale 10µm), with

maximum CNR fold-changes of 106.

This suggested that TF was applicable to enhance vascular signal in our data.

(f) Tubular filter response - enhancement in vessels of different diameter

While human cranial vessels include diameters of µm-cm most cranial vessels of the

developing zebrafish vasculature during the investigated time-frame are of a similar size

(approx. 7-10µm; maximum 20µm; Fig. 2.5B). Here, we wanted to examine how

cross-sectional intensity distribution would be influenced, in vessels of different size, when

enhancement is performed at different scales (sigma µm).

To take a quantitative approach, it was first examined whether FWHM (Fig. 2.16A) from

cross-sectional intensity profiles of vessels would provide a reasonable estimate of vessel

diameters. Thus, vessel diameters of the selected vessels were quantified manually using line
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Figure 2.14: Filter response - distinctive model outset. Examining filter responses for 3D
hollow cylinders, filled cylinders, and cylinders with blurred edges.

Figure 2.15: CNR is increased by TF. CNR quantification in original and enhanced images (A)
showed an increase (B; p 0.0051; n=12 3dpf embryos; 2 experimental repeats;
paired Student’s t-test).
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ROIs spanning from edge-edge across the vessel cross-section (referred to as manual) and

the FWHM from intensity profiles of the same vessels quantified (referred to as FWHM; Fig.

2.16B). If successful, this would enable FWHM to be used as a proxy for vessel diameter,

meaning that laborious manual measurements could be avoided.

The studied vessels were the central artery (CtA) with a diameter of 8.154±1.274µm, MMCtA

with a diameter of 9.779±2.097µm, PMBC with a diameter of 11.14±1.682µm, and the BA with

a diameter of 22.28±3.886µm (Fig. 2.16B; n=12 3dpf larvae).

No difference between manual and FWHM measurements were found (Fig. 2.16B; CtA

p>0.9999, MMCtA p>0.9999, PMBC p>0.9999, BA p 0.9879; n=12; 3dpf; 2 experimental

repeats). The Pearson Correlation between manual and FWHM measurements was low with

CtA R 0.630, MMCtA R 0.806, PMBC R 0.675 and BA R 0.238; while the mean absolute voxel

error was: CtA 4.38, MMCtA 2.75, PMBC 4.09, and BA 11.60 (voxel; Fig. 2.16C). We

anticipate that the encountered differences were mainly due to human error during manual

measurements as well as outliers in the FWHM measurements (black arrowheads). These

outliers were caused by a left/right skewed intensity distribution, where one side of a double

peak distribution was excessively large. We believe that these outliers could be minimised by

averaging multiple diameter measurements at different orientations to the vessel. Together,

this suggested that the FWHM can be used as a measure of vascular diameter, provided that

the effect of outliers has been considered.

Cross-sectional intensity distributions of vessels were measured before and after application

of the Sato filter (tubeness filter; TF) at scales from 5.3424µm (16 voxels) to 30.718µm (92

voxels). Plotting the original intensity distribution, a double-peak intensity distribution was

observed in all four investigated vessels to a varying degree (Fig. 2.17A,C,E,G: black line;

n=12 embryos).

In vessels with a smaller diameter (CtA, MMCtA, and PMBC), filter application started to

change double- to single-peak intensity distributions at a scale size of 8.0232 (24 pixels; Fig.

2.17A,C,E). This was particularly of interest as most vessels in the cranial zebrafish

vasculature were expected to have a double-peak intensity distribution when lumenized, while

smaller/unperfused vessels would have a single-peak distribution. Thus, conversion of

double-to-single-peaks, or at least sufficient enhancement of the luminal signal, should allow

for a subsequent segmentation approach which can address both types of vessels with equal

effectiveness.

Visually, the scale sizes 10.6848 and 15.359 returned the most accurate appearing

enhancement results with vessels being returned as tubes (rather than vessel walls
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Figure 2.16: FWHM is applicable to estimate vessel width. (A) FWHM was used to measure
vascular diameter. (B) Comparing manual diameter measurements with the
FWHM obtained from the cross-sectional intensity profiles showed no difference
(CtA p>0.9999, MMCtA p>0.9999, PMBC p>0.9999, and BA p 0.9879), but
Pearson Correlation was rather low (CtA R 0.630, MMCtA R 0.806, PMBC R
0.675, and BA R 0.238; n=12; 3dpf; 2 experimental repeats). This was assumed
to be caused by error in manual measurements and outliers in the FWHM data.
(C) Absolute values of voxel error between manual and FWHM measurements
(n=12; 3dpf; 2 experimental repeats). (B reproduced with permission from [4]
under licence 4764790544144) Abbreviations: f - function, FWHM - full width half
maximum, R - Pearson correlation, ve - voxel error;

individually being enhanced) and vessel thickness being comparable to the original (rather

than artificially reduced or increased). To examine this further, the scale parameter that gives

rise to the highest correlation between manual measurement and FWHM post enhancement,

double-to-single peak conversion, and voxel error were visually and quantitatively examined

(Fig. 2.17B,D,F,H; table 2.1; table 2.2). This showed that enhancement with the scale

parameter smaller than the vessels diameter lead to an underestimation of the vessel

diameter, while scale parameters bigger than the vessel of interest would lead to an artificial

overestimation. As 10.6848µm (32 voxels) was sufficient to obtain a single-peak distribution in

the majority of standard-sized cranial vessels without artificially broadening of smaller vessels,

this was the focus in the rest of this thesis.

Further examination of the BA intensity profiles showed that larger scales (e.g. 23.718)

would be required to convert the double- to a single-peak distribution (Fig. 2.17G) and deliver

the most accurate vessel diameter measurements (Fig. 2.17H); but for the BA no artificial

underestimation of vessel diameter was encountered when enhanced at smaller scales, so

luminal enhancement must’ve been sufficient at the smaller scale. Again, this would be in the

size range of the vessel of interest, but far larger than most vessels of interest. As the BA is the
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Table 2.1: This table shows the Sato enhancement scale with the highest correlation of
manual measurements to vessel diameters after enhancement (top row) and the
enhancement scale when double-to-single peak conversions happened (bottom row)
for the CtA, MMCtA and PMBC.

CtA MMCtA PMBC BA
Scale of Highest Correlation Manual-to-FWHM 9.3604 15.369 10.6848 9.3604
Double-to-Single Peak Conversion 8.0232 9.3604 10.6848 23.718

Table 2.2: Absolute voxel error after TF (lowest values highlighted in bold).
CtA MMCtA PMBC BA

Manual-FWHM 4.39 ± 3.92 2.7 ± 2.4 4.10 ± 4.53 11.60 ± 12.66
Manual-5.3424 5.81 ± 4.49 6.3 ± 7.0 10.19 ± 10.40 8.86 ± 7.32
Manual-8.0232 3.84 ± 1.96 4.9 ± 4.6 5.48 ± 6.30 5.98 ± 6.39
Manual-9.3604 3.07 ± 2.03 3.8 ± 3.2 5.49 ± 4.23 5.90 ± 6.25
Manual-10.6848 3.37 ± 2.19 2.7 ± 2.2 4.50 ± 4.17 7.23 ± 6.33
Manual-15.359 5.25 ± 2.89 3.8 ± 1.6 9.07 ± 15.91 7.98 ± 7.23
Manual-23.0385 25.83 ± 27.80 13.5 ± 8.0 19.63 ± 16.43 9.08 ± 6.37
Manual-30.718 36.68 ± 27.52 15.7 ± 11.8 27.30 ± 14.40 8.70 ± 4.67

largest cranial vessel at this time-point and also one of the most anatomically similar vessels

between samples (see Chapter 3) one could argue that the vessels bifurcating from the BA

(posterior communicating segment (PCS)) could be used as a starting point rather than the BA

itself to examine the dorsal cerebral vasculature.

2.3.4 Segmentation of the cerebral vasculature

Comparison of segmentation method outcomes

Based on the above proposed image pre-processing steps, the following image segmentation

methods (already implemented in Fiji [127]) were studied for their efficiency to discriminate

vascular from non-vascular tissue.

First, different intensity-based thresholding methods were tested [127]. Comparing the

original image to segmentation outcomes, Otsu thresholding [268] delivered the most accurate

segmentation result (Fig. 2.18, only subset of thresholding methods shown).

Next, more advanced segmentation methods after application of the General Filter (GF)

(Median and Rolling Ball) and Tubeness Filter (TF) were compared. Again, intensity-based

thresholding based on Otsu to deliver the most accurate segmentation results (Fig. 2.19A,B).

K-means clustering delivered locally variable segmentation results, with some regions being

well segmented, while others were not segmented at all (Fig. 2.19A,B red asterisk) [127, 259].

Thus, k-means clustering was not investigated further to avoid underestimation bias.
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Figure 2.17: Assessment of cross-sectional intensity distribution and FWHM after
enhancement. The impact of filtering size on the intensity distribution of vessel
cross-sections was measured in four dorsal cranial vessels of different diameters,
namely the CtA (A; 8.154±1.274µm), MMCtA (C; 9.779±2.097µm), PMBC (E;
11.14±1.682µm) and BA (G; 22.28±3.886µm; lines represent the average value
of n=12 3dpf Tg(kdrl:HRAS-mCherry)s916 larvae; 2 experimental repeats; graph C
reproduced under CC licence from [2]). Double-peak intensity distributions were
converted to single-peaks when the enhancement filter scale was approximately at
the size of the vessel of interest. Measuring the FWHM of the respective vessels
(B,D,F,H) also showed that enhancement at the scale of the vessels of interest
delivered the most accurate results, while too small scale parameters resulted in
underestimations and too big led to artificial overestimations.
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Figure 2.18: Comparison of different thresholding methods shows Otsu thresholding to
be the most applicable to our data. Testing different thresholding approaches,
Otsu thresholding delivered the most robust and reliable results in comparison
to other thresholding methods, all of which are readily implemented in the Auto
Threshold Plugin in Fiji [127] (only subset shown; Otsu based on [268]; Li based
on [269, 270]; Triangle based on [271]).

The default implementations of level set (fast marching implementation in Fiji software [127])

[170] and statistical region merging [262, 263] did not perform well with our data. Thus, these

methods need further investigation in future to examine implementation specificities,

applicability, parameter settings, and constraints (Fig. 2.19).

Having found that intensity-based segmentation using Otsu-thresholding [268] is globally the

most applicable to our data, it was investigated how the proposed pre-processing methods (GF

and TF) would impact segmentation.

Visual inspection of delivered segmentation results (Fig. 2.20C,F) showed that segmentation

subsequent to TF delivered consistently more reliable results than after GF. This judgement

was based on the following criteria:

• individual vessel distinction (especially at vascular loops; Fig. 2.20 magenta arrowhead)

• enhancement of dimmer vessels (eg. PMBC and dorsal ciliary vein (DCV), Fig. 2.20

green arrowhead)

• handling of vascular single- and double-peak intensity (Fig. 2.20 blue arrowhead)

While a variety of sophisticated segmentation methods have been successfully applied in the

medical field (such as level set), readily available implementations of these did not translate

well when applied to segmentation of the zebrafish cranial vasculature. We believe this was

due to the following reasons:

• Most vessel segmentation methods applied in the medical field are optimized for central

peak/valley intensities; but most vessels in transgenic zebrafish showed cross-sectional
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Figure 2.19: Comparing different segmentation approaches shows Otsu thresholding
to be the most applicable to our data. Comparing different segmentation
methods after GF (A, Median and Rolling Ball) and TF (B) showed that
most approaches applicable in the medical field are not directly transferable
to fluorescence microscopy images (representative images). Intensity-based
thresholding delivered the best segmentation upon visual inspection. K-means
clustering delivered reasonable segmentation outputs locally, but low-intensity
vessels were often underestimated (red asterisks). Statistical Region Merging
(SRM) consistently delivered under- or over-segmentation after either filtering
method. Similarly, level set segmentation (Fast Marching implementation)
was found to be not directly applicable without further parameter fine-tuning
to fluorescence microscopy images (inverted MIPs; representative images;
reproduced under CC licence from [2]).
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Figure 2.20: Intensity-based segmentation outcomes after GF and TF. Vascular
segmentation of original images (A) was compared after pre-processing with GF
(B) and TF (E) (relying on Gaussian Convolution (D) with user-specified scale
size), delivering binarized images (C) and (F), respectively. Segmentation after TF
enhanced dim vessels (green arrowhead), resolve complex structures (magenta
arrowhead) and overcome double-peak intensity distributions (blue arrowhead)
more reliably then GF (representative images; 4dpf Tg(kdrl:HRAS-mCherry)s916;
inverted MIPs).
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double-peak intensity distributions due to visualization of ECs in reporter lines. These

cross-sectional intensity distributions may differ in images acquired with other microscopy

setups (eg. confocal microscope); but it was decided against further comparisons due to

two reasons (i) LSFM is a state-of-the art microscopy method, which is becoming more

widely adapted due to commercially available setups, (ii) LSFM allows for a deeper tissue

penetration depth, which allowed the analysis of the total cranial vasculature, rather than

superficial vascular segments.

• Data properties differ between LSFM and MRI or CT. This is important, not just in terms of

resolution (voxel size of 0.3x0.3x0.5µm vs. 1x1x1mm, respectively), but also regarding to

input requirements and computational cost. Additionally, some analysis methods assume

voxel isotropy, which is not fulfilled in our datasets.

• The actual size of vessels is different in data obtained from human and zebrafish. Also,

the human vasculature is a vascular tree with vessel sizes over a broad scale (µm-cm),

while the zebrafish vasculature is an enclosed system with lower size variation (µm).

Thus, local vascular density may differ and vascular loops are special challenges distinct

from conventional medical applications.

• Intensity variability in MRI images is considered to be lower, as a homogeneous

distribution of contrast medium in perfused vessels is assumed.

• Data from different transgenic reporter lines are often not directly comparable, as not just

the transgenic reporter line characteristics, but also image acquisition settings can

influence data properties directly. Herein, the focus was mainly on the globally most

widely used transgenic reporter lines Tg(kdrl:HRAS-mCherry)s916 [243, 244] and

Tg(fli1a:eGFP)y1 [74]. Application to other transgenic lines may, therefore, require further

optimization or investigation.

Comparing Sato vessel (TF) enhancement vessel width to segmented (TH) vessel width

As vascular enhancement influenced vessel width measurements based on filter scale (Fig.

2.17), it was next examined how this would translate into vessel width measurements after

segmentation (TH).

Very similar results were found in the data before segmentation (Fig. 2.21), which was

confirmed by high correlations between enhancement and segmentation data (Table 2.3),

while minimal voxel error assessment showed other scale parameters to be optimal (Table

2.4). Together, this suggested that a combination of diameter measurements and visual

assessment are the most appropriate for scale parameter selection.
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Figure 2.21: Cross-sectional intensity and vessel width after enhancement at increasing
scales and segmentation. Impact of enhancement scale prior to segmentation
in the CtA (A), MMCtA (C), PMBC (E) and BA (G) (lines represent the average
value of n=12 3dpf Tg(kdrl:HRAS-mCherry)s916 larvae; 2 experimental repeats).
Measuring vessel width after TF and TH showed highest correlation of vessel
width with manual measurements when filter scale was in the range of vessel
size (B,D,F) - except for the BA (H).
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Table 2.3: This table shows the enhancement scale parameter that results in the highest
correlation between manual measurements and vessel diameters after segmentation
(top row) and the scale when the highest correlation of diameters between TF and
segmented was observed (bottom row) for the CtA, MMCtA and PMBC.

CtA MMCtA PMBC BA
Scale of Highest Correlation Manual-to-vessel width 9.3604 10.6848 10.6848 15.359
Correlation vessel width of TF to TH at 10.6848 0.878 0.894 0.940 0.973

Table 2.4: Absolute voxel error after TF and TH (lowest values highlighted in bold).
CtA MMCtA PMBC BA

Manual-FWHM 4.39 ± 3.92 2.75 ± 2.40 4.10 ± 4.53 11.60 ± 12.66
Manual-5.3424 9.74 ± 19.28 3.66 ± 1.69 13.74 ± 13.10 5.12 ± 5.40
Manual-8.0232 4.33 ± 3.00 4.41 ± 2.44 6.07 ± 4.72 8.00 ± 6.88
Manual-9.3604 4.22 ± 3.48 5.07 ± 2.08 6.59 ± 4.46 8.39 ± 7.66
Manual-10.6848 5.60 ± 3.35 5.24 ± 2.81 7.92 ± 4.68 9.14 ± 8.14
Manual-15.359 10.81 ± 4.63 9.80 ± 4.30 14.43 ± 15.10 9.03 ± 7.14
Manual-23.0385 28.00 ± 6.32 18.80 ± 8.82 26.46 ± 16.17 15.01 ± 9.24
Manual-30.718 43.25 ± 26.89 20.85 ± 11.68 32.21 ± 12.90 19.08 ± 9.93

2.3.5 Assessment of segmentation sensitivity and robustness

As no phantom models are available for the zebrafish vasculature, and manual segmentation

was too laborious (due to vessel number and image size), segmentation after GF and TF using

Otsu thresholding was compared using visual assessment, the CoV within sample groups, and

segmentation robustness on different data sets as readouts.

Segmentation is robust against changing CNR levels

Image acquisition with decreasing laser power (1.2%, 0.8%, and 0.4%) lead to a controlled

CNR decrease in the BA from 47.59±21.04 at 1.2%, 17.73±7.73 at 0.8% to 7.99±3.30 at

0.4%.

The extraction of the total cranial vascular volume (Fig. 2.3), subsequent to pre-processing

and segmentation, suggested a high segmentation robustness with both pre-processing

methods over a broad range of noise-levels (CoV of GF 7.68% and TF 6.43%, between laser

power (LP) 1.2% and 0.4%, respectively). This implied the applicability of the segmentation

pipeline to a wide range of image qualities (Fig. 2.22A).

Segmentation after GF delivered increasing vascular volume measurements with

decreasing CNR (LP 1.2% 0.002600±0.000488 mm3; LP 0.4% 0.002915±0.000512mm3),

whilst extraction of volume with TF prior to segmentation returned a reduction in volume with

CNR decrease (LP 1.2% 0.002580±0.000201 mm3; LP 0.4% 0.002482±0.0002269 mm3)
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(GF p 0.3248; TF p 0.9981; n=10; 4dpf; 2 experimental repeats; One-Way ANOVA).

To investigate the reason for vascular volume differences upon decreasing CNR levels (Fig.

2.22B) in segmented images pre-processed with either GF or TF, images were visually

compared. Decreasing laser power, therefore CNR, enabled the segmentation of anatomically

deeper vessels after GF (eg. MMCtA and BA; Fig. 2.22B red arrowheads), which may be

explained by overall equalization of intensity. While signal loss resulted in loss of segmented

vessels with TF (eg. prosencephalic artery (PrA) or DCV; Fig. 2.22C red arrowheads).

Segmentation in a double-transgenic line shows that TF delivers better segmentation

outcomes than GF

Due to the different CNR levels and transgenic reporter expression in different transgenic lines

(Fig. 2.4), we examined whether our suggested segmentation approach was applicable to a

double-transgenic such as Tg(kdrl:HRAS-mCherry)s916, Tg(fli1a:eGFP)y1 [74, 244].

The transgenic Tg(kdrl:HRAS-mCherry)s916 has higher CNR levels and is more specific to

the vasculature than Tg(fli1a:eGFP)y1 (Fig. 2.23A, eye and otic vesicle (OV) are

pan-endothelial expression and were excluded via ROI selection). Thus, it is more challenging

to extract vascular signal in Tg(fli1a:eGFP)y1 and the assumption would be that more

vasculature would be extracted due to the pan-endothelial expression of fluorophores driven

by the fli1a promotor.

Segmentation was performed individually for each transgenic reporters, vascular volumes

quantified, and images merged for representation following GF and TF (Fig. 2.23B,C).

The cranial vascular volume was extracted as the primary quantitative segmentation readout.

The extraction of vascular volume in Tg(kdrl:HRAS-mCherrys916) (kdrl) was not different after

GF or TF and subsequent segmentation via Otsu thresholding (p>0.9999; Fig. 2.23D; n=21;

4dpf; 2 experimental repeats; Kruskal-Wallis test).

The vascular volume in Tg(fli1a:eGFP)y1 (fli1a) was highly variable after GF with a CoV of

35.97%; while the CoV after TF was 17.28%.

The vascular volume was different between "GF kdrl" and "GF fli1a" (p<0.0001), while the

difference was less pronounced comparing "TF kdrl" to "TF fli1a" (p 0.0088).

Based on the high CoV in "GF fli1a" and the fact that the average total cranial vascular volume

in "GF fli1a" was 2.14 times the volume of "GF kdrl" ("TF fli1a" was 1.3 times the volume of "TF

kdrl"), it was anticipated that TF delivered a more robust and biologically relevant output.

Together, these data showed that TF and Otsu thresholding are suitable to extract the

zebrafish cerebral vasculature in both transgenic lines, and that TF-based enhancement
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Figure 2.22: Segmentation is robust against noise. (A) Segmentation robustness was
evaluated by total cranial vascular volume measurements (left Y-axis) in images
with decreasing CNR levels (blue; right Y-axis), which was achieved via decrease
of laser power (LP) from 1.2% over 0.8% to 0.4% (X-axis) during image acquisition.
This implied that segmentation post GF (black bars) or TF (grey bar) would be
applicable to a range of image qualities (n=10; 4dpf; 2 experimental repeats; One-
Way ANOVA). (B) Visual assessment of differences in vascular segmentation after
GF seemed to enhance deeper structures at lower CNR levels (eg. MMCtA or BA,
red arrows). (C) Segmentation after TF seemed to be more directly reliant on CNR
levels, leading to loss of dimmer vessels in images with decreased CNR (eg. PrA
or DCV; red arrowhead; representative images; inverted MIPs; (A) reproduced
with permission from [4] under licence 4764790544144).
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delivered better segmentation than GF.

Segmentation in pre- and post-exsanguinated samples shows that TF delivers better

segmentation outcomes than GF

Exsanguination of embryos by mechanical opening of the heart resulted in a decrease of the

total cranial vascular volume upon visual inspection (Fig. 2.24A).

This dataset was therefore examined to evaluate whether the proposed segmentation

workflow (GF or TF with following Otsu thresholding) would detect changes of total vascular

volume pre- and post-exsanguination.

After GF and segmentation, high CoVs were found in the total vascular volume in control

(38.26%) and exsanguinated (26.28%) samples. This variation was lower after TF in control

(10.22%) and exsanguinated (9.65%) samples. Volume comparison pre- and

post-exsanguination after GF was not different (p 0.2596; Fig. 2.24B; average control:

0.00227 mm3, average exsanguinated: 0.002093 mm3; n=16; 4dpf; 2 experimental repeats;

paired Student’s t-test), while volume obtained after TF was decreased (p<0.0001; Fig. 2.24C;

average control: 0.002107 mm3, average exsanguinated: 0.00184 mm3; n=16; 4dpf; 2

experimental repeats; paired Student’s t-test).

As embryos were removed from the LSFM acquisition setup for the exsanguination

procedure, vessel CNR and stack intensity were quantified to test whether the procedure had

an effect on the signal intensity. CNR in the BA (Fig. 2.24D) and the overall stack mean

intensity (Fig. 2.24E), showed no difference between acquisitions (p 0.0876 and p 0.2728,

respectively). This suggested that the detected volume differences were due to a true

biological vascular volume reduction, rather than signal intensity differences caused by sample

damage.

Together, these data suggested that TF with subsequent segmentation was able to detect

true biological differences.

Vascular volume increases from 2-5dpf

Based on the above findings, a robust and sensitive extraction of the cranial vascular volume

was demonstrated. Thus, image pre-processing and segmentation was applied to

Tg(kdrl:HRAS-mCherrys916) embryos from 2-5dpf to measure changes of the vascular volume

during early development.

Application of segmentation after GF showed an increase of the average vascular volume

between 3-5dpf (Fig. 2.25A), with vascular volume at 2dpf higher than 3dpf (p 0.0065; n=10-
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Figure 2.23: Segmentation in a double-transgenic line shows TF to deliver better
segmentation outcomes. (A) To compare the segmentation sensitivity in
transgenic lines with different CNR levels and expression patterns, the cranial
vascular volume in a double-transgenic line after pre-processing, using general
filtering (GF, (B)) or tubular filtering (TF, (C)) prior to intensity-based segmentation
was extracted. (D) The vascular volume was extracted similarly well with both
methods in the Tg(kdrl:HRAS-mCherry)s916 (kdrl; p >0.9999). In Tg(fli1a:eGFP)y1

the CoV was 35.97% after GF and 17.28% after TF. Both methods showed a
difference when comparing the vascular volume in the kdrl and fli1a transgenics
(GF p <0.0001; TF p 0.0088; n=21; 4dpf; 2 experimental repeats; Kruskas-
Wallis test; Quantification reproduced with permission from [4] under licence
4764790544144).
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Figure 2.24: Segmentation after exsanguination shows TF to deliver better segmentation
outcomes. (A) Pre-processing and segmentation were applied to embryos pre-
and post-exsanguination to test whether the differences in the cranial vascular
volume would be detected by our proposed analysis method. (B) The vascular
volume showed no difference between control and exsanguinated embryos after
GF and segmentation (p 0.2596; n= 16; 4dpf; 2 experimental repeats; paired
Student’s t-tests). (C) A vascular volume reduction was found after TF and
segmentation (p<0.0001). (D,E) Neither CNR of the BA, nor the stack mean
intensity were changed after the exsanguination procedure, which had required the
disassembly of the image acquisition setup (n= 16; 4dpf; 2 experimental repeats;
paired Student’s t-tests). Abbr.: exsang. - exsanguinated; (B-C) reproduced with
permission from [4] under licence 4764790544144.
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15; 2 experimental repeats; One-Way ANOVA). An increase in the average vascular volume

between 2-5dpf was also found after segmentation following TF (Fig. 2.25B).

Interestingly, both pre-processing methods resulted in a high CoV at 2dpf (GF 21.86% and

TF 26.44%). Visual assessment suggested that this variation was likely to be caused by two

main reasons. First, during embryonic development the head-to-trunk angle is lower in younger

embryos [44]; resulting in the need to acquire a larger stack (z-axis) to allow imaging of the

most anterior vessels. As the head-to-trunk angle and embedding of younger fish can be

variable, this might lead to higher variability during image acquisition. Second, at earlier stages

of development vessels are less defined and resemble more the structure of a vascular plexus

rather then vessels with clearly distinguishable edges (Fig. 2.26 red arrowhead). Thus it is

unclear whether the 2dpf vascular plexi are truly larger in vascular volume, or whether image

acquisition and/or image processing led to an artificial volume increase.

Therefore, until this has been explored in more detail, 2dpf data from vascular volume

difference calculations were excluded and applied One-Way ANOVA again to the acquired

data (Fig. 2.25C,D). This showed that both, GF and TF, were able to detect the vascular

volume increase from 3-5dpf with statistical significance (GF p 0.0009, Fig. 2.25C; TF

p<0.0001, Fig. 2.25D). This suggests, both methods are sensitive enough to extract

meaningful data during this developmental time-frame.

From 3-5dpf the CoV within age-groups was smaller after TF than GF (3dpf: GF 18.18% and

TF 12.94%; 4dpf: GF 17.96% and TF 14.59%; 5dpf: GF 27.14% and TF 13.20%).

Examining the differences of pre-processing on segmentation (Fig. 2.26B-D) showed that

dimmer vessels were consistently less likely to be detected after GF, whilst they were

successfully extracted after TF (Fig. 2.26; blue arrowhead: inner optic circle (IOC); purple

arrowhead: PMBC). Furthermore, while some vascular structures were not detected after GF,

which would intuitively indicate a lower vascular volume than after TF, vessels also appeared

to be less clearly discriminated and some vessels seemed to be thicker (Fig. 2.26D).

Calculating the ratio of volume after GF to TF showed a higher vascular volume after GF (ratio

GF to TF 2dpf: 1.73, 3dpf: 1.21, 4dpf: 1.19, 5dpf: 1.26).

Vascular volume is unchanged upon inhibition of Notch signalling

Notch inhibition was achieved by application of the γ-secretase inhibitor DAPT (12h 50µM;

Fig. 2.27A). Measuring the distance between the left and right PMBC showed an decrease in

growth upon DAPT treatment (p 0.0357; Fig. 2.27B; control 415.02±12.02µm, DAPT

406.9±13.37µm; n=24; 4dpf; 3 experimental repeats; unpaired Student’s t-test). The mean
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Figure 2.25: Quantification of cranial vascular volume during early embryonic
development. (A) The total cranial vascular volume after GF was not changed
from 2-5dpf (p 0.9998; 2-3dpf p 0.0065, 3-4dpf 0.6181, 4-5dpf p 0.0465). (B) An
increase in the total cranial vascular volume was observed after TF (p 0.0008;
2-3dpf p 0.9577, 3-4dpf p 0.0596, 4-5dpf p 0.1150). (C) Comparing GF data
from 3-5dpf showed an increase for the examined time-frame (p 0.0009; 3-4dpf p
0.436, 4-5dpf p 0.0243). (D) Comparing TF data from 3-5dpf showed an increase
for the examined time-frame (p<0.0001; 3-4dpf p 0.436, 4-5dpf p 0.0243; all
graphs: larvae 2dpf n=10; 3dpf n=12; 4dpf n=13; 5dpf n=15; 2 experimental
repeats; One-Way ANOVA).
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Figure 2.26: Comparing segmentation outcomes from 2-5dpf. (A) Original images for
analysis. (B) Segmented vasculature after GF. (C) Segmented vasculature after
TF. Green arrowhead indicates MMCtA at 2dpf. Magenta arrowhead indicates
PMBC. Blue arrowhead indicates IOC (inverted MIPs). (D) Direct comparison
of segmented images after GF and TF, based on differences in detection.
Green represents vasculature detected by GF, but not TF. Magenta is vice versa
(representative images; false colour MIPs).
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stack intensity showed no difference between untreated and treated larvae (p 0.1238; Fig.

2.27C; control 230.6±12.65, DAPT 225.4±9.068; unpaired Student’s t-test). The cranial

vascular volume showed no difference (p 0.1385; Fig. 2.27D; control 2181668±210038µm3,

DAPT 2302225±302607µm3unpaired Student’s t-test). These data suggested that while the

lateral growth was impacted by Notch signalling inhibition, this did not translate into changes

of the cranial vascular volume.

Vascular volume is decreased following inhibition of VEGF signalling

VEGF inhibition was achieved by application of the VEGFR inhibitor AV951 (2h 250nM; Fig.

2.28A). The distance between left-right PMBC was not changed (p 0.7087; Fig. 2.28B; control

412.00±10.74 µm, AV951 413.41±15.47µm; n=30-31; 4dpf; 3 experimental repeats; unpaired

Student’s t-test). The mean stack intensity was similar between untreated and treated larvae

(p 0.4187; Fig. 2.28C; control 229.2±13.66, AV951 232.2±15.03; n=30-31; 4dpf; 3

experimental repeats; unpaired Student’s t-test). Interestingly, the cranial vascular volume was

decreased after treatment with AV951 (p 0.0039; Fig. 2.28D; control 2224310±205487µm3,

AV951 2014663±245664µm3; n=30-31; 4dpf; 3 experimental repeats; unpaired Student’s

t-test). This data suggested that VEGF signalling is required to establish and/or maintain the

cranial vascular volume, in agreement with the literature [272, 273].

2.4 Conclusion

Vascular data properties were assessed using CNR measurements. Measuring the vascular

CNR in the BA showed differences of signal intensity between transgenic reporter lines, which

is likely to be caused by differences in local transgene expression (promotor or fluorophore

levels) as well as image acquisition artefacts (Fig. 2.4). CNR was independent of vessel size

and anatomical location, which suggested that the examined vessels should be detected with

equal likelihood.

Encountered motion artefacts, caused by muscle contraction, cardiac pulsation, or gravity,

interfered with structural vascular integrity, especially in time-lapse acquisitions (Fig. 2.6), and

to a lesser extent in single-time-point 3D stack acquisition (Fig. 2.7). Correction of motion

artefacts, using linear stack alignment based on SIFT [274], successfully restored data integrity.

While motion extent may differ with other methods of sample embedding (eg. fluorinated

ethylene propylene (FEP) tubing [253]), or different percentages of agarose, we consider the

presented assessment and correction of motion as proof of principle for the necessity of motion
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Figure 2.27: Notch inhibition does not lead to a change in cerebrovascular volume. (A)
Inhibition of Notch signalling was achieved by application of the pharmaceutical
γ-sectretase inhibitor DAPT (12h 50µM). (B) Measurement of distance between
left and right PMBC showed a decrease upon Notch inhibition (p 0.0357; n=24;
4dpf; unpaired Student’s t-test; 3 experimental repeats). (C) Mean stack intensity
measurement showed no difference upon treatment (p 0.1238; n=24; 4dpf;
unpaired Student’s t-test; 3 experimental repeats). (D) Cranial vascular volume
measurement showed no difference (p 0.1385; control n=21, DAPT n=22; 4dpf;
unpaired Student’s t-test; 3 experimental repeats).
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Figure 2.28: VEGF inhibition leads to a decrease in cerebrovascular volume. (A) Inhibition
of VEGF signalling was achieved by application of the pharmaceutical VEGFR
inhibitor AV951 (2h 250nM). (B) Measurement of distance between left and right
PMBC showed no difference in growth (p 0.7087; control n=30 , AV951 n=31;
4dpf; unpaired Student’s t-test; 3 experimental repeats). (C) Mean stack intensity
measurement showed no difference upon treatment (p 0.4187; control n=30
, AV951 n=31; 4dpf; unpaired Student’s t-test; 3 experimental repeats). (D)
Cranial vascular volume measurement showed a reduction upon VEGF signalling
inhibition (p 0.0039; control n=21 , AV951 n=23; 4dpf; unpaired Student’s t-test; 3
experimental repeats).
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correction to restore data integrity, as well as the usability of Scale Invariant Feature Transform

(SIFT) to correct for motion artefacts.

In the scope of image-enhancement, prior to segmentation, the application of a general filter-

set (Median filter radius 6 and Rolling Ball algorithm of size 200) was sufficient to significantly

increase the vascular CNR in the BA (Fig. 2.9).

Evaluating image-enhancement using "Vessel Enhancement Filters" implemented in Fiji

[127], the "Frangi" Plugin was not applicable to fluorescence microscopy images of the dorsal

cranial vasculature in zebrafish; while the "Tubeness Filter" Plugin delivered satisfactory

enhancement of tubular, and suppression of non-tubular, structures (Fig. 2.10 2.17, 2.19,

2.20; filters based on [98, 99], respectively).

Comparison of different segmentation methods showed that intensity-based thresholding,

using Otsu thresholding, sufficiently distinguished vascular from non-vascular tissue for all

evaluated datasets (Fig. 2.18, 2.19), while disappointing results were obtained with initial

implementations of k-means clustering, SRM, and level set segmentation. However, it was

beyond the scope of this work to fully evaluate and optimise all of the parameters involved in

these methods and so future work may be able to develop bespoke solutions using these

approaches.

Due to the lack of a "gold-standard" vascular model of zebrafish, segmentation sensitivity

and robustness were assessed in datasets with varying CNR, double-transgenic embryos, and

pre- vs. post-exsanguination. Using the total cranial vascular volume as readout, GF and TF

pre-processing delivered good results in data with decreased CNR (Fig. 2.22). Additional

quantification in the double-transgenic line Tg(kdrl:HRAS-mCherry)s916,Tg(fli1a:eGFP)y1

[74, 243, 244] showed that TF-based pre-processing combined with Otsu segmentation

delivered results with lower variation in the total cranial vascular volume at 4dpf, especially for

the Tg(fli1a:eGFP)y1 data (Fig. 2.23). Both pre-processing methods showed a higher vascular

volume in Tg(fli1a:eGFP)y1 than Tg(kdrl:HRAS-mCherry)s916 (GF 2.14 and TF 1.3,

respectively). Our data show that TF and Otsu-based thresholding are suitable to segment the

vasculature in different transgenic lines, even though the approach was originally optimized for

Tg(kdrl:HRAS-mCherry)s916.

Total vascular volume measurements in embryos pre- and post- exsanguination showed that

segmentation subsequent to TF was sufficient to detect the vascular differences, while this was

not the case for pre-processing with GF. Also, a lower variation in the total vascular volume

between samples after TF was found (Fig. 2.24). Lastly, we established that the differences in

the total vascular volume between control and exsanguinated samples were not introduced by
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changes of vascular CNR or whole-image intensity. Thus, our proposed segmentation method

is able to detect changes in the total cranial vasculature sufficiently.

Analysis of the total cranial vascular volume during early embryonic development showed

a steady increase of vascular volume between 3-5dpf after pre-processing with either GF or

TF (Fig. 2.25). Regardless of pre-processing approach, the CoV of the total vascular volume

was highest at 2dpf. Also, segmentation with GF resulted in a larger cranial vascular volume,

with less defined vascular structures and thicker vessels than after TF. Lastly, it was observed

that dimmer vessels that are successfully enhanced and extracted after TF, where lost upon

pre-processing with GF (Fig. 2.26). Thus, our data suggest that application of TF prior to

intensity-based thresholding is the more reliant and accurate method for the segmentation of

the zebrafish cranial vasculature in images acquired with LSFM.

In summary, we presented an analysis and understanding of our data, which enabled us to

develop suitable enhancement and segmentation methods using freely available image

analysis software framework Fiji. We performed extensive assessments to establish the

robustness of the methods for segmenting the zebrafish cranial vasculature and demonstrated

their suitability for providing biologically relevant insights. The validated image segmentation

workflow described in this Chapter will provide the foundation for the analysis presented in the

remainder of this thesis.
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3 Vascular Intra-Sample Symmetry and
Inter-sample Similarity

3.1 Introduction

Most animals (99%) show overall bilateral symmetry [275], although the positioning of internal

organs is often lateralized (eg. heart is located in the left thoracic cavity). The processes

that break axis symmetry, to enable the lateralized positioning of organs, are highly conserved

between vertebrates [276, 277] and are of clinical relevance due to clinical manifestations such

as situs inversus or congenital heart diseases such as heterotaxy [278, 279].

The brain is structurally and functionally lateralized, and zebrafish have helped to

understand the mechanisms of brain lateralization [280, 281, 282]. Key factors are Nodal

[277, 283, 284, 285] and Notch signalling [286, 287], where Nodal is a key for overall body

a-/symmetry, and Notch is required more specifically for brain/neuron lateralization in human

and zebrafish. Increasing evidence suggests that the direction of brain lateralization is

independent of age, but strength of lateralization does depend on age [288, 289, 290], with

left-right asymmetries developing early.

Although the overall topology of the cranial vasculature is symmetric [291], lateralization

of cerebral blood flow is associated with behavioural lateralization, and cognitive stimulation

in humans. Dysfunctions of blood flow lateralization are associated with conditions such as

depression or schizophrenia [292, 293, 294].

In zebrafish, vascular symmetry and lateralization are of increasing interest to help

understand vascular patterning and remodelling [200]. There is currently no method available

to compare vascular symmetry, which would allow us to understand (i) vascular (a)symmetry

in general, (ii) whether symmetry changes during early embryonic development, (iii) if Notch

signalling components are required to establish symmetry or lateralization, similar to their role

in brain/neuron lateralization.

In addition to intra-sample left-right symmetry/variability, similarity/heterogeneity between

individuals is of increasing interest to understand inter-sample variability which plays a role in

the planning of surgical intervention, as well as predisposition to diseases such as

atherosclerosis [295, 296, 297].

To compare vascular geometry between samples, image registration can be applied to bring

objects into spatial correspondence [298]. Generally, a moving image IM (x) is registered by

transformation to a target/fixed image IT (x). Transformation methods for image registration
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can be classified, depending on the registration methodologies and constraints, into translation,

rigid, affine, or non-linear methods, often based on B-spline or kernel spline transforms [298,

299, 300].

The extraction of features that drive the transformation estimation are typically based on

intensity distributions, image-intrinsic features, or object landmarks [301]. Subsequent to the

extraction of features, images/objects are brought into spatial correspondence by reduction of

distances (or increase of similarity) between corresponding image features.

Inter-sample 3D registration of zebrafish larvae has previously been used to derive structural

templates of the brain [302, 303, 304], but 3D registration of the zebrafish vasculature has

only been applied to caudal vascular beds and did not include comparative measures or the

construction of vascular templates or "idealised" fish at certain ages [193]. An inter-sample

registration approach for the 3D cranial vasculature of transgenic zebrafish has never been

established. Thus, there is a need to establish such an approach to allow the study of inter-

sample similarity and variability, and how these change in development or disease.

When comparing vascular topology between samples the following must be considered: (i)

the sparse nature of the vasculature in images challenges the extraction of features for

automatic registration; (ii) due to the nature of fluorescent transgenic reporter lines intensity

fluctuations may hamper intensity-based registration; (iii) intrinsic biological variability of the

vascular architecture impacts the registration outcome; (iv) image acquisition angles can vary

along all common axes, suggesting the necessity for a comprehensive registration method

which takes all directions into consideration; (v) interpolation of data during registration could

falsify true biological data and the subsequent quantification.

In this chapter, we develop and apply image analysis workflows to answer the following

questions:

(1) Is the cerebral vasculature of zebrafish symmetric during early embryonic development?

(2) Does the Notch signalling component dll4 play a role in cerebrovascular symmetry?

(3) Do fish of the same age share enough overall similarity to allow for inter-sample

registration?

(4) Can anatomical landmarks be identified for inter-sample registration?

(5) Can automatic inter-sample registration be applied to bring samples into spatial

correspondence without a priori knowledge?

(6) Can age-specific templates of vascular similarity be established?

(7) Does registration to an individual template perform better than registration to an averaged

template?
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(8) Does loss of dll4 impact cerebrovascular topology similarity?

3.2 Material and methods

3.2.1 Zebrafish strains, handling, and husbandry

Zebrafish handling and husbandry were performed as described in 2.2.1.

Tg(kdrl:HRAS-mCherry)s916 [244] line was used for vasculature visualization in 2-5dpf

embryos.

3.2.2 Morpholino antisense gene knockdown

Inhibition of Notch signalling was investigated by injection of an ATG blocking

morpholino (MO) against delta-like ligand 4 (dll4; 3ng; Genetools, LLC; sequence 5’ -

GAGAAAGGTGAGCCAAGCTGCCATG - 3’) [305] and notch 1b (0.25ng; Genetools, LLC;

sequence 5’- GTTCCTCCGGTTACCTGGCATACAG - 3’) [306]. This MO prevented dll4 RNA

transcription, thus, dll4 protein production (more information on morpholinos (MOs): [307]).

Control MO injection was performed, according to the same protocol, with final concentrations

as above (5’-CCTCTTACCTCAGTTATTTATA-3’; Genetools, LLC). All MO injections were

conducted at one-cell-stage using phenol red as injection tracer.

3.2.3 Imaging methodology

Image acquisition was performed as in section 2.2.2.

3.2.4 Intra-sample symmetry

Processing for intra-sample symmetry quantification

Intra-sample symmetry was assessed using the segmented vasculature to allow topological

(rather than intensity-based) similarity assessment (Fig. 3.1A). Image rotation was performed

to align the anterior-posterior axis of samples with the image y-axis to allow for subsequent

mirroring of the right vasculature by horizontal transformation (Fig. 3.1B). ROI selection was

performed on the MIP as described previously in section 2.2.6 [2] and the area outside of the

ROI was set to 0 (Fig. 3.1C; Edit > clear outside). The mirroring axis was chosen centrally

along the BA, between L-R PCS, between L-R MMCtA and the bifurcation point of L-R anterior

cerebral vein (ACeV) (Fig. 3.1D). The right vascular volume was mirrored by horizontal image
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Figure 3.1: Workflow for intra-sample symmetry measurement. A Image pre-processing
included motion correction, enhancement using Sato enhancement filtering and
segmentation using Otsu thresholding, as described in section 2.3.4. B Image
rotation was performed to align sample anterior-posterior axis with image y-axis.
C ROI was selected from 2D MIP and transferred to 3D stack to remove signal
outside the ROI. D Cerebral vascular volume was quantified and the mirroring
axis determined along BA, between L-R PCS, between L-R MMCtA, and the
bifurcation point of L-R ACeV. E Right vascular volume was mirrored by horizontal
transformation. F Vascular volume was quantified for the left (green) and right
(magenta) vasculature. Similarity measures were extracted to compare left and
mirrored right vasculature (Jaccard Index, Dice Coefficient, Total Overlap, MI,
MSE, and SSD). G Left and right vascular network length were quantified after
skeletonization to extract vascular centrelines (representative images).

transformation (Fig. 3.1E). Similarity was compared as described below (Fig. 3.1F). 3D

skeletonization was performed using the Fiji Plugin "Skeletonize 2D/3D". Following

skeletonization, network length was quantified as the number of skeleton voxels (Fig. 3.1G).

Measurement of image similarities

To compare mathematical morphology between two images (eg. left and right vasculature or

moving and target image; M and T, respectively) the Fiji Plugin MorphoLibJ [308] was used to

compute the Jaccard Coefficient (Eq. 3.1), Dice Coefficient (Eq. 3.2) and Total Overlap (Eq.

3.3) [309].
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JC(M,T ) =

∑
|M ∩ T |∑
|M ∪ T |

(3.1)

DC(M,T ) = 2

∑
|M ∩ T |∑

(|M |+ |T |)
(3.2)

TO(M,T ) =

∑
|M ∩ T |∑
|T |

(3.3)

Quantification of the mutual information (Eq. 3.4), MSE (Eq. 3.5) and Sum of Squared

Differences (SSD) (Eq. 3.6) was performed using Matlab.

MI(M,T ) =
∑
M,T

p(M,T )log
p(M,T )

p(M)p(T )
(3.4)

MSE(M,T ) =
1

N

∑
|M − T |2 (3.5)

SSD(M,T ) =
∑
|M − T |2 (3.6)

Visual representation of structural similarity was achieved by visualization of vascular voxels

present in both images of interest using "Image Calculator > AND" in Fiji to show voxels which

are present in both images.

3.2.5 Manual measurements of growth rates

Measurements were performed manually using the line ROI tool in Fiji [127] at the positions

indicated in Fig. 3.2. Distance [x,y; µm] between left and right MMCtA was measured at the

most anterior points, PMBC distance was measured at the height of posterior edges of the

eyes, BA diameter was measured before branching into PCS’ and PCS”, DA diameter was

measured at the height of posterior cerebral vein (PCeV) branching into PHBC.

Brain growth [x,y; µm] (Fig. 3.2B) measurement positions were selected as follows: forebrain

at the height of PrA, midbrain at the height of posterior edges of the eyes, hindbrain at the

height of PCeV branching into PHBC (see also Appendix A).
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Figure 3.2: Anatomical positions for manual measurements of growth rates. Growth rate
was measured as distance between left and right MMCtA as well as PMBC. Vessel
diameters were measured in BA and DA (A). Brain growth rates were measured as
distance of forebrain, midbrain, and hindbrain (B).

3.2.6 Manual landmark-based inter-sample registration

Selection of anatomical landmarks

To understand regions of similarity between different samples, their vasculatures were visually

compared. An intensity-based lookup table (LUT) was used to allow for simultaneous

assessment of fluorescence-level similarities and variabilities to find regions of high similarity,

distributed along the common body axis (Fig. 3.3), to identify anatomical landmarks.

Registration using anatomical landmarks

Inter-object registration from 2-5dpf was conducted with the "landmark registration" Plugin in

Fiji using a rigid, affine and thin-plate spline transformation [127] to test the impact of different

degrees of transformation freedom on the registration outcome (Fig. 3.4A).

The plugin calculates a transformation between two corresponding landmark clouds

(manually placed, Fig. 3.3) and renders a transformed image using Moving Least Squares

(Fig. 3.5A). Landmarks were placed manually in segmented images with the caveat to

distribute them along the common body axis (Fig. 3.3). Target fish were selected based on (a)

sample orientation along common image axis (anterior-posterior along image y-axis, coronal

plane along image z-axis and x-axis), (b) all common vessels visualized in image, (c) no

obvious abnormalities. Similarity between samples before and after registration was quantified

as described in section 3.2.4 and shown in Fig. 3.4B,C (M and T, refer to moving and target

image, respectively).
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Figure 3.3: Eleven landmarks were identified for manual landmark-based registration.
Anatomical locations of eleven manually selected landmarks were considered to
cover principal body-axis along anterior-posterior, left-right as well as ventral-dorsal.
(Abbr.: PrA - prosencephalic artery, ACeV - anterior cerebral vein, PCS - posterior
communicating segment, MtA - mesencephalic artery, PHBC - primordial hindbrain
channel, DLV - dorsal longitudinal vein;)

Figure 3.4: Registration methods and assessment of similarity. (A) Registration methods
with different degrees of freedom were tested. (B) Similarity of images (M and T)
was compared before and after registration (&& meaning and ; !! meaning not).
(C) Jaccard Index, Dice Coefficient and Total Overlap were used to quantify object
overlap before and after registration.
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Automatic inter-sample registration

The "2D/3D descriptor-based registration" Fiji plugin, implemented by Stephan Preibisch [310],

was tested on segmented images. This registration approaches relies on the extraction of

2D/3D descriptors, which uses a DoG to extract descriptors and fits their maximum intensity

to sub-pixel/sub-scale accuracy to voxels using a 3D quadratic fit (Fig. 3.5B) [311]. Following

detection, the translation and rotation invariant local geometric descriptor is established by the

local descriptor constellation (of the central descriptor to its neighbours). The following settings

were used: interactive brightness detection (user sets the threshold for detecting descriptors),

3D quadratic fit for sub-pixel localization (to locate the intensity maxima to sub-pixel or sub-

scale accuracy by fitting a 3D quadratic fit; as described in [311]), rigid (3D) transformation

model, not pre-aligned images, 6 neighbours for descriptors (descriptor is described by the

geometric constellation of 6 neighbours), redundancy of 3 neighbours, and a Random Sample

Consensus (RANSAC) error of 30 voxels (for outlier removal) [312]. Sigma was tested from 6-

10 with one-step intervals (sigma being the standard deviation of the DoG to extract descriptors;

see interest point detection in scale-space [148, 149, 150]).

The automatic rigid inter-sample registration method, implemented by Johannes Schindelin,

Benjamin Schmid, and Mark Longair, is based on the Virtual Insect Brain Protocol (VIB)

protocol (Fig. 3.5C) [313, 314]. Briefly, the centre of gravity of segmented objects is used to

calculate a global rigid transformation. This global rigid registration is then used to initialise

local rigid alignments which are achieved by an iterative optimization algorithm (conjugate

direction search [315]) which uses scale space down-sampling to align stacks rigidly [314]. A

diffusion-like iterative algorithm is then used to interpolate between local rigid transformations

(vector field with the displacements is interpolated). The parameters used were as follows:

transformation without initial transform, 5 best matching orientations for further optimization,

tolerance of 10-50, downsampling 2-6 times (scale space), no ROI reduction (ie. bounding box

selection) for optimisation, using Euclidean measure of difference, and showing transformed

image.

Dataset to validate inter-sample registration

A first round of image acquisition was performed as described in section 2.2.2. Following, the

embedding agarose around the sample was removed, the sample embedded in fresh agarose,

and imaged again to acquire images from the same sample. The second approach acquired

an initial image as above, then the plunger manually moved (side-ways, up-down, and rotation;

see Fig. 1.2), and an image was acquired of the same fish after this movement. In total
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Figure 3.5: Schematics of the examined 3D registration approaches. (A) Landmark-based
registration. (B) 2D/3D descriptor-based registration. (C) Automatic 3D rigid
registration (based on VIB).
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four acquisitions of the same sample were performed, with one serving as a target for the

registration of the other three acquisitions.

3.2.7 Establishment of a vascular template at different developmental stages

To examine regions of vascular similarity and variability, vascular templates were established

which allow for the identification of vessels consistently appearing at certain ages. This would

allow the establishment of an "ideal" template fish at different ages to examine vascular

similarity individual between fish, as well as vascular growth. After the initial inter-sample

registration, three samples were overlaid in one image and LUT blue, green and red were

assigned to individual embryos. MIPs from stacks, as well as resliced stacks, were produced

to compare 2D similarity.

To further examine true 3D topological similarity between samples, six embryos were

registered to a target and vascular voxels which were found in at least two fish extracted (Fig.

3.6; Fig. 3.7). This allowed the construction of vascular templates based on voxel-based

similarities to produce shape-based averages (versus intensity-based similarity).

Figure 3.6: Voxel-based overlap was used to generate averaged templates. (A-C)
Segmented data. (D) Voxel-based majority decision to create shape-based average
template.

3D rendering was performed using Arivis Software, and used for visual examination to

produce vascular template schematics. Schematics, based on 3D vascular similarity, were

produced using Inkscape software.

3.2.8 Vascular surface and density

The total vascular surface was calculated in images after edge-detection with the Sobel edge

detection in segmented images [316, 317]. As it is not clear how much of the voxel contributes

to the surface (one or multiple faces, edges, or sides), the number of voxel was quantified as
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Figure 3.7: Producing vascular templates. Samples were registered to a target (top panel)
and vascular voxels occuring in at least two samples extracted to establish vascular
templates (bottom panel).
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in section 2.2.6 within the the user-defined vascular region of interest (Fig. 2.3) rather than the

surface.

The vascular cranial density (D) was derived by measurement of the total volume within the

user-defined vascular region of interest (Vtotal) divided by the vascular volume within this region

(Vvascular; Eq. 3.7).

D = Vtotal/Vvascular (3.7)

3.2.9 Statistics and data display

As described in section 2.2.10.

3.3 Results and discussion

3.3.1 Intra-sample symmetry

The cerebral vasculature is symmetric from 2-5dpf

To investigate whether embryonic vascular growth in zebrafish was symmetric, left-right

vascular topology was examined from 2-5dpf (Fig. 3.8A-D) and similarity studied initially by

visually assessing vascular overlap (Fig. 3.8E-H). A high degree of left-right symmetry was

observed and mapping of left-right symmetric vessels (Fig. 3.8I-L) suggested that vessels

formed by vasculogenesis (such as BA, PHBC, and PMBC) were more left-right symmetric

than vessels formed by angiogenesis (such as CtA and MMCtA).

Quantifying the cranial vascular volume from 2-5dpf showed an increase over time

(p<0.0001), with no differences between the left and right vasculature (Fig. 3.9A; 2dpf L-R

p>0.9999, 3dpf L-R p>0.9999, 4dpf L-R p>0.9999, 5dpf L-R p 0.9946; 2dpf n=9, 3dpf 2=9,

4dpf 2=10, 5dpf 2=10; 2 experimental repeats; One-Way ANOVA). Similarly, the total cranial

vascular length increase from 2-5dpf (p 0.0194), with no left-right differences (Fig. 3.9B; 2dpf

L-R p>0.9999, 3dpf L-R p>0.9999, 4dpf L-R p>0.9999, 5dpf L-R p>0.9999; Kruskal Wallis

test).

To compare left-right vascular topology after segmentation, the left-right Jaccard Index (Fig.

3.10A), Dice Coefficient (Fig. 3.10B), and Total Overlap (Fig. 3.10C) were quantified. No

difference was found between the left and right vascular topology in embryos from 2-5dpf

(Jaccard p 0.8642; Dice p 0.8058; Total Overlap p 0.5364). Surprisingly, generally low levels of

similarity were observed, but as this was the first comparison of this kind in the zebrafish

cerebral vasculature there is no reference as to what "high" or "low" similarity is.
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Figure 3.8: Visual assessment of intra-sample symmetry. (A-D) MIPs of left (green) and
right (magenta) vasculature, showing regions of similarity (white). (E-H) Regions of
left-right vascular overlap, suggesting vessels formed by vasculogenesis were more
symmetric than vessels formed by angiogenesis. (I-L) Schematics highlighting left-
right symmetric vessels from 2-5dpf.

Figure 3.9: Vascular volume and length are symmetric from 2-5dpf. (A) Vascular volume
was not different between left (L) and right (R) side, but an overall increase was
encountered from 2-5dpf (p<0.0001; 2dpf L-R p>0.9999, 3dpf L-R p>0.9999, 4dpf
L-R p>0.9999, 5dpf L-R p 0.9946 ; 2dpf n=9, 3dpf n=9, 4dpf n=10, 5dpf n=10;
2 experimental repeats; One-Way ANOVA). (B) Vascular network length was not
different between left (L) and right (R) side, but an overall increase was encountered
from 2-5dpf (p 0.0194; 2dpf L-R p>0.9999, 3dpf L-R p>0.9999, 4dpf L-R p>0.9999,
5dpf L-R p>0.9999; Kruskal Wallis test).
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Figure 3.10: Vascular topology is symmetric from 2-5dpf. A Jaccard Index was not changed
from 2-5dpf (p 0.8462; 2dpf n=9, 3dpf n=9, 4dpf n=10, 5dpf n=10; 2 experimental
repeats; One-Way ANOVA). B Dice Coefficient was not changed from 2-5dpf (p
0.8058; data as B; One-Way ANOVA). C Total Overlap was not changed from 2-
5dpf (p 0.5364; data as B; One-Way ANOVA). D MI was changed from 2-5dpf,
where lowest MI was observed at 2dpf (p 0.0346; data as B; One-Way ANOVA).
E MSE was increased from 2-5dpf with the error increasing with age (p<0.0001;
data as B; One-Way ANOVA). F SSD was increased from 2-5dpf with the error
increasing with age (p 0.0029; data as B; One-Way ANOVA).

I further quantified MI (Fig. 3.10D; p0.0346) which was lowest at 2dpf, peaked at 3dpf-4dpf

and dropped again at 5dpf. Furthermore, quantification of MSE (Fig. 3.10E; p<0.0001) and

SSD (Fig. 3.10F; p 0.0029) showed an increase from 2-5dpf. Together, these data suggest that

mutual information, MSE, and SSD were the lowest at 2dpf, and increased during development.

It was anticipated that this increase of error was potentially impacted by an increase of vascular

volume over time rather then true biological differences.

Together these data suggest that vascular volume, and length are globally left-right

symmetric during the examined timeframe, but vascular topology changes over time and

symmetry is mainly observed in vessels formed by vasculogenesis.

In future, voxel-wise statistical comparisons, or more detailed vessel specific parametric
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modelling, would be interesting to explore to gain further insights into regional similarity and

variability.

Loss of dll4 impacts vascular growth, but not symmetry

To investigate the impact of loss of dll4 on vascular growth and left-right-symmetry dll4

knockdown was performed using an antisense morpholino (MO; Fig. 3.11A). Measurement of

PMBC width showed a reduction in dll4 morphants at 3dpf (Fig. 3.11B; control-dll4 MO

p<0.0001, control MO-dll4 MO p 0.0007), while distance of MMCtA anterior ends showed no

difference (Fig. 3.11C; control-dll4 MO p 0.1997, control MO-dll4 MO p 0.1520). Quantification

of MMCtA angle showed a lower angle in dll4 morphants (Fig. 3.11D; control-dll4 MO p

0.0079, control MO-dll4 MO p 0.0029), while PMCtA angle was higher in dll4 morphants than

in control groups (Fig. 3.11E; control-dll4 MO p 0.0125, control MO-dll4 MO p 0.0158).

Together, the observed MMCtA and PMCtA angles recapitulated the vascular patterning at

2dpf rather than 3dpf (see Fig. 3.13).

The cranial vascular volume was decreased after dll4 knockdown (Fig. 3.12A; control-dll4

MO p 0.0436, control MO-dll4 MO p 0.0315), while no alteration of left-right volume (Fig. 3.12B;

p 0.0055; control L-R p>0.9999, control MO L-R p 0.9996) or vascular network length (Fig.

3.12C; p 0.8557; control L-R p 0.9979, control MO L-R p 0.9473, dll4 MO L-R p>0.9999) was

encountered. Comparison of left-right vascular topology showed a decrease of MSE after dll4

knockdown (Fig. 3.12D; control MO -dll4 MO p 0.0060), while SSD (Fig. 3.12E; control-dll4 MO

p 0.0750, control MO-dll4 MO p 0.2009) or MI (Fig. 3.12F; control-dll4 MO p 0.9584, control

MO-dll4 MO p 0.3993) were not different. This difference in MSE was thought to be due to

volumetric differences encountered in the dll4 MO group.

In summary, our data suggested that dll4 is required for early embryonic vascular growth

(vascular volume) and maturation (vessel rearrangements), but that a loss of dll4 would not

impact vascular left-right symmetry at the investigated time point.

Future work, could examine how data normalization of dll4 MO vascular parameters

translates into the findings of reduced vascular growth. We here abstained from normalization

procedures as in-depth analysis is needed to understand the appropriate type of

normalization, such as

(a) rescaling factors to reduce variability (fold-changes, consideration of minimum or

maximum), which requires appropriate parameters establishment,

(b) normalization to a set parameter of control samples, which might result in not being able

to detect subtle biological differences,
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(c) normalization to intrinsic parameters such as brain volume, which could be achieved by

data acquisition in double-transgenic lines but therefore would result in doubled data sizes.

Figure 3.11: Manual measurements show that dll4 is required for early embryonic
vascular growth. A The impact of dll4 knockdown on vascular growth was
examined in 3dpf uninjected controls (control), control morpholino (control MO)
injected samples and dll4 MO injected samples. B Expansion of the PMBC was
decreased upon dll4 MO injection (control-dll4 MO p<0.0001, control MO-dll4 MO
p 0.0007; 3dpf; control n=16, control MO n=15, dll4 MO n=15; 2 experimental
repeats; Kruskal-Wallis test). C Distance between anterior ends of MMCtA was
not changed upon dll4 knockdown (control-dll4 MO p 0.1997, control MO-dll4 MO
p 0.1520; data as in B; One-Way ANOVA). D MMCtA angle was decreased upon
dll4 knockdown (control-dll4 MO p 0.0079, control MO-dll4 MO p 0.0029; data as
in B; One-Way ANOVA). E PMCtA angle increased upon dll4 knockdown (control-
dll4 MO p 0.0125, control MO-dll4 MO p 0.0158; data as in B; One-Way ANOVA).

3.3.2 Inter-object registration enables examination of vascular similarity

Manual measurements to obtain initial insights into structural similarity

To understand vascular growth and its reproducibility, manual measurements of selected

vessels were performed (Fig. 3.13A). Lateral growth measurement of the primordial midbrain

channel (PMBC) showed an increase from 2-4dpf (Fig. 3.13B; p<0.0001; One-Way ANOVA).
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Figure 3.12: Automatic measurements show that dll4 is required for early embryonic
vascular growth. A Total cranial vascular volume was decreased upon dll4
knockdown (control-dll4 MO p 0.0436, control MO-dll4 MO p 0.0315; 3dpf; control
n=16, control MO n=15, dll4 MO n=15; 2 experimental repeats; One-Way ANOVA).
B Left-right vascular volume was decreased in dll4 MO, but not different within
groups (p 0.0055; control L-R p>0.9999, control MO L-R p 0.9996, dll4 MO L-R
p>0.9999; data as in A; One-Way ANOVA). C Left-right vascular network length
was not different between or within groups (p 0.8557; control L-R p 0.9979, control
MO L-R p 0.9473, dll4 MO L-R p>0.9999; data as in A; One-Way ANOVA). D MSE
of L-R vasculature was not different between uninjected controls and dll4 MO (p
0.0574), but different between control MO and dll4 MO (p 0.0060; data as in A;
One-Way ANOVA). E SSD of L-R vasculature was not different between groups
(control-dll4 MO p 0.0750, control MO-dll4 MO p 0.2009; data as in A; One-Way
ANOVA). F MI of L-R vasculature was not different between groups (control-dll4
MO p 0.9584, control MO-dll4 MO p 0.3993; data as in A; One-Way ANOVA).
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Interestingly, the growth was highly similar between samples at the investigated time points,

with coefficients of variation of: 2dpf 5.21%, 3dpf 5.78%, 4dpf 6.08% and 5dpf 5.24%.

Quantification of width between anterior ends of middle metencephalic central artery (MMCtA)

showed a decrease over time (Fig. 3.13C; p<0.0001; One-Way ANOVA), while MMCtA length

increased (Fig. 3.13D; p<0.0001; One-Way ANOVA; coefficients of variation as follows:

MMCtA width 2dpf 11.90%, 3dpf 25.11%, 4dpf 22.55% and 5dpf 28.77%; MMCtA length 2dpf

11.50%, 3dpf 12.55%, 4dpf 8.38% and 5dpf 4.98%). To examine whether the observed

MMCtA anterior width changes were caused by overall vessel rearrangements or changes in

the vessel angle respective to the main anterior-posterior body axis, MMCtA angle was

quantified. The MMCtA angle increased from 2-3dpf (Fig. 3.13E; p<0.0001; Kruskal-Wallis

test). Similarly, the angle of the posterior metencephalic central artery (PMCtA) decreased

from 2-3dpf (Fig. 3.13F; p<0.0001; One-Way ANOVA). Together these data showed that the

base of the MMCtA and PMCtA did not rearrange, but that their angle, respective to the main

body axis, changed over time (Fig. 3.13G).

Brain growth, like vascular growth, was highly consistent during early embryonic development

(CoV: 3dpf: 6.98%, 4dpf: 5.37%, 5dpf: 2.86%). Assessed lateral brain growth in the forebrain

did not change significantly during the first days of development (Fig. 3.14A; p<0.0001; One-

Way ANOVA), while the midbrain significantly expanded laterally (Fig. 3.14B; p<0.0001; One-

Way ANOVA).

Diameter measurements of the BA showed no significant changes over time (Fig. 3.14C;

2dpf: 20.3 ± 3.5µm, 3dpf: 21.3 ± 3.6µm, 4dpf: 23.1 ± 3.3µm, 5dpf: 23.0 ± 3.2µm; p 0.0809;

One-Way ANOVA), whilst the diameter of the DA was found to decrease (Fig. 3.14D,E;

p<0.0001; One-Way ANOVA; 2dpf: 33.0 ± 2.3µm , 3dpf: 27.4 ± 4.3µm, 4dpf: 22.7 ± 2.7µm,

5dpf: 23.8 ± 3.0µm), as was also recently shown in a more caudal region of the DA [81].

Testing inter-sample registration approaches by intra-sample registration

The dataset to study segmentation, acquired by consecutive de- and re-mounting, was not

usable to test the proposed inter-sample registration approaches due to high rates of sample

death. Thus, a second dataset, which did not use de- and re-mounting but manual sample

displacement, was used to examine and validate registration (Fig. 3.15A).

To allow registration based on vascular topology, registration methods were applied to

segmented images as the intensity fluctuations in transgenic lines as well as the

cross-sectional intensity distribution were likely to interfere with registration outcomes.

Testing anatomical landmark-based registration, visual assessment showed that the selected
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Figure 3.13: Manual measurements of PMBC, MMCtA, and PMCtA show that samples of
a certain age are comparable. (A) Manual measurements of cranial vascular
parameters were performed with focus on the PMBC and MMCtA. (B) Distance
between PMBC’ and PMBC” significantly increased during early embryonic
development (p<0.0001; 2-3dpf p<0.0001; 3-4dpf p<0.0001, 4-5dpf p 0.1786;
2dpf n= 10 (1 repeat), 3dpf n=25, 4dpf n=25, 5dpf n=25; 3 experimental repeats;
One-Way ANOVA). (C) Distance between anterior ends of MMCtA’ and MMCtA”
decreased (p<0.0001; 2-3dpf p<0.0001; 3-4dpf p 0.0137, 4-5dpf p 0.9739; 2dpf
n=10 (1 repeat), 3dpf n=18, 4dpf n=18, 5dpf n=18; 3 experimental repeats;
One-Way ANOVA). (D) Length of MMCtA increased from 2-3dpf (p<0.0001; 2-
3dpf p<0.0001; 3-4dpf p 0.7138, 4-5dpf p 0.9773; 2dpf n=10 (1 repeat), 3dpf
n=25, 4dpf n=25, 5dpf n=25; 3 experimental repeats; One-Way ANOVA). (E)
The MMCtA angle move towards the midline (p<0.0001; 2-3dpf p 0.0028; 3-
4dpf p>0.9999, 4-5dpf p 0.0657; 2dpf n=10, 3dpf n=10, 4dpf n=10, 5dpf n=10;
2 experimental repeats; Kruskal-Wallis test). (F) Similarly, the PMCtA folded
downwards (p<0.0001; 2-3dpf p 0.0003; 3-4dpf p 0.2790, 4-5dpf p 0.7652;
2dpf n=10, 3dpf n=10, 4dpf n=10, 5dpf n=10; 2 experimental repeats; One-Way
ANOVA). (G) Angle of MMCtA and PMCtA were drastically changed from 2-3dpf.
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Figure 3.14: Manual measurements of brain width, BA, and DA diameter. (A) Manual
measurement of midbrain width showed an increase from 3-5dpf (p<0.0001; 3-
4dpf p<0.0001, 4-5dpf p 0.0187; 3dpf n=10, 4dpf n=10, 5dpf n=10; 2 experimental
repeats; One-Way ANOVA). (B) No change was found in forebrain width from 3-
5dpf (p 0.9560; 3-4dpf p 0.6706, 4-5dpf p 0.8360; 3dpf n=10, 4dpf n=10, 5dpf
n=10; 2 experimental repeats; One-Way ANOVA). (C) Diameter of BA showed
no difference from 2-5dpf (p 0.0809; 2-3dpf p 0.8880, 3-4dpf p 0.2688, 4-5dpf p
0.9997; 2dpf n=10 (2 experimental repeats), 3dpf n=23, 4dpf n=23, 5dpf n=23;
3 experimental repeats; One-Way ANOVA). (D) Diameter of DA decreased from
2-5dpf (p<0.0001; 2-3dpf p 0.0021, 3-4dpf p 0.0103, 4-5dpf p 0.8496; 2dpf n=10,
3dpf n=10, 4dpf n=10, 5dpf n=10; 2 experimental repeats; One-Way ANOVA). (E)
Visual comparison of DA at 2dpf and 5dpf showed diameter constriction over time
(substacks of representative images shown).
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anatomical landmarks (Fig. 3.3) were suitable for registration when using rigid constraints (Fig.

3.15B). Importantly, this was the first ever inter-sample registration of the 3D zebrafish cerebral

vasculature and no reference for registration performance was available.

Testing "2D/3D descriptor-based registration" with a variety of parameters did not result in

enough inliers to allow for automatic registration. This was not surprising as the plugin was

originally developed for registration of fiduciary markers (beads and nuclei). We further

examined this plugin in the scope of multiview reconstruction in chapter 5 section 5.2.5.

Visual assessment of registration outputs after automatic rigid registration, based on iterative

optimization using scale space, suggested this method to be applicable to our data (Fig. 3.15C).

Applying anatomical landmark-based affine registration and thin-plate spline transformation

both were unsatisfactory and were therefore not further investigated (Fig. 3.15D,E). Future

studies might examine other implementations or registration approaches to examine how the

degree of registration freedom impacts registration outcomes.

To quantitatively compare the registration outcome after rigid landmark-based and

automatic registration, image similarity was quantified using the Dice Coefficient before and

after registration.

This showed an improvement of sample overlap after registration (Fig. 3.15F;

original-landmark-based registration p 0.0017; original-automatic registration p 0.0003;

One-Way ANOVA), with a lower CoV after automatic registration (Table 3.1).

Although one could argue that a Dice Coefficient of about 0.5-0.6 is not very high, the

presented registration methods were the first of their kind and no reference value for a

"satisfactory" zebrafish cerebral vasculature registration existed. Also, the registration

outcome was potentially impacted by the independent image acquisition, processing, and

segmentation. Future work might address this by including examination with data

augmentation. Still, we were confident that landmark-based and automatic rigid registration

perform well enough to enable development and evaluation of methods that require alignment

of embryos into one spatial coordinate system.

Table 3.1: Rigid landmark-based and automatic registration both increased sample overlap, but
automatic registration delivered slightly higher mean values and lower coefficients of
variation.

Original Landmark-based Automatic
Mean 0.0586 0.4876 0.5845
Standard Deviation 0.01522 0.2379 0.09485
CoV 25.98% 48.79% 16.23%
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Figure 3.15: Validation of the suggested inter-sample registration approaches show
automatic registration to be more robust than manual landmark-based
registration. (A) Same sample from two acquisitions overlaid (green - target;
magenta - moving image; white - overlap). (B) Samples after rigid anatomical
landmark-based registration. (C) Samples after rigid automatic registration. (D)
Samples after anatomical landmark-based affine registration. (E) Samples after
anatomical landmark-based thin-plate spline transformation registration. (F) The
Dice Coefficient was increased after landmark-based (p 0.0017) and automatic
registration (p 0.0003; n=5; 3dpf; 3 experimental repeats; One-Way ANOVA).
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Inter-sample registration can be performed from 2-5dpf and shows regions of vascular

similarity

Having found that landmark-based and automatic rigid registration were both suitable to

register samples, both methods were applied to bring samples from 2-5dpf into a common

spatial coordinate system (Fig. 3.16A-C).

The Dice Coefficient was increased after inter-sample registration, with automatic registration

delivering higher similarity than landmark-based registration (Fig. 3.16). The Dice Coefficient

was only different after automatic registration at 3dpf (Fig. 3.16D; 2dpf p 0.2154, 3dpf p<0.0001,

4dpf p 0.3334, 5dpf p>0.9999) and no difference was found by landmark-based registration

(2dpf p>0.9999, 3dpf p>0.9999, 4dpf p>0.9999, 5dpf p>0.9999).

Together, both methods were suitable to bring samples into one spatial coordinate system,

but automatic registration showed an overall better performance. The overall low similarity

suggested that even though regions of similarity were found between samples, overall vascular

similarity was low.

While automatic registration delivered a quantitatively higher inter-sample overlap and

required no observer-interaction, registration outcomes needed to be visually validated. In the

2-5dpf dataset only one sample was incorrectly registered (anterior-posterior axis along

dorsal-ventral; 1 out of 37 samples). In future, this visual assessment of registration accuracy

could be replaced by automatically flagging up registration errors, ie. sub-threshold Dice

scores. Together, the advantage of automization and higher registration accuracy of the

automatic registration method outweighed the initial approach of manual landmark-based

registration.

3.3.3 Establishment of vascular templates allows the study regions of similarity

and variability

To further examine the local similarity and variability between samples, vascular templates were

established initially in 2D showing various regions of similarity from 2-5dpf (Fig. 3.17).

To visualize vascular similarity in 3D, sample overlap was examined after manual landmark-

based (Fig. 3.18) and automatic (Fig. 3.19) registration to an individual template embryo and

regions of similarity were extracted based on voxel similarity (Fig. 3.6). This showed high

similarity of vessels formed by vasculogenesis between samples.

Once the vascular templates were produced with landmark-based and automatic rigid

registration, these templates were compared to each other from 2-5dpf (Fig. 3.20A).

Comparison of the overlapping regions (Fig. 3.20B,C) showed again that it was the main
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Figure 3.16: Quantification of vascular similarity from 2-5dpf. (A) MIP of unregistered
samples (green - target, magenta - moving image, white - overlap). (B) MIP
of samples after landmark-based rigid registration. (C) MIP of samples after
automatic rigid registration. (D) The Dice Coefficient between target and moving
image was increased after application of rigid registration using anatomical
landmark-based and automatic rigid registration (2dpf n=7, 3dpf n=10, 4dpf n=10,
5dpf n=10; 2 experimental repeats; Kruskal-Wallis test).
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Figure 3.17: MIPs of vascular similarity at 2-5dpf. 2D MIP of three registered samples
(magenta, cyan, yellow), showing regions of similarity between samples (black).

vessels which were overlapping between the two templates and that similarity decreased over

time (table 3.2).

Table 3.2: Measurement of similarity between landmark-based and automatic registration
shows overall low values of percentage of vascular voxels in images (Abbrev.: vv-
Vascular voxels in % of whole image) and a decrease of similarity with age, with
lowest values at 5dpf.

vv landmark-based template vv automatic template vv both Dice
2dpf 0.77 1.17 0.22 0.227
3dpf 1.30 1.21 0.43 0.257
4dpf 2.13 1.92 0.59 0.289
5dpf 1.83 2.52 0.30 0.137

This suggested that there were vascular regions which were similar enough between fish to

establish vascular templates of similarity from 2-5dpf with either registration method, but that it

is only the main vessels showing similarity between samples.

Importantly both inter-sample registration methods (landmark-based and automatic) were

so far only performed using one target fish (target selected based on (a) sample orientation

along common image axis (see section 3.2.6), (b) all common vessels visualized in image, (c)

no obvious abnormalities), which could potentially introduce target bias. Thus, after this initial

registration using a single target, averaging was performed based on voxel-similarity (Fig. 3.6)

and samples re-registered to this averaged target.
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Figure 3.18: 3D vascular similarity between samples after landmark-based registration.
Samples were registered using landmark-based rigid registration (n=6 for each
time point; colours represent different embryos) and regions of similarity in 3D
extracted by voxel overlap (white).
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Figure 3.19: 3D vascular similarity between samples after automatic registration.
Samples were registered using automatic rigid registration (n=6 for each time
point; colours represent different embryos) and regions of similarity in 3D extracted
by voxel overlap (white).
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Figure 3.20: Overlap of average templates established using 3D manual landmark-based
and automatic registration. (A) Average templates established using 3D manual
landmark-based (green) and automatic (magenta) registration from 2-5dpf. (B)
MIP of 3D overlapping voxels. (C) Depth-coded overlapping voxels shows
anatomical location of vascular similarity (purple - ventral, white - dorsal).
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Comparing image overlap between unregistered (Fig. 3.21A-D), landmark-based registration

to one target (Fig. 3.21E-H), automatic registration to one target (Fig. 3.21I-L), and automatic

registration to averaged target (Fig. 3.21M-P), suggested that all three registration methods

were suitable for inter-sample registration at 2dpf and 3dpf. At 4dpf and 5dpf (Fig. 3.21),

automatic registration to the averaged target delivered less satisfying results in comparison

to landmark-based registration and automatic registration to one target. This may have been

due to image features that drive the registration being blurred during the template averaging

process, which would be expected to have greater influence as the developing vasculature

becomes more intricate.

In summary, this suggested that automatic registration delivers better registration outcomes

than landmark-based registration (Fig. 3.16) and that registration to an individual target delivers

consistently better registration outcomes than registration to an averaged target (Fig. 3.21).

Based on the above results and visual comparison of 3D registered samples, schematic

templates of vascular similarity were established from 2-5dpf (Fig. 3.22A-D).

3.3.4 Inter-sample image registration to examine the impact of dll4 knockdown

Having established a successful registration approach, it was used to examine the impact of

dll4 loss on inter-sample vascular similarity.

First, overall vascular properties were compared, finding clear differences when comparing

controls (Fig. 3.23A, white) to dll4 morphants (red). In dll4 morphants, a reduction of vascular

volume (p 0.0017; Fig. 3.23B), surface (p 0.0006; Fig. 3.23C), and density (p 0.0028; Fig.

3.23D) was found in comparison to control morpholino injected samples.

Next, samples were registered to an uninjected control target. Quantification of Jaccard Index

(Fig. 3.24A), Dice Coefficient (Fig. 3.24B), and Total Overlap (Fig. 3.24C) showed an increase

of similarity when comparing unregistered and registered uninjected controls (p 0.0001 for all).

Comparing uninjected controls to dll4 MO showed no difference in Jaccard Index (p 0.9573),

Dice Coefficient (p 0.3888) or Total Overlap (p 0.5563). While a difference was found when

comparing control MO to dll4 MO in Jaccard Index (p 0.0439) and Total Overlap (p 0.0189), but

not in Dice Coefficient (p 0.3888). The bimodal distribution observed in the dll4 MO data was

thought to be due to overall dataset variability (eg. morpholino injection variability).

Following, sample groups were compared to each other. To achieve this, sample averages

of uninjected controls (Fig. 3.25A), control MO (Fig. 3.25B), and dll4 MO (Fig. 3.25C) were

established (again using voxel similarity between samples; Fig. 3.6; n=6). As expected,

comparing the average template of uninjected controls to control MO showed a higher
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Figure 3.21: Comparison of inter-sample registration methods. Depth-coded MIP showing
regions of overlap (purple - ventral, white - dorsal). (A-D) Overlap of unregistered
samples from 2-5dpf. (E-H) Overlap of samples after landmark-based registration
to individual registration target from 2-5dpf. (I-L) Overlap of samples after
automatic registration to individual registration target from 2-5dpf. (M-P) Overlap
of samples after automatic registration to averaged registration target from 2-5dpf
(n=6 larvae each; depth-coded: ventral - purple, dorsal - white).
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Figure 3.22: Schematic vascular templates 2-5dpf. (A-D) Schematic showing regions of high
similarity between samples from 2-5dpf.

Figure 3.23: (A) Images show 3D structure of control morphants (white) and dll4 morphant
(red), showing clear structural differences. (B) Vascular volume was decreased
in dll4 morphants in comparison to uninjected controls (p 0.0023) as well as
control morphants (p 0.0017; n=23; 3dpf; 3 experimental repeats; One-Way
ANOVA). (C) Vascular surface was decreased in dll4 morphants in comparison to
uninjected controls (p 0.0007) as well as control morphants (p 0.0006; One-Way
ANOVA). (D) Vascular density was not changed comparing uninjected controls to
dll4 morphants (p 0.3718), but was decreased in comparison to control morphants
(p 0.0028; One-Way ANOVA).

115



3D quantification of the developing zebrafish cranial vasculature

Figure 3.24: Quantification of registration to single sample target to study impact of dll4
MO. (A) Jaccard index showed a difference between control MO and dll4 MO (p
0.0439), but not uninjected controls (p 0.9573; n=23; 3dpf; 3 experimental repeats;
Kruskal-Wallis test). (B) Dice coefficient showed a difference between control MO
and dll4 MO (p 0.0103), but not uninjected controls (p 0.3888; Kruskal-Wallis test).
(C) Total Overlap showed a difference between control MO and dll4 MO (p 0.0189),
but not uninjected controls (p 0.5563; Kruskal-Wallis test).
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similarity (Dice 0.684; Fig. 3.25D) than comparing uninjected controls to dll4 MO (Dice 0.259;

Fig. 3.25E). When comparing average templates of uninjected controls to dll4 MO (Fig. 3.25F)

it was found that AMCtA, PCeV, PHBC, and BA were developed structurally normal in dll4 MO

at 3dpf.

Figure 3.25: Comparison of average templates of uninjected control, control MO, and
dll4 MO. (A) Average template of uninjected controls . (B) Average template of
control MO. (C) Average template of dll4 MO. (D) Overlap of average template of
uninjected control and control MO. (E) Overlap of average template of uninjected
control and dll4 MO. (F) Overlap of average template of uninjected control and dll4
MO shows that AMCtA, PCeV, PHBC, and BA are developed normally in dll4 MO
at 3dpf (A-E depth-coded MIP ventral - purple and dorsal - white; n=6).

3.4 Conclusion

Based on the establishment of an image analysis workflow to assess intra-sample symmetry

we showed that the cranial vascular topology in embryonic zebrafish does not display a

dominant/adominant side at the investigated time points. Furthermore, the BA, PHBC, and

PMBC are more symmetric than the CtAs and MMCtAs.

Knock-down of dll4 resulted in decreased embryonic and vascular growth, but no changes

in vascular symmetry were observed, suggesting that dll4 is required for embryonic and/or
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vascular growth and maturation, but is dispensable for symmetry establishment at the

investigated time-point.

Using visual assessment and manual measurements of vascular similarity between

samples allowed the identification of anatomical landmarks for landmark-based inter-sample

registration. We showed that anatomical landmark-based inter-sample registration is

applicable to bring embryos into one spatial coordinate system, using both original or

segmented data. Testing readily available registration methods in Fiji, we found that rigid, but

not affine, nor thin-plate spline registration was applicable to our data. Future work might

examine other implementations of registration methods with higher degrees of freedom.

Our data showed that automatic rigid inter-sample registration allows registration of

samples, but requires images to be segmented to deliver meaningful results, while

descriptor-based registration did not result in a meaningful registration of our data using either

original or segmented data.

After validation of the proposed registration approaches using consecutive acquisition of the

same sample with altered positioning, we investigated inter-sample similarity and variability

from 2-5dpf. Both, rigid landmark-based and automatic registration, were applicable to bring

embryos at these ages into one spatial coordinate system, with automatic registration

delivering higher values of similarity between samples. Data from both registration methods

suggest that vascular similarity is highest at 2-3dpf and that similarity decreases with age.

Overall similarity between samples was low (as quantified using the Dice Coefficient),

suggesting that only a subset of vessels are highly similar between samples, namely the main

vessels such as BA, PHBC, and PMBC. Future work could examine regional similarity and

variability, by combining the presented registration approach with quantification methods

described in Chapter 4 to extract individual vascular segments.

Examining the impact of target averaging, it was found that registration to individual samples

actually delivered better results and future work might examine alternative sample averaging

procedures.

Identifying inter-sample similar vessels showed a similarity to intra-sample left-right vascular

symmetry, suggesting that vessels which are left-right symmetric are also highly similar

between samples.

Future work could identify which factors influence vessels to be stereotypic or stochastic

in topology. Future studies could also examine whether vascular topological asymmetry can

be observed in older zebrafish and whether this is related to (a)symmetric blood flow. We

anticipate that our approach to examine vascular asymmetry will be applicable to examine the
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role of compounds and genes in the development of cerebrovascular (a)symmetry.
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4 Extraction of Vascular Geometry

4.1 Introduction

The 3D vascular anatomy can be described by geometric shape descriptors such as branching

pattern, length, diameter, and curvature (Fig. 4.1).

Figure 4.1: Parameters to describe the vascular architecture. Common mathematical
shape descriptors can be applied to describe the local and global vascular
architecture.

Following enhancement and segmentation, a variety of approaches can be used to extract

these geometric shape descriptors (reviews [85, 86, 87]). Centreline extraction approaches can

be broadly grouped as follows: (i) iterative thinning via layer-by-layer removal [88, 89], (ii) centre

of maximally inscribed discs (2D) or spheres (3D) [318], (iii) eigenvalues and eigenvectors

[101, 151, 152, 319], (iv) intensity ridge detection [320], (v) Voronoi diagram based [163] as

applied in [321, 322], (vi) Dijkstra’s shortest path [323, 324, 325], (vii) fluid dynamics [326], or

(viii) distance transform from border [327].

While 2D object centrelines are called medial axis transform (MAT) [88], 3D skeletons are

called medial surface [91, 94], surface skeleton [328], curve skeleton [121, 186] or centrelines

[320, 329]. In the following, vascular centrelines will be referred to as centreline or skeleton.

In 2007, Cornea et al. [121] proposed the following requirements should be fulfilled by

object skeletons. (i) Homotopy: Centrelines shall preserve and represent the topology and

geometry of the original object, i.e. no shrinking or left-right-bias [115, 318, 330]. (ii)

Isometric transformation invariance: Skeleton shape descriptors shall be invariant to object

transformation and orientation, especially if centrelines are used for inter-sample registration,

as for example proposed by [331, 332, 333, 334]. (iii) Reconstructability: 3D volume

reconstruction from centrelines can be a useful application for volumetric animation, but is not
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always a requirement if deriving 3D skeletons [174, 335, 336, 337]. (iv) Thinness:

Centrelines shall be one-voxel-thick representations of the original objects. Whereas vessel

segment voxels have two neighbours, endpoints have one and branching points (BPs) may

have three or more (Fig. 4.2) [89]. As loops in the vasculature represent a special case of true

object cavities, special definitions are required, as described in [123, 124]. (v) Centredness:

Skeletons shall be positioned on the object medial axis, but may be spatially relaxed if

centredness can not be achieved, as in the case of surface medial axis, which may be

disturbed by surface inhomogeneity [140]. (vi) Reliability: All boundaries shall be used to

produce a skeleton, which will in turn see all the respective boundary points. This ensures

all-voxel inclusion and "insideness" (centreline does not cross object boundary and vice versa)

[338]. (vii) Component differentiation: Based on centreline extraction, junction points can

be used to extract object components, here vessel segments. These may be distinguished

later based on hierarchical structuring, such as graph theory or Strahler order numbers

[115, 133, 339], which represent the object intrinsic hierarchy [186]. (iix) Smoothness: Object

centrelines shall be smooth (avoidance of pixelation or staircasing), whilst preserving object

homotopy. (ix) Robustness: Extracted skeletons should be independent of noise levels (see

homotopy of geometry). (x) Connectedness: One-voxel-thick skeletons should preserve

object continuity.

One of the most commonly used methods to analyse object topology is the extraction of

vascular centrelines by iterative thinning [88, 89], which, together with vascular wall information,

allows quantification of vessel diameter, length, curvature and BPs. In the Fiji image analysis

framework a 3D thinning approach was already implemented (2D/3D skeletonize).

As images are based on voxels in x,y,z-dimensions, centrelines derived by iterative thinning

of segmented objects are constituted by individual centreline voxels which share connectivity,

thus a relationship to each other. This relationship (R) between voxel a and voxel b can be

described as path π(a,b,R) given by voxel sequences (a1, a2, .. an) [340].

A voxel itself has a volume, faces, edges, and vertices (Fig. 4.2A). Following, the relationship

of a voxel to its neighbours can be used to determine its identity (Fig. 4.2B) [115, 341]: (i)

centreline endpoints have one 26-neighbour (Fig. 4.2C), (ii) vessel segments having two 26-

neighbours, (iii) bifurcation or BPs having more than two 26-neighbours, (iv) loops will be

constituted by two bifurcation/BPs being connected by vessel segment voxels.

To assign these centreline voxel identities and detect BPs commonly two approaches are

used:

(1) Object based : User identifies skeleton starting point and algorithm subsequently identifies
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Figure 4.2: Classification of voxel identity. (A) A voxel itself has a volume, faces, edges, and
vertices. (B) Relationships between voxels determine their individual identity. (C)
Voxel-neighbourhoods are used to determine voxel relationships such as segment
(blue), branching (grey), or end (green). Images B and C adapted with permission
from [341].

connected skeleton voxels by iterative neighbourhood assessment and assigns voxel identity

by 26-neighbourhood status (Fig. 4.3A). As not all image voxels are visited this approach

is less computationally demanding, but requires user interaction to assign starting voxel. To

overcome this user input, automated starting point detection could be implemented by initial

detection of a skeleton voxel of a vessel which always shows the same location/anatomy. In

embryonic zebrafish this could for example be the BA if the fish is aligned anterior-posteriorly

along the Y-axis, the left-right aligned along X-axis, and dorso-ventral aligned along Z-axis. The

starting point would be the voxel which has the highest Y value and is most central in X and

Z. As images are not perfectly aligned the orientation of BA may be skewed and therefore the

implementation of an automated starting detection would either require ideal image acquisition

or sample registration prior to skeleton analysis. The advantage of this object based approach

is the possibility to assign vascular hierarchy simultaneously by increasing the branch order

number after each nodes/BP (Fig. 4.3B) [133]. The downside of this object based approach is

that it requires complete skeleton connectivity to be able to iterate through the skeleton as any

breaks would halt the algorithm.

(2) Raster based : Each voxel is visited in a raster based approach (eg X0..Xn, Y0..Yn, Z0..Zn;

Fig. 4.3C) and voxel identity assigned by 26-neighbourhood status. Although this approach
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is slower and a hierarchy assignment less straightforward, the lack of connectivity requirement

makes this approach often favourable.

Figure 4.3: Voxel identity assignment. (A) Object based approaches require a start
point. The algorithm subsequently identifies connected skeleton voxels by iterative
neighbourhood assessment and assigns voxel identity by 26-neighbourhood status.
(B) Vascular hierarchy can be assigned using graph theory (nodes - black - BPs;
leaves - colour - vessel segments). (C) Raster based approaches do not require a
start point, but iterate through the whole image visiting all voxels to assign identity
based on 26-neighbourhood status.

For the analysis of centrelines a ridge detection based approach (Ridge Detection [342])

and a 3D thinning based approach with raster-based analysis (AnalyseSkeleton 2D/3D Plugin

[126]) were already implemented in Fiji.

Additional parameters to describe vascular geometry are vascular hierarchy and complexity.

Vascular hierarchy can be used to describe vascular geometry by the number of branch orders

after nodes/BP and was originally used in hydrology to indicate the level of branching in a river

system called "Strahler analysis" (Fig. 4.3B) [133].

Vascular complexity can be described in various ways but is often assessed by the

number of branches distally from a selected centre. One commonly applied method is "Sholl

analysis", which was originally used to describe neuronal branching, quantifies the number of

intersections along concentric spherical shells with increasing diameter [343].

In this chapter the following key questions are examined:

(i) Is the Fiji ridge detection plugin applicable to extract and analyse the 2D and/or 3D

vasculature? Here it will be examined whether ridges are detected correctly, whether analysis

extracts branching points and vessels, and whether the method is sensitive enough to extract

biologically meaningful insights.

(ii) Is 3D thinning applicable to extract and analyse the 2D and/or 3D vascular

skeletons? Applying the "2D/3D Skeletonize" plugin the outcomes of 3D thinning in respect to
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the requirements postulated by Cornea et al. [121] will be studied, and the "AnalyseSkeleton

2D/3D" Plugin branching point detection examined.

(iii) How can vascular diameters be described on a voxel, local, and global level?

Euclidean Distance Maps (EDMs) [344], which compute 3D discrete distance transforms from

the boundary to centre of the segmented vasculature, returning greylevel intensities of

foreground (vascular) regions based on distance to the closest boundary, will be examined.

(iv) Is a combination of a 2D and 3D approach applicable to extract information about

individual vascular segments? So far, no method exists to examine vascular information on

the level of individual segments in 3D for the zebrafish cerebral vasculature, but as lightsheet

data are very large in size, it will examined whether a combination of a 2D and 3D computational

approach will allow the extraction of information of individual vascular segments.

(v) Can 2D branching analysis be applied to describe vascular network complexity?

Sholl dentritic arbor analysis [343] is a method using a series of concentric shells (circles or

spheres), counting the number of branch intersections per sampling shell. The number of

shells and distance from centre can be used to examine branching complexity (shell

intersection numbers) and overall vascular size (shell distance from centre).

Following the initial examination of the above analysis approaches, cases for validation and

biological application will be presented. These include:

(i) Zebrafish with and without blood flow, which is achieved by inhibition of the development

of a protein required for cardiac contraction via morpholinos, namely tnnt2a [345]. The lack of

blood flow results in visibly impacted vascular growth. Thus, this dataset is used to test whether

the suggested methods are able to extract and quantify vascular differences between samples.

(ii) Vascular development from 2-5dpf. It is thought that vascular complexity, length, and

volume will increase during development, but no quantification has so far ever been conducted

and the extent of vascular changes over time are not known.

Following the development and testing of the individual image analysis steps, the developed

workflow will be integrated into one workflow as Fiji Macro, a graphical User Interface (GUI)

established, and appropriate workflow documentation produced to allow usability, distribution,

and application by other researchers.
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4.2 Material and methods

4.2.1 Zebrafish strains, handling, and husbandry

Zebrafish handling and husbandry were performed as described in 2.2.1.

Tg(kdrl:HRAS-mCherry)s916 [244] line was used for vasculature visualization.

4.2.2 Biological application datasets

Examining vascular development from 2-5dpf

To study vascular development data were acquired from 2-5dpf in Tg(kdrl:HRAS-mCherry)s916

[244].

Inhibition of VEGF and Notch signalling

To examine the impact of inhibiting VEGF and Notch signalling drug treatments were performed.

VEGF signalling was inhibited using VEGF receptor inhibitor AV951 [266] at 250nM for 2h from

96-98hpf (Selleckchem; S1207; Tivozanib - AVEO pharmaceuticals). Notch signalling was

inhibited using 50µM DAPT (Sigma-Aldrich; D4952) for 12h from 84-96hpf [265]. Controls for

both experiments were performed using the same concentration and duration of DMSO during

active treatments.

F-actin polymerization inhibition

F-actin polymerization inhibition was achieved by application of 100nM Latrunculin B for 1h

between 96-97hpf (Sigma-Aldrich; L5288-1MG; kindly provided by Rob Wilkinson) [346].

DMSO control at the same concentration and duration.

Lack of blood flow by tnnt2a MO

Development of functional heart contraction was inhibited via injection of cardiac troponin T2a

(tnnt2a) ATG morpholino (1.56 ng final concentration), as described in [345] (sequence 5’-

CATGTTTGCTCTGATCTGACACGCA-3’).

Control morpholino injections (5’-CCTCTTACCTCAGTTATTTATA-3’; no target sequence and

little/no biological activity; Genetools, LLC) were performed with the above final concentration to

study off-target effects of injections. Injections were conducted at one-cell-stage using phenol

red as injection tracer.
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4.2.3 Imaging methodology

Image acquisition was performed as described in section 2.2.2.

4.2.4 2D ridge detection and analysis

Following image pre-processing and segmentation, EDMs were produced from binary

segmented images using the Fiji plugin "Distance Map 3D" (Process > Binary > Distance Map

in 3D; https://imagej.net/Distance_Transform_3D, implemented by Jens Bache-Wiig and

Christian Henden [344]) and ridges were extracted in 2D MIPS and 3D stacks using the Fiji

"Ridge Detection" Plugin implemented by Thorsten Wagner and Mark Hiner based on [342]

(Plugins > Ridge Detection).

4.2.5 Centreline extraction based on 3D thinning

Centreline extraction was performed after image pre-processing and segmentation using the Fiji

"Skeletonize 2D/3D" Plugin (by Ignacio Arganda-Carreras), based on 3D thinning proposed by

[91], using a layer-by-layer removal as shown in (Fig. 1.5). Total network length was quantified

as centreline voxels (0 value) in the selected ROI (as described in section 2.2.6).

4.2.6 2D/3D centreline analysis, branching point processing, and vessel

segment identification

The "Analyse Skeleton" Plugin in Fiji (Analyse > Skeleton > Analyse Skeleton 2D/3D; by

Ignacio Arganda-Carreras) [126] was used. It relies on a raster-based analysis approach to

identify and assign voxel identities based on a 8-voxel-neighbourhood in 2D MIPs and

26-voxel-neighbourhood in 3D stacks. It delivers assignment of BPs and end points (EPs), BP

position, branch length, Euclidean distance, and mean intensity of centreline voxels.

4.2.7 Vessel diameter analysis

To assess required vessel diameter sampling rates manual measurements were performed in

three cerebral vessels (MMCtA, ACeV, and CtA) and one trunk vessel (first ISV). Using linear

ROIs diameters were measured along three and ten points along the vessel (first and last

measurement location were placed 10µm from respective bifurcations, remaining measurement

points were placed equally along vessel depending on length).
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EDMs were produced from binary segmented images using the Fiji plugin "Distance Map

3D" (Process > Binary > Distance Map in 3D; https://imagej.net/Distance_Transform_3D,

implemented by Jens Bache-Wiig and Christian Henden [344]).

For automatic quantifications of average diameter in MIPs, EDMs were produced in 2D. To

derive 1-voxel-thick EDMs, the produced EDM was merged with the extracted skeleton

(Process> imageCalculator > "AND create") and LUT "Fire" was applied for visualization

purposes. For visual representation, 3D skeletons were again skeletonized after creation of

MIPs to ensure 1-voxel-thickness of the centreline.

The resulting 1-voxel-thick EDM allowed the quantification of diameters based on voxel

greyscale intensity. In 2D, this was used to quantify the global average diameter, assignment

of diameters to individual voxels in the 2D stored MIP, raster-based average diameter analysis,

and analysis of average diameters in user selected ROIs.

4.2.8 Simple Neurite Tracer (SNT) for vessel tracing

Simple Neurite Tracer (SNT) is a Fiji Plugin by Mark Longair [347] which allows

semi-automatic tracing of other tube-like structures through 3D image stacks, allowing the

tracing (spatial assignment) and annotation of topologies. To allow detection of the same

vessel(s) in other fish (which were segmented, registered, and skeletonized), the SNT traces

were extracted as vessel-specific ROIs (x,y,z) (eg. for an individual vessel multiple ROIs were

produced by SNT to describe the vessel (x,y,z) position). These vessel-specific ROIs were

then used to produce rectangular ROIs (x,y; 30 x 130 vx) on specific z-planes to allow the

detection of centrelines in other fish which might be not at the exactly same position. The

ROIs were then used to detect and quantify vessel intensities (from EDM and skeleton) to

quantify vessel-specific diameters.

4.2.9 Vascular network complexity assessment using Sholl analysis

To analyse vascular complexity by assessment of branching, Sholl dentritic arbor analysis

[343] was applied using the Fiji Sholl Analysis plugin [348] (https://imagej.net/Sholl_Analysis;

developed and maintained by Tom Maddock, Mark Hiner, Curtis Rueden, Johannes

Schindelin, and Tiago Ferreira). Application was performed on 2D Skeleton due to it being

more time-efficient. Default parameters where used except for distance from centre (700

voxel) and step size (5 voxel), bounding boxes were placed to position the centre of shells in

the midbrain at the BA-PCS junctions.
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4.2.10 Graphical User Interface (GUI)

The image analysis steps presented in this thesis were included into one analysis workflow

and a GUI was produced using Fiji Macro language. Individual macros, complete workflow,

and analysis documentation are freely available (see Appendix).

4.2.11 Statistics and data display

As described in section 2.2.10.

4.3 Results and discussion

4.3.1 Centreline extraction based on ridge detection

Testing whether ridge detection would be suitable to extract vascular centrelines and quantify

their properties in our data, it was found that application was meaningful in 2D (Fig. 4.4A) but

not 3D (Fig. 4.4B), as the Plugin operates on a slice-by-slice basis.

Figure 4.4: Ridge detection in distance maps. (A) Ridge detection output in 2D after distance
map extraction. (B) Ridge detection plugin applied in 3D stack after distance map
extraction.

4.3.2 Centreline extraction based on 3D thinning

After 2D/3D Skeletonization with Fiji, extracted centrelines after GF and TF were compared,

showing that centreline extraction after GF produced more spurious branches (Fig. 4.5A,B)

than TF (Fig. 4.5C,D).
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The large amount of spurious branches after GF was maybe due to object surface

inhomogeneities after segmentation, which were less pronounced after TF due to the

morphology-based processing considering local neighbourhood.

Figure 4.5: Centreline extraction in Fiji after GF and TF. (A) Segmentation after GF.
(B) Skeletonization using Fiji 2D/3D Skeletonization after segmentation with GF
produced several spurious branches (black arrowheads). (C) Segmentation after
TF. (D) Skeletonization using Fiji 2D/3D Skeletonization after segmentation with TF
produced less spurious branches than GF (black arrowhead).

To assess accuracy of centreline extraction after TF, original data were visually compared

to data after TF (Fig. 4.6A), segmentation (Fig. 4.6B) and centreline extraction (Fig. 4.6C).

Obtained centrelines were one voxel thick (except in regions with spurious branches) and even

in oblique vessels were positioned in the vessel centre. This suggested that this skeletonization

approach successfully generates centrelines.

To assess whether this skeletonization approach allows quantification of vascular network

length, this was measured as number of voxels in the cerebral ROI during embryonic

development. From 3-5dpf an increase was found (p 0.0112; Fig. 4.7A; Kruskal-Wallis test),

while there was no difference from 3-4dpf (p 0.0545) or 4-5dpf (p>0.9999).

To further examine the sensitivity of the proposed centreline extraction approach, network
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Figure 4.6: Visual assessment of centreline extraction Fiji after TF. (A) Visual comparison
of original (red) vessel cross-sections to data after TF (green) in three examples
showing successful enhancement. (B) Visual comparison of original (red)
vessel cross-sections to data after segmentation (green) showing a meaningful
segmentation (as validated in Chapter 2). (C) Visual comparison of original (red)
vessel cross-sections to data after skeletonization (green) showing centrelines to
be one voxel thick and positioned centrally.
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length was quantified in samples after Notch inhibition which showed no difference in vascular

volume (Chapter 2.3.5; Fig. 2.27) and after VEGF inhibition which showed a reduction in

vascular volume, probably due to a reduction in vascular growth and, therefore, network length

(Chapter 2.3.5; Fig. 2.28). Thus, the assumption was that extracted centrelines after Notch

inhibition would be similar to controls, while they would be potentially reduced after VEGF

inhibition (based on reduced vascular growth). Network length was not changed after Notch

inhibition (p 0.5566, Fig. 4.7B; Mann-Whitney U test) but reduced after VEGF inhibition (p

0.0031, Fig. 4.7C; unpaired Student’s t-test).

These data suggested that this skeletonization approach shows promise to allow network

length quantification when there are true biological differences.

Figure 4.7: 3D vascular network length after 3D-thinning. (A) Vascular network length
increased between 3-5dpf (p 0.0112). Difference was not different between 3-4dpf
or 4-5dpf, which was likely due to variability between experimental repeats (3dpf
n=11, 4dpf n=13, 5dpf n=15; 2 experimental repeats indicated with grey and black
data points; Kruskal-Wallis test; post hoc statistical power was 1). (B) Total network
length was not changed upon treatment with the Notch inhibitor DAPT (p 0.5566;
control n=23, DAPT-treated larvae n=23; 4dpf; 3 experimental repeats; Mann-
Whitney U test; post hoc statistical power was 0.1192518). (C) Total network length
was decreased upon treatment with the VEGF inhibitor AV951 (p 0.0031; control
n=21, AV951-treated n=21; 4dpf; 3 experimental repeats; unpaired Student’s t-test;
post hoc statistical power was 0.9904608).

4.3.3 Network analysis in 2D MIPs

Application of the "Analyse Skeleton" Fiji Plugin showed that skeleton breaks resulted in several

sub-skeletons (Fig. 4.8). For quantitative analysis sub-skeletons were added together if having
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10 or more branches as sub-skeletons with less branches were artefacts (visual inspection and

length).

Figure 4.8: Visual output of the "Analyse Skeleton" Fiji Plugin. Visual output of applying
the "Analyse Skeleton" Fiji Plugin to the cranial vasculature of a 2dpf fish, showing
skeleton breaks to result in several sub-skeletons (different colours).

Wanting to compare the "Analyse Skeleton" and "Ridge Detection" plugins in 2D, both were

applied to data from 2-5dpf (Fig. 4.9A,B). Quantifying the number of branches showed an

increase over time for both methods (Fig. 4.9C; ridges p 0.001; skeletonization p 0.019), but a

lower CoVs for ridge-based detection (2dpf 15.70%, 3dpf 18.35%, 4dpf 14.85%, 5dpf 10.43%)

in comparison to centreline-based detection (2dpf 35.84%, 3dpf 31.12%, 4dpf 25.83%, 5dpf

10.03%). Extracted average branch length was similar with both methods, but an increase

over time was only observed with ridge detection (Fig. 4.9D; ridges p 0.0019; skeletonization p
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0.1116).

Figure 4.9: (A) Vascular centrelines were analysed after skeletonization using the "Analyse
Skeleton" plugin. (B) Vascular ridges were analysed after creation of distance maps
using the "Ridge Detection" plugin. (C) For both extraction methods, ridges (black)
and skeletonization (grey), an increase of branches was detected over time, with
ridge detection delivering lower CoVs (ridges p 0.001; skeletonization p 0.019; 2-
5dpf n=6; 2 experimental repeats; Kruskal-Wallis test). (D) Average branch lengths
extracted were comparable for both methods (ridges p 0.0019; skeletonization p
0.1116; 2-5dpf n=6; 2 experimental repeats; Kruskal-Wallis test).

Next, sensitivity of both methods was studied in data where morpholical differences are

visually obvious. Namely, fish which did not experience blood flow for 48 hours by injection of

tnnt2a morpholino (Fig. 4.10A,B). Quantification using the "Analyse Skeleton" plugin showed

no difference of branch number (Fig. 4.10C; control-tnnt2a MO p 0.1296, control MO-tnnt2a

MO p 0.0524; One-Way ANOVA) or average branch lengths (Fig. 4.10D; control-tnnt2a MO p

0.7024, control MO-tnnt2a MO p 0.9641; On-Way ANOVA), while ridge-based quantification

showed a reduction of branch number (Fig. 4.10E; control-tnnt2a MO p 0.0107, control

MO-tnnt2a MO p 0.0132; On-Way ANOVA) but not average branch length (Fig. 4.10F;

control-tnnt2a MO p 0.4829, control MO-tnnt2a MO p 0.9983; On-Way ANOVA).
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Figure 4.10: 2D network analysis in tnnt2a morphants. (A) Segmented cerebral vasculature.
(B) Extracted vascular centrelines. (C) Number of branches extracted using the
"Analyse Skeleton" plugin in 2D showed no difference between uninjected controls
(p 0.1296) and control MO (p 0.0524) in comparison to tnnt2a MO (uninjected
control n=8, control MO n=9, tnnt2a MO n=4; 3dpf; One-Way ANOVA; post
hoc statistical power was 1). (D) Average branch length extracted using the
"Analyse Skeleton" showed no difference between uninjected controls (p 0.7024)
and control MO (p 0.9641) in comparison to tnnt2a MO (One-Way ANOVA; post
hoc statistical power was 0.5911638). (E) Number of branches extracted using
"Ridge Detection" showed a difference between uninjected controls (p 0.0107)
and control MO (p 0.0132) in comparison to tnnt2a MO (One-Way ANOVA; post
hoc statistical power was 1). (F) Average branch length extracted using "Ridge
Detection" showed no difference between uninjected controls (p 0.4829) and
control MO (p 0.9983) in comparison to tnnt2a MO (One-Way ANOVA; post hoc
statistical power was 0.4237113).
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4.3.4 Network analysis in 3D

The "Analyse Skeleton" Plugin was applied to analyse vascular networks from 2-5dpf in 3D

(Fig. 4.11A-D), resulting in multiple sub-skeleton branches (Fig. 4.11E) as shown above (Fig.

4.8). Sub-skeletons were added together if having 10 or more branches, resulting in clearer

results showing branch numbers to increase over time (Fig. 4.11F). No clear trend of average

branch lengths were observed (Fig. 4.11G), while number of junctions increased from 2-5dpf

(Fig. 4.11H).

Figure 4.11: 3D network analysis of vascular development from 2-5dpf. (A-D) The "Analyse
Skeleton" Fiji Plugin was applied to vascular skeletons from 2-5dpf. (E) Number
of branches extracted from sub-skeletons from 2-5dpf in three samples (colours
show data from 3 samples/fish, dots represent sub-skeletons). (F) Summed up
number of branches extracted (minimum 10 branches per sub-skeleton), showed
an increase of branches from 2-5dpf. (G) Average branch length from 2-5dpf
showed no trend over time, but a surprisingly high variability at 4dpf. (H) Number
of junctions increased in the examined time-frame.

Quantification of tnnt2a data in 3D showed a reduction of vascular volume (Fig. 4.12A;

control-tnnt2a MO p<0.0001, control MO-tnnt2a MO p<0.0001; One-Way ANOVA), network

length (Fig. 4.12B; control-tnnt2a MO p 0.0330, control MO-tnnt2a MO p 0.0461; One-Way

ANOVA), and number of junctions (Fig. 4.12C; control-tnnt2a MO p 0.0125, control MO-tnnt2a

MO p 0.0255; One-Way ANOVA).
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Figure 4.12: 3D network analysis in tnnt2a morphants. (A) Vascular volume was
reduced comparing tnnt2a MO to uninjected controls (p<0.0001) and control MO
(p<0.0001; One-Way ANOVA; post hoc statistical power was 1). (B) 3D vascular
network was reduced comparing tnnt2a MO to uninjected controls (p 0.0330) and
control MO (p 0.0461; One-Way ANOVA; post hoc statistical power was 1). (C)
The number of junction points were reduced comparing tnnt2a MO to uninjected
controls (p 0.0125) and control MO (p 0.0255; One-Way ANOVA; uninjected
control n=17, control MO n=18, tnnt2a MO n=10; 2 experimental repeats; post
hoc statistical power was 1).
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4.3.5 Branching point detection and voxel identities

As mentioned above, the common approaches are to either use a raster-based or object-based

approach. Despite images had typically a large number of voxels (typically about 1920 x 1920

x 500 in x,y,z) a raster based approach was more intuitive due to the skeleton breaks which

would stop an object based approach.

The "AnalyseSkeleton" Plugin had implemented such a raster based approach and extracted

branching points and endpoints based on voxel 26-connectivity (Fig. 4.2). In some cases, false-

positive BPs were detected (Fig. 4.13A, white arrowheads). To be able to extract true BPs, BPs

extracted in 3D were compared to BPs in 2D and only the BPs found in both were considered

as true BPs (Fig. 4.13B). The rationale for this was that in 2D MIPs true-positive BPs as well as

BPs at overlapping vessels (false-positive) would be detected, while in 3D stacks true-positive

BPs as well as false-positive BPs would be detected. Thus, by identifying the BPs extracted by

both methods, the result was a reduction of false-positive BPs.

An additional caveat with the raster based approach was to consider that voxels with more

than two neighbours were classified as BPs (Fig. 4.13C), but analysis of junctions might result

in mutliple voxels extracted as potential BPs. This was especially in 2D the case, and comparing

3D to 2D BPs helped addressing this issue, but future work is needed to examine this in further

detail.

Figure 4.13: Issues in BP detection. (A) When skeletonization did not result in 1-voxel
thick centerlines, BP detection delivered false-positive BPs (vascular skeleton -
magenta; BPs - green, skeleton and BPs for visualization dilated). (B) Extraction
on BPs found when analysing the 2D and 3D skeleton, allowed reduction of false-
positive BPs (vascular skeleton - magenta; BPs - green, for visualization dilated).
(C) The green, orange and yellow voxel were detected as BPs (arrows indicate
neighbourhood relations), but only the green voxel is a true BP.
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4.3.6 Vessel diameters sampling rate

To obtain initial insights into the range of vessel diameters Euclidean distance maps (EDM)

of the segmented 3D vasculature were produced, showing a low range of vessel widths (Fig.

4.14) and changes to be subtle from 2-5dpf. This was important to gain an indication of vessels

width ranges and that individual vessels stayed rather consistent in size, thus suggesting that

lower sampling rates along individual vessels would be sufficient to examine vessel diameters.

Figure 4.14: Vascular distance maps from 2-5dpf. (A-D) Distance maps of the cerebral
vasculature from 2-5dpf showing local thickness, showing that most vessels
display similar thickness (red).

To assess the impact of sampling rate on vessel diameters further, measurements of

diameters of four different vessels (Fig. 4.15A,B) were performed, showing that diameter

sampling rates of three or ten diameters per vessel did not impact the obtained average

vascular segment diameter (Fig. 4.15C; MMCtA p 0.9609, ACeV p 0.8143, CtA p 0.9260, ISV

p 0.4727). Further examination of standard deviations showed that only for the CtA a lower

standard deviation was obtained when sampling the diameter at higher frequency (Fig. 4.15D;

MMCtA p 0.2971, ACeV p 0.1729, CtA p 0.0346, ISV p 0.9688). This, again, suggested that

the diameter of individual vessels could be extracted without high sampling numbers.

4.3.7 Vessel diameter quantification

Before preliminary examination of vessel diameters, we used a combination of 2D and 3D

analysis to assess vessel properties. EDMs of processed images (Fig. A-D) were utilized

to quantify vessel diameters by combining these with the extracted vascular skeleton. This

allowed to have 1-voxel-thick representation of the local vessel diameter, represented by grey

scale intensity.

To achieve this, EDMs were extracted in 2D (Fig. 4.16E), the 3D skeleton extracted (Fig.
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Figure 4.15: Impact of diameter sampling frequency. (A,B) Vessel diameters were
measured from four different vessels. (C) Average diameters were not changed
by sampling frequency of three (red dots) or ten (black dots; MMCtA p 0.9609,
ACeV p 0.8143, CtA p 0.9260, ISV p 0.4727; n=6; 3dpf; 1 experimental repeat;
paired Student’s t-test for individual vessels). (D) Standard deviation of average
vessel diameters was only impacted by increased sampling frequency in the CtA
(MMCtA p 0.2971, ACeV p 0.1729, CtA p 0.0346, ISV p 0.9688; n=6 3dpf larvae;
1 experimental repeat; paired Student’s t-test for individual vessels).
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4.16E), EDM and skeleton merged (Fig. 4.16G), EPs extracted (Fig. 4.16H), and BPs extracted

(Fig. 4.16I). The resulting workflow delivered 3D network length, 3D branch length, 3D EPs,

3D BPs, and 2D vessel diameters, with produced images storing vessel diameters on a voxel

basis allowing for closer examination later as well as visualization of thickness by colour (Fig.

G).

To test the diameter analysis workflow, it was applied to datasets of animals with and

without blood flow (tnnt2a MO), as fish without blood flow had visually decreased vessel

diameters. Application to uninjected controls, control MO, and tnnt2a MO (Fig. A-C) confirmed

this reduction of vessel diameter without blood flow. Quantification of network length (Fig.

4.17D), BPs (Fig. 4.17E), endpoints (Fig. 4.17F), and average diameter (Fig. 4.17G) showed

a reduction of all parameters in animals without blood flow.

Encouraged by these results, additional automatic analysis approaches of diameters in 2D

images (EDM and skeleton combination) were implemented to assess vascular diameters

more locally in addition to the above global and voxel wise diameter (Fig. 4.18A). Firstly, a

raster based analysis was implemented, allowing regional direct comparison of samples after

registration (Fig. 4.18B). Secondly, measurements in manual ROI selections were

implemented to allow additional examination of regions of particular interest (Fig. 4.18C).

4.3.8 Extraction and analysis of individual vessel segments

Although the extracted data allowed examination of vessel diameters to a satisfactory degree,

we further examined 3D vessel segments. In theory, a vessel or vascular segment can be

described as the voxels connecting a starting point (x,y,z)1 and endpoint (x,y,z)2, and can be

described as the shortest vessel path between these points (Fig. 4.19A).

As the "2D/3D AnalyseSkeleton" Plugin is based on a raster-based analysis based

approach, false-positive branching points (as discussed above; Fig. 4.19B, green) result in

artificial segment breaks and delivery of more than the true vessel segment (Fig. 4.19B; grey,

dark grey, blue).

To address this issue of artificial segment breaks, post-processing is required to extract true

vessel segments. To achieve, two steps of post-processing are required: (a) processing of

BPs to reject false-positive (for example as suggested above, by manual refinement (which

is laborious), or applying alternative methods to extract BPs), and (b) extraction of vessel

segments.

Vessel extraction can theoretically be addressed in various ways, such as the following:

(i) Shortest vessel path tracking between extracted BPs could be conducted automatically.
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Figure 4.16: Vascular quantification workflow. (A) MIP of original image. (B) MIP of
enhanced image. (C) MIP of segmented image. (D) MIP of selected vascular
region. (E) 2D EDM of MIP of 3D segmented image. (F) MIP of 3D skeleton -
used for 3D network length and branch length measurement as well as extraction
of EPs and BPs. (G) Merged 2D EDM and MIP of 3D skeleton (post-processed) -
colour range indicating vascular thickness / diameter. (H) MIP of 3D EPs (green).
(I) MIP of 3D BPs (green).
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Figure 4.17: Quantification of tnnt2a MO vascular properties. (A-C) Vascular properties
were quantified in uninjected controls, control MO, and tnnt2a MO (3dpf). (D)
Vascular network length was decreased comparing uninjected controls (p 0.0033)
and control MO (p 0.0209) to tnnt2a MO (uninjected control n=9, control MO
n=6, tnnt2a MO n=6; Kruskal-Wallis test; post hoc statistical power was 1). (E)
Branching point number was decreased comparing uninjected controls (p 0.0019)
and control MO (p 0.0092) to tnnt2a MO (Kruskal-Wallis test; post hoc statistical
power was 1). (F) Endpoint number was decreased comparing uninjected controls
(p 0.0024) and control MO (p 0.0061) to tnnt2a MO (Kruskal-Wallis test; post
hoc statistical power was ). (G) Average diameter was decreased comparing
uninjected controls (p 0.0050) and control MO (p 0.0067) to tnnt2a MO (Kruskal-
Wallis test; post hoc statistical power was 0.5007516).

142



3D quantification of the developing zebrafish cranial vasculature

Figure 4.18: 2D local diameter quantification. (A The combination of EDM and skeleton
based diameter analysis allowed diameter assessment voxel wise and globally. (B)
Raster based analysis of average diameters enabled direct regional comparison of
samples after registration. (C) Manual ROI selection allowed diameter examination
in particular regions of interest.

(ii) Euclidean distance could be calculated between BPs, but this is an approximation rather

than true examination of vessel segments (Fig. 4.19C). (iii) 3D cubic ROIs could be produced

using BPs as start and endpoint, but this was likely to be not sufficient for vessels with high

curvature and include voxels which are not part of the true vascular segment (Fig. 4.19D).

(iv) ROI templates could be produced from target fish and applied to moving samples (Fig.

4.19E). (v) Vascular segments could be traced manually, but tracing of vessels in individual fish

is laborious and time consuming.

Semi-automatic tracking using SNT

Based on the different options to extract and examine individual vessels, there was the rationale

to examine whether it is possible to perform vascular extraction and annotation automatically in

registered fish (chapter 3) based on manual tracing of one template fish.

To achieve this the SNT Plugin in Fiji was used, which was designed to allow semi-automatic

tracking for tube-like structures [347].

Thus, manual tracking of an example fish in segmented image data was performed and it was

found that SNT was suitable to allow tracking of our data (Fig. 4.20). As it required about 8h to

do this correctly for the whole cerebral vasculature, including manual annotation, this highlights

the need for automating such extraction and annotation.

Next, tracking was performed on the segmented image of a 3dpf registration template (see

section 3.2.6), and ROIs for individual vessels (line ROI with x,y position, z plane information)

extracted from this tracking (Fig. 4.20C).
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Figure 4.19: Schematic of 3D vessel segment analysis approaches and issues. Schematic
of 3D vessel segment analysis approaches and issues (magenta circles indicate
true vessel starting (x,y,z)1 and endpoint (x,y,z)2. (A) Shortest path analysis
between start and endpoint (magenta circles) delivers true vascular segments
(grey), excluding false positive voxel and vessels (red). (B) Vascular analysis
with the "2D/3D AnalyseSkeleton" Plugin delivered true-postive BPs (magenta)
and false-positive BPs (green), resulting in the extraction of vascular subsegments
(light grey, dark grey, blue). (C) Euclidean distance between start and end
point would deliver spatial not vascular connection. (D) Cubic ROIs would only
approximate true vessels. (E) ROI selection from vascular templates would allow
refinement of "2D/3D AnalyseSkeleton" Plugin data based on their location within
these ROIs.
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Figure 4.20: Application of SNT to annotate vessels. (A,B) SNT allows semi-automatic
tracking and annotation of 3D vessels. (C) SNT allows extraction of ROIs of
individual vessels. (D) Visual representation of semi-automatically annotated
vessels.
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To assess whether skeletons of different fish would be similar enough to use the trackings

produced from the registration target to the moving image to identify and extract individual

vessels, vascular skeletons of target and moving fish were compared visually finding a high

degree of similarity (Fig. 4.21).

As the target and moving samples were not perfectly overlapping, we extended the initial

trackings as ROIs (x,y,z) and extended these to larger rectangular ROIs (30 x 130vx; Fig.

4.19E) to allow measuring the grey value which represents diameter.

Once it was found that this was suitable to measure vessel-specific information in moving

images, a macro was produced to iterate through the vessel-specific ROIs and automatically

save the data.

Figure 4.21: Assessing vascular skeleton similarity. To assess whether it was possible to
use the skeleton from the target image (green) to quantify vessel diameters in
moving (magenta) images, skeletons were overlapped and visually compared,
showing a high degree of similarity.
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Subsequently, this was applied to some registered fish to assess whether this approach

would be applicable to other data. To compare measurement outcomes, I manually measured

vessel diameters of CtA, MMCtA, PHBC, and BA in the target and three moving samples in

the original data (Fig. 4.22, black dots) as well as segmented data (green dots) and compared

these to the automatic measurements (magenta dots).

This showed that the automatic measurement in the target image delivered promising results

(CoV: CtA 11.66%, MMCtA 7.90%, PHBC 20.92%, and BA 13.56%), but varying accuracy in

the returned results for some of the vessels in the moving fish. Some measurements were

highly accurate (ie. PHBC M3 CoV 9.41%), while other were not (ie. PHBC M2 CoV 40.14%).

We suggest that this method needs further refinement, but is theoretically applicable to allow

the analysis of key vessels, such as CtA, MMCtA, PHBC, or BA.

Figure 4.22: Automated measurement of individual vessel diameters. Diameter
measurements of individual vessels based on SNT tracking in (A) CtA, (B) MMCtA,
(C) PHBC and (D) BA (black - manual measurement in original image, green -
manual measurement in segmented image, magenta - automatic measurement).

To enable wider application, this method could be used to assign a data set with annotated

vessel identities, building the foundation for a vascular atlas which could be used to train

machine learning methods to perform annotation and extraction automatically.

Still, we show here the first approach to extract vessels of interest, including annotation and

diameter measurements.

4.3.9 Vascular network complexity assessment using Scholl analysis

Vascular complexity was analysed using Scholl analysis in zebrafish with and without blood flow

at 3dpf (Fig. 4.23A-C), showing that zebrafish without blood flow (tnnt2a MO) have less vascular

branches than controls and branches extend less far (Fig. 4.23D,E; number of branches -
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uninjected control 20.5 ± 1.82, control MO 19.25 ± 1.88 tnnt2a MO 11.56 ± 1.25 (mean ±

SEM)).

Figure 4.23: Sholl analysis of zebrafish with and without blood flow (tnnt2a MO). (A-C)
Sholl analysis of uninjected controls, control MO, and tnnt2a MO. (D) Line graph
of Sholl analysis of number of intersection of 2D distance from centre shows less
branching and a reduced distance in tnnt2a MO. (E) Plot shows reduced number
of intersections in tnnt2a MO in comparison to controls (3dpf, n=6, One-Way
ANOVA).

To quantify vascular branching during embryonic development, Sholl analysis was applied

from 2-5dpf, showing an increase of branches over time (Fig. 4.24; number of branches - 2dpf

19.37 ± 1.32, 3dpf 15.08 ± 1.10, 4dpf 18.33 ± 1.31, 5dpf 22.49± 1.31 (mean ± SEM)).

4.3.10 Example biological application - Quantification of the effect of inhibiting

actin polymerization

Following the implementation and testing of workflows to analyse the cerebral vasculature in

zebrafish, we wanted to examine the entire workflow applicability to biologically relevant

experimental data. One such experiment was to examine the impact of actin polymerization
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Figure 4.24: Sholl analysis from 2-5dpf. (A-D) Sholl analysis of zebrafish from 2-5dpf. (E)
Line graph of Sholl analysis of number of intersection of 2D distance from centre
shows increased branching and extending 2D distance from centre with age. (F)
Plot shows increased number of intersections with development (n=5, One-Way
ANOVA).
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inhibition with the drug Latrunculin B which impacts the EC cytoskeleton (Fig. 5.12A). Data

were pre-processed, enhanced, segmented as suggested in Chapter 2 (Fig. 5.12B), allowing

for inter-sample registration as suggested in Chapter 3. This showed a difference in similarity

metric between untreated and treated fish (p<0.0001; Fig. 5.12C). Application of the complete

analysis workflow showed that actin polymerization inhibition leads to a decrease in vascular

volume (p 0.0008; Fig. 5.12D), network length (p<0.0001; Fig. 5.12E), branching points

(p<0.0001; Fig. 5.12F), and average vessel diameters (p 0.0002; Fig. 5.12G,H). Analysis of

vascular complexity using Sholl analysis showed a slight but non-significant reduction of

number of intersections (p 0.1829; Fig. 5.12I,J).

Together, this showed that the proposed analysis approach was able to extract a wide range

of biologically meaningful parameters that characterise the cranial vasculature in great detail.

It is our belief that these will allow new quantitative insights into vascular development and

disease that would not be possible by more conventional approaches.

4.4 Conclusion

Here vascular centreline extraction using ridge detection and 3D thinning were examined and

their applicability in both 2D and 3D tested. It was found that 2D ridge detection and 3D

thinning-based skeleton analysis is applicable to extract and describe th zebrafish cerebral

vasculature. Following this, 3D BP detection was studied using the "AnalyseSkeleton" Plugin,

finding that post-processing is needed to reduce the number of false-positive BPs. When

examining vessel diameter sampling rates, vessel diameters in the zebrafish head vasculature

span a short range and increasing sampling frequency does not impact the extracted vessel

diameter significantly. Combining EDMs and 3D thinning-based skeletons allowed the

extraction of meaningful parameters such as network length, branching points, endpoints, and

vessel diameters. Also, work to identify, extract, and annotate individual vessel segments was

examined. We here show that 2D Scholl analysis, applied to skeleton MIPs, is applicable to

quantify vascular complexity.

The suggested workflow steps were merged and a GUI provided. The tested datasets include

examples of fish with and without blood flow (uninjected controls, control MO, and tnnt2a MO),

early vascular development examples (3-5dpf), and fish with actin polymerization inhibition

(DMSO controls and Latrunculin B treated).

Our data show that meaningful quantification of the zebrafish cerebral vasculature is possible,

allowing to quantitatively assess vascular topology.

Future work, could examine additional approaches to post-process vascular skeletons to (a)
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Figure 4.25: Example biological application - impact of actin polymerization inhibition.
(A) Original data. (B) Segmented data. (C) A reduction of Dice was found when
comparing registered controls to F-actin inhibitor treated samples (p<0.0001;
control=11, Latrunculin B=12; One-Way ANOVA; post hoc statistical power was
0.0602451). (D) Cerebrovascular volume was reduced (p 0.0008; control=13,
Latrunculin B=12; unpaired Student’s t-test; post hoc statistical power was
0.9851150). (E) Network length was reduced (p<0.0001; control=14, Latrunculin
B=12; Mann-Whitney U test; post hoc statistical power was 0.9998935). (F)
Branching points were reduced (p<0.0001; control=14, Latrunculin B=12; Mann-
Whitney U test; post hoc statistical power was 0.9999998). (G) Diameter
representation. (H) Vessel diameter was reduced (p 0.0002; control=14,
Latrunculin B=12; Mann-Whitney U test; post hoc statistical power was
0.9911708). (I,J) Scholl analysis showed a non-significant reduction in complexity
(p 0.1829; control=14, Latrunculin B=12; Mann-Whitney U test).
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decrease the number of spurious branches (this could be achieved either by surface

smoothing before skeletonization, or by implementation of a length-to-diameter-thresholding

after skeletonization [128]), (b) increase the accuracy of extracted BPs (this could be achieved

by allowing only one BP in a certain 3D region, or including another approach to detect BPs

such as spheres [349, 350] or deformable bodies [176]), and (c) decrease the number of

unconnected components (this could either be achieved by performing connected component

analysis before or after skeletonization [177, 351]).

More thorough evaluations are needed to ensure that the extracted vascular properties are

robust. While this is obviously challenging, one approach may be to create and use a simulated

zebrafish vasculature model, where the underlying parameters are known and can be varied /

controlled, but this is currently beyond the scope of this thesis.

Although this work delivered the extraction of meaningful parameters, we appreciate that

future work might want to focus on extracting information of individual vessels more in-depth.

We here presented a theoretical of how this could be achieved, but more work needs to be

done to provide a fully annotated atlas of the zebrafish cerebral vasculature. Such vascular

annotation could be automated using machine learning.

If further examined, this would allow the establishment of a vascular growth atlas including a

range of ages, which could then be combined with other data such as brain activity or

colocalization analysis, as performed for zebrafish brain atlases [302, 303].
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5 Characterisation of novel cystic endothelial
membrane structures

Parts of this work were published in [1]; figures reproduced under the licence 4613080722025.

5.1 Introduction

While studying images of the embryonic cranial vasculature in Tg(kdrl:HRAS-mCherry)s916

[244] previously undescribed structures were observed (Fig. 5.1A).

As these appeared to be spherical in shape, they were given the German name kugel (plural

kugeln), which translates to sphere.

Initially, it was not clear whether kugeln were an image-acquisition artefact, or a real biological

phenomenon. Further, the question arose whether kugeln should be included, or excluded

in further vasculature quantification analysis; or if kugeln per se would have an impact on

vascular architecture and development. Thus, experiments were designed and performed to

examine the reproducibility, importance and role of kugeln. The key questions investigated in

this Chapter are grouped into eight key categories and summarised below and in Figure 5.1B:

One key question was whether kugeln were reproducible, what their morphology was (size,

number, 3D structure, etc.), and whether they occurred in all vascular territories or just the

cerebral vessels.

To elucidate the cellular and subcellular context of kugeln, vascular membrane, cytosol, and

nuclei were examined and it was studied whether kugeln played a role in angiogenic sprouting

and EC mitosis/apoptosis.

Following, the actin cytoskeleton was studied as the actin cytoskeleton plays a pivotal role

for mechanical aspects of cells (such as adhesion or protrusion [219, 220]) as well as cellular

transport processes (such as endocytosis or cell division [352]); but it was also shown that

weaknesses in the cell actin cortex would lead to an outward movement of the cell membrane

due to cytosolic pressure, resulting in blebbing [233, 234]. Thus, there was the rationale to

examine whether loss of F-actin would impact kugel number or size. Similarly, the impact of

Myosin II loss was studied, as it was shown for cell blebs that myosin II plays a role in actin

cortex re-assambly, its re-attachment to the cell membrane, and subsequent bleb retraction

[233, 234]. It was examined whether kugeln resembled bleb-like structures, which have been

suggested to occur in the trunk vasculature in the context of mitosis [353] or lumenization [68].

Lastly, EC cytosol and surrounding neuronal tissue were studied.
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Figure 5.1: Suggested workflow of kugel analysis. (A) Previously undescribed endothelial
structures, so-called kugeln (black arrowhead), were found during early
experimental work in the scope of this project. (B) Suggested workflow
towards characterisation and investigation of kugeln. The conducted experiments
addressed description of morphology, dynamics, and cellular context of kugeln.
Also, the involvement of kugeln in apoptosis, mitosis or angiogenesis was studied.
Additionally, data were obtained to investigate the role of blood flow, major signalling
pathways, the possible interaction with lymphatic cells and macrophages, as well as
osmotic pressure, and membrane rigidity. (black: data or preliminary data acquired;
white: suggested routes of investigation)

As kugeln structurally resembled aneurysms, there was the rationale to study whether blood

flow was the driving force of kugel formation as it is the case for aneurysms.

Vascular Endothelial Growth Factor (VEGF) signalling is pivotal for physiological

vasculogenesis and angiogenesis [56, 58, 354]. VEGF signalling plays a crucial role in

different aspects of vessel formation as secreted VEGF ligand acts as a guidance cue for

angiogenic sprouts during the de novo formation of vascular beds [56, 58, 355]. VEGF

decreases paracellular junction complexes (adherens junction (AJ) by phosphorylation of

VE-Cadherin) [356, 357] in cell lines [358], mice [356], as well as zebrafish [359]. This is of

special relevance in the context of development, cancer, or ischaemia [360]. Due to these

impacts of VEGF on ECs, there was the rationale to examine the impact of VEGF inhibition on

kugeln.

Nitric oxide (NO) is a downstream signalling factor of VEGF and, as a gaseous signalling

molecule, nitric oxide (NO) is thought to passively diffuse through membranes but was also

reported to be transported via gap junctions [361]. NO plays also a role in inflammation,

neurotransmission, and neurovascular coupling [362, 363, 364]. NO impacts the vasculature

in a paracrine manner via vascular smooth muscle cell (vSMC)-mediated vasodilation [365],
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as well as by playing a role in vascular oxidative stress [366]. In mammalia NO is either

produced by enzymatic synthesis (endothelial nitric oxide synthase (eNOS), neuronal nitric

oxide synthase (nNOS), or inducible nitric oxide synthase (iNOS) [366]), enzymatic reduction

(xanthine oxidoreductase [367] or deoxygenated hemoglobin [368]), or chemically by acidic

reduction [369]. The existence of eNOS in zebrafish remains controversial in the literature, as

Syeda et al. [370] postulated the non-existence of messenger ribonucleic acid (mRNA) or

protein in fish, while Fritsche et al. [371] reported eNOS occurrence in the dorsal vein. Still,

NO itself was previously studied in zebrafish and shown to influence cranial neuronal

development [372].

Together, there was the rationale to examine whether NO would be found to associate with

kugeln or whether NO-level alteration could impact kugel formation.

The Notch signalling pathway counterbalances VEGF signalling, restricts angiogenesis, and

is critical for arterial differentiation [55, 373, 374, 375]. Its role in cell-cell lateral inhibition is

pivotal for development. Studies in vascular tip-stalk-cell formation showed that the VEGF-A

ligand acts as a cytokine sensed by tip-cells via VEGFR2/kdrl. Following, dll4 is increased

in tip-cells, which leads to induction of Notch signalling in neighbouring stalk cells by lateral

inhibition [42].

Thus, we investigated whether kugeln are affected upon inhibition of Notch signalling.

Recent studies highlighted the importance of Wnt signalling in angiogenesis. This is

exemplified by the fact that canonical Wnt signalling is required for the formation of dorsal

cerebral vessels and the formation of the BBB. A lack of canonical Wnt signalling via the

Reck/Gpr124 receptor complex results in a lack of BBB-forming cerebral vessels

[376, 377, 378, 379]. For example, Wnt signalling is required for tip-cell-fate specification

during angiogenesis, but dispensable for sprout migration [377]. Also, Wnt signalling was

shown to regulate cell-cell junctions via VE-Cadherin and Esama [379]. In mice, Wnt

signalling was shown to regulate cerebral angiogenesis, but not angiogenesis in other

vascular beds [378, 380]. To examine whether Wnt signalling had an impact on kugeln the

impact of Wnt by inhibition and overactivation was studied using chemical compounds.

Brain Lymphatic Endothelial Cells (BLECs) were previously shown to constitute the cranial

lymphatic system, deriving from veins, and closely interacting with certain cranial vessels [381].

Thus, it was investigated whether BLECs would possibly interact with kugeln, and whether

kugeln maybe fulfilled a scavenging function within the cranium. Next, it was studied if kugeln

would interact with macrophages, as it was previously shown that macrophages interact with

vessels undergoing angiogenesis and repair and it was possible that kugeln were a vascular

155



3D quantification of the developing zebrafish cranial vasculature

response to angiogenesis or injury [382, 383]. We here use the term macrophages for the

microglia examined, as microglia are a sub-type of macrophages.

Osmotic regulation was previously shown to induce changes of cellular morphology

[223, 224]. Thus, preliminary experiments to investigate the role of osmotic pressure on

kugel-formation were conducted. Moreover, the role of membrane rigidity on kugel

appearance was studied by chemical increase of membrane fluidity with

dimethylsulfoxide (DMSO).

5.2 Material and methods

5.2.1 Zebrafish strains, handling, and husbandry

Zebrafish handling and husbandry were performed as described in 2.2.1. Embryos were

studied using fish lines described before as well as the following:

• Tg(kdrl:HRAS-mCherry)s916 [243] in a Casper background [384] for independent data

validation were housed at the Max Planck Institute of Molecular Cell Biology and Genetics

in Dresden according to institutional and international guidelines.

• Embryonic Tg(fli1ep:EGFP–CAAX), to label EC membrane, were kindly provided by the

Gerhardt lab [68] to be raised and housed at the University of Sheffield.

• Tg(gata1:dsRed) labels red blood cells (RBCs) [385];

• Tg(fli1a:AC-tagRFP)sh511 (unpubl., Aaron Savage) labels EC cytosol;

• Tg(flk1:nls-eGFP)zf109 [386] labels EC nuclei;

• Tg(nbt:GCaMP3) [387] labels developing neurons;

• Tg(dll4in3:GFP) labels the Notch delta-like ligand 4 (dll4; kindly provided by the De Val

lab) [374];

• Tg(TP1glob:venusPest)s940 (kindly provided by Ryan McDonald) [388];

• Tg(fms:GAL4.VP16)i186, Tg(UAS-E1b:nfsB.mCherry)i149, Tg(fli1a:eGFP)y1,

Tg(kdrl:HRAS-mCherry)s916 [389] labels macrophages, EC cytosol, and EC membrane.

5.2.2 Generation of zebrafish with transient expression of

Tg(fli1a:myr-mCherry)

The plasmid pTol2-fli1a-myr-mCherry (8975bp) to label EC membrane under the fli1a

promotor using myristoylated (myr) mCherry was kindly provided by Naoki Mochizuki

[390, 391]. Plasmid was transformed using E.Coli (Sigma-Aldrich), followed by LB culturing
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with Ampicillin resistance for amplification, and purification using Midi-prep (Macherey-Nagel).

Concentration was quantified using Nanodrop.

Injection was performed at one-cell state with a final injection concentration of 50pg plasmid

and 75pg Tol2.

5.2.3 Microangiography

Microangiography was performed to study whether a kugel-lumen connection existed.

Visualization of perfused vessels was conducted as described in [73, 392], using 20 µg

dextran tetramethylrhodamine (2,000,000 molecular weight, ThermoFisher) at a concentration

of 10mg/µL (2nl injection volume), kindly supplied by Rob Wilkinson.

5.2.4 Imaging methodology

Image acquisition was performed as described in section 2.2.2. 3D time-lapses were performed

as follows: 10 minutes, total 200 images (every 3 seconds); 15 minutes, total 30 stacks (every

30 seconds); and overnight 12 hours, 36 stacks (every 10 or 20 minutes).

Independent data acquisition by Stephan Daetwyler at the Max Planck Institute of Molecular

Cell Biology and Genetics in Dresden was conducted with a custom-built multidirectional SPIM

(mSPIM) setup [393]. The whole head was imaged every 2-3 min over 2 days with dual-side

illumination. The mSPIM setup was equipped with a Coherent Sapphire 561 nm laser, two Zeiss

10x/0.2 illumination objectives, an UMPlanFL N Olympus 20x/0.5 NA detection objective, and

an Andor iXon 885 EM-CCD camera. To cover the whole head, several regions were imaged

and later stitched using custom image processing plugins in Fiji [127] based on the stitching

tool from Stefan Preibisch [394]. Sample embedding was performed in FEP tubes coated with

3% methyl cellulose and filled with 0.1% low-melting agarose containing 200 mg/l Tricaine to

immobilize the zebrafish embryos during time-lapse imaging as described in [253].

Inter-sample registration for investigation of anatomical location of kugel occurrence was

performed with a manual anatomical landmark-based approach as described in Chapter Inter-

sample Image Registration.

5.2.5 Multiview image reconstruction

Multiview image acquisition was performed as described in [395]. Briefly, acquisition settings

were as follows: minimum laser power and exposure time, activated pivot scan, automatic light-

sheet alignment, dual side illumination with online fusion and separate colour-tracks for GFP

and RFP.
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Selection of four multiview acquisition angles (90° intervals) was performed via the built-in

Zeiss multiview-acquisition wizard, while z-stack depth was defined manually. Acquisition of

consecutive angles was performed with a delay of 2 seconds to avoid mechanical rotation bias.

Yellow-green 1µm fluorescent beads (Sigma; kindly supplied by Nick van Hateren) were used

as fiduciary markers and stored at 4◦C as 1:100 stock. A 1:20 dilution of stock was used as final

working concentration in 2%-LM agarose (Sigma) with 0.01% Tricaine in E3. Image registration

was performed using the "Multiview Reconstruction Application" Fiji Plugin [127, 310, 396] as

described in [395]. 3D rendering for visualization was performed using Arivis Software.

5.2.6 Morpholino injections

Development of functional heart contraction was inhibited via injection of tnnt2a ATG

morpholino (1.56 ng final concentration), as described in [345] (sequence

5’-CATGTTTGCTCT GATCTGACACGCA-3’).

The role of the following Notch signalling ligands was studied using MO:

• dll4 ATG MO at 3ng (5’-GAGAAAGGTGAGCCAAGCTGCCATG-3’; Genetools, LLC) [305]

• notch1b ATG MO at 0.25ng (5’-GTTCCTCCGGTTACCTGGCATACAG-3’; Genetools,

LLC) [305]

• Jagged-1a ATG MO at 0.1ng (5’-GTCTGTCTGTGTGTCTGTCGCTGTG-3’; Genetools,

LLC) [397]

• Jagged-1b ATG MO at 1.8ng (5’-CTGAACTCCGTCGCAGAATCATGCC-3’; Genetools,

LLC) [397]

Development of lymphatic cells was inhibited by injection of collagen and calcium-binding

EGF-like domain 1 (ccbe1) ATG MO (5ng final concentration; Genetools, LLC), as described

in [398] (sequence 5’-CGGGTAGATCATTTCAGACACTCTG-3’; kindly provided by Stefan

Schulte-Merker).

Control morpholino injections (5’-CCTCTTACCTCAGTTATTTATA-3’; no target sequence and

little/no biological activity; Genetools, LLC) were performed with the above final concentration to

study off-target effects of injections. Injections were conducted at one-cell-stage using phenol

red as injection tracer.

5.2.7 Dextran injection into brain ventricles

Scavenging activity of kugeln and BLECs was studied by injection of IgG-conjugated 150 kDa

Alexa Fluor 674 (0.2mg/ml, ThermoFischer, A31573, RRID:AB_2536183; kindly provided by
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Stefan Schulte-Merker) into the brain ventricle at 3dpf, as previously described [381].

5.2.8 Reduction of blood flow and exsanguination

Reduction of blood flow was achieved by temperature reduction of the image acquisition

chamber to 10°C for 60min [399].

Exsanguination was performed by mechanical heart opening with forceps after control image

acquisition.

Transient heart contraction stop was performed using 2.5mM Tricaine in E3 for 20min.

Following image acquisition, samples were placed into E3 without Tricaine until full heart

recovery was established to assess non-lethality of Tricaine exposure.

5.2.9 Chemical treatments

Inhibition of VEGF signalling was induced by the VEGF-receptor inhibitor AV951 at 250nM for 2-

4h between 96-98hpf or 96-100hpf (Selleckchem; S1207; Tivozanib - AVEO pharmaceuticals)

[266].

F-actin depolymerization was achieved by 100nM Latrunculin B for 1h between 96-97hpf

(Sigma-Aldrich; L5288-1MG; kindly provided by Rob Wilkinson) [346].

Inhibition of Myosin II was achieved by 25µM Blebbistatin in E3 with 1% DMSO for 1h

between 75-76hpf (Sigma; kindly provided by Emily Noel).

Inhibition of γ-secretase in the Notch signalling cascade was achieved by 50µM DAPT for

12h between 84-98hpf (Sigma-Aldrich; D4952) [265].

Inhibition of Wnt signalling was by 10µM XAV-939 for 4h from 72-76hpf (Sigma; kindly

provided by the Perak lab).

Activation of Wnt signalling was by 10µM GSK-3 inhibitor XV for 4h from 72-76hpf (Merck;

kindly provided by Henry Roehl).

DMSO control at the same concentration and duration was used for Latrunculin B, AV951,

DAPT, GSK-3 inhibitor, and XAV-939 treatments.

Inhibition of nitric oxide synthase (NOS) was achieved by application of 0.5mM N-nitro-L-

arginine methyl ester hydrochloride (L-NAME) (Sigma-Aldrich; 50912-92-0) for 18h from 3-4dpf.

Controls were incubated in E3.

Nitric oxide was supplied by application of 0.1mM sodium nitroprusside (SNP) 25h in E3 for

25h from 2-3dpf.

Osmotic pressure was increased via treatment with 40mM glucose (Sigma) in E3 for 24h
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(72-96hpf). Membrane rigidity was increased via 2.5% (v/v) DMSO (Sigma) in E3 for 24h (72-

96hpf). Controls for osmotic pressure and membrane rigidity were incubated in E3.

5.2.10 Live dyes

Visualization of NO in vivo was performed via application of 2.5µM 4-amino-5-methylamino-

2,7-

difluorofluorescein diacetate (DAF-FM-DA) (Molecular Probes; D23844) [400, 401] for 6h in

4-5dpf embryos. DMSO control was performed with the same concentration and duration.

Visualization of acidic components was performed using LysoTracker Green (Molecular

Probes; L7526 DND-26) 1mM stock diluted to 8.33µM in E3 [402]. Incubation was done for 5h

between 96-101hpf. Controls were incubated in E3.

5.2.11 Image and data analysis

Kugel diameter. Quantification of kugel diameters was performed manually using the line

ROI tool in Fiji [127]. Dynamic changes of kugel diameter over time were visualized with

kymographs. (Fiji "image > stacks > reslicing").

Vessel tortuosity. Vessel tortuosity (T ) was measured by division of minimum Euclidean

distance (Lshortest) by total length between measurement endpoints (Ltotal; Eq. 5.1).

T = Lshortest/Ltotal (5.1)

Statistics. As described in section 2.2.10.

5.3 Results and discussion

5.3.1 Morphological description and physiological occurrence

5.3.1.1. Kugel number and diameter is consistent during early vascular development

Observation of multiple embryos showed that the majority displayed at least one kugel from

3-5dpf: 3dpf 33/39, 4dpf 26/37 and 5dpf 29/37 (5 replicates). Measuring kugel number and

diameter from 3-5dpf showed no difference over time (number p 0.8571 Fig. 5.2B; diameter p

0.3258; Fig. 5.2C). Together, these data suggested that neither kugel number nor diameter are

age-dependent during the investigated time-frame and that kugeln are reproducible and highly

prevalent.
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Having found a high CoV in kugel diameters per sample (eg. 3dpf 46.28%) and in order to

avoid over-sampling, average kugel diameter per sample will be shown in the remainder of this

chapter.

Also, data from older samples were examined and kugeln in samples at 8dpf (Fig. 5.2D) as

well as samples at 28dpf were observed (Fig. 5.2E; 28dpf data provided by Max van Lessen

from the Stefan Schulte-Merker laboratory). As image quality in older fish was reduced due to

increased sample size and, thus, decreased penetration depth during image acquisition, robust

quantification of kugel number or diameter were not possible in these older fish.

As datasets were acquired in other laboratories (data from Stephan Daetwyler from the Jan

Huisken laboratory and Max van Lessen from the Stefan Schulte-Merker laboratory) showed

kugeln, it was assumed that kugeln were not caused by an in-house transgenic line artefact or

mutation. Additionally, observation of kugeln in older fish suggested that kugeln were not only

a phenomenon of very early angiogenesis, but may persist in even older animals then those

examined.

5.3.1.2. Kugeln are spherical in 3D

To gain insight into the 3D structure and tissue context of kugeln, 3D multiview reconstruction

was performed as 3D multiview reconstruction was previously shown to increase structural

resolution [310, 396]. This confirmed that kugeln were 3D spheres, rather than membranous

sheets, extending abluminally from parent vessels (Fig. 5.3).

5.3.1.3. Kugel are restricted to the head vasculature

To understand on what vascular bed kugeln occurred, inter-sample registration using manually

placed anatomical landmarks was performed as in Chapter 3. Bringing samples into a common

spatial coordinate system enabled us to localize kugeln to the central dorsal cranial vasculature

(Fig. 5.4A). As this restriction to the central cranial vasculature seemed striking, the type of

vascular segments with kugeln were characterised more specifically. This showed that the

majority of kugeln occurred on the MMCtA (57.01%) and CtA (16.82%; Fig. 5.4B), while very

few were located on more peripheral vessels such as the PMBC (0.93%). No kugeln were

observed in other vascular beds, such as the trunk vasculature. Interestingly, kugeln were

never observed to protrude from the BA or DA. Assessing kugel localization regarding left-right

distribution in the cranial vessels showed no difference (p 0.0605; Fig. 5.4C).

5.3.1.4. Kugel are dynamic and transient

Time-lapse movies were acquired to elucidate kugel morphology over time. Kugeln were

dynamic structures, inflating from, and retracting into parent vessels (Fig. 5.5A). Observed

behaviours included shape changes, retraction, inflation, or more static behaviour (Fig. 5.5B).
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Figure 5.2: Morphological description and physiological occurrence of kugeln. (A) Kugeln
displayed themselves as outward facing membrane bulges (black arrowhead;
inverted MIP). (B) Kugel number showed no difference between 3-5dpf ( p 0.8571;
n=32 each; 4 experimental repeats; Kruskal Wallis test). (C) Kugel diameter
showed no difference between 3-5dpf (p 0.3258; kugeln 3dpf n=93, 4dpf n=81, 5dpf
n=73; 3 experimental repeats, Kruskal Wallis test). (D) Kugeln were observed at
8dpf in data acquired at the University of Sheffield (black arrowhead). (E) Embryos
at 28dpf showed kugeln (black arrowhead; data kindly provided by Max van Lessen;
University of Münster).
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Figure 5.3: 3D kugel structure after multiview reconstruction. (A) Data acquired from
multiple views of the cardiovascular system were registered according to the
workflow (B). (C) 3D rendering of multiview reconstruction of 3dpf Tg(kdrl:HRAS-
mCherry)s916 showed that kugeln were 3D spheres extending abluminally from
parent vessel segments (D; MMCtA).

163



3D quantification of the developing zebrafish cranial vasculature

Figure 5.4: Kugeln protrude from dorsal cerebral vessels and show no left-right pattern.
(A) Overlay of kugel localization of six registered embryos showed that kugeln
predominantly protruded from central dorsal cranial vessels (n=6 embryos;
representative vasculature image for anatomical context). (B) Quantification of
kugel-parent-vessel identity showed that the majority of kugeln protruded from the
MMCtA (57.01%), CtA (16.82%) and PMCtA (9.35%). (C) Comparing kugel left-to-
right distribution showed no difference (p 0.0605, 34 4dpf embryos, n=107 kugeln;
Wilcoxon test; 4 experimental repeats). Abbr.: AMCtA - anterior mesencephalic
central artery, BCA - basal communicating artery, CaDI - caudal division of
internal carotid artery, CMV - communicating vessel, CtA - central artery, MMCtA -
middle mesencephalic central artery, MtA - metencephalic artery, PCS - posterior
communicating segment, PMBC - posterior midbrain channel, PMCtA - posterior
mesencephalic central artery, PrA - prosencephalic artery;
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Importantly, kugeln were never observed to separate, burst or anastomose.

Further analysis of kugel shape and diameter in time-lapse movies showed that some kugeln

displayed oscillatory changes in morphology (diameter and shape) over minutes (Fig. 5.6A),

which is a very different timescale to heartbeat frequency (milliseconds; Fig. 5.6B).

Quantification of persistence showed that some kugeln protruded only for a few minutes,

whilst others for hours (Fig. 5.7A). These data indicated that kugeln were dynamic rather

than stable protrusions, showing variability in shape as well as duration of persistence. Also,

embryos could display kugeln at a certain time-point (Fig. 5.7B, 55:20:00, red arrowhead) but

later not (Fig. 5.7B 56:20:00).

Figure 5.5: Kugeln are transient dynamic structures. (A) Kugeln inflate and retract back
into parent vessels, rather than bursting, shedding, or undergoing anastomosis
(arrowheads; hh:mm:ss). (B) Comparing kugel morphology at 0min with their shape
at 20min showed that kugeln were dynamic; included shape changes (asterisk),
retraction (circle), inflation (triangle), and stationary (pentagon).

5.3.1.5. Kugeln are only found in membrane-tagged transgenic reporter lines

To investigate whether kugeln would be observed in transgenic lines other than the endothelial

membrane-specific Tg(kdrl:HRAS-mCherry)s916, we examined endothelial reporter lines which

visualize F-actin (Tg(fli1a:AC-tagRFP)sh511; Fig. 5.8A and Tg(fli1a:Lifeact-mClover)sh467; Fig.

5.8B) and cytosol (Tg(fli1a:eGFP)y1; Fig. 5.8C) under the pan-endothelial fli1a promotor. In
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Figure 5.6: Some kugeln show oscillatory shape changes. (A) Timelapse acquisitions
showed that some kugeln changed shape in an oscillatory fashion, as visualized by
diameter kymographs (A’). (B,B’) Such oscillations were not observed in vessels
and were on a larger scale than the heartbeat frequency.

Figure 5.7: Kugeln show variable persistence. (A) Duration of kugel appearance was
variable, ranging from a few minutes to hours (4dpf 9 embryos; n=43 kugeln). (B)
Kugeln are dynamic structures, which were not persistently found in samples. Here,
at 55:20:00hpf and 57:20:00hpf a kugel was observed (red arrowhead), while non
were seen at 56:20:00hpf and 58:20:00hpf.
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Figure 5.8: Kugeln are not observed in non-membrane specific reporter lines. Kugeln
were not observed in transgenic reporter lines which do not specifically visualize
the endothelial vascular membrane; such F-actin reporters (A) Tg(fli1a:AC-
tagRFP)sh511 or (B) Tg(fli1a:Lifeact-mClover)sh467, or the cytosolic reporter line (C)
Tg(fli1a:eGFP)y1.

neither of them kugeln were detected.

Tg(fli1ep:EGFP–CAAX)

Next, the membrane-specific transgenic line Tg(fli1ep:EGFP–CAAX) was examined (Fig.

5.9A). This line uses fli1a (rather then kdrl as it is the case in Tg(kdrl:HRAS-mCherry)s916) as

a promotor and a shorter CAAX sequence to target eGFP to the membrane. Kugeln were

indeed found in this transgenic and showed the same dynamic behaviour (Fig. 5.9B). This

further suggested that kugeln were not a transgenic line artefact specific to

Tg(kdrl:HRAS-mCherry)s916.

Quantification of kugel number per embryo in Tg(fli1ep:EGFP–CAAX) at 4dpf showed an

average of 1.67 ± 0.39 per embryo (Fig. 5.9C). The average diameter was 3.59 ± 0.26µm

(Fig. 5.9D).

Finding a lower average number and diameter of kugeln in the Tg(fli1ep:EGFP–CAAX) in

comparison to kdrl:HRAS-mCherrys916 was likely to be due to the highly fluctuating signal levels

in individual ECs in Tg(fli1ep:EGFP–CAAX) (Fig. 5.9E).

The lower CNR levels in Tg(fli1ep:EGFP–CAAX) in comparison to kdrl:HRAS-mCherrys916

(p 0.0157; Fig. 5.9F) suggested that some kugeln may not be visualized in

Tg(fli1ep:EGFP–CAAX).

Tg(fli1a:myrCherry)

To further investigate whether kugeln were an artefact introduced by the prenylation of the

CAAX-sequence in Tg(kdrl:HRAS-mCherry)s916 and Tg(fli1ep:EGFP–CAAX) lines, it was

tested whether kugeln would be observed when the fluorophore was located to the membrane

by myrosilation. The plasmid pTol2-fli1a:myr-mCherry was injected, together with Tol2 RNA,
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Figure 5.9: Investigation of kugeln in Tg(fli1ep:EGFP–CAAX). (A) Kugeln were observed
in the endothelial membrane-specific Tg(fli1ep:EGFP–CAAX). (B) Time-lapse
acquisitions showed that kugeln were equally dynamic as in kdrl:HRAS-
mCherrys916. (C) The average number of kugeln in Tg(fli1ep:EGFP–CAAX) was
1.67 ± 0.39 (s.e.m.; n=27; 4dpf; 3 experimental repeats). (D) The average
diameter of kugeln was 3.59 ± 0.26 µm (s.e.m.; n=45 kugeln from 27 embryos;
3 experimental repeats). (E) eGPF signal levels in ECs was highly variable, with
some ECs being clearly visualized (grey arrowhead), while others barely visible
(black arrowhead). Also, pigmentation and skin autofluorescence were visualized
during image acquisition due to high laser power during image acquisition (white
arrowhead). (F) Assessment of CNR levels showed that (1) Tg(fli1ep:EGFP–CAAX)
had a lower fluorescence level than (2) kdrl:HRAS-mCherrys916 (p 0.0157; embryos
Tg(fli1ep:EGFP–CAAX) n=20, kdrl:HRAS-mCherrys916 n=17; 2 experimental
repeats; paired Student’s t-test).
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Figure 5.10: Investigation of kugeln in Tg(fli1a:myr-mCherry). (A) Kugeln were observed
in Tg(gata1:dsRed) injected with the plasmid pTol2-fli1a:myr-mCherry for
EC membrane visualization (single-Z-plane representation). (B) Time-lapse
acquisitions showed that kugeln were equally dynamic (hh:mm:ss).

into Tg(gata1:dsRed). Injection into Tg(gata1:dsRed) was performed to allow vessel

localization even in regions with no fli1a:myr-mCherry expression.

Image acquisition in 3dpf samples injected with the plasmid and Tol2 showed kugeln (Fig.

5.10A), which, again, showed similarly dynamic behaviours as in the other transgenic lines

(Fig. 5.10B). Due to the mosaic nature of the construct insertion, no kugel quantification was

performed.

This data further suggested that kugeln were not an artefact caused by the protein

modification that induced for fluorophore localization to the EC membrane.

5.3.2 Kugel cellular and sub-cellular context

To study the cellular and sub-cellular context of kugeln, double-transgenic embryos were used

to visualize the endothelial vascular membrane in parallel to cellular components of interest.

5.3.2.1. Kugeln are not associated with angiogenic sprouting

Parallel visualization of endothelial nuclei and membrane showed that kugeln did not harbour

individual cell nuclei. This indicated that kugeln were not pathseeking angiogenic cells, but

membrane protrusions from individual cells (Fig. 5.11A).

5.3.2.2. Kugeln are not associated with EC mitosis and/or apoptosis

Using the same double-transgenic line as above, time-lapse acquisitions were examined which

showed neither mitosis nor nuclear defragmentation occuring that correlated to kugel formation,

suggesting that kugeln were not a form of cell proliferation, apoptosis or necrosis.
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Figure 5.11: Cellular context of kugeln. (A) Kugeln (white unfilled arrowhead) had no
individual cell nuclei (white arrowhead), which suggested that kugeln were
abluminal membrane protrusions, rather than angiogenic sprouting cells. (B)
Endothelial F-actin (white arrowhead) was localized clearly at kugel necks and,
to a lesser extent, at kugel domes (white unfilled arrowhead). (C) Vascular cytosol
was visualized to a very low extent or not at all in kugeln (white unfilled arrowhead).
(D) Neuronal tissue was dislocated at kugel locations (white unfilled arrowhead).
Also, RBCs were not inside kugeln (white arrowhead).
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5.3.2.3. Filamentous actin (F-actin) plays a role in kugel formation

As it was not clear whether kugeln were a form of cell blebbing, the role of F-actin in kugel

formation was investigated. Using the double-transgenic Tg(kdrl:HRAS-mCherry)s916,

Tg(fli1a:Lifeact-mClover)sh467 which visualizes EC membrane and F-actin in parallel.

Endothelial F-actin was clearly co-localized at kugel necks and, to a lesser extent, at kugel

domes/top (Fig. 5.11B). This co-localization suggested that F-actin may play a role in kugel

formation or maintenance, which was further investigated.

Having seen a clear localization of vascular F-actin at kugel necks, the impact of actin

polymerization inhibition on kugel formation was investigated next. To achieve this, the

pharmacological actin polymerization inhibitor Latrunculin B was used (Fig. 5.12A,B)

[346, 403].

Quantification of kugel number showed an increase in Latrunculin B treated embryos (p

0.0041; Fig. 5.12C), while kugel diameter was decreased (p 0.0164; Fig. 5.12D). The vascular

lumen collapsed upon inhibition of actin polymerization; and the head vasculature was more

affected than the trunk (based on visual assessment, without quantification). Moreover, kugeln

were observed in the trunk vasculature of 2/14 embryos after Latrunculin B treatment (Fig.

5.12E, black arrowheads), suggesting that the interruption of actin cortex integrity could induce

kugeln at ectopic anatomical locations. Further examinations are needed to examine whether

these ectopically induced kugeln are the same as kugeln characterised here.

5.3.2.4. Myosin II is needed for kugel formation

To study whether myosin II was required for kugel formation or retraction, the effect of myosin

II inhibition was examined by Blebbistatin application (Fig. 5.13A,B). A significant reduction in

kugel number was found after myosin II inhibition (p<0.0001; Fig. 5.13C), while no change of

the average diameter was encountered (p 0.3731; Fig. 5.13D).

The finding of a reduced number of kugeln upon Blebbistatin treatment was in coherence

with the reduction of cell blebs after Blebbistatin application [225, 234]. Whether the underlying

mechanisms are the same (ie. increased cellular stiffness) need to be investigated in future

studies.

5.3.2.5. Kugeln differ from trunk inverse membrane blebbing

Previous studies suggested that bleb-like structures played a role in zebrafish trunk vascular

mitosis [353] or lumenization [68]. Here, time-lapse acquisitions of the trunk vasculature were

studied to compare these processes to kugeln. This showed that kugeln did not recapitulate

trunk membrane blebbing which was found as membrane bulges inside the vascular lumen in

order to allow lumenization (Fig. 5.14).
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Figure 5.12: Impact of inhibition of F-Actin polymerization on kugeln. (A) Control embryos
treated with 0.01% DMSO (1 hour); 4dpf Tg(kdrl:HRAS-mCherry)s916 embryos.
(B) Inhibition of actin polymerization was conducted by application of Latrunculin
B (100nM 1 hour). (C) Number of kugeln per embryo was increased (p 0.0041;
n=21; 4dpf; 3 experimental repeats; Mann Whitney U test). (D) Kugel diameter
was decreased (p 0.0164; control n=169 kugeln from 21 embryos; Latrunculin
n=361 kugeln from 21 embryos; 3 experimental repeats; unpaired Student’s t-test).
(E) Upon treatment with Latrunculin B kugeln were found ectopically in the trunk
vasculature in 2/14 embryos (black arrowheads; 4dpf; 2 experimental repeats).
Abbreviations: CV - caudal vein, DA - dorsal aorta, ISVs - intersomitic vessels
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Figure 5.13: Impact of inhibition of myosin II on kugeln. (A) Control embryos were treated
with 1% DMSO for 1h. (B) Myosin II was inhibited by application of 25µM
Blebbistatin and 1% DMSO for 1h. (C) The number of kugeln was decreased
upon Myosin II inhibition (p<0.0001; 3dpf control n=22 embryos; Blebbistatin
n=24 embryos; 3 experimental repeats; Mann-Whitney U test). (D) The average
diameter of kugeln was not changed upon Blebbistatin application (p 0.3731;
control=83 kugeln from 22 embryos, Blebbistatin=26 kugeln from 24 embryos; 3
experimental repeats; Mann-Whitney U test).
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Figure 5.14: Inverse membrane blebbing of the trunk vasculature is different to cranial
kugeln. Inverse membrane blebbing was previously shown to occur during
trunk vasculature formation due to lumenization following blood flow onset [68].
Trunk time-lapse acquisitions showed that inverse membrane blebbing (black
arrowheads) indeed occur in ISVs as described previously [68]; but did not
recapitulate the outward protruding phenomenon seen in cranial kugeln (inverted
MIPs).

5.3.2.6. EC cytosol is not driving kugel formation

Visualization of EC cytosol and membrane was performed in the double-transgenic

Tg(fli1a:eGFP)y1, Tg(kdrl:HRAS-mCherry)s916. Vascular cytosol was found to be present at a

very low level or completely absent within kugeln. This suggests that kugeln were

membranous protrusions, constituted of the abluminal and luminal endothelial membranes in

parallel and that this extensive thinning of the cytosolic compartments between the abluminal

and luminal membrane may lead to reduced visibility of cytosol (Fig. 5.11C). Thinning of the

cytosol between these membranes was also thought to explain why kugeln were not

encountered in transgenic reporter lines which solely visualized the vascular cytosol or F-actin

(Fig. 5.8).

5.3.2.7. Neuronal tissue surrounding kugeln is displaced

Visualizing neuronal tissue and EC membrane in parallel, using Tg(kdrl:HRAS-mCherry)s916,

Tg(nbt:GCamp3), Tg(gata1:dsRed), showed a displacement of neuronal tissue surrounding

kugeln (Fig. 5.11D). This dislocation was thought to lead to a compression of the surrounding

cerebral tissue, as previously suggested for cerebral aneurysms [237].

This transgenic line also allowed visualization of RBCs which were not observed to localize

within kugeln, as would be assumed for aneurysms. This finding was the first suggestion that

kugeln may not be driven by blood flow, which was further investigated in section 5.3.3.

174



3D quantification of the developing zebrafish cranial vasculature

Figure 5.15: Kugeln are not found in tnnt2a morphants. (A,B) Kugeln were studied in
control MO injected samples and compared to tnnt2a morphants, which lacked
development of heart contraction. (C) Quantification of kugel number showed a
decrease in kugel number upon tnnt2a MO injection (p<0.0001; control MO n=20,
tnnt2a MO n=18; 3 experimental repeats; Mann-Whitney U test).

5.3.3 Blood flow is not the driving factor of kugel formation

5.3.3.1. The impact of blood flow on kugel-formation

To study the role of blood flow in kugel formation, development of cardiac contraction was

inhibited via MO injection against the cardiac specific thin-filament contractile protein tnnt2a

[345, 404, 405, 406]. To account for injection-based side-effects, injection control was

performed using a standard control-MO (Fig. 5.15A,B). Quantification of kugel number

showed a decrease upon tnnt2a MO injection (p<0.0001; Fig. 5.15C). Having found only one

kugel in tnnt2a morphants, diameter quantification was not possible.

The significant reduction of kugel number suggested that blood flow, thus normal vascular

development, was needed for kugel formation. In future, it has to be studied whether this is

due to mechanical, genetic, or differentiation differences arising due to the lack of blood flow

[15, 16, 36, 407, 408].

5.3.3.2. The impact of acute blood flow loss on kugeln

It is known that morpholino-based knockdowns can introduce unknown off-target effects [409,

410] and that blood flow is needed for an array of functions during angiogenesis (such as

lumenization, pruning, or heart trabeculation [80, 407, 411, 412, 413]). Thus, we aimed to

investigate the effects caused by more short-term alterations of flow.

Temporary reduction of blood flow was induced by temperature decrease (28°C to 10°C),

while the influence of complete blood flow loss was studied via exsanguination (Fig. 5.16A).

Kugeln were maintained upon both reduction and loss of flow (Fig. 5.16B1,2), while vascular

diameters were decreased (Fig. 5.16B3). This suggested that a vessel lumen-to-kugel
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connection was not required for kugel maintenance. This was validated by injection of

rhodamine-tagged dextran, which showed no diffusion of dextran into kugeln (Fig. 5.16C).

As exsanguination lead to a rapid decrease in vascular fluorescence (approximately 20min),

it was not possible to study robustly the role of blood flow in kugel formation in time-lapse

acquisitions.

Thus, heart contraction was temporarily stopped by high-dose Tricaine incubation. Studying

time-lapses, kugeln were found to form, retract, change shape as well as oscillate, all as

observed during normal flow conditions (Fig. 5.17A-C).

Together, these data suggested that kugeln were not dependent on blood flow.

5.3.3.3. Local wall-shear-stress does not directly impact kugeln

Tortuosity of kugel parent vessels was quantified to evaluate whether locally altered wall shear

stress (WSS) [414] could have an impact on kugel appearance. Parent vessels showed a high

degree of tortuosity variability (CoV 17.80%), but were rather straight on average (Fig. 5.18A;

mean 0.8228 ± 0.1465).

Additional quantification of kugel location, respectively to parent vessel curvature, showed

that 60.71% of kugeln were facing outwards (Fig. 5.18B).

5.3.4 VEGF signalling inhibits kugeln, while NO is needed for their formation

5.3.4.1. VEGF signalling inhibits kugeln

To study whether inhibition of VEGF signalling has an impact on kugel number or diameter,

embryos were exposed to the VEGFR inhibitor AV951 (Fig. 5.19A). The number of kugeln was

increased by inhibition of VEGF signalling (p<0.0001; Fig. 5.19B), while kugel diameter was

not altered (p 0.7890; Fig. 5.19C).

5.3.4.2. A subset of kugeln are filled with NO

In vivo NO visualization was achieved by application of the fluorescein-derivative DAF-FM-DA,

which is hydrolyzed intracellularly by esterases (DAF-FM) and reacts with NO to a fluorescent

benzotriazole (DAF-T) [400, 401]. DAF-FM-DA was used as a live dye to investigate whether

NO, which is downstream of VEGF, would show any association with kugeln. Some kugeln

displayed DAF-FM fluorescence inside them, while others did not (Fig. 5.20A; white

arrowhead).

The number of kugeln filled with DAF-FM was 57.76% (118/323 being filled; Fig. 5.24A), but

the level of fluorescence was variable.

Time-lapse image acquisition showed that some kugeln showed high levels of DAF-FM from

initial inflation until retraction (5.20B), while others contained no nitric oxide during their life
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Figure 5.16: Blood flow is not the driving factor of kugel formation. (A) Role of blood
flow in kugel initiation and maintenance was studied by reduction of blood flow via
temperature decrease and removal of flow via exsanguination (inverted MIPs). (B)
Kugeln did not retract upon reduction or loss of flow (1,2), while vascular diameter
decreased (3; black arrowheads). This suggested that a kugel-lumen connection
is not required for kugel maintenance. (C) Injection of rhodamine-tagged dextran
into the circulatory system (filled white arrowhead), confirmed that a lumen-kugel-
connection was not needed for kugel maintenance as no dextran diffused into
kugeln (unfilled white arrowhead).
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Figure 5.17: Kugeln still form upon stopping cardiac contraction using Tricaine. (A)
Heart contraction was temporarily stopped by high-dose Tricaine. Time-lapse
acquisitions showed that kugeln were still forming and retracting (black arrowhad)
and changing their shape (grey arrowhead), while some retained shape (white
arrowhead). (B,C) Some kugeln were found to oscillate without flow (time indicated
post cessation).

Figure 5.18: Parent vessel tortuosity at kugel locations. (A) Parent vessel tortuosity was
low (0.8228 ± 0.1465). (B) The majority of kugeln (34/56) were facing outwards
with respect to parent vessel bending direction.
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Figure 5.19: VEGF signalling inhibits kugeln. (A) Inhibition of VEGF signalling was achieved
via treatment with the receptor tyrosine kinase inhibitor AV951 (250nM 2h), while
controls were treated with 0.025% DMSO (2h). (B) VEGF inhibition showed
an increase in kugel number (p<0.0001; control n=30 embryos; AV951 n=31
embryos; 4dpf; 4 experimental repeats; Mann-Whitney U test). (C) The average
kugel diameter was not different after AV951 exposure (p 0.7890; control n=243
kugeln from 30 embryos; AV951 n=652 kugeln from 31 embryos; unpaired
Student’s t-test).
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cycle (5.20C).

As the visualization of DAF-FM in kugeln suggested an accumulation of NO in some kugeln,

it was examined whether pharmacological inhibition of NOS via L-NAME would influence the

number of kugeln (5.21). Also, having previously seen that the inhibition of VEGF signalling,

via application of AV951 (chemical VEGFR inhibitor; 2h AV951), led to an increase in kugel

number (Fig. 5.19B), it was studied whether application of L-NAME would either enhance or

reduce the effect of AV951 (Fig. 5.21E; 4h AV951).

However, no difference between control, L-NAME treated or DMSO controls was found

(p>0.999; Fig. 5.21F). As above (Fig. 5.19), an increase of kugel number was found after

pharmacological inhibition of the VEGFR with AV951 (250nM for 4h; p<0.0001; mean number

per embryo 37.82±24.84) in comparison to DMSO control (mean number per embryo

7.44±6.219). Parallel incubation of embryos with AV951 and L-NAME lead to a non-significant

decrease of kugel number (mean number per embryo 25.21±23.78), in comparison to

AV951-only treated embryos (mean number per embryo 37.82±24.84; p 0.6878).

Despite kugel number quantification being obtained from 3 independent experimental

repeats, the observed CoV within repeats was very high, leading to overall CoV as follows:

control 110.04%, 0.5mM L-NAME 105.50%, 250nM DMSO 83.59%, 250nM AV951 65.68%,

and 250nM AV951; 0.5mM L-NAME 94.33%.

Next, the effect of NO increase on kugeln was studied by provision of NO with the chemical

SNP (Fig. 5.22A,B). Quantification of kugel number showed a decrease (Fig. 5.22C; p 0.0092)

while kugel diameter was unchanged (Fig. 5.22D; p 0.2381). This suggests that NO either

inhibits kugel formation, or that kugeln serve as a NO storage which becomes dispensable

upon NO supply. Future studies are needed to elucidate the role of NO and why NOS inhibition

with L-NAME does not in alterations of kugel formation.

5.3.4.3. A subset of kugeln are acidic

To study whether kugeln were acidic cellular compartments LysoTracker live staining was

performed. LysoTracker probes are diffusive and have weakly basic amines, leading to an

accumulation of probe in cellular regions of low pH. The linked fluorophore is partially

protonated at neutral pH, thus allowing visualization of acidic cell compartments by

de-protonation [415, 416].

Similarly to DAF-FM staining for NO, a proportion of kugeln were filled with LysoTracker

staining (Fig. 5.23 k1), whilst others were not (Fig. 5.23 k2). Again, quantification of filled versus

unfilled kugeln was performed. About a quarter of all kugeln showed LysoTracker staining (Fig.

5.24B; 62/301 kugeln from 31 embryos; 4dpf; 3 experimental repeats).
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Figure 5.20: A subset of kugeln was positively stained for NO. (A) The NO live dye DAF-
FM accumulated in some kugeln (k1), whilst other kugeln showed no green
fluorescence (k2). (B) Time-lapse acquisition showed that some kugeln were filled
with DAF-FM instantly (00:15:00; black arrowhead) and remained filled over the
course of image acquisition (00:30:00). (C) Another kugel, from the same image
acquisition in the same embryo, showed no DAF-FM staining (hh:mm:ss; inverted
MIPs).
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Figure 5.21: Cotreatment of VEGF and NOS inhibition does not alter effects of VEGF
inhibition. (A) Control without treatment. (B) Application of pharmacological NOS
inhibitor L-NAME (0.5mM LNAME 17h). (C) DMSO control (0.025% DMSO for
4h). (D) 250nM AV951 for 4h. (E) Cotreatment of 250nM AV951 for 4h and 0.5mM
LNAME for 17h. (F) No difference between untreated control or LNAME treated
embryos was found (p>0.9999). Similarly, no significant difference between
LNAME and DMSO control was found (p>0.999). Again, an increase between
DMSO control and AV951 was found (p<0.0001), while the difference was less
pronounced by simultaneous treatment with AV951 and LNAME (p 0.0270).
Interestingly, despite a decrease in the mean kugel number between sole AV951
treatment (37.82±24.84) and additional LNAME application (25.21±23.78), this
was not different (p 0.6878; embryos - control n=22, LNAME n=24, DMSO n=25,
AV951 n=22, AV951 & LNAME n=24; non-parametric Kruskal Wallis; post-hoc
statistical power of 1; 4dpf; 3 experimental repeats).
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Figure 5.22: NO supply reduces the kugel numbers. (A) Control without treatment. (B)
Application of pharmacological NO supply with SNP (0.1mM SNP 25h). (C) Kugel
number was reduced upon application of SNP (p 0.0092; embryos control n=14,
SNP n=14; Mann-Whitney U test; 2 experimental repeats). (D) Kugel diameter
was not altered upon SNP application (p 0.2381; Mann-Whitney U test).

183



3D quantification of the developing zebrafish cranial vasculature

Figure 5.23: A subset of kugeln was acidic. LysoTracker staining was used to study whether
kugeln are acidic cellular compartments. Similar to nitric oxide staining, some
kugeln were filled with Lysotracker, whilst others were empty. But, quantification
(Fig. 5.24C) showed nitric oxide staining in proportionally more kugeln.

Comparing the proportion of "filled" versus "unfilled" kugeln from DAF-FM (4dpf 118/323

kugeln filled) and LysoTracker (4dpf 62/301 kugeln filled) staining indicated that less kugeln

were acidic than contained NO (Fig. 5.24). Due to time constraints, it was not further

investigated whether acidic kugeln are also NO-containing or vice versa.

DAF-FM is generally thought to be stable at higher pH values (>5.8), but NO can also be

produced by acidic chemical reduction [369]. Thus, it can not be fully understood whether

DAF-FM and Lysotracker staining visualize different or the same kugeln.

But, the fact that just a proportion of kugeln was filled with Lysotracker suggested that not all

kugeln were acidic, which would be the case if kugeln were a form of apoptotic bodies of cells

[417, 418]. This would also agree with the "gap junction theory" of NO transport, which would

collapse upon apoptosis, due to gap junction closure with reduction of pH [419, 420].

It remains to be investigated which mechanisms lead to the acidification or NO

accumulation in kugeln. Especially, to understand the mechanisms which lead to the fact that

some kugeln were filled, whilst others never were. Lastly, it has to be examined whether the

actual acidification or NO-accumulation serve a biological function, such as NO cellular

compartmentalization, to establish a signalling hub, or for waste storage.
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Figure 5.24: Quantification of kugeln filled with DAF-FM and Lysotracker. (A) 57.76%
of kugeln were green fluorescent after application of the NO live dye DAF-FM
(DAF-FM n=29 4dpf embryos 118/323 kugeln filled). (B) 17.08% of kugeln
were green fluorescent after application of LysoTracker live dye, which visualizes
acidic organelles (n=31; 4dpf; 62/301 kugeln filled). All data from 3 independent
experimental repeats.

5.3.5 Notch signalling is required for kugel formation

5.3.5.1. Notch signalling is required for kugel formation

To study whether Notch signalling would have an impact on kugel formation, embryos were

exposed to the pharmacological γ-secretase inhibitor DAPT (Fig. 5.25A), which inhibits the

intracellular proteolytic cleavage of the Notch intracellular domain (NICD) [421]. Kugel number

was decreased upon inhibition of Notch signalling (p<0.0001; Fig. 5.25B), while kugel diameter

was not changed upon DAPT exposure (p 0.0832; Fig. 5.25C). This suggested that Notch

signalling is essential for kugel formation.

5.3.5.2. Studying Notch signalling in dll4 and TP1 transgenic reporter lines

Due to the finding that Notch signalling was required for kugel formation, the following

transgenic reporter lines were examined to see whether local changes in expression adjacent

to kugeln would be detected. First, the transgenic Tg(kdrl:HRAS-mCherry)s916,

Tg(dll4in3:GFP), which labelled the dll4 Notch ligand in green and vessels in red/magenta was

used (Fig. 5.26A) [374]. No pattern of dll4 expression was observed nearby kugeln or in

kugel-parent vessels.

I next examined the transgenic Tg(kdrl:HRAS-mCherry)s916, Tg(TP1glob:venusPest)s940,

which visualized levels of Notch signalling (Fig. 5.26B) [388]. Again, no expression pattern

could be identified in kugel proximity. As transgenic reporter lines rely on fluorescent proteins

which usually require hours to fold and mature, while kugeln develop and regress on the
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Figure 5.25: Notch signalling is needed for kugel formation. (A) Inhibition of Notch
signalling was achieved via treatment with the γ-secretase inhibitor DAPT, while
controls were treated with 0.833% DMSO for the same duration. (B) Kugel number
was decreased upon inhibition of Notch signalling (p<0.0001; n=24 4dpf embryos
each; 3 experimental repeats; Mann-Whitney U test). (C) Kugel diameter was not
changed (p 0.0832; control n=225 kugeln from 24 embryos; DAPT n=22 from 24
embryos; unpaired Student’s t-test).
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timescale of minutes, the lack of an expression pattern might be due to these different

timescales.

Figure 5.26: Studying Notch signalling in transgenic reporter lines. (A) The transgenic
Tg(kdrl:Hsa.HRAS-mCherry)s916, Tg(dll4in3:GFP) was used to visualize the
Notch ligand dll4. (B) The transgenic Tg(kdrl:Hsa.HRAS-mCherry)s916,
Tg(TP1glob:venusPest)s940 was used to visualized levels of Notch signalling.
Neither of the above showed a pattern nearby kugeln or in kugel-parent vessels.

5.3.5.3. The effect of Notch pathway component knockdown on kugeln formation

To further investigate the role of Notch signalling on kugel formation, genetic knockdown via

morpholino injection against dll4, notch1b, jagged-1a, and jagged-1b was performed.

Quantification of kugeln after dll4 MO injection showed neither a change in kugel number (p

0.9639; Fig. 5.27A) nor diameter (p 0.0843; Fig. 5.27B), suggesting that the dll4-ligand was

not essential for kugel formation.

Quantification of kugel number after notch1b MO injection showed a decrease (p 0.0008;

Fig. 5.27C), while kugel diameter was not changed (p 0.3198; Fig. 5.27D). This suggested that

the Notch ligand notch1b was required to establish kugeln.

Quantification of kugel number after jagged-1a MO injection showed no change (p 0.9563;

Fig. 5.28A), while kugel diameter was increased (p 0.0097; Fig. 5.28B), suggesting that

jagged-1a was possibly involved in a negative feedback-loop to counteract the role of Notch

signalling in kugel formation.

Quantification of kugeln after jagged-1b MO injection showed neither a change in kugel

number (p 0.3042; Fig. 5.28C) nor diameter (p 0.7060; Fig. 5.28D). This suggested that the

jagged-1b-ligand was dispensable kugel formation.
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Figure 5.27: Studying the role of dll4 and notch1b in kugel formation. A Number of kugeln
per embryo was not changed upon dll4 MO injection (p 0.9639; 3dpf embryos
control n=23, dll4 MO n=23; Mann-Whitney U test). B Kugel diameter was not
changed upon dll4 MO injection (p 0.0843; kugeln control n=30 from 23 embryos,
dll4 MO n=45 kugeln from 23 embryos; Mann-Whitney U test). C Number of kugeln
was reduced after notch1b MO injection (p 0.0008; 3dpf embryos control n=23,
notch1b MO n=23; Mann-Whitney U test). D Kugel diameter was not changed
upon notch1b MO injection (p 0.3198; kugeln control n=37 from 23 embryos,
notch1b MO n=9 kugeln from 23 embryos; Mann-Whitney U test).

5.3.6 Wnt signalling has a balancing role in kugel formation

To investigate the role of Wnt signalling on kugel formation, Wnt signalling was both chemically

inhibited and activated.

5.3.6.1. Wnt inhibition leads to an increase in kugel number

Quantifying the number of kugeln, an increase was found after Wnt inhibition via treatment

with XAV-939 which increased β-catenin degradation by Axin stabilization [422] (p 0.0003; Fig.

5.29A), while diameter of kugeln was unchanged (p 0.4098; Fig. 5.29B).

5.3.6.2. Wnt activation leads to an increase in kugel number

Wnt signalling activation was studied by application of the GSK3 inhibitor XV, which prevented

β-catenin phosphorylation and thus degradation via GSK3 [423]. Again, an increase in kugel

number was found (p<0.0001; Fig. 5.29C), while kugel diameter was unchanged (p 0.5555;

Fig. 5.29D).

Together these data suggested that both the inhibition and activation of Wnt signalling led to

an increase in kugel number, suggesting that Wnt signalling potentially has a role in establishing

an equilibrium of kugel formation. The exact mechanisms for this remain to be studied in the

future.
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Figure 5.28: Studying the role of jagged-1a and jagged-1b in kugel formation. (A) Number
of kugeln per embryo was not changed upon injection of jagged-1a morpholino
(p 0.9563; 3dpf embryos control n=11, jagged-1a MO n=9; unpaired Student’s t-
test; 2 experimental repeats). (B) Kugel diameter was increased after injection
of jagged-1a MO (p 0.0097; kugeln control n=23 from 11 embryos, jagged-1a
MO n=20 kugeln from 9 embryos; Mann-Whitney U test). (C) Number of kugeln
was not altered upon jagged-1b MO injection (p 0.3042; 3dpf embryos control
n=21, jagged-1b MO n=21; Mann-Whitney U test; 3 experimental repeats). (D)
Kugel diameter was not altered upon jagged-1b MO injection (p 0.7060; kugeln
control n=19 from 21 embryos, jagged-1b MO n=14 kugeln from 21 embryos;
Mann-Whitney U test).
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Figure 5.29: The impact of Wnt signalling on kugel number and diameter. A Kugel number
was increased upon inhibition of Wnt signalling via XAV-939 application (p 0.0003;
control n=22 embryos; XAV-939 n=21; 3 experimental repeats; Mann-Whitney U
test). B The diameter of kugel was not changed upon XAV-939 application (p
0.4098; control n=29 kugeln; XAV-939 n=90; 3 experimental repeats; unpaired
Student’s t-test). C Kugel number was increased upon activation of Wnt signalling
by the GSK3 inhibitor (p 0.0359; control n=22 embryos; GSK3 inhibitor n=21; 3
experimental repeats; Mann-Whitney U test). D The diameter of kugel was not
changed upon GSK3 inhibitor application (p 0.5555; control n=23 kugeln; GSK3
inhibitor n=89; 3 experimental repeats; unpaired Student’s t-test).
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5.3.7 Neither lymphatic nor macrophages interact with kugeln

5.3.7.1. Lymphatics do not interact with kugeln

To investigate whether BLECs would interact with kugeln, the double-transgenic

Tg(kdrl:HRAS-mCherry)s916, Tg(fli1a:Lifeact-mClover)sh467 (Fig. 5.30A) was utilized to

visualize BLECs as mClover-positive, mCherry-negative structures (Fig. 5.30B,C; black

arrowhead). Visual assessment of kugel-BLECs co-localization showed that BLECs were not

associated with kugeln (n=21 4dpf embryos; 3 experimental repeats), and BLECs were

consistently encountered at distinct anatomical depths different to those of kugeln (Fig.

5.30D).

5.3.7.2. Loss of lymphatics does not impact kugeln

To study whether the loss of BLECs would impact kugeln, MO injection against the lymph-

specifying ccbe1 was performed [244]. Penetrance of ccbe1 knockdown was validated by the

loss of trunk lymphatics (Fig. 5.30E).

Quantification of kugel number and diameter showed no difference after ccbe1 MO injection

(p 0.3496 and p 0.8783, respectively; Fig. 5.30F,G), suggesting that lymphatics do not impact

kugel formation.

5.3.7.3. Kugeln do not fulfil a scavenger function

To examine whether kugeln serve a scavenging function similar to BLECs in the cranium, IgG-

conjugated Alexa was injected into the tectum. Uptake of IgG-conjugated Alexa by BLECs was

observed as previously described [381], but no Alexa uptake by kugeln was observed (Fig.

5.31). This suggested that kugeln did not serve a scavenging function similar to BLECs in the

cranium.

5.3.7.4. Kugeln do not interact with macrophages

To understand whether kugeln recruited or interacted with macrophages, timelapses were

acquired in the transgenic reporter line Tg(kdrl:HRAS-mCherry)s916, Tg(fms:GAL4.VP16)i186,

Tg(UAS-E1b:nfsB.mCherry)i149 [389], which visualized EC membranes and macrophages /

microglia (Fig. 5.32A). As both, EC membranes and macrophages, were visualized with an

mCherry fluorophore, depth-coding along the z-axis was applied to allow for better distinction

(Fig. 5.32B).

Examining timelapses (2min intervals) no direct interaction was observed between kugeln

and macrophages (Fig. 5.32C; 10min intervals shown), showing that kugeln were not

interacting with macrophages.

191



3D quantification of the developing zebrafish cranial vasculature

Figure 5.30: Kugeln do not interact with BLECs. (A) BLECs were studied in the double-
transgenic Tg(kdrl:HRAS-mCherry)s916, Tg(fli1a:Lifeact-mClover)sh467. (B) BLECs
were mClover-positive and mCherry-negative (black arrowhead). (C) No direct
interaction between kugeln (white arrowhead) and BLECs was observed. (D)
Depth-coded projections showed that BLECs and kugeln were not occurring on
the same anatomical plane (white dorsal (d), purple ventral (v)). (E) Morpholino
injection against ccbe1 led to a loss of lymphatics, as validated by the loss of
lymphatics in the trunk. (F) Quantification of kugel number showed no difference
between ccbe1 morphants and control MO injected samples (p 0.1472; 4dpf
embryos control n=17, ccbe1 MO n=17; 2 experimental repeats; Mann-Whitney
U test). (G) Kugel diameter was also not different (p 0.0962; kugeln control n=27,
ccbe1 MO n=81; 2 experimental repeats; unpaired Student’s t-test).
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Figure 5.31: Kugeln do not serve a scavenger function. IgG-conjugated Alexa 674 was
injected into the tectum to investigate whether kugeln would fulfil a scavenging
function similar to BLECs. While BLECs were taking up the IgG-conjugated
Alexa 674 (white unfilled arrowhead), no uptake was observed in kugeln (white
arrowhead; 140 kugeln from 17 4dpf embryos; 2 experimental repeats).

5.3.8 Neither osmotic pressure nor membrane rigidity impact kugeln

5.3.8.1. Changes of osmotic pressure with glucose does not impact kugeln

To test whether kugeln were a phenomenon induced by volume changes as a result of cellular

osmotic regulation, as it was suggested in the context of cell polarization and migration [223],

osmotic pressure was increased via exposure of embryos to a 40mM glucose solution. No

difference was found in control kugel number (2.455±1.683) in comparison to glucose-exposed

samples (3.238±2.998; p 0.5746; Fig. 5.33A). Similarly, kugel diameter was not changed when

comparing control to glucose-exposed samples (p 0.7060; Fig. 5.33B), showing that osmosis

was not the driving force of kugeln.

5.3.8.2. Membrane rigidity changes with DMSO do not impact kugeln

To test if kugel number or diameter would be dependent on membrane rigidity, membrane

rigidity was artificially increased by 24h exposure to 2.5% DMSO, as this was previously

shown to increase membrane permeability and fluidity [424]. The average number of kugeln

was slightly decreased from 4.00±3.27 in controls to 3.00±3.11 in DMSO-exposed embryos

(p 0.1596; Fig. 5.34A). Kugel diameter was not significantly changed, comparing control to

DMSO-exposed embryos (p 0.3665; Fig. 5.34B).

This suggested that kugeln were not a result of local membrane weakness due to rigidity

fluctuations.
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Figure 5.32: Kugeln do not interact with local immune cells. (A) The possible interaction of
immune cells with kugeln was studied in the transgenic Tg(fms:GAL4.VP16)i186,
Tg(UAS-E1b:nfsB.mCherry)i149, Tg(kdrl:HRAS-mCherry)s916 [389]. (B) Depth-
coded MIP projections were used to enable investigation of kugeln respective
to macrophages. (C) Macrophages (white unfilled arrowhead) were not found to
directly interact with kugeln (white arrowhead) in the examined samples (n=21
kugeln from 8 3dpf embryos).
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Figure 5.33: Osmotic pressure does not impact kugeln. Incubation with 40mM glucose for
24h was performed to investigate the role of osmotic pressure in kugel formation.
(A) Quantification of kugel number showed no difference between control and
glucose-exposed samples (p 0.5746; control embryos n=31, glucose n=29; 2
experimental repeats; unpaired Student’s t-test). (B) Quantification of kugel
diameter showed no difference between control and glucose-exposed samples (p
0.7060; control n=54, glucose n=67; 2 experimental repeats; unpaired Student’s
t-test).

Figure 5.34: Membrane rigidity does not impact kugeln. Incubation with 2.5% DMSO for
24h was performed to investigate the role of membrane rigidity in kugel formation.
(A) Quantification of kugel number showed no difference between control and
DMSO-exposed samples (p 0.1596; embryos n=25 per group; 3 experimental
repeats; unpaired Student’s t-test). (B) Quantification of kugel diameter showed
no difference between control and DMSO-exposed samples (p 0.3665; control
n=97, DMSO n=75; 3 experimental repeats; unpaired Student’s t-test).
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5.3.9 Kugeln show no similarity to previously described structures.

Cellular blebbing and volume changes. Mechanisms of membrane blebbing and cell

volume changes were previously suggested in the context of cell migration, polarization, as

well as apoptosis [223, 224, 225]. To understand whether kugeln recapitulated previously

described forms of cell blebbing kugel structure and dynamics in double-transgenic reporter

lines (eg. Tg(kdrl:HRAS-mCherry)s916, Tg(flk1:nls-eGFP)zf109 or Tg(kdrl:HRAS-mCherry)s916,

Tg(fli1a:eGFP)y1) were examined.

While kugeln have clear neck, while blebs are more blister-like with less pronounced necks

[234]. The described "circus movement" [232] of blebs was not observed in kugeln, but further

investigation is needed to understand whether the encountered oscillatory behaviour in kugeln

is driven by similar mechanisms as the bleb "circus movement". Inhibition of F-actin

polymerization lead to more, but smaller, kugeln; while bleb numbers decrease and size

increases [234, 425]. Lastly, increasing osmotic pressure made no difference in kugel number

or diameter, but was previously shown to reduce bleb size [426].

Zebrafish vessel blebbing. Atypical membrane blebbing during mitosis and lumenization

was previously observed in zebrafish trunk angiogenesis [224, 225], but structurally kugeln

were distinct to the previously described mechanism (kugeln facing outwards and extending

described bleb size by far).

Lymphatic cells. Zebrafish lymphatic cells were previously shown to transdifferentiate from

veins [427], but kugeln were never observed to specifically protrude from veins, which

contraindicated kugeln to be lymphatic precursors.

Vesicles, Exosomes, and Microdomains. Endothelial vesicles or apoptotic bodies, which

would also protrude outwards from membranes, were far smaller than kugeln with diameters

<1000nm and <5000nm [222], respectively. Moreover, neither shedding or bursting of kugeln

were observed. Also, nuclear defragmentation - which would be an apoptosis indicator - was

not observed during timelapse imaging in the double-transgenic Tg(kdrl:HRAS-mCherry)s916,

Tg(flk1:nls-eGFP)zf109, which visualized EC nuclei and membrane in parallel.

Exosomes, which play a pivotal role in inter-cellular communication, are far smaller with

<120nm diameter and fuse with membranes, rather than maintain distinctive neck regions over

long periods of time.

Caveolae are membrane invaginations, playing a role in cellular communication and signal

transduction, and are usually <100 nm [428].

Thus, having quantified kugel diameters to be 10.13±4.686 µm (3dpf, 32 embryos, 93

kugeln) and observed kugel behaviour of inflation and retraction, but never shedding or
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bursting, it was unlikely that kugeln were any of the above suggested mechanisms.

Simultaneously, it can currently not be excluded that kugel subtypes exist. Further

investigation is clearly needed to comprehend the molecular kugel composition and draw

comparisons to any of the above.

Platelet ballooning. Previous work in human platelets suggested that cell membrane

ballooning occurred to increase platelet surface for coagulation [429, 430]. I proposed that

kugeln are not recapitulating the processes of platelet ballooning due to the following reasons:

Platelet balloons ..

1. .. do not display a clear structural distinction between neck and dome as is observed in

kugeln.

2. .. were never observed to retract (Alastair Poole, pers. communication).

3. .. did not display oscillatory behaviour as is observed in some kugeln (Fig. 5.5).

4. .. diameter is reduced upon increased osmotic pressure (sucrose), which was not

observed upon glucose treatment (Fig. 5.33).

5. .. were shown to be associated with cell apoptosis. Based on our data, this is not the

case for kugeln as nuclear defragmentation was not observed and not all kugeln were

filled with Lysotracker, which would be an indication that kugeln are apoptotic bodies (Fig.

5.23).

Aneurysms. Observing kugeln one could argue that their shape as well as anatomical region

of occurrence resembles human cranial aneurysms, but our data showed that kugeln are not

driven by blood flow.

5.4 Conclusion

Kugeln appear variable in number and size (Fig. 5.2), but exclusively in the dorsal cranial

zebrafish vasculature (Fig. 5.4). Morphologically, kugeln are 3D spheres protruding

abluminally from parent vessels, and shape changes can occur in the range of minutes or

hours. Kugeln were observed to collapse into parent vessels, but were never found to shed,

burst, or anastomose. These morphological observations suggested that kugeln are a novel

dynamic membrane phenomenon.

The cellular context of kugeln suggested that they are spherical membranous abluminal

protrusions, which do not have individual cell nuclei, but show a clear co-localization of
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F-actin, and to a lesser extent of cytosol. These cellular characteristics do not, to our

knowledge, recapitulate any published bleb-like behaviour regarding to mitosis, apoptosis,

migration, and/or lumenization [68, 225, 353].

The inhibition of F-actin polymerization led to a decrease in kugel size, but an increase

in mean kugel number (Fig. 5.12). Additionally, inhibition of actin polymerization resulted in

an ectopic kugel-occurrence in the trunk vasculature. This suggested that cell-cortex stability

played a role in kugel-formation, and its loss would be able to induce kugeln in ectopic vascular

beds.

Investigations of the role of blood flow in kugel dynamics showed blood flow was not the

driving force for kugel formation (Fig. 5.16).

Studying the role of VEGF and Notch signalling, it was found that Notch had a positive

regulatory effect on kugeln, while VEGF inhibited kugel formation (Fig. 5.25 and Fig. 5.19).

Studying NO localization showed that a portion of kugeln were filled with the live NO dye

DAF-FM (Fig. 5.20), while a lower number of kugeln were filled with LysoTracker (Fig. 5.23 and

Fig. 5.24) suggesting that kugeln were truly positive for NO.

Lastly, studying the role of osmosis (Fig. 5.33) and membrane rigidity (Fig. 5.34) in kugel

formation, neither of them had a direct influence on kugel number or diameter.

Together, we performed an initial characterisation of a previously undescribed EC

membrane behaviour and provided insights into kugel cellular context, upstream regulators,

and their potential function, allowing to establish a working model of genetic regulation for

kugel formation (Fig. 5.35).

5.5 Future work

I anticipate that the presented work is only the foundation for more in-depth investigations

covering different aspects of kugeln. Therefore, suggested future work is based on the initially

proposed workflow of investigation as shown in Fig. 5.1 and refined by the knowledge gathered

so far.

Morphological Description. Data presented here focused on investigations in the early

embryonic vasculature. It is not clear if kugeln are solely an embryonic phenomenon or whether

these occur also in juvenile or adult zebrafish. Similarly, it remains to be elucidated if kugeln

are specific to zebrafish, or would be found in other organisms as well.

Other aspects to be studied relate to parent vessel specification. Here, differences between

trunk and cranial vessels, as well as differences between the different cranial vessels need to

be studied more comprehensively. One interesting aspect to be addressed could be the study
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Figure 5.35: Summary of kugel cellular context, examined regulators, potential function,
and working model of regulation. (A) Examination of kugel cellular context
showed them to be formed by EC membrane with an underlying actin cortex and
a subset of kugeln to be positive for NO. (B) Several regulators of kugel formation
were identified. (C) Several potential functions of kugeln were examined. (D) Our
findings suggest this working model of genetic regulation for kugel formation with
VEGF being inhibitory, while Notch signalling is required for their formation and
the role of NO needing future investigation (magenta - inhibits kugel formation,
green - required for kugel formation), black - alteration does not alter kugeln, grey
- unknown function.

199



3D quantification of the developing zebrafish cranial vasculature

of microenvironmental mechanical pressure. This maybe could also elucidate mechanisms to

artificially induce and/or rupture kugeln.

Role of blood flow in kugel formation and maintenance. In the scope of this project,

a direct correlation between kugel formation and angiogenic remodelling, such as sprouting,

constriction, or any other form of remodelling was observed. But more in-depth studies could

examine whether quantitative correlations, or stochasticity, exist. Investigation of kugeln in

tnnt2a morphants showed that blood flow during early embryonic development is required for

kugel formation. Based on the fact that kugeln were not observed at 1dpf, the current working

hypothesis is that kugel formation requires a certain vascular developmental time-point to be

reached and that this may time-point may never be reached in tnnt2 morphants, due to the lack

of blood flow dependent EC changes.

Here, we suggest investigating mesenchymal-to-endothelial transition, endothelial cell

differentiation, endothelial cell orientation, and the mechanical properties of endothelial cells.

Also, it may be the case that a certain signalling context is not established by 1dpf, or by the

loss of blood flow.

Moreover, further investigations into the diameter differences observed between uninjected

controls and embryos which were injected with a standard control morpholino are suggested.

Although this may just be a result of technical bias (eg concentration of injected control

morpholino), it needs to be further investigated as to whether this finding is a true

phenomenon.

The role of blood flow in kugel formation could also be studied more in-depth with the

reduction of blood viscosity via gata1 morpholino injection [431], and vice versa, the increase

by erythropoietin [432].

Mechanical regulation. In the cellular context of mechanical regulation one may perform

studies on endothelial mechanical changes occuring pre-, post- or during kugel formation. To

study this, one could utilize conventional immunohistochemistry (eg. cellular junctions or

polarity complexes) or in vivo examination via the endothelial tensor reporter line

Tg(Ve-Cadherin:gff;10xUAS:teal)uq13bh [433, 434, 435].

As shown above, kugeln do have an association with F-actin, and inhibition of actin

polymerization lead to an overall increase in kugel number. Hence, it would be worth

investigating the role of myosin II in kugel formation, maintenance, or retraction.

Also, the observed oscillatory shape changes of kugeln remain to be studied. Herein, an

interesting aspect to be studied would be vasomotion or transcriptional bursts.

Membrane context. The membranous nature of kugeln suggests the need to perform further
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experiments regarding membrane rigidity (preliminary results showed no difference; Fig. 5.34).

Inducing membrane injuries via laser injury would allow to study whether kugeln are a result of

membrane injury.

Another interesting possibility to be considered is that kugeln may act as extra-vascular-

lumen lumina. It was shown that during embryonic development transient spatially-separated

lumina are formed to either serve as a mechanical (eg. Kupffer’s vesicle (KV) [436, 437]) or

signalling (eg. posterior lateral line [438]) micro-environment.

Molecular foundation. Further descriptions of molecular-biological changes - as in gene

expression or cellular protein localizations - would allow the study of causal relationships as

well as feedback mechanisms.

Our data provided preliminary investigations on VEGF and Notch signalling; but it is unclear

whether these act directly or via downstream factors. Moreover, studying other key signalling

pathways (eg. BMP, HIF, etc.) in kugel-formation was beyond the scope of this study.
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6 Overall Conclusion and Future Work

6.1 Summary of the conducted research and the contribution to

knowledge

The aim of this study was to establish an image analysis pipeline to extract meaningful

quantitative parameters describing the 3D architecture of the zebrafish vasculature to support

the use of zebrafish as a pre-clinical model in cardiovascular research. The first step in this

process was to gain an understanding of our data properties to allow for effective image

enhancement as a foundation for image segmentation. To facilitate the study of inter-sample

vascular similarity and variability, we developed inter-sample 3D registration. Based on this,

we were able to extract quantitative shape descriptors such as vasculature branching points,

segment length, and diameter. Together, we demonstrated that this objective image analysis

approach allows novel insights into the 3D vascular architecture.

In the scope of the literature review and thesis introduction, we discussed zebrafish as a

pre-clinical model in cardiovascular research and critically assessed the model limitations.

Experimental advances towards transgenic lines (versus microangiography) and

state-of-the-art microscopy were presented. In this scope, the current knowledge of the field

was studied and gaps of knowledge relating to image analysis methods that provide an image

quantification approach for the zebrafish cerebral vasculature in 3D in images acquired with

LSFM identified. Particular challenges identified, included the following:

• transgenic zebrafish showed a cross-sectional double-peak intensity distribution, rather

than a single-peak as is generally assumed previous application such as in the medical

field,

• the vascular architecture in zebrafish is as highly complex enclosed circulatory network,

while existing quantification approaches were optimized for individual vessels or vascular

trees,

• quantification of the vasculature usually focused on 2D and/or single segment

information, while our aim was to establish a 3D approach that encompassed the entire

cranial vasculature.

6.1.1 Image understanding, pre-processing, and segmentation

The first step towards the development of a useful image analysis pipeline involved the

understanding of the image acquisition setup as well as data properties, such as image quality
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and noise patterns. Image quality was assessed using CNR measurements in different

transgenic lines, during development, as well as different vessels, to gain a deeper

understanding of data (section 2.3.1).

In the scope of this, motion artefacts were assessed and a method for motion-correction

proposed to ensure that motion artefacts would not falsify subsequent quantification.

Additionally, the proposed motion correction will allow the "rescue" of data in which motion

would have made useful quantification impossible (section 2.3.2).

Based on the understanding of image properties and the correction of motion artefacts,

methods of vascular enhancement, including general filtering and vessel specific

enhancement were examined, using CNR as a quantitative image quality readout (section

2.3.3) [5]. Evaluating different segmentation approaches, subsequent to image

pre-processing, revealed that intensity-based image binarization performed well, while more

advanced segmentation methods performed disappointingly and likely require further bespoke

optimisation if they are to be suitable (section 2.3.4). I found that vessel specific

enhancement, considering a local tubular structure, prior to segmentation, resulted

consistently in better segmentation outcomes than general image filters (section 2.3.4) [2]. In

addition, enhancement and segmentation parameters were optimised and validated by

comparison with manual measurements using vessel cross-sectional intensity profiles.

Vascular volume measurements after segmentation constituted the first meaningful vascular

parameter to be extracted in this project, and was used to further examine segmentation

robustness and sensitivity in section 2.3.5. As no gold standard or phantom model for image

segmentation in zebrafish was available, we addressed the assessment of segmentation

sensitivity and robustness using pragmatic experimental approaches. To test segmentation

performance, different datasets were produced, vessels enhanced, segmented, and the

cranial vascular volume quantified. The datasets consisted of the following:

• images with a controlled decrease in image quality (Fig. 2.22),

• images of different transgenic lines, which were found to have different image quality

levels biologically (Fig. 2.4),

• images of double-transgenic fish, which are theoretically assumed to have the same

cranial volume, but individual transgenics showing different CNR levels and fluorophore

expression patterns (Fig. 2.23),

• embryos that had undergone exsanguination, which should lead to a decreased vascular

volume due to loss of blood (Fig. 2.24),

• images of embryos at different stages of early vascular development (Fig. 2.25).

203



3D quantification of the developing zebrafish cranial vasculature

This was by far the most extensive segmentation evaluation and the first approach devised

to overcome the lack of a segmentation gold-standard in zebrafish [4].

6.1.2 Intra-sample symmetry and inter-sample similarity

I developed the first approach to compare 3D zebrafish cerebrovascular left-right symmetry

(section 3.3.1), finding no significant vascular asymmetry from 2-to-5dpf and that vessels

formed by vasculogenesis (eg. BA, PHBC, and PMBC) are more left-right symmetric than

vessels formed by angiogenesis (eg. CtAs and MMCtAs).

Next, inter-sample registration was studied to examine regions of vascular similarity and

variability between fish (section 3.3.2), finding that both manual landmark-based and

automatic 3D rigid registration were applicable to bring embryos into one spatial coordinate

system, when applied to segmented data. Examining the impact of "target bias", inter-sample

registration to an individual target outperformed registration to an averaged template (section

3.3.3). Comparing regions of similarity and variability between fish, the BA, PHBC, and PMBC

showed a higher inter-sample similarity than CtAs and MMCtAs.

I applied the proposed inter-sample registration method to dll4 MO, finding significant

changes in vascular topology upon dll4 loss (section 3.3.4). In addition, the inter-sample

registration was used in the following chapter to map anatomical regions of kugeln (section

5.3.1).

6.1.3 Quantification of vascular topology

Based on the successful vascular segmentation, meaningful quantitative parameters of the 3D

vasculature were extracted.

In 2D, ridge-based analysis was compared to skeleton-based analysis by examining

developmental and tnnt2a MO data (section 4.3.3). I further examined 3D skeleton-based

analysis by quantification of volume, network length, and branching points by using the

"AnalyseSkeleton" Plugin after image segmentation and skeletonization (section 4.3.4). By

applying our analysis to tnnt2a MO dataset, it was shown that all three of these quantitative

parameters (volume, network length, and branching points) were statistically significantly

reduced in zebrafish without blood flow.

By combining the extracted vascular skeleton with 3D EDMs, we were able to extract

vascular diameters (section 4.3.7) showing that diameters are also statistically significantly

reduced in zebrafish without blood flow. In addition to global diameter measurements and

image outputs with voxel-wise diameter information, a raster-based analysis of vascular

204



3D quantification of the developing zebrafish cranial vasculature

subregions were developed, and the implemented code allowed for the analysis of

sub-regional diameters based on user-defined ROI selection.

I next aimed to perform quantification on the level of individual vessels, discussing issues

and limitations, and presented different potential methods to achieve this (section 4.3.8).

To analyse vascular complexity, Scholl analysis in 2D MIPs was used, which allowed for the

examination of vascular complexity by measuring the number of intersections as well as the

distance of these intersections from the centre (section 4.3.9), and applied it successfully to

tnnt2a MO and early developmental data.

After testing and implementing all of the above analysis approaches, they were included into

one GUI and workflow documentation was produced (Fig. 6.1).

Together, this allows for detailed analysis of zebrafish cerebrovascular data in 3D, which was

the primary aim of this work (section 1.5).

6.1.4 Characterisation of a novel endothelial cell membrane behaviour

During the course of this work, previously undescribed endothelial membrane structures were

discovered and we aimed to investigate the nature of these structures, called kugeln. To

achieve this, their morphology and patterns of occurrences were studied (diameter, number,

3D structure, vascular bed). This showed that these structures are transient 3D spheres

protruding exclusively from central cranial vessels (section 5.3.1). Also, these structures were

exceeding the size of any previously described membrane/vesicular structures.

Studying their cellular and sub-cellular context (cytoplasm, F-actin, nuclei) allowed us to

understand that these structures were membranous, without individual nuclei, but had F-actin-

rich necks (section 5.3.2).

Further examination focused on the specification/identity of kugel-parent vessels, vessel

curvature, and kugel-lumen connection. We showed that kugeln do not display a direct

connection to the parent vessel lumen, which indicated that their inflation, maintenance, and

retraction was independent of blood flow (section 5.3.3).

Investigating the role of key signalling pathways VEGF and Notch, by chemical inhibition,

we showed that Notch had a positive effect on kugeln (section 5.3.5), while VEGF inhibited

them (section 5.3.4), suggesting a novel role for VEGF and Notch signalling in the regulation

of endothelial cell behaviour.

Investigating the role of osmotic regulation and membrane rigidity in kugel-formation, no

statistically significant impact was found (section 5.3.8).

The initial characterisation of kugeln was published in EMBO Reports [1].
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6.1.5 Publications in preparation

Building on the work presented in this thesis, the following publications are currently in

preparation for publication (* corresponding author):

• submission April 2020 - Journal Article, Kugler E.*, Rampun A., Chico T., and Armitage

P., Zebrafish Cranial Vasculature Segmentation using Vessel Enhancement and Machine

Learning in Light Sheet Fluorescence Microscopy. Target Journal - Medical Image

Analysis (IF 8.79)

Following the validation of our proposed enhancement and segmentation pipeline we

tested different deep learning network architectures for their ability to segment the

zebrafish cerebral vasculature. We quantitatively compare the results obtained from

conventional and deep learning based segmentation, finding that deep learning based

segmentation is applicable to segment our data when trained on a robust segmentation

method. Adding more convolutional layers, employing batch normalization, and applying

dropout procedures to avoid overfitting to the original U-Net architecture, increased

segmentation accuracy of our data. Together, we propose the first approach to validated

zebrafish cerebral vascular segmentation, allowing objective extraction of true

meaningful biological results as well as to provide the first deep learning study which

allows segmentation of the zebrafish cerebral vasculature.

• submission April 2020 - Journal Article, Kugler E.*, Snodgrass R., Bowley G., Plant K.,

Serbanovic- Canic J., Evans P., Chico T., and Armitage P., Blood Flow Impact on the

Cerebral and Trunk Vasculature in Developing Zebrafish Embryos. Target Journal -

EMBO Reports (IF 7.58)

Using tnnt2a morpholino oligonucleotides it is possible to prevent formation of heart

contraction, thus study the impact of blood flow on vascular development. In this study

we compare the role of blood flow in the cerebral and trunk vasculature by quantitatively

assessing vascular topology as well as endothelial cell numbers. Our data show that the

lack of blood flow impacts the cerebral vasculature more severely, but that endothelial

cell numbers are reduced in both, the head and trunk vasculature. We show that blood

flow significantly increases apoptosis and decreases proliferation to a lesser extent. Our

data show that this happens without significant increases of tissue inflammation, as

quantified by nitric oxide and cerebral immune cell numbers. Concluding, that blood flow

is essential for cellular survival and to a lesser extent cellular proliferation, in both, the

trunk and head vasculature.

• submission June 2020 - Invited Review, Kugler E.* and Chico T.*, Diversity of Cranial
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Endothelial Cells. CMLS (IF 7.01)

The vasculature is an important organ system, permitting blood to circulate and

transporting nutrients. It is increasingly apparent that endothelial cells that make up

different vascular territories are heterogeneous in terms of their functional and molecular

properties. Thus, it is important to understand what aspects of ECs are shared, and

which are different, between different anatomic locations. Cerebrovascular ECs are of

specific interest as vascular dysfunctions are associated with diseases such as stroke,

cerebrovascular abnormalities, and vascular dementia. We here review the current

knowledge about the impact of different signalling pathways on cerebral ECs. Next, we

assemble the current literature about biomechanical properties such as blood flow,

environment, and brain biomechanics as well as the importance of cilia in translating

biomechanical cues in the cerebral vasculature. We examine how the surrounding tissue

environment impacts cerebrovascular ECs, reviewing EC-neuron interaction, cranial

lymphatics, and cells of the immune system and, lastly, briefly touch on future

perspectives.

• submission July 2020 - Journal Article, Kugler E.*, Plant K., Chico T., and Armitage P.*,

A 3D Cerebral Vasculature Atlas and Quantification Approach of Zebrafish Development.

Target journal - Nature Methods (IF 28.47)

Here, we describe an image analysis workflow to quantify vascular volume, surface,

density, branching points, length and diameter. This is complemented by a workflow to

examine intra-sample left-right similarity and variability as well as inter-sample similarity

and variability, based on image registration. To investigate transferability, we applied our

quantification approach to four different transgenic vascular reporter lines. Furthermore,

we examined the impact of nine chemical components as well as six morpholinos on the

vascular architecture.

6.2 Study limitations and future work

Probably the biggest limitation in the scope of this thesis was that no previous analysis

approaches of any of the above were available to compare our workflows to. Therefore, in

many ways, this project has provided a starting point from which future development can

benchmark against. This thesis has covered a broad range of image analysis methodologies

and implementations, so inevitably they can not have been studied in as much detail as a

thesis that concentrated on one single aspect. However, we believe that we have developed a

usable workflow for performing detailed quantification of zebrafish cranial vascular properties
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from which future studies can build on, both in terms of methodological development and

biological application. Some of the potential opportunities for further investigation are

discussed below.

Our image analysis pipeline was mainly optimized for the cranial vasculature in

Tg(kdrl:HRAS-mCherry)s916. Hence, applying the suggested image analysis pipeline to other

transgenic lines, vascular beds, or ages is likely to require optimization to allow accurate

vascular extraction and analysis.

Future work might examine intra-plane motion correction, which could be addressed by data

interpolation from neighbouring slices, an aspect that was not investigated here due to time

limitations.

In addition, we did not examine Frangi vessel enhancement or SRM, k-means clustering, and

level-set segmentation methods further, which might show better performance if implemented

differently.

Analytical limitations in the extraction of quantitative parameters may be encountered in

structurally close, but distinctive vessels such as the caudal artery and caudal vein. Similarly,

quantitative difficulties may emerge in less well-defined vascular regions such as the choroidal

vascular plexus.

Using the "AnalyseSkeleton" Plugin in Fiji we encountered false-positive branching points to

be extracted, future work might examine on improving this.

Additional information may be gained if the extracted vasculature quantification would be

correlated to the overall embryonic physiology, such as body length or heart size.

Future work might examine vascular wall thickness further to study vascular inflammation

and atherosclerosis. Similarly, blood flow analysis could be integrated in future studies.

Future translation of the presented quantification pipeline to broader applications may include

data from similar models (eg Medaka transgenics) or different model aspects (eg zebrafish

lymphatic system). We anticipate that these generalizations would require further investigations

to ensure quantification accuracy. Broader generalizations, such as for mouse angiography

data, are similarly likely to require optimization specific to this biological application. Especially

due to the fact that the mouse circulatory system is typically visualized with other types of image

acquisition modalities.

Inter-sample registration of zebrafish brains was previously shown to allow the establishment

of component activity mapping [303] as well as the production of a co-localization atlas [302].

Based on our presented registration approach, similar atlases could now be established for the

vasculature. This would be especially interesting to investigate vascular changes during early
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development and whether these correlate with differential expression patterns of key signalling

components, such as VEGF, Notch, or the cxcr-cxcl system.

In this thesis, we presented an initial characterisation of kugeln, but appreciate that future

work is needed to elucidate their function in vascular biology. These studies could address

their conservation in other vertebrates, their restriction to the cerebral vasculature, and their

developmental threshold, on the organism level. On the cellular level, kugel biomechanics

in terms of actin-membrane coupling and impact on endothelial cells could be studied. On

the molecular level, the factors regulating kugel formation and size, as well as their ultimate

function could be studied.

6.3 Overall conclusion

Zebrafish are becoming an increasingly studied pre-clinical model (48.000 publications 2019;

Google scholar 23.02.2020) in cardiovascular research (5.630 publications 2019; Google

scholar 23.02.2020). Many of these studies rely on the vascular phenotype as an readout of

the vascular status and health, but objective image quantification approaches are still lacking.

In the scope of this study, comprehensive image understanding and analysis for vascular

images, acquired with state-of-the-art LSFM in transgenic zebrafish, was presented.

Performing image acquisition in transgenic lines overcame the necessity for laborious

microangiography. This, provided the challenge of developing a method that worked effectively

with the cross-vessel double-peak intensity distribution, which was successfully overcome

during image pre-processing and segmentation.

Based on image understanding, pre-processing, segmentation, quantification, and

registration, objective quantifications of the 3D vasculature in transgenic zebrafish is now

possible. Inter-sample registration and the development of vascular growth templates allows

direct visual and quantitative inter-sample assessments about regions of similarity and

variability in the zebrafish vasculature, which were previously undescribed. The quantification

established includes measurement of vascular volume, branching points, and diameter.

Allowing direct comparability between embryos, ages, or pathological changes. Moreover,

vascular complexity analysis was conducted to allow assessment of vascular topology on a

more abstract level.

This method of objective quantification shall foster the investigation of normal vascular

development and disease using zebrafish as a pre-clinical model in cardiovascular research.

Extending existing quantification approaches to the third dimension, allowed the vascular

quantification to be more specific as well as accurate, as previous methods mainly considered
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3D information collated into 2D.

In this study, we have shown that quantitative parameters can be successfully extracted and

utilized to describe the vascular geometry in zebrafish. Herein, different biologically relevant

examples, such as developmental changes, drug treatments, or the loss of blood, were

presented to show the surplus provided by objective quantification over subjective visual

assessment.

The workflows developed in this PhD project were implemented as Fiji Macros and are

available as individual Macros as well as one complete workflow with a GUI (Fig. 6.1). The

workflow implementation allows processing of whole datasets by simple selection of input and

output folders. Additionally, workflow documentation is provided in the code, as well as an

additional word document. All these being accessible on a shared team drive. See Appendix

B for workflow overview, Appendix C for individual macros, and Appendix D for GUI.

We anticipate that the established analysis approach and pipeline will be useful to

researchers wanting to examine vascular development and the impact of genetic or chemical

manipulation on vascular architecture. This is exemplified by our study about the impact of

F-actin polymerization inhibition (Fig. 5.12). Our approach can be applied to examine any

data with similar properties, with the caveat that parameter optimisation was performed for

Tg(kdrl:HRAS-mCherry) <5dpf. Importantly, by measuring multiple parameters (ie. volume,

length, diameter, branching points, surface, complexity) these can be examined with respect to

each other and new insights about vascular processes be gained. This is of special interest as

data acquisition in embryonic zebrafish can be performed on the whole-brain level, in vivo, and

3D, while other models are limited to data acquisition in brain sub-regions, individual vessel

segments, or post mortem. Hence, our analysis approach is the first of its kind to allow the

study of the whole zebrafish brain vasculature in 3D in vivo. In addition to examining the brain

vasculature globally, examinations of sub-regions can be performed by simple ROI selection,

allowing for example to study mid- to hind-brain differences. Future application of our analysis

to developmental data would be the first quantification and description of vascular parameters

over time, providing the first study to describe the zebrafish brain vascular architecture with

parameters other than volume or length. Similarly, our approach will provide novel insights into

the impacts of drugs, which might have been previously overlooked. This is exemplified by our

quantification of vascular volume upon VEGF inhibition with AV951, which showed a reduction

in cerebrovascular volume which was inaccessible to the human observer (Fig. 2.28). As

AV951 is an anti-cancer drug used in the medical field, we are confident that our analysis

could aid the discovery of new anti-cancer drugs, as hyper-vascularization is a hallmark of
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patient cancer progression. Similarly, we showed applicability of our analysis to knock-down

experiments, such as loss of dll4 or tnnt2a, showing that also genetic manipulations will be

quantifiable with our analysis. Thus, our workflow will contribute to the understanding of

genes, proteins, and genetic alterations, which are crucial for healthy vascular development

and are often the underlying cause for the vascular status observed in patients. As mentioned

above, generalization to other models (eg lymphatics, Medaka) or imaging modalities (eg

confocal) are likely to require optimisation of parameters to meet data differences.

Together, as described in the introduction (Fig. 1.7), the aims of this project were to provide

pre-processing, quantification, and registration steps to analyse zebrafish vascular topology,

which were fulfilled and integrated into the above GUI (Fig. 6.2). Additionally, validation and

testing was performed using biologically relevant datasets, to allow the extraction of meaningful

vascular parameters.

Lastly, a novel endothelial membrane behaviour was described, which was previously

undescribed and presented a novel role of Notch and VEGF signalling in angiogenesis.

With the increasing need for comprehensive and unbiased data analysis, we believe that

the developed pipeline as well as the finding of kugeln, contributed to the advancement of

knowledge in the field of vascular research in zebrafish.

Having developed our image analysis pipeline in the open-source software Fiji, the analysis

pipeline is available to the scientific community in the spirit of open-source, without the need for

licensing. The computational foundation of Fiji and the developed image analysis pipeline was

Java, as this allows for direct cross-operating-system applicability. By adding comprehensive

documentation, future development by the community should be easily facilitated. Additionally,

data can be made available upon request, which may benefit scientists, who do not have access

to the particular transgenic lines and/or LSFM data.
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Figure 6.1: Graphical User Interface (GUI). Graphical User Interface (GUI) for the image
analyis workflows developed in this thesis.
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Figure 6.2: Thesis Workflow Summary. The developed image analysis workflow consists of
pre-processing, quantification, and registration steps to analyse zebrafish vascular
topology (aims - grey boxes, method - violet). Validation and cases for biological
application were provided for segmentation, registration, and quantification (cyan).
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Appendix A: Manual Measurements 
Growth measurements 
Open 3D stack in Fiji. Use line ROI. 

 Primordial midbrain channel (PMBC) width: measure distance posterior to 
eye (Fig. A). 

 Basal artery (BA) diameter: measure diameter about 50um before splitting into 
PCS (Fig. A). 

 Measurements of brain growth (Fig. B): 
o Forebrain 
o Midbrain 
o Hindbrain  

 ISV diameter: diameter of 3 ISVs at cloaca; consider if you want to measure 
aISV and vISV differences 

 DA diameter 
 

 
 

Contrast-to-Noise Ratio (CNR) 
 Select rectangle ROI (in 3D stack; position as indicated in image; 5um long; 

crossing basal artery width) 

 Analyse > Histogram [h] > Mean vascular value 

 Live > move to non-vascular region (same plane but without vessels) > mean non-
vascular signal 

 Move to background region (same plane but outside embryo) > background 
standard deviation 

 

Formulas 
(1) SNR (signal-to-noise ratio) = mean vascular signal / standard deviation of 
background 
 

(2) CNR (contrast-to-noise ratio) = (mean vascular signal - mean non-vascular 
signal) / standard deviation of background 
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Appendix B: Workflow overview 
 Steps can be done individually or all at once; see below for requirements, input, 

and output details. 

 All steps are developed for the image-analysis software Fiji 
(https://imagej.net/Fiji). 

 The MorphoLibJ plugin needs to be downloaded and installed separately 
(https://imagej.net/MorphoLibJ) 

 Important - do not have more than 10 images in one folder for quantification 
steps, as this can cause issues with selection of correct ROIs. 

 Before initializing code close all other windows (ROI manager, results, other 
open images). 

 Once you start a processing step, do not interfere (do not click anything). Once 
the respective step(s) are done, the window "Macro finished" will appear. 

 For all steps: select correct input folder (data need to be in a folder); output 
folder will be created automatically. 

 Computer specification: LSFM data are large, RAM higher than 8GB 
recommended. 

 Time: Computation time depends on computer specifications. For 64Gb RAM 
HP Z820 workstation: 

o czi to tiff conversion: <5min per image 
o Intra-stack Motion Correction: ~15min per image  
o Vascular Enhancement: ~45min per image 
o Segmentation and Volume Quantification: ~5min per image 
o Intra-sample Symmetry: ~15min per image 
o Inter-sample Registration: ~20min per image 
o Quantification of Parameters: ~5min 
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Appendix C: Individual Macros 
Single-channel .czi to .tiff conversion and automatic MIP creation 
 Create folder for .tiff files in the folder with .czi files 

 “Plugins” > “Macros” > “Run” 
o single-colour: EKugler_cziToTiffConversion.ijm 

 “Run” 

 Select input folder 
 
/* EKugler 2019 
 * Macro for .czi to .tiff conversion and automatic MIP creation 
 * USE: 
 *   hit run 
 *   select input folder (path to .czi files) 
 *   select output folder (path for .tiff and MIPs) 
 *   when Macro is done - popup window will say "Macro is finished." 
 *  contact: kugler.elisabeth@gmail.com 
 */ 
 
// input and output path 
path = getDirectory("Input Folder"); 
filelist = getFileList(path);  
VascDir = path + "/VascTiff/";  
File.makeDirectory(VascDir); 
 
for (i=0; i< filelist.length; i++) {    
 if (endsWith(filelist[i], ".czi")) { 

// Import czi with Bioformater 
run("Bio-Formats Importer", "open=" + path + filelist[i] + " autoscale 
color_mode=Default view=Hyperstack stack_order=XYCZT");  

// MIP with Contrast Enhancement 
run("Z Project...", "projection=[Max Intensity]"); 

        run("Color Balance..."); 
       run("Enhance Contrast", "saturated=0.35"); 
 saveAs("Jpeg", VascDir + "MAX_" + filelist[i]); 
       run("Close"); 
// Save as Tiff Stack 
  selectWindow(filelist[i]); 
  saveAs("Tiff", VascDir + filelist[i]); 
  run("Close"); 
  } 
 } 
close(); 
 
showMessage("Macro is finished."); 
 

Multi-channel .czi to .tiff conversion and automatic MIP creation 
 Create folder for .tiff files in the folder with .czi files 

 “Plugins” > “Macros” > “Run” 
o multi-colour: EKugler_MultiColourcziToTiffConversion.ijm 

 “Run” 

 Select input folder 

 



vi 
 

/* EKugler 2019 
 * Macro for multi-colour .czi to .tiff conversion and automatic MIP creation 
 * USE: 
 *   hit run 
 *   select input folder (path to .czi files) 
 *   select output folder (path for .tiff and MIPs) 
 *   when Macro is done - popup window will say "Macro is finished." 
 *  contact: kugler.elisabeth@gmail.com 
 */ 
 
// input and output path 
path = getDirectory("Input Folder");  
//outputFolder = getDirectory("Output Folder"); 
filelist = getFileList(path);  
 
NonVascDir = path + "/NonVascTiff/";  
File.makeDirectory(NonVascDir); 
 
VascDir = path + "/VascTiff/";  
File.makeDirectory(VascDir); 
 
for (i=0; i< filelist.length; i++) {    
 if (endsWith(filelist[i], ".czi")) { 

// czi import using Bioformats 
run("Bio-Formats Importer", "open=" + path + filelist[i] + " autoscale 
color_mode=Default split_channels view=Hyperstack stack_order=XYCZT"); 
      

// Save as tiff stack 
  selectWindow(filelist[i] + " - C=0"); // green 
  saveAs("Tiff", NonVascDir + filelist[i]); 
  run("Z Project...", "projection=[Max Intensity]"); 
  saveAs("Jpeg", path + "MAX_" + filelist[i]); 
  close(); 
  selectWindow(filelist[i] + " - C=1"); // red 
  saveAs("Tiff", VascDir + filelist[i]); 
  run("Z Project...", "projection=[Max Intensity]"); 
  saveAs("Jpeg", path + "MAX_" + filelist[i]); 
  close(); 
  close(); 
  } 
 } 
close(); 
showMessage("Macro is finished"); 

 
Intra-Stack Motion Correction 
 Create folder for motion corrected files in the folder with original files 

 “Plugins” > “Macros” > “Run” 
 EKugler_MotionCorrectionSIFT.ijm 

 “Run” 

 Select input folder 

 Select output folder 
 
/* EKugler 2019 
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 * Macro for motion correction using Scale Invariant Feature Transform (SIFT) 
 * USE: 
 *  hit run 
 *  select input folder (path to .czi files) 
 *  select output folder (path for .tiff and MIPs) 
 *  when Macro is done - popup window will say "Macro is finished." 
 *  contact: kugler.elisabeth@gmail.com 
 *   
 *  paper SIFT: Lowe, David G. (2004) Distinctive Image Features from Scale-Invariant 
Keypoints,  
   International Journal of Computer Vision. 60 (2): 91–110. CiteSeerX 
10.1.1.73.2924. 
 *   
 *  papers motion correction zebrafish vasculature: 
 *  (1) Kugler, Chico, Armitage, (2018) Image Analysis in Light Sheet Fluorescence 
Microscopy Images of Transgenic Zebrafish Vascular Development. In Nixon M., Mahmoodi 
S., Zwiggelaar R. (eds) Medical Image Understanding and Analysis. MIUA 2018.; Springer, 
Cham, 2018; Vol. Communications in Computer and Information Science, vol 894, pp. 343–
353. 
 *  (2) Kugler, Plant, Chico and Armitage (2019), Enhancement and Segmentation 
Workflow for the Developing Zebrafish Vasculature, J. Imaging 2019, 5(1), 14; 
https://doi.org/10.3390/jimaging5010014 
 */ 
 
// input and output path 
path = getDirectory("Input Folder"); 
outputFolder = getDirectory("Output Folder"); 
filelist = getFileList(path);  
 
for (i=0; i< filelist.length; i++) {    
 if (endsWith(filelist[i], ".tif")) { 
  open(path + filelist[i]); 
  selectWindow(filelist[i]); 
 
//get image properties 
  getDimensions(width, height, channels, slices, frames); 
  preChannels = channels; 
  preSlices = slices; 
  preFrames = frames; 
   
  getPixelSize(unit,pixelWidth,pixelHeight,voxelDepth); 
  prePixelWidth =pixelWidth; 
  prePixelHeight = pixelHeight; 
  preVoxelDepth = voxelDepth; 
 
// Intrastack Linear Stack Alignment using SIFT algorithm   
  run("Linear Stack Alignment with SIFT", "initial_gaussian_blur=1.60 
steps_per_scale_octave=5 minimum_image_size=64 maximum_image_size=1920 
feature_descriptor_size=8 feature_descriptor_orientation_bins=8 
closest/next_closest_ratio=0.95 maximal_alignment_error=5 inlier_ratio=0.05 
expected_transformation=Rigid interpolate"); 
 
// re-set original image values 
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  run("Properties...", "channels=" + preChannels + " slices=" + preSlices + " 
frames=" + preFrames +" unit=µm pixel_width=" + prePixelWidth + " pixel_height=" + 
prePixelHeight + " voxel_depth=" + preVoxelDepth); 
 
// get MIP of SIFT-aligned stack 
  run("Z Project...", "projection=[Max Intensity]"); 
  saveAs("PNG", outputFolder + "SIFTAligned_" + filelist[i]); 
  run("Close"); 
 
// Save SIFt-aligned stack as tiff stack 
  saveAs("Tiff", outputFolder + "SIFTAligned_" + filelist[i]); 
  run("Close"); 
 } 
} 
close(); 
 
showMessage("Macro is finished."); 
 

Vascular Enhancement 
 Create folder for enhanced files in the folder with original files 

 “Plugins” > “Macros” > “Run” 
 EKugler_VascularEnhancement.ijm 

 “Run” 

 Select input folder 

 Select output folder 

 
/* EKugler 2019 
 * Macro for vascular enhancement using Tubeness Filter  
 * USE: 
 *  hit run 
 *  select input folder (path to .czi files) 
 *  select output folder (path for .tiff and MIPs) 
 *  when Macro is done - popup window will say "Macro is finished." 
 *  contact: kugler.elisabeth@gmail.com 
 *   
 *  paper tubeness filter: Sato, Nakajima, Atsumi, Koller, Gerig, Yoshida and Kikinis 
(1997) 3D multi-scale line filter for segmentation and visualization of curvilinear structures in 
medical images, International Conference on Computer Vision, Virtual Reality, and Robotics 
in Medicine,  CVRMed 1997, MRCAS 1997: CVRMed-MRCAS'97 pp 213-222. 
*/ 
 
// input and output path 
 
path = getDirectory("Input Folder");  
outputFolder = getDirectory("Output Folder"); 
filelist = getFileList(path);  
 
for (i=0; i< filelist.length; i++) {    
 if (endsWith(filelist[i], ".tif")) { 
  open(path + filelist[i]); 
   
  selectWindow(filelist[i]); 
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//get image properties 
  getDimensions(width, height, channels, slices, frames); 
  preChannels = channels; 
  preSlices = slices; 
  preFrames = frames; 
   
  getPixelSize(unit,pixelWidth,pixelHeight,voxelDepth); 
  prePixelWidth =pixelWidth; 
  prePixelHeight = pixelHeight; 
  preVoxelDepth = voxelDepth; 
   
// Run Plugins > Analyze > Tubeness Filter (Frangi Vessel Enhancement Implementation)
   
  run("Tubeness", "sigma=10.6848"); // scale size to be changed 
// re-set original image values 
  run("Properties...", "channels=" + preChannels + " slices=" + preSlices + " 
frames=" + preFrames +" unit=µm pixel_width=" + prePixelWidth + " pixel_height=" + 
prePixelHeight + " voxel_depth=" + preVoxelDepth); 
// get MIP of vessel enhanced stack and save it 
  run("Z Project...", "projection=[Max Intensity]"); 
  saveAs("PNG", outputFolder + "TF_" + filelist[i]); 
  run("Close");  
// Save enhanced stack as tiff stack 
  saveAs("Tiff", outputFolder + "TF_" + filelist[i]); 
  run("Close"); 
 
  selectWindow(filelist[i]); 
  close(); 
 } 
} 
close(); 
 
showMessage("Macro is finished"); 
 

Segmentation and Volume Quantification 
a. Create folder for enhanced files in the folder with original files 
b. Create ROIs: 

 Open MIP 

 Draw ROI with Freehand Selection tool 

 Edit > Selection > Add to Manager > Save > ROI_imageTitle 

 Open next MIP > draw next ROI > Add [t] > Save > ROI_imageTitle 

 Select all ROIs (click individually and hold “ctrl” > Save > save as “RoiSet” in 
folder with enhanced images) 

c. “Plugins” > “Macros” > “Run” *make sure ROI manager etc is closed* 
d. “Run” 
d. Select input folder 
e. Select output folder 
f. will create a folder “TH” inside the input folder containing .tiffs and MIPs of 
segmented images 
g. will create folder “Edges” inside the input folder containing .tiffs and MIPs of 
vascular edges 
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h. will create a file “VascVolResults” inside the input folder containing results of 
vascular volume, vascular density and vascular surface 
 
Definition of cranial vascular volume ROI: https://www.mdpi.com/2313-433X/5/1/14 

  
 
/* EKugler 2019 
 * Macro for vascular segmentation and volume quantification 
 * USE: 
 *  hit run 
 *  select input folder (path to .czi files) 
 *  select output folder (path for .tiff and MIPs) 
 *  when Macro is done - popup window will say "Macro is finished." 
 *  contact: kugler.elisabeth@gmail.com 
 *   
 *  paper Otsu thresholding: N Otsu. A threshold selection method from gray-level 
histograms. Trans. Sys.Man., 9(1):62–66, 1979. 
 *   
 *  papers segmentation: (1) Kugler, Plant, Chico and Armitage (2019), Enhancement and 
Segmentation Workflow for the Developing Zebrafish Vasculature, J. Imaging 2019, 5(1), 14; 
https://doi.org/10.3390/jimaging5010014 
 */ 
 
// input and output path 
path = getDirectory("Input Folder");  
outputFolder = getDirectory("Output Folder"); 
filelist = getFileList(path);  
 
// create file to write volume measurements 
f = File.open(path + "VascVolResults.txt"); 
 
EdgeDir = path + "/Edges/";      // output folder 
File.makeDirectory(EdgeDir); 
 
//open ROI set  
roiManager("Open", path + "RoiSet.zip"); 
n = roiManager("count"); 
r=0; // counter for ROIset 
 
// colourSetting needed for clearing outside for vascular volume quantification 
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setForegroundColor(255, 255, 255);  
setBackgroundColor(255, 255, 255); 
 
// start processing of files 
for (i=0; i< filelist.length; i++) {    
 if (endsWith(filelist[i], ".tif")) { 
  open(path + filelist[i]); 
// segmentation  
  selectWindow(filelist[i]); 
   
//get image properties 
  getDimensions(width, height, channels, slices, frames); 
  preChannels = channels; 
  preSlices = slices; 
  preFrames = frames; 
   
  getPixelSize(unit,pixelWidth,pixelHeight,voxelDepth); 
  prePixelWidth =pixelWidth; 
  prePixelHeight = pixelHeight; 
  preVoxelDepth = voxelDepth; 
 
  voxelVol= (prePixelWidth * prePixelHeight * preVoxelDepth); 
   
  run("8-bit"); 
  setAutoThreshold("Default dark"); 
  run("Threshold..."); 
  setThreshold(4, 255); // threshold to be changed if other image acquisition 
settings 
  setOption("BlackBackground", false); 
  run("Convert to Mask", "method=Default background=Dark"); 
  
 // re-set original image values 
  run("Properties...", "channels=" + preChannels + " slices=" + preSlices + " 
frames=" + preFrames +" unit=µm pixel_width=" + prePixelWidth + " pixel_height=" + 
prePixelHeight + " voxel_depth=" + preVoxelDepth); 
 // Save segmented stack as tiff stack 
  saveAs("Tiff", outputFolder + "TH_" + filelist[i]); 
 // create MIP 
  run("Z Project...", "projection=[Max Intensity]"); 
  saveAs("Jpeg", outputFolder + filelist[i]); 
        run("Close"); 
 
//vascular volume [vx] quantification - ROI from MIPs 
        selectWindow("TH_" + filelist[i]); 
 //iterate through ROI set  
  roiManager("Select", r); 
  run("Measure");    // for density 
  AeaUm = getResult("Area");   
  r++; // counter for ROI in ROIset 
 // clear outside 
  run("Clear Outside", "stack"); 
 // histogram count black  
  run("Histogram", "stack"); 
 // [255] is VascVox 
  Plot.getValues(values, counts); 
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  VascVox=counts[255];    
  VascVol = voxelVol * VascVox;// vascular density 
  selectWindow("TH_" + filelistTH[i]); 
  AreaVx = AreaUm / voxelVol; // change um to vx 
  FullVox = AreaVx * slices;     
  density = AreaVx / FullVox; // min 0, max 1 
 
  // vascular surface 
   selectWindow("TH_" + filelistTH[i]); 
   run("Find Edges", "stack"); 
   saveAs("Tiff", EdgeDir + "Edges_" + filelistTH[i]); 
   run("Z Project...", "projection=[Max Intensity]"); 
   saveAs("Jpeg", EdgeDir + "MAX_Edges_" + filelistTH[i]); 
   run("Close"); 
   selectWindow("Edges_" + filelistTH[i]);  
   // histogram count black  
   run("Histogram", "stack"); 
   // [255] is VascVox 
   Plot.getValues(values, counts); 
   EdgeVox=counts[255]; 
    
   EdgeVol = voxelVol * EdgeVox; 
   print(f, filelistTH[i] + "  \t" + "VascVox" + "\t" + VascVox + "\t" + "VascVol" 
+ "\t" + VascVol + "\t" + "EdgeVox" + "\t" + EdgeVox + "\t" + "EdgeVol" + "\t" + EdgeVol + "\t" 
+ "density" + "\t"+ density); 
 close(); 
 } 
} 
close(); 
 
showMessage("Macro is finished."); 
 

Intra-sample Symmetry 
To compare left and right vascular symmetry. To be applied to pre-processed and 
segmented images. 
 
*important* MorphoLibJ plugin needed (https://imagej.net/MorphoLibJ) 
 
***important*** 

 During image acquisition - make sure embryos are not left-right tilted (z-axis). 
If they are - register to non-tilted sample before quantifying L-R symmetry. 

 Create “OutputFolder” before starting. (in this folder all your output will be 
saved; logic could for example be “../tiff/TF/TH/outputfolder”) 

 Create “RoiSetLine.zip” before starting in the folder with images.  
This is needed to rotate the image and bring the fish anterior-posterior axis into 
alignment with the image y-axis. 
This is done as follows 

***important: have to be in order (ie 1,2,3)***  
o “Drag and drop” MIP (original, pre-processed or segmented) into Fiji 
o Select Line ROI tool 
o Draw along anterior posterior 
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o “Add” to ROI manager 
o Repeat for all images 
o When all ROIs are drawn - select all ROIs and “save” as “RoiSetLine” in 

the folder where the images which will be processed are saved (logic 
could for example be “../tiff/TF/TH”) 

 “Plugins” > “Macros” > “Run” 
*make sure ROI manager and results table are closed* 

 “Run” 
 Select input folder 
 Select output folder 
 Macro will prompt you to draw another line ROI after images were rotated. This 

line ROI will be used to split L and R vol. 
o ***important: have to be in order (ie 1,2,3)*** 
o Draw line ROI and “add” to ROI manager 
o Close images 
o Click “ok” 

 IntraSampleSymmetryResults.csv with left and right vascular volume and 
skeleton voxels will be created in input folder (VascVox = number of black 
voxels; VascVol = vascular volume in um3) 

 Individual files for LR similarity quantification (Jaccard Index, Dice Coefficient 
and Total Overlap; see https://imagej.net/MorphoLibJ) will be created in LRVol 
folder 

 

Inter-sample Registration 
 Create folder for enhanced files in the folder with original files 

 *** important *** one file needs to be called "template" 

 “Plugins” > “Macros” > “Run” 
 EKugler_AutomaticRigidInterSampleRegistration.ijm 

 “Run” 

 Select input folder 

 Select output folder 
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/* EKugler 2019 
 * Macro for automatic rigid inter-sample registration 
 * USE: 
 *  *** important *** one file needs to be called "template" 
 *  hit run 
 *  select input folder (path to .czi files) 
 *  when Macro is done - popup window will say "Macro is finished." 
 *  contact: kugler.elisabeth@gmail.com 
 */ 
 
// input and output path 
path = getDirectory("Input Folder");  
// user prompt to select template image 
// template = XXX;  
 
 filelistReg = getFileList(path);  
 
 open(path + "template.tif"); 
 template=getTitle(); 
 print("Running Inter-Sample Registration."); 
 
 RegDir = path + "/Reg/";     // output folder 
 File.makeDirectory(RegDir);    // make output folder 
  
 // inter-sample registration  
 
 // get image/voxel properties 
 getDimensions(width, height, channels, slices, frames); 
  preChannels = channels; 
  preSlices = slices; 
  preFrames = frames; 
 getPixelSize(unit,pixelWidth,pixelHeight,voxelDepth); 
  preUnit=unit; 
  prePixelWidth =pixelWidth; 
  prePixelHeight = pixelHeight; 
  preVoxelDepth = voxelDepth; 
 
 for (i=0; i< filelistReg.length; i++) {    
   if (endsWith(filelistReg[i], ".tif")){ 
    open(path + filelistReg[i]); 
    // segmentation  
    selectWindow(filelistReg[i]); 
    run("Rigid Registration", "initialtransform=[] n=1 tolerance=20 
level=7 stoplevel=4 materialcenterandbbox=[] showtransformed template=" + template + " 
measure=Euclidean"); 
    run("Invert", "stack"); 
    //setThreshold(0, 132); 
    setOption("BlackBackground", false); 
    run("Make Binary", "method=Default background=Default"); 
    // set image/voxel properties 
    run("Properties...", "channels=" + preChannels + " slices=" + 
preSlices + " frames=" + preFrames + " unit=" + preUnit + " pixel_width=" + prePixelWidth + " 
pixel_height=" + prePixelHeight + " voxel_depth=" + preVoxelDepth); 
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    saveAs("Tiff", RegDir + "InterSReg_" + filelistReg[i]); 
    // create MIP 
    run("Z Project...", "projection=[Max Intensity]"); 
    saveAs("Jpeg", RegDir + "MAX_InterSReg_" + filelistReg[i]); 
    close(); 
    close(); 
   } 
 } 
 close(); 
 close(); 
showMessage("Macro is finished");  
 
 

Intra-sample Symmetry using Anatomical Landmarks 
To be applied to pre-processed and segmented images. 
Based on https://imagej.net/Name_Landmarks_and_Register 
 
*important* first image/template and following images (moving images) have to be 
the same age. (ie select one template for each age!) 
 
*important* if you want to measure sample similarities (before and after registration) 
- MorphoLibJ plugin needed (https://imagej.net/MorphoLibJ) 
 
First Image // template (which will be template - make sure this one is aligned in x,y, 
and z): 
Open segmented images and select “Plugins > Landmarks > Name Landmarks and 
Register” 

 select landmarks (see figure) using single point tool  

 after selecting first point  

  to rename point eg right ACeV 

  and repeat this for all points from the figure (left PrA, right PrA, 
left ACeV to PrA, right ACeV to PrA, left PCS to MtA, right PCS to MtA, left 
ACeV, right ACeV, left PCeV to PHBC, right PCeV to PHBC, MCeV to DLV) 

  to save these landmarks 

  this file in it’s file location AND  (so the computer knows 
this is your template) 

 
Images to register // moving images (these will be registered to the first/template 
image): 

 Landmark names and template should be saved from the above (if there is 
nothing, something went wrong) 

 Make sure the correct template is chosen; otherwise  
 “Plugins > Landmarks > Name Landmarks and Register” 
 select landmarks (see figure) using single point tool and select respective 

anatomical landmark; eg  

  to save these landmarks 
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Registration: 

 make sure you select  (and have the right template 
selected) 

  
Save file: 

 Image > colour > split channels 
 Select green channel > Edit > invert (yes, whole stack) 
 File > Save as …  

 

Anatomical landmarks: 

 
 
 
Downscaling to 512x512 with ROI selection 
 Create folder for enhanced files in the folder with original files 

 *** important *** need to open ROIs in ROI Manager 

 “Plugins” > “Macros” > “Run” 
o EKugler_512Conversion.ijm 

  “Run” 

 Select input folder 

 Select output folder 
 
path = getDirectory("Input Folder"); 
filelist = getFileList(path); 
 
n = roiManager("count"); 
r=0; 
 
for (i=0; i< filelist.length; i++) {  
 if (endsWith(filelist[i], ".tif")) { 
  open(filelist[i]); 
  run("Invert", "stack"); 
  roiManager("Select", r); 
  setBackgroundColor(0, 0, 0); 
  run("Clear Outside", "stack"); 
  setTool("point"); 
  makePoint(508, 4, "small yellow hybrid"); 
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  run("Invert", "stack"); 
  r++; // counter for ROI in ROIset 
   
  run("Scale...", "x=- y=- z=1.0 width=512 height=512 depth=425 
interpolation=Bilinear average process create"); 
  saveAs("Tiff", path + "/512x512/" + filelist[i]); 
  setThreshold(123, 255); 
  setOption("BlackBackground", false); 
  run("Make Binary", "method=Default background=Default"); 
  run("Z Project...", "projection=[Max Intensity]"); 
  saveAs("Jpeg", path + "/512x512/" + "MAX_" + filelist[i]); 
  run("Close"); 
 // run("Skeletonize (2D/3D)"); 
 // saveAs("Tiff", 
"E:/15122018_3dpf_dll4MO_Rep3/enhanced/TH/512x512/skel/" + filelist[i]); 
  close(); 
  close(); 
 } 
} 
showMessage("Macro is finished"); 

 
Quantification of Parameters 
 Create folder for enhanced files in the folder with original files 

 “Plugins” > “Macros” > “Run” 
o EKugler_Quantification.ijm 

  “Run” 

 Select input folder 

 Select output folder 
// vascular diameters, BPs, endpoints, and vessel lengths 
// 04022020_EKugler 
 
// needs binarized or thresholded images as input 
// use 2D MIP of 3D skeleton and 2D Distance map for diameter (dia) estimation 
// branching points (BPs), endpoints (EPs), and average vessel length (avgLength) are 
calculated in 3D, displayed in 2D 
 
// meep to be replaced with filelist 
 
// check whether ROIs for input needed (aka clear outside) 
 
 
path = getDirectory("Input Folder"); 
outputFolder = getDirectory("Output Folder"); 
SeletonList = getFileList(path); 
filelist = getFileList(path); 
 
ROImanual = getBoolean("Do you want to select a region manually?"); 
 
for (i=0; i< filelist.length; i++) {    
    if (endsWith(filelist[i], ".tif")) { 
      
open(path + filelist[i]); 
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selectWindow(filelist[i]); // later to be changed to iterate through all and embed into code 
GUI.ijm 
meep = getTitle(); 
short = replace(meep, ".tif", ""); 
 
 
skeletonFile = File.open(path + short + ".txt"); // txt file for results 
print(skeletonFile, "\t" + "NetworkVoxel" + "\t" + "BPVoxel" + "\t" + "EPVoxel" + "\t" + 
"averageDia [whole]"); 
 
getDimensions(width, height, channels, slices, frames); 
getPixelSize(unit,pixelWidth,pixelHeight,voxelDepth); 
 
BoxROIWidth = 0; 
BoxROIHeight = 0; 
 
///// create MIP and Distance Map for diameters ///// 
selectWindow(meep); // select original thresholded image 
run("Duplicate...", "title=ForSkel duplicate"); // for skeletonization later 
run("Duplicate...", "title=For3DEDM duplicate"); 
selectWindow(meep);  
// need to run it on 2D to get exact values 
run("Z Project...", "projection=[Max Intensity]"); 
run("Geometry to Distance Map", "threshold=1"); 
saveAs("Tiff", outputFolder + "MAX_" + short + "_EDT"); // save 2D distance map 
 
///// skeletonize original tresholded image in 3D ///// 
selectWindow("ForSkel"); // duplicate from original thresholded image; to skeletonize in 3D 
run("Skeletonize (2D/3D)"); 
rename("Skel_"); 
run("Duplicate...", "title=ForEDMSkel duplicate"); 
 
 
///// save skeletonized image ///// 
saveAs("Tiff", outputFolder + "Skel_" + short);  // stack 
run("Z Project...", "projection=[Max Intensity]"); 
run("Skeletonize (2D/3D)"); // remove spurious branches in 2D  
saveAs("Tiff", outputFolder + "MAX_Skel_" + short); // MIP 
 
///// merge 2D skel and 2D distance map for diameter measurements ///// 
imageCalculator("AND create", "MAX_" + short + "_EDT.tif","MAX_Skel_" + meep); 
run("Fire"); 
saveAs("Tiff", outputFolder + "MAX_LUTFire_EDM_Skel_" + short);  // stack 
rename("LUTFire_EDM"); 
 
///// quantify diameters ///// 
/////// NUMBER 1 - average diameter for whole 2D image - iterate through whole image in (x,y) 
 counter = 0;0 
 value = 0; 
 total = 0; 
 avgLength = 0; 
   
 selectWindow("LUTFire_EDM"); 
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// .. use image properties and brightness/intensity to quantify width at the respective vx in 
microns  
 for (y = 0; y < height; y++) { 
  for (x = 0; x < width; x++) { 
    properties = getPixel(x, y); 
    if (properties != 0){      // skip if intensity 
value under 30-ish? 
        counter++; 
        total += properties;  
       //value = properties * 1.15; 
       //setPixel(x, y, value); 
     } 
   } 
  } 
 
  average = (total/counter); // multiply with conversionFactor!!!!!!!!!!!!!!!!! // don't 
think a conversion factor is needed -- will need to double-check 
  saveAs("Tiff", outputFolder + "MAX_Dia_" + short);  // stack 
  // print(counter);         
 // debug 
 
// duplicate for dia quantifications in ROIs 
run("Duplicate...", "title=ForROIRaster duplicate"); 
run("Duplicate...", "title=ForManualROI duplicate"); 
 
/////// NUMBER 2 - Quantify avg Diameter of predermined bounding box ROIs (10x10 ROIs) 
// get box size from image size (width and height) 
BoxROIWidth = width/10; 
BoxROIHeight = height/10; 
 
selectWindow("ForROIRaster"); 
// initialize ROI rectangle positions 
setForegroundColor(255, 255, 255); 
setTool("rectangle"); 
 
// iterate through image to create 10 x 10 ROI boxes 
 for (b=0; b < width; b=b+BoxROIWidth) {  // b = breite 
   for (l=0; l < height; l=l+BoxROIHeight) {  // l = laenge 
   // initial box 
   makeRectangle(b, l, BoxROIWidth, BoxROIHeight); // x,y,w,h 
 
    
   var counterBox = 0; totalBox = 0; propertiesBox = 0; averageBox = 
0; 
    
   // quantify avg dia for THIS ROI box 
   for (yB = 0; yB < BoxROIHeight; yB++) { 
    for (xB = 0; xB < BoxROIWidth; xB++) { 
     propertiesBox = getPixel(xB, yB); 
     if (propertiesBox != 0){      
        counterBox++; 
        totalBox += propertiesBox;  
     } 
    } 
   } 
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   print(averageBox); 
    
   averageBox = (totalBox/counterBox); 
   setSelectionName(averageBox); 
 
    
   run("Add Selection..."); 
   run("Labels...", "color=white font=10 show use bold"); 
    
   // write into excel file ID 1, 2, etc...  
    
  } 
 } 
saveAs("Jpeg", outputFolder + "ROIBoxes" + short); 
 
 
/////// NUMBER 3 - Quantify avg Diameter in manually selected ROI ///////////// 
selectWindow("ForManualROI"); 
if(ROImanual == true){ 
  
 do { 
  do {  
   // Prompt user to select region (default to rectangle selection tool) 
   setTool(0); 
   waitForUser("Select ROI", "Select a vessel segment, then click OK."); 
  } while(selectionType() != 0);  
   
  getSelectionCoordinates(x, y); 
  startX = x[0]; 
  startY = y[0]; 
  endX = x[2]; 
  endY = y[2]; 
  
  var dist=0, count=0, total=0, average=0; 
  
  // Loop through pixels in ROI 
  for (v = startY; v <= endY; v++) { 
   for (h = startX; h <= endX; h++) { 
    dist = getPixel(h,v);   
     
    // Account for non-black pixels only 
    if (dist != 0) { 
     count++;  
     total += dist;  
    } 
   } 
  } 
  
  // Print average diameter  
   average = (total/count); 
  setSelectionName(average); 
   
  // Overlay label for selected ROI 
  run("Add Selection..."); 
  run("Labels...", "color=white font=10 show use bold"); 
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  cont = getBoolean("Would you like to calculate the average diameter of another 
region?"); 
   
  } while(cont) 
   
  run("Save"); 
  flatten = getBoolean("Would you like to save a copy of the flattened image?"); 
  if (flatten) { 
   setBatchMode(true); 
   run("Flatten"); 
   name = getTitle(); 
   save(outputFolder + "ManualROIs" + short); 
   setBatchMode(false); 
  } 
} 
 
/////// NUMBER 4 - Quantify avg Diameter of vessels from 3D BPs 
// quantify diameters for individual vessels by using 3D BPs (x,y) coordinates as start and end 
point 
 
///// quantify whole 3D network length in voxel ///// 
 selectWindow("Skel_" + meep);  
 run("Histogram", "stack"); 
 Plot.getValues(values, counts); 
 NetworkVoxel=counts[255]; 
 close(); // histogram 
 
///// quantify avgLength from 3D Skel ///// 
 selectWindow("For3DEDM"); 
 run("Make Binary", "method=Default background=Light"); 
 // run("Invert", "stack"); 
 run("Distance Map", "stack"); 
 run("Color Balance..."); 
 run("Enhance Contrast", "saturated=0.35"); 
 
 imageCalculator("AND create stack", "Skel_","For3DEDM"); 
  
 saveAs("Tiff", outputFolder + "3DEDM_" + short);  // stack 
 run("Analyze Skeleton (2D/3D)", "prune=[shortest branch] show display"); 
 saveAs("Results", outputFolder + "BranchInformation_" + short + ".csv"); // window 1 
 saveAs("Results", outputFolder + "Results_" + short +".csv"); // window 2 
 close(); 
  
///// VISUAL BPs and endpoints from 3D skel ///// 
///// EPs - endpoints 
 selectWindow("Tagged skeleton"); 
 run("Duplicate...", "title=ForEPs duplicate"); // for skeletonization later 
 run("Z Project...", "projection=[Max Intensity]"); 
 setAutoThreshold("Default"); 
 run("Threshold..."); 
 setThreshold(2, 33); 
 setOption("BlackBackground", false); 
 run("Convert to Mask"); 
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 run("Histogram", "stack"); 
 Plot.getValues(values, counts); 
 EPVoxel=counts[255]; 
 close(); // histogram 
  
///// BPs - branching points 
 selectWindow("Tagged skeleton"); 
 run("Duplicate...", "title=ForBPs duplicate"); // for skeletonization later 
 run("Z Project...", "projection=[Max Intensity]"); 
 
// clean up BPs -- aka testing BPs 3D and 2D (x,y) against each other 
// only the ones which are true for BOTH are considered true BPs here (no 100% accurate, 
but the best to achieve here at that time) 
  
// extract BPs via Thresholding  
 setAutoThreshold("Default"); 
 run("Threshold..."); 
 setThreshold(64, 70); 
 setOption("BlackBackground", false); 
 run("Convert to Mask"); 
 
 imageCalculator("AND create", "MAX_Skel_" + meep,"MAX_ForBPs"); 
 selectWindow("Result of MAX_Skel_" + meep); 
 rename("BPsClean"); 
 
 run("Histogram", "stack"); 
 Plot.getValues(values, counts); 
 BPVoxel=counts[255]; 
 close(); // histogram 
 
 selectWindow("Tagged skeleton"); 
 run("Z Project...", "projection=[Max Intensity]"); 
 run("8-bit"); 
 
 
 run("Merge Channels...", "c2=[MAX_ForEPs] c6=[MAX_Tagged skeleton] create 
keep"); // EPs 
 saveAs("Jpeg", outputFolder + "MAX_EPs_" + short);  
 close(); 
 run("Merge Channels...", "c2=[BPsClean] c6=[MAX_Tagged skeleton] create keep"); 
// BPs 
 saveAs("Jpeg", outputFolder + "MAX_BPs_" + short);  
 close(); 
 selectWindow("MAX_Tagged skeleton"); 
 close(); 
 selectWindow("Tagged skeleton"); 
 close(); 
   
  // write BP and EP numbers into it....  
  print(skeletonFile, short + "\t" + NetworkVoxel + "\t" + BPVoxel + "\t" + EPVoxel 
+ "\t" + average) 
   
  ///// need to close everything 
  run("Close All"); 
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    } 
   } 
showMessage("Macro is finished"); 
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Appendix D: Graphical User Interface Use 

 
 

Step 1: .czi to .tiff conversion. 
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 to be done to convert .czi files to .tiff format (not to be done if your data are .tiff) 
 select if single-colour or dual-colour (if more than 2 channels, convert your .czi 

to .tiffs using Bioformater and save channels individually) 
 will create a folder “VascTiff” inside the input folder containing .tiffs and MIPs 

 

Step 2: Motion Correction. 

 
 to correct for motions occurred during image acquisition (ie heart beat, gravity 

and muscle twitches) 
 parameters were optimized for transgenic zebrafish data acquired with 

lightsheet microscopy (see papers above for details) 
 will create a folder “SIFT” inside the input folder containing .tiffs and MIPs 

 

Step 3: Tubular filtering, ie vessel enhancement. 

 
 to be done before segmentation 
 scale size optimized for the cranial vasculature in zebrafish (see papers above 

for details) 
 will create a folder “TF” inside the input folder containing .tiffs and MIPs 

 

Step 4: Segmentation and vascular volume measurements. 
(Note: if error comes up - just rerun, sometimes it has a little hickup) 

 
 Enhanced images as input required. 
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 Vascular volume quantification can be done as follows. 
o Create ROIset before (recommended) 

 Open MIP 
 Draw ROI with Freehand Selection tool 
 Edit > Selection > Add to Manager > Save > ROI_imageTitle 
 Open next MIP > draw next ROI > Add [t] > Save > 

ROI_imageTitle 
 Select all ROIs (click individually and hold “ctrl” > Save > save as 

“RoiSet” in folder with enhanced images) 
 Definition of cranial vascular volume ROI: 

https://www.mdpi.com/2313-433X/5/1/14 

  
o Create ROIs as segmentation proceeds 

 *important* Select images in the order they are in the folder 
 Draw ROI with Freehand Selection tool 
 Edit > Selection > Add to Manager (can be saved as ROIset) 
 Once all ROIs are drawn click “ok” in the pop-up window 

o Stop after segmentation (not recommended) 
 will create a folder “TH” inside the input folder containing .tiffs and MIPs of 

segmented images 
 will create folder “Edges” inside the input folder containing .tiffs and MIPs of 

vascular edges 
 will create a file “VascVolResults” inside the input folder containing results of 

vascular volume, vascular density and vascular surface 
 

Step 5: Inter-sample registration. 

 
 Needs segmented data as input.  
 Needs one file called “template” in the input folder. 
 Automatic registration is an iterative optimization algorithm (conjugate direction 

search) using scale space down-sampling to align stacks rigidly. 
 will create a folder “Reg” inside the input folder containing .tiffs and MIPs 
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 will create files of similarity quantification (Dice, Jaccard and Total Overlap) 
before and after registration (respective to the template) 

 

Step 6: Intra-sample symmetry quantification. 

 
 Needs segmented data as input. 
 Create “RoiSetLine.zip” before starting in the folder with images.  

This is needed to rotate the image and bring the fish anterior-posterior axis into 
alignment with the image y-axis. 
This is done as follows 

***important: have to be in order (ie 1,2,3)***  
o “Drag and drop” MIP (original, pre-processed or segmented) into Fiji 
o Select Line ROI tool 
o Draw along from posterior to anterior! 

o r   
o “Add” to ROI manager 
o Repeat for all images 
o When all ROIs are drawn - select all ROIs and “save” as “RoiSetLine” 

 will create a folder “Sym” inside the input folder containing .tiffs and MIPs of 
rotated images 

 will create a folder “LRVol” inside the input folder containing .tiffs and MIPs of 
the left and right vasculature 

 will create a file “IntraSampleSymmetryResults” in the input folder containing 
L and R vascular voxel, vascular volume and skeleton voxel 

 will create files of similarity quantification (Dice, Jaccard and Total Overlap) 
between L and R in folder “LRVol” 

 

Step 7: Quantification of vascular properties. 
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