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Abstract

Different challenging issues have emerged in recent years regarding the analysis of high di-

mensional data. In such datasets, the number of observations is much lower than the num-

ber of covariates which is problematic in the conventional statistical model. Nowadays, high-

dimensional dataset is common in several fields of sciences such as biology, economics, ge-

netics and medicine. For instance, gene expression data is an example of the high-dimensional

dataset where the number of genes is larger than the number of samples (patients). In order

to tackle the issue of high-dimensional there are many regularization and shrinkage methods

that have been proposed and developed to gain a sparse model; these approaches belong either

to frequentist penalty methods or Bayesian shrinkage prior. In this thesis, we aim to overcome

the high dimensional problem through proposing two alternative novel Bayesian shrinkage prior

distributions. The suggested methods are hierarchical Normal inverse Pareto distribution (hNiP)

and Rescaled Beta hierarchical Normal inverse Pareto distribution (ReB-hNiP). We consider

that both proposed priors are absolutely continuous prior distributions and belong to the family

of scale mixture of normal distribution. The proposed Bayesian shrinkage methods have been

applied for three different linear models. Particularly, they have been applied and compared

with some shrinkage methods based on multivariate Bayesian linear regression model. The

proposed methods have also been implemented on both the Bayesian linear regression model

with measurement error model a shrinkage and dynamic Bayesian networks with measurement

error model. The hyperparameters were selected by using several criteria such as Watanabe-

Akaike information criteria (WAIC).
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Chapter 1

High Dimensional and Genetic Data

1.1 Background to High Dimensional Data

Over decades, statistical models have been developed and become complex, especially for high-

dimensional data. The issue of high-dimensional data appears in different fields of scientific

studies such as economics, social and biological studies. High-dimensionality arises from a

dataset when the number of parameters are exceeded by the number of observations so called

p � n case (Mallick and Yi, 2013). For example, in genetics it is very common, to measure

thousands of genes on dozen of people. Practically, only a few possible covariates (obser-

vations) really have an effect on the response variable, but the impact of most coefficients is

close to zero or very small. Meanwhile, model misspecification has a substantial effect on in-

terpreting the results scientifically. It is crucial belief of analysing any statistical model that

have patterns of high-dimensional problem the number important features k (the number of

the parameters are non-zero of such as in regression model) should be much lower than all

parameters p (Brimacombe, 2014).

It is necessary to use a specific method to overcome the problem high-dimensionality and obtain

a sparse model. Consider the model is sparse if a small number of the parameters are not equal

to zero and the rest of coefficients are equal to zeros, which means that the model can be de-

scribed by a few important variables k (features) out of p regression coefficients. X are gene
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expression X ∈ µn+p and Y ∈ Rn is response variable. Sparse models have been motivated

in various ways in many application fields (Aijun et al., 2017). For that purpose, over the last

decade, statisticians have proposed diverse methods for dealing with this problem by penalizing

the likelihood then obtaining a sparse model and variable selection (Mallick and Yi, 2013). In

practice, these methods have been improved in order to tackle a high dimensional problem and

variable selection in both the frequentist framework and the Bayesian modelling. For example,

Tibshirani (1996) suggested LASSO procedure (Least Absolute Shrinkage and Selection Oper-

ator) in term of a frequentist model. LASSO is widely applied in several fields to penalize the

least square model in statistical literature. After that, some others shrinkage penalty functions

have been proposed and developed in order to overcome the issue of high dimensional datasets

such as Elastic Net by Zou and Hastie (2005), (SCAD) Smoothly Clipped Absolute Deviation

by Fan and Li (2001), Adaptive LASSO by Zou (2006) and among others in the direction of the

non-Bayesian methods. In Section 2.2, we will explain some frequentist penalization methods.

Recently, a Bayesian perspective has provided the power to decrease the complexity associated

within coefficients estimation procedures by combining prior information. Thus, the data in

this technique in order to do variable selection. A number of shrinkage prior distributions

have been suggested as an alternative to frequentist method and these approaches are gradually

becoming widespread. In this framework, the Bayesian shrinkage prior also is called Bayesian

regularization method (Mallick and Yi, 2013). One family of shrinkage prior has a scale mixture

of Normal distribution with mean is equal to zero and variance has positive hierarchical mixing

prior distribution. In this case of dealing with Bayesian shrinkage priors, we utilise MCMC

algorithm (see Appendices A.1). We are going to discuss more about Bayesian shrinkage prior

distributions in Section 2.4. The important part of variable selection for any shrinkage method is

how to choose the optimal tuning prior, where each shrinkage approach has at least one tuning

parameter which is control amount of shrinkage the coefficients regression Jung (2016). In

practice, there are several methods and criteria recommended and developed to select tuning

parameter, for instance, cross-validation technique is one of the popular methods used for this

purpose (Zou, 2006). In Section 2.5.2, we explain some techniques and criteria used in this

thesis in order to to choose the best hyperparameter values.

The goal of the thesis is to propose an alternative Bayesian shrinkage prior distribution and at

the same time deal with variable selection in a high dimensional model that involves a hierarchi-
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cal Normal scale mixture of inverse Pareto distributions (hNiP) and rescaled beta hierarchical

Normal scale a mixtures of inverse Pareto distributions ReB-hNiP. We believe that the pro-

posed Bayesian shrinkage priors is faster in terms of time computing a model and results could

be more accurate compared to similar shrinkage priors. The proposed methods are belong to

a family of scale mixtures of normal distributions. Moreover, we will address those shrinkage

priors distributions into different types of modelling, such as linear regression model as standard

statistical model in the Chapter 4 and we compare with some shrinkage methods in measure-

ment error model and dynamic Bayesian networks in Chapter 5. Another challenge we face in

this thesis is how to select hyperparameter values of proposed Bayesian shrinkage priors. We

utilised sensitivity analysis by thresholding hyperparameter values by using and evaluating cri-

teria called Watanabe-Akaike information criteria (WAIC) method Vehtari and Gelman (2014).

Hence, we utilise some other statistical tools so as to select hyperparameters values then check

a performance of models based on the proposed shrinkage prior distributions.

1.2 Thesis Outline

This thesis consists of seven Chapters. The first chapter includes an introduction to high-

dimensional issues, genetics background and literature and methodology of dynamic Bayesian

networks. Then, we display the overview of shrinkage methods in linear models for both fre-

quentist penalization methods and Bayesian shrinkage methods in the second chapter. In Chap-

ter 2 the scale mixture of normal distribution is illustrated as background of Bayesian shrinkage

prior. The last section of the Chapter 2 involves an overviews of Bayesian variable selection,

hyperparameter choice with model selection illustrated and receiver operating characteristic

curves ROC methods described in order to evaluate and analyse shrinkage priors. the last sub-

section of second chapter is related to posterior predictive checking distribution is illustrated for

checking the performance methods and prediction behaviour. In Chapter 3, we introduce two

novel Bayesian shrinkage priors which are the hierarchical Normal inverse Pareto distribution

(hNiP) those hyperparameters Gamma are distributed and Rescaled Beta hierarchical normal

inverse Pareto distributed (ReB-hNiP). In addition, the Normal exponential gamma prior distri-

bution (NEG) is presented due to having similar structure of our proposed methods.
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In Chapter 4, calibration on Bayesian linear regression model is addressed using our novel prior

distribution which includes hNiP and ReB-hNiP and compare the results with Bayesian and

non-Bayesian approaches. After describing the model structure, hyperparameter prior values

are selected by different criteria, then the model is run over 100 times and the results analysed

and compared, in order to assess the performance of the shrinkage prior distributions. High-

dimensional measurement error with linear models are studied in Chapter 5, which starts with

an overview of measurement error model. In the next section, high-dimensional measurement

error with multivariate linear regression model is addressed values of the Watanabe-Akaike in-

formation criteria (WAIC) for selecting tuning parameters. Subsequently, results are analysed

by run model over 100 times based on simulated data. Additionally, dynamic Bayesian networks

with measurements error model is considered in this chapter, this kind of modelling is based

on autoregressive model with measurements error model. Both proposed Bayesian shrinkage

prior distributions are addressed for both non-high-dimensional and high-dimensional simu-

lated datasets. Moreover, credible interval (C.I.) and t test utilised as extra tools for variables

selection, after that our proposed modelling is compared to with some alternative methods in

the literature.

In Chapter 6, a statistical literature review related to cardiovascular diseases CVD is displayed,

after that the source of real gene expression data are introduced and then process of choosing

sub-sample of real gene expression is presented to reduce the computation time and applied our

proposed model on it. Thus, real sample of CVD gene expression level is applied on dynamic

Bayesian network with measurements error model. Chapter 7 concludes with our the most

important results and future work.

The most common statistical distributions used in this thesis which are the Gamma distribution,

Normal distribution N(x|µ, λ−1), Inverted Pareto distribution iP(x|ψ, b), Student-t St(x|µ, ν, λ),

Truncated Gamma distribution TrGa(x|b, ω, γ) and Resca led Beta ReB(x|a, b, e), are pre-

sented in the appendices.
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1.3 Genetic Background

This section provides general information about genetics in order to attract a reader about: what

is genetic, gene and biological information. To know how protein synthesis. We are address-

ing genetic data which plays a circular role in a statistical model, especially gene regularity

networks (GRN). Another reason to write this information in here is using real genetic data in

this project which is gene expression level. In general, genetics is a science that involves and

studies genes and how living things, the way some attributes are passed on from generation to

generation, for example as eye-color. Geneticists and statistician are interested in deep search-

ing the genetic data in a different direction because of the familiar that for some genes plays

in developing the disease. (Laird and Lange, 2010). In the following subsection, we briefly

explain some information about genes and their protein construction.

1.3.1 Genes and DNA

Cells are the construction blocks in all living organisms. All cells execute many processes to

survive in life. One of the main components and an essential part of all living cells are proteins

(Bani, 2009). Proteins consist of a collection of different chains of amino acids; the sequences

of these amino acids play a role in determining the types of proteins inside the cell under the

control of genes. Genes are defined as functional pieces of DNA (Deoxyribonucleic Acid)

which is a code for proteins. They are simple elements in living organisms, having control

over transferring inherited features (Lee, 2007). For example, characteristics such as the colour

of eyes are moved from ancestor to next generation via the parents. DNA is found inside the

nucleus. The shape of DNA is similar to a double strand helix formed by four different primary

types of nucleotide; thymine (T), cytosine (C), guanine (G) and adenine (A). Each Nucleotide

is the construction block of DNA (Robinson, 2010). The nucleotide sequences are genetic

information used for the development and function of the organism, implemented during the

construction of proteins. The same DNA is presented in all cells, but each cell has a different

rate of protein expression, thus living cells are different from each other.
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1.3.2 Protein Synthesis

Protein synthesis from DNA happens through ribonucleic acid (RNA) production as explained

by the central dogma of molecular biology (Causton et al., 2009). There are three essential

stages: transcription, splicing and translation. Figure 1.1 is shows all main steps of protein

synthesis. The first stage is transcription; the information contained within a gene is copied

into messenger RNA (mRNA) by the enzyme RNA polymerase, utilizing the DNA structure as

a blueprint. The mRNA translates into protein after it is modified. Sections of the RNA are

removed. These are named as introns and the remaining part of the coding sequences named

as exons, which are joined to each other which this process is called splicing reactions (Bani,

2009). In translation, proteins are synthesized by organelles known as ribosome typically found

in the cytoplasm. Ribosomes read the triplets of nucleotide in the mRNA series which are

called codons; they specify amino acids into a sequence of rising polypeptides. The protein

replicates into a three-dimensional composition when translation is completed. For more details

see Causton et al. (2009), Lee (2007) and Bani (2009),

1.3.3 Gene Regulatory Networks

Beside the details we mentioned previously about protein regulation, gene expression is well

regulated for controlling the quantity of produced proteins. Transcription factors are a key

method for regulating gene expression at transcription level. These factors are proteins attached

to a promoter area of a specific gene, which prevents or activates the expression level by pro-

moting the employment of the polymerase of RNA (Hill, 2012; Russe, 2009). This relates to

gene regulatory networks. Gene regulatory networks (GRNs) are a dynamic and complex pro-

cess of protein production between genes. The gene interacts with other gene production. This

interaction occurs when the transcription factor from a gene activates another gene and it leads

to production. The interaction is not only a product of a gene activating other genes, but also,

some genes are prohibiting other gene expression. The relation between gene-gene can be rep-

resented by topological networks, in which genes are nodes in graph and interactions between

genes are represent the edges or the link between nodes it can be seen in Figure (1.2), which

shows an example of a gene regulatory network, it show that gene D is suppressing gene C and
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Figure 1.1: The process of synthesized proteins, which starts from the transcription of informa-
tion in DNA into mRNA and splicing after reactions which leads to removing the intron regions
and fuse and kipping exon regions together. Then process the mRNA is translated into protein.
This diagram I have recreated based on a similar diagram in Bani (2009).

also gene B is activated gene A. Figure (1.2) I have recreated based on paper for Kuznetsov

et al. (2004) after gave me his permission.

1.4 Cardiovascular Diseases Overview

1.4.1 Cardiovascular Diseases

Cardiovascular diseases (CVDs) are a range of disturbances of the blood vessels and heart.

CVD consists of some types of heart disease that include heart failure, stroke, angina, con-
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Figure 1.2: An example of a gene regulatory network for four different genes (A, B, C, D). Each
gene begins with transcription of the information into mRNA, which is indicated by the black
arrows. During protein synthesis, some process happen such as (brown dash-dot line) activation
in which some genes activate other genes (positive impact), in contrast, the red dotted line refers
to prevention (repression) of some gene by another gene, that is, negative impact).

genital heart disease and heart attack, among others. CVD is also known as circulatory heart

disease. According to many heart organizations, CVD is one of the biggest causes of death and

morbidity worldwide (National Health Service-NHS, Heart Foundation and NHI). The World

Health Organization WHO claimed that about 17.7 million people die from CVDs every year

and approximately 31% of deaths worldwide are due to CVDs (WHO, 2017). Moreover, about

570,341 people passed away due to CVDs in 2014 in the UK, and in that year about 28% of

deaths in the UK were caused by CVDs and only 15% from coronary heart disease (CHD),

which is a type of CVD. The WHO consider CVDs as the biggest type of killer disease. Many

people suffer from severe disability due to CVDs and suffer chronically. For more information

see the published statistics from the Heart Foundation in Nick et al. (2015).

1.4.2 Literature Review of Cardiovascular Diseases

There are several risk factors for cardiovascular diseases and biomarkers. A biomarker is de-

fined as a feature which is evaluated and measured objectively as an index of pathogenic pro-
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cesses, normal biological processes or pharmacologic reactions to a therapeutic involvement of

CVDs (Strimbu and Tavel, 2010). They have an impact on the patient by various means, for

example, high blood cholesterol, smoking, diabetes, obesity, high blood pressure and history

of heart disease and some other biomarkers. The CVDs are indicated by a biomarker and con-

tain a type or level of exposure for an environmental factor, genetic responses to exposures and

genetic susceptibility (Vasan, 2006). Single nucleotide polymorphisms (SNPs) are variations

of the simple form for DNA structure that occur when a single nucleotide ((A), thymine (T),

cytosine (C), or guanine (G)) in the genome sequence is altered. For instance, a SNP may mod-

ify the DNA sequence such as ATGGCTAA to AAGGCTAA. Cardiovascular diseases has been

evaluated extensively in relation to SNPs (Vasan, 2006).

In gene expression analysis, a fundamental change has happened in the assessment which re-

flects a paradigm shift from the traditional one-molecule strategy to gene regulatory network

assessment (Napoli et al., 2003), which is called gene regulatory networks (GRNs). A few

decades ago, with regards to the statistical genetics analysis, the most successful results re-

lated to select genes that have an impact on disease progression. Numerous statistical methods

for achieving this success were developed, and were mainly effective in analysing diseases

such as Huntington disease and heart disease, among others. Statisticians in the genetics field

should not simply acknowledge but also directly confront the tremendous complicating factors

that may contribute to genetic diseases, as they imposes great challenges for classical statistics

(Thornton-Wells et al., 2004).

Shiffman and Porter (2000) argue that, until now, the process of CVDs was not fully understood

from the molecular events and psychophysiology with respect to disease condition due to pro-

cesses of CVDs being complex. Ndiaye et al. (2011) claims that many genetic risks of CVDs

are so far unexplained and they defined this claim as dark matter of genetic risk. Furthermore,

they stated that gene-gene interactions will play a great role in detecting genes that have not

been known until now by using single-locus, a particular position on a chromosome structure

(Suzuki et al., 1976).

According to Seo et al. (2006), genetics contributed to complex CVDs such as atherosclerosis.

They claimed that a research based on genetic data of CVDs have a beneficial in clinical trial,

particular when applying and translating findings relying on gene expression data into clinical
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medicine. However, they said is difficult to have the full information about single gene has

cause and impact on CVDs and there was not much progress in genetic research with regards

to the CVDs field, due to the difficulties the researchers encountered in accessing sufficient

information about genetic data from tissues of heart. Lack of access to appropriate human

tissue is one of the major challenges in the advance out of the field (Seo et al., 2006).

Health care planning and diagnostics have improved significantly based on genomic analysis

because patients suffering from CVDs may change to specific medication that has fewer side

effects and can be less costly. Geneticists collect data by three different methods. Firstly,

from heart and lung donors, in recent studies, researchers have used gene expression levels

exclusively from human aorta to identify genes that predict the extent of atherosclerotic burden

in the aortic artery (Seo et al., 2006). However, those people who donated their organs had

not necessary been diagnosed with CVDs. Secondly, researchers often utilized animal data

for applying statistical modelling, but these types of model considered useless for determining

the CVDs risk factors in human disease progression. Despite animal organs being used by

researchers, there are some major challenges that have been encountered, and several factors

that may contribute to CVDs in humans cannot be found in animals such as smoking, drinking

alcohol, drugs and stress (Seo et al., 2006). Thirdly, the obtained sample data from blood is

noisy. Blood may carry other diseases than CVDs. Alongside this, Seo et al. (2006) noticed

that they can obtain a sample of human tissue during a transplant or placement of left ventricular

assist devices (LVADs).

Lusis and Weiss (2010) demonstrated that the fundamental concept of multivariate genetic risk

factors results in CVDs. Every genetic and environmental risk factor partly contributed to dis-

ease risk. The protein structure is affected by both environmental factors and genetic factors

which cause molecular phenotypes. Their review focused on biological networks and the re-

lationship between phenotypes and genetics. Most of the studies are displayed as examples;

the data comes from mice or rats. An example used partial correlation coefficients to calculate

relationships between the DNA and other metabolic factors of CVDs. They believe that the

most powerful approaches to describe the systems biology are dynamic networks because they

clarify interactions occurs over time between genes.
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1.5 Statistical Methodology for Gene Networks

Genetic data have become one of the most important kinds of data to build statistical models to

determine functional genes that cause diseases due to advances in the technology in this field. It

is known that during the process of protein synthesis some interactions happen between genes.

One of the essential structures to fit and create good models based on this type of genetic data

is networks, especially gene regularity networks (GRNs) (Vijesh et al., 2013). We will focus

on probabilistic graphical models GM to describe GRNs and we are going to use real gene ex-

pression data, explained in chapter 6 for a kind of GRNs model. We are interested in directed

graphical models, especially dynamic Bayesian networks (DBNs), that is a type of a graphical

model that has become a typical technique for modelling different stochastic time-points. Us-

ing DBNs to build models of genetic data is useful for inferring the interaction uncertainties

between genes. It is known that a classical regression method for building gene networks is

impractical, especially when dealing with the issue of high-dimensional data, p� n , for more

information see Brimacombe (2014). Such a method is infeasible due to the time-consuming

nature for a high number of iterations difficult to fit a model. Consequently, researchers have de-

veloped numerous computational approaches for modelling by different techniques. The DBN

is one of the most popular statistical models for advanced interactions between proteins and

genes as described in a gene network (Vijesh et al., 2013).

We will now state some methodology and discus some literature about GRNs in the current

section and then dynamic Bayesian networks are explained in detail in the following sections.

According to my knowledge of the literature about dynamic Bayesian networks, Friedman et al.

(1998) first suggested DBNs as approach for creating gene networks by using gene or pro-

tein expression data. Murphy et al. (1999) then developed this concept by utilizing dynamic

Bayesian networks to build a model and provide theoretical properties.

Regarding the literature of dynamic networks, there are several kinds of techniques used to

create probabilistic network model: the first kind is discrete models as can be found in (Chai

et al., 2012; Chen et al., 2012; Ong et al., 2002; Zou and Conzen, 2005). They utilised dis-

crete data over different time-points or they discretised the data, for particular gene expression.

The discretised data is typically (gene expression) divided into three different three categories:

normal, under-expressed, and over-expressed. Discretisation values are based on the rate of

11



CHAPTER 1. HIGH DIMENSIONAL AND GENETIC DATA

expression which is significantly greater than, similar to, or lower than control, by placing a

threshold on the ratio between control and measured gene expression. For instance, Friedman

et al. (2000) assumed a threshold of 20.5, that is, if the ratio is higher than 20.5 it categorised

as over-expressed and if the ratio is less than 2−0.5 it is categorised as under-expressed. Some

of the researchers showed the results according to a conditional probability table (CPT). For

example, the model structure of Ong et al. (2002) was based on Dirichlet priors, and also, the

expression data were discretised. While Chen et al. (2012) used categorical variables and dis-

crete time-series data in their model. The data they used is longitudinal morphological that

study the changes in the human brain.

The second kind is non-parametric or semi-parametric models, for example (David and Wig-

gins, 2007; Imoto et al., 2002, 2003; Kim et al., 2004; Morrissey et al., 2011; Penfold and Wild,

2011; Sugimoto and Iba, 2004; Yang et al., 2016). In some cases, creating a model under dy-

namic linearity assumption infeasible for data that has feedback loops within a living system,

such as gene expression data (Imoto et al., 2002). In this situation, there are numerous pub-

lished studies that are interested in using non-linearity behavior of gene regulatory networks as

an alternative method to linear models as we stated above, especially with a dynamic Bayesian

network structure. The general formula of the non-parametric model is as follows:

Y t
i = F (Y t−1

i ) + εti (1.1)

where i = 1, 2, . . . , p , εti is the noise of the model, Y t
i refers to the expression level at time t.

F (Y t−1
i ) is the function of the non-parametric or semi-parametric model. For instance, Kim

et al. (2004) constructed the nonlinear dynamic Bayesian network by setting the conditional

densities based on non-parametric additive regression, where interaction between genes is non-

linear. Another example is the network model built on utilising semi-parametric regression

from the Bayesian perspective by Morrissey et al. (2011). They assumed that the relationship

between the variables was nonlinear and could be described by using spline functions. The

third kind of dynamic networks is vector auto-regressive processes which are addressed by

(Dondelinger et al., 2013; Lèbre, 2009; Morrissey et al., 2011; Opgen-Rhein and Strimmer,

2007; Wit and Abbruzzo, 2015). The main formula for constricting the model, which depends

on the autoregressive AR which is a multivariate linear regression model for the time series

data of the current value t on the previous value t − 1, we will summaries and discuss some
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studies later. The last type of modelling for probabilistic networks are hidden Markov models

or state space models, which can be found in (Beal et al., 2005; Doshi et al., 2011; Godsey,

2013; Perrin et al., 2003; Tobon-Mejia et al., 2012; Zhu and Wang, 2012). In these types of

modelling hidden variable and missing data are take into account. The model of state space

comprises of two equations: the first equation of observation and the second equation of state.

The equation of observation describes measurement of the state. The observation is usually

stochastic, and the data either continuous or discrete. The state equation describes the state

process’s temporal evolution as a dynamic system. Either through a deterministic or stochastic

differential equation or through a stochastic differential equation, the states can be described

in continuous time. The state space model is called Markovian if the present state depends

only on the previous state. Dynamic linear state-space model which represent in Equation 1.2,

Xt is hidden variable (state) at time t, Yt is observed variable (state), A and C denotes tran-

sition matrix and projection matrix respectively. Also, u, v are the error of models and µobs

is measurement adjustment. For instance, Perrin et al. (2003) utilised this kind of DBN and

Expectation-Maximization algorithm (EM) which allows in particular to infer hidden variables

and to handle missing data. Non-high dimensional gene expression data they used.

Xt+1 = AXt + u

Yt =CXt + µobs + v
(1.2)

Tobon-Mejia et al. (2012) used mixing DBN and Gaussian Hidden Markov Model structure in

order to check the fault diagnosis of computer numerical control of CNC machine. The number

of interesting gene network inference approaches is increasing. Scientists have tried to classify

them into several groups depending on criteria. For example, Karlebach and Shamir (2008) and

En Chai et al. (2014) categorized the network inference approaches into some classes depending

on the mathematical modelling for these approaches: the continuous, single-molecule level and

logical models. The continuous models are able to take into account the time series data, as

well as progressive biological applications for modelling gene networks. DBNs belong to this

modelling class. Then The logical models are flexible and can give fundamental knowledge

of functionality versus several system’s conditions, but they can only able to supply qualitative

solution (Naldi et al., 2009). An example of a logical model is the Boolean network where gene

is denoted to be ‘off‘ when gene is activated and denoted ‘on’ if gene deactivated. The last
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class of models of the gene expression level places emphasis on the connection among genes

stochastically.

In order to explain the link between probabilistic network models and shrinkage priors, we first

state some studies and then we succinctly explain our modelling approaches and how it differ

from previous research. For instance, Zou and Feng (2009) compared two methods which are

commonly used; these methods are DBNs which are based on a simple linear model (Gaussian

model) and Granger causality methods (that can identify the causal impact of the series, it can

improve the prediction of a series of one-time by integrating knowledge of the second series)

(Zou and Feng, 2009). They showed that the result of the former methods outperform the latter,

when the data length is short and that the opposite is also true, that is, Granger causality is best

if data length is large. Wit and Abbruzzo (2015) proposed a type of dynamic Bayesian network

that captures the slow changes amongst genetic regulation over time. An autoregressive model

and least absolute deviations (LAD) penalty function is used to shrink the coefficients matrix in

the model. The general form of the model for the time variation networks is as follows;

Y t = BtY t−1 + εt (1.3)

where εt is the noise model, Y t refers to variables (expression level) at time t and Bt refers

to the coefficients changing for every single time in the model. Morrissey et al. (2010) studied

the interaction amongst variables based on dynamic Bayesian networks and an autoregressive

model with repeated measurements. They used a non-Gaussian distribution for measurement

error parameter. Also, they utilised two different synthetic data which are come linear and non-

linear mode in order to compare them. A spike and slab prior distribution are implemented to

assess indicator variables (Morrissey et al., 2011). This prior is a discrete mixture of normal

distributions, which a high peak and low variance (spike) and flatter tails with a high variance

that belongs to the slab.

One part of my work is similar to Morrissey et al. (2010) in terms of the model structure which

includes an autoregressive model plus a measurement error model. However, we use a different

prior distribution with regard to penalizing the high-dimensionality in the coefficient vector of

the model and identifying the variables at the same time. We are going to discuss the dynamic

Bayesian network model based on an autoregressive process with a measurements error model
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by using proposed shrinkage prior distributions in Chapter 5.

In the following sections, we explain the background of Bayesian networks which is given to

understand the idea of dynamic Bayesian networks. Also, we establish general information

about dynamic Bayesian networks.

1.5.1 Bayesian Networks

A Bayesian network (BN) is one of several statistical methods applied for modelling in biologi-

cal science, particularly in gene expression data. BNs are known by other titles in the literature,

such as belief networks and probabilistic networks. Moreover, the BN model is similar to the

probabilistic graphical model (GM) family for the spatial case, when we have a directed acyclic

graph (DAG), denoted by G (Bani, 2009; Ben-Gal, 2008; Radhakrishnan et al., 2013). Proba-

bilistic network models are divided into two main kinds. The first one is directed acyclic graphs

(Bayesian networks), which we will describe in the following paragraphs. The second is called

an undirected graphical model. It is different from BNs as the links (edges) between any two

variables do not include the directional knowledge. Undirected graphical models are also known

as Markov networks (Ben-Gal, 2008). A DAG G(Y,E) in the BN model is composed of two

main parts, the first part are nodes that represent a set of random variables Y1, Y2, · · · , Yn and

the second part is a set of the edges which are indicated by E, and model dependence between

variables. Commonly, an arrow between the variables represent the edges. The arrow represents

that a value taken by node Yj is based on node Yi, that is, node Yi have an effect on Yj. For ex-

ample, Figure 1.3 shows node Y2 is child of node Y1 which joined by an arrow. In the BN

model, the node Yi (variable) denotes a parent of Yj and correspondingly Yj denotes a child

of Yi.

According to the definition of a Bayesian network, it is an acyclic graph that is described by

a joint probability distribution for a group of random variables Y and edges E as mentioned

above. The joint probability distribution of a set of random variables can be represented by:

P (Y1 = y1, Y2 = y2, Y3 = y3, ...Yn = yn) = P (y1, y2, ..., yn). (1.4)
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The joint probability distribution above can be based on probability theory written as:

P (y1, y2, . . . , yn) = P (y1)P (y2|y1) . . . P (yn|yn−1). (1.5)

P (y1, y2, ..., yn) = P (y1)P (y2|y1)P (y3|y1, y2)...P (yn|y1, y2 . . . yn−1). (1.6)

The conditional probability for each variable is decomposed based on the Bayesian Network

structure as follows:

P (yi|y1, y2, ..., yn−1) = P (yi|Pai(G)). (1.7)

where yi represents the value of Yi nodes and Pai(G) represents all the parent nodes of the

network of Yi nodes. Also parent nodes can be described by Pa(Yi) ⊆ {Y1, Y2, ..., Yn−1}.
Then the joint probability distributions in Equation 1.6 can be represented as:

P (y1, y2, ..., yn) =
n∏
i

P

(
yi|Pai(G)

)
. (1.8)

In this graphical network, the variable Yi is independent of its non-descendants given the rest

of the parents in DAG. The second component is a collection of numerical parameters that gen-

erally describe distributions of conditional probability. The set of the parameters in the network

are represented by Θ, which involve θyi|Pai(G) for each realization yi conditioned on Pai(G),

that is, the group of parents Yi in G where θ ∈ Θ (Ben-Gal, 2008). The joint distribution

based on conditional distribution can be represented by the followings rule as parameter learn-

ing:

P (y1, y2, ..., yn) =
n∏
i

(
θyi|Pai(G)

)
. (1.9)

Inferring gene networks model (GNs) employs Bayesian network is corresponding to classical

statistical inference in terms of parameter estimation. The BN inferences includes two typical

stages includes structure learning and parameter learning. The first stage is structure learning

that concentrates on definition of the (DAG), G introduced earlier in this section. There are

various algorithms and scoring functions (statistical criterion such as Bayesian information cri-

terion (BIC) (Schwarz et al., 1978)) proposed to assess and to learn the structure of Bayesian
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Y1

Y2

Y4Y5

Y3

Figure 1.3: Simple toy example of a Bayesian network with five nodes that have a conditionally
relation; circles represent the variables (nodes) and edges (arrows) represent the interaction
between variables (link). For example, Y4 and Y5 are conditionally independent given Y2.

networks. Popular algorithms are score-based, constraint-based, hybrid structure learning and

Bayesian scoring function. One of these algorithm to infer the model structure is constraint-

based algorithm which utilizes the outcomes of conditional independence test between nodes

based on a statistical test. Score-based approaches construct a structure with the use of condi-

tional independence between variables. This approach attempts to determine a score function

which assesses a network structure by reflecting its goodness of fit data and then to determine

the graph at the maximum score. Hybrid structure learning seek to learn parameters by com-

bining the constraint-based and score-based methods. They are local search approaches dealing

with identifying the local structure and optimal global model, which is constrained by this lo-

cal information, see Radhakrishnan et al. (2013) for acquiring more knowledge about these

algorithms.

The second stage is parameter learning (parameter estimation), involving a specific probability

distribution over variables (nodes) in the estimation process that is related to determine each

node in the network model.

For understanding the Bayesian network simply, consider the following example. Figure 1.3

shows an example of a BN for five variables Y (nodes). We assume the variables are gene

expression levels for five genes. The circles represent the nodes and arrows to indicate the link
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between nodes. The probability distribution for variables (genes) depends only on its regulators

(parents) in the network. For instance, the expression levels of Y4 and Y5 have a relation only

via Y2 as expressed in Figure 1.3. In mathematical terms, a conditional model is factorized

into components of the current example is represents by bellow formula, and also both node

Y4 and Y5 are conditional independent given Y2. Such a relation leads to building conditional

distributions, where each variable depends only on its parents in the network.

P (Y1, Y2, Y3, Y4, Y5) = P (Y5|Y2) P (Y4|Y3, Y2) P (Y2|Y1) P (Y3|Y1) P (Y1)

1.5.2 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks. BNs are based

on data from a single time point, while DBNs employ time series data for finding connections

amongst variables to create a model (Radhakrishnan et al., 2013). There are some constraints

of Bayesian networks for inferring networks. The first constraint is equivalent to the class of

Bayesian networks, where the equivalent class is obtained when the structure of model has V-

structural. V-structures are the only basic link in which the two non-adjacent nodes are not

independent of the third. For example, nodes Y4 → Y2 ← Y5 as can see in Figure 1.3 for

more information see Husmeier et al. (2005) and Radhakrishnan et al. (2013). This constraint

is problematic because it creates issues in determining the causal direction of the interaction be-

tween the features in the direct acyclic graph / Bayesian network. The second constraint is that

Bayesian networks are built under a static model and it is assumed that the data sample is inde-

pendent during collection it in the experiment. Therefore, they are not especially convenient for

analysing time slice (time points) and gene expression data. In addition, DBNs consist of more

than one time slice for all variables. The third constraint of BNs, their acyclic characteristic,

creates issues for modelling biological data, particularly for regulatory networks, because the

biological and gene regulation have a feedback loops, whereas BNs do not have this feature

(Dondelinger et al., 2013). In these kind of situations, the restrictions mentioned above can be

overcomes by dynamic Bayesian networks.

We describe the dynamic Bayesian networks model mathematically as we will use it in the

current study to handle time series gene expression data. We assume that having R sample
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replicates (for example, microarray data for each patient), and each microarray measurement

can include expression levels of p genes (variables) and T times. Therefore, Y is a matrix

with size p × R × T. Generally, the array Y has entries Y t
ij where (j = 1, 2 . . . , p), (i =

1, 2 . . . , R) and (t = 1, 2, . . . , T ). For example, Y 2
4,5 refer to gene number 4 for replication

number 5 at time 2. Suppose that Y t
j represents row vectors from the matrix Y and each

row vector includes a sub-matrix Yij at discrete time t where t = 1, 2, ..., T. For example in

Figure 1.4, Y 1
ij represents the R observation (patients) and p parameters (genes) at first time

(t = 1). Simply, Y = (Y 1, Y 2, · · · , Y T ) which is Y 1 = Y 1
j where j = 1, 2 . . . , p.

Y1p

Y2p

Y3p

Yip

Y t=2

Y t=1

Y t=3

Y t=T

. . .

. . .

Y12

Y22

Y32

Y11

. . .

Y21

Yi1

Y31

...
...

Variables ( p )
Time

Replication ( R )


y11 · · · y1p

y21 · · · y2p

yR1 · · · yRp



Figure 1.4: Illustration of the data for the dynamic Bayesian network model: each row vector in
the matrix Y is represented as the as matrix Yij for every single time t on the left hand side.

The construction process of the DBN model is divided into two parts. Firstly, a time dependency

is considered, i.e relations are invariant in time. Secondly, time-varying DBNs model, which

we can compute the changing behaviour of the model for each time varied i.e both covariates

and coefficients depends on time, for more detail see Kalli and Griffin (2014) for example. Our

goal in the current study is the first kind, we assumed that a time slice is permitted, which

the model is unchangeable over time points and the state of time t relies only on the previous

time t − 1. Therefore, the gene regulations are modelled through this kind of modelling in

Section 5.3.1.
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Y t−1
1 Y t

1

Y t
2

Y t
3

Y t
4

Y t−1
2

Y t−1
3

Y t−1
4

Y t+k
1

Y t+k
2

Y t+k
3

Y t+k
4

Y T
1

Y T
2

Y T
3

Y T
4

Figure 1.5: Simple example of a dynamic Bayesian network that includes four nodes, some
edges (interaction between nodes) and different times slices, which displays graph have directed
acyclic for most nodes. Where k represent any time point except the last time T. For example,
the time t only depends on the previous the time t − 1. This diagram recreated based on idea
from Radhakrishnan et al. (2013).

The structure of the conditional probability distribution is represented by P (Yt|Yt−1) for t =

2, 3..., T, which belongs to the first order Markov model. Therefore, the joint probability is

factorised as

P (Y 1, Y 2, Y 3, ..., Y T ) = P (Y 1)× P (Y 2|Y 1)× P (Y 3|Y 2)× .......× P (Y T |Y T−1). (1.10)

where j = 1, 2 . . . , p is represents the number of variables, where the Equation 1.11 describes

the product of conditional dependence for each variable at time t given the previous time:

P (Y t|Y t−1) =

p∏
j=1

P

(
Y t
j |Pat−1

j (G)

)
. (1.11)

Figure 1.5 displays simple dynamic Bayesian network (regulation networks) consisting of four

nodes (genes), all of them have the a feedback loops and interactions happen with each other

over multiple time t, which every time slice is conditionally dependent on the earlier time.
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Therefore, this aspect typically beneficial for building model based on time series gene expres-

sion data.

The conditional probability P (Yt|Yt−1) is also factorized for each node (gene) given its parent

nodes
(
Y t
j |Pat−1

j (G)
)

as formulated in Equation 1.11 substituting in Equation 1.10, then the

factorised joint probability distribution become,

P (Y 1, Y 2, Y 3, ..., Y T ) = P (Y 1)
T∏
t=2

P

(
Y t|Y t−1

)
. (1.12)

We note that a node at time t is conditionally dependent on the previous time t − 1 for each

variables. Then, the density function below describes the DBN model,

P (Y 1, Y 2, Y 3, ..., Y T ) = P (Y 1)
T∏
t=2

{ p∏
j=1

P
(
Y t
j |Pat−1

j (G)
)}
. (1.13)

P

(
Y t
j |Pat−1

j (G)

)
where Pat−1

j (G) represents the state vector for the parent variables (genes)

of the jth gene at time t− 1 and we do not have a parent of the initial node, that is, Pa0
j(G) =

φ, where φ represents the empty set. Similarly to Bayesian networks, the dynamic Bayesian

network model process has two stages. The first stage, is inference of the model, which in-

cludes selecting an appropriate statistical distribution for the JPD and then estimating parame-

ters. The second stage is learning structures of the parameters, that is, selecting the best range

of parameters that fit the model.
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Chapter 2

Shrinkage in Linear Models

2.1 Introduction

In this chapter, we illustrate some approaches that help to solve the problems of over parametrised

of linear models by shrinking the coefficients. Before looking at shrinkage approaches, we de-

scribe the statistical challenges of high-dimensional data. In the previous chapter, we briefly ad-

dressed the issue of high-dimensionality which arises from a dataset when the numbers of model

parameters exceed by the number of sample observations, p � n. It has become a widespread

problem due to technological advances in several fields of scientific research, especially in

genomics, medicine, image processing and economics (Mallick and Yi, 2013). Note that for

high-dimensional data, it is impossible to fit the regression coefficients of classical statistical

models which are designed to deal with p < n. Consequently, building a model under sparsity

to estimate the coefficients is a technique widely used by researchers (Tibshirani, 1996). The

idea of sparsity assumptions in regression models is that few of the coefficients are different

from zero and a significant amount of coefficients close to zero (Brimacombe, 2014). In or-

der to overcome this problem, over the last few decades, statisticians have proposed various

approaches to penalize model coefficients and to estimate the sparse models. We divide these

methods into two main groups which are Bayesian shrinkage priors and non-Bayesian methods

(frequentist methods).
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Our objective in this chapter is to present some common shrinkage approaches either Bayesian

shrinkage or and non-Bayesian penalty, that have been proposed until now and how shrink-

age methods can overcome issues of high-dimensionality. We characterise the scale mixture

of normal distributions as fundamental tools in creating Bayesian shrinkage prior distributions

and also as an alternative to the Gaussian distribution for the error model. Therefore, we present

two versions of the novel proposed Bayesian shrinkage methods in the next chapter. The outline

of the current chapter is as follows: in Section 2.2, we review and state some penalty methods

that have been designed for frequentist statistical model, that is, non-Bayesian methods. Then,

the scale mixture normal distribution (SMN) is highlighted in Section 2.3. In Section 2.4 , the

most common Bayesian shrinkage methods are demonstrated, which have scale mixture nor-

mal distribution structures. In the Section 2.5, we focus on some tools for choosing shrinkage

prior value and evaluating variable selection that includes general information about Bayesian

variable selection and how they participate to choose the tuning hyperparameter and then in-

terpreting the model. Then, receiver operating characteristic curves analysis for assessing the

performance of choosing hyperparameter for shrinkage priors, in the last subsection we high-

light an overview of posterior predictive checking in order to check the estimation process.

2.2 Common Frequentist Regularization Methods

From a frequentist perspective, we can not use standard statistical methods n > p, such as

ordinary least squares (OLS),

argminβ∈Rp ||y −Xβ||2, (2.1)

where X represents the matrix of independent variables, y is a vector of dependent variables

and β is a vector of parameters.

In order to fit the coefficients in the regression model, Equation 2.1 has to be adjusted by

adding a penalty term that plays an important role in fitting the parameters in the case of having

large p and small n as follows:

argminβ∈Rp
(
||y −Xβ||2 + P (β)

)
(2.2)
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where P (β) refers to the specific penalty function used to overcome the high-dimensional prob-

lem.

Several penalized likelihood approaches have been developed in order to handle high dimen-

sionality . At the same time, these methods have been extensively applied for selecting signifi-

cant variables and estimating their impact on high dimensional problems (Fan and Tang, 2013).

The LASSO (least absolute shrinkage and selection operator) has an L1−penalty and is a popu-

lar approach to reach sparse estimates, which was introduced by Tibshirani (1996). This penalty

makes the model sparse and controls the estimation process which estimates some coefficients

as exactly equal to zero. In addition, the penalty function in Equation 2.2 is P (β) = γ
p∑
i=1

|βi|,

where γ > 0 is a tuning parameter and i = 1, 2, . . . , p.

The SCAD penalty function (Smoothly Clipped Absolute Deviation) has been proposed by Fan

and Li (2001), because the LASSO penalty method is inconsistent for variable selection, due

to overestimate coefficients and having one tuning parameter. The tuning parameters in this

penalty approach are computed by five fold cross-validation. The SCAD penalty has an oracle

property and the mode of the posterior distribution is used to analyse the results. The SCAD

penalty function is described by the equation bellow:

Pγ(βi)SCAD =


γ|βi| if |βi| ≤ γ,
|βi|2−2cγ|βi|+γ2

2(c−1)
if γ < |βi| ≤ cγ,

(c+1)2

2
if |βi| > cγ.

where γ > 0 and c > 2 are both adjustable parameters with c = 3.7 suggested in (Fan and

Li, 2001). For example, Abegaz and Wit (2013) constructed the graphical model based on this

method and used genetic data. Although the LASSO penalty method is attractive theoretically,

it has some weaknesses that are addressed by Zou and Hastie (2005). The first weakness is

the difficulty in selecting a the number of predictors which exceeds the sample size due to the

nature of the convex optimization procedure.

According to Zou (2006), the LASSO penalty as a variable selection method might be unreli-

able in some situations. He proposed an alternative penalty function to the LASSO, which is

called the adaptive Lasso. It is distinguished from the LASSO by having various weights for the

coefficients which is overcome the issue of over shrinkage large coefficients and selecting unre-
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lated coefficients. The penalty function in Equation 2.2 becomes P (β) =
p∑
i=1

γi|βi|, where γi is

a positive tuning parameter and i = 1, 2, . . . , p. Tuning parameter selection is done by utiliz-

ing two-dimensional cross-validation. The LASSO has been discussed in the context of high-

dimensional graph and asymptotic consistency results by Meinshausen and Bühlmann (2006).

They noticed that the result of this method is inconsistent and the predictions. We display some

other penalty functions in Table 2.1 that have been developed in order to shrink regression coef-

ficients and others that can be found in the literature, due to our focus is on Bayesian shrinkage

priors and to propose new version of them. We do not discuss them further due to our focus on

Bayesian shrinkage.

Table 2.1: Some frequentist regularization functions and their tuning parameters.

Name of approaches Penalty function Tuning parameter

Ridge regression (Hoerl and
Kennard, 1970)

γ
p∑
i=1

β2
i γ

Elastic net (Zou and Hastie, 2005) γ1

p∑
i=1

|βi|+ γ2

p∑
i=1

β2
i γ1, γ2

Group lasso (Yuan and Lin, 2006) γ
K∑
k=1

√
mk∑
i=1

β2
ki

γ, K number of groups
(predictor covariates are

divided into Kvarious groups)
and mk sample size of groups

2.3 Scale Mixtures of Normal Distributions

In this section, we discuses scale mixtures of normal distributions (SMND). Our objective in

this section is two-fold: firstly, to introduce some specific shrinkage prior distributions that are

SMND and to explain how they participate in reducing high-dimensional data. We are going to

describe some Bayesian shrinkage priors in the next section, and then our proposed Bayesian

shrinkage prior is explained in Chapter 3. On the other hand, SMND are utilised as an alter-

native to the Gaussian assumption for building statistical models resulting in growing evidence

real data applications that the normal distribution is not on appropriable choice for the error
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model, especially in the presence of outliers values in data. Consider that scale mixtures of

normal distributions provide a robust statistical model and they are elliptical symmetric distri-

butions. We begin with an overview of scale mixtures of normal distributions that are used to

build a statistical model. Andrews and Mallows (1974) defined scale mixtures of normal dis-

tributions for the first time as heavy-tails distributions, which play a crucial role in statistical

models. Furthermore, Gonçalves et al. (2015) considered them one of the essential kinds of

elliptical symmetric continuous distributions. Andrews and Mallows (1974) have defined the

SMN distribution mathematically for a p-dimensional random vector as follows:

Y = µ+ k1/2(ψ)W (2.3)

where µ represents the location parameter for the random variable Y, and W has a normal dis-

tribution with precision equal to λ and mean equal to zero. Furthermore, k(ψ) is a non- nega-

tive weight function, and ψ is its mixing non-negative random variable with probability density

function h(ψ|v), where v represents the location parameter or scale indexing for the distribu-

tion of ψ. The most common case that is used in the literature has k(ψ) = 1
ψλ−1 , which has

a normal independent distribution (NI). This methods that Y |ψ ∼ N(Y |µ, ψ−1) and Y has

probability density function given by the formula below:

P (Y |µ, λ, v, ψ)) =

∫ ∞
0

N
(
Y |µ, ψ−1λ−1

)
h(ψ|v)dψ. (2.4)

There are various kinds of symmetrical classes of SMND that have a heavier tailed distribution

than the normal distribution, which is considered as a suitable choice of the function h(o|ν)

in Equation 2.3. It has been noticed that in the special case V ar(ψ) = 0, SMND retrieves the

usual normal distribution. In the following, we are going to present some different types of an

important scale mixture normal distributions that have a heavy-tailed distribution for construct-

ing a statistical model. We will use a SMND within linear regression the following chapters.

1 - The Variance Gamma Distribution

Madan and Seneta (1990) developed the Variance Gamma (VG) distribution for mod-

elling for uncertainty in share market returns. The VG distribution has heavy-tails when

contrasted with normal distribution. It has parameter ν > 0, that is indicates to as the

degrees of freedom and controls the shape of the VG distribution. The SMND density
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representation of VG is similar to the Student-t distribution. The hierarchical structural

of the VG distribution is expressed as follows:

Y |ψ ∼ N
(
Y |µ, ψ−1λ−1

)
, ψ|ν ∼ IG

(
ψ

∣∣∣∣ν2 , ν2
)
. (2.5)

where ψ is positive and has the inverse gamma distribution (IG) with the rate and shape

parameters both equal to ν
2
, and also ν > 0. The IG distribution has the following form:

IG(X|a, b) =
ba

Γ(a)
X−(a+1) exp

(
− b

X

)
.

2 - The Student-t Distribution

The Student-t distribution is one of the appropriate choice for an alternative robust distri-

bution instead of the normal distribution (West, 1987). The parameters of this distribution

are the location µ, the scale λ−1 and the degrees of freedom ν. The probability den-

sity function of Student-t distribution as SMND can be expressed as in the following

equation:

P (Y |µ, λ, ψ) =

∫ ∞
0

N
(
Y |µ, ψ−1λ−1

)
Ga
(
ψ

∣∣∣∣ν2 , ν2
)
dψ. (2.6)

Furthermore, this SMND can be expressed in terms of hierarchical distributions as in

Equation (2.7):

Y |ψ ∼ N
(
Y |µ, ψ−1λ−1

)
, ψ ∼ Ga

(
ψ

∣∣∣∣ν2 , ν2
)
, (2.7)

where ψ has the gamma distribution with rate and shape both equal to ν
2
, and ν > 0.

This distribution is used widely as robust statistical model and was applied to gene regu-

lation networks (Morrissey et al., 2010). We are going to utilise this distribution instead

of Gaussian assumption of measurements error model in first part of Chapter 5, in order

to build robust Bayesian regression model with measurements error model.

3 - The Slash Distribution

The slash distribution is one of the heavy-tailed distributions compared to the normal dis-

tribution that was proposed by Rogers and Tukey (1972). In a particular case, when ν →
∞, the normal distribution is obtained. The hierarchical form of the slash distribution is
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expressed as:

Y |ψ ∼ N
(
Y |µ, ψ−1λ−1

)
, ψ ∼ Be

(
ψ|ν, 1

)
. (2.8)

where ψ has the beta distribution with the rate parameter equal to ν and shape parameter equal

to 1.

In this section, we demonstrated different prior distributions that used instead of normal as-

sumption in a regression model. These distributions belong to a family of distributions called

scale mixture of normal distribution. Hence, we are going to describe some popular Bayesian

shrinkage prior distribution namely, normal gamma (NG), Bayesian lasso, normal exponential

gamma (NEG) and horseshoe prior distribution, among others in the next section. These pro-

posed scale mixture normal distributions are used as Bayesian shrinkage prior distribution to

obtain sparse coefficients in a statistical model.

2.4 Bayesian Shrinkage Approaches

In the context of Bayesian statistics, a number of shrinkage prior distributions have been sug-

gested as an alternative to classical penalty methods in Section 2.2. From the Bayesian perspec-

tive, one shrinkage regularization method has a scale mixture of normal distribution in which the

mean is equal to zero and the precision has a positive mixing distribution. These kinds of distri-

butions are considered absolutely continuous priors (Mallick and Yi, 2013). The main property

of SMND is to provide heavier tail behaviour that is beneficial to shrink those regression co-

efficients zero values. In this section, we are going to state some common Bayesian shrinkage

methods in order to know how these kinds of shrinkage methods are developed. Then, we will

apply and compare some of them to our proposed approaches in the following chapter.

The first Bayesian shrinkage prior utilised to solve the problem over parametrised regressions

is the Bayesian LASSO which was proposed by Park and Casella (2008) and Hans (2009). The

Bayesian LASSO prior is equivalent to a Laplace or the double exponential prior distribution;

which is symmetrical and unimodal distribution that has a higher peak around the origin value

compared to the Gaussian distribution. It is utilised to estimate regression coefficients based on
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the posterior mode. The hierarchical structure of the Bayesian LASSO is as follows:

βi|ψ−1, γ2
i ∼ N(βi|0, ψ−1γ2

i )

γ2
i , |τ ∼ Exp(γ2

i |τ),
(2.9)

where βi, indicates the ith regression coefficients (i = 1, 2, . . . , p) with prior mean equal to

zero and variance ψ−1 , γ2
i is ith the hyperparameter of the scale mixture of Gaussian distri-

butions and τ is tuning parameter of Bayesian lasso.

The horseshoe prior distribution is a type of scale normal mixture distribution proposed by Car-

valho et al. (2010). They argued that the horseshoe prior has three important features which are

sparsity, robustness, and tractability. It has heavy tails like the Cauchy distribution. Moreover,

this shrinkage prior has both global and local shrinkage parameters which were not the case

with previous shrinkage approaches. Empirical Bayes (Efron et al., 2001) EB is a method of

statistical inference from the data observations to choose which the value of the hyperparameter

prior that maximum marginal likelihood. It is utilised to benchmark the approach proposed in

their paper. The horseshoe methods can also be formulated hierarchically as follows:

βi|ψi, θ ∼ N(βi|0, ψ−1
i θ), ψ

−1/2
i ∼ C+(0, 1), (2.10)

where ψ−1 represents the variance, C+(0, 1) refers to the half-Cauchy distribution and θ rep-

resents the global shrinkage parameter. Even though this prior dose not have an exact analytical

density function, it outperforms other prior distributions due to having a predictor-specific lo-

cal shrinkage component and a global shrinkage component (Carvalho et al., 2009; Datta and

Ghosh, 2013).

Griffin and Brown (2010) developed and generalised a kind of continuous prior called the dou-

ble exponential distribution which is used in the Bayesian LASSO prior. To expand on this, they

proposed a kind of modified Bayesian lasso and it has a particular form of normal scale mixture

distribution with mean equal to zero. It is known as the normal-gamma prior distribution. They

noticed that the double exponential prior distribution is inflexible and has negative effects on

parameter estimation because it has a single hyperparameters formulation. This issue leads to

shrinking some truly non-zero coefficients which are forced much closer to the value of zero.

Indeed, the analysis process will have erroneous results and poor predictive performance. Grif-
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fin and Brown (2010) did not use empirical Bayes to estimate the tuning parameters because the

posterior distribution is highly multi-modal which make it very hard to apply the method. The

hierarchical structure of the normal gamma prior distribution is as follows:

βi ∼ N(βi|0, ψ−1
i )

ψi ∼ Ga
(
ψi
∣∣ω, 1

2γ2

)
,

(2.11)

where ψ−1
i is the variance of normal distribution. The variance of βi is Var(βi|ω, γ) = 2ωγ2 .

The marginal density function π(βi) is given by:

π(βi) =
1

√
π2ω−

1
2γω+ 1

2 Γ(ω)
|βi|ω−1/2K(ω−1/2)

(
|βi|
ω

)
, (2.12)

where i = 1, 2, . . . , p,K represents the modified the Bessel function of third Kind and γ, ω

are tuning parameters.

After that, the normal exponential gamma (NEG) prior distribution was developed by Griffin

and Brown (2011) as an alternative to the Bayesian lasso for regression problems. It has been

used as a version of a shrinkage prior distribution in Bayesian regression especially in the case

of estimating the regression coefficients of high-dimensional data. As well, it is a generalised

lasso prior that has an extra layer; this is called a family hyper-lasso penalty functions (Griffin

and Brown, 2011). Moreover, the reasons for using the NEG prior are the finite spike at zero

and its heavy tails when the value of the shape parameter ω is small. We are going to explain

this shrinkage prior in detail in the next chapter, so we can compare it to our proposed Bayesian

shrinkage prior that belongs to a similar scale mixture of Gaussian distributions family. The

density function of the NEG distribution is formulated as follows:

NEG(βi|γ, ω) = k exp

{
1

4
β2
i γ

2

}
D−2ω−1(γ|βi|), (2.13)

where κ is a constant that satisfies k = ωγ
π1/2 2ωΓ(ω+1/2), D−2ω−1(γ|βi|) represents the parabolic

cylinder function, and the parameters ω and γ control the shape of the tails and the scale, re-

spectively. It includes different parameters for the scale distribution of the various regression

coefficients.
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Armagan et al. (2011) proposed for the first time a novel kind of zero mean and scale mixture

of normal distribution based on the generalised three parameter beta distribution. This prior

distribution is called the generalised beta mixture of Gaussian distribution, has heavy tails and

has a complex form that makes this shrinkage prior more flexible so that it dose not over-

shrinkage large coefficients. The hierarchical formation of it is given by:

βi|ψi ∼ N
(
βi|0, ψ−1

i − 1
)
, ψi ∼ TPB(ψi|a, b, ρ)

TPB(ψi|a, b, ρ) =
Γ(a+ b)

Γ(a)Γ(b)
ρbψb−1

i (1− ψi)a−1[1 + (ρ− 1)ψi]
−(a+b),

(2.14)

with a, b, ρ > 0, Armagan et al. (2011) suggested the better choice that a ∈ (0, 1] , b ∈
(0, 1] and fixing ρ in the case when it is utilised on high-dimensional data. The horseshoe

shrinkage prior is obtained when a = b = 1
2

and ρ = 1.

Also, the double Pareto distribution is generalised as a hierarchical Bayesian shrinkage prior

method by Armagan et al. (2013a). It is considered a type of scale mixture of normal dis-

tributions. Note that normal scale mixture distribution is a much more commonly used term,

regards a recent advanced shrinkage approach. Furthermore, the density plot of the generalised

double Pareto prior is similar to the density plot of the Laplace distribution at zero and it has

tail behaviour similar to the Student-t distribution. They claim that it is not too hard to fit the

coefficients in the statistical model and that inference can be done using a Gibbs sampler. The

generalised double Pareto distribution (GDP) is described by the following formula:

f(βi|γ, α) =
1

2γ

(
1 +
|βi|
γα

)−(α+1)

, (2.15)

where βi has the generalised double Pareto distribution, the prior for coefficients in the regres-

sion model and it has two parameters: γ > 0 is the scale parameter and α > 0 is controlling

the shape. In addition, the following shorthand notation is used,that is, βi ∼ GDP(γ, α).

The hierarchical structure of this prior distribution as a normal scale mixture distribution is

given by Equation 2.16 and it has a similar hierarchical structure to the NEG prior distribu-

tion of Griffin and Brown (2011) which as a special case and leads to marginal distribution
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where GDP(γ = ω
α
, α).

βi|ψi ∼ N(βi|0, ψ−1
i ), ψ−1

i ∼ Exp
(
ψi

∣∣∣∣ζ2
i

2

)
, ζi ∼ Ga(ζi|γ, ω). (2.16)

Leng et al. (2014) proposed the Bayesian adaptive LASSO (BaLasso) methods, which gen-

eralised the Bayesian LASSO similar to Equation 2.13 where an EM-algorithm was used for

inferring the parameters. Leng et al. (2014) used MCMC for updating the model parameters.

Furthermore, they also take into account variable selection by using this prior distribution. The

hierarchical construction of the BaLasso prior distribution is as follows:

β|γ2 ∼ N
(
β|0, Dγ

)
, γ2|θ2 ∼

p∏
i=1

θ2

2
e−

θ2γ2

2

θ2 ∼
p∏
i=1

(θ2
i )
ω−1e−δθ

2
i ,

(2.17)

where Dγ is the diagonal matrix of (γ2
1 , γ

2
2 , . . . , γ

2
p), θ

2 and γ2 are p × 1 vector of hyperpa-

rameters and both (ω, δ) represent the tuning parameters, where usually ω is fixed and δ is up-

dated. Rajaratnam and Sparks (2015) have extended the Bayesian LASSO (Park and Casella,

2008) because they believed that convergence of the MCMC for the Bayesian LASSO is slow

when dealing with a number of parameters that is larger than the sample size, that is, dealing

with high-dimensional model. Consequently, they proposed an alternative method for reducing

which is called the fast Bayesian LASSO. It is based on a blocked two-stages Gibbs sampler for

updating the parameters of the Bayesian linear model, see the original paper for more details

of this prior. Previously, we highlighted some popular penalty functions in order to create the

model and obtain sparse estimation.

As we mentioned previously, the NEG prior distribution Griffin and Brown (2011) has been

used to shrink coefficients of regression models. They claimed that their Bayesian prior in-

cludes non-convex penalized likelihoods and penalties. The NEG prior distribution includes

two parameters for more flexibility in detecting significant variables in the model, and these

parameters are λ which controls scale and ν which controls the shape, and heaviness. The

EM-algorithm is used for estimating parameters. Consequently, Rockova et al. (2014) have

proposed selecting variables in Bayesian linear regression by adding structural group informa-

tion into the NEG prior (Griffin and Brown, 2011). These was achieved by allowing differential
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penalization for each regression coefficient in the Bayesian LASSO. They considered an extra

regression layer which relates to different penalty parameters to a group identification matrix.

At the same time, they suggested that the hierarchical model can be simultaneously on two

levels. Firstly, the regression layer for the continuous outcome with the predictors, and sec-

ondly, the layer for the penalty parameters with the grouping information. Furthermore, they

mentioned that the smoothness was achieved at the penalty level instead of the regression coef-

ficients. Furthermore, they noticed that using the EM-algorithm to compute their model so as

to make it faster than MCMC methods, when dealing with high dimensionality.

In this thesis, we propose two novel Bayesian shrinkage prior distributions, which are the hierar-

chical Normal inverse Pareto (hNiP) and the Rescaled Beta hierarchical Normal inverse Pareto

(ReB-hNiP), and they are considered to be a family of scale mixture of normal distribution. We

will focus on these prior distributions in the following chapters. Moreover, we will use novel

Bayesian shrinkage for modelling for different statistical models. To conclude our discussion

about Bayesian shrinkage methods, that there are several options in the literature which will not

be discussed in here.

2.5 Prior Parameter Selection

2.5.1 Bayesian Variable Selection

One of the interesting statistical issues that many statisticians have paid attention to is variable

selection methods. A number of variable selection techniques have been studied from of the

Bayesian perspective such as BMA- Bayesian model averaging, product space search, GVS -

Gibbs variable selection (O’Hara et al., 2009), spike and slab method, among others. Frequently,

for these kinds of situations, some adaptive variable selection methods are restricted in attention

to choose variables that are the most important compared to others. Consequently, variable

selection is considered a special case in selecting a statistical model according to (Mallick and

Yi, 2013). The computational process is very time consuming of classic procedures of selecting

the most important variables and, also having shortage for the unstable inherent (Breiman et al.,

1996).
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Spike and slab prior have become widespread in Bayesian variable selection approaches which

are known as SSVS, stochastic search variable selection and was proposed by Mitchell and

Beauchamp (1988). The spike-and-slab consists of two parts. The first part is the spike that

focuses on its mass on zero, which permits the shrinkage of small effects towards the zero.

Whilst the second part is the slab that allows mass spread widely around reasonable values for

the coefficients in the regression model. In addition, the general form of the spike-and-slab

prior is as follows:

π(β) ∼ θΨ1(β) + (1− θ)Ψ0(β), (2.18)

where the components of θ = (θ1, θ2, . . . , θp) usually have Bernoulli distribution, that is, θ ∈
{0, 1} and Ψ0(β) represents the spike distribution for modelling and Ψ1(β) represents the

slab distribution for modelling.

In light of the Bayesian analysis framework, MCMC is common technique that is utilised to

fit model. Therefore, variable selection approaches can be applied in order to choose the most

important variables. Recently, reducing high-dimensional data and selecting the best subset of

variables has become easier compared with traditional methods due to advances in a number of

Bayesian shrinkage prior distributions that were presented in the previous section. Besides, we

can apply many criteria with shrinkage prior distributions to select appropriate prior values that

lead to detecting the best choice of variables to include in a model. These criteria include the

deviance information criteria (DIC), the Akaike information criterion (AIC) (AKAIKE, 1973),

Bayesian information criterion (BIC) (Schwarz et al., 1978), extended Bayesian information

criterion (EBIC) (Chen and Chen, 2012), DIC (Spiegelhalter et al., 2002) and WAIC (Vehtari

and Gelman, 2014) among others. Selecting explanatory variables based on Bayesian shrinkage

priors requires thresholding which is to distinguish which variables should be included in the

model or not. This technique relies on posterior mean or median, and we will use the t-test and

other tools for this purpose in the following chapters.

2.5.2 Hyperparameter Choice and Model Selection

Selecting tuning parameters in this thesis is based on two criteria which are the DIC and WAIC.

Considering that the WAIC is a generalised type of DIC, but it is more convenient for the
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Bayesian method to estimate the out-of-sample expectation, the computation begins with cal-

culating the pointwise log likelihood then making an adjustment for the effective number of

parameters to control for over-fitting. Consider that WAIC is flexible criteria to use in this the-

sis due to adopting respect to have the repeated measurement data in the model. The WAIC is

given by:

WAIC = −2(l̂pd− p̂waic). (2.19)

Here, l̂pd represents the pointwise log likelihood (log predictive density) and it is expressed as

an approximation:

l̂pd =
N∑
j=1

log

(
1

K

K∑
k=1

p(xj|Θk)

)
, (2.20)

while

p̂waic =
N∑
j=1

VK
k=1

(
log p(xj|Θk)

)
, (2.21)

where, Θk represents the kth posterior draw of the parameter vector Θ, and p̂waic requires

estimating the posterior the variance of the log predictive density for every single observation.

Also, VK
k=1

(
log p(xj|Θk)

)
denotes the sample variance of log predictive densities, where k is

number of MCMC iteration. We choose the minimum value of WAIC as the best model and the

hyperparameters values in shrinkage prior that utilised for modelling they become the tuning

parameters. We adopt WAIC criteria in the case when we handle measurement error model in

Chapter 5. This have been done by adding one extra step before computing WAIC procedure,

which is calculating the sum with respect to the repeated measurements R data because we

have three-dimension matrix. For more details of measurements error model see Chapter 5.

The deviance information criterion, DIC (Spiegelhalter et al., 2002), derived form deviance

D(x,Θ) = −2 log p(x|Θ), and is given by the following equation:

DIC = D(x, θ) + PD (2.22)

where

PD = D(x, θ)−D(x, θ), (2.23)

Here D(x, θ) is the deviance at the posterior mean, while D(x, θ) denotes the posterior mean

deviance and PD denotes the effective the number of parameters.
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Moreover, we used another criteria, the extended BIC (Chen and Chen, 2012) that takes into

consideration high-dimensionality (n < p).

EBICγ(s) = −2l(β̂s) + v(s) log(n) + 2v(s)γ log(p). (2.24)

where l(β̂s) represents the log-likelihood function based on β̂s, the set of estimated coefficients

identified as non-zero, and is given by

l(β̂s) =

(
−λ̂
2

n∑
j=1

(Yj −Xjβs)
2 +

N

2
log(λ̂)

)
.

Here λ̂ represents the estimated precision of the model, v(s) refers to the number of non-

zero coefficients that were selected and s is the set of those variables and coefficients that

satisfy | β̂i
sdβ̂i
| > 1.9, 6 where sdβ̂i represents the standard division. Although, γ > 1 −

1
2k

where 0 < k < 1/3 is a methods for choosing a consistent value that makes the false

discovery rate (FDR) close to zero when the sample size is large, the advisable choice γ = 0.5

(Chen and Chen, 2012), because γ = 0 corresponds to classical BIC. We chose the model

that has the minimum value of EBICγ and considered the prior values used to fit this model as

tuning parameters.

2.5.3 Receiver Operating Characteristic Curves Analysis

The ROC curve used to visualize and measuring the numerical procedure for assessing the

performance of binary classifier algorithms. It is widely used for comparing the performance

of different classification in several fields (Fawcett, 2006), consider that it is trade-offs between

false positives and true positives. The first step for creating the ROC curve to calculate true

positive (TP), false positive (FP), true negative (TN) and false negative (FN). In our application,

TP refers to the number of non-zero coefficients calculated by a method that are also non-

zero in the model that generated the simulated data. The value FN represents the number of

coefficients that are measured to be non-zero, but they are actually zero in the true model that

generated simulated data and this case corresponds to the Type II error. Consider that FP is

Type I error, because the value FP refers to the number of the coefficients that are computed to
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be non-zero but, they are zero in the model that generated simulated data. Table 2.2 displays

the relations between predictions (by specific model) and the observed values (simulated data).

We aim to increase the values of sensitivity and specificity that leads to increase the efficiency

of our model and the area under the curve AUC.

Table 2.2: Classification table for ROC curves, where positive is denoted by po and negative by
ne.

True-class

Predicted-class
po ne

po True Positives (TP) False Positives (FP)

ne False Negatives (FN) True Negatives (TN)

The second step is calculating two key statistics which are the true positive rate (TPR) and the

false positive rate (FPR). The true positive rate (TPR) is also called the sensitivity and the false

positive rate (FPR) is defined as 1-Specificity, where

TPR (Sensitivity) =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
,

Specificity =
True Negatives (TN)

True Negatives (TN) + False Positives (FP)
,

and

1− Specificity = FPR

Then the ROC curve is produced by plotting the FPR on the x-axis against TPR or Sensitivity in

y-axis. We will use such analyses in the following chapters. Furthermore, we are going to apply

the measures in this section together with some criteria that were presented in the section 2.5.2,

in order to evaluate the performance of our proposed hierarchical Bayesian shrinkage priors.

2.5.4 Posterior Predictive Checking

In this section, we give an overview of posterior predictive checking in order to detect any

outliers between posited model and the data for more knowledge see the chapter six of Gelman

et al. (2013). In practice, we will discuss how posterior predictive checking can be used. When
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we fit a model in order to estimate parameters, we are usually interested in how well the model

fits the data and in which aspects of the data generation process in nature are not captured

by the model (Gelman and Shalizi, 2013). One way to measure the discrepancy between the

data and the fitted model is to define test quantities. This is a scalar summary of the data

and parameters which can be used as a standard if we would like to compare the data with

predictive simulations. Test statistics can be generalized in order to allow dependence on the

model parameters. By using this, we can directly summarize discrepancies between data and

fitted model (Gelman and Shalizi, 2013). It has been proposed by Gelman et al. (2005) that

checking models can be done using complete data. However, they also considered more general

settings including latent variables (as missing data), non-ignorable missingness and ignorable

missing data (Griffiths et al., 2010) .

The general posterior predictive distribution function represents as follows.

p(ỹ | y) =

∫
p(ỹ |Θ) p(Θ | y) dΘ.

where y is vector of observed data with size n × 1 , Θ is set of unknown parameters in the

model. While ỹ is matrix of posterior predictive distribution after estimated parameters for

each iteration and it represent by yrep.

A test quantity is a function of the replicated data and original data with some additional param-

eters. The discrepancy in the between the test quantities can be evaluated using the replicated

data and original data by calculating a p−value and watch for extreme tail area p−value. The

selection of test quantity and appropriate posterior predictive distribution requires a considera-

tion of the type of estimates required for the problem being considered. Extreme p− value for

the test quantities indicate areas of failure for the model which can be addressed by extending

the model, or if it is ignored (Gelman et al., 2013). One of the popular bayesplot package in

R programming constructed by Gabry (2017), that included the coded of posterior predictive

model checking which they based on the study for Gabry et al. (2017). Therefore, we are going

to utilised this posterior predictive distribution in the following application chapters.
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Chapter 3

A Novel Hierarchical Prior

3.1 Introduction

The idea behind using SMN as shrinkage priors is to allow for different amounts of mass con-

centration around the origin by varying the prior precision. Thus, the prior on the precision

becomes the vehicle for controlling shrinkage. For instance, the Bayesian LASSO (Park and

Casella, 2008) uses an exponential on the variance, thus allocating large prior probability to

small (large) values of the prior variance (precision). The key intuition behind our approach

is that values of the precision above certain threshold will make no practical difference to the

amount of shrinkage achieved, so we would like to set an upper bound to the support of its prior.

One option would be simply to use a truncated exponential from above, but arguably a distri-

bution with lighter tails would be more amenable for differential shrinkage. Thus, we propose

to use an inverse Pareto distribution, in Equation 3.2, with upper bound (scale parameter) b0 >

0 and shape parameter κ > 0. The shape parameter controls the amount of mass toward the

upper bound of the distribution, with larger values assigning more mass at the upper end. In

this thesis, we will fix b0 and put a prior on κ. Given that κ > 0, a natural option amenable to

Gibbs sampling is a Gamma distribution, the hNiP distribution.

Alternatively, if we wanted to have differential shrinkage, we would want a prior which assigns
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high prior probability to small values of κ for those coefficients away from zero and large prior

probability to large values of κ for coefficients close to zero. Our proposal is thus a Beta distri-

bution with both parameters smaller than 1 (eg. 1/2, 1/2 ), re-scaled to (0, e0); the ReB-hNip

distribution.

In Section 3.2, we formalise these ideas and provide properties of these new distributions.

Given that we will compare our method with some popular alternatives used in practice, we

describe the NEG distribution of Griffin and Brown (2011) in Section 3.3, as it can be seen as

the Bayesian version of the LASSO.

3.2 Hierarchical Structure of the Normal Inverse Pareto Dis-

tribution

As we previously described, there is a wide range of studies related to the topic of a scale

mixture of Normal prior distributions; the main idea is to utilise the hierarchical structure of the

prior distribution.

π(β) =

∫
N(β|0, ψ−1) π(ψ)dψ, (3.1)

where ψ represents the precision of the normal distribution, has a positive mixing distribution

and is considered to be the second layer of hyperparameter of a shrinkage function. The fun-

damental idea behind using the SMN distribution is to have more mass of marginal distribution

set around the origin, and also the tails of this hierarchical distribution are heavier than the tails

of Student-t and normal distributions. Therefore, in this thesis, we assume that we are dealing

with the prior distribution of the precision, π(ψ), which is a mixing distribution and we want

to choose a form for it that leads to π(β) having high mass around zero and heavy tails, thus

addressing over-shrinkage of large values of the regression coefficients.

We propose using the inverse Pareto distribution (Bernardo and Smith, 2000), which has been

used in literature, under different names such as “power function” distribution as used by Lut-

ful Kabir and Ahsanullah (1974)and Kifayat et al. (2012); and “inverse Pareto” distribution as
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used by (Dallas, 1976; Pawlas and Szynal, 2000). The power function distribution is a flex-

ible distribution which can utilised for constructing models for several types of data. Such

data are related to the lifetime, reliability analysis, income, insurance and electric device for

more information reader can see Shakeel et al. (2016) and Moothathu (1993). Other hand,

inverse Pareto distribution has a heavy-tailed behaviour which is controlled by the shape pa-

rameter. Broadly speaking one could obtain the inverse Pareto distribution from Pareto distri-

bution as a special case, these are one-to-one transformation. X ∼ Pa(X|a, b) then 1
X

= y ∼
IP (y|a, b), where Pa refers to Pareto distribution and IP is inverse Pareto distribution. Ni

et al. (2015) used inverted Pareto as an absolutely continuous prior with gamma distribution

to build nonlinear DAG model and fitting smoothing parameter. Furthermore, Morrissey et al.

(2011) are used inverted Pareto as a prior distribution in the nonlinear sparse model.

The inverse Pareto distributions is follows,

π(X) = iP(X|κ, b0) = κ b−κ0 Xκ−1 , X ≤ b0, (κ, b0 > 0), (3.2)

where X is a random variable with shape parameter κ and scale parameter b0. The mean of

inverse Pareto distributions is E(X) = κ b0
κ+1

and the variance is V ar(X) =
κb20

(κ+1)2(κ+2)
.

The main reason of using the NiP shrinkage prior distribution is that it has a special feature,

the parameter space of b0 controls shrinkage coefficients and also it bounds the precision from

above, that is, upper bound). However, it has only one parameter that controls the different

amount of mass onward upper bounds and lower-bounds, this is the fundamental feature for

using it. Furthermore, it permits controlling the quantity of mass allocated toward the upper

bound. The prior density is decreasing if κ < 1 which leads to the most of mass being close

to zero. Figure 3.1 shows how different values of the shape parameter effect the shape of the

distribution. In contrast, most of the mass is close to the upper bound value b0 if κ > 1 due to

the increasing prior density,

We find the marginal distribution of the regression coefficient βi from the hierarchical structure

of the normal scale mixture inverse Pareto distribution as follows:
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Figure 3.1: Density of the inverse Pareto distribution π(ψ) with the values b0 = 10, κ = 1, κ >
1 and κ < 1.

NiP(βi|κ, b0) =

∫ b0

0

N(βi|0, ψ−1)iP(ψ|κ, b0)dψ =

∫ b0

0

ψ
1
2 e−

1
2
ψβ2

i

√
2π

κ b−κ0 ψκ−1dψ

=
2κκ b−κ0√

π
|βi|−(2κ+1)

(
Γ

[
κ+

1

2

]
− Γ

[
κ+

1

2
,
b0β

2
i

2

])
.

(3.3)

It is clear that Equation 3.3 has an analytical closed form, but that is also includes the incomplete

Gamma function Γ(., .) (Abramowitz et al., 1964). Figure 3.2 shows plots of the NiP distribu-

tion for several values of κ compared with Gaussian distribution for a fixed parameter b0 and

their tail behaviour in the right hand panel. It is clear that small values of κ lead to heavier

tails. Figure 3.3 shows plots of the NiP distribution for different values of b0 and fixed κ in

order to demonstrate how the value of the upper bound effects the our proposed shrinkage prior.

The Normal inverse Pareto (NiP) distribution has mean zero if κ > 1
2

and precision b0(κ−1)
κ

for κ > 1.

If we fix κ, then we fix the shrinkage, which is not advisable in practice. Thus we put a prior

on κ and fix b0. Instead of setting priors for both parameters of the inverse Pareto distribution,
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(a) Density plots for NiP with b0 = 10 and different
values of κ.

1/2

1

2

Gaussian

2.0 2.5 3.0 3.5 4.0

0.00

0.01

0.02

0.03

0.04

0.05

β


(β
)

(b) The upper tail behaviour of NiP with b0 =
10 and different values of κ.

Figure 3.2: Density plots for the Normal inverse Pareto (NiP) distribution for different values
of κ and the black dotted line represents the Gaussian distribution

we will conduct a sensitivity analysis to discover which values of the threshold b0 should be

used. We propose two kinds of prior distribution for the hyperparameter κ, Gamma distribution

and the Rescaled Beta to bound the shape parameter. In Section 3.2.1, we focus on the Gamma

distribution as hyperprior for κ and then the Rescaled Beta distribution in Section 3.2.2.

3.2.1 Normal Inverse Pareto Distribution

Here, we consider the prior for the hyperparameter unbounded. The natural choice is a Gamma

distribution, Ga(c, d), where c represents the shape and d refers to the rate parameter. Then,

we can obtain the hierarchical-NiP (hNiP) prior distribution as follows:
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Figure 3.3: Density plots for the Normal inverse Pareto (NiP) distribution for different values
of b0 and the black dotted line represents the Gaussian distribution.

hNiP(β|b0, c, d) =

∫ ∫
N(β|0, ψ−1) iP(ψ|κ, b0) Ga(κ|c, d) dκ dψ

=

∫ b0

0

√
ψcdce−

ψβ2

2

(
log
(
b0
ψ

)
+ d
)−(c+1)

√
2π

dψ.

(3.4)

Equation 3.4 dose not have an analytical closed form. It is still centered around the origin. The

mean is follows,

E(β) = E[E[E[β|ψ]]]

E(β) = E[E[0]] = 0,
(3.5)
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because β|ψ ∼ N(β|0, ψ−1), therefore E[β|ψ] = 0, and the variance is

V ar[β] = E[V ar[β|ψ]] + V ar[E[β|ψ]]

= E[E[V ar[β|ψ]] + V ar[E[β|ψ]]]

= E[E[
1

ψ
]] + 0

where E[
1

ψ
] =

∫ b0

0

1

ψ
κb−κ0 ψκ−1dψ = E[

1

b0

κ

κ− 1
] iff κ > 1

V ar[β] =
1

b0

dc

Γ(c)

∫ ∞
0

κ

κ− 1
κc−1 exp−κd dκ,

(3.6)

where ψ ∼ iP(ψ|κ, b0) and κ ∼ Ga(κ|c, d), where the variance dose not exist, that is means

the variance of β is infinite.

It may be interesting to consider the marginal mixing distribution of ψ, follows:

π(ψ|b0, c, d) =

∫ ∞
0

iP(ψ|κ, b0) Ga(κ|c, d) dκ

=

∫ ∞
0

κb−κ0 ψκ−1 dc

Γ(c)
κc−1e−dκdκ

=
c

d
ψ−1

(
1 + log

(
b0

ψ

)1/d
)−(c+1)

, ψ ≤ b0.

(3.7)

It is clear that the parameter space of ψ is bounded from above. In the following formula, we

present the moments of this mixing distribution for several orders, in particular,

E(ψ|b0, c, d) = c edb0Ec+1(d) and E(ψ2|b0, c, d) = c e2d b2
0Ec+1(2d). (3.8)

The general form for mth order moments is

E(ψm|b0, c, d) = c emdbm0 Ec+1(md), (3.9)

where

Em(z) =

∫ ∞
1

t−me−ztdt . (3.10)
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Em(z) represents the function called the exponential integral (Abramowitz et al., 1964). The

hierarchical structure of the hNiP prior distribution is as follows:

π(βi, ψi, κi| b0, c, d) = N(βi|0, ψ−1
i ) IP(ψi|κi, b0) Ga(κi|c, d)

=
ψ

1
2
i e
− 1

2
ψiβ

2
i

√
2π

κib
−κi
0 ψκi−1

i

κc−1
i dc e−κid

Γ(c)

=
b−κi0 κci ψ

κi− 1
2

i dc e−κid−
ψiβ

2
i

2

√
2πΓ(c)

.

(3.11)

Figures 3.4a and Figures 3.4b illustrate the density of the hierarchical normal inverse Pareto

distribution and how its tail behaviour is changed for different values of the upper bound

parameters b0 with fixed c, d .
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(a) Density plots for hNiP with
various (b0), the prior values of the
hyperparameter κ are c = 0.9 and d = 0.5.
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Figure 3.4: Density plots for the Normal inverse Pareto (NiP) distribution for different values
of b0 and the black dotted line represents the Gaussian distribution with fixed c, d.
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3.2.2 Rescaled Beta Hierarchical Normal Inverse Pareto Distribution

We can argue that large values of κ would lead to the same amount of shrinkage.One way of

achieving is to differential shrinkage place a prior distribution on the hyperparameter κ of the

following form:

π(κ) =
e−1

0

B(a, b)

(
κ

e0

)a−1(
1− κ

e0

)b−1

, (3.12)

where a, b > 0, when a = b = 1
2
, then the mean of the rescaled Beta distribution is a e0

a+b
= 1

2
e0

and the variance is abe20
(a+b)2(a+b+1)

= 1
8
e2

0 see Appendix D for more information. This is not the

only reason for bowing κ so we want to make the shrinkage adaptive so a, b < 1 as can seen

in Figure 3.5 which prior of κ between 0 and e0. Now the idea, which we would really like

Beat, a=b= 1
2

Rescale Beta, e0= 3

Rescale Beta, e0= 5

Rescale Beta, e0= 8

Rescale Beta, e0= 12

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

κ


(κ
)

Figure 3.5: Density plots for the Rescaled Beta distribution π(κ) with various values of the
parameter e0 and a = b = 1

2
.

to do, is to have a prior that will be flexible enough to put considerable of mass towards small

value of the scale parameter κ, in order to not shrink some regression coefficients, and also put

large of mass towards large values of this parameter. Therefore, we have Rescaled-Beta for this

prior because we are trying to make a more flexible horseshoe shape. Equation 3.13 represent

the structure of the Rescaled-Beta of the hierarchical normal inverse Pareto distribution (ReB-

hNiP). This can be seen very clear that in Figure 3.5 where we compare with the standard

horseshoe shape based on Beta distribution with a = b = 1
2

with a range of values of Rescaled
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Beta e0. The bellow equation represents the Rescaled Beta hierarchical-NiP (ReB-hNiP) prior

distribution:

ReB-hNiP(β|κ, b0, a, b, e0) = N(β|0, ψ−1) iP(ψ|κ, b0) ReB(κ|a, b, e0). (3.13)

ReB-hNiP(β|κ, b0, a, b, e0) =
ψ

1
2 e−

1
2
ψβ2

√
2π

κb−κ0 ψκ−1 e−1
0

B(a, b)

(
κ

e0

)a−1(
1− κ

e0

)b−1

. (3.14)

The marginal distribution of (β) in 3.14 has no analytical expression, but the mean is still

follows,

E(β) = E[E[E[β|ψ]]]

E(β) = E[E[0]] = 0,
(3.15)

as we mentioned for hNiP prior, the E[β|ψ] = 0 for ReB-hNiP, because β|ψ ∼ N(β|0, ψ−1),

and the variance is

V ar[β] = E[V ar[β|ψ]] + V ar[E[β|ψ]]

= E[E[V ar[β|ψ]] + V ar[E[β|ψ]]]

= E[E[
1

ψ
]] + 0

where E[
1

ψ
] =

∫ b0

0

1

ψ
κb−κ0 ψκ−1dψ = E[

1

b0

κ

κ− 1
] iff κ > 1

V ar[β] =
1

b0

∫ e0

0

κ

κ− 1

e−1
0

B(a, b)

(
κ

e0

)a−1(
1− κ

e0

)b−1

dκ,

(3.16)

V ar[β] =

πe−iπ(a+1)e−a0

(
csc(πa)

(
e0−1
e0

)b−1

−
ea0(cot(πa)+i)Γ(b) 2F̃1

(
1,−a−b+1,1−a, 1

e0

)
Γ(a+b)

)
b0 B(a, b)

κ > 1, e0 > 1

(3.17)

where 2F̃1[1, 1 + a, 1 + a+ b, e0] is the generalized Hypergeometric function (Gradshteyn and

Ryzhik, 2014). Figure 3.6 shows the several plots of the rescaled Beta hierarchical Normal

inverse Pareto density. Where ψ is the first layer of shrinkage prior that control amount of

shrinkage when is large leads to shrink the coefficients and if the value of ψ close to zero, this

is support to keep the coefficients in the model. κ is the second layer that control variabil-
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Beta, e0= 5, b0= 30

Beta,e0 = 5, b0= 100

Beta, e0= 5, b0= 1000

Beta, e0= 5, b0= 10000
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Figure 3.6: Density of ReB-hNiP with different values of b0, e0 = 5 where a = b = 1
2

.

ity of parameter ψ based on the value of rescaled beta parameters e0. In addition, Figure 3.7

illustrates the marginal density functions of several Bayesian shrinkage prior including ReB-

hNiP, hNiP, NEG and Student-t distribution, and their tail behaviour. It is clear that our pro-

posed shrinkage prior has high of mass around zero and fatter tails compared with similar scale

mixtures of Gaussian distributions. For illustration, we chose appropriate degree of freedom

value ν = 5, because growing the number of degrees of freedom leads to obtain normal distri-

bution with mean is zero and variance is 1.

3.2.3 Posterior Consistency for Proposed Shrinkage Prior Distribution

Our particular focus is on shrinkage priors. We investigate the asymptotic behaviour of poste-

rior distributions of regression coefficients in high-dimensional linear regression models as the

number of dimensions grows with the observations. Particularly, in this section we focus on

asymptotic posterior distribution as strongly consistent.

We consider dealing with the regression model such as yn = Xnβ
n
0 +εn, where yn is a vector of

responses variable, Xn is the n×pn is matrix of the independent variables, εn ∼ N(0;λ−1) with
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ReB-hNiP

Gamma hNiP

NEG

Student t
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(a) Density of ReB-hNiP with different values
of b0, e0 = 5 Where a = b = 1

2 .

ReB-hNiP

Gamma hNiP

NEG

Student t
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β
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)

(b) The tail behaviour of several shrinkage prior.

Figure 3.7: Marginal density of different shrinkage priors including the hNiP with values b0 =
1000, c = 0.3 and d = 0.2; represents by blue dashed dot line, and the solid green line refer to
the ReB-hNiP with b0 = 1000, a = b = 1

2
and e0 = 5; brown dotted dash line represents the

brown dotted dash the NEG prior with ω = 4 and γ =
√

4; and Student-t is presents by red
dash line with degrees of freedom ν = 5.

known the variance λ−1 > 0, and βn0 is vector of the true coefficients that involve zero and non-

zero values.

There are some sufficient conditions assumptions for posterior consistency, in order to show our

shrinkage prior is posterior consistency as Armagan et al. (2013b) established in their article.

We state the assumptions in the following points:

• D1. pn = O(n);

• D2. Let ∆n min and ∆n max are smallest and largest singular values of Xn respectively.

Also, 0 < ∆min < lim infn→∞∆n min√
n
≤ lim supn→∞

∆n max√
n

< ∆max <∞;

• D3. supj=1,2,3,...,pn |β0
ni| <∞;

• D4. qn = O(n/ log n);
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where An = {i : β0
ni 6= 0, i = 1, 2, . . . , pn} and |An| = qn that symbolise the set of the

number of zero and non-zero coefficients in β0. Also ρ ∈ (0, 2).

These assumptions are proposed by Armagan et al. (2013b), and also by utilizing Theorem 1 and

the Equation A3 in mentioned article, that satisfy sufficient conditions to provide strong pos-

terior consistency for a shrinkage prior in linear regression model. Where βn0 represents both

true zero and non-zero coefficients of regression vector. In order to deal with high-dimensional

dataset, we let pn →∞ and n→∞.

The main equation in Theorem 1 of Armagan et al. (2013b), is state as follow,

Theorem 3.2.1.
πn

(
βn : ||βn − β0

n|| >
∆

n
ρ
2

)
> exp(−M n), (3.18)

for all

0 < ∆ <
ε2 δ2

min

48 δ2
max

and 0 < M <
ε2 δ2

min λ

32
− 3 ∆ δ2

max

λ

2
,

the proof Theorem 3.2.1 was provided and Equations A3 in original article of Armagan et al.

(2013b) is follow;

πn

(
βn : ||βn − β0

n|| >
∆

n
ρ
2

)
>=

∏
i∈An

{
πn

(
βn : ||βn − β0

n|| >
∆

n
ρ
2

)}{
1−

pn n
ρ E
( ∑
i/∈An

β2
nj

)
(pn − qn)∆2

}
,

(3.19)

Theorem 3.2.2. The hierarchical normal inverse Pareto distribution hNiP satisfy strongly con-

sistent posterior distribution under assumption D1 - D4 and the Equation 3.19, if ψn =
C2(

logn
)2

pn nρ
, for finite C > 0, κ > 0 and 0 < ψ < b0.

The hierarchical normal inverse Pareto distribution hNiP is follows,

f(β0
ni| bn0, ψ, κ) =

b−κin0 κci ψ
κi− 1

2 dc e−κid e−
ψ(β0ni)

2

2

√
2πΓ(c)

.
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To proof the Theorem 3.2.1, we compute the E(β2
ni) based on the variance is

V ar[β] = E[V ar[β|ψ]] + V ar[E[β|ψ]] = E[E[V ar[β|ψ]] + V ar[E[β|ψ]]]

= E[E[V ar[β|ψ]] + 0 where E[V ar[β|ψ]] = E(β2) + [E[β|ψ],

therefore, E(β2) = E[V ar[β|ψ]],

(3.20)

therefore in this case, the variance of β is infinite.

πn

(
βn : ||βn − β0

n|| >
∆

n
ρ
2

)
≥

{
1−

pn n
ρ E
(
β2
ni

)
∆2

}
 ∆

(
√
pn nρ/2)

b−κn0 κ
c dc exp

{
− κd

}
ψ
−(κ− 1

2
)

n

√
2πΓ(c)

exp

−supi∈An(β0
ni)

2 − ∆2

(
√
pn nρ/2)

2 ψ−1
n


qn

.

(3.21)

We putting the negative-logarithm for both sides of Equation (3.21), which became;

− log πn

(
βn : ||βn − β0

n|| > − log
∆

n
ρ
2

)
≤ − log

{
1−

pn n
ρ E
(
β2
ni

)
∆2

}

−qn log

(
∆

(
√
pn nρ/2)

b−κn0 κ
c dc(

C2(
logn
)2

pn nρ

)−(κ− 1
2

)√
2πΓ(c)

)
+ κd +


supi∈An(β0

ni)
2 + ∆2

(
√
pn nρ/2)

2
(

C2(
logn
)2

pn nρ

)−1

 ,

(3.22)

then,

− log πn

(
βn : ||βn − β0

n|| > − log
∆

n
ρ
2

)
≤ − log

{
1−

pn n
ρ E
(
β2
ni

)
∆2

}

−qn log

 b−κn0 κ
c dc

( C
logn

)−1

(
C2(

logn
)2

pn nρ

)−κ √
2πΓ(c)

+ κd +


supi∈An(β0

ni)
2 + ∆2

(
√
pn nρ/2)

2

(
C2(

logn
)2

pn nρ

)−1


(3.23)
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simplify-fractions

− log πn

(
βn : ||βn − β0

n|| > − log
∆

n
ρ
2

)
≤ − log

{
1−

pn n
ρ E
(
β2
ni

)
∆2

}
−qn log(b−κn0 κ

c dc)− qn logC + qn log log n− 2qnκ logC + 2κqn log log n+

2qnκ log pn n
ρ + qnκ log

(√
2πΓ(c)

)
+ κd +

∆2√pn nρ/2

2 C2
+
C2 supi∈An(β0

ni)
2

2
(

log n
)2
pn nρ

,

(3.24)

Based on assumptions D1 - D4, dominating term is the last one in Equation 3.24 with

− log πn

(
βn : ||βn−β0

n|| > − ∆

n
ρ
2
< Mn

)
for all M > 0. The result for all M > 0 is being

shown. Proof is completed.

On other hand, the posterior consistency studied by Song and Liang (2017), whom addressed

the for shrinkage prior distributions that have polynomial tail. Specifically, they provided the

bellow theorem, as general case of posterior consistency for any shrinkage prior’s that satisfy.

They stated that as follows,

The main context of (Theorem 3.1) of Song and Liang (2017), Assumed that conditions on

A(1) and A(2) :

The conditions (A1) includes (1) All the covariates are uniformly bounded. For simplicity,

we assume they are all bounded by 1. (2) We deal with high dimensional dataset pn � n. (3)

There exist some integer q̄ (depending on n and pn) and fixed constant Ψ0 such that q̄ � s∗

and Ψm ∈ (XTX) ≥ nΨ0 for any subset model |ζj| ≤ q̄.

Where, pn to indicate that the number of covariates can increase with the sample size n. We let

s∗ denote the size of the true model. We let 1(.) represents the indicator function. Ψmax denote

the largest and Ψmax smallest eigenvalues of a square matrix. Also, ζj denote the size of the

model. Both a and b are positive sequences, with a ≺ b means lima
b

= 0 and a � b that

means 0 < lim inf a
b
≤ lim sup a

b
<∞.

The second condition (A2) involves (1) s∗ log pn ≺ n, where s is the size of the true model,

and M represents some fixed constant. (2) max{|β∗jλ|} = γ0En, for some fixed γ0 ∈
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(0, 1), and En refer to non-decreasing with respect to n, also β∗j indicated the true coefficients

values and λ∗ indicate the true value of precision parameter.

It hold for the linear regression models, and a polynomial-tailed prior is used. If log(E) =

O(log pn), and the scaling parameter Ψn satisfies Ψn ≤ anp
−(w+1)/(r−1)
n ,− log Ψn = O(log pn)

for some w > 0, then

• the posterior consistency Equation (3.25) based on (Song and Liang, 2017) which holds

when an �
√
s∗ log pn/n/pn;

P ∗
(
π(||β − β∗|| ≥ k1 εn

λ∗
|Dn

x) ≥ en k2 εn
)
≤ e−n k3 εn , and

P ∗
(
π(||β − β∗||1 ≥ k1

√
s∗εn|Dn

x) ≥ en k2 εn
)
≤ e−n k3 εn ,

(3.25)

where k1, k2 and k3 are positive constants. Dn
x = Dx,y represents the observed data.

• the model selection consistency Equation (3.26), satisfy when an ≺
√

log pn/
√
npn;

P ∗
{
π
(
[ζ(β, λ−1

)
= ζ∗|Dn

x ] > 1− p−k3n

}
> 1− p−k4n , (3.26)

where k3 and k4 < 2(w−1), which are positive constants. mini∈ζ∗ |β∗i | ≥M1

√
s log pn/n

for sufficient large M1, s
∗ log ln ≺ log pn and u > 1;

• the posterior approximation Equation (2.8) as mentioned in original article of the (Song

and Liang, 2017), holds when an �
√
s∗ log pn/n/pn; mini∈ζ∗|βi| ≥M1

√
s∗ log pn/n for

sufficient large M1, s
∗ log ln ≺ 1 and w > 1;

π(β, λ−1|Dn
x) converges in total variation to

MVN
(
βζ∗ ; β̂ζ∗ , λ

−1(Xζ∗X
T
ζ∗)
−1
)∏
i/∈ζ∗

π(β|λ)Ga

(
λ,
n− s∗

2
,
λ−1(n− s∗)

2

)
,

(3.27)

where Xζ∗ represents sub design matrix based on to the model ζ parameters.

They noted that most commonly utilised polynomial decaying distributions satisfy as follows;

g(x) = C x−t L(x), where limx L(x) = 1 with the rate |L(x) − 1| = O(x−t) where t ≥
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0 and L(x) stand for slowly varying function. We handle with MVN indicates multivari-

ate normal distribution density with variance is λ−1 and Ga refers to the gamma distribution.

Then, it is easy to see that if mini∈ζ∗|β∗i | > M2 εn for some large M2, ∆n = O(εn),

then s∗ log ln � s∗ εn/mini∈ζ∗ |β∗i |. According to the previously explanation about the

both proposed hNiP and ReBhNiP shrinkage prior distributions, which are the family scale

mixture of normal distribution, and also of having polynomial decay tails distributions. For

example, both proposed distribution have polynomial tails compare NEG Normal Exponen-

tial Gamma shrinkage prior Griffin and Brown (2007). Therefore, we can argue that both

hNiP and ReBhNiP shrinkage prior satisfies the above conditions in Theorem (3.1) as stated

in (Song and Liang, 2017) which is corresponding Equation (3.25) for posterior consistency

distribution. The mixing distribution of scale parameter of hNiP shrinkage prior is ψn|κn ∼
iP (ψn|b0, κ

n)Ga(κn|c, d), where Ψn = ψn in the main theorem for posterior consistency. Also

it true for ReBhNiP shrinkage prior distribution.

3.3 Normal Exponential Gamma Prior Distribution

The Normal Exponential Gamma prior (NEG) was proposed by Griffin and Brown (2007).

It is used as a prior distribution (penalty method) to shrink regression coefficients in high-

dimensional models by Griffin and Brown (2011, 2007), Hoggart et al. (2008), Rockova et al.

(2014) and Li and Yao (2014). It is an advanced LASSO prior which is called a family of

hyper-LASSO penalty methods. It has more mass towards zero and flatter tails compared to the

double exponential distribution. The NEG distribution is one of popular scale mixture of normal

prior which is derived from the generalised double exponential with hyper-prior of it is gamma

distribution and some other Bayesian shrinkage prior have equivalent hierarchical structure as

a special case. Consequently, for that reason. we would like to apply NEG prior in hierarchical

structure using the MCMC algorithm. It can be described as a zero mean double exponential by

Equation 3.28 which includes only one parameter that controls a scale mixture of the Normal

distribution, as follows:

DE(x) =

∫ ∞
0

N (x|0, φ) Ga
(
φ
∣∣1, γ2

2

)
dφ =

γ

2
exp{−γ|x|}, (3.28)
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where the normal distribution N(x|µ, σ2) has mean equal to zero and variance σ2 = φ. The

Lasso penalty is obtained from the double exponential prior distribution with the mean zero.

The NEG prior distribution can be represented as a mixture distribution as follows (Griffin and

Brown, 2007; Hoggart et al., 2008):

NEG(βi|φi, ζi, ω, γ) = N(βi|0, φi) Ga(φi|1, ζi) Ga
(
ζi
∣∣ω, 1

γ2

)
.

NEG(βi) =

∫ ∞
0

∫ ∞
0

(
1√
2π
φ
− 1

2
i exp

{
−β

′
iβi

2φi

})(
ζi exp(−φiζi)

)
(

( 1
γ2

)ω

Γ(ω)
ζω−1
i exp

{
− ζi
γ2

})
dφidζi,

(3.29)

NEG(βi) =
ωγ√
π

2ωΓ

(
ω +

1

2

)
exp

{
1

4
β2
i γ

2

}
D−2(ω+ 1

2
)

(
γ|βi|

)
= K exp

{
1

4
β2
i γ

2

}
D−2ω−1(γ|βi|),

(3.30)

where K is constant and equal to K = ωγ
π1/2 2ωΓ(ω + 1/2) and the parameter ω controls the

shape of the tails whilst γ control the scale. In addition, NEG has a sharp peak around zero with

heavy tails. This distribution has mean equal to zero and Var(βi|ω, γ) = 1
γ2(ω−1)

when ω > 1 .

The highest point of the NEG at zero leads sparse solutions that are better for variable selection.

The structure of equation 3.30 has been widely used in the literature by researchers. We exploit

the hierarchical structure of the NEG prior distribution to build a Gibbs sampler and we will

compare with other shrinkage priors, so the hierarchical distribution is given as follows:

π(βi|φi, ζi, ω, γ) = N(βi|0, φi) Ga(φi
∣∣1, ζi) Ga

(
ζi|ω,

1

γ2

)
=

1√
2π
φ
− 1

2
i exp

{
−1

2

β
′
iβi
φi

}
(ζi exp {−φjζi})

( 1
γ2

)ω

Γ(ω)
ζω−1
i exp

{
− ζi
γ2

}
.

(3.31)

Figure 3.8 show plots of the marginal density function of the normal exponential gamma dis-

tribution for different values of the scale and shape parameters. Figure 3.8a displays three

different graphs, where the shape is fixed ω = 2 but the scale parameter differ when the scale is
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equal to
√

5 which is represented by the green dashed line, the highest point of all three plots is

reached. The second scale value is γ =
√

2 which has the second highest peak in the plot ( the

blue dashed-dotted line) then the red solid line has the flatted graph which belongs to the NEG

distribution with scale γ =
√

0.5. In figure 3.8b, we have the fixed scale γ =
√

2 and have var-

ious values for the shape parameter ω. As we mentioned above, the shape parameter ω should

larger than 1 because the variance dose not exist if ω is less than or equal to 1 (Griffin and

Brown, 2007). The green dashed line where ω = 10 has heavy tails. The blue dashed-dotted

line is the density of the NEG prior distribution when ω = 2. The red solid line has the second

highest point at zero corresponding to ω = 5. The reason to use several parameters values is to

show how scale and shape parameters control tail behaviour of this distribution.

γ = 0.5

γ = 2

γ = 5

-3 -2 -1 1 2 3

1

2

3

4

(a) Several values of γ and fixed ω = 2.

ω = 2

ω = 5

ω = 10

-2 -1 1 2

1

2

3

4

(b) Several values of ω and fixed γ =
√
2 .

Figure 3.8: Plots of the density function of the normal-exponential-gamma NEG distribution,
the parameter ω control the shape of the distribution and the parameter γ controls the scale,
where the highest point at zero aids sparse estimation
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Chapter 4

Prior Calibration of the Bayesian Linear
Regression Model

4.1 Introduction

The problem of a high-dimensional statistical model has been widely studied for many decades

in modern datasets, both for linear and nonlinear models. The ordinary least squares (OLS) in

Equation 2.1, is however infeasible to fit coefficients in the model. Therefore, numerous penalty

approaches have been suggested to tackle this problem that can be found in the literature; see

Mallick and Yi (2013). We explained some of them in Chapter 2. In high-dimensional statis-

tical issues, perhaps the number of covariates exceeds the sample size p > n. In reality, only

a few covariates have an impact on a model under investigation. To overcome issues of high-

dimensionality, some penalty methods are suggested that shrink those regression coefficients

that are not needed to interpret models based on the data (Brimacombe, 2014). The values of

those unimportant parameters are close to zero, which produces the sparse coefficients of the

regression model (Aijun et al., 2017). On this view, the shrinkage approaches developed and

utilised in the past decades for both frequencies and Bayesian shrinkage, particularly based on

the multivariate Bayesian linear regression model due to the standard statistical model. For ex-

amples, see Tibshirani (1996), Zou and Hastie (2005), Park and Casella (2008), Carvalho et al.
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(2010), among others. To evaluate and select the best range values of hyperparameters, that

is, tuning-parameter selecting for the shrinkage priors described in Chapter 3, we calibrate the

proposed shrinkage priors based on the Bayesian linear regression model to reduce the dimen-

sion of datasets. Several shrinkage methods are used in order to compare the performance of

each method based on different datasets and the signal-to-noise-ratio in stimulation datasets is

also taken into consideration. In the following chapter, we will use some shrinkage methods

highlighted in the Chapter 2, such as LASSO (Tibshirani, 1996), Bayesian LASSO (Park and

Casella, 2008) and horseshoe (Carvalho et al., 2010) regularisation methods for the compres-

sion with the novel shrinkage prior hierarchical normal inverse Pareto (hNiP) and rescaled Beta

hierarchical normal inverse Pareto (ReB-hNiP), which were explained in Section 3.2, and the hi-

erarchical structure of the Normal exponential Gamma (NEG) prior in Equation 3.31. Bayesian

posterior prediction can be done for typical datasets to evaluate and check that our models rely

on novel shrinkage priors to know how the model working. Those shrinkage priors belong to

the family of scale mixture of normal distribution and also considering is absolutely contin-

ues prior distributions. These are called a Bayesian regularisation priors distributions. Thus,

implementing a Bayesian shrinkage prior leads to selecting non-zero variables due to having a

heavy-tailed distribution by using some statistical tools such as the t-test or credible interval to

estimate the regression parameters.

4.2 Bayesian Linear Regression Model Structure

In this section, we present the structure of the Bayesian linear regression model with some

shrinkage prior distributions to shrink the high-dimensional regression coefficients in the model.

In this case, we consider using the regression model. The general structure of the model is the

following,

Y = Xβ + ε (4.1)

where ε has a normal distribution, ε ∼ N(ε|0, λ−1) represents the error model V ar(ε) =
1
λ

, λ represents the precision of the model, X ∈ Rn×(p+1) represents observed variables vari-

ables, that is, the design matrix, and Y ∈ R is the dependent variable. The sample size of X =

{1,x1,x2 . . . ,xn}, xi = {1, xi1, xi2 . . . , xip}, where (i = 1, 2, . . . , n), (j = 1, 2, . . . , p +

1) and Y = {y1, y2 . . . , yn}. β is the (p+1×1) coefficient vector that includes the intercept,
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and n represents the number of observations.

The likelihood function is as follows:

L(Θ;X, y) = (λ)n/2 exp

{
− λ

2
(y −Xβ)′I(y −Xβ)

}
. (4.2)

where Θ = (β, λ) and β ∈ Rp+1, the prior distribution π(λ) of error model is a gamma distri-

bution with shape aλ and a scale bλ. In the following section, we use our proposed shrinkage

prior; hNiP is a scale mixture of normal with a hierarchical normal inverse Pareto distribution

with gamma distribution, and ReB-hNiP is a rescaled beta hierarchical normal inverse Pareto

distribution as a prior of the coefficients π(β). The full conditional distribution can be estab-

lished for each named priors. On the other hand, the full conditional distribution of the hierar-

chical structure of the normal exponential gamma NEG prior of Griffin and Brown (2011) can

be found in Appendix E. Finally, we have displayed the pseudo-code for the MCMC algorithm

of the following sections for the current chapter in Appendix C.1.

4.2.1 hNiP Distribution as a Prior of β

In this section we construct the hierarchical high-dimensional regression model. We assume that

the regression parameter β has an hNiP shrinkage prior distribution, which is explained in the

previous chapter, especially in Equation 3.11, to shrink the coefficient and then obtain a sparse

model. The likelihood, prior and posterior distribution for the novel shrinkage regularisation

method of the hNiP prior distribution is separately addressed in the following section.

4.2.1.1 The Prior and Posterior Distributions

One of the most important parts is addressing the high-dimensional Bayesian regression model

which employs a specific prior distribution for regression coefficients. Thus, according to the

model construction of the current study, our proposed Bayesian shrinkage distribution plays

an important role in shrinking those regression values close to zero. Therefore, we set possi-

ble prior distributions for each parameter that participate in building the model. We use our
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proposed hNiP prior distribution in this section. The prior distributions are as follows:

π(Θ∗) =
baλλ λ

aλ−1 exp {−bλλ}
Γ(aλ)

p+1∏
j=1

ψ
1
2
j exp

(
−1

2
ψjβ

2
j

)
√

2π
κjb
−κj
0 ψ

κj−1
j

κc−1
j dc exp(−κjd)

Γ(c)
. (4.3)

We let Θ∗ be the parameters space; Θ∗ = {βj, λ, κj, ψj}. The prior distribution of the coef-

ficient parameter βj is the hNiP prior distribution, as mentioned in the previous section. The

gamma distribution is the prior for the error model with the shape parameter aλ = 2 and the

scale is bλ = 0.6, which leads to a relatively flat prior distribution. The second layer of the

hNiP prior distribution is π(ψj), which has two parameters: the b0 scale parameter and the

shape κ, which controls the control amount of shrinkage. This has a third-layer prior, which

is the gamma distribution Ga(c, d) with the expected value E(κj) = 3
2

because if κ < 1 prior

of values ψ close to zero and leads to coefficients are non-zero, vice verses if κ much larger

than 1 causes to shrink all coefficients. A variance of κ is finite and have differ values based

on the value of both hyperparameters c and d. Consider that both c and d are hyperparameters

and should be selected sensitively.

The posterior distribution for the Bayesian linear regression model with hNiP shrinkage priors

is given by the following:

π(Θ∗|y, X) ∝ π(Θ∗)L(y|X,Θ∗),

π(Θ∗|y, X) = (λ)n/2 exp

{
−λ

2
(y −Xβ)′I(y −Xβ)

}
baλλ λ

aλ−1 exp {−bλλ}
Γ(aλ)

p+1∏
j=1

ψ 1
2
j exp

(
−1

2
ψjβ

2
j

)
√

2π
κjb
−κj
0 ψ

κj−1
j

κc−1
j dc exp(−κjd)

Γ(c)

 .

(4.4)

4.2.1.2 The Full Conditional Posterior Distributions

To quantify and update the posterior distributions, the full conditional distribution is found

for each parameter. Straightforwardly, the marginal posterior distributions for each parameter

are computed by the Gibbs sampler (see Appendix A.1 for information about MCMC and the

Gibbs sampler) because it is difficult to update parameters analytically. We have divided the
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parameters into two parts to avoid repetition. Thus, the first part includes those parameters

that have the same structure for all types of shrinkage priors. The second part is related to the

regression parameters and their specific shrinkage prior characterisations.

The full conditional posterior distributions are presented in the following parts:

First part: The full conditional posterior distribution precision of the model λ is given by the

following:

λ ∼ Ga
(
λ
∣∣aλ +

n

2
, bλ +

1

2
(y −Xβ)′I(y −Xβ)

)
. (4.5)

The precision of the model λ follows the gamma distribution and is updated by the Gibbs sam-

pler.

Second part: In this part, the full conditional distribution is demonstrated by the parameters

that belong to the hNiP prior distribution and updating the coefficients according to those pa-

rameters.

The shape parameters κ is the second level of the hierarchical normal inverse Pareto distribution

and one of the hyperparameters of the prior βj. The full conditional posterior distribution of this

parameter κ is as follows:

κj ∼ Ga
(
κj
∣∣c+ 1, log

( b0

ψj

)
+ d

)
. (4.6)

The parameter ψj is a scale mixture normal distribution for the first level of the hNiP prior

distribution, and ψ is the vector (p+ 1)× 1 of the positive values. If the values of ψj → 0 the

coefficient βj are included in the model, consider that a coefficient is non-zero. On the contrary,

if it is true that ψj → ∞ a coefficients shrinks close to zero and is excluded from the model.

The full conditional posterior distribution of the scale mixture normal distribution ψj is given

by the following:

ψj ∼ TrGa
(
ψj|b0, κj +

1

2
,
β2
j

2

)
, (4.7)

where the truncated gamma (TrGa) distribution is bounded from above; for more information,

see Appendix D. We let TrGa(x|b0, a, b) = Ga(x|a, b)Ix<b0 , where Ix<b0 represents the condi-

tion of the upper bound.
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The full conditional posterior distribution of the coefficient parameter β̂ is updated based on

the multivariate normal distribution and intercept included in these vector values as follows:

β̂ ∼ N
(
β|µβ,Ω−1

β

)
, (4.8)

where µβ = λΩ−1
β X

′
y , Ωβ = (λX

′
X + Σψ) and Σψ is a matrix by (p + 1) × (p + 1). The

diagonal of this matrix is equal to {ψ1, ψ2 . . . , ψp+1} .

4.2.2 Rescaled Beta hNiP as Prior of β

The model structure in this section is same as the hierarchical, high-dimensional regression

model in Equation 4.2. However, the only difference in this section is using the ReB-hNiP

prior distribution for the regression parameters. Therefore, the prior and posterior distribu-

tions rely on the ReB-hNiP prior distribution highlighted separately in the following steps.

We are not repeating the full conditional distribution for the precision parameter model λ, the

coefficient β̂ and the parameter ψj because they correspond to the Equations 4.5, 4.7 and 4.8,

respectively. Θ is the set of parameters Θ∗ = {βj, λ, κj, ψj}.

Similar to the previous section, the Bayesian shrinkage prior distribution ReB-hNiP is applied

in this section to construct the Bayesian sparse linear regression model. We display only the

prior distribution and possible prior distributions for all the parameters which contributed for

creating Bayesian linear regression model. Consequently, the prior distributions of the current

model are the following:

π(β, λ, κ, ψ) =
baλλ λ

aλ−1 exp {−bλλ}
Γ(aλ)

p+1∏
j=1

ψ 1
2
j exp

(
−1

2
ψjβ

2
j

)
√

2π
κjb
−κj
0 ψ

κj−1
j

e−1
0

B(a, b)

(
κj
e0

)a−1(
1− κj

e0

)b−1
 .

(4.9)

Our proposed ReB-hNiP shrinkage method is used as the prior distribution of the coefficient

parameters βi, to overcome the problem of high-dimensionality. The posterior distribution of

Bayesian linear regression, for which the ReB-hNiP shrinkage prior is utilised for modelling in
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the currant section, has the following formula:

π(Θ∗|y, X) ∝ π(Θ∗)L(y|X,Θ∗)

π(Θ∗|y, X) = (λ)n/2 exp

{
−λ

2
(y −Xβ)′I(y −Xβ)

}
baλλ λ

aλ−1 exp {−bλλ}
Γ(aλ)

p+1∏
j=1

ψ 1
2
j exp

(
−1

2
ψjβ

2
j

)
√

2π
κjb
−κj
0 ψ

κj−1
j

e−1
0

B(a, b)

(
κj
e0

)a−1(
1− κj

e0

)b−1
 .

(4.10)

The full conditional posterior distribution are presented only for those parameters which have

different formulas than previous hNiP prior distributions. Most parameters in the model struc-

ture are updated directly based on the Gibbs sampler, as for the hNiP model.

The full conditional posterior distribution of the hyperparameter κj is the following:

π(κj) ∝ bκi0 ψ
κi−1
j

e−1
0

B(a, b)

(
κj
e0

)a−1(
1− κj

e0

)b−1

, (4.11)

where j = 1, 2, . . . , (p + 1), the values of κj should satisfy the condition 0 < κj ≤ e0 and

a = b = 1/2. The rescaled parameter e0 addressed later. The formula in 4.11 dose not have

a typical distribution. Therefore, the Metropolis Hastings algorithm is used to update poste-

rior distribution. We provide more details about the pseudo-code in Appendix C.1. The full

conditional posterior distribution of the coefficients parameters β follows Equation 4.8.

4.2.3 The NEG Prior

Similar to the formulation of the hNiP and ReB-hNiP prior, we have presented the prior and

full conditional distributions only for parameters which are different from previous formulas

based on the hierarchical structure of the NEG prior in Equation 3.31. Furthermore, the prior

and posterior distributions are presented in Appendix E; the main difference prior distributions

are related to the NEG prior distribution without repeating the full posterior parameters and

formulas which have similar formats to priors that have been mentioned before under the same

Bayesian linear model.
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4.3 Simulated Data

In this section, we present the procedure of simulating the data. The purpose of the simulated

data was to assess the efficiency of our discussed novel shrinkage priors, to sensitively select

and calibrate the values of the hyperparameters based on Bayesian linear regression models,

and, subsequently, to compare our proposed shrinkage priors with some shrinkage methods de-

scribed in the first section of the current chapter. In the comparison process, we will utilise the

best range values of the selected hyperparameters. The best way to calibrate is by using simu-

lated data. Thus, we simulate different datasets under multivariate linear regression models. The

general formulation of the linear regression is Y = βX + ε, where the independent variables

is X ∈ Rn×p+1, that is, the design matrix, each vector of X being generated from a normal

distribution with a mean of 2 and variance of 25, due to values of observations differ from zero

and with large variability. The first column of the matrix of random variables is a vector of one.

The β coefficients are a sparse vectors of true values which include various values to address

our efficient shrinkage priors. The error of the regression model has a Gaussian distribution

with ε ∼ N(.|0, λ−1), where λ is the precision of the model. We set different precision val-

ues for all datasets scenarios in which λ = (0.02, 2, 2000), that is, we take into consideration

the signal-to-noise-ratio to analyse the efficiency of the hNiP and ReB-hNiP prior distributions.

The simulated datasets have been divided into four different main scenarios, each of them con-

sists of one or more different datasets. Each case scenario is utilised for specific purposes in the

following sections. For example, choosing the best range of optimal hyperparameters values are

chosen for novel Bayesian shrinkage. Therefore, we compare some Bayesian and non-Bayesian

shrinkage with the posterior prediction distribution in all cases, in which β1 is the intercept.

• Scenario A: We let p < n. The sample size is n = 80, the number of independent vari-

ables is p = 35, 26 out of 36 coefficients are exactly equal to zero, and the rest are

non-zero.

• Scenario B: We let p > n.

There are three datasets that are different only in terms of the precisions of their signal-

to-noise-ratio; λ = (0.02, 2, 2000). To analyse the results and calibrate hyperparameters

correctly, we symbolise the simulation samples for every scenario by adding sample code

(I , II, III) based on the respective precision of the model.
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• Scenario B1: n = 35, p = 45 and the non-zero coefficients are 17 out of 46 , where the

first coefficient (β1) is the intercept.

β(1, 4, 9, 15, 16, 21, 22, 23, 25, 34, 37, 38, 39, 42, 44, 45, 46) = (40.25,−2.827, 1.547, 0.984,−1.482,

−0.143, 2.831, 3.101,−7.985,−0.633,−47.359, 2.069, 0.847,−5.339, 3.858,

2.493, 11.889).

The scenario B1 is divided into (B1I, B1II, B1III) where the precision of the mode are

λ = (0.02, 2, 2000), respectively.

• Scenario B2: n = 35, p = 100 and the non-zero coefficients are 16 out of 101 for (β).

β( 1, 8, 9, 14, 19, 24, 25, 39, 48, 54, 76, 85, 87, 91, 98, 101) = (−2.360, 1.584,−4.189, 3.671,−1.882,

−5.665,−126.665, 16.481, 37.604, 0.062,−218.994,−6.303, 5.718,−23.554,

6.965,−21.616).

The datasets in this scenario are B2=(B2I, B2II, B2III), where the precisions of the mode

are λ = (0.02, 2, 2000), respectively.

• Scenario B3: (n = 50, p = 250) and the non-zero coefficients are 14 out of 251.

β(1, 33, 37, 52, 59, 62, 63, 161, 180, 193, 195, 222, 247, 251) = (40.25,−5.415,−1.995,−1.741,

52.031,−1.199, 6.079, 0.393,−0.087, 3.025, 2.99, 3.978,−6.859, 0.369).

The datasets in this scenario are B3=(B3I, B3II, B3III), where the precisions of the mode

are λ = (0.02, 2, 2000), respectively.

• Scenario C: n = 200, p = 1000 and the non-zero coefficients are 11 out of 1001.

β(1, 71, 212, 326, 333, 434, 584, 681, 784, 847, 1001) = (−2.36, 1.359, 1.469, 0.3031,

0.999,−0.8125, 2.336,−116.491, 8.678, 13.734,−0.851).

The datasets in this scenario are B4= (B4I, B4II, B4III), where the precisions of the model

are λ = (0.02, 2, 2000), respectively.

• Scenario D: n = 200, p = 5000 and the number of non-zero coefficients are 5 out

of 5001, β(1, 2, 3, 50, 500) = (10, 5, 5,−3,−3).

The datasets in this scenario D=(DI, DII, DIII), where the precisions of the model are λ =

(0.02, 2, 2000), respectively.
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4.4 Applying Shrinkage priors to Non-high Dimensional Data

To address a novel statistical method, it is necessary to check the performance and traces its

plot convergence under a statistical model. Thus, in this section, the proposed priors discussed

in Section 3.2 are implemented with a standard Bayesian linear regression model, n > p. Also,

we address the behaviour of the hyperparameters of the proposed shrinkage for both hNiP and

ReB-hNiP in terms of prediction consistency visually. For that reason, a pre-request test was

done. We applied the dataset that was described as “Scenario A” in Section 4.3, a non-high

dimensional dataset. We run an MCMC algorithm for the suggested shrinkage model based on

diverse shrinkage priors, therefore are compared with: NEG with ω = 2 and γφ =
√

2. Both

proposed priors are also compared with a multivariate linear model by using lm R code. As we

discussed in Section 3.2, we concentrate on the mean of hyperparameter κ around 3
2

which

is not allowed for very large variability with c = 9 and d = 6 the upper bounds of that

is b0 = 30. In the hNiP prior distribution, the shape parameter controls the shrinkage amount

of coefficients regression. The ReB-hNiP is the third shrinkage prior that is used to estimate

regression model. In these cases, we have to choose only the prior value b0, e0 because our aim

is to obtain the density distribution plot of the hyperparameter, similar to a horseshoe curve,

a feature we obtained where a = b = 1
2

in the beta distribution. Furthermore, we based it

on e0 = 6 and b0 = 30. Finally, the prior distribution for the error model has the gamma

distribution aλ = 2, bλ = 0.6.

The MCMC algorithm was run for scenario A, the dataset being n = 80, p = 35 is based on all

the methods mentioned above. The number of iterations was M = 30000 and we kept 75% in

a total of iteration. We noticed that, posterior means of the MCMC outcome for all different

models were the same as by their true values. In order to check the performance of models, we

have compared all four methods by ROC curves as can be seen in Figure 4.1a. It is clear that

all outcomes for all models had similar performance. Because all the curves tended to cluster

in the close upper-left corner of graph, that is, as we explained in Section 2.5.3. All regression

coefficients in the models are fitted exactly and are same as to true value. The scatter plots for

the true coefficients parameter against of the estimated posterior based on on 3-time standard

deviation (3sd) error bar values for each models are show separately in Figure 4.1b. These

graphs shows all the coefficients estimated with tiny variability.
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Figure 4.1: Estimated regression coefficients. Panel (a) shows the ROC curves and scatter plots
for all the shrinkage priors; the green line represents for the NEG with ω = 2 and γ =

√
2, and

the thick bold blue line is refers to ReB-hNiP b0 = 30, e0 = 6. The black, dotted, dashed
line represents to the hNiP b0 = 30, c = 9 and d = 6, and multivariate linear model lm is
described by dashed purple line. Panel (b) shows scatter plots for all the methods described in
the ROC panel. The sample size is n = 80 and p = 35.

Subsequently, we plotted the posterior densities as examples of both non-zero and zero regres-

sion coefficients, as can be seen in Figure 4.2. Furthermore, we have established traces for all

resulying relying on the shrinkage priors in Figure B.6 to reveal stability chains of the poste-

rior distribution for each shrinkage priors convergent to the true value. Figure 4.3 displays the

the plots of the posterior density distributions of two different coefficients involving zero and

non-zero for all cases. Both panels indicate that the posterior predictive density distributions

are well-fitted.

To conclude, in scenario A, to check our proposed Bayesian shrinkage model construction in

this section, we used posterior predictive checking, which was discussed in the Section 2.5.4.

Consequently, posterior predictive distribution plots for both hNiP and ReB-hNiP are displayed
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Figure 4.2: Posterior density curves for regression coefficients (β5, β22) for zero and non-zero
regression coefficients, respectively. The green lines refers to the posterior density of the ReB-
hNiP model, the black lines represents to the hNiP model and dashed blue lines is refers to
the NEG model. Red vertical line is the true value of the coefficient (β5, β22). The sample size
of n = 80 and the number of coefficients was p = 35.

in Figure 4.3, which shows significant results when we compared them with test statistics by

using the mean of the dependent variable y compared to the mean of the posterior predictive ŷ.

By using R Package bayesplot (Gabry, 2017). Finally, there is sufficient data to supports prior

distributions to estimate the coefficients regression model.
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Figure 4.3: Posterior predictive distribution checking plots for the Bayesian regression model
based on ReB-hNiP and hNiP shrinkage priors. The black vertical line represents the test statis-
tics and is the mean of the dependent variable of the true value, and the histogram represents
the mean posterior predictive replication data ŷ.
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4.5 Hyperparameter Calibration of High-dimensional Data

In this section, we address the procedure of selecting hyperparameters values for our priors. Be-

fore explaining our methodology, we will recap some information. An important task for any

Bayesian statistical models is variables selection. In traditional methods, this is done by adding

a penalty term to the likelihood function, minimise it and estimate the coefficients. We have ad-

dressed some frequentist methods in Section 2.2 and a penalty function that includes at least one

or more tuning parameters that control the amount of shrinkage. The tuning parameter can be

fixed by several methods, such as 10-fold cross-validation, Bayesian information criteria (BIC)

(Schwarz et al., 1978), among others. However, only employing penalty methods is not enough

to select variables; for that purpose, researchers used several approaches, such as the spike and

slabs prior in Equation 2.18 and some other strategies that can be found in Section 2.5.1. Re-

cently, shrinking the high-dimensional parameters of coefficients and selecting the variables is

a method that has been widely utilised compared to more traditional methods. Therefore, the

number of Bayesian shrinkage prior distributions were used that have a scale mixture of Gaus-

sian distribution and are also called “Bayesian regularisation methods”. The hyperparameters

for Bayesian shrinkage priors are fixed in various ways, such as using gamma distribution with

appropriate scale and shape parameters or an empirical Bayes after finding the marginal like-

lihood estimation of the hyperparameters; see Bayesian LASSO form Park and Casella (2008)

as an example. This kind of prior consideration, that is, absolute continuous distribution and, at

the same time, shrinking the coefficients results in load mass around zero. Also, heavy-tailed

are beneficial to keep the coefficients different from zero. Consequently, selecting variables is

done by using simple tools, such as a t-test.

The main objective in this section is to calibrate the hyperparameters for both hNiP and ReB-

hNiP priors. Furthermore, we try setting guidelines for researchers, for implementing both

shrinkage priors for specific modelling. We do the same procedure for the NEG prior distri-

bution, if possible. We consider the high-dimensional datasets p > n for which we use the

simulated data Scenario B1 from Section 4.3, especially for those cases scenario where the

precision of model λ = 2, because it is our goal to investigate the performance of the novel

shrinkage priors and select the optimal value range of the hyperparameters. Consequently, we

will generalise the results for other sample sizes.
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To assess the sensitivity of the shrinkage priors, we run an MCMC algorithm for the Bayesian

linear regression model depending on several candidates values for each hNiP, ReB-hNiP and

NEG prior. For example, the candidate values that were used for the hNiP prior start with c =

0.3, 0.4, 0.5, . . . , 9, where d = 0.2, 0.3, . . . , 6 with our assumption that the expected value of

the gamma distribution was E(κ) = c
d

= 1.5, and for ReB-hNiP we used different values of

rescaled beta e0 = 2, 3, 4, . . . , 12. The upper-bound parameters of the inverse Pareto distri-

bution is the second level, such as b0 = (30, 50, 100, 250, 500, 1000, 5000, 10000) is used of

several datasets. The posterior distribution is conducted numerically with variability values

of prior distributions for each dataset (B1II, B2II, B3II). To check the coefficients, which are

zero or not, we test each posterior coefficient relying on the t-test =
|β̂j |
sd(β̂j)

with probability

level 0.05, that is, thresholding by an approach 95% credible interval. Hence, in this chap-

ter, for inference, the posterior mean is considered. WIAC and DIC criteria, as described in

Section 2.5.2 was used for model selecting and detecting the optimal model. Some measures

were used to check the accuracy of selecting either the same non-zero or zero regression pa-

rameters that include TP, FP, FN, and TN, which are described in Section 2.5.3. The MCMC

ran M = 30000 burning 50% in total. The results for some datasets are shown graphically in

the following section to analyse them.

The results of the MCMC algorithm are presented graphically and summarised in the tables

for some of the datasets mentioned above. The first datasets is B1II, the sample size for which

is n = 35 and p = 45; see Section 4.3 for more details about it, where the numbers of non-zero

regression coefficients have an intercept equal to 17. The results for both the hNiP and ReB-

hNiP shrinkage models are summarised in Table 4.1 based on the current datasets. Thus, the

number of estimated non-zero coefficients are selected by thresholds at a 1.96 credible interval,

which is denoted in Table 4.1 by No.β̂. FN (false negative) represents the number of estimated

non-zero coefficients, but they are zero coefficients in the true datasets opposite each upper

bound in each table row.

The number of estimated non-zero coefficients approaches the number of true non-zero coeffi-

cients in the simulated data as long as the value of the upper-bounds parameter b0 increases and

the values of WAIC and DIC decrease. The optimal range of hyperparameter values that can be

used for models in this dataset is denoted by e∗0, c
∗ which leads to good-fit sparse coefficients.

To explain the figures in Table 4.1, consider an example: the upper bound b0 = 5000, the
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Table 4.1: Hyperparameter prior calibration based on WAIC and DIC criteria for both ReB-
hNiP and hNiP shrinkage priors distribution using several hyperparameter values. The used
dataset has asize of n = 35 and p = 45, and the number of non-zero regression coeffi-
cients in true value is 17. No.β̂ represents the number of estimated non-zero regression co-
efficients, and both e∗0, c

∗ describe the bounds on the hyperparameters for hNiP and ReB-hNiP,
respectively. e0(min) illustrates the rescaled beta parameter value of the ReB-hNiP prior and has
the minimum WAIC, c(min) represents the hyperparameter value of the hNiP prior, which has
the minimum WAIC. FN refers to false negative values.

ReB-hNiP hNiP
Dataset b0 No.β̂ (e∗0) FN (e0min) WAIC DIC No.β̂ c∗ FN c(min) WAIC DIC

n = 35, p = 45

30 15 3-12 0 6 95.53 109.37 15 ≤ 1.8 0 9.6 92.58 106.25
100 16 2-12 0 9 90.45 104.49 16 ≤ 2.8 0 0.9 92.28 106.51
250 17 2-12 0 12 90.54 110.27 16 ≤ 3.3 0 2.4 91.82 106.53
500 17 2-12 0 7 88.09 110.27 17 ≤ 3.0 0 1.8 89.19 103.17
1000 17 2-12 0 5 85.08 102.27 17 ≤ 2.4 0 1.4 86.77 100.73
2500 17 2-12 0 8 79.86 99.18 17 ≤ 2.1 0 1.2 80.46 94.24
5000 17 2 - 7 0 6 78.47 93.46 17 ≤ 1.5 0 1.5 78.5 91.68

10000 17 2 - 7 0 2 80.32 92.23 17 ≤ 1.3 0 0.3 78.9 91.02

number β̂ = 17 and FN equal to zero for both shrinkage prior models hNiP and ReB-hNiP.

The optimal bounds of the hyperparameter e0 is restricted between two and seven; however,

using any value outside this bound leads to over-shrinkage, which is also true for the hNiP prior

the hyperparameter c bound between 0.3 and 1.5, similar to ReB-hNiP utilising any values

greater than c > 1.5 that cause the over-shrinkage model. e0min represents the optimal value

of the ReB-hNiP model that has the minimum WAIC and DIC exactly fitting the model based

on b0 = 5000. Furthermore, cmin is the optimal value of hNiP and has a minimum WAIC and

DIC compared to other values of b0.

Concluding this example, the values in column e∗0, c
∗ represents bounds of the hyperparameters

in this restriction range. If we use values out of these restriction ranges, the number of coeffi-

cients aggressively shrink to zeros. On the other hand, regarding the sensitivity analysis of the

hyperparameter (tuning parameters) selection for the Bayesian regression model depending on

the NEG prior distribution. We only shows some results graphically for the NEG model, be-

cause it is difficult to summarise the MCMC outcomes in a table, such as hNiP and ReB-hNiP

priors, due to unstable number of non-zero regression coefficients from several models. Fig-

ure 4.4 shows the relationship between parameter bounds and the hyperparameters c, d, based

on thehNiP prior distribution. There are three lines from the above panel in Figure 4.4. The
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Figure 4.4: The relation between upper bounds, hyperparameters and both criteria (WAIC and
DIC) using the hNiP shrinkage prior and the best number of candidate values of the hyperpa-
rameters. In the top panel, the a blue dotted line represents the DIC, and the black line with red
circle illustrates the WAIC values for the number of models. The grey solid lines refers to the
average values of the WAIC. In the bottom panel, the blue solid line indicates the number of true
non-zero coefficients. The black dashed lines with black circles represents the number of esti-
mated regression coefficients. The purple dashed line denotes the used candidate values for the
parameter upper bound b0 and the best range of the hyperparameters c = {0.3, . . . , 1.5}. The
dataset (n = 35, p = 45) is used.

solid grey line indicates the average of WAIC, the blue, dotted line illustrates the DIC criteria

and the solid, black line with red circles represents the WAIC criteria. Both DIC and WAIC

decline as long as the value of upper-bound b0 increases the limited range of c, d. We believe

that c ≤ 1.5 is the best range overall for the upper-bound parameter b0 because it has the min-

imum values of the WAIC, which is explained by the solid red dot opposite the black triangle

in the bottom panel. The large upper-bound parameter b0 with small prior values c, d has mini-

mum values for both WAIC and DIC. Furthermore, the smallest values of b0 shrink those coef-

ficient values, which are very small in the dataset toward the zeros; particularly, the coefficients

that are between 0 and 1, become zero. Therefore, the results lead us to use the large b0 with
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enough small values of both c, d, because they are more flexible to fit the regression param-

eters due to the large variance of the second layer of the hierarchical hyperparameter for the

hNiP prior. It helps to shrink small values of the regression coefficients in the model, and this

explanation is true for the ReB-hNiP prior with hyperparameter bounds rescaled Beta e0.
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Figure 4.5: The relation between the upper bounds, hyperparameters and both criteria (WAIC
and DIC) by using the ReB-hNiP shrinkage prior and the best number of candidate values
of hyperparameters. In the top panel, the blue dotted line represents the DIC, and the black
line with red circle illustrates the WAIC values for the number of the models. The solid grey
line refers to the average of the WAIC. In the bottom panel, the blue solid line indicates the
number of true non-zero coefficients. The black-dashed line with black circles represents the
number of estimated regression coefficients. The purple dashed line denotes the used candi-
date value’s upper bounds b0 and the best range of hyperparameters e0. The dataset had a size
of n = 35 and p = 45 was used.

On the other hand, the hyperparameter sensitivity analysis and selection by using ReB-hNiP

shrinkage and the NEG prior distribution were addressed by utilising WAIC and DIC as we did
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with the hNiP model. Consequently, we have displayed the relationship between the parame-

ter bounds and the hyperparameter e0 in Figure 4.5 for the ReB-hNiP prior distribution. The

results show similar changes compared to the hNiP plots. However, we have put restrictions

on the range of the hyperparameter of the rescaled beta e0, and its interval of restriction of

parameter e0 becomes smaller as long as the parameter values of the upper bound b0 become

larger.
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Figure 4.6: The relation between upper bounds, hyperparameters and both criteria (WAIC and
DIC) by using the hierarchical NEG shrinkage structure prior and the best candidate values
of the hyperparameters ω, γ. In the top panel, the blue dotted line represents the DIC and
the black line with red circle illustrates the WAIC values for the number of the models. The
solid green line refers to the average value of the WAIC. In the bottom panel, the blue solid
indicates the number of true non-zero regression coefficients. The black dashed line with black
circle represents the number of estimated regression coefficients. The red dashed line denotes
the used candidate values of the hyperparameter for the best range. The dataset had a size
of n = 35 and p = 45 was used.

As a consequence, we will not only use our priors in the next section to show the performance
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of our proposed shrinkage prior, but we will also utilise the regularisation methods highlighted

in Section 4.1. Regarding the tuning-parameters selection for the NEG shrinkage prior, WAIC

and DIC were implemented, as with the ReB-hNiP and hNiP priors. However, the model based

on the NEG shrinkage prior does not provide suitable results, which is clear from Figure 4.6.

The number of estimated non-zero coefficients for most cases did not correspond to the same

coefficients in the estimated data, and for the candidates values, such as c, d and e0, were used

to fit the model, the coefficients were over-estimated.

As we mentioned above, the plots were shown only for the bounded range of the hyperparam-

eters. Thus, if we utilise values larger than these ranges, most coefficients aggressively shrink

close to zero, which leads to increased WIAC and mean square error (MSE). Some figures

are displayed in the Appendix B which show the plots for all ranges of the hyperparameters

that were addressed with a sensitivity analysis and hyperparameter selection for the proposed

Bayesian shrinkage prior that was used for the current section. The graphs clearly provide an

overview of how the number of estimated non-zero coefficients changes WAIC and DIC by the

both hyperparameters for the hNiP, ReB-hNiP and NEG shrinkage priors, for example Figure

B.3.

Table 4.2: Hyperparameter prior calibration based on WAIC and DIC criteria for both ReB-
hNiP and hNiP shrinkage prior distribution when using different hyperparameter values. The
sample size of the dataset is scenario B4, that is, n = 50 and p = 250. The number of
true non-zero coefficients is 14. No.β̂ represents the number of estimated non-zero regression
coefficients e0

∗, c∗ describes the bounds on hyperparameters, e0(min) illustrates the rescaled beta
value parameter of the ReB-hNiP prior that has a minimum WAIC, and c(min) represents the hy-
perparameter value of the hNiP prior, which has the minimum WAIC. FN refers to false negative
values.

ReB-hNiP hNiP
Dataset b0 No.β̂ (e∗0) FN (e0min) WAIC DIC No.β̂ c∗ FN c(min) WAIC DIC

n = 50, p = 250

30 7 ≤ 12 0 8 126.53 146.51 7 1.5-10 0 3 131.84 152.33
100 10 ≤ 12 0 9 131.96 150.01 8 ≤ 10 0 9 131.41 151.23
250 11 ≤ 12 0 6 130.45 150.5 11 ≤ 10 0 3.9 131.49 151.94
500 11 ≤ 12 0 9 132.65 152.96 11 ≤ 10 0 0.3 126.67 146.85
1000 11 ≤ 12 0 4 132.74 152.37 11 ≤ 10 0 6 132.71 152.45
2500 13 ≤ 12 0 8 130.52 150.83 13 1.2-6.3 0 4.8 130.85 150.77
5000 13 ≤ 12 0 6 125.55 145.45 13 ≤ 4.5 0 0.3 128.75 148.96

10000 13 ≤ 12 0 8 121.85 141.84 13 ≤ 4.2 0 1.2 123.58 143.3

To evaluate and select the tuning parameters of the shrinkage prior distributions mentioned
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previously and then make a decision about how both proposed Bayesian shrinkage priors are

implanted, we used the different simulated datasets which were described previously. As in the

first dataset case, we had some results. For example, Table 4.2 consists of minimum values for

WAIC and DIC with restriction ranges for both e∗0, c
∗, which are hyperparameters for both the

ReB-hNiP and hNiP and the dataset with n = 50 and p = 250, which refers to scenario B3II.

Meanwhile, the plots in Figures 4.7 correspond to the same data in the last table. Likewise, the

quantities of WAIC and DIC declined as the values of the upper bounds increased. The bound

of hyperparameter c also decreased, similar to the previous example. Most of the coefficients

were significantly convergent to their true value; only one coefficient was not because its true

value is very small, that is, βi = −0.086 , to investigate and fit this value, we try to use larger

value of the upper bonds b0 later in this chapter. As we noticed from Figures 4.7, both priors,

the minimum values of the WAIC and DIC, were located between the intervals of values that are

very close to each other. Choosing any values in this range should thus produce similar results.

For this reason, we applied the simulation datasets (B1II, B2II, B3II), which are explained in

Section 4.3, as datasets in the case p > n. Figures 4.8 and 4.7 displayed the behaviour of the

hyperparameter calibration and the selection of the best range of candidate values based on the

shrinkage prior that studied in this section to guide future research. Figure B.4 displayed the

behaviour of the hyperparameter calibration and the selection of the all range of the candidate

values based on NEG shrinkage prior for sample size n = 35 and p = 100.

We apply both proposed shrinkage methods under this suggestion in the following sections

to fit the high-dimensional datasets and compare them with some Bayesian and non-Bayesian

shrinkage methods, as stated in the first section of current chapter. The proposed methods using

regression models can be checked by posterior predictive distribution to check how our methods

were satisfactory modelled.
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(b) ReB-hNiP prior

Figure 4.7: Panels (a) hNiP and (b) ReB-hNiP shows the relation of the hyperparameter calibra-
tion between upper bounds and second-layer hyperparameters using (WAIC and DIC) criteria
for the best range candidate values. Panels (a) and (b) are illustrated as follows: The blue
dotted line represents the DIC, and the black line with red circle illustrates the WAIC values
for the number of the models. The grey solid lines refers to the average value of the WAIC.
In the bottom panel, the blue solid line indicates the number of true non-zero coefficients.
The black dashed lines with black circle represents the number of estimated regression coeffi-
cients. The purple dashed line denotes the candidate values used as the upper bounds b0 and
the best range of hyperparameters either for hNiP c or ReB-hNiP e0. The dataset had a size
of n = 50 and p = 250 was used.
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Figure 4.8: Graphs (a) hNiP and (b) NEG shows the relation of the hyperparameter calibration
between upper bounds and second-layer hyperparameters using (WAIC and DIC) criteria for
the best range candidate values. Graphs (a) and (b) are illustrate as follows: The blue dotted
line represents the DIC, and the black line with red circle illustrates the WAIC values for the
number of the models. The grey solid line refers to the average value of the WAIC. In the
bottom panel, the blue solid line indicates the number of true non-zero coefficients. The black
dashed line with black circle represents the number of estimated regression coefficients. Purple
dashed line denotes the several values of used candidate upper bounds b0 and the best range
of hyperparameters either for hNiP c or NEG shrinkage prior with ω and γ. The dataset had a
size of n = 35 and p = 100 was used.
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4.6 Numerical Comparison of Some Regularization Methods

In this section, we compare and evaluate the performance of our proposed shrinkage prior dis-

tribution with the same family of scale mixtures of normal distributions, including the Bayesian

LASSO (Park and Casella, 2008) and horseshoe (Carvalho et al., 2010) and also non-Bayesian

regularization methods, such as SCAD (Fan and Li, 2001) and LASSO (Tibshirani, 1996). The

simulated datasets for scenarios B and C are utilised and explained in Section 4.3. The find-

ings are conducted using R packages, both ncvreg (Breheny et al., 2018) and lars (Hastie et al.,

2007) for SCAD and LASSO, respectively, and the tuning parameters were selected by 10-fold

cross-validation. The monomvn package (Gramacy et al., 2019) in R language was used for

the horseshoe shrinkage prior and the Bayesian LASSO (Blasso) assuming an error model have

gamma prior of shape 2 and scale 0.6, which we used in our proposed model as flat prior. We

sett the monomvn package code (RJ= off, Reversible Jump) to compute the posterior distribution

as an original paper for both the Bayesian LASSO and horseshoe. Therefore, we select the same

variables as the procedure modelled in the previous section. Thus, we set the gamma distribu-

tion as a prior of the hyperparameter, as utilised in both the Bayesian LASSO and horseshoe

with the default values of shape 10 and scale 5 suggested by the monomvn package.

To run the MCMC algorithm faster for both the Bayesian LASSO and horseshoe, we have to set

the length of thin equal as 5. Two different hyperparameter values of our proposed shrinkage

priors are used based on the discussed of the results in the previous section to establish and as-

sess the performance of the proposed Bayesian shrinkage prior, especially in high-dimensional

datasets. The hyperparameter values of hNiP are c = 0.9, d = 0.6, which provide the large

variability of κ and the value of the hyperparameter e0 = 5 with two different values of upper

bound b0 = (10000, 100000) for the proposed shrinkage prior distributions. We ran the MCMC

algorithm with M = 20000 iterations and kept half the total iteration for the shrinkage meth-

ods belonging to the family of scale mixtures of normal distributions by applying them on the

datasets described in scenario B. The iterations were M = 10000 for the dataset in scenario C

due to time consumption and limited time-run of the model in the system of the iceberg (high

performance computing cluster networks) that I used to run my model at University of Sheffield.

We present our overall outcomes for three different datasets with the purpose of the evaluation

and performance of all the Bayesian and non-Bayesian shrinkage priors mentioned above that
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were used throughout this section. We have presented the average results of the 100 posterior

replication samplers for all the dataset cases and for all the shrinkage methods in Section 4.3.

The results are displayed for each dataset separately in the following tables based on the pos-

terior mean distribution. For example, Table 4.3 shows the figures of some shrinkage priors, to

Table 4.3: Comparison and performance between some Bayesian shrinkage priors and frequen-
tist methods, in which the sample size is n = 35, p = 45. λ indicates the values of the error
model. The number of true non-zero coefficients is 17. Where FN is false negative, FP false
postie, AUC is area under curves and MSE is mean square error.

λ No.β̂ Sensitivity Specificity MSE FN FP AUC

hNiP 0.02 16 100% 96.67% 0.023 0 1 97.83%
2 17 100% 100% 0.00008 0 0 100%
2000 17 100% 100% 0.00005 0 0 100%

ReB-hNiP 0.02 15.83 100% 95.52% 0.8701 0 1.5 96.46%
2 16.92 100% 99.78% 0.0617 0 0.08 99.83%
2000 16.57 98.82% 98.82% 0.0200 0.45 0.75 98.98%

Bayesian LASSO 0.02 17 100% 69.00% 610.239 0 13 71.70%
2 17 100% 69.00% 631.826 0 13 71.70%
2000 17 100% 69.00% 635.704 0 13 71.70%

Horseshoe 0.02 17 98.71% 96.68% 0.0899 0.22 1 97.34%
2 17 100% 100% 0.0047 0 0 100%
2000 17 100% 100% 0.0001 0 0 100%

LASSO 0.02 46 38.46% 66.80% 25491.57 20.46 4.23 46.33%
2 46 41.52% 75.00% 25270.26 19.58 3.14 50.61%
2000 46 35.06% 58.10% 25276.26 20.6 5.95 42.28%

SCAD 0.02 46 100% 80.56% 25143.77 0 7 84.78%
2 46 100% 80.56% 25440.94 0 7 84.78%
2000 46 100% 80.56% 25434.95 0 7 84.78%

examine the performance of the variables selection for the shrinkage priors explored in former

sections for the dataset in Scenario B1 with error noise cases (λ = 0.02, 2, 2000). The sum-

marised results represent the average sensitivity, specificity, No.β̂ (the number of estimated

non-zeros), false negatives (FN), false posties (FP), areas under curves (AUC), all of which were

explained in Section 2.5.3, as well as the mean square error (MSE) for the dataset described in

B1, which had a sample size of n = 35 and p = 45.

As we can see from the figures in the Table 4.3, our proposed shrinkage prior distribution

outperformed all other shrinkage methods. For instance, the estimated regression coefficients

are exactly the same as the coefficients of the true values for both the dataset cases in which
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the precision of model was λ = 2 and 2000, and both the FP and the false negatives (FN)

were zero. In the noise dataset, when λ = 0.02, the average of sensitivity is 100% and the

specificity is 96.67% for hNiP methods, which are better than horseshoe methods because the

sensitivity and specificity of the later methods are 98.71% and 96.68% respectively. Despite

the second proposed ReB-hNiP shrinkage prior outperforming the Bayesian LASSO (Park and

Casella, 2008), SCAD (Fan and Li, 2001) and LASSO (Tibshirani, 1996) methods, but it is not

satisfactory compared ton either the hNiP nor horseshoe method based on the data scenario B1.

Table 4.4: Comparison and performance between some Bayesian shrinkage and frequentist
methods, in which the sample size is n = 50, p = 250, the number of iterations is M =
20000 and the number of true non-zero coefficients is 14. FN is false negative, FP is false posi-
tive, AUC is area under curves and MSE is mean square error. For both hNiP and ReB-hNiP, the
upper bounds is b0 = 104, and for both hNiP∗ ReB-hNiP∗, that is, proposed shrinkage priors
with the upper bounds which is b0 = 106. λ indicates the values of the error model.

Models λ No.β̂ Sensitivity Specificity MSE FN FP AUC

hNiP 0.02 11.07 100% 98.78% 0.0008 0 2 98.83%
2 13 100% 99.60% 0.0003 0 1 99.60%
2000 13 100% 99.58% 0.0001 0 1 99.60%

ReB-hNiP 0.02 11.41 100% 98.90% 0.00014 0 2.65 98.90%
2 13 100% 99.58% 0.00040 0 1 99.60%
2000 13 100% 99.58% 0.00016 0 1 99.60%

Bayesian LASSO 0.02 1 100% 94.80% 113.953 0 13 94.80%
2 1 100% 94.80% 115.981 0 13 94.80%
2000 1 100% 94.80% 113.336 0 13 94.80%

Horseshoe 0.02 11 100% 98.80% 0.0027 0 3 98.80%
2 14 100% 100% 0.0195 0 0 100%
2000 14 100% 100% 0.0002 0 0 100%

LASSO 0.02 48.36 94.08% 94.08% 3216.49 46.36 12 76.75%
2 46.86 94.58% 94.58% 3223.79 43.92 11.06 78.10%
2000 44.66 94.61% 94.61% 3226.28 41.78 11.12 78.92%

SCAD 0.02 9 4.14% 94.08% 3216.49 3 12 76.75%
2 9 66.67% 96.69% 31138.45 3 8 95.62%
2000 9 66.67% 96.69% 31128.40 3 8 95.62%

hNiP* 0.02 12.31 100% 99.3% 0.00009 0 1.69 99.33%
2 14 100% 100% 0.00002 0 0 100%
2000 14 100% 100% 0.00003 0 0 100%

ReB-hNiP* 0.02 13.03 99.50% 99.35% 0.00044 0.07 1.6 99.35%
2 14 100% 100 % 0.00007 0 0 100%
2000 1 100% 99.8% 0.0003 0 0.2 99.8%
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Moreover, Table 4.4 displays the figures of some shrinkage priors after increased the number of

the coefficients parameters, which shows the performance of the proposed shrinkage priors for

variables selection similar to the former sections for the dataset in the previous Scenario.

Above all, the Bayesian linear regression model is computed relying on the hNiP prior distri-

bution, which is faster than the models based on the ReB-hNiP prior distribution. The MCMC

algorithm was run for a different number of iterations and kept 50% of all iterations for Regres-

sion models that rely on hNiP, ReB-hNiP, horseshoe and the Bayesian LASSO. All models are

applied on a personal computer (PC) with of 8GB (RAM) and an i7 double (CPU) and 2.5 GHz.

We reported the time computation for all three dataset scenarios which implemented for differ-

ent shrinkage regularisation methods. Table 4.5 shows the time computing for each model.

As can be seen there, hNiP is the fastest model among ReB-hNiP, horseshoe and the Bayesian

LASSO. For example, a run utilising the dataset in scenario C, that is, n = 200, p = 1000 is

took 8 hours and 53 minutes, whereas the horseshoe method took 17 hours and 45 minutes

and 27 seconds with thin every 5 iterations.

Table 4.5: Comparison of the time computation of hNiP, ReB-hNiP, horseshoe and Bayesian
LASSO shrinkage priors under a linear regression model for several datasets. The number of
iterations is M = 20000 for both datasets (n = 35, p = 45) and (n = 50, p = 250). M =
10000. for dataset (n = 200, p = 1000). hh represents the hours, mm represents the minutes
and ss refers to seconds.

n = 35, p = 45 n = 50, p = 250 n = 200, p = 1000

Models hh:mm:ss hh:mm:ss hh:mm:ss

hNiP 00:01:05 00:21:38 08:53:00

ReB-hNiP 00:02:19 00:28:48 09:55:00

horseshoe 00:06:00 00:34:00 18:40:00

Bayesian LASSO 00:03:25 00:32:00 17:45:27

84



CHAPTER 4. PRIOR CALIBRATION OF THE LINEAR REGRESSION MODEL

Table 4.6: Comparison and performance between some Bayesian shrinkage and frequentist
methods, in which n = 200, p = 1000, the number of iterations is M = 10000 and the number
of true non-zero coefficients is 11. FN is false negative, FP is false positive, AUC is area under
curves and MSE is mean square error.

λ No.β̂ Sensitivity Specificity MSE FN FP AUC

hNiP 0.02 10 100% 99.90% 0.0014 0 1 99.90%
2 10 100% 99.90% 0.0017 0 1 99.90%
2000 10 100% 99.90% 0.0026 0 1 99.90%

ReB-hNiP 0.02 10 100% 99.90% 0.0042 0 1 99.90%
2 10 100% 99.90% 0.0033 0 1 99.90%
2000 10 100% 99.90% 0.0025 0 1 99.90%

Bayesian LASSO 0.02 3 100% 99.20% 15.4141 0 8 99.20%
2 3 100% 99.20% 16.3453 0 8 99.20%
2000 3 100% 99.20% 16.0345 0 8 99.20%

Horeshoe 0.02 14.81 74.42% 100% 0.2929 3.81 0 99.62%
2 13.67 82.14% 100% 0.4522 2.66 0 99.73%
2000 13.62 82.41% 100% 0.6012 2.62 0 99.74%

LASSO 0.02 11 0.85% 98.87% 23637.29 116 10 87.41%
2 11 1.05% 98.89% 23589.65 188 9 80.32%
2000 11 0.00% 98.81% 23588.01 78 11 91.11%

SCAD 0.02 11 100% 99.30% 51563.721 0 7 99.30%
2 11 100% 99.30% 51620.649 0 7 99.30%
2000 11 100% 99.30% 51610.471 0 7 99.30%

hNiP* 0.02 13.17 83% 99.9% 0.0024 2 0.3 99.6%
2 11 100% 100% 0.0003 0 0 100%
2000 11 100% 100% 0.00002 0 0 100%

ReB-hNiP* 0.02 15.02 75.57% 99.80% 0.0021 3.5 1 99.75%
2 11 100% 100% 0.00009 0 0 100%
2000 11 100% 100% 0.00014 0 0 100%

For visual compression and representation, we establish the results produced by the ROC curves

in Section 2.5.3, Figure 4.9 displays an example of the ROC curves of coefficients for the

Bayesian shrinkage prior. The ROC curves concentrate in the upper-left corner means that the

the most shrinkage varaible selection had larger AUC values.

Figure 4.10b, three lines represent the output of the regression model: the red line for ReB-

hNiP2 with b0 = 106 , the blue lines for ReB-hNiP with b0 = 104 and the green line for

the results of the Bayesian LASSO. Nevertheless, some other lines are hiding due to identical

performances and the plots corresponding to the mentioned lines, which effectively hides them.
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For example, red lines for ReB-hNiP2 corresponds to pink line for hNiP. Also,the blue line

hides both the hNiP with b0 = 104 and horseshoe. Despite of some shrinkage methods have

corresponding ROC curves, they could have different MSEs, such as the MSE=0.00214 for

ReB-hNiP with b0 = 104 corresponding to the horseshoe with MSE= 0.2929, as can be seen

in the ROC curve in Figure 4.10.

We randomly chose some MCMC samplers from the results for the 100 replications in the pre-

vious section, for both datasets (n = 50, p = 250 and n = 200, p = 1000) and also for both

the hNiP and ReB-hNiP shrinkage models. We used the mean as a statistics test, to compare the

predictive prediction distribution a mean for the observed data y. Figure 4.11 shows the graph-

ical predictive distribution of sample size n = 50 and p = 250, which is clearly illustrates the

mean (black line) of the observed data for the proposed scale mixture of the normal distributions

hNiP and ReB-hNiP. Similar to the previous example, Figure 4.12 shows similar performances

with of sample size n = 200 and p = 1000 in terms of the posterior prediction.
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Figure 4.9: ROC curves of some Bayesian shrinkage priors, including the Bayesian LASSO,
the horseshoe, hNiP(b0 = 10000, c = 0.9), and ReB-hNiP(b0 = 10000, e0 = 6),
hNiP2(b0 = 100000, c = 0.9), ReB-hNiP2(b0 = 100000, e0 = 6) for both cases where λ =
0.02 and 2000, n = 50 and p = 250.

87



CHAPTER 4. PRIOR CALIBRATION OF THE LINEAR REGRESSION MODEL

0.0

0.5

1.0

0.0 0.5 1.0

False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n Shrinkage prior

BLASSO

hNiP

hNiP2

Horseshoe

ReBhNiP

ReBhNiP2

(a) λ = 2000

0.0

0.5

1.0

0.0 0.5 1.0

False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n Shrinkage prior

BLASSO

hNiP

hNiP2

Horseshoe

ReBhNiP

ReBhNiP2

(b) λ = 0.02

Figure 4.10: ROC curves of some Bayesian shrinkage priors, including the Bayesian
LASSO, the horseshoe, the hNiP(b0 = 10000, c = 0.9), the ReB-hNiP(b0 = 10000, e0 =
6), hNiP2(b0 = 100000, c = 0.9), and ReB-hNiP2(b0 = 100000, e0 = 6) for both cases
where λ = 0.02 and 2000, n = 200 and p = 1000.
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Figure 4.11: Model checking using the predictive distribution model based on ReB-hNiP and
hNiP shrinkage prior distribution, the dataset precision of model being λ = 0.02 and for both
cases sample size n = 50 and p = 250.
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Figure 4.12: Model checking using the predictive distribution model based on ReB-hNiP and
hNiP shrinkage prior distribution, the dataset precision of model being λ = 0.02 and in both
cases the sample size being n = 200 and p = 1000.
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In the case of dealing with high-dimensional data p >> n, we applied a regression model based

on the proposed Shrinkage prior method explained in Section 4.3, particularly in scenario D, in

which n = 200 and p = 5000. Consider that the D datasets are high-dimensional and sparse

because only five values of the true coefficients differ from zero. We ran the MCMC algo-

rithm only for M = 1000 iterations due to time limitations our high-performance computing

system (iceberg) which is not allowed to run the MCMC algorithm for more than 168 hours.

Our MCMC algorithm for both shrinkage methods requires much more time to reach M =

10000 iterations. With only M = 1000 iteration for all the datasets in scenario D for the hNiP

and ReB-hNiP shrinkage methods, the computing time was 113 hours and 43 minutes for the

hNiP model and 120 hours and 10 minutes for the ReB-hNiP model. Even though, these result

are not reliable due to the Short runs. But show that all the cases satisfactorily estimated four

out of five non-zero regression coefficients; only the intercept parameter shrunk to zero under

the hNiP hyperparameters b0 = 10000, c = 0.9, and d = 0.6, the ReB-hNiP upper-bound

parameter b0 = 10000, and a rescaled Beta parameter e0 = 6. Table 4.7 shows the good per-

formance of both the proposed Bayesian shrinkage priors for the high-dimensional datasets.

The values of the WAIC criteria cluster together for each shrinkage prior method with the same

dataset. As can be seen in Figures 4.13 the traces of two sample hNiP and ReB-hNiP were

stable and convergent to the true values after a few hundred iterations that support our variable

selection. We also used an appropriate values for both shrinkage priors.

Table 4.7: Comparison of Bayesian regression models based on proposed shrinkage priors, in-
cluding hNiP and ReB-hNiP for different single-noise datasets when p >> n. The figures show
the number of estimated non-zero coefficients as No.β̂, false positive as FP, false negative as FN
and WAIC criteria. The hyperparameters of hNiP is b0 = 10000, c = 0.9, d = 0.6. The ReB-
hNiP upper-bounds parameter is b0 = 10000 and the rescaled beta parameter is e0 = 6. The
number of non-zero coefficients that included the intercept parameter are non-zero coefficients
in 5 datasets of sample size n = 200 and p = 5000.

hNiP ReB-hNiP
Error model λ non-zero β̂ FP FN WAIC non-zero β̂ FP FN WAIC

n=200, p=5000
0.02 4 1 0 541.95 4 1 0 426.33

2 4 1 0 651.43 4 1 0 507.25
2000 4 1 0 478.23 4 1 0 436.16
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(a) Traces plots for the ReB-hNiP model, where the red line represents the true value.
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(b) Trace plots for the hNiP model for non-zero coefficients, where the red line represents the true value.

Figure 4.13: Traces plots for the linear regression model depending on shrinkage priors; the
hyperparameters values are b0 = 1000, e0 = 6 for ReB-hNiP in panel (a) and b0 = 10000, c =
0.9 and d = 0.6 for hNiP in panel (b). The red line represents the true values some non-
zero coefficient β, where β2 and β3 = −3 indicates by black and green colour respectively,
and β50 andβ500 = 5 represents by blue and orange colour respectively. The sample size
is n = 200 and p = 5000. The number of iterations is M = 1000.
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4.7 Summary of Chapter

This chapter is based on utilising the proposed Bayesian shrinkage prior distributions hNiP

and ReB-hNiP with a Bayesian linear regression model. The calibration of the optimal hy-

perparameter values of proposed methods was addressed. These were compared with some

Bayesian shrinkage and non-Bayesian methods methods to examine their performances in terms

of variable selection and MCMC algorithm run time. We concluded that the best ranges of

the hyperparameters (tuning parameters) that can be used for both our proposed Bayesian

shrinkage prior distributions (hNiP and ReB-hNiP) are as follows; first, for the upper-bound

parameter b0 for both shrinkage priors in the case of the high-dimensional data, we sug-

gest using b0 = (2500, . . . , 100000), that is, larger than 2500 up to 100000 for the cases in

which p� n, because it controls the scale of the inverse Pareto distribution as the scale mixture

of the normal distribution, which is flexible for shrinking small regression coefficients due to

heavy tails. Second, the advisable values of the hNiP shrinkage prior distribution for the hyper-

parameter is 0.3 ≤ c ≤ 1.5 to choose the value of d taking into consideration the assumption

that E(κ) = 1.5. Third, regrading the ReB-hNiP tuning parameters, the results suggest using

the values of the hyperparameter rescaled Beta e0 = {4, 5, 6}. Lastly, the results show that hi-

erarchical structure of the NEG prior provide some useful suggested values of hyperparameters

similar to both others shrinkage prior. We will discover more about of parameter estimation

using NEG methods in the future.

On the other hand, the Bayesian linear regression model based on the hNiP prior distribution

is faster than the models based on the ReB-hNiP prior distribution, horseshoe, and Bayesian

LASSO. Also, the variable selection rules for the hNiP prior distributions satisfactorily outper-

form the other named shrinkage methods. The MCMC algorithm, which was run for several

iterations, kept 50% of them. In the next chapter, we address hyperparameter calibration based

on a linear model with a measurement error model similar to the procedures of this chapter.
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Chapter 5

High-dimensional Measurement Error
with Linear Model via Bayesian Shrinkage
Prior

5.1 Overview of Measurement Error Model

In various fields of science, statisticians face typical issues in terms of analysing data. In term

of the effect and presence the issue of Measurement Error (ME), data analysis has been known

and researched for some decades. Measurement error is also called error-in-variable (Buonac-

corsi, 2010; Fuller, 1987). ME occurs in either the covariate variable, response variable or both

of them. Ignoring such type of errors in replication, usually leads to biased estimates of co-

efficient parameters in regression model, that is, the observation in single or more variables is

not measured accurately by utilising one of the measures, tools, inaccurate sampling, or imper-

fect observations (Buonaccorsi, 2010). Furthermore, simple linear regression is infeasible to

fit parameters in the model, also confidence intervals and parameters estimation might suffer

from biases error, in the case if ME is disregarded. Thus, it might cause the loss of power for

variables selection or relation through variables and the substantial features of the data might

be hidden. In the case of having replicated data, it is difficult to ignore ME factor. This is be-
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cause ignoring it will lead to an extremely misled understanding of the amount of link between

response and independent variables (Gilks, 1999). On the other hand, parameter estimation

based on the simple linear regression is not realistic for interpretation of the model. The struc-

ture of regression model with measurement error model becomes complex and it has different

formulation compared with the standard linear model. Several studies cover the matter of mea-

surement error models (Buonaccorsi, 2010; Fuller, 1987; Gilks, 1999). Recently, Morrissey

et al. (2010) studied the interaction network between genes. They built a model under Bayesian

perspective with measurement error. This model depends on spike and slab prior distribution

for coefficient parameters, and measurement error is represented by Student-t distribution. In

my experience, for the first time Lachos et al. (2011) used the scale mixture of Normal SMN

distribution as robustness distribution instead of the Gaussian assumption in the case dealing

with measurement error models; because they proposed that both random errors and covari-

ates follow SMN distribution for the bivariate linear model. They considered local influence

analysis for measurement error models. Simultaneously, an expectation maximization (EM) al-

gorithm is used to update sampler of the parameters. Furthermore, a bivariate linear regression

model with measurement error was examined under heavy tails distribution by Lin and Cao

(2013). They established that the novel structure of a repeated measurement error model has

unobserved variables. The noise of the model follows SMN distribution. So, the results of this

model provided an attractive robust distribution when compared with usual Normal distribution.

An alternative distribution to the Normal distribution was used in the multivariate measurement

error model by Cao et al. (2015). They consider that SMN distribution is one of the heavy-tails

distributions and the model includes SMN distribution that covers different kinds of data, such

as unpair or/and unequal replicated data. Here, the SMN distribution is an adaptable choice and

creates an interesting robust distribution instead of the usual normal assumptions. This model

deals with the maximum likelihood estimation (MLE) for estimating parameters and it relies on

expectation-maximization (EM algorithm) for sampling.

In this chapter, we assume dealing with unobserved variables, and our model structure depends

on the simple linear regression and measurement error. In order to compute observed variables

(true variables), which includes unobserved plus an additive error, the structure of the linear

regression model with measurement error can be identified as,

Yi = α + βXi + εi. (5.1)
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Also, the measurement error equation is described as follows,

zijr = Xij + ηijr. (5.2)

Suppose that Xi = X1i, X2i, . . . , Xni is a vector of unobserved variable with size 1×p, where

(i = 1, 2, . . . , p), (j = 1, 2, . . . n) and zijr represents single observed variables from matrix

with size n × p × R where r = 1, 2, . . . , R, and Yi is dependent variable with size 1 ×
n, where n is a sample size, p represents the number of parameters and R refers to the num-

ber of replications. β is the vector of coefficient parameters of size 1×p and α is an intercept

of the model. All parameters are assumed to be independent, with εi and ηi both are indepen-

dent and εi represents the error term of the model which has normal distribution with mean

equals to zero and precision equals to λ. ηi is measurement error and has normal distribution

with mean equals to zero and precision equals to τ, and zir has normal distribution with mean

equal to Xi and precision τ. In the next section, we will describe our ME models, particularly

the models that are related to overcoming measurement error problem in the Bayesian frame-

work. The prior for the unknown parameters are implemented on dynamic Bayesian networks

with measurement error based on the autoregressive model AR(1). For more information bout

autoregressive model, the reader is referred to Radhakrishnan et al. (2013).

5.2 High-dimensional Measurement Error with Multivariate

Linear Regression Model via Bayesian Shrinkage Prior

The effect and presence of matter in data analysis for Measurement Error have been recognized

and investigated in several directions for many decades. So far, we assumed in the earlier

works that the explanatory variables are completely measured, that is, covariates are free from

measurement error. In fact, the issue of measurement error can include in covariates with at

least a small amount value that happens in several research fields. As can be noticed that in the

previous section, we highlighted the general form and some literatures of measurement error. In

the following section, we put emphasis on some other studies and give the details of the structure

for the high-dimensions Bayesian linear regression in term of covariates as measurement error

model. In light of the standard regression model, without correction from measurement error,
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the parameters estimation will be from biased (Carroll et al., 2006). Therefore, a replicated

measurement is used in the explanatory variables in order to correct the model and estimate the

measurement error through regression model (Sørensen et al., 2014).

In recent years, researchers have tended to utilise a penalty function to penalize the likelihood in

regression models to correct the measurement error model. This type of correction approaches

have been studied by Liang and Li (2009); Ma and Li (2010); Rosenbaum et al. (2010); Rudel-

son and Zhou (2015); Rudelson et al. (2017); Sørensen et al. (2014, 2015); Xu and You (2007).

Both Rosenbaum et al. (2010) and Sørensen et al. (2014) have used lasso and Dantzig selector

(DS) methods for correcting the measurement error in the linear regression model, in which

assumption of sparse model was taken into consideration. While, the smoothly clipped absolute

deviation (SCAD) penalty function is studied in solving this model problem by Xu and You

(2007). The corrected version of the penalty functions include; lasso, SCAD and DS. They

investigated and modified in to remove the effect of the measurement error in the regression

model and selecting the parameters were studied by some authors such as Liang and Li (2009);

Ma and Li (2010); Sørensen et al. (2015).

To our knowledge of correcting the issue of measurement error in a regression model based on

Bayesian shrinkage prior, distribution or no has one used this kind of Bayesian regularization

prior distribution. Accordingly, we will utilise our proposed Bayesian shrinkage prior distribu-

tion to correct and select the coefficients in Bayesian regression with measurement error model

which they involve; hNiP, ReB-hNiP prior distribution and NEG prior distribution. All these

priors were studied in the last section for fitting the coefficients of Bayesian linear regression

model. Hence, a Bayesian perspective is used to estimate unobserved variables and unknown

parameters. Also, a repeated measurement is taken into consideration. Likewise, to the last

section 4.5, for reducing the high dimensionality in the Bayesian regression model, we utilise

same Bayesian shrinkage prior to that presented in the Chapter 3.

5.2.1 The Model Formulation

Multivariate Bayesian regression with measurement error model was described in the previ-

ous section of this chapter. In the following sections, we illustrate the formulation of this

96



CHAPTER 5. MEASUREMENT ERROR WITH SHRINKAGE PRIOR

model. We have only one formula of likelihood function. However, utilising different prior

distributions lead to obtain various posterior distributions. We consider Equation 5.1 for the

linear regression model and the Equation 5.2 for the measurement error model. εi has nor-

mal distribution, εi ∼ N(εi|0, λ−1) represents random error. It has Var(ε) = 1
λ

and unob-

served data denoted by xi and depended variable yi ∈ <, where the size of unobserved is X =

{x1,x2 . . . ,xn}, that is, X ∈ Mn×p, xi = {xi1, xi2 . . . , xip} where i = 1, 2, . . . , n, j =

1, 2, . . . , p and yi = {y1, y2 . . . , yn}. Also, β is (p×1) coefficient vector and n represents the

number of observation. In here, we assume that ηijr has Student-t distribution in order to make

a robust model, η ∼ St(η|0, ν, τ) where ν is degree of freedom, τ represents the scale and

i = 1, 2, . . . , n, j = 1, 2, 3, . . . p. Where zijr represents the observed value for n observation, p

variables and r = 1, 2, . . . , R is the number of replications. Both λ and τ are independent.

In Bayesian framework, prior distribution plays a crucial role for building the model. Particu-

larly, mixing model such as high dimensional multivariate regression with measurements error

model require a set of prior distributions for fitting regression coefficients. Firstly, we formulate

the likelihood function as follows,

L(Θ;X, z) = (λ)n/2 exp

{
−λ

2
(y −XB)′I(y −XB)

}
p∏
j=1

n∏
i=1

R∏
r=1

τ
1
2 δ

1
2
ijr exp

{
−τδijr

2
(zijr − xij)2

}( ν
2

ν
2

Γ(ν
2
)
(δijr)

ν
2
−1 exp

{
−ν

2
δijr

})
,

(5.3)

where Θ is a set of unknown parameters Θ = (B, τ, λ, φ, ζ, ν, δ) , X = (1, X) is the matrix of

unobserved data, B = (α,β) and (α,β) ∈ Rp+1 and δ is scale of prior degree parameter ν.

We have described above and considered that measurement error model has robust modelling

follows has Student-t distribution. We use hierarchical structure of Student-t distribution as

explained in Section 2.3. In the following sections, posterior distribution is described based

on shrinkage prior distributions in order to overcome the issue of high dimensional data and

measurements error in covariates variables.
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5.2.2 The Model with hNiP Prior Distributions

5.2.2.1 The hNiP Prior Distributions for βi

In this part of our study, we utilize a prior distribution as convenient flat distribution for both

error model and measurement error model which is gamma distribution. However, the main

difference in our model is using of shrinkage prior distributions for regression coefficients. The

prior distribution of the parameters is as follows,

π(α, β, λ, τ, ψ, κ, ν) =
dcττ

Γ(cτ )
τ cτ−1 exp {−dττ}

(
baνν

Γ(aν)
νaν exp {−νbν}

)
baλλ

Γ(aλ)
λaλ−1 exp {−bλλ}

p+1∏
j=1

ψ
1
2
j exp

(
−1

2
ψjβ

2
j

)
√

2π
κjb
−κjψ

κj−1
j

κc−1
j dc exp(−κjd)

Γ(c)
. (5.4)

The prior distribution for coefficient βi is scale mixture of normal distribution based on hNiP

prior as defined in Section 3.2.1. We will discus this in the later section in details. aν , cτ and

aλ represent the shape parameters of gamma distribution and bν , bλ, dτ represents the scale pa-

rameters for gamma distribution as prior distribution for all ν, λ, τ, respectively.

π(Θ|y, z) ∝ π(Θ)π(y|X,Θ),

The posterior distribution under hNiP methods can be described as follows:

π(Θ|y, z) = λn/2 exp

{
−λ

2
(y −XB)′I(y −XB)

} p∏
j=1

n∏
i=1

R∏
r=1

τ
1
2 δ

1
2
ijr exp

{
−τδijr

2
(zijr − xij)2

}
(

ν
2

ν
2

Γ(ν
2
)
(δijr)

ν
2
−1 exp

{
−ν

2
δijr

}) dcττ
Γ(cτ )

τ cτ−1 exp {−dττ}
(

baνν
Γ(aν)

νaν exp {−νbν}
)

baλλ
Γ(aλ)

λaλ−1 exp {−bλλ}
p+1∏
j=1

ψ
1
2
j exp

(
−1

2
ψjβ

2
j

)
√

2π
κjb
−κjψ

κj−1
j

κc−1
j dc exp(−κjd)

Γ(c)
. (5.5)

The full conditional distribution of unobserved variables xi is presented by Equation 5.6 and we

update the unobserved covariates based on it. The full conditional distribution of unobserved

variable is given in Equation 5.6 and it is general formulation of any types of prior which will
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be applied in the Bayesian regression with measurements error model, so the full conditional

distributions is

xi ∼ N

(
xi

∣∣∣∣(λββ′
+ τ(

R∑
r=1

δijr)Ip)
−1
(
λβ(yi − α) + τ(

R∑
r=1

δijrzijr)
)
, (λββ

′
+ τ(

R∑
r=1

δijr)Ip)

)
.

(5.6)

The Gibbs sampler will be used to update the parameters for this hNiP modelling. The param-

eter for second layers has Truncated Gamma TrGa distribution which is bounded from above.

The parameters ψ and κ are hyperparameters prior of the regression coefficients βj in the case

relying on hNiP distribution. Where j = 1, 2 . . . p+ 1.

The full conditional posterior distribution of scale of normal distribution is ψj, which is given

by,

ψj ∼ TrGa
(
ψj

∣∣∣∣b0, κj +
1

2
,
β2
j

2

)
, (5.7)

and, the full conditional posterior distribution of the third layer of hNiP prior κ is,

κj ∼ Ga
(
κj

∣∣∣∣c+ 1, log

(
b0

ψj

)
+ d

)
. (5.8)

The full conditional posterior distribution for regression coefficients B is as follows,

B ∼ N
(
B
∣∣µβ,Ω−1

β

)
, (5.9)

where µβ = λΩ−1
β X

′
y , Ωβ = (λX ′X +Σψ) and Σψ is a matrix of size (p+1)× (p+1) and

the diagonal of this matrix is equal to {ψ1, ψ2 . . . , ψp+1} and α ∈ B.

The posterior distribution of δijr is given by,

δijr ∼ Ga
(
δijr
∣∣ν + 1

2
,
ν + τ(zijr − xij)2

2

)
. (5.10)

The full conditional distribution of measurements error model τ follows the Gamma distribu-

tion follows,

τ ∼ Ga

(
τ
∣∣c+

RNp

2
, d+

1

2

( R∑
r=1

p∑
j=1

n∑
i=1

δijr(zijr − xij)2
))

. (5.11)
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We use Metropolis-Hastings algorithm (Appendix A.1.2) for updating parameter degree of free-

dom ν and the full conditional distribution is

π(ν|rest) ∝

(
ν
2

Rnpν
2

(Γ(ν
2
))Rpn

(
n∏
i=1

p∏
j=1

R∏
r=1

(δijr)
ν
2
−1) exp

{
−ν

2

n∑
i=1

p∑
j=1

R∑
r=1

δijr

})
(

baνν
Γ(aν)

νaν exp(−νbν)
)
.

(5.12)

The full conditional posterior distribution of error model λ is

λ ∼ Ga
(
λ

∣∣∣∣aλ +
n

2
, bλ +

1

2
(y −X ′B)′I(y −X ′B)

)
, (5.13)

where all parameters are described previously.

5.2.3 The Model with ReB-hNiP Prior Distributions

In this section we utilize Rescaled Beta of hierarchical scale mixture of normal distribution

ReB-hNiP as discussed in section 3.2.2.

5.2.3.1 The Prior Distributions (ReB-hNiP Prior for βi)

The prior distributions for the unknown parameters Θ = {α, βi, λ, τ, ψi, κi, ν} are defined as

follows,

π(Θ) =
dcττ

Γ(cτ )
τ cτ−1 exp {−dττ}

(
baνν

Γ(aν)
νaν exp {−νbν}

)
baλλ

Γ(aλ)
λaλ−1 exp {−bλλ}

p+1∏
j=1

ψ
1
2
j exp

(
−1

2
ψjβ

2
j

)
√

2π
κjb
−κj
0 ψ

κj−1
j

e−1
0

B(a, b)

(
κj
e0

)a−1(
1− κj

e0

)b−1

. (5.14)

The posterior distribution on unknown parameters π(Θ|y, z) using Bayesian framework is de-

fined as follows,

π(Θ|y, z) ∝ π(Θ)π(y|X,Θ). (5.15)

100



CHAPTER 5. MEASUREMENT ERROR WITH SHRINKAGE PRIOR

where π(Θ) is the prior distribution and π(y|X,Θ) is likelihood.

Hence, combining the ReB-hNiP shrinkage prior π(Θ) and the likelihood π(y|X,Θ), we can

obtain the posterior distribution of unknown parameters as follows,

π(Θ|y, z) = λn/2 exp

{
−λ

2
(y −XB)′I(y −XB)

} p∏
j=1

n∏
i=1

R∏
r=1

τ
1
2 δ

1
2
ijr exp

{
−τδijr

2
(zijr − xij)2

}
(

ν
2

ν
2

Γ(ν
2
)
(δijr)

ν
2
−1 exp

{
−ν

2
δijr

}) dcττ
Γ(cτ )

τ cτ−1 exp {−dττ}
(

baνν
Γ(aν)

νaν exp {−νbν}
)

baλλ
Γ(aλ)

λaλ−1 exp {−bλλ}
p+1∏
j=1

ψ
1
2
j exp

(
−1

2
ψjβ

2
j

)
√

2π
κjb
−κj
0 ψ

κj−1
j

e−1
0

B(a, b)

(
κj
e0

)a−1(
1− κj

e0

)b−1

.

(5.16)

The full conditional distribution of unobserved variables xi updated based on Equation 5.6.

In order to compute the posterior distribution, we find the full conditional distribution for un-

known parameters which they presented in the following equations.

The parameters ψ and κ are hyperparameters prior of the βj when using ReB-hNiP distribu-

tion. The full conditional posterior distribution for ψj is given by:

ψj ∼ TrGa
(
ψj
∣∣b0, κj +

1

2
,
β2
j

2

)
. (5.17)

The full conditional posterior distribution of hyperparameter of the coefficients κj is

π(κj) ∝ bκi0 ψ
κi−1
j

e−1
0

B(a, b)

(
κj
e0

)a−1(
1− κj

e0

)b−1

, (5.18)

where j = 1, 2, . . . , p+1, and the values of κj should satisfy the condition 0 < κj ≤ e0 and a =

b = 1
2
, where e0 is recaled parameters for ReB-hNiP shrinkage prior distribution. This is im-

plemented utilizing Metropolis Hasting algorithm as detailed in Appendix A.1.2.

The following parameters have the same posterior distribution, therefore we only represent

them mathematically in the following equation. The full conditional posterior distribution of

regression model B parameter is corresponding on Equation 5.9, with respect to ReB-hNiP
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model for updating the Σψ is a matrix of size (p+1)× (p+1) , and the diagonal of this matrix

is equal to {ψ1, ψ2 . . . , ψp+1} .

δijr ∼ Ga
(
δijr

∣∣∣∣ν + 1

2
,
ν + τ(zijr − xij)2

2

)
. (5.19)

τ ∼ Ga

(
τ

∣∣∣∣c+
RNp

2
, d+

1

2

R∑
r=1

p∑
j=1

n∑
i=1

δijr(zijr − xij)2

)
. (5.20)

Metropolis-Hastings algorithm (Appendix A.1.2) is used for updating ν and the full conditional

distribution is described in the Equation 5.21.

π(ν|rest) ∝
ν
2

Rnpν
2

(Γ(ν
2
))Rpn

(
n∏
i=1

p∏
j=1

R∏
r=1

(δijr)
ν
2
−1) exp

{
−ν

2

n∑
i=1

p∑
j=1

R∑
r=1

δijr

}
(

baνν
Γ(aν)

νaν exp(−νbν)
)
.

(5.21)

5.2.4 The NEG prior distributions

In this section, we establish the Bayesian model construction, prior distribution and the full

conditional distribution based on NEG prior distribution as formulated in Equation 3.30.

5.2.4.1 The Prior Distributions of NEG Prior for βi

The prior distributions for all parameters are as follows:

π(φ, β, λ, τ, ν) =
dcττ

Γ(cτ )
τ cτ−1 exp {−dττ}

(
baνν

Γ(aν)
νaν exp {−νbν}

)
baλλ

Γ(aλ)
λaλ−1 exp {−bλλ}

p+1∏
j=1

1

φ
1
2
j

exp

{
−1

2
B′j

1

φj
Bj
} p+1∏

j=1

(ζj exp(−φjζj))
p+1∏
j=1

( 1
γ2

)ω

Γ(ω)
ζω−1
j exp

{
− ζj
γ2

}
,

(5.22)

where ΣΦ is matrix of size (p+1)×(p+1) and the diagonal of this matrix is equal to { 1
φ1
, 1
φ2
. . . , 1

φp+1
}.

The prior distribution of coefficient parameters βi is Normal Exponential Gamma. Therefore
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the usual formula of prior distribution is π(Θ|y, z) ∝ π(Θ)π(Y |X,Θ).

The posterior distribution of the Bayesian regression with measurement error model is as fol-

lows:

π(Θ|y,X) =

λn/2 exp

{
−λ

2
(y −XB)′I(y −XB)

} p∏
j=1

n∏
i=1

R∏
r=1

τ
1
2 δ

1
2
ijr exp

{
−τδijr

2
(zijr − xij)2

}
(

ν
2

ν
2

Γ(ν
2
)
(δijr)

ν
2
−1 exp

{
−ν

2
δijr

}) dcττ
Γ(cτ )

τ cτ−1 exp {−dττ}
(

baνν
Γ(aν)

νaν exp {−νbν}
)

baλλ
Γ(aλ)

λaλ−1 exp {−bλλ}
p+1∏
j=1

1

φ
1
2
j

exp

{
−1

2
B′j

1

φj
Bj
} p+1∏

j=1

ζj exp(−φjζj)
p+1∏
j=1

( 1
γ2

)ω

Γ(ω)
ζω−1
j exp

{
− ζj
γ2

}
,

(5.23)

where the prior distribution of degree of freedom (ν) is follows Gamma distribution. We update

the unobserved covariates xi based on Equation 5.6.

NEG prior distribution have two order hierarchical hyperparameters. The ζ is the second or-

der, which should be updated before the first layer of scale mixture parameter. Then, the full

conditional distribution is as follows:

ζj ∼ Ga
(
ζj

∣∣∣∣ω + 1, (φj +
1

γ2
)

)
. (5.24)

The first order hierarchical hyperparameters is φ which cannot be represented by usual proba-

bility distribution function. Therefore, Metropolis-Hastings algorithm (Appendix A.1.2) is used

for updating φj.

The proposal distribution is Gamma with shape equal to (1+φj×pbφ) and rate equal to (pbφ) .

We are fixing the mode at the current value and use pbφ to control acceptance rate.

π(φj|rest) ∝ φ
− 1

2
j exp

{
−

(
β
′
jβj

2φj
+ ζjφj

)}
. (5.25)

We are updating a vector of φj where (j = 1, 2, . . . , p+ 1.
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p+1∏
j=1

π(φj|rest) ∝
p+1∏
j=1

φ
− 1

2
j exp

{
−

(
β
′
jβj

2φj
+ ζjφj

)}
. (5.26)

Therefore, the full conditional distribution of the regression coefficients B based on the NEG

prior updated by Equation 5.9. The only deference here are using µβ = λΩ−1
β X

′
y , Ωβ =

(λX ′X + ΣΦ) and ΣΦ is matrix by (p + 1) × (p + 1) which diagonal of this matrix is

equal to { 1
φ1
, 1
φ2
. . . , 1

φp+1
}. The full conditional distributions for τ, λ, δ and ν have similar

formulation as in Equations 5.11, 5.13, 5.10 and 5.12 respectively. Thus, we will not repeat the

full conditional distribution for those parameters named above.

5.2.5 Synthetic Data

In order to examine our model numerically, some dataset sample are generated. The simulated

data of the multivariate Bayesian regression with measurement error model is as follows:

Y = α +Xβ + ε, (5.27)

where random error ε ∼ N(.|0, λ−1) and V ar(ε) = 1
λ
, where unobserved data is xi and

Yi ∈ <, and the size of xi = {xi1, xi2 . . . , xip} where i = 1, 2, . . . , n, j = 1, 2, . . . , p .

α is intercept parameter and β is (1 × p) coefficient matrix and p represents the number of

parameters. Measurement error model part is represented as follows:

Zir = Xi + ηir, (5.28)

where η ∼ St(η
∣∣0, τ, ν) and ν represents the degree of freedom, τ refers to scale parameter

and Z represents the size n× p×R of observed variables and α = β1 for all datasets.

We simulated the first dataset (D1) under the below values for all parameters and coefficients

parameters the values are as follow:

α = −5, β3 = 0.25, β6 = −0.5, β8 = 1, β16 = −3, β20 = 0.75, β24 = 0.5, β27 = −1.5, β32 =

1.4, β34 = 1.25, β39 = −2, β40 = 1.5 and the rest values of βj = 0.
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Thus, the number of coefficients parameters p = 40, sample size n = 30, the replication for

each samples R = 25, λ = 10 represents the precision of noise of the model, τ = 15 is

precision of measurement error.

The second dataset (D2) is simulated where the values of the non-zero coefficients parameters

are as follows:

(α = 10.25, β6 = −0.636, β7 = 1.61, β12 = −17.74, β14 = 10.80, β16 = 9.45, β29 =

−3.406, β32 = 7.305, β33 = −1.97, β40 = 1.89, β45 = −1.97, β47 = 3.74, β49 = 6.56, β57 =

−5.42, β59 = 2.497, β65 = 1.60, β81 = 0.409.

The number of coefficients parameters p = 80, sample size n = 50, the replication for each

sample R = 25, λ = 10 represents the precision of noise of the model, τ = 15 represents the

precision of measurement error.

In order to show the effect and performance of our proposed shrinkage prior distribution, we

also generated two different sample size datasets with three different signal-noise error for each

of them. We describe these data as follows:

The dataset (D3): In this dataset the sample size is n = 30 and p = 40, where α = 40.25,

β9 = 1.460, β14 = 0.252, β36 = −4.819, β41 = −7.603 and the design matrix X was sim-

ulated under normal distribution mean of 2 and the variance of 25. Based on these informa-

tion we also simulated three different datasets D3I, D3II and D3III where the error mode and

measurements error model are (λ = 10, τ = 15), (λ = 0.1, τ = 15) and (λ = 0.1, τ =

1.5) respectively.

The dataset (D4): the sample size is n = 50 and p = 80. We also generated three different

datasets based on coefficients regression of α = 40.25, β8 = −3.625, β48 = 0.612, β52 =

0.879, β54 = 1.042, β67 = −2.424, β73 = 4.618, β74 = 1.115, β81 = 1.975 and the design

matrix X was simulated under normal distribution mean = 2 and the variance = 25. Based

on these information we have simulated three different dataset D4I, D4II and D4III where the

error mode and measurements error model are (λ = 10, τ = 15), (λ = 0.1, τ = 15) and (λ =

0.1, τ = 1.5) respectively.
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5.2.6 Hyperparameters Selection on Linear Regression with Measurements
Error Model

This section highlights the main results that obtained from simulated data as described in the

former section. The simulated data is used in high dimensional multivariate Bayesian regression

with measurement error model. In this part of current chapter, we utilised WAIC in Equation

2.19 after it has modified, to detect the best tuning parameters or the best bounds range for

hNiP, ReB-hNiP and NEG Bayesian shrinkage priors that stated in Chapter 3. As we men-

tioned previously, we have two different sample size for simulated datasets that implemented

i.e dataset D1 and D2 (see Section 5.2.5), with several candidate hyperparameter values for all

shrinkage priors hNiP, ReB-hNiP and NEG, in order to choose the minimum values of WAIC

based on high dimensional multivariate Bayesian regression with measurement error model. In

this section, we run model for M = 30000 iterations and kept 50% of iterations, where the

prior values of the parameter the error model is the same as stated in the previous chapter for

both λ is aλ = 2, bλ = 0.62 and for measurement error τ is aτ = 2, bτ = 0.62 to have a flat

prior distribution. Table 5.1 shows the summarized figures of tuning hyperparameters selection

Table 5.1: Hyperparameters selection in the Bayesian regression with Measurements er-
ror model based on both ReB-hNiP and hNiP shrinkage prior distributions with different
prior values, for dataset where n = 30, p = 40, R = 25 and the number non-zero coefficients is
equal 9. No.β̂ represents the number of the estimated non-zero coefficients and e∗0, c

∗ presents
the range bounds on hyperparameters which every upper bounded b0 has typical limitation
. e0 min illustrates the value of rescaled beta for minimum value of WAIC for ReB-hNiP
model. c min represent the value of hyperparameter for hNiP model has minimum value of
the WAIC criteria.

hNiP ReB-hNiP
b0 No.β̂ c∗ WAIC cmin e∗0 No.β̂ WAIC e0 min

n = 30, p = 40, R = 25

100 7 0.1 ≤ 15 -145.3 6.8 2-15 7 -144.27 14
500 8 0.1 ≤ 15 -148.43 2.8 2-13 8 -146.81 10

1000 8 4 < c∗ ≤ 15 -147.56 10.2 2-15 8 -145.91 13
5000 9 0.1 ≤ 2.5 -152.38 5.8 2-15 9 -152.89 11
10000 9 0.1 ≤ 2.5 -153.23 8.4 2-15 9 -154.26 12

based on the minimum values of WAIC for both hNiP and ReB-hNiP Bayesian shrinkage prior

to the first dataset D1. The number of estimated non-zero regression coefficients represents

by No. β̂. For each upper bounds parameter b0, we have a range of values for the optimal hy-
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perparameter for both hNiP and ReB-hNiP shrinkage prior distribution that leads to obtaining

the best set of variables selection that has minimum values of WAIC criteria. e∗0, c
∗ presents

the range bounds on hyperparameters for hNiP and ReB-hNiP respectively, with specific upper

bounded b0 . Each hyperparameter has a typical limitation which leads to the best performance

for each bound to fit the coefficients.

Figure 5.1 shows the trend of WAIC values; in the top panel, the best bounds hyperparameter

values c, d and of upper bounds b0, parallel with bottom panel so as to standardize hyperparam-

eters values of hNiP for satisfactory variables selection. Results of Table 5.1 and Figure 5.1 can

help us to make decision about variables selection. We have achieved the number of non-zero

coefficients in the simulation data which are exactly the same as estimated non-zero regression

coefficients depending on the range limits hyperparameters. Also, we have got approximately

lower values of the WAIC compared with other values of hyperparameters, when the upper

bounds of prior distribution is large enough, such as b0 = 5000 or 10000 and bounds parame-

ter for hNiP shrinkage prior distribution between c = 0.1 and 2.5. However, it is clear from the

plots that when the value of upper bounds b0 is lower than 5000 it leads to under estimated.
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Figure 5.1: Hyperparameter parameters selection for the hNiP prior distribution, where top
panel shows the WAIC values represented by black lines with black-circle and green-solid-line
refers to average of WAIC. The bottom panel displays three lines, where blue solid line indicates
the number of non-zero coefficients in the data D1. Black-dash-dot represents the number of es-
timated coefficients and the purple dash line represents different values of upper bounds b0 and
parallel with hyperparameters c, d and different values of upper bounds parameters b0.
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As we can notice, the trend of WAIC has slightly fluctuated and declined with increased up-

per bounds b0, then suddenly fell-down with large values of upper bounds, and the plots of the

number estimated parameters increased as much as b0 rise up. In this example, the hyperpa-

rameters is bounded from 0.1 ≤ c ≤ 2.5, because choosing any value is out of this range, will

lead to coefficients aggressively shrink toward zeros, especially when b0 = 10000.
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Figure 5.2: Hyperparameters selection for NEG shrinkage prior and the best range of WAIC
criteria. The the panel shows two different lines, where WAIC is represented by black line
with black circle and green solid line refers to the average of WAIC. The bottom panel displays
three lines, where green solid line indicates the number of true non-zero coefficients in the
simulation data, where n = 30 and p = 40. Black-dash-dot line represents the number of
estimated coefficients and the blue dash line represents different values of upper bounds γ and
parallel with hyperparameters ω.

On other hands, the results of the model based on NEG prior is shown in the Figure 5.2 which

the plots in the top panel is fluctuated for the WAIC values with different values for the both

hyperparameters ω, γ. Therefore, as can be seen in Figure 5.2 the line of estimated non-zero

regression represented by black-dash dot line are always under the green solid line which refers

to the number of non-zero coefficients in the simulation dataset. This results indicates that fitting

model by using NEG shrinkage prior is under estimated for several hyperparameter values for

both ω, γ. Furthermore, in general, the variable selection for some used values in this chapter

based on regression model with robust measurement error model are more stable, that is, the
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number of non-zero coefficients are close to each other for several hyperparameters, compared

with the results of regression model based on NEG prior distribution in the previous chapter.
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Figure 5.3: Hyperparameters parameters selection for ReB-hNiP; where the top panel shows
two different lines where WAIC is represented by black lines with black-circle and green
solid line refers to average of WAIC. The bottom panel displays three lines, where green solid
line indicates the number of non-zero coefficients in the simulation data, where n = 30, p =
40. Black-dash-dot represents the number of estimated coefficients and the blue dash-line rep-
resents different values of upper bounds b0 and parallel with hyperparameters e0.

Table 5.2 includes summarized results of the minimum values of WAIC and the number of

estimated parameters for both hNiP and ReB-hNiP shrinkage prior for dataset D2, sample

of n = 50, p = 80. We discussed in the case D1, the value of WAIC decreases while the value

of upper bounds b0 increases in restriction bounds for both hyperparameters including rescaled

beta e0 and gamma prior c, d as second layer of scale mixture normal distribution. To sup-

port our hyperparameters calibration based on this case example, we show some results in the

following plots. Figures 5.4, 5.5 and 5.6 shows the plots of the best range values of hyperpa-

rameters for all Bayesian shrinkage priors used in this section which have minimum values of

WAIC. Both panels in each figure show the relation between changing the value of the upper

bounds of hNiP shrinkage prior, hyperparameters and the best range of WAIC values criteria.
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Table 5.2: Summarized Hyperparameters selection in the Bayesian regression with Measure-
ments error model based on both ReB-hNiP and hNiP shrinkage prior distributions with dif-
ferent prior values for dataset, where n = 50, p = 80, R = 25 and the number non-zero co-
efficients is equal 17. No.β̂ represents the number of the estimated non-zero coefficients
and e∗0, c

∗ presents the range bounds on hyperparameters which every upper bounded b0 has
typical limitation. e0 min illustrates the value of rescaled beta for minimum value of WAIC for
ReB-hNiP model. c min represent the value of hyperparameter for hNiP model has minimum
value of the WAIC criteria.

hNiP ReB-hNiP
b0 No.β̂ c∗ WAIC cmin e∗0 No.β̂ WAIC e0(min)

n = 50, p = 80

100 16 1.5 -313.40 0.45 2 - 15 16 -312.03 4
500 17 1.5 -316.69 1.32 3 - 15 17 -314.74 8
1000 17 1.5 -317.89 0.72 4 - 13 17 -321.94 7
5000 17 1.5 -326.03 0.78 5 - 13 17 -326.87 3

10000 17 1.5 -325.20 1.08 6 - 12 17 -323.81 4
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Figure 5.4: Hyperparameters parameters selection for hNiP; where the top panel shows two dif-
ferent plots where WAIC is represented by black lines with black-circle line and green solid line
refers to average of WAIC. The bottom line displays three lines, where blue solid line indicates
the number of non-zero coefficients in the simulation data, where n = 50, p = 80. Black-dash-
dot represents the number of estimated coefficients and the blue dash line represents different
values of upper bounds b0 and parallel with hyperparameters c, d.
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Figure 5.5: Hyperparameters parameters selection for NEG; the top panel shows two different
lines, where WAIC is represented by black lines with black-circle and green solid line refers to
average of WAIC. The bottom panel displays three lines, where green solid line indicates the
number of non-zero coefficients in the simulation data where n = 50, p = 80, R = 25. Black-
dash-dot represents the number of estimated coefficients and the blue dash line represent differ-
ent values of upper bounds γ and parallel with hyperparameters ω.

A summary of first part of this chapter, the hyperparameters selection based on Bayesian re-

gression model with measurements error model which are similar to the previous procedure

in the Chapter 4. Consequently, we can use the bonds range of the hyperparameters c for

hNiP where c ∈ [0.1, 1.5] as the best closed range interval values with respect of the ex-

cepted value of second layer of shrinkage prior E(κ) = c
d

= 1.5, and the upper bounds

parameters b0 ∈ (5000, . . . , 10000). Also, the best range value of ReB-hNiP shrinkage prior

distribution is as follows; hyperparameter e0 ∈ [4, 7] which represents closed set, and upper

bounds parameters b0 ∈ (5000, . . . , 10000), that is, choosing any values from 5000 till 10000.

Although of the number of non-zero coefficients are slightly close together for some candidate

value for NEG shrinkage prior, we still have to address this method in terms of the stability and

convergences for very close values to zero. Therefore, we will not use it for comparison in the

following section.
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Figure 5.6: Hyperparameters parameters selection for ReB-hNiP; the top panel shows
two different lines, where WAIC is represented by black lines with black-circle and
green solid line refers to average of WAIC. The bellow panel displays three lines where
green solid line indicates the number of non-zero coefficients in the simulation data
where n = 50, p = 80, R = 25. Black-dash-dot represents the number of estimated coefficients
and the blue dash line represent different values of upper bounds b0 and parallel with
hyperparameters e. In bottom panel, black triangle presents the prior values of γ which has
minimum WAIC.

5.2.7 Numerical Results of Simulated Data

In this section, we will analyse the MCMC results for 100 replication posterior distributions

for two different sample sizes that includes all scenarios for datasets D3 and D4, which we ex-

plained in Section 5.2.5. The linear regression model with measurements error model based

on our proposed shrinkage priors are implemented. The MCMC algorithm have been run

for M = 20000 iterations and kept 40% of iterations. The prior values for λ and τ are similar

for both cases, in which the values for error of model λ are aλ = 2, bλ = 0.62 and for mea-

surement error τ are aτ = 2, bτ = 0.62. The parameter of the degree of freedom ν belongs

to the Student-t distribution, which is used as scale mixture Normal distribution for measure-
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ment error. The values of hyperparameters for all hNiP, ReB-hNiP priors are chosen depending

on the appropriate values in the best bounds range that we have obtained in the previous sec-

tion. Furthermore, the prior values of hyperparameters κ of c = 0.33 and d = 0.22 for all

case scenarios in the dataset D3 where n = 30, p = 40 and for the sample size for dataset D4

is n = 50 and p = 80. Also, b0 = 10000 is the upper bounds parameter for hNiP and ReB-

hNip shrinkage prior distribution, and the values of rescaled beta parameter is e0 = 7. Posterior

mean values based on Bayesian shrinkage priors are computed and compared by using average

of 100 replication measures including sensitivity, specificity and MSE which are displayed in

Table 5.3.

Table 5.3: Results average of 100 replication MCMC sampler for some proposed Bayesian
shrinkage hNiP andReB-hNiP. The measures and performance used for be comparison between
them are Sensitivity, Specificity and MSE. Several cases scenario based on signal to noise error
are considered for both datasets D3 and D4. The number of iterations was equal to M =
20000. λ represents the error model and τ is measurement error model.

Dataset hNiP ReBhNiP
λ, τ Sensitivity Specificity MSE Sensitivity Specificity MSE

λ = 10, τ = 15 100% 99.90% 0.0158 100% 100% 0.0065
n = 30, p = 40 λ = 0.1, τ = 15 100% 100% 2.0273 100% 100% 3.181

λ = 0.1, τ = 1.5 100% 100% 0.0300 100% 100% 0.0588

λ = 10, τ = 15 100% 100% 0.0019 100% 99.94% 0.0024
n = 50, p = 80 λ = 0.1, τ = 15 100% 100% 0.150 100% 100% 0.790

λ = 0.1, τ = 1.5 100% 100% 0.0255 97.57% 99.69% .0644

The MCMC results based on the hNiP shrinkage prior show that hNiP is outperforming com-

pared with similar proposed methods of the ReB-hNip for both datasets and cases scenario of

the different noise model. We compared models through sensitivity, specificity and measures of

mean square error as shown in Table 5.3 by using posterior mean values. For instance, the av-

erage of sensitivity for the dataset D3, where n = 30, p = 40 are equal to 100% with for cases

scenarios for both λ and τ. In this situation, if sensitivity and specificity for typical datasets are

identical, we compare MSE of the them to investigate the performances, either ReB-hNiP or

hNiP prior distribution is used. For example, the MSE for dataset (n = 30 and p = 40) where

error mode λ = 0.1 and measurement error τ = 1.5 is equal to 0.03 for hNiP model and it is

smaller than the MSE for the same dataset based on ReB-hNiP equal to 0.0588. This indicated
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that model based on hNiP give better results than ReB-hNiP. Variables selection through both

methods satisfactory, because both sensitivity, specificity are approximately close to 100% and

is telling us that non-zero regression coefficient and zero coefficients estimated exactly in this

section.

On the other hand, we can notice that when there is large difference between error model and

measurements error model, for example, when λ = 0.1 and τ = 15, the variables are selected

completely but the average of the MSE are larger than MSE for different datasets with closer

value for both, the error model and measurements error model. For example, the values of MSE

is equal to 0.0019 for dataset with λ = 10 and τ = 15, but MSE is equal to 0.15 for similar

datasets with λ = 0.1 anf τ = 15 in same sample size. This indicated that MSE for noise

datasets is larger than other datasets, and it takes longer time to convergence to the true values.

Therefore, the MCMC outcomes for the measurement error model has better results based on

stander linear regression model, which we implemented in the previous chapter.

Table 5.4: Comparing computation time of Bayesian regression with measurements error model
based on both ReB-hNiP and hNiP shrinkage prior distribution for different datasets. The num-
ber of iteration of all models is equal to M = 20000.

Models
Datasets hNiP ReB-hNiP

n = 30, p = 40 7 Minutes 12 Minutes

n = 50, p = 80 49 Minutes 50 Minutes

Regarding to the time of computation for measurements error with linear regression model,

hNiP prior is faster than ReB-hNiP prior. Table 5.4 displays the times of computing every

models for different datasets and Bayesian shrinkage priors, where the number of iteration

is M = 20000 and we kept 50% of M, for all models in PC of 8 GB RAM and processor of

i7 Double CPU 2.5 GHz. As we have discussed, the procedure of selecting hyperparameters

values for each proposed Bayesian shrinkage prior distributions were done by WAIC criteria.

Moreover, we applied MCMC algorithm based on the appropriate values in the best bounds

range (see Section 5.2.6) to know the performance of each utilised shrinkage prior distributions

in the last section.
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Now, we are going to demonstrate the results in several ways for a particular dataset that utilised

previously, in order to check our modelling through graphical posterior predictive distribution.

We will check, to know how the chain of the parameters are converged to true values. Con-

sequently, we have chosen one sample of MCMC results from replication sampler for datasets

and case scenarios when using Bayesian linear regression with measurement error model, par-

ticularly, the datasets D4 and all cases scenarios.

174.50 174.75 175.00 175.25

T = sd
T(yrep)

T(y)

(a) sd

47.2 47.4 47.6 47.8 48.0

T = mean
T(yrep)

T(y)

(b) mean

Figure 5.7: Posterior predictive distributions based on the hNiP shrinkage prior distribution, for
the dataset when λ = 10, τ = 15 and sample size n = 50 and p = 80. Black vertical lines is
a test statistics in panel (a) is standard division sd, and in panel (b) is mean. The brighter region
on the panel is a histogram of test statistics for posterior replication.

Figure 5.7, 5.8 and 5.9 shows histograms of the posterior predictive distributions based on the

procedure that described by Gelamn et al (2013). These graphs is produced using the bayesplot

package Gabry (2017), in R programming. The black vertical lines represent the test statistics

for true dependent variables, and we used both mean and standard division as test statistics .

Figures 5.7 shows the graphical posterior predictive distribution for MCMC results of hNiP

model for D4 dataset and for case scenario λ = 10 and τ = 15. Figures 5.8 and 5.9 are con-

ducted for dataset explained in D4 for cases scenarios when λ = 0.1 and τ = 15 for both

utilised hNiP and ReB-hNiP shrinkage prior respectively. We see that, based on the results of

theses the graphs that Bayesian regression with measurement error model using our proposed

shrinkage prior distribution are satisfactory as the black vertical lines in all plots are moderated
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in the middle of the histograms of the posterior predictive distribution.
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Figure 5.8: Posterior predictive distributions based on the ReB-hNiP shrinkage prior distribu-
tion, for the dataset when λ = 0.1, τ = 15 and sample size n = 50 and p = 80. Black vertical
lines is a test statistics in panel (a) is standard division sd, and in panel (b) is mean. The brighter
region on the panel is a histogram of test statistics for posterior replication.

To investigate the stability and convergences of the trace plots of non-zero regression coeffi-

cients, The traces are presented in the Figures 5.10 which it is clearly show the coefficients are

convergent for sample size n = 50, p = 80 and R = 25. Where λ = 0.01 and τ = 15.
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Figure 5.9: Posterior predictive distributions based on the hNiP shrinkage prior distribution, for
the dataset D4 when λ = 0.1, τ = 15, where sample size n = 50 and p = 80. Black vertical
lines is a test statistics in panel (a) is standard division sd, and in panel (b) is mean. The brighter
region on the panel is a histogram of test statistics for posterior replication.
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Figure 5.10: Trace plots for non-zero coefficients β for regression model with measurements
error based on ReB-hNiP shrinkage priors, where solid-red lines refers to true values of coef-
ficients, black line represents the traces of estimated regression coefficients. The D4 datasets
with sample size is n = 50, p = 80, R = 25, and error mode λ = 0.1 and measurements
error τ = 15.
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5.3 Dynamic Bayesian Network with Measurement Error Model

5.3.1 Introduction

Probabilistic Graphical Models (GMs) is a type of statistical methodology which has been

widely used over the past few decades. With this kind of methodology, the estimation of gene

regulatory networks (GRNs) is done by graphical models. Thus, GRNs play a crucial role in dif-

ferent cellular and biological systems, which is beneficial for discovering and treating diseases.

Additionally, a graphical model studies the relationship and interactions between covariates;

typically this relationship is described by the probability between variables and is presented in

the graph. Common dataset that are used in this kind of modelling are gene expression data,

because this methodology has developed significantly to be able to investigate diseases. Gene

expression data are divided into two main types that are utilised for estimation and learning the

GRN structure. The first one is time series data where data (gene expression levels) are mea-

sured at different time points sequentially, and the second one is steady-space that measures data

at steady-space levels for several samples (Bar-Joseph, 2004; Fan et al., 2017). Furthermore,

the network model can be studied by time series data (time crosses data) due to the information

of dynamic features.

Constructing the model of genetic regulatory networks from data, particularly genetic data, is

one of the main methods for inferring the interaction uncertainties between genes. It is known

that a general autoregression method for building gene networks is impractical because of the

naturally time-consuming inference of the model and also for obtaining results of a model under

study. Therefore, researchers have developed various computational methods for modelling

by different techniques, as we illustrated in the previous chapter. Consider that the dynamic

Bayesian network DBN is one of the most common statistical models to identify the advanced

interactions between genes, which are described by different kinds of genetic network models.

Thus, in this part of the chapter, we deal with a high-dimensional dynamic Bayesian network

model relying on an AR(1) structure and a measurement error model. In the usual DBN model,

it is assumed that variables are measured exactly, where it considers the data as observed without

error. However, in the situation of having measurement error within covariates, true variables do

not exist. In this case, we take into consideration that the variables are unobserved. We focus on
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a measurement error model which has replicated data and involves additional errors. Ignoring

measurement errors in modelling leads to misleading amounts of the link between response and

independent variables (Gilks, 1999).

Several wide-ranging studies cover the material about measurement error models that is pre-

sented in the first section of this chapter and also in the literature of studies related to sparse dy-

namic Bayesian network models. Furthermore, a number of studies for inferring the structure of

a DAG as explained in section 1.5.1 have been demonstrated, therefore we will deal with high-

dimensional data to learn the structure of the dynamic model in this thesis. Moreover, a number

of inference methods have been suggested to reduce and estimate the topology of a DAG. For

example, Murphy (2002) applied some Bayesian structure learning techniques for DBNs; the

BNT (Bayes Net Toolbox) is a package in Matlab used for this purpose. Meinshausen and

Bühlmann (2006) first applied LASSO to network inference that used cross-validation for se-

lection variables.

Opgen-Rhein and Strimmer (2007) proposed James Stein shrinkage prior, which is another

technique used in shrinking the coefficients of the autoregressive AR(1) model, . They showed

that this method outperformed many classical methods. The network construction is fixed by

constraining the edges in order to reduce the number of parameters. In addition, the partial

correlations are used in a selection of subsequent models. The methods in this model outper-

formed other methods in the case of having a high dimension and a small sample size. G1DBN

is another method for learning DBNs that depends on first-order conditional dependencies. This

was proposed by Lèbre (2009), who tested partial regression coefficients to reduce variables for

the first step. Therefore, this test was based on the t-test to obtain final networks and estimated

regression coefficients of the controlled network. Shojaie and Michailidis (2010) showed that

the LASSO is the only reliable variable selection technique under strict conditions. The adap-

tive lasso can consistently estimate the true parameters under standard regularity assumptions.

For more details about assumptions, see Section 4 of Shojaie and Michailidis (2010). They

considered these two penalties in order to discover a sparse estimate of the adjacency matrix,

that is, covariance matrix of a DAG, particularly variables that have the same inherent natural

ordering. Morrissey et al. (2011) used a semi-parametric spline model. It allowed for non-linear

connections to simultaneously network edge-selections reached by utilizing Gibbs variable se-

lection. They proposed a fully Bayesian set up for dealing with a smoothness parameter for
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spline regression. Fu and Zhou (2013) improved a LASSO-penalized likelihood method of

structure learning of Gaussian Bayesian networks (GBNs) and a block-wise coordinate descent

algorithm is taken into account in this model. They considered it as an issue in the general

situation, where the ordering of the variables is unknown.

From previous problems that were mentioned, another issue has arisen which is dealing with

a dataset that are suffering from high dimensionality, gene expression level as an example. In

addition, with such an issue, we cannot base it on the usual standard linear regression model

because the number of parameters G is much larger than the number of the observations n. In

the time series data G = p × p and n = T × p where T refers to time and p represents the

number of genes. The challenging task with this kind of problem is how to learn the model

structure under the assumption of sparsity, that is, establishing the graph network by a few

edges which represent the relationship between nodes (variables /genes).

To overcome this issue in this study, we have utilised our proposed Bayesian shrinkage prior

distribution which includes hNiP and ReB-hNiP, which are discussed in chapter 3, for estimat-

ing sparse coefficients. These prior distributions are heavy-tailed distribution and shrink the

regression coefficients close to zero. Thereby, our model construction is similar to Gaussian

model of Morrissey et al. (2010), but it differs through the methods of shrinkage. Furthermore,

two new kinds of Bayesian shrinkage prior distribution are used in order to learn about unknown

parameters, especially the coefficients matrix in our study. In the following sections, we present

the model framework, full conditional distributions, simulated data, and results of simulated

data. In section 5.3.10 we compare our proposed model with Morrissey et al. (2010).

5.3.2 Model Setup

In this section, we explain the framework of dynamic Bayesian networks with measurement

error model as we highlighted in section 1.5.2. A Bayesian approach has been used to estimate

unobserved variables and parameters. We will introduce our model in Equation 5.30 which

follows the autoregressive model, and Equation 5.31 represents measurement error model. DBN

model construction can be shown in terms of a directed acyclic graph, which has the joint
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probability as follows:

P (Y t|Y t−1) =

p∏
j=1

P
(
Y t
j |Pat−1

j (G)
)
. (5.29)

Where DBN are discussed in details in Section 1.5.2. The general form of the model can be

described as follows:

Y t = A+BY t−1 + εt, (5.30)

where εt ∼ N(ε|0, λ−1) represents the random error and the unobserved data is denoted by Y t ∈
Rp, where the size of Y t is (p× 1), t = 1, 2, 3, . . . , T is an unobserved variable and Y t

i =

{Y t
1 , Y

t
2 , . . . , Y

t
p } is a single value. The dimension of the coefficient matrix B is G = p ×

p which represents the interaction between variables (genes) and each vector of B denoted

by βi where zero denote absence of a relation between variables and non-zeros indicate a re-

lation between variables i and j, where i = 1, 2, . . . , p and j = 1, 2, . . . , p. Also, note that p

represents the number of variables (genes) and A is an intercept parameter that is a vector of

size p×1, where A = {α1, α2, . . . , αp}. The measurement error model is presented as follows:

X t
ir = Y t

i + ηtir, (5.31)

where the measurement error model ηtir has zero mean normal distribution and variance τ−1.

The likelihood function for both observed and unobserved variables is as follows:

L(Θ) =
T∏
t=2

λp/2 exp

{
−λ
2

(Y t − A−BY t−1)′I(Y t − A−BY t−1)

}
p∏
i=1

T∏
t=1

R∏
r=1

τ
1
2 exp

{
−τ
2

(X t
ir − Y t

i )2

}
,

(5.32)

where Θ represents the set of unknown parameters in the model.

5.3.3 The Prior and Posterior Distributions for ReB-hNiP Prior for βi

In this section, we establish the prior distributions for each parameter in our model, and then

full conditional distributions are presented. For the first case, we use ReB-hNiP as the prior

distribution of coefficients βij as we discussed in Chapter 3. We have used a Gamma dis-
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tribution as the prior for both the precision and the measurement error with shapes aλ, aτ and

scales bλ, bτ , respectively. The intercept αi has a flexible flat prior distribution, where Pα and A∗

are constant prior values for the intercept. R refers to the number of replications, T time points

and p represents the number of covariates. Also e0 is hyperparameter the rescaled Beta for κ

and b0 refers to the upper bounds hyperparameter. The prior distribution represents as follows:

π(α, β, λ, τ, ψ) =
baττ

Γ(aτ )
τaτ−1 exp {−bττ}

dcλλ
Γ(cλ)

λcλ−1 exp {−dλλ}

p∏
i=1

p∏
j=1

ψ
1
2
ij exp

(
−1

2
ψijβ

2
ij

)
√

2π
κijb

−κij
0 ψ

κij−1
ij

e−1
0

B(a, b)

(
κij
e0

)a−1(
1− κij

e0

)b−1

p∏
i=1

P
1
2
αi exp

{
Pα(αi − A∗)

2

}
q

1/2
α√
2π

exp

{
−qαA∗

2

}
.

(5.33)

Hence, the posterior distribution given by:

P (Θ|Data) =
T∏
t=2

λp/2 exp

{
−λ
2

(Y t − A−BY t−1)′I(Y t − A−BY t−1)

}
p∏
i=1

T∏
t=1

R∏
r=1

τ
1
2 exp

{
−τ
2

(X t
ir − Y t

i )2

}
baττ

Γ(aτ )
τaτ−1 exp {−bττ}

dcλλ
Γ(cλ)

λcλ−1 exp {−dλλ}

p∏
i=1

p∏
j=1

ψ
1
2
j exp

(
−1

2
ψijβ

2
ij

)
√

2π
κijb

−κij
0 ψ

κij−1
ij

e−1
0

B(a, b)

(
κij
e0

)a−1(
1− κij

e0

)b−1

p∏
i=1

P
1
2
αi exp

{
Pα(αi − A∗)

2

}
q

1/2
α√
2π

exp

{
−qαA∗

2

}
.

5.3.4 The Full Conditional Distributions of ReB-hNiP Prior for βi

In the following equations, we present the full conditional distributions for all unknown pa-

rameters. It is clear that through finding the full conditional distributions analytically, most of

the parameters have specific conjugate statistical distribution. Therefore, the Gibbs sampler is

used to update those parameters that have a typical probability distribution. However, only the

hyperparameter κ has not been described by a specific probability distribution. Consequently,
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we used the Metropolis-Hastings algorithm for updating it.

We update the unobserved variables Y for t = 2, . . . , T − 1 as follows:

Y t
i ∼ N

(
Y t
i

∣∣∣∣λ
(
αi +

p∑
j=1

βijY
t−1
j + βii

(
Y t+1
i − αi −

p∑
i 6=j

βijY
t
j

))
+ τRX̄ t

i

λ(1 + β2
ii) + τR

, λ(1 + β2
ii) + τR

)
,

(5.34)

where i = 1, 2, 3 . . . p and t = 2, . . . , T − 1.

Regarding to updating the unobserved variables Y T , we rely on the following formula:

Y t=T
i ∼ N

(
Y t=T
i

∣∣∣∣λ
(
αi +

p∑
i 6=j

βijY
t=T−1
i + βiiY

t=T−1
i

)
+ τRX̄ t=T

λ+Rτ
, (λ+Rτ)

)
. (5.35)

We supposed that Y 1 ∼ N(Y |0, 1). The intercept parameter of the model is represented

by αi and is updated as follows:

αi ∼ N

(
αi

∣∣∣∣λ
( T∑
t=2

Y t
i −

T∑
t=2

p∑
j=1

βijY
t−1
j

)
+ A∗

(Tλ+ pα)
, Tλ+ σα

)
, (5.36)

where,

A∗ ∼ N

(
A∗
∣∣∣∣ pPαᾱ

(qa + pPα)
, (qa + pPα)

)
. (5.37)

The precision λ of the model can be computed using;

λ ∼ Ga

(
λ

∣∣∣∣cλ +
pT

2
, dλ +

1

2

T∑
t=2

(Y t − A−BY t−1)
′
I(Y t − A−BY t−1)

)
. (5.38)

The precision of the measurement error model τ is updated using:

τ ∼ Ga

(
τ

∣∣∣∣aτ +
RT (G− 1)

2
, bτ +

1

2

p∑
i=1

T∑
t=1

(X t
i − Y t

i )2

)
, (5.39)

where X t
i is a vector of size R× 1.
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The parameters ψ and κ are hyperparameters of the prior for βij in the case of using ReBeta-

hNIP distribution. The full conditional distribution for ψij is given by:

ψij ∼ TrGa
(
ψij

∣∣∣∣b0, κij +
1

2
,
β2
ij

2

)
, (5.40)

where TrGa stands for the Truncated Gamma distribution that is bounded from above. The full

conditional distribution of the hyperparameters κij is as follow:

π(κij) ∝ b
κij
0 ψκij−1

ij

e−1
0

B(a, b)

(
κij
e0

)a−1(
1− κij

e0

)b−1

. (5.41)

which is not a standrad probability distribution. For that reason, Metropolis-Hastings is used

for updating κij. Note that the values of κij should satisfy the condition 0 < κij ≤ e0.

The full conditional distribution for (βi) is as follows:

βi ∼ N

(
βi

∣∣∣∣µβi
,Ω−1

βi

)
, (5.42)

where βi represents a single vector in B. µβi
= λΩ−1

βi

(
T∑
t=2

Y t−1(Y t
i − αi)

)
, Ωβi

=(
λ
( T∑
t=2

(Y t−1Y t−1
′)

+Σψi

)
and Σψi is a p×p matrix with diagonal equal to ψi = {ψ1, ψ2 . . . , ψp}.

5.3.5 The Prior and Posterior Distributions of hNiP Prior for βi

The prior distributions are the same as those used in section 5.3.3, except using the hNiP prior

for coefficients as follows:

125



CHAPTER 5. MEASUREMENT ERROR WITH SHRINKAGE PRIOR

π(α, β, λ, τ, ψ) =
baττ

Γ(aτ )
τaτ−1 exp {−bττ}

dcλλ
Γ(cλ)

λcλ−1 exp {−dλλ}
p∏
i=1

P
1
2
αi exp

{
Pα(αi − A∗)

2

}
q

1/2
α√
2π

exp
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−qαA∗
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p∏
i=1
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j=1

ψ
1
2
ij exp

(
−1

2
ψijβ

2
ij

)
√

2π
κijb

−κijψ
κij−1
ij

κc−1
ij dc exp(−κijd)

Γ(c)
.

(5.43)

The posterior distributions given by:

P (Θ|Data) =
T∏
t=2

λp/2 exp

{
−λ
2

(Y t − A−BY t−1)′I(Y t − A−BY t−1)

}
p∏
i=1

T∏
t=1

R∏
r=1

τ
1
2 exp

{
−τ
2

(X t
ir − Y t

i )2

}
baττ

Γ(aτ )
τaτ−1 exp {−bττ}

dcλλ
Γ(cλ)

λcλ−1 exp {−dλλ}

p∏
i=1

p∏
j=1

ψ
1
2
ij exp

(
−1

2
ψijβ

2
ij

)
√

2π
κijb

−κijψ
κij−1
ij

κc−1
ij dc exp(−κijd)

Γ(c)

p∏
i=1

P
1
2
αi exp

{
Pα(αi − A∗)

2

}
q

1/2
α√
2π

exp

{
−qαA∗

2

}
.

(5.44)

5.3.6 The Full Conditional Distributions for hNiP Prior βi

The full conditional distributions for all unknown parameters are presented in the following

points. Analytically, the full conditional distributions for all unknown parameters have specific

probability distributions. Thus, Gibbs sampler is used to conduct MCMC for all parameters.

Updating unobserved variables for t = 2, . . . , T − 1 is as follows:

Y t
i ∼ N

(
Y t
i

∣∣∣∣λ
(
αi +

p∑
j=1

βijY
t−1
j + βii

(
Y t+1
i − αi −

p∑
i 6=j

βijY
t
j

))
+ τRX̄ t

i

λ(1 + β2
ii) + τR

, λ(1+β2
ii)+τR

)
,

(5.45)

where i = 1, 2, 3, . . . , p and t = 2, . . . , T − 1.
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Regarding computation for both cases of t = 1 and t = T + 1, we use the following formulas:

Y t=T
i ∼ N

(
Y t=T
i

∣∣∣∣λ
(
αi +

p∑
i 6=j

βijY
t=T−1
i + βiiY

t=T−1
i

)
+ τRX̄ t=T

(λ+Rτ)
, λ+Rτ

)
, (5.46)

where,

αi ∼ N

(
αi

∣∣∣∣λ
(

T∑
t=2

Y t
i −

T∑
t=2

p∑
j=1

βijY
t−1
j

)
+ A∗

(Tλ+ pα)
, Tλ+ σα

)
, (5.47)

and

A∗ ∼ N

(
A∗
∣∣∣∣ pPαᾱ

(qa + pPα)
, (qa + pPα)

)
. (5.48)

λ ∼ Ga

(
λ

∣∣∣∣cλ +
pT

2
, dλ +

1

2

T∑
t=2

(Y t − A−BY t−1)
′
I(Y t − A−BY t−1)

)
, (5.49)

where,

τ ∼ Ga

(
τ

∣∣∣∣aτ +
RT (G− 1)

2
, bτ +

1

2

p∑
i=1

T∑
t=1

(X t
i − Y t

i )2

)
, (5.50)

and X t
i is a vector of size R×1. Also, the full conditional distribution of the hyperparameters

κij is defined as follows:

κij ∼ Ga
(
κij

∣∣∣∣c+ 1, log

(
b0

ψij

)
+ d

)
, (5.51)

where i, j = 1, 2 . . . , p.

We have explained in the previous chapter TrGa(x|b0, a, b) which is the Truncated Gamma

distribution and it is bounded from above. The parameters ψ and κ are hyperparameters of

the prior for βij in the caseof using the ReB-hNiP distribution. The full conditional distribution

for ψij is given by:

ψij ∼ TrGa
(
ψij

∣∣∣∣b0, κij +
1

2
,
β2
ij

2

)
. (5.52)

The full conditional distribution for βi is defined as follows:

βi ∼ N

(
βi

∣∣∣∣µβi
,Ω−1

βi

)
, (5.53)
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where βi represents a single vector in matrix B, µβi
= λΩ−1

βi

(
T∑
t=2

Y t−1(Y t
i −αi)

)
, Ωβi

=

λ

(
T∑
t=2

(Y t−1Y t−1
′
)

+Σψi and Σψi is a p×p matrix with diagonal equal to ψi = {ψ1, ψ2 . . . , ψp}.

The pseudo-code for both dynamic Bayesian networks with measurements error models based

on hNiP and ReB-hNiP are presented in Appendix C.3.

5.3.7 Simulated Data

In order to check the performance of shrinkage prior distributions and to evaluate our model,

we generated different data samples. The synthetic data of the dynamic Bayesian network with

measurement error depends on both the autoregressive model and measurement error model as

follows:

Y t
i = αi +BY t−1

i + εt, (5.54)

and,

X t
ir = Y t

i + ηtir, (5.55)

where ηtpr ∼ N(η|0, τ−1), i = 1, 2, . . . , p, random error εt ∼ N(ε|0, λ−1) and unobserved

variables Y t ∈ Rp. The size of Y t is p×1, t = 1, 2, . . . , T is unobserved variables and Y t
i =

{Y t
1 , Y

t
2 , . . . , Y

t
p } is a single value, where Y t

i has mean of zero and variance of 25. Also, p

refers to the number of parameters (genes), R is the number of replications (patients) and T

represents the number of times where data has been collected. Also, αi is the intersection value

and B is p× p coefficient matrix. We have simulated data under two cases, Case A1 and Case

A2. The structures for both cases are described in the following points:

• Case A1:

In this case, we suppose that we have enough information to infer parameters in the

model, which means we do not have the problem of high-dimensionality. We assumed

that the size of the stimulated dataset is p = 10, R = 21 and T = 50. The initial

values for the precision of the AR(1) model and the precision of the measurement er-

ror are λ = 10 and τ = 15 respectively. The diagonal of the coefficients matrix B
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is equal to 0.3, while only a few non-diagonal elements of B are non zero which are:

β2,9 = −0.5, β3,7 = −0.7, β4,3 = −0.5, β4,6 = 0.4, β5,3 = 0.6, β7,8 = 0.64, β10,6 =

0.25 and β10,9 = 0.7.

• Case A2:

In this case, we simulate a dataset with the problem of high dimensionality. We assume

that the size of this sample is p = 40, R = 21 and T = 20. The initial values for the

precision of the AR(1) model and the precision of measurement error are equal to λ =

10 and τ = 15 respectively. The diagonal of coefficients matrix B is equal to 0.3, while

only a few non-diagonal elements of B are non zero which are: β2,9 = −0.5, β3,7 =

−0.7, β4,3 = −0.5, β4,6 = 0.4, β5,3 = 0.6, β7,8 = 0.64, β10,6 = 0.25 and β10,9 = 0.7.

5.3.8 Results From Simulated Data

In this section, we compare the results of selecting of tuning parameters based on our pro-

posed Bayesian shrinkage prior distributions, when applied to dynamic Bayesian networks with

a measurements error model. As we explained earlier when discussing the results of tuning

parameters selection in the previous studies, the WAIC criteria had significantly better results

compared to the DIC and EBICγ criteria. Therefore, again we utilised the WAIC criteria, in

order to detect the best bounds range of upper bounds parameters and hyperparameters of both

hNiP and ReB-hNiP prior distributions. Simulated data presented in the Section 5.3.7 are the

same as that currently used.

Selecting variables is an importation part of this section, so we used three different credible

intervals (CI.s) which are 90%, 95% and 99% CI.s to identify whether coefficients are differ-

ent from zero or not,that is, identifying the non-zero coefficients. Consequently, a link (edge)

between two variables (nodes) is absent if the values of the coefficients are equal to zero. On the

contrary, if the values of the coefficients are not equal to zero, a link between two nodes exists,

meaning that one variable regulates another one either positively or negatively. Selecting the

minimum value of WAIC criteria is not enough to detect the best hyperparameters prior values

of any prior distribution, especially for our Bayesian shrinkage prior distribution, in order to

know how corresponding the estimated non-zero coefficients to non-zero coefficients based on
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simulated data. For that reason, we compute true positive (TP) and false negative (FN) values as

detailed in Section 2.5.3 for each model and WAIC values. In addition, we aim to decrease the

value the false negative FN to be close to zero, because it is representing the second type error,

which is influential in such current kind of modelling, related to medical or genetic fields. We

try to avoid the selecting variables that are not participating for design modelling via simulated

data. We have simulated two examples to understand the procedure of selecting the hyperpa-

rameters and comparing shrinkage prior distributions. The first example is Case A1; where we

consider n > p, that is, it is not a high-dimensional data problem), and there is much infor-

mation to provide estimation and fit the model based on dynamic networks with both proposed

Bayesian shrinkage prior distributions.

We now summarize the results of the gene regulatory network model with hNiP prior distri-

bution. It is clear that in this shrinkage prior there are two parameters that control the amount

of shrinkage which are the upper bound b0 and the hyperparameter of the gamma prior c. For

selecting these two tuning parameters, we analysed the MCMC results based on a sequence

of values of c, which starts from 0.1 to 6 by 0.1 steps for several values of b0. Moreover, we

present the results of WAIC, TP, FN and total non-zeros by different graphs in Figure 5.11. The

trend of WAIC declined as much as the values of b0 increased and that lead to shrinking most

of the coefficients closest to zero. The values of WAIC for the first half of the models are quite

similar as the upper bounds value for this range being close together where b0 ≤ 100, which

leads to shrinking less coefficients close to zero. On the contrary, the value of WAIC gradually

declined as a result of increasing the value of b0 and also the numbers of non zero coefficients

are reduced too.
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In the beginning of this section, we highlighted a selection of variables based on three different

credible intervals (CI), 90%, 95% and 99%. This is to evaluate the performance of the current

modelling because it is not easy to decide which parameters are equal to zero or not. Conse-

quently, we plot MCMC results for TP, FN and total non-zero coefficients for all different values

that are used here, as can be seen in the middle and bottom graphs Figure 5.11. Our goal is to

diagnose whether the non-zero coefficients are estimated correctly, that is, they are the same as

the non-zeros in simulated data, or they are false negative coefficients. Furthermore, there are

four different lines in the middle graphs which include: a green-solid line referring to the num-

ber of non-zero coefficients in simulated data, the number of estimated non-zero coefficients

is based on black-dash lines 90% CI, blue-solid line 95% CI, and black-dot-red line 99% CI.

The grey dash-line indicates the different values of upper bounds b0 of hNiP prior with different

values of the hyperparameter c. Also, the bottom right graph shows the number of non-zeros

based on TP values. The bottom left graph shows the number of non-zeros based on FN values.

Although there are an estimated number of non-zeroes belonging to TP, it is not corresponding

to the non-zeroes in the simulated data, especially as most of the diagonal elements of coef-

ficients matrix shrink close to zero. The values of WAIC have similar trends for a range of

upper bounds b∗0 = (30, 50, 75, 100) and the values of WAIC slightly declined when the value

of hyperparameters c and d increases for every b∗0. The number of non-zero coefficients are the

same for this range of upper bounds. Nevertheless, increasing the value of b0 has significantly

affected the shrinkage of the coefficients.

As we can see from Figure 5.11 the value of WAIC decrease as long as the value of b0 rises,

especially when b0 > 100, and also the number of estimated non-zeros decline for both TP

and FN. As a result, WAIC achieves its minimum value when b0 = 5000 in our experiments.

However, increase of the value of b0 leads to shrinking the most coefficients and the amount

of TP is less than the number of non-zero in the simulation data even though FN become zero.

Although WAIC is declining with increasing values of b0, we prefer using the tuning param-

eters of upper bounds around b0 = 75, 100 in this example, owing to the fact that we have a

significant number of TP and zero FN in this range of b0 when using 95% and 99% CI.

In order to evaluate the capability of both shrinkage prior distributions for used fitting and

shrinking coefficients in this particular model, we obtained the results of several models based

on different values of the upper bound parameter b0 and rescaled hyperparameter e for the
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ReB-hNiP prior distribution. Through the aforementioned procedure, and similar to the hNiP

shrinkage prior, tuning parameters are selected. Furthermore, we chose the hyperparameters

such that a = b = 1
2

which leads to a shape like horseshoe. In this case, selecting tuning

parameters is challenging because there is no clear trend in the value of WAIC. Thus, for eval-

uating and detecting the best range of hyper-prior values for ReB-hNiP prior distribution, TP,

FN and WAIC are computed. The minimum values of WAIC is −145780 whereas the number

of TP= 6, 7 and FN= 0, 2 based on 95% and 99% credible intervals, respectively. As we high-

lighted before, the trend of WAIC is not stable, while the number of FN is close to zero as long as

the value of b0 increases and the number of TP decreases and stable around 4 using the credible

intervals that mentioned previously. We observe that the best range of values for this shrinkage

prior is b0 ≥ 250, especially for upper bounds between b0 = 250 and b0 = 1000 because in

this range of values the number of TP are around 5 and 8 and the FN approach zero as we can

see in Figure 5.12.
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As we have noticed, both (ReB-hNiP and hNiP) proposed Bayesian shrinkage prior distributions

have unsatisfactory results over all prior values that we used for both of them, therefore we did

not estimate exactly the same or very close to the number of non-zero coefficients. Also the

diagonal of it is aggressively shrunk to zero. In spite of these unsatisfactory results, hNiP

out-performance ReB-hNiP based on the simulated dataset in case A1 where we have enough

information to fit the model. In the next case, we focus on a high-dimensional problem.

Our aim in this example is to investigate the estimation of the coefficients matrix with different

prior values and also select appropriate tuning parameter values for both proposed shrinkage

distributions for a dynamic Bayesian network with measurement error, in case of having high-

dimensional data. In recent years a number of shrinkage prior distribution have been used in

order to shrink the high-dimensional regression coefficient matrix and to find interactions be-

tween genes. Also, the popular problem in such studies are having huge number of covariates

(genes) and a few observations, and also a few time points. In light of this idea, we simu-

lated a high-dimensional dataset as described in Case A2, and then we have run our MCMC

algorithm and analysed the results. The number of non-zero coefficients in the simulated data

is equal to 48 including the diagonal of the coefficients matrix. The MCMC algorithm is run

for 10, 000 iterations with a burn-in of 25% of sample. WAIC, TP and FN are computed for

evaluating and comparing the results of both Bayesian shrinkage prior distributions (hNiP, ReB-

hNiP). We make a summary of the results of Case A2 similar to the former case based on several

credible intervals, 90%, 95% and 99% CI, as presented for hNiP in Figure 5.13 and for ReB-

hNiP in Figure 5.14. The number of TP is stable around 1 based on 95% and 99% CI. and dose

not exceed 2 depend on 90% CI, in spite of the decreasing trend in WAIC and increasing the

value of upper bounds parameter b0 for several hyperparameter prior values in either the hNiP

or the ReB-hNiP shrinkage prior distributions.
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Regarding the results that have been displayed in Figures 5.13 and 5.14 for both priors men-

tioned, it is difficult to select appropriate values significantly that lead to shrinking the co-

efficients matrix toward the actual value of the simulated data. We can conclude that hNiP

and ReB-hNiP prior distributions aggressively shrink the most coefficients toward zero when

we deal with dynamic Bayesian networks with measurement error model. Therefore, to fur-

ther study our modelling approach, we have simulated a new dataset that is created similarly

of example Case A1 but with the values of the diagonal coefficients increased from 0.3 to

different values around 0.8. The results show that the number of non-zero coefficients with

hNiP prior declines as the value of upper bound b0 increases, therefore the number of FN de-

creases, especially when the value of b0 > 100 which leads to FN approaching zero, whereas

TP falls toward 5. Furthermore, variables are selected based on credible intervals of size 95%

and 99% CI. Nevertheless, the values of WAIC are unstable as long as the value of b0 are

changed. Besides, the value of the precision parameter of AR(1) model, λ, and the precision

of the measurement error model, τ, do not converge to their true values, and also the trends of

both of them are unstable over all models that were computed based on several prior values for

the hNiP prior.

Moreover, these outcomes can be interpreted in the way that increasing the values of the diag-

onal matrix (self-regulation values are large) is unsatisfactory for fitting the coefficients in the

proposed model, using either prior hNiP or ReB-hNiP. We showed the results for this examples

in Figures 5.15 and 5.16 in which plots represents the WAIC, TP, FN and total non-zero co-

efficients. The computation time to collect the MCMC results for dynamic Bayesian network

with measurement error model is shown in Table 5.5 for both shrinkage prior distributions used.

Consequently, we notice that our model is faster if the prior distribution based on hNiP for both

cases of high-dimensional and non-high-dimensional datasets.

Table 5.5: Comparing computation time of the dynamic Bayesian network with measure-
ment error model based on both ReB-hNiP and hNiP shrinkage prior distributions for different
datasets. The number of iterations M = 10000.

Dynamic Bayesian Network with Measurement Error Model
Dataset hNiP ReB-hNiP

T = 50, p = 10, R = 21 4 Minutes, 15 seconds 7 Minutes, 11 seconds

T = 20, p = 40, R = 21 10 Minutes, 20 seconds 20 Minutes, 40 seconds
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5.3.9 Alternative Link Selection

In this section, the dynamic Bayesian network with measurements error model based on hNiP

prior distribution is applied to the simulated dataset that is described in Case A1, in order to

investigate which of the coefficients are convergent and have a significant t-test. The outcomes

are obtained for twenty MCMC chains, where the number of iterations M = 40000 and 25% of

iterations are discarded as burn in. In addition, the prior values were chose based on the results

of the last section, so we used b0 = 750, c = 3 and d = 2. The selection of variables is c using

both the t-test and quantiles Q0.10 and Q0.90. Consequently, the findings show that 10% of the

higher t-test values of coefficients are the same as the non-zero coefficients identified by the

quantiles and, indeed are non-zero in the simulated data. We have ranked the coefficients based

on their t-test values from highest to lowest in Table 5.6. The figure with the most significant

coefficient has higher value t-test depending on posterior distribution values. The results in the

last column of the table indicate the frequencies of each coefficient regarding the overall rank

of the MCMC chain.

Table 5.6: Frequency and rank of the 10% of the t-test for higher coefficients. Dynamic
Bayesian network with measurement error model / hNiP prior distribution are used for 20
MCMC chains.

Rank Coefficients Order of coefficients matrix Frequencies

1 β5,3 25 20
2 β3,7 63 11
3 β4,3 24 11
4 β10,9 90 20
5 β2,2 12 20
6 β4,6 54 16
7 β8,7 68 15
8 β2,9 82 19
9 β3,3 23 20

10 β8,8 78 20
11 β4,3 43 19
12 β2,3 22 19
13 β8,4 38 19
14 β7,3 27 10
15 β6,7 66 7
16 β9,9 89 8
17 β9,9 89 7
18 β10,5 50 14
19 β5,5 45 13
20 β4,4 34 15
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For example, coefficient β5,3 has a the highest significant t-test which takes the first rank

for all MCMC chains, while coefficient β3,7 has second rank with frequency 11 and 9 times in

the third rank. We noticed that all coefficients in the table have the same frequencies over all

results based on 10% coefficients. Moreover, both the precision of error model and precision

parameters of the AR(1) are convergent and close to their true values where the posterior median

are approximate by τ = 14.85 and λ = 8.75, respectively. Finally, we plot the relationship

coefficients in the network in Figure 5.6.Although, some of the coefficients non-zero in the

simulated data, they are estimated as zero due to shrunk to zero such as for β5,5, β4,4 and β9,9.

Figure 5.17: Graphical network for all coefficients is the dynamic Bayesian network with mea-
surements error model / hNiP is shrinkage, where the circle represents the node and edges is
value of coefficients, by using sample Case A1.
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5.3.10 Comparison Example

We compared our dynamic Bayesian network with the measurements error model, to the dy-

namic Bayesian networks in case of linear interactions between genes, where used by Morrissey

et al. (2010). Moreover, we have applied Arabidopsis thaliana’s circadian clock dataset that is

used in GRENITS package for Morrissey (2012). Arabidopsis thaliana circadian clock data

(Locke et al., 2006) “Arabidopsis thaliana, was first proposed to comprise a feedback loop

in which two partially redundant genes, Late Elongated Hypocotyl (LHY) and Circadian Clock

Associated 1 (CCA1), is the expression of their activator, Timing Of Cab Expression 1 (TOC1).”

Data to consist of four replication and time represents hour, and then the log was calculated,

where dataset consist of T = 50, R = 4 and p = 5 and it is two dimensional matrixes. There-

fore, we converted to three dimensions array in order to utilise it in our proposed model. The

MCMC have been run for 10000 iterations and 2500 iterations are burned for both hNiP and

RiB-hNiP shrinkage prior distribution. The appropriate prior values used to fit the dynamic

Bayesian network with measurement error model based on both priors are b0 = 75 and the

gamma hyperparameter for hNiP are c = 3 and d = 2, and the rescaled Beta hyperparameter

for ReB-hNiP is e0 = 6.

The MCMC results of coefficients for our proposed linear dynamic models for both hNiP and

ReB-hNiP prior distributions have been analysed using 90% CI, which is presented in the

networks of Figure 5.18. Results show that there are four nodes and three links which refer

to the regulation of the genes in our models based on a t-test on the posterior median. The

positive values in the coefficients matrix indicates the activation of gene - another gene, where

we can see LHY activates to PRR7 and PRR7 activates to Y, where the value of the coefficients

are 0.22 and 0.66, respectively, for the ReB-hNiP prior and are equal to 0.22 and 0.4 for the

hNiP prior. However, the negative values of a gene prevent another gene, as TOC1 prevents

LHY and the value of this coefficient is equal to −0.47 for the model that is based on the ReB-

hNiP prior and −0.44 for hNiP prior. Regarding the self-regulation of genes in the dataset,

we estimated all coefficients depending on the dynamic models where only one self-regulation

variable Y is not detected for the model based on ReB-hNiP.

On the other hand, the results based on the GRENITS package indicate that there are more links

(edges) between variables (nodes) as three links have been detected in this model, which are
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CHAPTER 5. MEASUREMENT ERROR WITH SHRINKAGE PRIOR

Table 5.7: frequency and rank of the 50% t -test of higher coefficients. Dynamic Bayesian
network with measurement error model based on both ReB-hNiP and hNiP prior distribution
MCMC chain run for 10000 iterations when ”Athaliana ODE 4NoiseReps” dataset is used.

Dynamic Bayesian Network with Measurement Error Model / (ReB-hNiP and hNiP prior)
Rank Coefficients t-test hNiP Orderβ in matrix Coefficients t-test ReB-hNiP Orderβ

1 βX,X 5.975 13 βX,X 5.178 13
2 βTOC1,TOC1 3.069 7 βTOC1,TOC1 2.826 7
3 βPRR7,PRR7 2.478 25 βPRR7,PRR7 2.492 25
4 βPRR7,Y 2.302 24 βY,PRR7 2.398 24
5 βLHY,LHY 2.242 1 βLHY,LHY 2.368 1
6 βTOC1,LHY 2.123 6 βLHY,TOC1 1.781 6
7 βLHY,PRR7 1.878 5 βPRR7,LHY 1.599 5
8 βY,Y 1.759 19 βTOC1,LHY 1.363 2
9 βLHY,TOC1 1.688 2 βY,Y 1.223 19
10 βY,LHY 1.493 12 βLHY,Y 1.153 16
11 βX,Y 1.277 3 βY,X 1.119 14
12 βX,PRR7 1.249 15 βPRR7,X 1.106 15
13 βLHY,X 1.185 16 βX,LHY 0.962 3

not found in our proposed model. These three coefficients are represented as TOC1 → PRR7,

TOC1 → X and X → TOC1. Therefore, as we highlighted in the results,the tuning parameters

selection, the dynamic Bayesian network with measurement error model did not select the co-

efficients precisely. Thus, we can summarise and compare our results with the linear Gaussian

model. Furthermore, we conclude that our proposed models are less efficient than dynamic

Bayesian network model with assumption of linearity of Morrissey et al. (2010), because some

of the coefficients which refer the edges between variables that have been hidden and they did

not select some important links. Figure 5.19 shows the plot by heat map of the posterior mean

of the coefficients matrix of all models that we obtained from MCMC results for based on the

above mentioned data. We can conclude that from the Figure 5.19 the results for both proposed

shrinkage priors are quite similar , but there is some coefficients are detected by Morrissey et al.

(2010) model which are not detected by our proposed shrinkage methods.
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hNiP

LHY

TOC1

X

Y
PRR7

(a)

ReB−hNiP

LHY

TOC1
X

Y
PRR7

(b)

Figure 5.18: Dynamic Bayesian network with measurement error model based on both hNiP
and ReB-hNiP prior applied to a simulated dataset (Athaliana ODE 4NoiseReps). Panel (a)
is networks based on hNiP and Panel (b) is networks based on ReB-hNiP. Orange Circles are
represents nodes (genes) and arrows indicates the interactions between genes. The sample size
is T = 50, p = 5, R = 4.
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hNiP

Regulation 

LHY

TOC1

X

Y

PRR7

LHY TOC1 X Y PRR7

0.0
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0.6

0.8
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(a) hNiP shrinkage prior (b) ReB-hNiP shrinkage prio

(c) GRENITS package

Figure 5.19: Comparing results between the model described in the GRENITS package as the
standard model and our dynamic Bayesian network with measurement error model based on
the hNiP prior when applied to the simulated dataset (Athaliana ODE 4NoiseReps). Plot (c)
represents results based on the dynamic Bayesian network with linear Gaussian interaction of
Morrissey et al. (2010). Plot (a) and plot (b) refers to our dynamic Bayesian network with hNiP
prior and ReB-hNiP prior respectively. The dark colors indicate the interaction between two
genes with high probability. The sample size of T = 50, p = 5, R = 4.
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5.4 Summary of Chapter

In this chapter, we implemented our proposed Bayesian shrinkage prior distributions on both the

Bayesian linear regression with measurement error model and the dynamic Bayesian network

with measurement error model. to concluded, in the first part of this chapter, both proposed

Bayesian shrinkage prior distributions were satisfactorily utilised to fit the Bayesian linear re-

gression with measurement error model, therefore tuning parameters are selected in order to

shrink the parameters toward the origin values depending on the adopted WAIC in cases of

having measurement error. In addition, we have summarised an MCMC chain for a hundred

samples of the posterior distribution to present the performance and compare the prior distri-

butions that are used as part of the modelling. In the second part, we have utilised both hNiP

and ReB-hNiP as prior distribution of coefficients in Dynamic Bayesian network with measure-

ments error model. This model is based on AR(1) model due-to having times series data. Also,

WAIC is applied to select the best range of hyperparameter values. The results were unsatis-

factory to detect the best range values of tuning parameters and sufficient number of non-zeros

corresponding to the simulated data. This is because most of the autoregressive coefficients ag-

gressively shrunk to zeros in case of non-high dimensional data, and all coefficients aggressively

become zero when we have high dimensional data. In the next chapter, we will implemented

dynamic Bayesian network on real gene expression data relies on some hyperparameter values

for both proposed shrinkage priors.
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Chapter 6

An Application of Bayesian Dynamic
Network to Genetic Data

6.1 Introduction

Over the last decades, numerous methods have been advanced that facilitated the investiga-

tion of the interactions among covariates (genes). Particularly, the Gene Regulatory Network

(GRN) model that has been explained in Section 5.1, is one of the popular approachs that deals

with genetic data. Therefore, Dynamic Bayesian Networks (DBN) is a type of GRN model.

We consider a special structure of modelling which is combines DBN with measurement error

model, that was highlighted in Section 5.3.1, in conjunction with our proposed shrinkage priors

(explained in Chapter 3) which are used to control the high-dimensionality and leads to the es-

timation of a sparse coefficients matrix. In this chapter, the methodology mentioned previously

is applied to a real gene expression cardiovascular dataset. Thus, this real dataset presents the

gene expression levels for patients that are suffering from cardiovascular diseases over several

time points. We explain the source of the dataset in the following sections. In Section 1.1, we

gave a brief introduction to both cardiovascular diseases CVD and genetics. Hence, in Section

6.3, we explain the source of our real data and how we chose a sub-sample of those genes that

related to one kind of CVD. Section 6.2, we review a few researches that applied statistical
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methodologies to CVD data. Our goal is twofold; firstly, we select those genes that have impact

on CVD, that is, detect some gene that regulates others genes based on time-crosses data. Sec-

ondly, we aim to understand the ability of the dynamic Bayesian networks with measurement

error model to fit this type of data.

6.2 CVD and Statistical Methods

In this section, we give a brief survey of some studies that are related to cardiovascular diseases

using statistical methodologies. The datasets used in the following studies including genetic

and non-genetic data. Five different statistical approaches were utilised for distinguishing the

set of genes that might cause human heart failure (Huang et al., 2005). These approaches

are nearest shrunken, penalized partial least squares, random forest, LASSO and partial least

squares. The authors argued that it is difficult to distinguish different factors that cause human

heart failure in a single dataset of gene expression. These methods were used on two different

real genetic data sources when collecting tissues from a number of patients. The first tissue

samples were collected from the University of Minnesota / USA during the placement of a

left ventricular assist device (LVAD). Approximately 22, 000 genes were measured from 30

patients. With type of human genome the Affymetrix (U133A) chip was used for analyzing

data. The second genetic tissue data was collected from the Harvard medical school and the

Affymetrix (HG U-133 plus 2) chips were utilised to analyze data which involved 5, 4678 probe

set where 22, 277 probe sets were used in this study for 36 patients under CVD. Huang et al.

(2005) reported that all approaches named above yield similar performance results for each

simulation dataset used. However, they have obtained two different results for each real dataset;

the list of genes obtained from the first dataset is not the same genes as the second one.

Wilson et al. (1998) used logistic regression and Cox-proportional methods to build a model for

detecting the correlation between cholesterol, blood pressure and coronary heart disease (CHD).

In addition, the investigation of the variables had been considered for both categorical and con-

tinuous variables. The variables studied in this article include: LDL-cholesterol, age, NCEP

cholesterol, diabetes, blood pressure and smoking. The proportional hazards regressions model

is used for analysing data. The results found that every factor has an impact on CHD differently
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for both genders when categorical variables or continuous variables are used. For example, 28%

of men and 29% of women who had CHD were diagnosed with blood pressure which is corre-

lated with CHD risk factors. Ghosh and Marco (1999) studied probability Bayesian Networks

based on the epidemiology data for patients with Heart disease. 17 different variables have been

used for heart disease, 13 variables represent predecessors and the other four variables repre-

sent children. They claimed that some of the parent variables did not have any direct effect on

heart disease. Nevertheless, they have an influence on the particular nodes for their parents.

For instance, heart disease is affected indirectly by some risk factors even if they have high-

blood-pressure. Therefore, the main drawbacks for this model, is flat they did not take into

account some important factors, such as environment, age, genetic, and some others. Marshall

et al. (2010) applied DBNs to predict the survival of patients who suffered from a type of CVDs

called Ischaemic Heart Disease. They used a package called ′′deal′′, which is built under R

software. The data is not genetic, but there are metabolic syndrome risk factors. Five vari-

ables found from fourteen were highlighted in networks that appear to affect survival including:

smoking, diastolic blood pressure, and BMI both at 5 year follow-up, and “inchihd10”, indi-

cating whether a patient dies with IHD at 10 years. Furthermore, they noticed that the result

of systolic blood pressure was conditionally independent with survival given diastolic blood

pressure.

6.3 Sources of Data

In this section, we provide with a general explanation of the type and source of our real dataset.

Different types of data play an important role in statistical analysis, as well as, the kind of

methodology applied, especially in the medical filed. One of the most interesting types of

medical data which researchers tend to use in this field of statistical analysis is genetic data, es-

pecially gene expression levels. This is because this information can help detecting those genes

cause diseases which leads to the production of better the treatments. Gene expression is the

transcription levels of the DNA which is measured by microarrays. It can be obtained from the

level of protein sequences while protein synthesis occurs particularly when the mRNA translates

to protein (Bani, 2009). Repeated measurements are taken in some studies by researchers. Thus,

the repeated measurements generate data when the measurements are taken from each of exper-
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imental unit at each one of several time point. We obtained a sample of microarray data (gene

expression levels) from the royal Hallamshire Hospital, Sheffield, UK. The data was taken from

the blood of patients who had pain in their chest when they attended hospital. The patients with

cardiac symptoms had been diagnosed were selected and then permission was obtained from the

patients by signing a written consent form. The form requested the patients to take a blood sam-

ple for scientific studies. The samples were taken on five occasions (1st day, 3rd day, 7th day,

30th day and 90thday). On the first event (1st day), the blood was taken from 33 patients and

the summary of the other days data are presented in Table 6.1. Pearson et al. (2009) have de-

veloped an uncertainty propagation method and created an R package which is called PUMA.

They take into consideration the speed and scope in terms of high implementation compared

to the previous uncertainty approaches for analysing Affymetrix GeneChip data. The real data

were processed by a researcher whose applied the PUMA package (Propagating Uncertainty in

Microarray Analysis). Pearson et al. (2009) argued that point estimation is mostly used to anal-

yses microarray data (gene expression) and uncertainty in such estimation methods is ignored

when analysing data.

T = Day R=Number of patient Probe-sets

1st day 33 31343
3rd day 25 30415
7th day 32 30006
30th day 32 30888
90th day 31 29801

Table 6.1: A summary of the gene expression levels for 33 patients who are suffering from
CVD. The number of replicates, the number of probe sets and T the time sampling.

As we highlighted, the data are collected on five separate occasions with a number of patients

so that we have repeated measurement data. There are two main issues that have an impact

on the dataset. Firstly, some patients were unable to attend some of the scheduled appoint-

ments leading to missing data. This was considered a major issue, particularly from the second

occasion till the last one. Consequently, this issue resulted in missing values for patients at

different times (patients are considered the replication in our study). Secondly, the number

of probe sets was mismatched to the genechip at more than one occasion, and this makes the

dataset comprise missing values in terms of the covariates (probe-sets). This issue results in

measuring the Affymetrix arrays of the probe-sets during the data collection. In order to deal
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with the problem of missing values, we try to clean the data by removing all missing replica-

tion (which in this dataset refers to patients) and probe-sets. After that, we combined the data

over all times (where gene expression levels are collected at 5 different times as we explained

above) because we handle missing values in this thesis. The missing values make the compu-

tation of any model expensive and very difficult, particularly with dynamic networks and high

dimensional models. For that reason, we decided to clean our dataset via two main stages from

missing values. In the first stage, we removed the missing values in terms of the replication,

which resulted in removing 12 of the 33 patients, that is, columns of the dataset. In the second

stage, we removed the rows of the dataset (probe-sets) that involve missing values, and then we

combined all data files in terms of time. Therefore, as a result we have 24958 probe-sets out

of 36085 excluding any missing values for the 21 patients (replication) and 5 different times.

The data still consists of a large amount of variables and it would result in high computation in

terms of length, feasibility and cost of implementing the model. Therefore, in the next section,

we explain selecting a subsample from the complete dataset.

6.3.1 Sample of Real CVD Data

The computation of applying the dynamic Bayesian network model to a high-dimensional

dataset takes a long time, particularly, when dealing with a very large dataset for different

time-cross points. The reason for choosing a sub-sample is because it is time consuming. If

we did not chose a sub sample, it takes a very long time to compute a model and address DBN

structures based on those genes that are related to this kind of disease. Then we will apply it to

all genes in the dataset if we obtained satisfactory results. Consequently, a subsample of probe-

sets has been chosen from our dataset to detect some genes that have an impact on CVDs . We

followed on the literature that studies such genes, for example Morris et al. (2016), Seo et al.

(2006) and Shiffman and Porter (2000) in doing that. We have chosen sample probe-sets from

annotation of the HG-U133plus2 array. The probe-sets have been selected from the annota-

tion file, especially using the column called Gene Ontology Biological Process which includes

information about most probe-sets and indicates probe-sets associated to the words heart and

cardiovascular. Then, a sample of 1, 193 probe-sets was selected in annotation bank file. In the

first stage, we kept only three main columns in order to investigate which probe-sets belong

to heart and CVD, which includes: Probe-set,“ Gene Symbol, and Gene Ontology Biological
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Process then we removed Gene Ontology Biological Process”column. In the second main cru-

cial stage, we combined the sample annotation with our dataset of real gene expression level

which mentioned previously so as to reveal how many probe-sets match in our dataset with

those probe-sets id that chosen in the first stage. In this stage, we selected 758 probe-sets of

real gene expression data for all times either some of probe-sets values missing or not. The

number of probe-sets are different from one time to another which is clear from Table 6.2. For

example, in the second time slice dataset we only have 645 out of 758 probe-sets. After that,

we selected the maximum value for each unique gene for each patient ID overall times, because

for some genes we have more than one probe-sets. For instance, the data collected at fifth time

of collecting data, we have only 319 out of 370 gene (see Table 6.2). Overall number of the

genes recognised are equal to 370 that includes missing values for one time or more (as de-

scribed in our dataset in the previous section), and also the number of genes are different for

each times due to some gene mismeasuring in one or more time points. In the final stage, the

number of genes chosen as sub-sample of CVD gene expressions equal to 274, after we have

combined all 5 data file and removed the missing values (NA) for all observation over the time.

Table 6.2: Summary of the procedure selecting sub-sample of CVD gene expression level from
real dataset,where T1, T2, T3, T4 and T5, represents the dataset in five different time collected.

Notes T1 T2 T3 T4 T5

First stage: CVD probe-sets from Annotation HU G-133-PULES 2

Second stage Selecting probe-set for every time 657 645 623 658 629

Genes 370 370 370 370 370
Third stage Selecting genes (includes missing values) 323 323 312 327 319

Forth stage CVD gene expression levels 274 274 274 274 274
( without missing values)

6.4 Application on Dynamic Bayesian Networks Model

We have implemented our dynamic Bayesian network with measurement error models in Sec-

tion 5.3.2 on the sub-sample of real gene expression data as presented in Section 6.3.1. The

coefficient matrix has relied on both class hNiP and ReB-hNiP shrinkage prior distributions,

which the all posterior distributions are mathematically described in Section 5.3.4 and 5.3.6. As
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a reminder, our sub-sample real dataset refers to gene expression levels for 21 replication (R)

data (CVD patients), 274 genes (covariates) that collected over five different time points T =

1, 2, 3, 4, 5. Four MCMC chains run for 5000 iterations and we burn-in 1250 iterations, for

each proposed shrinkage prior distributions, two set of appropriate prior values are used in

order to fit the models. The prior values for both parameters precision AR(1) model and pre-

cision measurements error models are aτ , cλ = 2 and bτ , dλ = 0.62 respectively. Computing

MCMC chain for model based on hNiP prior takes 35 hours and 44 minutes and to model based

ReB-hNiP takes 44 hours and 7 minutes.

The procedure of variable selection are done by differing zero and non-zero coefficients values.

The quantile 0.1 and quantile 0.90 of posterior values are computed for each coefficients. To

handle this situation, we are setting the hyperparameter values of ReB-hNiP as follows: b0 =

750, e0 = 6 for the first choice; and b0 = 250, e0 = 6 for the second choice. We have chosen an

appropriate hyperparameter values of hNiP based on results of simulated data, which in the first

case is b0 = 750, c = 6 and d = 4 and in the second case is b0 = 750, c = 3 and d = 2. Our

goal is to fit the coefficients in DBNs with measurement error model by utilising different prior

values of coefficients in analysing the results for the DBNs model via both shrinkage prior

distributions. Likewise, all MCMC chain are run, therefore posterior distribution based on the

results for CVD sub-sample are conducted. The results for all coefficients in DBNs models were

aggressively shrunk toward zero for all different hyperparameters used. Furthermore, there were

no any coefficients different from zero for all models that have been implemented.

On the other hand, we used an alternative approach to analyse the results and variable selection

which based on computing the t-test for every single coefficients of posterior distribution using

both prior distributions (hNiP and ReBhNiP). Table 6.3 present 25 high values of the t-test, for

the estimated coefficients after ranking and ordering each βi,j in coefficients matrix B in Table

6.3. It can be noticed that the maximum values for some t-test are less than 0.25 and others are

very close to zeros which indicates that there are no significant results, that is, there is no links

between the nodes. Consequently, both techniques for analysing MCMC chain have similar

results because all coefficients are aggressively shrunk toward zeros.
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Table 6.3: Top 25 gene interactions by forming t-test, with 95% equally for posterior interval,
mean and median. For dynamic Bayesian network with measurement error model based on
both ReB-hNiP and hNiP prior distributions. MCMC chain for 5000 iteration. The quantiles
for both models are presented under hNiP with b0 = 750, c = 3 and d = 2 and ReB-hNiP b0 =
250, e0 = 6.

ReB-hNiP prior Quantiles hNiP prior Quantiles

Rank βij Mean t-test q0.025 q0.5 q0.975 βij Mean t-test q0.025 q0.5 q0.975

1 β235,131 0.181 0.212 -0.317 0.006 3.04 β136,67 0.015 0.125 -0.117 0.005 0.18

2 β264,183 0.184 0.206 -0.201 0.006 3.30 β159,24 0.006 0.120 -0.100 0.005 0.13

3 β96,131 0.187 0.197 -0.215 0.005 3.08 β163,36 0.013 0.119 -0.122 0.006 0.16

4 β36,247 0.257 0.196 -0.392 0.004 4.78 β47,36 0.005 0.118 -0.113 0.006 0.17

5 β172,131 0.178 0.189 -0.252 0.006 3.01 β159,159 0.006 0.117 -0.119 0.006 0.18

6 β136,183 0.167 0.188 -0.209 0.003 3.12 β70,24 0.005 0.116 -0.123 0.006 0.17

7 β268,242 -0.198 0.187 -3.494 -0.007 0.24 β159,47 0.011 0.116 -0.112 0.005 0.17

8 β159,23 0.158 0.185 -0.269 0.005 2.95 β206,264 0.012 0.114 -0.112 0.005 0.15

9 β172,94 0.179 0.184 -0.290 0.002 3.24 β240,67 0.005 0.113 -0.114 0.006 0.16

10 β248,80 0.165 0.184 -0.191 0.005 2.98 β98,20 0.019 0.113 -0.108 0.005 0.19

11 β205,139 0.179 0.183 -0.215 0.003 3.29 β229,67 0.011 0.113 -0.113 0.005 0.16

12 β211,133 -0.166 0.183 -3.028 -0.006 0.20 β98,53 0.011 0.111 -0.116 0.006 0.16

13 β98,177 0.275 0.182 -0.249 0.003 5.45 β39,199 0.015 0.111 -0.131 0.005 0.18

14 β209,146 0.167 0.182 -0.322 0.004 3.12 β167,112 0.003 0.111 -0.115 0.005 0.15

15 β98,131 0.155 0.182 -0.192 0.005 2.95 β215,234 0.014 0.111 -0.116 0.005 0.17

16 β167,139 0.183 0.181 -0.464 0.004 3.37 β149,136 0.007 0.110 -0.115 0.005 0.16

17 β98,247 0.193 0.181 -0.245 0.005 3.57 β175,98 0.015 0.110 -0.119 0.005 0.16

18 β163,195 -0.110 0.177 -1.911 -0.005 0.17 β181,224 0.012 0.110 -0.119 0.006 0.16

19 β256,247 0.166 0.177 -0.259 0.003 2.96 β268,39 0.011 0.110 -0.123 0.004 0.20

20 β211,23 0.139 0.177 -0.220 0.004 2.80 β47,159 0.013 0.109 -0.124 0.005 0.17

21 β274,192 0.144 0.176 -0.173 0.005 2.61 β24,152 0.002 0.109 -0.116 0.004 0.17

22 β70,23 0.123 0.175 -0.195 0.007 2.19 β202,171 0.008 0.109 -0.121 0.005 0.16

23 β67,183 0.149 0.175 -0.216 0.005 2.52 β255,58 0.009 0.109 -0.122 0.005 0.16

24 β211,131 0.152 0.175 -0.283 0.003 2.98 β255,235 0.007 0.109 -0.116 0.004 0.17

25 β107,247 0.179 0.174 -0.396 0.006 3.24 β50,58 0.010 0.108 -0.120 0.004 0.16
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Consequently, both proposed shrinkage methods are not convenient to fit the links (coefficients)

in our constricting dynamic Bayesian network, particularly for the mixing model which is built

under the autoregressive model and measurement error. Figures 6.1 and 6.2 display the graphs

of posterior densities and traces of precision error term of model λ and precision measurements

error τ. Note that posterior distribution seem skew. We cannot show any graphical network due

to suggested procedures providing no links between the nodes (variables).

Figure 6.1: Traces and density plot for precision λ of error term in dynamic Bayesian networks.
The blue histogram refers to the posterior distribution of its error model based on DBNs. Red
lines represents the gamma prior of error model. The above graphs refers to the chain with hNiP
hyperparameters values is b0 = 750, c = 6 and d = 4. The bottom graphs indicates the results
based on hyperparameter values of b0 = 750, c = 3 and d = 2.
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Figure 6.2: Traces and density plot for precision τ of measurements error in dynamic Bayesian
networks model. The blue histogram refers to the posterior distribution of the measurement
error model based on DBNS, red lines represent the gamma prior of its measurement error. The
above graphs refers to the chain with hNiP hyperparameters values is b0 = 750, c = 6 and d =
4. The bottom graphs indicates the results based on hyperparameter values of b0 = 750, c =
3 and d = 2.

6.5 Summary of Chapter

In this chapter, we have applied our dynamic Bayesian network with measurement error models

using a sample of gene expression level dataset taken form cardiovascular diseases patients. We

can conclude that both proposed shrinkage priors are not useful to create DBNs under our struc-

ture model in this thesis. One might address this kind of modelling with an alternative algorithm

instead of MCMC, because the results show that for all coefficients shrunk to zero or modifying

the proposed Bayesian shrinkage priors to avoid shrinkage aggressively all coefficients. There-

fore, this kind of modelling is no helpful for shrinkage parameters in the high-dimensional

dataset.

157



Chapter 7

Conclusion and Future work

In this chapter, we summarise the main results obtained from our investigations in this thesis

and display our contributions and some considerations for future work to tackle the problems

which we have faced in our study.

7.1 Conclusions

The high-dimensional data becomes one of the biggest challenging choice for investigation

several kinds of statistical modelling. This is because the number of explanatory variables suc-

ceed the number of observations. In order to overcome a high-dimensional issues, statisticians

proposed a large number of regularization methods regarding penalizing likelihoods function,

with a view to reducing the dimensions and gaining a sparse estimation of model parameters.

From a Bayesian perspective, shrinkage prior is a Bayesian regularization method based on

scale mixture Normal distribution, which is proposed to shrink the coefficients in a model to-

ward the origin (West, 1987). Consequently, our contributions in this domain of the statistical

issue, was to propose two new versions of Bayesian shrinkage prior distributions which be-

long to the family of scale mixture Normal distribution. Considering that they are absolutely

continuous prior distributions, we have aimed to work on different kinds of probability distri-

bution as mixing distribution of the scale Gaussian distribution and also consuming the time

158



CHAPTER 7. CONCLUSION AND FUTURE WORK

when using MCMC sampling algorithm. In Chapter 3, we presented both hierarchical Normal

inverse Pareto prior distribution (hNiP) and rescaled beta hierarchical Normal inverse Pareto

prior distribution (ReB-hNiP).

Bayesian shrinkage prior distribution were applied, not only as a penalization function but also

as Bayesian variables selection with extra tools to evaluate whether the coefficients differ from

zero or not. Besides, we have explained the producer on how hNiP affects prior distribution

on coefficients. Moreover, one of the most challenges in regularization method is selecting the

tuning parameters for hNiP and ReB-hNiP priors, therefore, we used some statistical calibra-

tions to overcome this challenges by thresholds of the regression coefficients. Furthermore,

several types of creations were studied including WAIC, DIC and EBIC. However, only WIAC

criterion was applied because it has minimum values compared with other mentioned creations.

We evaluated the performance of both shrinkage priors comparing with some Bayesian shrink-

age prior distributions, including the Bayesian LASSO (Park and Casella, 2008), the horseshoe

prior distribution (Carvalho et al., 2009). We also used some non-Bayesian methods including;

LASSO and SCAD based on 100 replications of posterior distributions. Also, we calibrated

Normal exponential Gamma distributions (NEG) in Chapter 4 in the same way as the hNiP and

the ReB-hNiP shrinkage priors. In the Chapter 4, we utilised the multivariate Bayesian linear

regression model as simple and standard model to select the best range of the hyperparameters

values. The best range values of tuning parameters were selected for all proposed regularization

methods using the creations mentioned above.

As we discussed in previous chapters, variables selection was done by shrinkage priors with t-test

as an extra tool or credible interval due to evaluating whether the posterior mean of the regres-

sion coefficients values have significantly approximately close to true values or not. The results

showed that both of the proposed priors outperformed compared to other Bayesian and non-

Bayesian shrinkage methods which we have used in different case scenarios taking into consid-

eration the signal to noise dataset. In addition, results show that values of WAIC creations are

smaller than DIC and EBICγ which means that WAIC creation was better to use. Nevertheless,

the performance of the hNiP is satisfactory compared with the ReB-hNiP in terms of time com-

putation of running every single MCMC chains and also use sensitivity and specificity, overall

100 posterior distribution replication samplers.
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On the other hand, our contribution in Chapter 5 was to use the proposed Bayesian shrinkage

prior distributions with more complicated model structure. We separated that into two kinds of

modelling: measurement error with multivariate linear regression model and dynamic Bayesian

networks with measurement error. It is clear that the main part for constricting these two kinds

of modelling is an additive error equation which is measurements error (ME) model. Measure-

ments error occurs typically in the explanatory variables and the observation of a single or more

variables that is not measured accurately by a tool. Ignoring such types of measurement errors

in replication and covariates variables leads to insufficient coefficients estimation. Also, it might

cause the loss of power for detecting the explanatory variables. The first part of Chapter 5 was

focused on measurement error with multivariate linear regression model. Similar to Chapter 4,

hyperparameters values were selected based on different cases scenarios of dataset, based on

proposed Bayesian shrinkage prior distributions and NEG shrinkage priors. In addition, the pre-

cision measurement error model we proposed as a scale mixture of normal distribution which

is Student-t distribution as an alternative for Gaussian assumption. Moreover, all hyperparam-

eters prior values were selected based on WIAC after thresholding. Consequently, replication

of MCMC samplers have been obtained for both the hNiP and the ReB-hNiP models, and

the performance of both shrinkage prior distributions showed satisfactory selected variables.

Therefore, the outcomes of the model depended on the hNiP and the ReB-hNiP that have ap-

proximately same performance, but the MCMC chain has converged faster for the hNiP model

compared to the ReB-hNiP. The prediction of the model was checked based on the posterior

predictive distribution through bayeplot an package in R language, which based on the paper

of Gelman and Shalizi (2013). Thus, the results show that the both linear regression model

with/ without measurement error model are working well.

In the second part, we presented the dynamic Bayesian networks with measurement error model.

Particularly, we used our proposed shrinkage priors to create DBN model based on linear Gaus-

sian autoregressive model AR(1) and measurement error model. This type of modelling is

important in the case of studying gene regulations networks, because the coefficient matrix of

AR(1) represents the interaction between one gene to other genes over several time points, espe-

cially the high-dimensional data dominated by gene expression levels in this kind of modelling.

Another benefit of investigating this kind of model by detecting suitable treatments of diverse

diseases by selecting the most variables (genes) to other genes. Typically, results of such models

are represented by graphical models. Therefore, the structure of this complex model was de-
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pending on the hNiP and the ReB-hNiP prior distributions assuming that both error terms have

Gaussian distributions. Likewise, Chapter 5, the adopted WAIC criterion was used in order to

select the best range of hyperparameters values for both proposed Bayesian shrinkage priors. In

cases of non-high-dimensional data, in which having enough data that support fitting the model

and relying on simulated data, results indicate that only some non-zeros coefficients can be es-

timated and converged to true values and other coefficients aggressively shrink to zeros (over

shrinkage). Thus, models based on both shrinkage priors have similar performance. We also

implemneted our MCMC chains for 20 replication samplers and results shows that both t-test

and quantiles have the same results. On the other hand, regarding a high-dimensional dataset,

in order to select the hyperparameters values for both of our proposed prior and to check the

performance of this model, we applied DBN on different case scenarios. Hence, we quantified

some measures to evaluate model fitting, such as WAIC, FN, TP and calculating the non-zeros.

The findings showed that most of the coefficients shrunk toward zeros aggressively. Thus, if

we use some hyperparameter values, we might obtain a few non-zero coefficients, but still the

FN values are high. We believe that estimating a few coefficients in the model with FN equal

to zero is better than detecting some spurious variables, because indeed, spurious variables may

have drawbacks on the disease treatment. We have compared the performance of our modelling

with similar structure modelling which is described in R and is called GRENITS package de-

veloped by Morrissey (2012). Furthermore, “AthalianaODE-data” was used as standard dataset.

Results based on the linear Gaussian model in GRENITS package show out-performance of

our results, because our proposed models are detected only by some linkage between the vari-

ables.

Finally, in Chapter 6, we applied the sub-sample of the real CVD dataset on our proposed

dynamic Bayesian models. We used two different appropriate prior values to show the ability of

models based on a specific dataset, the number of coefficients were extremely higher compared

to the time points. We conducted the outcome of the MCMC chain, therefore results show

that all the coefficients shrink closely to zero. This situation was expected, due to the results of

simulated data in the second part of Chapter 5. Above all, the proposed Bayesian shrinkage prior

has showed unsatisfactory results based on dynamic Bayesian networks with the measurements

error model.
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7.2 Future Work

Our research was mainly focused on investigating the problem of high-dimensional data, typ-

ically, we were interested in working with various types of linear models. For that purpose,

two Bayesian shrinkage prior distributions were proposed. Furthermore, the selection of the

tuning parameters and variables were also addressed by sensitivity analysis and coefficients

threshold. However, there are some other possible directions to be investigated in the future.

The most important task which can possibly be worked on using empirical Bayes (Efron et al.,

2001) procedure for selecting the hyperparameters for both shrinkage priors instead of using

sensitivity analysis. This is because it will automatically select the hyperparameters based on

data, but challenging task is that we have two hyperparameters for each proposed shrinkage

prior (c and b0).

Another possible working direction, is solving the shortage of high-dimensional in dynamic

Bayesian networks with the measurements error model. This was which has shown in results in

Chapter 5 and the application on real gene expression data in Chapter 6. In this situation, one

might explore transformations to linearise the relationship between variables. This is redesign

the structure of the model which may lead to better results compared to the current model.

Another direction might be to overcome the issues of over-shrinkage of the coefficients, which is

proposing the sparse model. Therefore, we would like to handle two types of priors distributions

at the same time for the diagonal of coefficients matrix in Equation 5.30, so that, the diagonal

has a flatter prior distribution. For example, Gaussian distribution or uniform distribution can be

used, in order to keep those diagonal coefficients matrices, Bi,j 6= 0, where i = j, because, in

reality of gene networks, self-regulation genes usually lead to active genes themselves. For the

non-diagonal coefficients matrix, we will use one of our proposed Bayesian shrinkage priors.

Furthermore, if the above ideas did not work well, then we will extend the dynamic Bayesian

network with measurements error model framework to non-linear functional relationships, even

with larger high-dimensional dataset, after modifying the proposed shrinkage priors.

On the other hand, we may also be interested to investigate the setting of the key parameter

for inverse Pareto distribution, and use different values of both hyperparameters values a, b for

the rescaled Beta distribution, because we assumed that (a = b = 0.5) in Equation 3.12. Fur-

thermore, we will extend and modify the proposed Bayesian shrinkage prior distributions, to
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fit the utilised dynamic model that used in this thesis, in order to identifying the best candi-

date variables (genes) that regulates other genes. Thus, we will use an automatic procedure

to set prior parameters using some methods such as, modified Bayesian information creation

(mBIC), Bayesian Watanabe-Akaike information creation BWAIC, see Gelman et al. (2014).

Also, we would like to implement the proposed shrinkage prior distributions on time-varying

dynamic Bayesian networks model. This kind of model is studies the variables selection that

may change over time, this will focus on estimating the coefficients for each time slice in the

dynamic model. Thus, it is important to identify the coefficients (gene) that differ from zero

for every single time of collecting data. Some researchers have worked on the time-varying

dynamic Bayesian networks model such as, Kalli and Griffin (2014), Lee et al. (2017) and Song

et al. (2009).
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A.1 Markov Chain Monte Carlo - MCMC

MCMC algorithm is one of the powerful numerical tools, which plays an important role in many

fields such as Statistics, Physics, Computing and Economics. Hastings (1970) has generalised

MCMC methods to adopt statistical issues, which is called Metropolis-Hasting algorithm. It

is one of the important statistical tools for sampling data from the posterior distribution as

in some situations it is difficult to find the full conditional distribution algebraically (Andrieu

et al., 2003). A proposal distribution has efficiency in computing MCMC algorithm. It is

challenging to use suitable proposal distribution in the case of having the high-dimensional

model (Mbalawata et al., 2015). Bayesian Inference is based on this algorithm. In general , we

can consider dealing with two main types of MCMC algorithms, Metropolis-Hasting and Gibbs

sampler.

A.1.1 Gibbs sampler

Gibbs sampler was first invented by Geman and Geman (1984). It is a simple and special case

of MCMC algorithm family, and it relies on the case that can correctly find the full conditional

distribution from multivariate joint distribution. Gibbs sampler is appropriate to be utilised

the joint probability distribution that has complicated formula and difficult to calculate the full

conditional distribution analytically. Gibbs sampler has been applied considerably in literature,
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because it gains a sample for target distribution and it is very easy for applying in any statistical

software. Suppose that P (θ1, θ2, θ3, . . . θp) is a joint probability distribution, which we want

sampling from for every single parameter, where p represents the number of parameters. Then,

we can illustrate the Gibbs sampler for those parameters.

θk+1
1 ∼ P (θ1|x, θk2 , θk3 , . . . θkp)

...

θk+1
p ∼ P (θp|x, θk+1

1 , θk+1
2 , . . . θk+1

p−1)

where k is indicated number of the iteration, x is represents of data.

A.1.2 Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm can be used when P (θi|θj, data; i 6= j) represents the posterior

distribution of the unknown parameters, and full conditional distribution is not corresponding

to any general probability distribution. In this case, the Gibbs sampler is impossible to use. The

choice of selecting the proposal distributions is a very important part in this type of MCMC

sampling. We can describe the Metropolis-Hastings through the following steps:

1 Select initial value of θ(1) .

2 Sampling θ∗ which is candidate value from a proposal distribution at ( k ) iteration .

3 Calculate an acceptance ratio ( α ) :

α = min

{
1,

Ψ(θ∗)q(θk|θ∗)
Ψ(θk)q(θ∗|θk)

}
, (A.1)

where Ψ(θ∗) refers to conditional probability and q(θ∗|θ) refer to a proposal distribution.

4 Generate U from Uniform distribution, that is, U ∼ Uni(.|0, 1), then we compare U

with α. If U is less than α, then θk+1 = θ∗, otherwise θk+1 = θk.

5 We repeat the steps (2 - 4)for (k + 1) times.
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Results of Tuning Parameters Selection
and Application on Simulated Data

In the section, we presents some graphs of tuning parameters selection for all candidate hyper-

parameters values used with multivariate linear regression.
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Figure B.1: The relation between upper bounds of hNiP shrinkage prior, hyperparameters and
(WAIC and DIC) criteria for all hyperparameters. Top panel shows the values of DIC criteria
which illustrated by the dotted blue line and WAIC is represented by a black solid with dotted
red line. The grey solid line refers to the average of WAIC for the best number of candidate
values of the hyperparameters. The bottom panel displays three lines where the blue solid
line indicates the true number of non-zero coefficients in the simulation data of n = 35, p =
45. Black dotted dash line represents the number of estimated coefficients. The purple dash line
represents used values used for upper-bounds b0 and for all hyperparameters candidates values.
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Figure B.2: The relation between upper bounds of ReB-hNiP shrinkage prior, hyperparameters
and (WAIC and DIC) criteria for all hyperparameters. Top panel shows the values of DIC
criteria which illustrated by the dotted blue line and WAIC is represented by a black solid
with dotted red line. The grey solid line refers to the average of WAIC for the best number
of candidate values of the hyperparameters. The bottom panel displays three lines where the
blue solid line indicates the true number of non-zero coefficients in the simulation data of n =
35, p = 45. Black dotted dash line represents the number of estimated coefficients. The purple
dash line represents used the values used for upper-bounds b0 and for all hyperparameters.
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Figure B.3: The relation of the hyperparameter calibration between upper bounds and second-
layer hyperparameters using (WAIC and DIC) criteria for model based on NEG shrinkage prior,
for all candidate values. The blue dotted line represents the DIC, and the black line with red
circle illustrates the WAIC values for the number of the models. The green solid line refers to
the average value of the WAIC. In the bottom panel, the blue solid line indicates the number
of true non-zero coefficients. The black dashed line with black circle represents the number
of estimated regression coefficients. Purple dashed line denotes the several values of candi-
date upper bounds b0 and the all range values of hyperparameters for NEG shrinkage prior
with ω and γ. The dataset had a size of n = 35 and p = 45.
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Figure B.4: The relation of the hyperparameter calibration between upper bounds and second-
layer hyperparameters using (WAIC and DIC) criteria for model based on NEG shrinkage prior,
for all candidate values. The blue dotted line represents the DIC, and the black line with red
circle illustrates the WAIC values for the number of the models. The green solid line refers to
the average value of the WAIC. In the bottom panel, the blue solid line indicates the number
of true non-zero coefficients. The black dashed line with black circle represents the number
of estimated regression coefficients. Purple dashed line denotes the several values of candi-
date upper bounds b0 and the all range values of hyperparameters for NEG shrinkage prior
with ω and γ. The dataset had a size of n = 35 and p = 100.
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APPLICATION ON SIMULATED DATA
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Figure B.5: Trace plots for non-zero coefficient parameter β5 based on different shrinkage pri-
ors: the NEG with ω = 2 and γ =

√
2, ReB-hNiP b0 = 30, e0 = 6, and hNiP with b0 =

30, c = 9 and d = 6; where n = 80 and p = 35. The red line represent the true value of
coefficient and the black traces refer to the posterior distribution of the estimated coefficient.
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Figure B.6: Trace plots for non-zero coefficient parameter β22 based on different shrinkage
priors: the NEG with ω = 2 and γ =

√
2, the ReB-hNiP with b0 = 30, e0 = 6, and the

hNiP with b0 = 30, c = 9 and d = 6; where n = 80 and p = 35. The red line represent the
true value of coefficient and the black traces refer to the posterior distribution of the estimated
coefficient.
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Figure B.7: Tuning parameters selection for hNiP, where the top panel shows two different lies,
where WAIC is represented by the black line with red dotted, and the green solid line refer to
the average of WAIC. The bottom panel displays three lines, where blue solid line indicates the
number of non-zero coefficients in the simulation data when n = 30 and p = 40. The black cir-
cle dotted line represents the number of estimated coefficients. The blue dashed line represents
the number of different values of upper-bounds b0 and parallel with hyperparameters c, d. Both
graphs shows the relation between upper bounds of hNiP shrinkage prior, hyperparameters and
the best range of WAIC criteria.
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Appendix C

Pseudocode

In this sections, we present the pseudocode for all models used in this thesis.

C.1 Pseudocode Bayesian Linear Regression Model

• Input initial values and prior values {y,X, aλ, bλ, (ω, γ), or(b0, c, d), or(b0, e)}

• Update precision of error model λk+1

λk+1 ∼ Ga
(
.
∣∣aλ +

n

2
, bλ +

1

2
(y −Xβk)′I(y −Xβk)

)
• Update the coefficients βk+1 using the shrinkage priors as follows;

– For NEG prior

∗ Update hyperparameter ζ

ζk+1
j ∼ Ga

(
.
∣∣ω + 1, (φkj +

1

γ2
)

)
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∗ For hyperparameter φ, use Metropolis-hasting;

p+1∏
j=1

π(φ
(k+1)
j ) ∝

( p+1∏
j=1

φ
− 1

2
(k)

j exp

{
−
(β ′(k)

j β
(k)
j

2φ
(k)
j

+ ζ
(k+1)
j φ

(k)
j

)})
,

∗ Update coefficients parameter β

β∗(k+1) ∼ N
(
.
∣∣µβ,Ω−1

β

)
.

Where µβ = λ(k+1)Ω−1
βkX

′
y , Ωβk = (λ(k+1)X

′
X + ΣΦ(k+1)) and ΣΦ(k+1) is

a matrix of (p + 1) × (p + 1) dimensional, and the diagonal of this matrix is

equal to { 1

φ
(k+1)
1

, . . . , 1

φ
(k+1)
p+1

} .

– Update hNiP

– Update For ReB-hNiP

∗ Update hyperparameter κk+1

π(κj) ∝ bκi0 ψ
κi−1
j

e−1
0

B(a,b)

(
κj
e0

)a−1(
1− κj

e0

)b−1

,

where j = 1, 2 . . . (p + 1), the values of κj should satisfy the condition (0 <

κj ≤ e0) and a = b = 1
2
. The formula in (4.11) has no typical distribution.

Therefore, Metropolis-Hasting is used in order to update the posterior distribu-

tion.

∗ Update the parameter of scale mixture Normal distribution ψj :

ψj ∼ TrGa
(
.
∣∣b0, κj +

1

2
,
β2
j

2

)
, (C.1)

where, TrGa is Truncated Gamma distribution which is upper bounded.

∗ Updating coefficients parameters β as follow :

β ∼ N
(
.
∣∣µβ,Ω−1

β

)
. (C.2)

where µβ = λΩ−1
β X

′
y , Ωβ = (λX

′
X +Σψ) and Σψ is a matrix of (p+1)×

(p+1) dimensional, and the diagonal of this matrix is equal to {ψ1, ψ2 . . . , ψp+1} .
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C.2 Pseudocode for Measurements Error with Bayesian Re-

gression Model

C.2.1 Pseudocode for Measurements Error With Bayesian Regression Model
- NEG Prior

� Input data and prior values {y,Z, aλ, bλ, cτ , dτ , aν , bν , pbν , aφ, bφ, P bφ, γ, ω}

� Start with initial values {λ(1), β(1), τ (1), φ(1), ν(1), δ(1), ζ1}

� Update unobserved variable x
(k+1)
i

N

(
.

∣∣∣∣(λ(k)β(k)β
′(k)

+ τ (k)(
R∑
r=1

δ
(k)
ijr )Ip)

−1
(
λ(k)β(k)(y

(k)
i − α(k)) + τ (k)(

R∑
r=1

δ
(k)
ijrzijr)

)

, (λ(k)β(k)β
′(k)

+ τ (k)(
R∑
r=1

δ
(k)
ijr )Ip)

)
.

� Update parameters ζ(k+1)
j by

ζ
(k+1)
j ∼ Ga

(
.

∣∣∣∣ω + 1, (φ
(k)
j +

1

γ2
)

)
.

� Update parameters φ(k+1)
j using Metropolis-Hastings algorithm.

The proposal distribution of φ(prop) is gamma distribution with shape equal to (1+φ
(k)
j ×

pbφ) and rate equal to (pbφ), where φ = (φ1, φ2 . . . φp+1)

π(φ|rest) ∝
( p+1∏

j=1

(φj)
− 1

2 exp

{
−
(β(k)

j β
(k)
j

2φj
+ ζ

(k+1)
j φj

)})
.

Metropolis-Hastings algorithm follows the following steps:

current state is
(
φkj , ζ

k+1
j , βki

)
, updating φj using q(φj|φkj ) which the proposal is φpropj ∼

q(φj|φkj ).
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Then the acceptance ratio is given as follows:

α = min

{
1,
π(φpropj |−)q(φkj |φ

prop
j )

π(φkj |−)q(φpropj |φkj )

}
,

if α > U then φk+1
j = φpropj , otherwise φk+1

j = φkj , Where U is random uniform

value.

� Update coefficient parameters B(k+1) = (α(k+1),β(k+1)),

B(k+1) ∼ N

(
.

∣∣∣∣λ(k)Ω−1(k)

β X ′(k+1)

y, (λ(k)X ′(k+1)X (k+1) + Σ
(k)
Φ )−1

)
.

� Update parameter precision of error model λ(k+1) .

λ(k+1) ∼ Ga
(
.

∣∣∣∣aλ +
n

2
, bλ +

1

2
(y −X ∗(k+1)B(k+1))′I(y −X ∗(k+1)B(k+1))

)
.

� Update parameters precision of measurement error τ (k+1) .

τ k+1 ∼ Ga
(
.

∣∣∣∣cτ +
RNp

2
, dτ +

1

2

( R∑
r=1

p∑
j=1

n∑
i=1

δ
(k)
ijrν

(k)(zijr − x(k+1)
ij )2

))
.

� Update the degree of freedom ν(k+1)

where Metropolis-Hastings algorithm is used for updating ν(k+1), the full conditional

distribution is as follows:

π(ν |rest) ∝
(

(ν
2
)
Rnpν

2

(Γ(ν
2
))Rpn

(
n∏
i=1

p∏
j=1

R∏
r=1

(δ
(k)
ijr )

ν
2
−1) exp

{
−ν

2

n∑
i=1

p∑
j=1

R∑
r=1

δ
(k)
ijr

})
(

baνν
Γ(aν)

(ν)aν exp(−νbν)
)
.

Metropolis-Hastings algorithm follows the following steps:

The proposal distribution of ν(prop) is gamma distribution with shape equal to (1+ν(k)×

pb) and rate equal to (pbφ) . Current state is
(
νk, δkijr

)
, updating ν using q(ν|νk) which
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the proposal is νprop ∼ q(ν|νk. Then acceptance ratio is given as follows:

α = min

{
1,
π(νprop|−)q(νk|νprop)
π(νk|−)q(νprop|νk)

}
if α > U then νk+1 = νprop otherwise νk+1 = νk, where U is random value from uni-

form distribution.

� Update parameters δ(k+1)
ijr ,

δ
(k+1)
ijr ∼ Ga

(
.

∣∣∣∣ν(k+1) + 1

2
,
1

2

(
ν(k+1) + τ (k+1)(zijr − x(k+1)

ij )2
))
.

C.2.2 Pseudo-Code for Model with hNiP Prior for Measurements Error
with Bayesian Regression Model

� Input data and prior values {y,Z, aλ, bλ, cτ , dτ , aν , bν , pbν , b0, c, d}

� Start with initial values {α(1), λ(1), β(1), τ (1), φ(1), ν(1), δ(1), ψ(1), κ1}

� Update Unobserved variable x
(k+1)
i , where (i = 1, 2, . . . , p), (j = 1, 2, . . . , p) and r =

1, 2, . . . , R.

N

(
.

∣∣∣∣(λ(k)β(k)β
′(k)

+τ (k)(
R∑
r=1

δ
(k)
ijr )Ip)

−1
(
λ(k)β(k)(y

(k)
i −α(k))+τ (k)(

R∑
r=1

δ
(k)
ijrzijr)

)
, (λ(k)β(k)β

′(k)
+

τ (k)(
R∑
r=1

δ
(k)
ijr )Ip)

)
� The full conditional posterior distribution for κ is as follow:

κ
(k+1)
j ∼ Ga

(
.

∣∣∣∣c+ 1, log
( b0

ψ
(k)
j

)
+ d

)

� The TrGa is the truncated Gamma distribution which is bounded from upper. The parameters ψ and κ

are hyperparameters prior βj in the case using hNIP distribution. The full conditional

posterior distribution for ψ is given by:

ψ
(k+1)
j ∼ TrGa

(
.

∣∣∣∣b0, κ
(k+1)
j +

1

2
,
β

2(k)
j

2

)
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� Update coefficient parameters B(k+1) = (α(k+1),β(k+1)) .

B(k+1) ∼ N

(
.

∣∣∣∣λ(k)Ω−1(k)

β X ′(k+1)

y, (λ(k)X ′(k+1)X (k+1) + Σ
(k+1)
ψ )−1

)
,

where Σψ is a matrix of (p + 1) × (p + 1) and the diagonal of this matrix is equal to

{ψ(k+1)
1 , ψ

(k+1)
2 . . . , ψ

(k+1)
p+1 } .

� Update the precision parameter of model λ(k+1),

λ(k+1) ∼ Ga
(
.

∣∣∣∣aλ +
n

2
, bλ +

1

2
(y −X ∗(k+1)B(k+1))′I(y −X ∗(k+1)B(k+1))

)
.

� Update precision parameter of measurement error τ (k+1) .

τ k+1 ∼ Ga
(
.

∣∣∣∣cτ +
RNp

2
, dτ +

1

2

( R∑
r=1

p∑
j=1

n∑
i=1

δ
(k)
ijrν

(k)(zijr − x(k+1)
ij )2

))
.

� Updating degree of freedom parameter ν(k+1),

where Metropolis-Hastings algorithm is used for updating ν(k+1), and the full condi-

tional distribution is as follows:

π(ν |rest) ∝
(

( ν
2

)
Rnpν

2

(Γ( ν
2

))Rpn
(
n∏
i=1

p∏
j=1

R∏
r=1

(δ
(k)
ijr )

ν
2
−1) exp

{
−ν

2

n∑
i=1

p∑
j=1

R∑
r=1

δ
(k)
ijr

})
(

baνν
Γ(aν)

(ν)aν exp(−νbν)
)
.

Metropolis-Hastings algorithm has the following steps:

The proposal distribution of ν(prop) is gamma distribution with shape equal to (1+ν(k)×
pb) and rate equal to (pbφ) .

Current state is
(
νk, δkijr

)
, updating ν using q(ν|νk) which the proposal is νprop ∼ q(ν|νk)

Then the acceptance ratio is given as follows:

α = min

{
1,
π(νprop|−)q(νk|νprop)
π(νk|−)q(νprop|νk)

}
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⇒ νk+1 = νprop, otherwise νk+1 = νk, where U is a random value from the uniform

distribution.

� Update parameters δ(k+1)
ijr ,

δ
(k+1)
ijr ∼ Ga

(
.

∣∣∣∣ν(k+1) + 1

2
,
1

2

(
ν(k+1) + τ (k+1)(zijr − x(k+1)

ij )2
))

C.2.3 Pseudocode for Model with ReB-hNiP Prior for Measurements Er-
ror with Bayesian Regression Model

� Input data and prior values {y,Z, aλ, bλ, cτ , dτ , aν , bν , pbν , b0, e}

� Start with initial values {α(1), λ(1), β(1), τ (1), φ(1), ν(1), δ(1), ψ(1), κ1}

� Update unobserved variable x
(k+1)
i , where (i = 1, 2, . . . , p), (j = 1, 2, . . . , p) and r =

1, 2, . . . , R.

N

(
.

∣∣∣∣(λ(k)β(k)β
′(k)

+τ (k)(
R∑
r=1

δ
(k)
ijr )Ip)

−1
(
λ(k)β(k)(y

(k)
i −α(k))+τ (k)(

R∑
r=1

δ
(k)
ijrzijr)

)
, (λ(k)β(k)β

′(k)
+

τ (k)(
R∑
r=1

δ
(k)
ijr )Ip)

)
.

� The full conditional posterior distribution of hyperparameter of the coefficients κj is as

follows:

π(κj) ∝ bκi0 ψ
κi−1
j

e−1
0

B(a, b)

(
κj
e0

)a−1(
1− κj

e0

)b−1

,

where j = 1, 2 . . . (p + 1), the values of κj should satisfy the condition (0 < κj ≤
e0) and a = b = 1

2
. Metropolis-Hastings algorithm is applied to compute this parameter.

� TrGa is the Truncated Gamma distribution which is bounded from upper. The parameters ψ

and κ are hyperparameters prior βj in the case using ReB-hNIP distribution. The full

conditional posterior distribution of ψ is given by:

ψj ∼ TrGa
(
.

∣∣∣∣b0, κj +
1

2
,
β2
j

2

)
.

� Updating coefficient parameters B(k+1) = (α(k+1),β(k+1)),
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B(k+1) ∼ N

(
.

∣∣∣∣λ(k)Ω−1(k)

β X ′(k+1)

y, (λ(k)X ′(k+1)X (k+1) + Σ
(k+1)
ψ )−1

)
,

where Σψ is a matrix of (p + 1) × (p + 1) dimensional, and the diagonal of this matrix

is equal to {ψ(k+1)
1 , ψ

(k+1)
2 . . . , ψ

(k+1)
p+1 } .

� Update precision parameter of model λ(k+1) .

λ(k+1) ∼ Ga
(
.

∣∣∣∣aλ +
n

2
, bλ +

1

2
(y −X ∗(k+1)B(k+1))′I(y −X ∗(k+1)B(k+1))

)
.

� Update precision parameter of measurement error τ (k+1) .

τ k+1 ∼ Ga
(
.

∣∣∣∣cτ +
RNp

2
, dτ +

1

2

( R∑
r=1

p∑
j=1

n∑
i=1

δ
(k)
ijrν

(k)(zijr − x(k+1)
ij )2

))
.

� Update the degree of freedom parameter ν(k+1)

Where Metropolis-Hastings algorithm is used for updating ν(k+1) the full conditional

distribution as follows:

π(ν |rest) ∝
(

( ν
2

)
Rnpν

2

(Γ( ν
2

))Rpn
(
n∏
i=1

p∏
j=1

R∏
r=1

(δ
(k)
ijr )

ν
2
−1) exp

{
−ν

2

n∑
i=1

p∑
j=1

R∑
r=1

δ
(k)
ijr

})
(

baνν
Γ(aν)

(ν)aν exp(−νbν)
)
.

Metropolis-Hastings algorithm follow the bellow steps:

The proposal distribution of ν(prop) is gamma distribution with shape equal to (1+ν(k)×
pb) and rate equal to (pbφ) . Current state is

(
νk, δkijr

)
, updating ν using q(ν|νk) which

the proposal is νprop ∼ q(ν|νk). Then the acceptance ratio is given as follows:

α = min

{
1,
π(νprop|−)q(νk|νprop)
π(νk|−)q(νprop|νk)

}
,

if α > U, then νk+1 = νprop, otherwise νk+1 = νk, where U is a random uniform

value.

� Update parameters δ(k+1)
ijr ,
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δ
(k+1)
ijr ∼ Ga

(
δ

(k+1)
ijr

∣∣∣∣ν(k+1) + 1

2
,
1

2

(
ν(k+1) + τ (k+1)(zijr − x(k+1)

ij )2
))
,

C.3 Pseudocode of Dynamic Bayesian Networks with Mea-

surements Error Model

• Setup the initial values for {y,Z, aλ, bλ, cτ , dτ , aν , bν , pbν , b0, e}

• Start with initial values {α(1), λ(1), B(1), τ (1), φ(1), ν(1), δ(1), ψ(1), κ1}

• Update unobserved variables Y k+1 .

Y for t = 2 . . . (T − 1) as follows:

Y t(k+1)

i ∼ N

(
.

∣∣∣∣λ
(
α
(k)
i +

p∑
j=1

β
(k)
ij Y

t−1
j +β

(k)
ii (Y t+1

i −α(k)
i −

p∑
i6=j

β
(k)
ij Y

t
j )
)

+τ (k)RX̄t
i

λ(k)(1+β2(k)

ii )+τ (k)R
, λ(1+β2(k)

ii )+τ (k)R

)
,

where i = 1, 2, 3 . . . p and t = 2, . . . (T − 1) .

Regarding to compute for unobserved variables Y T+1 the t = T + 1, we used the fol-

lowing formula:

Y t=T (k+1)

i ∼ N

(
.

∣∣∣∣λ(α
(k)
i +

p∑
i 6=j

β
(k)
ij Y

t=T−1
i + β

(k)
ii Y

t=T−1
i ) + τ (k)RX̄ t=T

(λ(k) +Rτ (k))
, (λ(k)+Rτ (k))

)
.

We supposed that Y 1 ∼ N(.|0, 1) overall number of iteration.

• The intercept parameter of the model is represented by α(k+1)
i and it is computed as fol-

low:

α
(k+1)
i ∼ N

(
.

∣∣∣∣λ(
T∑
t=1

Y t(k+1)

i −
T∑
t=1

p∑
j=1

β
(k)
ij Y

t−1(k+1)

j ) + A∗
(k)

(Tλ(k+1) + pα)
, (Tλ(k+1) + σα)

)
,

A∗
(k+1) ∼ N

(
pPαᾱ

(qa + pPα)
, (qa + pPα)

)
.
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• The precision λk+1 of the model can be computed by;

λk+1 ∼ Ga
(
.

∣∣∣∣cλ+pT2 , dλ+
1

2

T∑
t=2

(Y t(k+1)−α−BY t−1(k+1))
′
I(Y t(k+1)−α−BY t−1(k+1))

)
.

• Precision of measurement error model τ k+1 is as follow:

τ k+1 ∼ Ga
(
.

∣∣∣∣aτ +
RT (G− 1)

2
, bτ +

1

2

p∑
i=1

T∑
t=1

(X t
i − Y

t(k+1)
i )2

)
,

where: X t
i is a vector of size (R× 1).

• For updating the coefficients matrix B, the Dynamic Bayesian Networks with measure-

ment error model is divided into two part in tersm of the shrinkage prior distribution of

coefficient parameters.

– For ReB-hNiP prior

∗ The parameters ψ and κ are hyperparameters prior βij in the case utilising

ReB-hNIP distribution.

*Update the full conditional posterior distribution of hyperparameter of the

coefficients κij is as follows: TrGa is Truncated Gamma distribution which

is bounded from above. We let TrGa(.|b0, a, b) = Ga(.|a, b)I0<b0 .

**Metropolis-Hasting algorithm is used to update the hyperparameter of the

coefficients κ
(k+1)
ij as it is impossible update it directly:

π(κ
(k+1)
ij ) ∝ b

κ
(k)
ij

0 ψ
(k+1)κ

(k)
ij −1

ij

e−1
0

B(a, b)

(
κ

(k)
ij

e0

)a−1(
1−

κ
(k)
ij

e0

)b−1

,

where j = 1, 2 . . . p and value of κ
(k+1)
ij should satisfy the condition (0 <

κ
(k+1)
ij ≤ e0) and a = b = 1

2
.

∗ The full conditional posterior distribution of ψ
(k+1)
ij which is scale mixture of

Normal distribution , is given by:

ψ
(k+1)
ij ∼ TrGa

(
.

∣∣∣∣b0, κ
(k)
ij +

1

2
,
β2(k)

ij

2

)
.
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– For hNiP prior

∗ The parameters ψ and κ are hyperparameters prior βij are updating using

Gibbs sampler.

* Update of hyperparameter of the regression coefficients κij as follows:

κ
(k+1)
ij ∼ Ga

(
.

∣∣∣∣c+ 1, log
( b0

ψ
(k)
ij

)
+ d

)

where (j, i = 1, 2 . . . , p.

We assumed Truncated Gamma distribution is symbolized as TrGa(.|b0, a, b) =

Ga(.|a, b)I0<b0 and it is bounded from above.

∗ Update hyperparameters prior ψij is given by:

ψ
(k+1)
ij ∼ TrGa

(
.

∣∣∣∣b0, κ
(k+1)
j +

1

2
,
β2(k+1)

ij

2

)

• Updating the coefficients parameters B, where every single vector (β
(k+1)
i ) update in-

dividually either using the prior distribution of ReB-hNip or hNiP as follows:

β
(k+1)
i ∼ N

(
.

∣∣∣∣µβ(k)
i
,Ω−1

β
(k)
i

)

The β(k+1)
i represents a single vector in B, where µβi

= λ(k+1) Ω−1
βi

( T∑
t=2

Y t−1(k+1)
(Y t(k+1)

i −

α
(k+1)
i )

)
, Ωβi

=
(
λ(k+1)

[ T∑
t=2

(Y t−1(k+1)
Y t−1(k+1)]

+ Σ
ψ
(k+1)
i

) and Σ
ψ
(k+1)
i

is a matrix

of (p×p) diagonal, and the diagonal of this matrix is equal to ψ(k+1)
i = {ψ(k+1)

1 , ψ
(k+1)
2 . . . , ψ

(k+1)
p }.
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Some Statistical Distribution

In this section, we present some common statistical distributions that have been used in this

thesis, and we also present some properties of them.

1 - (Gaussian) Normal Distribution. Normal distribution is one of the most important sta-

tistical distribution, which x is having a random variable with two parameters the mean µ

and the precision λ. It is denoted by x ∼ N(x|µ, λ−1), and the densityof normal distri-

bution is as:

N(x|µ, λ−1) =
λ√
2π
e
−λ
2

(x−µ)2 −∞ < x <∞

The main properites of this distribution is the expacted value is E(x) = µ and the Vari-

ance value is V ar(x) = λ−1

2 - Gamma Distribution.

In this distribution the random variable x has two parameters, represent the shape ω

parameter and the rate γ parameter. This distribution denoted by x ∼ Ga(x|ω, γ). The

denisty of Gamma distrubution is:

Ga(x|ω, γ) =
γω

Γ(ω)
xω−1e−γx ω, γ > 0

The mean and the variance of Gamma distributios is given by expacted value is E(x) =
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ω
γ

and Variance value is V ar(x) = ω
γ2
.

* Exponetional distrbution is the special case of Gamma distribution if (ω = 1).

3 - Inverse Pareto Distrbution.

The density of Inverse Pareto (iP) distribution is:

iP(X|κ, b) = κb−κXκ−1 , X ≤ b, (κ, b > 0)

The distribution function denoted by X ∼ iP(X|κ, b), where X is a random variable,

and the upper bound parameter represtnted by b and κ is rate parameter. In addition,

expacted value is E(X) = κb
κ+1

, and variance value is V ar(X) = κb2

(κ+1)2(κ+2)
.

4 - Rescaled Beta distrbution. The density of Rescaled Beta is:

ReB(x
∣∣e0, a, b) =

e−1
0

B(a, b)

(
x

e0

)a−1(
1− x

e0

)b−1

a, b, e0 > 0

where B(a, b) = Γ(a)Γ(b)
Γ(a,b)

, and it is equal to B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx. The ran-

dom variable x has three parameters (a, b, e0) where a, b are shape parameters and e0

is rescaled parameter, This distrubution is denoted by ReB(x
∣∣e0, a, b).

In addition, mean E(x) = a e0
a+b

and the variance V ar(x) =
a b e20

(a+b)2 (a+b+1)

5 - Truncated Gamma Distribution.

Truncated Gamma distribution which is bounded from above is denoted by TrGa(x|b, ω, γ)

where Ix<b, the density function of this distribution is given:

TrGa(x|b, ω, γ) = Cxω−1e−γx, 0 < x < b ω, γ > 0

where C =
∫ b

0
Xω−1e−γxdx, and also ω > 0 is the scale and γ > 0 represents the

shape,

6 - Student’s t distribution P (Y |µ, λ, ψ) =
∫∞

0
N

(
Y |µ, ψ−1λ−1

)
Ga
(
ψ|ν

2
, ν

2

)
dψ

St(x|µ, λ, ν) = N
(
x|µ, λ−1

)
Ga
(
λ|ν

2
, ν

2

)
where µ indicates the mean, degree of reedom

denoted by ν and λ is precision.
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Appendix E

Prior and Posterior Distrbution for NEG
Model

In this section we present the prior and full conditional distribution for Bayesian regression

model when using NEG prior distribution. The prior and posterior distributions, is presents in

only the main part that related to NEG prior distributions without repeating the full posterior

distribution of the coefficients, precision parameters. Due to have similar formula and format-

ting to the proposed priors distribution under same linear model. The prior distribution is as

follows:

π(φ, β, ζ) =

p+1∏
j=1

1

φ
1
2
j

exp
{
− 1

2
β

′

j

1

φj
βj
} p+1∏
j=1

(
ζj exp(−φjζj)

) p+1∏
j=1

( 1
γ2

)ω

Γ(ω)
ζω−1
j exp

{
− ζj
γ2

}
.

(E.1)

The full Bayesian regression model relies on the NEG prior distribution for reduction the coef-

ficient parameters βi and it is given as follows:

π(Θ|y,X) = (λ)n/2 exp

{
− λ

2
(y −Xβ)′I(y −Xβ)

}
baλλ

Γ(aλ)
λaλ−1 exp

{
− bλλ

}
p+1∏
j=1

1

φ
1
2
j

exp
{
− 1

2
β

′

j

1

φj
βj
} p+1∏
j=1

(
ζj exp(−φjζj)

)
.

p+1∏
j=1

( 1
γ2

)ω

Γ(ω)
ζω−1
j exp

{
− ζj
γ2

}
. (E.2)
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E.1 The Full Conditional Distributions.

We have showed the full conditional distribution for precision of the model λ in 4.5. In the fol-

lowing formulation, the full conditional distributions are displayed. The first parameter ζ describe

the hyper-parameter of scale mixture normal prior of regression model and sit is refers to the

rate of gamma distribution of the second order of the hierarchal NEG prior distribution,

ζj ∼ Ga
(
ζj|ω + 1, (φj +

1

γ2
)

)
. (E.3)

Metropolis-Hastings algorithm is used for updating φj. The proposal distribution is gamma

with shape equal to (1 + φj × pbφ) and rate equal to (pbφ). We are fixing the mode at the

current value and use pbφ to control the acceptance rate.

π(φj) ∝
(
φ
− 1

2
j exp

{
−
(β ′jβj

2φj
+ ζjφj

)})
. (E.4)

In this cases, we update a vector of φj where (j = 1, 2, . . . , p + 1) via using Metropolis-

Hastings algorithm.

p+1∏
j=1

π(φj) ∝
( p+1∏

j=1

φ
− 1

2
j exp

{
−
(β ′jβj

2φj
+ ζjφj

)})
. (E.5)

Then, we compute the full conditional distribution of the coefficient parameters β.

β∗ ∼ N
(
β|µβ,Ω−1

β

)
(E.6)

Where µβ = λΩ−1
β X

′
y , Ωβ = (λX

′
X + ΣΦ) and ΣΦ is a matrix of (p + 1) × (p + 1)

diagonal and the diagonal of this matrix is equal to { 1
φ1
, 1
φ2
. . . , 1

φp+1
} .
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Dondelinger, F., Lèbre, S., Husmeier, D., 2013. Non-homogeneous dynamic bayesian net-

works with bayesian regularization for inferring gene regulatory networks with gradually

time-varying structure. Machine Learning 90, 191–230.

Doshi, F., Wingate, D., Tenenbaum, J., Roy, N., 2011. Infinite dynamic bayesian networks,

in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp.

913–920.

Efron, B., Tibshirani, R., Storey, J.D., Tusher, V., 2001. Empirical bayes analysis of a microar-

ray experiment. Journal of the American Statistical Association 96, 1151–1160.

En Chai, L., Saberi Mohamad, M., Deris, S., Khim Chong, C., Wen Choon, Y., Omatu, S., 2014.

Current development and review of dynamic bayesian network-based methods for inferring

gene regulatory networks from gene expression data. Current Bioinformatics 9, 531–539.

190

https://doi.org/10.1214/13-BA805


BIBLIOGRAPHY

Fan, J., Li, R., 2001. Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American Statistical Association 96, 1348–1360.

Fan, Y., Tang, C.Y., 2013. Tuning parameter selection in high dimensional penalized likelihood.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 75, 531–552.

Fan, Y., Wang, X., Peng, Q., 2017. Inference of gene regulatory networks using bayesian non-

parametric regression and topology information. Computational and Mathematical Methods

in Medicine 2017.

Fawcett, T., 2006. An introduction to roc analysis. Pattern Recognition Letters 27, 861–874.

Friedman, N., Linial, M., Nachman, I., Pe’er, D., 2000. Using bayesian networks to analyze

expression data. Journal of Computational Biology 7, 601–620.

Friedman, N., Murphy, K., Russell, S., 1998. Learning the structure of dynamic probabilistic

networks, in: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelli-

gence, Morgan Kaufmann Publishers Inc.. pp. 139–147.

Fu, F., Zhou, Q., 2013. Learning sparse causal gaussian networks with experimental interven-

tion: Regularization and coordinate descent. Journal of the American Statistical Association

108, 288–300. doi:doi: 10.1080/01621459.2012.754359.

Fuller, W., 1987. Measurement Error Models. Wiley Series in Probability and Statistics, Wiley.

Gabry, J., 2017. bayesplot: Plotting for bayesian models. URL: http://mc-stan.org/. r

package version 1.2.0.

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., Gelman, A., 2017. Visualization in

bayesian workflow. arXiv preprint arXiv:1709.01449 .

Gelman, A., Hwang, J., Vehtari, A., 2014. Understanding predictive information criteria for

bayesian models. Statistics and Computing 24, 997–1016.

Gelman, A., Shalizi, C.R., 2013. Philosophy and the practice of bayesian statistics. British

Journal of Mathematical and Statistical Psychology 66, 8–38.

Gelman, A., Stern, H.S., Carlin, J.B., Dunson, D.B., Vehtari, A., Rubin, D.B., 2013. Bayesian

data analysis. Chapman and Hall/ CRC.

191

http://mc-stan.org/


BIBLIOGRAPHY

Gelman, A., Van Mechelen, I., Verbeke, G., Heitjan, D.F., Meulders, M., 2005. Multiple impu-

tation for model checking: completed-data plots with missing and latent data. Biometrics 61,

74–85.

Geman, S., Geman, D., 1984. Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on ,

721–741.

Ghosh, J.K., Marco, V., 1999. Probabilistic Bayesian Network Model Building of Heart Dis-

ease. Technical Report. University of South Carolina.

Gilks, W.R., 1999. Markov Chain Monte Carlo In Practice. Chapman and Hall/CRC.

Godsey, B., 2013. Improved inference of gene regulatory networks through integrated bayesian

clustering and dynamic modeling of time-course expression data. PloS one 8, e68358.
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