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SUMMARY

This investigation attempts to assess the effect of preferred 

crystallographic orientation on the fatigue properties of a cubic 

metal. Quantitative texture analysis is performed using the crystal­

lite orientation distribution function (c.o.d.f.) which enables quan­

titative predictions of mechanical properties to be made from texture 

measurements. Copper has been chosen as a model material since its 

single crystal properties exhibit values which are typical of cubic 

metals and also since the effects of thermomechanical processing are
i

reasonably well documented.

The fatigue properties are evaluated by producing textured 

plates of different texture types and severities and machining speci­

mens at specific orientations to the rolling direction of the plate. 

Fibre textures are also investigated by evaluating the fatigue 

properties parallel to the long axis of thermomechanically processed 

rod. Smooth sided cylindrical specimens were tested under fully 

reversed strain amplitude control to generate strain-life and cyclic 

stress-strain data. These data were analysed using the parametric 

approach of Morrow to develop a set of characteristic material para­

meters. Similarly, fatigue crack propagation studies were conducted 

on single edge notch specimens machined at specific angles from 

textured plate. Testing under constant load amplitude control pro­

duced data in the form of crack length vs. number of cycles which was 

analysed to produce crack propagation rate vs. stress intensity 

amplitude data which may be parametrically expressed by the constants 

C and m in the Paris equation.



It is shown that the anisotropy of fatigue behaviour may be pre­

dicted from texture measurements. The cyclic stress-strain data 

display anisotropy which is related to the type and severity of the 

texture. As the texture severity increases, the fatigue data displays 

greater anisotropy. The anisotropy of fatigue life data is shown to 

be a function of the product Act As per cycle which is directly depend­

ent on the cyclic stress strain curve. The anisotropy of fatigue 

crack data has been shown to be a function of the ability of the 

texture to influence the crack orientation and hence the crack opening 

mode. It has been shown that this effect may be predicted from 

texture data by considering the plastic strain ratio "R".
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CHAPTER 1

Introduction

Fatigue failure is not only the most common single cause of mater­

ial failure but also, in conjunction with corrosion effects, failure 

under repeated loading accounts for the vast majority of engineering 

failures. Given the importance of such a failure mechanism surprisingly 

few data are available with regard to the effect of material anisotropy

upon fatigue. This thesis examines the effect of one form of mechanical
$

anisotropy, that due to preferred crystallographic orientation, or 

crystallographic texture as it is widely known, upon the fatigue failure 

of a single phase f.c.c. metal.

Although it is well known that thermomechanical processing induces 

preferred orientation effects commercially processed materials are 

frequently regarded as possessing mechanical isotropy. It has been rec­

ognised that many of the problems encountered during the forming pro­

cesses of metals may be due to the influence of texture. In hexagonal 

metals the severe anisotropy has been shown to influence the fatigue 

properties of numerous metals and alloys. However, due to the greater 

isotropy of f.c.c. metals, the influence of crystallographic texture on 

the cyclic properties has not been widely investigated.

The aims of this investigation have been to examine the effects of 

texture on the fatigue properties of copper and by employing a quantit­

ative technique for the determination of texture data to assess the 

quantitative predictability of the anisotropy so induced. The quantit­

ative method of texture analysis employed makes use of the crystallite 

orientation distribution function (c.o.d.f.j, which,- when combined with
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suitable models of the deformation mode may be used to predict the mechan­

ical properties. This technique has become well established in recent 

years and consequently, only a brief description of the application of 

the technique is presented in Chapter 4.

Similarly, the nature of the fatigue failure process is well known 

and only a brief summary of the relevant factors is presented at the 

beginning of Chapter 2. The remainder of Chapter 2 presents a literature 

survey of the influence of crystallographic orientation upon the fatigue 

°f metals. The effects are reviewed for cubic metals in both single 

crystal and polycrystal .form and for polycrystalline hexagonal metals.

The fatigue properties are assessed using the cyclic stress-strain 

analysis and standard techniques of crack propagation measurements. The 

cyclic stress-strain analysis technique considers that the resistance 

of a material to cyclic deformation may be characterised by a set of 

material parameters which are not independent but are, in fact, related 

by the relationship between the cyclic stress amplitude and the cyclic 

strain amplitude developed by the loading conditions. Hence, endurance 

data is collected in the form of fatigue life as a function of the 

applied constant strain amplitude while monitoring the stress amplitude 

developed under such conditions. The fatigue crack propagation data were 

collected by standard optical measurements under constant load cycling. 

The experimental details are described in Chapter 3 and the analyses 

employed for the two techniques are outlined in Chapter 4.

Chapter 5 presents the experimental results. The results of the 

texture analysis are compared in Chapter 6 and the effect of crystallo­

graphic orientation upon the localised failure process and the macro- 

parametric characterisation of the cyclic properties is discussed. That 

section of Chapter 6 which considers the influence of texture on the
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fatigue resistance also critically examines the cyclic stress-strain 

approach and its applicability to the quantitative investigation of 

influences such as texture. The findings of the investigation and the 

conclusions to be drawn from them are summarised in Chapter 7, which 

also includes suggestions for further work.

Three Appendices are provided which respectively reproduce the 

text of the cyclic stress-strain analysis program, outline the mathemat­

ical deviation of the c.o.d.f. from pole figure data and describe the 

influence of anisotropy on the fatigue properties of a C-Mn steel.
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CHAPTER 2

Literature Review

2.1 Introduction

In engineering applications it is clearly established that a 

knowledge of fatigue behaviour is of paramount importance. In consider­

ing fatigue behaviour, it is normal to assume that metals and alloys 

are isotropic. This is ^despite the fact that it is well-established 

that, after processing to semi-finished or finished form, cubic metals
9

possess texture (preferred orientation) and that the existence of text­

ure normally leads to anisotropy of elastic and plastic properties. 

Initially, a brief summary of the various fatigue parameters of interest 

is presented. This is followed by an examination of data relating to 

the fatigue behaviour of f.c.c. and b.c.c. single crystals respectively. 

Attention is then turned to textured cubic polycrystals.

The intention throughout is to highlight the important ways in 

which metals and alloys can exhibit anisotropic behaviour under fatigue 

loading conditions.and to indicate the extent to which assumptions of 

isotropy must be qualified.

2.2 Fatigue Parameters

The general nature of the fatigue failure process has been des­

cribed frequently and for detailed accounts the reader is referred to a 

number of previous review articles^ Since fatigue failure in

metals and alloys normally involves the same processes, it is convenient, 

in order to examine the effects of crystallographic preferred orentation
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in fatigue, to examine previous results by classifying them into four 

broad groups, namely,

(i) S-N data
(ii) Cyclic response data

Ciii) Phenomenological data relating to fatigue 
failure, and

(iv) Quantitative data concerning crack propa­
gation.

2.2.1 S-N Data

The simplest determination of the fatigue response of a material 

can be obtained by performing tests during which a cyclic amplitude 

parameter is maintained at a .constant value for the duration of the test. 

The results from a series of such tests are presented in the form of a 

plot of the amplitude of the controlling parameter against the number 

of cycles to failure. Because many data were collected under conditions 

of constant stress amplitude testing, such plots are usually known as 

S-N curves, although the controlling parameter may also be strain, 

stress or strain intensity factor, etc.

2.2.2 Cyclic Response Data

Depending on the initial state of work hardening a pure metal or 

single phase alloy may cyclically harden or soften, before stabilising 

to produce a "saturation" response in which the cyclic strain produced 

is a function of the applied cyclic stress amplitude. In many materials 

this cyclic response is unique and unaffected by prior mechanical 

processing, although some alloys do exhibit a cyclic stress-strain 

response which is history dependant^. Many two-phase alloys do not, 

however, exhibit a "saturation" stage during fatigue, exhibiting



6

either continual softening or an initial hardening followed by gradual 

softening prior to failure.

The cyclic response of a material can be conveniently specified 

by its cyclic stress-strain c u r v e . This curve shows the correspond­

ing stress and strain amplitudes during the "saturation" stage. Clearly 

the determination of this curve is time-consuming (many specimens are 

needed to produce one curve) and limited to materials which exhibit a 

saturation stage. In the absence of a saturation stage the problem may 

be handled by defining the cyclic stress-strain curve as the cyclic 

response after a given fraction of the life. A more practicable solut- 

ion to both problems is to produce curves by methods'- 'such as the

incremental step test or the multiple step test from which complete
(8)curves may be produced from a small number of specimens

Anisotropy of cyclic properties should, therefore, be apparent in 

changes in either the cyclic stress-strain curve or the rate of cyclic 

work hardening as a function of orientation.

2.2.3 Phenomenological Aspects of Fatigue Failure

Metallographic observations of fatigue failures indicate that prior 

to crack nucléation considerable modification of surface topography 

occurs and that fatigue crack propagation occurs in a step-wise manner 

with a step associated with each cycle^^. Crack nucléation occurs at 

•persistent slip bands or at c e l l ^ ,  grain^or twin^10-*boundaries 

which may become "persistent". At these- sites topographic development 

results from the local irreversibility of slip giving rise to inhomo­

geneities. The intrusions or notches which develop from these inhomo­

geneities become preferred sites for crack nucléation. It should be 

expected that crack nucléation from persistent slip bands should display
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greater cystallographic anisotropy, in a manner consistent with slip 

symmetry, than nucleation from other sites and, therefore, it may be 

anticipated that surface feature development would be orientation 

dependent.

Fatigue fracture surfaces are often characterised by stiations 

which are "tidemarks", delineating the position of the crack front at 

the end of each cycle*^. Striations are most prominent at high rates^ 

of crack propagation at 90° to the stress axis. Observation of fracture 

surfaces can, therefore, show the position of the crack front and the 

local direction of propagation during any cycle and thus reveal the 

influence of cystallographic effects.

*

2.2.4 Quantitative Aspects of Crack Propagation

The resistance of a material to fatigue crack propagation may be 

regarded, in a similar manner to monotonic toughness, as a property 

specific to that material. Although a more accurate description would 

correlate crack advance per cycle with specified values of the applied 

stress amplitude and the crack length, it is usual to correlate the 

crack advance rate with the amplitude of the applied stress intensity 

factor AK. Crack propagation data may, therefore, be conveniently 

represented by plotting da/dN vs AK on logarithmic co-ordinates, where 

da/dN is the rate of crack extension per cycle. The similarity of form 

of da/dN - AK plots for many materials (Figure 1) has led to the develop 

ment of a number of mathematical descriptions of fatigue crack propagat­

ion rates. While recognising that other descriptions do exist, the 

simplest description of crack propagation rates is that due to Paris*“ ^

"as = C' AK’ ”
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where C and m are constants for a given material.

Hence, anisotropic fatigue properties should be displayed in terms 

of either C or m in the Paris equation. Other possible influences of 

anisotropy could control the range over which the Paris equation is 

operative i.e. by the influence on the threshold value of the stress 

intensity factor at one extreme and on the initiation of monotonic 

tearing at the other although no data are available to examine the 

effect of orientation on these properties.

2.3 Fatigue Behaviour of f.c.c. Single Crystals

2.3.1 S-N Data for f.c.c. Single Crystals

The simplest method of assessing fatigue properties is comparison 

of the number of cycles to failure at a given stress (or strain) level. 

The possible effect of orientation on the fatigue properties of single 

crystals should be revealed by this simple comparison. Unfortunately, 

very few data exist.

Broom and Ham^1^attempted to assess orientation effects by fat­

iguing single crystals of copper of two orientations at similar stresses 

(Figure 2). Crystal A, oriented such that the applied stress axis lay 

well within the easy glide region of the stereographic triangle, failed 

after 4.9 x 105 cycles at a shear stress of ± 3.39 kg mm-2 (as resolved 

onto the primary slip plane). Crystal B, oriented so that the stress 

axis lay on the <001> - <111> symmetry line of the stereographic 

triangle, failed after 5.2 x 10s cycles at ± 3.46 kg mm"2. Thus, while 

the crystals can be considered as weakly anisotropic in fatigue, in a 

similar way to their monotonic properties, it is surprising that the 

effect of possible duplex slip is so small.
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On the other hand the experiments of Honeycombe and Roberts^ with 

single crystals of aluminium showed that large differences in life could 

be obtained from differently oriented crystals fatigued at the same shear 

stress as can be seen in Figure 3. Crystals of soft orientations, i.e. 

those deforming by easy glide, had much shorter fatigue lives than those 

crystals which lay with their stress axes near the <001> - <111> boundary 

of the stereographic triangle. These results were explained in terms of 

the cyclic hardening behaviour. (This is discussed in detail in the 

next section). It may be important to notice that these tests were 

stress controlled and, therefore, the cyclic plastic strain experienced 

by the crystals of the soft orientations was always greater than that 

experienced by the crystals of the hard orientations.

Kettunen^’*^has produced an S-N curve for fatigued copper single 

crystals by relating the resolved shear stress to number of cycles to 

failure, as shown in Figure 4. The experimental points appear to lie 

close to the curve for all orientations. It was observed that crystals 

which had orientations (and stress axes) close to boundaries of the 

stereographic triangle tended to have slightly shorter lives and at 

stresses relatively close to the endurance limit. More recently,

Laird^ ^has confirmed this view by observing that the fatigue limit of 

copper single crystals occurs at a shear stress of 28.4 MNwm-2 (2.90 

kgmm 2) below which level the cyclic strain can be accommodated without 

the formation of persistent slip bands (P.S.B.'s).

2-3.2 The Cyclic Response of f.c.c. Single Crystals

The first stage of the cyclic response in f.c.c. metals is the 

establishment of a stable stress-strain relation, occurring over the first 

tens of percent of life, in a manner similar to work hardening in monotonic

( 13")
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deformation. This cyclic work hardening can be a function of orientation. 

The work of Patterson and Kemsley^17,18^demonstrated the anisotropic 

cyclic hardening of copper single crystals. The cyclic hardening rate 

under constant plastic strain amplitude cycling was found to be more 

rapid for crystals oriented so that the strain axis was close to the 

<100>- < 111 > boundary of the stereographic triangle (Figure 5). It is 

interesting to note that a crystal lying near the <110 >strain axis did 

not display a very rapid hardening rate thus exhibiting the same behaviour 

as a corresponding crystal tested in simple tension. These results were 

subsequently confirmed by the work of W a d s w o r t h w h o  showed that 

crystals oriented for multiple slip showed a higher cyclic work hardening 

rate than those oriented-for single slip.

Similar results were obtained in stress controlled cyclic testing 

of aluminium single crystals by Roberts and Honeycombe^"^. By monitor­

ing the strain width of the cyclic hysteresis loop during the life of 

the fatigue test, they observed an anisotropy of fatigue hardening 

(Figure 3) similar to that found in copper by Patterson. The orientations 

which produced the most rapid cyclic hardening were close to the <100> - 

■^ll^ boundary. The orientation dependence of the hardening rate could 

also be correlated with the fatigue life behaviour. Under stress con­

trol it was found that crystals of hard orientations exhibited greater 

lives than crystals of soft orientations tested under similar conditions. 

More recently, Sastry et al showed that fatigue hardening in silver 

single crystals is orientation dependent. In this investigation tests 

were conducted under constant shear strain amplitude on two sets of 

crystals, the orientations of the crystals and the results are shown 

in Figure 6. Crystals of orientation B show higher hardening rates at 

the same shear strain amplitude than crystals of orientation A (for
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example, compare crystals A4 and B2). This is in agreement with previous 

work. Orientation B is closer to the <100> - <111> boundary, and 

electron microscopy indicated that for this orientation deformation 

produces a greater forest dislocation density to which can be attributed 

the more rapid hardening rate. It was also noted that, not only was the 

saturation stress different in crystals of different orientation fatigued 

with the same shear strain amplitude, but also that the dislocation sub­

structures developed at saturation in these crystals were also different. 

Despite these differences, the cyclic stress-strain curve of silver was 

plotted as being independent of orientation (Figure 7).

Following the evidence of Laird and Feltner^^that there are many
(22)similarities between monotonic and cyclic deformation, Bhat and Laird 

have suggested that the cyclic stress-strain curve is independent of 

orientation and should be expressed in terms of shear stress and shear 

strain on the primary slip plane. They postulated that the cyclic 

stress-strain curve is composed of three portions (Figure 8),

(a) a region below which P.S.B.'s cannot form;

(b) an intermediate plateau where the saturation stress 

is independent of applied strain during which stage 

the reversible plastic strain is carried by the 

P.S.B.'s (which require a stress of 28.4M/&. fooperate),

and (c) a region where the saturation stress increases with 

the applied shear strain in which the whole of the 

specimen has the structure of a persistent slip band 

and the cell size within the P.S.B. can adjust to 

accommodate the applied strain.

The postulate that fatigue deformation and damage in the critical stages 

(b) and-(c) are confined to persistent slip bands which lie parallel to
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the primary slip plane was also applied to polycrystalline behaviour. 

Assuming a random aggregate, the longitudinal stress and strain data 

were converted to shear stress - shear strain data by assuming a Taylor 

factor of 3.06, i.e.,

Ay
P

Ao
3.06

3.06 Acp

Data for both polycrystals and single crystals^’^ w e r e  then plotted 

together and Bhat and Laird, in the light of the results shown in 

Figure 8 concluded that the agreement between polycrystalline and single 

crystal cyclic shear stress - shear strain curves was quite good. In a 

similar manner Kettunen^^^compared the S-N data of single crystal and 

polycrystal copper expressing the fatigue life as a function of the 

shear stress on {ill} - <101> slip systems. Although the agreement

. between the two sets of data was not as good as was previously obtained 
(15), v

ror b.c.c. iron (see also Section 4} the correlation was regarded as 

reasonably satisfactory.

2.3.3 Phenomenological Aspects of the Nucleation and Growth of Fatigue 
Cracks in f.c.c. Single Crystals

Metallographie evidence concerning the crystallographic effects in

the fatigue of f.c.c. single crystals has been obtained from studies of

the topographic development of the sides of smoothly polished crystals

and of the appearance of fracture surfaces. The nucleation of fatigue
(25}cracks has been associated with intrusion/extrusion pairs found at 

P.S.B.'s (Figure 9). Specifically, it has been proposed that Stage I 

fatigue cracks develop, by growth along the primary slip plane, from the
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intrusions adjacent to extrusions which are easily visible either optic­

ally or by scanning electron microscopy.

The importance of cross slip in the slip band extrusion process vías 

established by Avery, Miller and Backofen^^. They fatigued single 

crystals of two orientations, both being oriented for single slip.

Crystals of orientation A had a Schmid factor of 0.21 on the cross slip 

system while crystals of orientation B had a cross slip Schmid factor of only 

0.026. By an electropolishing-and-taper sectioning technique it was 

shown that the slip band extrusion rate, after the crystal had cyclic­

ally hardened, was a function of the shear stress on the cross slip 

system (Figure 10).

The development of R.S.B.'s has been shown to be associated with a 

specific dislocation substructure in which the reversible cyclic strain 

is accommodated. The nucleation of fatigue cracks results from slip 

band-free surface interaction and the occurrence of non-reversed slip.

While strain can be macroscopically reversed it is extremely unlikely 

that the slip occurring on each slip plane in each half cycle will be 

exactly reversed during the next half cycle. The role of cross slip in 

reducing reversibility of slip can be correlated with the superior 

resistance to slip band development of planar slip materials over wavy

slip materials. The differences in surface-developed features in single 

crystals of copper and copper-aluminium single crystals (wavy slip v. 

planar slip) are given in Table 1 ^ ^ .

The tendency for cross slip to induce more rapid crack nucleation 

at P.S.B.'s has also been observed in single crystals. The early work of 

P a t t e r s o n a n d  Kemsley and Patterson^*^showed that crystals oriented 

for easy glide displayed, after cyclic straining, a fine homogeneous 

distribution of slip lines while crystals oriented so that the axis of
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cyclic strain lay near [111] developed slip bands in which the slip was 

coarser (Figure 11). The regions between the clustered slip bands were 

almost free of dislocation activity, an observation also noted by 

W o o d s . Although slip markings were predominantly due to slip on 

the primary system faint cross-slip markings were found on the surfaces 

of crystals strained in directions near [111].

The work of Roberts and Honeycombe^^on aluminium single crystals 

supports the work on slip band development in copper. The development 

of slip markings on the surface of aluminium single crystals does not 

appear as pronounced as in copper but the slip markings were of the 

primary slip system. Although the slip markings developed during the 

early stages may have contained some cross slip markings, these could 

be obliterated during the test. Certainly, subsequent electropolishing 

and testing showed that the slip markings produced later in life were 

due to slip on the primary slip system. The role of cross-slip in the 

nucleation of fatigue cracks in f.c.c. single crystals is to promote 

a more rapid development of the fatigue crack by reducing the micro­

scopically reversed slip at the crystal surface.
(O')

Kemsley and Patterson;attempted to extend their observations 

concerning the early stages of fatigue to cover crack propagation by 

postulating that the processes occurring at the crack tip are the same as 

those at a free surface, accelerated by the stress raising effect of the 

notch. This approach must be a considerable simplification since the 

interaction between slip bands and smooth specimen sides produces crack­

ing on a primary slip plane which is inclined to the tensile axis and 

near to the plane of maximum shear stress, while crack propagation from
(3)a. notch frequently occurs at 90° to the tensile axis. Laird has 

suggested that Stage I and Stage II crack propagation mechanisms are
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variations of the same process, with the change in opening mode being 

controlled by the relative amplitudes of the tensile and shear components 

of the crack tip stress field.

Since Stage I crack propagation is usually slow, very little

metallographic evidence is available to describe the effect of orientat-
. . .(3)ion on the process. However, if Stage I propagation is, as Laira 

suggests, a variation of the Stage II "sliding-off" model, then the 

ideas postulated concerning Stage II propagation should be applicable 

also to Stage I. Indeed, McEvily and Boettner^29  ̂noted that ostensibly 

flat crack propagation in their aluminium single crystals could occur 

as the crack path alternated between two {ill} fracture planes.

The results of McEvily and Boettner showed slip band markings con­

sistent with cross slip occurring in intersecting bands at the crack 

tip to produce increments of crack propagation. This idea has been 

extended by Neumann(30*31) -to describe Stage II propagation in terms of 

strain bursts along intersecting slip bands at the crack tip. This view 

is consistent with the plastic blunting mechanism postulated by Laird 

and Smith^2  ̂ which also involves shear in bands at the crack tip at 

45° to the plane of crack propagation. Clearly both models involve the 

concept that Stage II propagation occurs via intersecting cross slip 

processes at an angle to the crack plane.

N e u m a n n h a s  recently published a systematic analysis of the 

effect of crack plane orientation on the fracture surface appearance of 

fatigued copper single crystals. By testing notched samples in 4-point 

bending the crack plane and crack propagation direction should be clearly 

defined. It was observed that the only crack planes which gave macro- 

scopically flat fracture surfaces were the {100} planes. Propagation on 

these planes in either the <100> direction, (notch root parallel to the
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<010), or the <110> direction, (notch root parallel to the <110> direct­

ion), was found to give flat fracture surfaces with reasonably straight 

crack front striations (Figure 12). According to the coarse slip model, 

fatigue crack propagation occurs by slip in alternating coarse bands at 

the crack tip to cause separation. The crack front should therefore be 

determined by the intersection of {ill} planes, i.e., the microscopic 

crack front should be aligned along a <110> direction. For a crack to 

have a macroscopically straight front therefore it should consist of 

segments of two different <110> directions. Neumann observed that crack 

propagation in the <100> direction produces striations that are macro­

scopically parallel to <010> but consist of small segments parallel to

the <110> directions (see Figure 13). Similar results were also obtained
$

by Donch and Haasen^33) for copper single crystals.

Stage I propagation is often described as crystallographic crack

propagation since it produces faceted fracture surfaces which can be

shown to be approximately aligned with the {ill} primary slip plane.

Leverant and G e l l ^ )  showed that the mode of propagation in cube

oriented nickel superalloy single crystals is a function of the strain
(351rate and temperature of testing. Other workv J on Ni-based superalloy 

single crystals tested at 30° to the <100> concluded that strain was 

accommodated in bands parallel to the primary slip plane and that prop­

agation occurs due to the tensile stress at the crack tip.

The role of orientation in Stage I propagation has also been 

investigated in aluminium alloy single crystals^ , copper cobalt 

alloy*-37) and copper single crystals*-38). Nageswararao and Gerold*36) 

showed that smoother fracture surfaces were obtained when propagation 

occurred in the <101> direction on the {111} plane. Propagation in other 

directions, induced by notching produced rougher fracture surfaces. The
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influence of cross slip in Stage I propagation was emphasised by Meyer, 

Gerold and W i l h e l m w h o  noted that propagation in slip bands is a 

thermally activated process, requiring an activation energy similar to 

that necessary for cross slip. The facets obtained on the Stage I fract­

ure surfaces of copper single c r y s t a l s w e r e  found to be within ± 6° 

of the {ill} primary slip plane. Propagation along the {ill} plane was 

attributed to cyclic softening process requiring to and fro motion in 

the slip bands ahead of the crack tip.

^•3.4 Quantitative Aspects of Fatigue Crack Growth in f.c.c. Single 
Crystals

Although very little evidence exists with regard to the quantitative 

effect of orientation on the fatigue of f.c.c. single crystals, the 

metallographic evidence discussed in Section 2.3.3 suggests that crack 

propagation should be accelerated by increasing cross-slip. The experi­

mental evidence, however, does not completely confirm this and the 

situation is somewhat confused. A major problem in analysing fatigue 

crack propagation data arises from the statistical aspect of the 

failure process , such that statistical variations in propagation 

rates may obscure orientation effects.

McEvily and Boettner^2^  correlated Stage I crack growth rates with 

the orientation dependence of cyclic hardening rates. Tension-compression 

testing of aluminium single crystals showed that crystals oriented so 

that the stress axis lay near the <100>-<111> boundary of the stereo­

graphic triangle had faster propagation rates than crystals of soft 

orientations. The growth rate in one crystal with the stress axis lying 

5 away from the <100>-<111> boundary was an order of magnitude greater 

than in a crystal which had the stress axis over 10° away from the 

<100>-<m> boundary.
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It has been postulated that crack growth at intermediate growth 

rates should follow the Paris^^ equation:

da
dN C(AK)m

Orientation effects in single crystals should therefore cause variations 

in the parameters C or m. Donch and Haasen^^ analysed Stage I growth 

in copper single crystals of two orientations in this manner (Figure 14). 

Orientation E produces deformation by single slip while crystals of 

orientation D deform, by duplex slip. The authors quote values of the 

exponent in the Paris equation as 3.8 for E-oriented crystals and 4.5 

for crystals oriented for* duplex slip from their results.

Crack propagation in notched copper single crystals deformed at 

room temperature and liquid nitrogen temperature was also examined by 

Ishii and Weertman^*^. Their data showed that crystals having the 

same shear stress on the primary slip plane could display different 

rates of crack propagation as a function of the stress on the secondary 

slip systems (Figure 15). Analysing the crack propagation data in terms 

of the Paris equation, where the stress intensity range, AK, was calculated 

from the applied tensile load, showed that the exponent m varied from 

3.5 to 6 as a function of orientation at room temperature but was a con­

stant at liquid nitrogen temperature. The value of C was found to vary 

with respect to orientation at both temperatures. The larger m values 

were found in crystals oriented near the <100>-<111> boundary which 

agrees with the results of McEvily and Boettnerv .

Similar variations were not observed in single crystals of copper- 

aluminium, a planar slip material. The reduction in the orientation
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effect by a decrease in stacking fault energy or by a decrease in 

temperature can be explained in terms of changes in the ease of cross 

slip. Ishii and Weertman^4°') noted that the crack propagation rate was 

dependent on the shear stress on the cross slip plane. The variation of 

C is a little more difficult to explain. It would seem at first that 

the orientation effects could influence C through its dependence on the 

elastic modulus, E. Weertman^41  ̂ has suggested

C
0.

eu °u E)
l

However, as Ishii and Weertman note, the temperature dependence of the 

elastic moduli is negligible and therefore the same variation of C should 

be ofc served at room temperature as at liquid nitrogen temperature. The 

reality is that C is more strongly dependent on orientation at the 

lower temperature.

The data of Santer and Fine^4^  on single crystals of Al-3.6wt%Cu 

alloy suggest that crack propagation rates are independent of orientat­

ion. They did note, however, that crystals of orientations near <111> 

tensile axis required an order of magnitude longer to produce a crack

of length 0.15 mm from a starter notch than crystals of softer orientat­

ions.

Yeske and Weertman^38, 43  ̂ analysed crystallographic crack propa­

gation in copper single crystals. Stage I crack propagation, they con­

cluded, is only weakly dependent on orientation (Figure 16). They stated 

that the reproducibility of propagation rates in crystals of a given 

orientation was quite good with the data from each orientation being 

confined within a small scatter band. It would appear, therefore, that 

although Stage I growth in copper single crystals is orientation-
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dependent it is not as strongly dependent as was suggested by Ishii and 

Weertman^4^ .

2.4 Fatigue of b.c.c. Single Crystals

Slip of dislocation in body centred cubic crystals is similar to 

slip in face centred single crystals. Before discussing the fatigue of 

b.c.c. single crystals it is necessary however, to draw attention to two 

prominent differences between slip in the two types of structures.

(i)

(ii)

Despite the relative ease of cross slip in b.c.c. crystals, a 

greater degree of anisotropy is exhibited in fatigue in comparison with 

f.c.c. single crystals. The major anisotropic effect is, therefore, 

caused by asymmetric slip and not, as in the case of f.c.c. crystals, 

by the confinement of slip to close-packed planes.

2.4.1 S-N Data for b.c.c. Single Crystals

In early experiments on fatigue of iron (.006%C) crystals in bend­

ing fatigue, Hernpel*-44-* found little effect of orientation upon the

In b.c.c. crystals, slip is not confined solely

to the closest-packed planes as it is in f.c.c. 

crystals. *

In b.c.c. crystals, there exists the possibility 

of asymmetric slip, such that for a given crystal 

orientation, slip of screw dislocations may occur 

on one plane in tension but on a different one if

the crystal is under compression along the same
. (46) axis .
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S-N curve. He plotted the macroscopic fatigue bending stress against 

the number of cycles to failure and suggested that the experimental data 

could be represented by a single curve (Figure 17). It was pointed out, 

however, that since slip in b.c.c. crystals is not confined to closest- 

packed planes the applied stress should be resolved onto the operative 

{112},'{101} or'{213} slip plane with a <111> slip direction. If this 

was done for the crystals which were used, it was found that for the 

same applied bending stress the shear stress resolved onto the operative 

slip plane would be the same to within 10%. Hempel's data have been 

reanalysed by Kettunen^*^ and presented in terms of the resolved shear 

stress amplitude of the operating pencil glide or {101} slip system, 

(Figure 18). Also shown in this Figure are the S-N curves for poly- 

crystalline material (with the shear stress determined from the applied 

stress using the appropriate Taylor factor) which seem to agree quite 

closely with the single crystal data. Kettunen concluded that the 

fatigue behaviour of b.c.c. -iron and f.c.c. - copper single crystals is 

very similar. Such a comparison may be misleading for two reasons:

(a) As already cited, only a limited range of orientation 

factor is involved in relating the macroscopic bending 

stress to the resolved shear stress. No data come 

from orientations of the stress axis near <110> where 

the Schmid factor is only 60% of that for the crystals 

tested.

(b) The purity of Hempel's crystals is not directly speci­

fied but the polycrystalline iron prior to strain 

annealing contained 480 ppm oxygen plus other inter­

stitial solutes. Nine*-45-1 has recently shown that the



22

impurity content of b.c.c. Niobium single crystals is 

important in determining the slip characteristics in 

fatigue. In particular, oxygen was found to have the 

ability to inhibit asymmetry of slip and to produce 

persistent slip bands at the surface, similar to the 

P.S.B.'s observed on fatigued copper crystals.

Therefore, the results of Hempel must be treated with caution with 

regard to the orientation effects in the fatigue of b.c.c. single cryst­

als. Work on single crystals of iron^4^’ 4^’  ̂ \  molybdenum^  ̂ and 

niobium*-44, 49’ 50> 51\  has demonstrated the effect of asymmetric slip 

in the fatigue of b.c.c. metals. Mughrabi and Wuthrich^^ suggested 

that the fatigue limit of. iron single crystals may be ascribed to the 

to-and-fro motion of edge dislocations at low stresses. Increasing 

the stress range should produce motion of screw dislocations which 

would lead to asymmetric slip and failure.

Nine*4^  proposed that the sole cause of anisotropic fatigue 

properties in b.c.c. crystals is the asymmetry of slip in this structure, 

since the greater ease of cross slip in b.c.c. crystals should render 

them relatively more isotropic than f.c.c. single crystals. Asymmetric 

slip produces rapid development of localised fatigue damage and hence 

accelerates failure. Asymmetry of slip occurs when crystals are orien­

ted such that the resolved shear stress on the operative slip plane is 

far greater than on any other slip plane. The asymmetry derives from 

the asymmetry in the critical resolved shear stress necessary for screw 

dislocation glide on the various systems. The relationship between the 

critical resolved shear stress was described as:

<111> (112) (soft direction) * <111>(011) < <111>(112) (hard direction)
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The degree of asymmetry of slip displayed by a single crystal in
, ... (46,47)fatigue can be correlated with a decrease in fatigue life. Nine

showed that crystals of iron fatigued in torsion display asymmetric slip

behaviour if the stress axis is near <123> but not if the stress axis is

near <112>. The corresponding fatigue lives at a surface shear strain

of ± 0.002 were 3.0 x 105 for the specimen deforming by asymmetric slip

and 3.7 x 106 for the <112> oriented crystal deforming with symmetric

slip. This applied strain is only slightly greater than the lowest

strain which was found to cause fatigue failure (± 0.0018).

Results from fatigue tests of iron, molybdenum and niobium single

crystals(^,51) have shown that accelerated failure occurs due to rapid

localised damage and that large unreversed strains (^ 1) may be produced
»

prior to crack nucleation. This process of accelerated nucleation may

be inhibited by suppressing asymmetric slip. In niobium, it was found 
(45) that asymmetry of slip could be suppressed by the concentration 

of interstitial solute elements and that the resulting surface deformat­

ion (Figure (9) resembled the persistent slip band features found on 

the surface of fatigued copper crystals. The S-N data from Nine's 

work are reproduced in Figure 20, It is immediately obvious that while 

no distinct S-N curve can be drawn through any set of points the data 

can be divided into two quite separate distributions with the crystals 

which had deformed by asymmetric slip consistently show poorer fatigue 

lives.

2.4.2 The Cyclic Response of b.c.c. Single Crystals

The effect of asymmetric slip upon cyclic hardening has also been 

investigated in iron^^ molybdenum^  ̂ and niobium^  ̂ single crystals. 

Mughrabi and Wuthrich^^ examined the cyclic stress-strain curve of
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iron single crystals and recorded a three-part curve (Figure 21). A 

small amount of cyclic plastic strain may be accommodated by the to-and- 

fro motion of edge dislocations in the same plane. At intermediate 

levels of cyclic plastic strain, slip over greater distances is required. 

This results in the immobilisation of edge dislocations by dislocation 

reactions, a greater dependence on the motion of screw dislocations 

and the necessity for an increased rate of dislocation multiplication. 

This behaviour is reflected in the cyclic stress-strain curve by a 

large increase in the rate of cyclic work hardening and in an increasing 

asymmetry of slip. In Figure 21(b) the way in which the degree of slip 

asymmetry is dependent upon the applied cyclic plastic strain is shown. 

The measure of asymmetry is derived from the changes in cross-sectional 

shape which develop when crystals of originally circular cross-section 

are fatigued. In the region of higher applied strain the cyclic hard­

ening rate levels off, even though the degree of slip asymmetry is 

quite high, it no longer increases with the applied cyclic strain range. 

Mughrabi and Wuthrich^^ described the deformation mechanism in 

region C as irreversible cyclic macrostrain. It was suggested that 

region A, described as quasi reversible microstrain, describes fatigue 

deformation below the fatigue limit. The transition from region A to 

region B should, therefore, define the fatigue limit. This agrees with 

the work of Nine^45  ̂ who found that fatigue failures in iron single 

crystals did not occur if the applied surface shear (in torsion) was 

below ± 0.0018.

Etemand and Guiu^48  ̂ performed cyclic hardening experiments 

between constant total strain limits on molybdenum single crystals of 

two orientations with <100> and <110> tensile axes, respectively.

Their results showed that flow stress asymmetry existed in crystals
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oriented in either direction whenever cyclic plastic straining occurred. 

The cyclic stress-strain curves which were derived from the saturation 

values of the stress-strain hysteresis loop, are shown in Figure 22.

At lower plastic strain amplitudes the hardening rates of crystals of 

both orientations were very similar but at stresses greater than 

300 MNm-2 crystals of the<100>orientation exhibited a work hardening 

rate which was significantly greater than that of <110> oriented 

crystals. It is at this stress that the monotonic deformation curve 

exhibits a proportional limit. As the cyclic plastic strain amplitude 

increased the asymmetry of the saturation stress also increased, with 

-he crystals of <100> orientation showing a greater effect than those 

of <110> orientation. It should be remembered, however, that the
t

Schmid factor for the <110> stress axis orientation is approximately 

60% of that for <100> stress axis orientation. Due to the coincidence 

of the monotonic proportional limit, the cyclic stress level at which 

rapid cyclic hardening begins and the appearance of saturation stress 

asymmetry it may be concluded that the asymmetric cyclic behaviour of 

molybdenum single crystals is very similar to that described by 

Mughrabi and Wuthrich^^ for iron single crystals.

Doner et al^49  ̂ investigated the cyclic hardening response of 

niobium single crystals of three orientations, (Figure 23). They 

suggested that a unique cyclic stress strain curve exists for niobium 

of the form

Ax
2

Ay
(->)*

where the stresses are resolved onto the {101} <111> slip systems since
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metallographic evidence indicated that the crystals deformed by these 

systems only. This is in contrast to other results^"46,61^and it is 

possible that the purity of the crystals was such as to inhibit asymmetric 

deformation. It should be noted, however, that this does not make the 

fatigue properties independent of orientation since, in a similar manner 

to the behaviour of f.c.c. crystals, the restriction of slip to well 

defined crystallographic planes renders the fatigue properties anisotropic 

m  a manner consistent with the symmetry of the cubic system. Despite 

the symmetrical slip observed in this investigation, the hardening rate 

of the niobium crystals was reported to be lower than that in copper 

crystals and this was attributed to the ease of cross slip of screw dis­

locations in the b.c.c. structure.

^*^•3 Phenomenological Aspects of the Nucleation and Growth of Fatigue 
Cracks in b.c.c. Single Crystals

The most easily identifiable difference between f.c.c. crystals and 

b*c.c. crystals in fatigue is the shape change induced in the cross 

section of b.c.c. crystals oriented for asymmetric slip. Such shape changes 

have been observed in iron, niobium and molybdenum*-46,51,52^. Nine*-46^

showed that iron single crystals oriented along {123} and fatigued in tors­

ion exhibited heavy localised deformation at two positions, 180° apart over 

the cross section of the crystal. The effect of such asymmetric slip 

has been explained in the work of Mughrabi and Wuthrich^51^and Neumann^52  ̂

for iron and niobium, respectively. Mughrabi and Wuthrich showed that 

as long as asymmetric deformation is occurring the degree of ellipticity 

increases with each reversal, the positions of the major and minor axes 

of the ellipses are determined by the projection of the Burgers Vector 

of the screw dislocations on to the cross section of the crystal.

The change in shape of the crystals, as a function of
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accumulated plastic strain is shown in Figure 24. At larger strain 

amplitudes the crystals also deformed into an S-shape, a feature obser­

ved by N e u m a n n a f t e r  push-pull cycling of niobium single crystals. 

This effect is due to the interaction of asymmetric slip and the con­

straints can only be relieved by deformation on systems other than the 

one activated by the cyclic stress

The movement of material during fatigue of b.c.c. single crystals 

has been observed by Nine^"^ using a technique which employed fiducial 

marks parallel to the long axis of crystals fatigued in torsion.

Figure 24 shows the motion of material around the circumference of 

torsional fatigue specimens as a function of azimuthal angles. The 

positions of asymmetric slip can be determined by plotting the relative 

resolved shear stress for the possible slip systems as a function of 

the azimuthal angle about the crystal. When this was done it was found 

that the heavy asymmetric slip lines were located at positions corres­

ponding to the maxima of the relative resolved shear stresses. The 

number and positions of such maxima are functions of the orientation of 

the crystals. For the torsional fatigue experiments of N i n e ^ ^  it was 

reported that crystals, oriented near the <123> axis displayed two very 

strong azimuthals, crystals oriented near the <110> display four, some­

what weaker azimuthals, while crystals oriented near <112> showed no 

signs of asymmetric slip.

The large localised strains accumulated during asymmetric slip 

provide sites suitable for fatigue crack nucleation. The slip marking 

of crystals oriented along <001> have been reported(50>53) to be much 

less severe and less localised than those on the surface of a crystal 

oriented along <123>. The rapid development of slip markings due to 

asymmetric slip accelerates fatigue crack nucleation and is reflected
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in the shorter fatigue lives of crystals which deform by asymmetric slip.

Mughrabi and Wuthrich^^ pointed out the possible technological 

significance of accelerated nucleation due to asymmetric slip in poly­

crystals. In the interior of a polycrystal the deformation undergone 

by any given grain is determined by the applied stress or strain state 

and the requirements of stress/strain compatibility across grain 

boundaries. However, at the specimen surface, these constraints are 

relaxed and significant surface rumpling can occur. In polycrystalline 

a-iron after fatigue, micro-cracks were found to nucleate at grain 

boundaries. The strain rate dependence of the susceptibility to grain 

boundary cracking suggests that it is related to the asymmetric prop­

erties of b.c.c. metals.

It is always difficult to extend the evidence from work on pure 

single crystals to polycrystalline materials of technological importance. 

It will certainly be important to determine if asymmetric slip plays a 

role in the fatigue cracking of technologically useful b.c.c. metals. 

Nine^45-̂ and Doner et al^50  ̂ fatigued niobium single crystals which 

did not show asymmetric slip and both found the surface markings to be 

similar to those found on copper crystals, giving rise to fatigue crack 

nucleation in persistent slip bands. It is possible, therefore, that 

asymmetric slip would be suppressed in less pure b.c.c. metals and 

hence produce a weaker orientation dependence of fatigue properties 

than observed in pure single crystals.

Very little evidence exists in relation to fatigue crack growth
(54)in b.c.c. single crystals. Recently it was demonstrated that 

fatigue cracks in Fe-3%Si grew in accordance with the "coarse-slip" 

mechanism. Previously, it had been shown that this mechanism 

operated during fatigue of copper single crystals. The conditions
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required to produce flat fracture surfaces with straight crack fronts 

are not as severe in Fe-3%Si as in copper and it is postulated that a 

number of configurations are possible. In the later work however, 

another feature of fatigue fracture that is not observed in f.c.c. 

metals was observed, fatigue cracks in Fe-3%Si were found to propagate 

at larger crack opening displacements by a cyclic cleavage mechanism, 

which produces {100} brittle facets on the fracture surface.

Rieux, Driver and Ri e u ^ ^  using a technique similar to that of 

Neumann, have examined the rate of crack propagation in single crystals 

of austenitic and ferritic stainless steel single crystals. By testing 

the crystals in 3-point load controlled bending they were able to con­

trol the macroscopic fracture plane and the macroscopic direction of
(31) .crack propagation. In accordance with the results of Neumann it 

was found that macroscopically flat fracture surfaces were obtained for 

{100} fracture planes in the austenitic alloy. However, it was also 

noted that flat fractures could be obtained by fatigue crack propagat­

ion on {100} planes in the <011> direction and also on {110}<111> and 

{112}<110>, combinations of crack plane and direction of propagation 

which according to the ’sliding-off' theory of Neumann, should not 

produce macroscopically flat fractures. It was also noted that in 

both the f.c.c. and the b.c.c. crystals the orientations which produced 

the most rapid crack propagation also developed macroscopically flat 

fracture surfaces. Rieux et al consider that the process of fatigue 

crack growth is due to the accommodation of strain at the crack tip by 

shear in two bands which are inclined to the stress axis. The theory 

is similar to that of Neumann except that the strain is accommodated not 

by slip on single planes but fay multiple slip in narrow bands. Analysis 

of the slip processes in the two bands in terms of the allowable slip

l
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modes seem to produce reasonable agreement between the crack orientations 

which should produce plane strain conditions at the crack tip and those 

orientations which were observed to produce macroscopically flat 

fracture surfaces.

2..5 Summary of Fatigue of Cubic Single Crystals

2.5.1 S-N Data

Although it is not possible to quantify the effect of crystal 

orientation upon S-N curves it is clear that the stress amplitude life 

relationship is orientation dependent for both face centred and body 

centred cubic metals. In b.c.c. crystals asymmetric slip produces more 

rapid failure while^fr.c.c. single crystals and b.c.c. crystals in which 

asymmetric slip is inhibited, S-N relationships are exhibited which can 

be reduced as a first approximation to an S-N curve in which the stress 

parameter is the resolved shear stress amplitude on the primary slip 

plane. In a similar manner the fatigue limit of metal single crystals 

of both structures has been shown to be orientation dependent.

2.5.2 The Cyclic Response of Cubic Single Crystals

The rates of cyclic hardening in cubic single crystals have been 

shown to be orientation dependent. The cyclic work hardening rate of 

b.c.c. single crystals in which asymmetric slip is possible can be 

correlated with the degree of asymmetry of slip. In face centred 

structures the cyclic work hardening rate increases with slip activity 

on secondary slip systems and cystals oriented with the stress axis 

near to the <100>-<111> boundary harden more rapidly than those crystals 

oriented initially for easy glide. The amplitude of the resolved shear
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stress at saturation appears to be a function of the applied shear strain 

amplitude only for f.c.c. crystals. For b.c.c. crystals the possibility 

of asymmetric slip produces an orientation dependence of the saturation 

shear stress amplitude, and hence, also of the cyclic shear stress- 

strain curve. Since most of the data pertaining to the cyclic response 

of single crystals have been obtained using orientations which deform 

initially in single slip the effect of multiple slip on the cyclic 

stress-strain curves of single crystals and polycrystals is difficult^» aWy**. 

Although such comparisons have been made it would be better possibly to 

compare the cyclic stress-strain curves of polycrystals of different 

textures and to produce the cyclic shear stress-shear strain curves 

using the appropriate Taylor factors. These may be calculated directly 

from texture measurements .

2*5*3 Phenomenological Aspects of Nucleation and Growth of Fatigue 
Cracks in Cubic Single Crystals

The nucleation of fatigue cracks in cubic single crystals is 

accelerated by local irreversibility of plastic strain, this produces 

a notch-peak topography of a form which can provide sites for fatigue 

crack initiation. In some orientations of b.c.c. single crystals 

highly localised surface damage is rapidly accumulated as a result of 

asymmetric slip. In f.c.c. single crystals fatigue cracks nucleate 

in persistent slip bands at free surfaces and more rapid nucleation occurs 

with increasing amounts of cross slip. The rate of development of a 

notch-peak topography within a slip band has been shown to be orientat­

ion dependent in that surface damage accumulates more rapidly as the 

shear stress on the cross slip system increases.

Metallographic evidence indicates that fatigue crack propagation in 

cubic single crystals is a crystallographically-controlled process.
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Stage I crack propagation occurs along slip bands, which in f.c.c. 

crystals form parallel to the <111> primary slip planes. Stage II 

crack propagation in cubic single crystals appear to be satisfactorily 

described by the "plastic-blunting" or "coarse-slip" models which 

require the activation of two intersecting slip systems at the crack tip. 

The influence of crystallographic orientation on Stage II fatigue crack 

propagation in single crystals is highlighted by the stringent conditions 

required to produce macroscopically flat fracture surfaces and straight 

crack fronts in single crystals of copper and iron-silicon.. The 

appearance of facets on fatigue fracture surfaces has been recognised 

as a product of crystal orientation although such facets may not 

necessarily be produced by a true cleavage mechanism.

2.5.4 Quantitative Aspects of Fatigue Crack Growth in Cubic Single 
Crystals

Due to the lack of available data to correlate fatigue crack growth 

rates with crystal orientation in b.c.c. single crystals the following 

remarks apply to crack growth in f.c.c. single crystals. Stage I 

fatigue crack growth rates are more rapid in single crystals in which 

the stress axis lies close to the <100>-<111> boundary of the stereo­

graphic triangle. This is reflected in the value of the "m" parameter . 

in the Paris equation. It has been^suggested, however, that although 

fatigue crack propagation rates in f.c.c. single crystals are orientat­

ion dependent, this dependence is rather weak.

2.6 Fatigue Behaviour of Textured Polycrystals

2.6.1 The Interaction of Texture and Fatigue in Cubic Metals

Very little attention has been paid to the effects of preferred
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orientation (crystallographic texture) on the behaviour of cubic poly­

crystals under cyclic loading. It is usual to analyse polycrystalline 

properties in terms of a random aggregate of crystals. While this 

approach has met with some success, it must be recognised that thermo­

mechanical processing can induce significant anisotropy due to the 

development of t e x t u r e s . Bhat and L a i r d a n a l y s e d  polycrystal­

line data in terms of the resolved shear stress and shear strain by 

using a Taylor factor of 3.06 and showed that the cyclic stress-strain 

curve which they obtained agreed quite well with the curve obtained 

from a single crystal oriented for slip on one system only. It is 

obvious, therefore, that if the Taylor factor M is not an isotropic 

Property, which will be the case for textured materials, the macro- 

'scopic cyclic stress strain curve (applied longitudinal stress - 

longitudinal strain) will be determined by the relative orientation of 

the stress-strain axes to the principal components of the texture.

Some reports have indicated that, in a manner analogous to metal 

working, not only does texture affect the bulk properties in fatigue

hut that the fatigue process itself may induce some degree of preferred 
f57 581orientation1 * , (it has also been reported that the development of

texture could be used to monitor fatigue damage although this approach

does not appear to be very successful ̂ ^ ) . Hayashi and Suzuki

monitored texture changes in polycrystalline copper under fully reversed

loading and concluded that fatigue tends to randomise the texture. In
f581contrast Inakozu and Yamamoto1 } found that under torsional fatigue 

the most stable orientations were {110}<111> and that grains of other 

orientations tended to rotate towards {110}<111>. They suggested that 

the endurance limit was controlled by the texture with the stable
Í581orientation resulting in a higher endurance limit. Inakazu and Yamamoto^ ;
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correlated the instability of texture with the more rapid crack nucleat- 

ion in those specimens by postulating that grain rotations require 

increasing components of cross slip, which,once activated, produce the 

topography required for crack nucleation.

There exists, therefore, confusion with regard to the development 

of texture during fatigue of f.c.c. metals. The work of Hayashi and 

Suzuki^-57-* can be criticised on several points, despite the apparent 

agreement between their experimental data and theoretical calculations. 

Axisymmetric textures were assumed and on this basis texture measure­

ments were made on composite specimens cut at 45° to the axis of the 

fatigue specimen. The pole figures shown for initial material do not 

entirely support this view. The computed and experimental textures were 

compared after 10, 50 and 100 cycles at 0.7% strain. These are quite 

small fractions of life at this strain and are probably not sufficient 

to allow the detection of the development of a particular preferred 

orientation. However, it would be possible to observe material rotating 

away from an unstable orientation. Thus it is possible that the random- 

isation observed by Hayashi and Suzuki1 J is the flow of material 

towards more stable orientations. It is obvious that many more data 

are needed to clarify the development of preferred orientation during 

fatigue.

2*6.2 The Effect of Texture on the Fatigue Lives of Cubic Metals

A most comprehensive investigation of textured effects was reported 

by LeMay and N a i r »^2), T^ree f>c,c> materials were tested, 

namely, aluminium-2.5%magnesium, tough pitch copper and super pure 

aluminium, in fully reversed bending. By cutting specimens parallel to 

either the rolling direction or the transverse direction of the sheet
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specimens were tested which were identical in all aspects save orientat­

ion. Typical results are shown in Figure 25. The cold rolled sheet 

materials displayed {110}<112> textures, the annealed aluminium alloy 

exhibited a random texture while annealing of the copper produced 

{100}<001> ("cube" texture). The transverse proportions of the cold 

tolled material are seen to be consistently better than these in the 

tolling direction, while the S-N curves for the annealed materials are 

found to be coincident. On the basis of these findings, LeMay and Nair 

Postulated that the effect was due to texture and not some form of 

microstructural inhomogeneity. While it is probable that this is 

correct it is important to point out that these experiments did not rule 

out effects of microstructural anisotropy arising from variations in 

•grain shape. In the cold rolled specimens the structures at 0° and 90° 

differ, not only in texture, but also in grain size (intercept parallel 

bo the stress axis), in the annealed materials the structures are 

identical in terms of texture and grain size intercept.

2.6.3 Phenomenological Aspects of Fatigue Failure in Textured Cubic 
Materials

The work of Nair and LeMay established that the modes of crack 

initiation and propagation are determined by the crystallographic text­

ure. In cold rolled materials, cracks initiated by the link up of 

many surface micro cracks, presumably along substructure cell boundaries 

as described by the "H-mechanism" of Wood^5\  In the annealed cube- 

bexture copper crack nucleation occurred by the development of persist­

ent slip bands in the randomly-textured alloy surface damage consisted 

of both types, the "H-mechanism" being more prominent at higher stress 

levels^61\  It was also found that the mode of crack propagation can be
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influenced by texture, in particular the transition from Stage I to 

Stage II propagation. This is presumably due to the constraints imposed 

on the crack tip stress field by the texture. Thus in cube textured 

specimens tested along the cube directions shear is easily accommodated 

on the {111} planes and,hence,Stage I crack growth is preferred to 

Stage II growth. This is, of course, an oversimplification of the 

problem as in even very severe textures only a small fraction of the 

material is suitably oriented, (e.g. for a very severe cube-texture 

copper less than 25% of material is oriented within 10° of the {001} 

<100> orientation^63^). It does, however, indicate the mechanism by 

which preferred orientation may control crack initiation.

Nair and LeMay came to the apparently erroneous conclusion that 

•texture affects the fatigue behaviour of f.c.c. metals by its influence 

on ductility. They proposed that the mechanism of fatigue crack 

propagation contains "a ductile component...and a brittle fracture 

component"^62^. They suggested that the orientation of each grain with 

respect to the stress axis encourages one mode or the other. Grains 

oriented to promote shear fail by cyclic slip while grains of other 

orientations may adopt a tensile cracking mode. It was also pointed 

out, however, that textural influences could be greater than the 

effect of stress magnitude, which suggests that the constraints imposed 

by preferred orientation serve to modify the conditions imposed by the 

applied stresses,possibly on a scale greater than the grain size.

(Such a modification of the cyclic plastic zone at a crack tip has been 

observed in a titanium alloy by Tchorzewski and Hutchinson^ ^).

While it may not be possible to consider crack propagation in terms 

of localised events, the nucleation and very early growth of fatigue 

cracks have been correlated with the orientation of individual grains.
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Amell and Teer^ “̂ , using an X-ray microbeam technique, showed that 

topographic development at surface grains was consistent with the slip 

systems that would be activated in a single crystal of that orientation 

under the same applied stress, except in grains in which the stress axis 

lay near the <100>-<110> boundary of the triangle. Then the secondary 

slip system which was activated appeared to be the conjugate rather than 

the critical slip plane. It was noted that cracks could be initiated 

ln grains of almost any orientation (nucleation is difficult near <111>), 

but that microcracks which nucleate in grains oriented for multiple slip 

do not propagate due to the greater ability of these grains to harden.

The more rapid propagation of cracks nucleated in grains oriented such 

that the stress axis lies in the cehtre of the stereographic triangle 

suggests that these grains are effectively fatigued under higher strain 

^Plitudes than those grains of harder orientations.

Nair and LeMay observed that the fracture surfaces of cube- 

oriented specimens were featureless in comparison to the fracture 

surfaces of specimens in which propagation occurred by Stage II propagat- 

l0n* This is consistent with the usual lack of features on the fracture 

surfaces of Stage I failures. Indeed Laird^ has commented that it is 

Precisely this lack of evidence that makes analysis of stage I failure 

s° speculative. It is recognised that Stage I failure occurs on slip 

Planes, probably by a variation of the sliding-off mechanism. However, 

the appearances of a crystallographically faceted fracture surface does 

n°t necessarily imply failure in the Stage I mode. Flat crystallographic 

facets have been observed on fatigue fracture surfaces of aged aluminium 

alloys. Etch pitting^^ and X-ray diffractiontechniques confirm 

that the facets are parallel to the {100} crystal planes. Forsyth 

et a l ^ )  in 1962 suggested that crack propagation occurred by a
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mechanism which involved two competing processes, producing a zone of 

ductile fracture and a zone of brittle cleavage within each fatigue 

striation. Garrett and K n o t t f o u n d  facets on the fatigue fracture 

surface of another aluminium alloy. Although their micro-diffraction 

data indicated that the facets were produced by a fracture mechanism 

which involved very little plastic deformation, crack propagation by 

cleavage was discounted on the basis of environmental effects. It was 

postulated that cube-oriented facets are produced under conditions of 

restricted slip, requiring dislocation interactions on two intersect­

ing' {ill} planes at the crack tip to produce a crack advance on a {100} 

Plane.

Similar crystallographically cJePendent mechanism have been shown 

to operate in b.c.c. materials. Fukui et al observed that fatigue 

crack propagation in iron-3% silicon tended to occur on {l10} or {100} 

planes. Crack propagation which is initially inclined to these planes 

tended to produce a curved surface so that the crack plane bent around 

until it became parallel to the crystallographically specified plané. 

Because of this tendency the striation pattern was somewhat complex but 

the striation direction was identified as being parallel to the line of 

intersection of the macroscopic fracture plane and the {110} or {100} 

Planes. It was not possible to ascribe any particular mechanism to 

this crystallographic mode of failure but it was suggested that the 

phenomenon could be generally accounted for by a modified version of 

the sliding-off mechanism. Richards^^, who also investigated the 

fatigue of iron-silicon, found that the fracture surface topography 

was a function of the orientation of the stress axis with respect to 

the texture. Using sheet specimens, Richards noted that flat, 90 

fracture was obtained only in specimens parallel to the <001> components 

of the Cosf-textured material and that fatigue striation spacing could
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vary widely from grain to grain. (The grain size of the Fe3?oSi was 

reported as 3.85 mm.).

2.6.4 Quantitative Aspects of Fatigue Crack Propagation in Textured 
Cubic Metals

The fractographic observations of R i c ha r d s m e n t i o n e d  in the 

Previous section, suggest that crack propagation rates in iron-silicon 

may be texturally controlled. The crack propagation data are reproduced 

in Figure 26. Correlating the experimental data to a Paris type 

equation Richards noted that the m parameter varied between 2.4 and 4.6 

although this variation cannot be systematically correlated with the 

texture.

Slip line studies indicated that flat fracture surfaces were pro­

duced under conditions of plane strain. The ability of the texture to 

limit the in-plane deformation, for certain orientations of the stress 

axis, produces slant crack growth. Growth of fatigue cracks oriented at 

an acute angle to both the through thickness direction and the stress 

axis require slip in the through-thickness direction and produce crack 

opening displacements that are not parallel to the stress axis^ It

has been shown that mixed-mode opening results in more rapid crack 

Propagation^71 ,̂ although the data of Richards do not agree with this 

simplification, i.e. flat, 90° fractures were produced by fatiguing 

specimens at 0° to the rolling direction and yet these specimens

displayed the highest crack propagation rates. Similar effects have
• (72)also been observed in thin copper sheet fatigued m  cyclic tension > 

it is clear that fatigue crack growth in cubic metals, at least in thin 

sheet, can be significantly affected by texture.
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2.6.5 Fatigue Anisotropy in Hexagonal Polycrystals

The anisotropy of mechanical properties which result from the 

preferred crystallographic orientation in hexagonal metals is much more 

marked than that in cubic metals and has been much more widely noted. 

The anisotropy of hexagonal metals derives from the restriction of 

slip to the basal plane. The activation of slip on other planes is 

often difficult and twinning is often preferred as a secondary mode of 

deformation. The presence of such severe mechanical anisotropy in the 

single crystal properties causes thermomechanical processing to induce 

exceptionally sharp textures in polycrystalline samples and thus, in 

turn, to produce severe mechanical anisotropy. Although the investi­

gation reported in this thesis is concerned with the influence of 

.texture on the fatigue properties of a cubic metal the available data 

Pertaining to the influence of texture in hexagonal metals will be 

reviewed in order to emphasize that the combination of anisotropic 

single crystal properties and the existence of crystallographic 

Preferred orientation in polycrystals does lead to anisotropic fatigue 

properties in polycrystalline materials.

2.6.5.1 Zinc
(73)Extruded zinc rod shows an unconventionally flat S-N curve 

The fibre texture which exists after extrusion ({0001} fibre with

{1010} lying in the transverse direction) is thought to contribute to

this by encouraging the twinning mode of deformation. Surface-twin

boundaries facilitate fatigue crack nucleation, and this results in

early nucleation and thus accelerated failures at lower stress.

2.6.5.2 Titanium Alloys

Accelerated fatigue crack nucleation associated with surface twins
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has also been reported in Ti-4A1-4V^7^  . Figure 27 is taken from this 

work and it clearly shows the inferior properties of specimens taken 

from the transverse directions of rolled plate as compared with speci­

mens taken from the longitudinal direction. The reported texture.data 

indicate that the stress imposed on the longitudinal specimens would 

suppress twin formation while testing specimens parallel to the plate 

direction would encourage deformation by twinning. The reported surface 

observations confirmed the view that surface twins accelerate fatigue 

crack nucléation since in the specimens oriented to suppress twinning 

fatigue crack nucléation occurred by the development of intrusions in 

persistent slip bands while crack nucléation in the other group of 

specimens resulted from twin-matrix interactions.

Fatigue crack propagation has also been shown to be influenced by 

texture in Ti-6A1-4V^75^. Single edge notch specimens were produced 

from a cold rolled and annealed plate (of almost single crystal texture). 

The specimens were machined such that the crack plane normal and the 

direction of crack growth were parallel to two of the three axes of 

the plate and were sufficiently large to produce conditions of plane 

strain at the crack front. Crack propagation was monitored during load- 

controlled testing and the results fitted to equations of the form^11^,

da
dN C(AK)m

Bowen ̂7^  found that the data were composed of two subsets, one set of 

orientations were characterised by m = 2.5, the m value of the other 

orientations was about 4.1.

The orientations which exhibited the lower m value produced 

symmetrical slip conditions at the crack front while satisfying the

ShiiiillD
u;.:vcruüï
LiSFURY



42

plane strain conditions. In the specimens of the other orientations, 

plane strain boundary conditions and a symmetrical slip process at 

the crack front were incompatible. This difference in behaviour is 

also revealed in the fracture surfaces. Failures in tests giving rise 

to low m values had fracture surfaces which showed uniform stiations 

while the fracture surfaces of the high m value specimens had a very 

irregular topography. Crack propagation resulting in a low m value 

has been associated with a pure fatigue mode of propagation, controlled 

by the reversible plastic strain at the crack tip, while a higher m 

value has been associated with non-crystallographic crack advance, 

incorporating some degree of monotonic failure such as ductile 

t e a r i n g ,

The effect of the relative orientation of the cyclic stress axis 

to the axes of textured Ti-6A1-4V plate was clearly demonstrated by 

Tchorzewski and Hutchinson . They demonstrated that the fatigue 

crack path is not determined by the applied stress alone but the 

influence of texture may cause the crack to deviate from the plane 

with is normal to the applied stress axis. Significant deviation of 

the crack plane was found to occur in specimens in which the notch 

front was parallel to the plane of the original sheet and the initial 

directions of crack propagation more inclined at 22.5°, 45° and 67.5° 

to the rolling direction. For the {1120}<llo0> texture found in this 

material symmetrical slip conditions are not produced at the crack tip 

in specimens of those orientations. To explain the behaviour, a 

model was developed which was based on Neumann's "sliding-off" model

of fatigue crack propagation. For the three orientations, which 

produce crack deviation from the plane of maximum normal stress, slip 

in direction at ± 45° to the stress axis cannot be accommodated by
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identical processes. Sliding-off in one direction is easy, requiring 

predominantly basal slip, while slip in the other plane of maximum shear 

stress requires more difficult <c + a>-type slip. The asymmetry of 

slip at the crack tip was confirmed by mapping the crack tip plastic 

strain field using the technique of selected area chanelling patterns 

to demonstrate that the crack deviation is towards the direction of 

easier slip.

2.6.5.3 Zircalloy

The deleterious effect of twinning upon the rate of fatigue
(77 78)crack propagation has also been observed in textured zircalloy1' ’

The results of this investigation suggested that accelerated rates of 

fatigue crack propagation occurred by the production of twins in the 

crack tip plastic zone during the compression half of the cycle and 

cracking of the twin interface during the following tensile half cycle, 

it was also noted that fatigue crack initiation was influenced by the 

crystallographic orientation of surface grains. Swaged rod, which had 

developed a fibre texture, had a uniform distribution about the 

circumference of cracks which had formed at the intersection of {1010} 

slip planes. However, cracking in specimens machined from plate 

material was characterised by the orientation of the surface relative 

to the axes of the plate, since the thermomechanical treatment had 

produced a texture in which the basal poles were clustered about the 

normal direction of the plate. Thus, the orientation of grains with 

respect to the surface normal is very different in the two orientations 

where the surface normals correspond to two of the axes of the plate.

(In this investigation, specimens were machined to the form of round, 

hour-glass shaped specimens with the long axis parallel to the original
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transverse direction of the textured plate). For orientations away 

from the original plate normal, cracking was reported to occur at the 

intersection of slip planes, in a similar manner to the process in the 

swaged material. However, when the surface normal was parallel to a 

high density of (0002) poles cracking occurred at 90° to the stress 

axis'77’.

The anisotropy of fatigue properties of zircalloy also produces a
(78')

cyclic stress-strain response which is orientation dependent1 . It 

was found that the cyclic stress-strain response varied with the 

positioning of the diametral extensometer about the minimum circumfer­

ence of the hour-glass specimens. Strain controlled testing showed 

that the diametral strain amplitude parallel to the original rolling 

direction of rolled and annealed plate material was much greater than 

the diametral strain amplitude parallel to the original plate normal 

at the same normal stress amplitude. Since the plate normal coincided 

with a high density of basal poles strain in this direction would 

have to be accommodated by non-basal slip or twinning and therefore the 

diametral strain in this direction is smaller than at other orientations.
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CHAPTER 3

Experimental Methods

1 Introduction

The experimental methods employed were already well established 

techniques in the fields of texture research and fatigue research.

The procedures used in the preparation of material were based on well 

documented behaviour of copper with regard to thermomechanical pro- 

cessing^79,80,81-*. The texture analysis utilised x-ray goniometry 

and computer manipulation of the data to generate the crystallite 

orientation distribution function. The fatigue properties were charac­

terised by constant amplitude-life and fatigue crack propagation experi­

ments using specimens machined at specific orientations to the specimen 

reference areas. The data»«'« supplemented by optical and scanning 

electron microscopical observations.

3.2 Material Preparation

The aim of the material preparation was to produce a range of text- 

ore in copper without the introduction of extraneous factors, e.g., 

all annealing was performed in vacuum in order to minimise the deleter­

ious effect of oxygen upon the mechanical properties. It is also 

difficult to vary texture severity while maintaining constancy of grain

size and shape. However, since the monotonie mechanical properties
T821Of copper are only weakly dependent upon grain sizev ''the grain size 

and shape were the two factors which were allowed to vary at the same 

time as the texture.
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The material was prepared in three different forms: for a prelim­

inary series of experiments a thin sheet displaying a very strong cube 

texture was produced, while the specimens for strain-life testing were 

produced from thermomechanically processed plate and fibre textured rod. 

The processing details and the relevant material codes are as follows:

^’2.1 Thin Sheet

MBCUB: was prepared from 95% cold rolled OFHC copper sheet.

150 mm x 300 mm x 0.6 mm specimens were annealed in a vacuum furnace at 

1020K for 4 hours.

^•2.2 Plate

All plate material was produced by thermomechanically processing 

50 mm x 300 mm x 460 mm blocks of electolytically pure copper supplied 

by Enfield Rolling Mills. The chemical analysis of the material is 

given in Table 2. In order to induce textures the blocks were rolled 

individually in a 200 ton Robertson Mill equipped with 250 mm diameter 

r°Hs. During rolling the rolls were well lubricated with oil to provide 

conditions of minimum friction. The reduction was performed increment­

al/ in order to encourage homogeneity of deformation and the reduction 

Pen pass was limited to 5% of the plate thickness before that pass.

III80: Reduced from 50 mm to 25 mm thickness on the Robertson 

“ill, subsequently reduced to 9.5 mm thickness by rolling on a Hille 

ton mill and equipped with 170 mm diameter rolls. Rolling was per­

formed under low friction conditions and the reduction per pass was less 

than 5%.

NUJIG: Reduced from 50 mm to 9.5 mm thickness on the Robertson

mill.
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CROCP: Cold rolled 88% on the Robertson mill.

G8585: Cold rolled as for III80, subsequently annealed ina vacuum 

furnace at 625K for 6 hours.

In order to facilitate reference to the material codes a summary of the 

material codes and processing conditions is provided as a fold-out in­

side the back cover.

3-2.3 Rod
#

The preparation of fibre textured rod was based largely on the work 

Dillamore and R o b e r t s a n d  Freda and Cullity^ In the latter

paper it was reported that the end texture after cold drawing was heavily 

dependent on the starting texture. Thus, in order to produce variations 

In the fibre textures two castings were made from identical melts of 

^9.5% pure copper (chemical analysis shown in Table 2). Both melts were 

vertically cast as 76 mm diameter ingots, about 300 mm in length.

Casting A was solidified in a mould comprising a moulded sand base and 

a copper chill vertical wall. The mould for casting B consisted of a 

copper chill base and moulded sand wall. The moulds are shown in 

Figure 28. Since the texture of cold drawn copper has been reported as 

a duplex <100> + <111> fibre and the primary dendrites in copper form 

along <100> it was intended that the variation in casting procedure 

should promote or discourage the formation of the <100> fibre texture 

component on subsequent deformation. Subsequently both castings were 

mechanically cleaned and warm extruded (800K) to 15 mm diameter rod in 

a Fielding 1000 tonne vertical extrusion press. Sections of the rod 

were drawn through a series of dies at room temperature using a powered 

cold drawing bench. The rod was well lubricated to minimise friction
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effects and the series of die diameters in order of use was: 16.8 mm, 

^5-7 mm, 14.7 mm, 13.6 mm, 12.7 mm, 11.9 mm, 11.3 mm, 10.7 mm, 10.2 mm, 

9*65 mm and 9.1 mm. After cold drawing the ends of the rod were 

discarded due to the inhomogeneous nature of the deformation in those 

regions. Subsequently portions of the rods were cut into short lengths 

and annealed as rough machined fatigue specimens in vacuum for lO^s at 

770K. Four materials were therefore prepared in the form of textured 

r°d. The relevant material codes and processing parameters are:

FAREN - Cast A extruded and'cold drawn as described above.
FBREN - Cast B extruded and cold drawn as described above.
A3500 - Drawn as FAREN, subsequent anneal in vacuum for

3 hours at 770K.
B3500 - Drawn as FBREN, subsequent anneal in vacuum for

3 hours at 770K.

N.B. Prior to annealing all cold worked materials were chemically 

etched in order to remove the surface layer of inhomogeneous deformat­

ion and thus prevent the development of texture inhomogeneity on anneal­

ing.

3 Texture Measurement 

^•3.1 Introduction

In order to produce quantitative x-ray texture measurements it is 

imperative that complete pole figures are determined. The most commonly 

used reflection technique, the Schultz m e t h o d , collects intensity 

data for a set of reflecting planes along an angular spiral track which 

is centred on the specimen rolling plane normal. While this method has
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an advantage in that absorption corrections are not required within 65 

°f the spiral centre, since within this range the correction for 

absorption .is exactly compensated by the change in volume of the dif­

fracting material, it is not possible to determine the complete, and 

hence quantitative, pole figure by this method. In order to determine 

complete pole figures the basic Schultz technique must be supplemented 

either by superimposing the results of both bach reflection and trans­

mission techniques from specimens parallel to the rolling plane or by 

utilising specimens in which the plane normal lies at the centre of a
, ,, , (85) ,quadrant of the pole figure, as described by Lopata and Kula and 

MeieraA8^ . Since the transmission-reflection technique requires the 

comparison of data in the region in which the inaccuracy of both 

techniques is increasing, this method is deemed inaccurate and the tech 

uiques of Lopata and Kula*-85-' and Meieran*-86 ŵe.na employed.

* '*• 2 Specimen Fabrication

The computer programmes (see Section 4.2.1) which were used to 

analyse the x-ray data are based on a spiral which is centred at equal 

angles to the rolling direction, the transverse direction and the 

r°lling plane normal. In order to produce such specimens the composite 

sPecimen technique which was based on that of Elias and Heckler*-88-'

Was employed. In employing this technique it is important to recognise 

that the texture which is measured is an average value within the 

v°lume of the material from which the specimen is constructed, in par­

ticular, this method involves 'through-thickness* averaging which is 

required in the prediction of mechanical properties. Also, since the 

thermomechanical procedures employed in the processing of cubic metals 

tend to produce textures which display (at least) orthotropic symmetry, 

1t is possible to produce an average composite specimen by stacking the
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components of the composite specimen in the manner described by Morris 
(89) ,

• While such a technique was employed for the quantitative assess­

ment of texture partial pole figures employing specimens parallel to 

the rolling plane (or fibre axis) were also produced in order to verify 

the assumption of orthotropic symmetry. This assumption was not found 

to be invalid for the materials used.

The importance of accuracy in specimen production required that 

different methods were used to produce composite specimens from thin 

sheet, plate and rod respectively.

^•^•2.1 Thin Sheet

The composite specimen was produced by cutting strips at 45° to the 

r°lling direction using a powered guillotine. The specimens were 

chemically etched, stacked and bonded using Araldite. The bonded block 

Was subsequently sliced at an angle of 54.7° to the through thickness 

direction to produce the required face. The procedure is described in 

figure 29 which is reproduced from reference 89 , the method itself is 

essentially that described by Elias and Heckler^^.

^’̂ •2.2 Plate

While thin sheet may be conveniently cut at the angle of 45° 

Squired by the method of ref.88it is impossible to employ the same 

Procedure for thicker material, also sectioning at 45° using a powered 

Saw Was not found to be sufficiently accurate. Therefore, composite 

specimens were produced by cutting strips at 90° to the rolling direct- 

l0n> stacking these in the manner illustrated in Figure 30 in order to 

average along the rolling direction. The required slice was then cut 

From the bonded block by a powered cut off wheel by holding the block in 

specially designed jig which is shown in Figure 31.
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3.2.2.3 Rod

Although texture inhomogeneity in the sheet and plate materials 

was found to be insignificant, preliminary work indicated that consid­

erable texture inhomogeneity existed in cold drawn materials. It is 

obvious therefore, that the specimen for x-ray work must be fabricated 

from a volume of material which corresponds to that employed in the 

fatigue investigation, i.e., the central 4 mm diameter of rod. Speci- 

ment production was therefore more complex in this situation.

The cold drawn rods were cut into 50 mm lengths which were mach­

ined and mechanically polished on a lathe to 5 mm diameter. The defor- 

med layer was removed by chemical etching to reduce the diameter to 4 mm. 

The rods were stacked in a close-packed arrangement and bonded using an 

eP°xy resin to form a block of 25 mm square cross-section. Slices were

Cut from the block using a powered cut-off wheel and the jig shown in 

Figure 31.

Texture specimens corresponding to FAREN and FBREN were prepared 

as described above. The specimens required for A3500 and B3500 were 

Prepared from surplus slices from the blocks of cold drawn material.

The slices were mechanically polished on both faces and lightly etched, 

as a compromise between removing the deformed layer and preserving the 

geometric face. The slices were than annealed in vacuum for lO^s at 

^70 K. On annealing, the slices broke up due to the decomposition of 

the epoxy resin and consequently refabrication of the slices was 

Accessary. The rods were cleaned in chloroform to remove organic prod- 

Ucts, lightly etched in dilute nitic acid to remove any possible oxide 

layer. The rods were arranged in a close-packed array with the required 

face parallel to a firm flat substrate. The block was consolidated by 

SeUing in 'Metaserv Cold-Mount'. It is considered that the similarity
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of annealing practice between the texture specimens and the fatigue 

specimens is desirable, at the expense of possible introduction of 

errors.due to the laborious fabrication technique.

3.2.2.4 Fatigue Specimen

In order to investigate the possibility of texture development as 

a result of strain cycling a composite texture specimen was fabricated 

from a fatigue specimen of material G8585 which was subjected to 5320 

cycles at total strain range of 0.0037, which corresponds to between 

30 to 80% of life at this strain amplitude. Elliptical slices were cut 

from the gauge length of the specimen using a carbide slitting wheel, 

t-he chuck which held the specimen was machined to align the specimen 

correctly. The individual slices were arranged on a steel backing 

Plate and cemented into position.

^•^•3 Specimen Preparation

After slicing, the specimens were mounted on a steel backing plate 

and mechanically polished to a 1 ym finish. The polished faces were 

chemically polished in a solution of

100 cc Orthophosphoric Acid 
100 cc Glacial Acetic Acid 
100 cc Nitric Acid

at 34IK to 345K, to remove the deformed layer due to mechanical abrasion. 

After chemical polishing the specimens exhibited a bright scratch-free

surface.

^‘̂ •4 Data Acquisition

{ill},' {200} and {220} quadrant pole figures were measured using
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Siemens Texture goniometer of the type described by Neff^^, in which

the specimen is rotated about an axis normal to its surface and also

about an axis which is coplanar with the incident and diffracted beams.

The incident radiation was produced by a copper target operated at 40 KV

and 16 mA and was filtered by a nickel foil to remove the k$ component

thus leaving the ka components with wavelengths of about 1.539 x 10-1°m.

The data sampling technique was similar to that described by Heckler et 
ai(91)

> consisting of continuous counting and outputting the accumulated 

count at 5 second intervals onto paper tape. By initially orienting 

the specimen so that the rolling place normal, or in the case of rod the 

fibre axis, lies in the plane of the goniometer circle (see Figure 32) 

and the specimen plane normal is inclined at 60° to the plane contain- 

lng the incident and diffracted beam the orientation of the reflecting 

plane normals follows the spiral path indicated in Figure '33, the points 

°n spiral indicate the measuring points.

The Bragg reflection position was located by setting the specimen 

incident beam angle at the approximate angle and scanning the detector 

about the approximate 29 value until the maximum count rate was obtained. 

During the setting up process the receiving slit on the detector was 

reduced to 2 mm in order to locate exactly the Bragg condition, the slit 

Was> however, widened to 6 mm during data acquisition in order to ensure 

'that the whole of the peak was included. Background counts were obtained 

immediately after each pole figure measurement by moving the counter 

tube away from the Bragg condition and counting for 50 seconds in that

Position.

3 x‘̂  Preliminary Experiments

30 mm wide strips were cut from the sheet material MBCUB with the
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long axis of the strips inclined at 0°, 45° or 90 to the rolling 

direction. The specimens were placed in a template-jig and filed to 

shape (Figure 34). The specimens were longitudinally polished to 600 

grit and then chemically polished in orthophosphoric/acetic/nitric acid 

solution to a bright shiny finish. Constant load-amplitude/life tests 

were conducted in an Amsler-Vibraphore electro-mechanical resonance 

machine. In each case the load amplitude was adjusted so that the 

applied stress amplitude was 30.5 mPa. Tests were conducted in tension- 

tension with the minimum load as close to zero as possible. Failure

was considered to be the complete separation of the specimen into two 

halves.

^•4 Mechanical Testing

The fatigue response of the various materials was assessed by two 

sets of experiments, namely constant strain amplitude/life tests and 

fatigue crack propagation tests.

3*4*1 Strain-Life Testing

^■4.1.1 Specimen Preparation

The materials utilised for the strain-life test series were III80, 

g8585, FAREN, FBREN, A3500 and B3500.

Three sets of specimens were prepared from the plate material II180. 

Rectangular cross-section specimen blanks were cut from the plate m  

three orientations such that the long axis of the blank lay m  the roll 

ing plane and inclined to the rolling plane by 0°, 45° or 90°. The 

trough thickness direction was marked on one end of each blank prior to 

machining to the form of "F.G.6" standard fatigue samples (Figure 35).
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Two sets of specimens were produced from plate material G8585, 

oriented at 45° and 90° to the rolling direction respectively, in a 

similar manner to those produced from III80.

F.G.-6 specimens were directly machined from rod material FAREN and 

FBREN. As noted in Section 3.2.3, the specimens for materials A3500 

and B3500 were rough machined from the corresponding rods of cold worked 

material, prior to annealing and then given a final light machine after

annealing.

After machining the gauge lengths of the specimens were longitudin­

ally polished to 600 grit using a powered longitudinal polishing appara­

tus. The specimen gauge lengths were finally electropolished using the 

apparatus shown in Figure 36 in a solution of

350 cc Glacial Acetic Acid 
75 gm Chromic Oxide 
15 cc Distilled Water

The polishing conditions were found to be very variable but the 

best polish was obtained at 15V and an initial current of 0.2 A, although 

this decreased during polishing. About 0.2 mm was removed from the 

gauge length diameter in one hour. The diameters of the specimen gauge 

lengths were measured using a travelling microscope.

^•4.1.2 Fatigue Testing

The specimens were tested in a 25 KN MTS closed loop servo-hydraulic 
testing machine under constant strain amplitude control about zero mean 

stress. The strain was measured by a clip gauge extensometer and the 

control signal was generated as a variable amplitude sine wave. The 

ioad was measured by a tension-compression load cell mounted m  series 

with the specimen. Non-slipping contact between the extensometer knife
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edges and the specimen was assured by wrapping the relevant portions of 

the gauge length in a thin band of adhesive tape. This is shown in 

Figure 37. Woods metal grips were employed to eliminate cross-over 

error at zero stress and to prevent the application of lateral stresses 

by the gripping system.

The tests were continuously monitored by an oscilloscope which 

was connected to the output of the load cell, data were also recorded 

intermittently in the form of load-strain hysteresis loops on an x-y 

recorder. The intervals at which the loops were recorded were adjusted 

so that the penultimate loop had been taken at not less than half the 

number of cycles at which the final loop was taken. Although tests 

were run at frequencies between 0.5 and 25 Hz, the loops were always 

recorded at 0.1 H z due to the mechanical limitations of the recording 

system. The testing machine was equipped with an automatic counter and 

also a failure detection mechanism which was set to detect separation of 

the specimen into two halves.

The monotonic mechanical properties for each set of specimens were 

also determined by performing tension tests on at least two specimens 

from each set using the closed loop machine.

3-3 4 -1.3 Elastic Modulus Measurement .

The elastic modulus is an important parameter in analysing the 

cyclic response of materials. In order to ensure greater accuracy m  

the determination of the Youngs Modulus .E this was measured by a separ 

ate series of experiments. The technique adopted was the acoustic 

resonance method described by Northcliffe and Roberts^ . The apparatus

is shown in Figure 38. The sine wave oscillator excites the drive 

transducer which causes the specimen to be vibrated. The receiving
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transducer detects the energy transmitted along the bar, by observing 

the output of this transducer the resonance position may be noted and 

the exact frequency is measured by a digital counter. The relationship 

between the resonant frequency, specimen dimensions and elastic modulus

is given by Chalmers and Quarrel1
(93)

_ x. fCLiil (If^l * X1 ,2
(3.1)

where F(t.d.) = for thin strip

where t is the thickness of the strip in the plane of bending and

xp = 22.37, 61.67, 120.8, 200, 298.6, 417

for i = l to 6 .

In equation (3.1),
L = length of bar 
t = thickness of bar 
E = Elastic modulus 
p = density of material.

P was subsequently measured by a flotation method. The parameter x is 

dimensonless and the units of equation (3.1) conform to the S.I. conven­

tion.

3.4.2 Crack Propagation Testing.

3.4.2.1 Specimen Preparation _
MHTtr CROCP and ANNCP* Sin^

Three materials were employed name y
an , „ Fiiure 59) were machined from the materials i
edge notch specimens (see Fig

F _____ ^  „t 45° or 90 t
wo

- notch specimens (.see
orientations, with the long axis of the specimen at 45 or 90 to
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the rolling direction (Figure 40). After machining the specimens were 

mechanically polished to 1 pm finish and then electropolished in the 

Chromic/Acetic acid solution described in Section 3.4.1.1 using the 

apparatus shown in Figure 41 to produce a bright mirror-like finish.

3.4.2.2 Crack Propagation Testing

Fatigue crack propagation tests were conducted in tension-tension 

in an Amsler Vibraphore under constant load amplitude conditions. Crack 

propagation was monitored by observing the progress of the crack trace 

across the broad face of the specimen using a travelling microscope 

equipped with a graduated eyepiece. The crack length was measured at 

intervals of 5 or 10 x 103 cycles. It was also found necessary to 

measure the crack length on both faces of the specimen due to non-uniform 

crack growth.

3.5 Observation Procedures 

3-5.1 Optical Techniques

Standard metallographic techniques were employed to characterize 

grain size and shape of all the materials prior to mechanical testing.

Low power optical microscopy was also employed in the preliminary 

observation of fractured specimens.

3-5.2 Scanning Electron Microscopy

After mechanical testing, the fracture surfaces and the slip mark­

ings on the sides of the specimens were observed at magnifications up 

to 20000 x in a Philips PSEM 500 scanning electron microscope equipped 

with a motorised goniometer stage.
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CHAPTER 4

Data Management

4 .1 Introduction

The data from the fatigue testing procedures and the texture measure­

ments were analysed using three sets of computer programmes which are 

described in the relevant sections below.

4*2 Strain-Life Data 

4*2.1 Parametric Method

This approach to strain amplitude-life testing has been described 

comprehensively by Mitchell^ and Dabell et al and is based on the 

suggestion by Morrow^that the cyclic response of a material may be 

specified by a set of constants which may be regarded as cyclic material 

Parameters. It has found considerable application as a design criterion 

against fatigue failure(94,95). Effectively, the approach ignores the 

relative proportions of saturation response, crack nucléation and short 

crack propagation and considers only the life up to where a specific 

amount of fatigue damage has been accumulated, i.e. until a standard 

size fatigue specimen has separated into two portions. (The applicability 

such a criterion to fatigue design and component testing is obvious, 

in that such a fatigue life corresponds to the development of a detect- 

able flaw). While this criterion may lack a certain stringency in that 

the separate stages of deformation are not considered in isolation it 

d°es, however, avoid the problem of delineating the various stages, i.e.
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when does an intrusion within aslip band cease to be a notch and become a 

short crack?

The data are obtained from the strain amplitude tests in the form of, 

stress-strain hysteresis loops (Figure 42), applied strain amplitude and 

the number of reversals to failure. The cyclic stress-strain data which 

are required are those which are developed by the fatigue process and 

also relate the cyclic stress-strain behaviour as most of the fatigue 

damage is accumulated. The data were therefore taken from the loops 

recorded during the saturation stage and the parameters employed in the 

analysis are therefore:

the applied strain amplitude 

~ E  the plastic strain amplitude at saturation

-y the stress amplitude observed at saturation 
under the applied strain range

2Nf the number of reversals to failure

E the elastic modulus in the direction of 
testing.

The "cyclic stress-strain" approach considers that the fatigue

resistance of a material is determined by the relationship between the

cyclic strain amplitude and the corresponding cyclic stress amplitude,
(94) Til.ln a similar manner to the monotonic stress-strain curve . ine 

cyclic stress-strain response is described by

A a 
2E

, Act 3 n 1 
L2KlJ

Aee Aep
2

Act
~2~

.... (4.1)

W^ere the relationships between elastic and plastic 'stresses and strains
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are similar to those which describe monotonic behaviour. The parameters 

K* and n* are the cyclic stiffness constant and the cyclic hardening

exponent respectively.
The strain-life data may also be analysed parametrically. In 1910, 

Basquin^^noted that the fatigue life of materials under high cycle 

fatigue conditions followed the relation

A a 
2

const*(Nf) (4.2)

r97 gg)
Similarly, the Coffin-Manson1' ' relation 

low cycle fatigue regime,

described fatigue life in the

^£P = const* (Nf)  ̂ ....^
2

The cyclic stress-strain approach considers that fatigue life is 

determined by the applied strain level and the material response. Th 

relationship between fatigue life and the imposed strain amplitude is 

based on the Coffin-Manson and Basquin laws by apportioning damage 

between the elastic and plastic strain components,

Aet = + Afe = e£ 1(2N£) " C + ^  (2Nf)
2 2 2

where the parameters are defined as,

Ef1 cyclic fracture strain

Of1 cyclic fracture stress

c Coffin-Manson exponent

b Basquin Exponent
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2Nj is defined as the number of reversals to failure, i.e. twice 

the number of cycles to failure. The parameters Ef1» CTf1, c and b are 

not independent but are related by the parameters n 1 and K1. It is 

easily shown that

and K1 =

4'* 2. 2 Computer Program

In order to analyse the strain amplitude-life data in terms of the 

Parameters described above, a computer programme was written. The text 

°f the program is given in Appendix I. The data inputted to the pro­

gram describes a series of strain-life tests, detailing for each test 

the applied total strain amplitude, the plastic strain amplitude at 

Saturation, the corresponding stress amplitude and the number of rever- 

Sals to failure. The first three parameters are illustrated in 

figure 42. The elastic modulus, determined by the resonance method, 

ls inputted as a separate parameter.

The computer program is based on a least-squares regression fit to 

e<)uations (4.1) and (4.4) by transferring the data to logarithmic axes.

Since the six parameters are not independent a comparison is possible 

between the results of the cyclic stress1strain analysis and the strain- 

life analysis. The program was run on an IBM 370 computer at the Univer­

sity of Cambridge computer laboratory. The data W-f* stored on disc file 

which was automatically accessed bycthe program.The material parameters were 

°utputted as printed parameters and the regression lines were calculated.

The use of computers in this manner facilitates the further manipulation .

°f the data e.g. representation of the fatigue life as a function of

b
c

(Ef )

(4.5)

(4.6)
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the parameter /Ac AZ E as suggested by Watson and Rebbeck^^.

4*2.3 Precision of Material Parameters

The precision of the parameters calculated by the computer program 

relies on the precision of the measurements from the hysteresis loops, 

the inherently statistical nature of the process of fatigue failure 

and the assumption that the relationship between the stress and strain 

amplitudes and the fatigue life may be described by equations (4.1) and 

(4.4). a lack of precision in the data became evident when calculations 

°f the elastic modulus were performed on the loop data. The subject
t

°f errors will be discussed more fully in later sections (Chapters 5 

and 6), however, the computer program was written to accommodate the 

discrepancies. The program analyses the data by two methods. At first 

the program calculates the elastic strain amplitude by sublracting 

plastic strain amplitude from the imposed strain amplitude while 

the second time through the program calculates the elastic.strain 

amPlitude as the quotient of the stress amplitude and the elastic modulus 

as calculated from the resonance method. No attempt was made to 

emPloy a mean elastic modulus since this approach inevitably leads to 

the calculation, for some data points, of elastic strains which are 

larger than the imposed strain amplitude.

^*3 Crack Propagation

4*3.1 Analysis of Crack Propagation Data

The crack propagation data were obtained as a table of crack 

*ength measurements (a), as a function of the number of cycles (N), at 

c°nstant load amplitude AP. As noted in Chapter 2, fatigue crack 

growth is often described as a function of the applied stress intensity
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at the crack tip. The simplest relation is that suggested by Paris ( 100)

da
dN C(AK)m (4.7)

^•3.2 Computer Program

The crack propagation data were analysed using the computer 

program written by Davenport . This program is based on the spline 

curve fitting procedure described by McCartney and C o o p e r . The 

a V N data are fitted to a polynomical of L-th degree, incorporating 

N number of splines. Having the data in the form of a mathematical 

function permits differentiation of the expression at each data point. 

The program also employs the compliance functions described by Walker 

and M a y t o  calculate the value of AK the cyclic stress intensity 

from the applied load amplitude, the mean load and the crack length. 

Thus, tabulated data of crack propagation rate as a function of applied 

stress intensity amplitude are obtained.

The computer program was run on the ICL 1906S computer at the 

University of Sheffield computing service. Library graph plotting 

r°utines were employed to present the data and the calculated points 

in four plots:

(a) normalised crack length vs normalised number of cycles.

(b) crack propagation rate vs normalised crack length.

(C) log (^) vs log AK.

(d) recalculated normalised crack length - number of cycles 

data from plot (c).

The program also calculates the values of c and m in equation (4.7) using
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a least squares regression method.

4*3.3. Precision of Crack Propagation Data

The method of spline fitting is a very powerful analytic tool in 

that it permits a series of data points to be very closely followed by 

the curve fitting routine. The graph plotting facility permits the 

data to be reviewed and the "fitted" parameters to be compared with 

the raw data in order that the optimum values of N and L, the number 

°f splines and the degree of the polynomial, may be chosen. Although 

tt may appear that the largest possible values of N and L should be 

chosen, the precision of the technique is hampered by the precision,

°r otherwise, of the experimental data i.e. at large values of N and L 

the curves tend to follow the scatter in the experimental data^^^. 

Thus, the usefulness of the analytical program was, in general, limited 

hy the empirical data and the values of N and L were normally limited 

to 2 and 4 respectively.

The major source of errors in the crack propagation experiments 

ls associated with the crack length measurements, although it is 

recognised that some degree of error is implicit in the load cell 

°utput from the testing machine. In fact, the method of measuring crack 

growth gives rise to two sets of errors. The first set of errors result 

from attempting to measure the line trace using an optical technique 

arid merely reflect the uncertainty of the method. The second set of 

errors occur due to the necessity of relating the crack trace to the 

through thickness crack profile.

The relationship between the crack trace and the crack front 

Profiie is not simple and it has been shown that crack growth is 

decelerated by a free surface. Thus, the crack front in the interior 

°f the specimen is consequently advanced with regard to the crack trace



66

on the free surface . it is expected, however, that since the 

crack front should maintain a uniform profile, the error introduced 

by this assumption would affect only the crack position and not the 

crack propagation rate. The error should, therefore, be acceptable.

A more serious source of error occurs when crack growth does not 

occur uniformly on both faces in a direction normal to the stress axis. 

This particular problem was experienced with specimens taken from 

certain orientations. The crack plane traces which developed on the 

broad faces of the SEN specimen were found to be rotated from the 

notch root direction, on one face the rotation was in a clockwise 

sense and in an anti-clockwise direction on the other face. The 

^ngths of the inclined traces were also found, in general, to be 

unequal. In order to utilise the computer programs and also to 

Permit comparison with other data, the crack length was calculated by 

measuring the projected crack length in the notch direction on each 

^ace and calculating the arithmetic mean. This procedure introduces two 

further sources of error. Firstly, the use of the mean projected 

Crack length is difficult to justify when the compliance factors for 

fbe K calibration are calculated for uniform crack fronts. Secondly, 

fbe stress intensity calculated by the program is, of course, Ki, the 

aPpropriate value for mode I opening. It should be recognised that 

f°r such a complex crack front the crack opening mode also comprises 

elements of mode II and mode III opening (Figure 42). Consequently, 

must be recognised that the main source of inaccuracy in this pro- 

Cedure is the use of AKi to describe crack propagation under conditions 

^bich do not produce mode I opening. However, the purpose of the crack 

Propagation measurements was not to generate values of AKj for copper 

(indeed, due to the gross plasticity which occurs during deformation
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of copper the relevance of K, which is based on linear elastic fract­

ure mechanics, is questionable) but to compare and contrast the rates 

of crack propagation in textured copper specimens of different orien­

tations. Since the development of non-plane strain conditions at the 

crack front is a direct consequence of preferred crystallographic 

orientation it is felt that, despite the inaccuracies of this procedure, 

the method of comparison may be regarded as valid for this situation.

4*4 Texture Analysis

4

^•4.1 Analysis

Analysis and manipulation of the texture data was performed on 

an IBM 370 y 165 computer using the programs described by Kallend^^ 

which had been modified and transcribed into PL/1 versions by Morris^^.

4*4.2 Pole Figures

The pole figure intensities recorded on paper tape were transformed 

computer onto a polar grid, the value at each point on the polar 

gtid being calculated by linear interpolation between the corresponding 

^°ur nearest data points on the spiral grid. Intensities were thus 

°btained, normalised over the whole pole figure in order to produce 

Values relative to random, at 5° intervals circumferentially and rad- 

lally from the centre of the pole figure. The uncorrected intensity 

data were employed since it had been shown previously that corrections 

^0r defocussing effects were unnecessary for angles less than 65° from 

centre of the spiral

The pole figures were plotted on a computer controlled plotter,

Using contouring facilities in order to produce convenient contour

interval's.
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^•4.3 The Crystallite Orientation Distribution Function

Although pole figures have been used by many authors to describe 

the results of texture research, this form of presentation of data is 

incomplete since a pole figure describes the distribution of a set of 

crystallographic plane normals with respect to the sample axes but 

does not specify the relative orientations, with respect to the sample 

axes, of the directions which lie in the plane. A more complete and 

quantitative description is possible by using the crystallite orientat- 

ion distribution function (c.o.d.f.). The method was developed 

independently by Bunge^^^and Ro e ^ ? ^  and has since become a well 

established technique of texture research^1(̂ . Detailed analyses of 

the technique are available^^’^ ^ ’^ ^  so the function will be 

described only briefly in this section. An outline of the mathematical 

analysis which describes the relation between the pole figure data and 

c.o.d.f. is presented in Appendix II.

The c.o.d.f. describes the probability of a unit volume crystal­

lite having an orientation, specified by the Euler angles \p,6 and <p,

Wlth respect to a set of reference axes. The convention adopted is 

that proposed by R o e ^ ^ .  The angles 0 and <j> are defined for a 

Stven crystallite orientation by the rotations required in order to 

align the principal axes of the crystallite with the set of physical 

ax6s> in texture research the reference axes are generally the rolling 

and transverse directions and the rolling plane normal in plate mater- 

lal. The rotations are described in Figure 44. The rotations 0 and \p
Pi*Al2n the crystallite z-axis and the rolling plane normal while the 

ari§le $ specifies the rotation about this axes.

As described in Appendix II, the c.o.d.f. is generated as a series 

exPansion with coefficients WLmn, in a manner analogous to the synthesis
Of _

a function of one variable by the use of a Fourier series, as
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« W «  = 2 ^  SL " W  ZLm„(5)e'in,1'e-in* .... (4-8)
L=0 m=-L n=-L

where £ = cos 0 and Z, is a generalisation of the associatedLmn
Legendre function.

In practice, the series must be truncated and in this investigation 

the series was tuncated at the twentieth order, i.e.

20 + L +L
w (0^) = E E Z

L=0 1II6 n=-L
W, Z. (Oe’1"4, e-in* Lmn Lmnvw (4.9)

At this level the errors due to truncation and experimental imprecision 

ate of the same order .

4,4*4.1 Estimation of Errors in the c.o.d.f.

Having generated the c.o.d.f. from pole figure data it is import- 

ant to assess the accuracy of the information. Inaccuracy of the c.o.d.f. 

may result from truncation errors or from experimental errors. Experi­

mental errors may result from sources such as misalignment of the slices 

during fabrication of the block, imprecise cutting and polishing of the 

slice and misalignment of the specimen in the goniometer circle at the 

start of the cycle. A further source of experimental error is the 

stability of the x-ray source (which was measured as a standard 

deviation of 0.5% over a typical period of a pole-figure run).

Due to the symmetry conditions of the cubic system, it can be 

shown that in principle, the W coefficients may be determined out to 

the 22nd order from two independent pole figures. The use of three 

Pole figures allows an estimation of the experimental errors The 

COefficientS are determined by a least squares regression technique 

as described by Kallend^80^. The residuals, which effectively represent 

*he difference between the measured pole figure and the pole figures
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which would be calculated from the c.o.d.f. are employed to evaluate 

the errors involved in the set of empirical data.

The representation of both pole figure data and the c.o.d.f. by 

finite series introduces truncation errors. The truncation errors in 

the pole figure date are easily estimated since both the complete 

function and the truncated functions are avilable. This is not so 

in the case of the c.o.d.f. The truncation error in the c.o.d.f. was 

estimated using the method described by K a l l e n d w h i c h  involves 

extrapolation of the series coefficients from the calculated values.

^•4.4.2 Description of Textures by the c.o.d.f.

The W-coefficients, once generated, may be employed to calculate 

the c.o.d.f. by equation (4.9). For a material of the cubic system 

and a texture which exhibits orthotropic symmetry, all distinct orien­

tations are contained within the range

0 < < ïï
2

0 < <p < TT
2

0 < 0 tan ‘t 1 -r), 4> <cos < JT  *

0 « e < tan h  -1sin <}>J’ *

The c.o.d.f. is presented, therefore, as a contoured function in con­

stant tf) sections of Euler space in the range:

0 < cf> $ j

0 < 0 < j

0 < ip < IT
2
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Davies et al^^^have published charts of the relevant sections 

of Euler space, which correspond to planes which are located in the 

vicinity of a high density of low index orientations, (Figure 45). The 

charts relate positions in Euler space, i.e. ip, 0, $, to ideal 

crystallographic orientations (hkl) rolling plane, [uvw] rolling 

direction. Thus, the maxima and minima of the c.o.d.f. may be related 

to ideal crystallographic orientations.

Although the c.o.d.f. is a complete description of the texture it 

is more useful to be able to describe textures in a shorter form. To
t

achieve this the maxima of the c.o.d.f. may be described in terms of 

the maximum function height and the position with particular reference 

to the chart of ideal orientations. A further parameter which describes 

the severity of the texture is the standard deviation of the function 

from uniformity. This has been designated the texture severity para- 

meter by Kallend^^who has shown that it is readily calculated from 

the coefficients

t.s.p.
20

4/2 7T2 (E
L=1

L L 
Z Z 
m=-L n=-L

W. W. ) Lmn Limr (4.10)

4*4.5 Application of the c.o.d.f. to Cyclic Properties

Because the c.o.d.f. is a complete quantitative description of 

the crystallographic texture, its application is much broader than 

merely describing textures. Two applications have been employed in 

the present work, namely the prediction of mechanical anisotropy based 

°n preferred orientation and the development of preferred orientation 

under cyclic straining.
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4.4.5.1 Prediction of Mechanical Properties

The prediction of material anisotropy has been described by 

Kallend and Davies^*^. As shown in Appendix II, the calculations 

are based on the orthogonality relationship of spherical harmonics . 

The anisotropic property of a single crystal gOJj0<f)) may be developed 

as a series of spherical harmonics with coefficients G^mn. For a 

crystal array described by the c.o.d.f. w(ijj9cf>) the average value of 

the property in the direction \p = 0 , c|> = 0 , 0 = 0 is given by

g 4tt2
00 +L L 
I I I  
L=0 m=-L n=-L

Gt Wt Lmn Lmn (4.11)

In order to calculate the value of this property at angles of a, 8 and 

Y» with respect to the reference axes, which are used to generate the 

W coefficients, those axes are rotated by a, 8 and y. The new W 

coefficients are related to the old set by

W 1 Lmn l2L+lJ
L
l
p=-L WLpnZlpm(cos6)

e-ipae~imy (4.12)

In considering anisotropy in the plane of flat material, equations 

(4.11) and (4.12) reduce to

g(a) 4tt2
00 +L +L 
I I I  
L=0 m=-L n=-L

G. W, Lmn Lmn cos not (4.13)

4*4.5.1.1 Prediction of Elastic Modulus

The calculations of average elastic moduli were performed using 

the program written by Kallend and modified by Bateman^^. The upper 

bound solution, due to V o i g t d e t e r m i n e s  the elastic stiffness by 

considering that all the grains are subject to the same strain. The
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lower bound solution, due to R e u s s ^ ^ \  effectively averages the 

elastic complience as the model assumes that all grains are subject 

to the same stress. Hill^^^has postulated that the arithmetic mean 

of the Voigt and Reuss averages should more clearly approximate the 

behaviour of weakly textured materials.

4.4.5.1.2 Prediction of Yield Stress Anisotropy

The yield stress anisotropy was determined in order to correlate

texture with the cyclic yield stress, defined as the 0 .2% offset stress
»

r 2 2 )in the cyclic stress-strain curve. It has been reported^ 'that the 

cyclic stress-strain curves of single and polycrystalline copper may 

be compared by using the Taylor factor. The use of the Taylor factor 

implies that the deformation conforms to the premises of the model of 

Taylor»” ) -Bishop and Hill^*^. The Taylor model assumes that all 

grains behave as if they were subjected to the same strain as that 

wbich is applied macroscopically and is an upper bound solution, in 

contrast, the Sachs ̂ ^ m o d e l  implies stress continuity and is a lower 

bound solution. Assuming that the same mode of deformation occurs in 

a given material, regardless of the direction of cyclic straining, 

the anisotropy of cycle plasticity may be predicted using the Taylor 

°r Sachs theories.

The upper bound solution was determined using the method of 

Kallend^®^which employs the method of Taylor and Bishop and Hill, 

incorporating the criterion of Hosford and Backofen^^ . In this 

analysis the value of m (the Taylor factor) is determined for a given 

iRcremental strain (den) as a function of the contraction ration, r, 

wbere,

Rr 1 + R (4.14)
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and R = _df£i ....(4.15)
d£33

The r-value which produces the minimum value of the Taylor factor is 

considered to be operative. Thus, not only is the Taylor factor 

calculated but the expected ratio of the width strain to the thickness 

strain is determined. The lower bound solution is determined by the 

premise that slip in each grain is governed by Schmids Law^2^.

4.4.6 Application of the c.o.d.f. to Texture Development

4.4.6.1 Quantitative Assessment of Texture Development

The method of spherical harmonics facilitates the study of texture 

development. In particular, it enables the identification of depleted 

and augmented regions of Euler space. The difference between two 

textures is obtained by subtraction of the two c.o.d.f . 's. If the two 

functions are obtained in the form of spherical harmonics, the corres­

ponding W-coefficients may be subtracted to produce a set of W- 

coefficients which represent the difference function, i.e.,

AW. = V  - 2W.Lmn Lmn Lmn

The difference may be plotted in the same manner as the c.o.d.f. 

With regions of positive intensity corresponding to supplemented 

orientations and regions of negative intensity corresponding to 

depleted regions. This technique was employed to study the texture 

changes in material C8585.

4*4.6.2 Simulation of Texture Deformation

Although fatigue deformation is often considered to occur without
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n  7")the production of lattice rotation^ "it has been suggested that

texture development may occur during cyclic loading and indeed that

this phenomenon may be used to monitor the accumulation of fatigue

damage.^^. The c.o.d.f. facilitates the study of texture development

and stability. Computer simulations of texture development under
f 122')monotonic loading have been reported by Kallend and Davies and

f 1231van Houttev J . Fatigue deformation was simulated using the method 

described by K a l l e n d ^ .

Discrete crystal orientations were generated to represent a
t

desired c.o.d.f. Approximately 1000 crystals were generated for each 

texture as it was found that this number produced an unambiguous match 

with experimentally measured c.o.d.f.'s. The technique of Kallend 

employs an incremental strain tensor to describe the macroscopic 

deformation. The lattice rotations caused by strain cycling were 

calculated using a modification of the strain tensor such that the 

tnitial strain increment was +en/ 2 , the second strain increment -£n

and the third increment was +£n . Subsequent increments were achieved 

by

Asn = (-l)n en

Using values of 0.25 and 0.0025 for sii simulations were performed for 
375 cycles in steps of 75 cycles.

The simulations thus model constant amplitude strain cycling

parallel to the rolling direction. The lattice rotations were calcul­

ated according to the maximum work principle of Bishop and Hill 

assuming {lll}<liO> slip systems as described in Reference (122).

Texture simulations were performed using six different sets of crystal 

orientations. These are described in Table 3.
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4.4.7 Texture Data Management

The data management system is summarised in Figure 46.
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CHAPTER 5

Results

Microstructural Characterisation

5-1.1 Metallographic Observations

Standard polishing and etching procedures were employed to character­

ise the grain structure of the materials. All the materials were obser­

ved to consist of single phase material together with small oxide par­

ticles, which were occasionally observed in the rod material. While the 

Plate material was observed to contain some oxide, the particles were 

somewhat more prevalent in the rod material. It was also noticed that 

the thin sheet material contained a dispersion of oxide.

The grain sizes were measured by the linear intercept method. The 

cold rolled materials were observed to consist of elongated grains, while 

the annealed materials consisted of a fine equiaxed grain structure. The 

thin sheet material displayed a somewhat coarser grain size than the 

Plate or rod materials. The results are presented in Table 4. (In the 

case of the elongated grain structures, the diameter which is presented 

ls that normal to the axis of elongation).

5.1.2 Texture Data

5.1.2.1 Thin Sheet Material

The texture of the thin sheet material, code MBCUB, is shown in 

figure 47. The texture consists of a severe cube orientation, (100}[001],
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of height 54 times random. The severity parameter of 5.47 also reflects 

the very high degree of crystallographic texture in this material. 

Although the maximum function height is large, and the severity parameter 

is also great, integration of the c.o.d.f. shows that only 25 to 40 % 

of the material volume is oriented within 10° of the cube position. The 

imprecision of this measurement is caused by the large truncation errors 

involved when dealing with sharp textures. This material, despite the 

imprecision of the texture data, was chosen for preliminary work 

because of the high severity of the texture.

5*1.2.2 Plate Material

The c.o.d.f. plots for materials III80, G8585, NUJIG and CRCOP 

are shown in Figures 48 to 51 respectively. These textures are much 

less severe than that used for the preliminary experiments and are con­

sidered to be more typical of the textures to be found in commercially 

Processed cubic metals. A consequence of the lower severity of the 

textures is a reduction in the truncation error of the c.o.d.f., thus 

the c.o.d.f. tends to describe the low severity textures more 

accurately than it does the higher severity textures. The five mater- 

ials all display a shear-type texture with {100}<011> as the major com­

ponent. This is, however, not the texture component which is usually 

reported to develop after homogeneous heavy rolling reductions, and, 

is thought to be a consequence of rolling thick material on comparat­

ively small diameter rolls(125). It is,, however, a useful component 

to develop for the programme of fatigue studies since the existence of 

this component should encourage a similarity of properties in the 0 

and 90° directions. It should be noted that the major component, while 

having a large influence on the mechanical properties does not totally
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determine them. Thus, a complete description of the texture, i.e. the 

c.o.d.f^ is required for the prediction of anisotropy rather than "single 

crystal" type calculations which only employ the major component of the 

texture (such as prediction for the materials used would conclude that 

the 0° and 90° orientations were identical).

5*1*2.3 Rod Material

In analysing the texture data of the rod material, the co-ordinate 

system of the rod was aligned in the goniometer such that the long axis
0

°f the rod corresponded to the direction which is conventionally 

aligned with the rolling plane normal in plate materials. While this 

convertion may seem somewhat incongruous, in that the axis of elongation 

°f the rod is aligned with the axis of compression of the rolled mater- 

lal, the c.o.d.f. plots, as employed, display the expedient property 

that fibre textures parallel to the normal direction are shown as 

straight lines in the constant sections of euler space. The c.o.d.f. 

Plots in Figures 52 to 65 correspond to materials FAREN, FBREN, B3500 

and A3500, respectively. It should be noted that the cold worked 

materials, FAREN and FBREN display a predominant <111> fibre texture 

although FBREN shows a significant (3.Ox random) <100> fibre component.

annealed materials display a duplex <100> + <111> fibre texture 

Wlth the stronger component being the <100> fibre in each case.

The c.o.d.f. data are summarised in Table 5.

^•1*3 Mechanical Property Predictions

The plastic property predictions based on the Taylor-Bishop and 

Hill model are presented in Table 6 . The yield stress is expressed in 

^rms of Taylor units, i.e. referred to the shear stress required to 

Cause slip on the primary slip plane. While the calculation is internally
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consistent, i.e. the yield stress in a given direction may be compared 

to that in another direction within the same material, it does not 

take into account the effect of other parameters such as grain size or 

dislocation density. Thus, difficulty may be experienced in relating 

the Taylor factors for different materials, e.g. materials in either 

the cold worked or the annealed condition.

Also included in the plastic property predictions in Table 6 is 

the variation of the r-value (the plastic strain ratio). The r-value 

is the ratio of the incremental width and thickness strains ati

yielding^26^, i.e.

de22
¿£3 3 (5.1)

for deformation under a uniaxial tensile stress a n .

The directions of the strain axes are conveniently specified by 

the stress axis of the specimen and by considering the strain in the 

through thickness direction of the sheet to be £33• The strain £22 is 

then in the direction which is mutually orthogonal to the other two axes. 

The necessity to consider the effect of plastic strain ratio was shown 

hy Lee^77,78^who used diametral extensometry during strain controlled 

f&tigue testing of zircalloy. The plastic strain ratio may also be 

expected to influence crack propagation .

The elastic properties shown in Table 6 are calculated according 

to the methods of Reuss(115\  Voigt^114-* and Hill (-116')as described in 

Section 4.4.5.1.1.

S*2 Elastic Modulus Measurements

The data measured in order to calculate the Young’s modulus of the
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materials employed in the investigation are given in Table 7. The Youngs 

modulus in the long direction of the strip is calculated for each reson­

ance of the strip by solving equation (3.1), employing the relevant 

coefficient. Only those resonances which were clearly distinguishable 

and repeatable were employed. The arithmetic mean of the moduli 

calculated for each resonance is taken to be the Youngs modulus in the 

specified material and direction.

The moduli determined by this method may be compared with the 

moduli calculated from texture measurements and the modulus measured 

during a tension test. In particular, the modulus, as determined by 

this latter technique is employed in analysing fatigue data of soft 

materials, in which it may be impractical to determine the Young's 

modulus by a tensile test method.

^• 3 Preliminary Experiments

The results of fatigue testing at a constant stress amplitude of 

4 30.S MPa are given in Table 8 . The data are the averages of measure­

ments from five specimens of each orientation. Since the sheet speci­

mens were initially in the annealed condition, it was necessary to 

increase the stress amplitude on starting the test from zero up to 

30.5 MPa. However, because this procedure occupied only the first few 

hundred cycles, it is not expected to have a significant effect upon 

the fatigue lives recorded. As denoted in Table 8 , the data from 0 

and 90° specimens fell within the same scatter band and thus the reported 

life is the average of ten specimens. The specimens taken from the 45 

orientation displayed a greater fatigue life under the stress cycling 

conditions which were imposed, i.e. 6.1 x 106 vs. 1.43 x 10 cycles for 

the other group of data. Since failure was defined as the total
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separation of the specimen the orientation dependence of the life 

measured under these conditions reflects the orientation dependence of 

both the nucleation and the propagation stages.

5.3.1 Fractographic Observations of Thin Sheet Material

In all cases the fatigue cracks initiated at one edge of the broad 

face of the specimen and, during the later stages of the fatigue test, 

were observed to propagate across the broad face of the specimen. In a 

similar manner to the grouping of the stress-life data, it was observed 

that fatigue crack growth, in the 0° and 90° oriented specimens, occurred 

in a direction at 90° to the stress axis while the 45° oriented speci­

mens displayed growth at an angle of about 60° to the stress axis (Fig­

ure 56). It should be noted that the measurement of 60° was reprod­

ucible within ±l°.This orientation is, therefore, significantly differ- 

ent from that predicted for tensile fracture by ductile shear in a 

thin sheet of isotropic material. In that case, the angle between the 

trace of the fracture surface on the broad face and the stress axis is 

Predicted to be 54.7°(127\  Subsequent metallographic sectioning 

showed that the fracture in the 0° and 90° specimens occurred on a 

Plane which was normal to the stress axis. The specimens oriented at 

45° to the rolling direction displayed a more complex fracture surface 

when through thickness sectioning was employed. Near the initiation 

site the fracture plane was oriented at about 30° to the through thick­

ness direction, while at longer crack lengths the crack developed a 

complementary facet, inclined to the through thickness direction, by 

about 30° in the opposite sense to the initial fracture plane (Figure 

•*7). The measurements of the orientations of the fatigue fiacture 

Surfaces are summarised in Table 8 .
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Scanning electron microscopy also reveals the change of fracture 

plane in the 45° oriented specimens and the development of a "roof-top" 

appearance. Figure 58 is a stereo pair illustrating this feature. The 

flat, macroscopically planar, fracture of the specimens oriented in the 

cube directions is illustrated in Figure 59. The most noticeable feat­

ure of such fracture surfaces is the chevron-type markings which appar- 

ently indicate the macroscopic direction of propagation. Similar mark­

ings are evident in Figure 58, with the heads of the chevron markings 

forming the "roof-top" of the fracture surface. At higher magnificat­

ions it is observed that the chevron markings are formed as the result 

of localised fatigue crack growth occurring on four sets of planes.

This is conveniently revealed by stereo pair microscopy, as in Figure 

0̂. At the higher magnification, it is possible to resolve the fine 

markings which are continuous across the line of intersection of the 

two planes which form the chevron marking (Figure 61). These markings 

are the familiar fatigue striations which are often reported on fatigue 

fracture surfaces of ductile materials.

It is clear that while the striations lie at approximately 90° to 

the direction of crack propagation some local deviation may occur 

(figure 60). High magnification ^uctographs of the specimens oriented 

at 45° to the rolling direction are strikingly similar to those taken 

from the cube orientations. It may, therefore, be suggested that on a 

microscopic scale the mechanism of fatigue crack growth is the same over 

aH  the specimens. It would appear that the effect of texture is to 

reorient the direction of crack growth and thus to determine the macro­

scopic fracture path. Although the chevron-type markings were observed 

to be parallel to the <110> type directions of a single crystal aligned 

with the cube component of texture, it was not possible to identify the
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fracture planes which form the chevrons with a crystallographic plane

since the fracture facets extend over several grains. Although the

possibility exists that grains of a similar orientation may be contiguous,

thus producing a larger effective grain size, the extent of the chevron

barkings, which lie across many grains over the width and thickness of

the specimen, precludes such a single crystal type effect. Thus, although

PSB cracking occurs on {ill} planes, the facets shorn in Figure 61 should

not be associated with specific {ill} planes. However, it is obvious

that the crack orientation is controlled by the crystallography of the
#

major component.

^•3.2 ' Preliminary Conclusions from Thin Sheet Experiments

While the results of the preliminary experiments will be discussed 

ln detail in Chapter 6, in conjunction with the results of the cyclic 

stress-strain experiments and of the crack propagation tests, it is 

Possible to draw a number of preliminary conclusions with regard to the 

effect of texture on fatigue.

(1) In an equiaxed single phase material in which the only 

source of anisotropy was a strong crystallographic 

texture, the fatigue resistance in the direction at 45° 

to the cube axes was significantly higher than in the 0 ° 

and 90° directions.

(2) The macroscopic fatigue fracture path is influenced by 

the texture, in particular, the development of flat 

fracture surfaces is related to the relative through­

thickness yielding, specified by the r-value (see Table 

6). A low r-value results in a macroscopically non-planar 

fatigue fracture.
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(3) Crystallographic preferred orientation produces anis­

otropy of fatigue properties in copper in the absence 

of other forms of anisotropy. The anisotropy may be 

rationalised by the texture measurements.

5*4 Cyclic Stress-Strain Investigation

The results of the cyclic stress-strain/strain-life measurements

are presented in Tables 9 to 16. In order to avoid elongation of the

material codes, a shortened form will be employed to distinguish the
§

various orientations of the specimens of the plate material. Thus,

18045 implies the 45° orientation from plate III80 and G8590 implies 

the 90° orientation from plate G8585. The data were calculated from 

the hysteresis loop which was recorded at the half-life. Premature 

failures, which were associated with knife edge fretting etc., are noted, 

but are not used in the strain life analysis. Examination of the raw 

data reveals considerable variation of the elastic modulus as measured 

from the hysteresis loops. This phenomenon is often encountered in 

cyclic stress-strain testing e.g., see Reference 127. In the present 

situation, this error arises from two sources. Firstly, the elastic 

modulus is calculated by dividing the stress amplitude by the differ- 

er*ce between the total strain amplitude and the strain width of the 

hysteresis loop. The fractional error in the quotient is therefore 

controlled by the errors which occur during the subtraction of the two 

larger quantities, this produces a small, quantity with an accompanying 

large fractional error. The second form of error results from the 

idealised treatment of the hysteresis loop in Figure 42. Figure 62 

shows a series of hysteresis loops recorded during a strain controlled 

fatigue test, in comparison with Figure 42, two discrepancies may be
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noted. Firstly, the straight sides of the loop appear to curve before

crossing the strain axis. The second dissimilarity occurs at the loop

tips where the turning points do not appear as sharp reversals but are

rounded so that the maxima of stress and strain do not occur at the

same point. This phenomenon may be ascribed to stress relaxation effects
(129")combined with the application of a sinusoidal control signal . Near 

the revers al points the applied strain rate becomes increasingly small 

and, thus, stress relaxation effects produce an anelastic component of 

strain. The effect of cycling frequency and waveforms are shown in
9

Figure 62. The loops were recorded at two speeds and using both sin­

usoidal and triangular waveforms to drive the hydraulic ram. It is 

obvious that the sharper loop is produced by fast cycling under a trian­

gular waveform and the most rounded loop by slower cycling using a 

sinusoidal control signal.

Despite such effects, it is n o r m a l p r a c t i c e  to employ wareforms 

in constant strain amplitude testing and the technique was consequently 

employed in this investigation. Indeed, it appears that, in the present 

work, the idealised loop shape is never attained and there is strong 

evidence to suggest that this phenomenon is not uncommon. High speed 

digitising^131-*of hysteresis loop data indicates that the problems 

°utlined above occur at most frequencies employed in strain-life data 

acquisition. Effectively, therefore, three different strains should 

be allowed for in the analysis, elastic,plastic and anelastic. However, 

since it is impossible for truly elastic deformation to produce damage 

the anelasticity must be accounted for by the Basquin and Coffin-Manson 

relationships. The idealisation of Figure 42 is therefore considered 

to be a reasonable approximation and the errors are accommodated by 

escribing the plastic strain to the strain width of the loop and the 

elastic strain to the stress amplitude divided by the elastic modulus
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in the direction of testing. The elastic modulus is determined separat­

ely in a monotonic test or by a resonance method. The total strain 

amplitude may be recalculated by adding the elastic and plastic compon­

ents. The difference between the recalculated value and the total strain 

as measured directly from the hysteresis loops is found to be small, an 

example of such a set of data is given in Table 17.

Employment of this technique with the rejection of plastic strain 

levels of unacceptable accuracy, typically a limit of 10"1* was set as

the lowest acceptable level of plastic strain amplitude, was found to
0

be more consistent than other methods of analysis. (For example, one 

technique which is used to analyse strain-life data averages the elastic 

Moduli which are calculated from the loops, recalculates the elastic 

strain using the stress amplitude, and calculates the plastic strain 

amplitude by subtraction. This may result in the calculation of a

negative plastic strain amplitude!). It is also Suggested that since
(97)the analysis is effectively founded on the empirical laws of Coffin 

and Basquin^^, the data which should be employed in the analysis are 

those to which the relevant laws pertain, i.e. the plastic strain width 

°f the hysteresis loop and the stress amplitude of the hysteresis loop.

The computer program which was written on the basis of the above 

analysis is reproduced in Appendix I. The material parameters which 

were calculated from the strain-life data are given in Table 18. The 

cyclic stress-strain curves for the materials are calculated from the 

material properties and are given in Figures 63 to 70. The strain-life 

curves, including the elastic and plastic lines, are shown in Figures 71 

to 78.

5-5 Fatigue Crack Propagation Investigation

The fatigue crack propagation data were analysed as described in
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Section 4.3. A typical series of graphs is presented in Figure 79. This 

series shows a set of data that was considered to be well fitted by the 

Programme and the values of L and N. The values of the constants C and 

ro are tabulated in Tables 19 and 20. The Tables also show the value of 

AK7 (as suggested by Rieux et al^^)) which is the stress intensity 

amplitude required to attain a growth rate of 10” 10 m/cycle.

In general, the cracks which were grown in the 45° oriented speci­

mens developed forms which showed traces which deviated by up to 20° 

from the trace of the plane which was perpendicular to the stress axis. 

While, in the material CROCP the sense of the deviation was found to be 

the same on each face, in the 45° specimens from NUJIG plate the sense 

°f rotation was found to be different on the two faces, i.e. on one face 

the crack plane trace was rotated from the perpendicular plane towards 

the top grip and on the opposite face the trace was rotated in the direct- 

l0n of the lower grip. In the case of material CROCP, it did not appear 

that the crack plane trace tended to rotate so that propagation was 

aligned along the long dimension of the grains.

The data appear to fall into two distinct subsets which are character­

ised by the value of the Paris law exponent m, one set has m of'the order 

°f 3.5, the other has a lower value of the order of 2.0. The lower 

v^lue of m correlates very well with the materials which displayed a 

Planar fracture. Since the values of C and m are somewhat inter­

dependent, a more exact correlation may be made with the value of AK7 .

The orientations which exhibited slant crack growth also displayed the 

higher values of AK7, i.e. a higher stress intensity amplitude is required 

enforce the specified rate of crack propagation. Thus the specimens 

which display planar crack growth (usually the cube oriented specimens) 

exhibit faster crack propagation under the same stress intensity

amplitude.
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It is also evident that the data from the material of lower severity, 

CROCP, exhibit greater variance than the data from NUJIG.

5.6 Scanning Electron Microscopy Observation

5.6.1 Strain-Life Specimens

5.6.1.1 Specimen Sides

Examination of the polished sides of the specimens showed profuse 

slip markings, intrusion-extrusi6n pairs and occasionally, secondary 

cracks. The purpose of this part of the investigation was primarily to 

identify the sites of crack nucleation. In all the specimens examined 

the mode of crack nucleation was observed to be the same. Figure 80 

shows a secondary crack which has not developed into a failure, the 

crack has developed from an intrusion in a highly localised band of 

Reformation, i.e. a P.S.B. It was rarely possible to examine closely 

the actual site of failure since post fracture damage tended to obscure 

Retail, it is, however, reasonable to assume that the mode of nucleation 

the cracks which did not propagate to failure is identical to that 

°f the cracks which result in failure.

On closer examination, it is apparent that the intrusion-extrusion 

Pairs may result from a number of different slip configurations. The 

different types of markings have been reported after fatigue of alumin­

ium^65) . xhe types of markings illustrated by Figure 81 correspond to 

i-he markings categorised by Arnell and Teer^*^ as "single slip bands", 

'intersecting slip bands", "herring-bone patterns" and "severe surface 

rumpling". It was found that fatigue cracks were found to grow only 

from the intrusion-extrusions which developed from long slip bands in 

Stains which displayed only one set of parallel slip bands (Figure 82).

L.
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Surface cracks were also observed in grains which displayed markings of- 

the last three types described by Arnell and Teer but these, however 

severe, were not observed to develop into propagating fatigue cracks.

The roles of grain boundaries and twin boundaries in the nucleation 

°f fatigue cracks are somewhat ill-defined. V.Tiile there is no evidence 

that fat igue cracks nucleate in twin or grain boundaries, it appears that 

such boundaries may help to establish an embryonic crack which has 

formed within a P.S.B. Figure 83 shows a stereo pair in which the 

fatigue crack has nucleated in a P.S.B. and grown to impinge upon the 

twin boundary, the incompatability of deformation is relieved by propa­

gation of the crack along the twin and grain boundaries. The stereo 

Pair in Figure 63 clearly shows the large depth of the crack after it 

has become established in the twin and grain boundaries.

'*•6*1.2 Fracture Surfaces

The investigation of fracture surfaces of specimens which have been 

subjected to fully reversed strain cycling is complicated by artifacts 

caused by post fracture damage as the fracture surfaces impinge during 

*he compressive half cycles causing detail to be obscured. However, 

despite the occurrence of "smearing" it was always possible to observe 

areas which had suffered relatively little post fracture damage. All the 

^racture surfaces displayed three distinct zones;

(i) a zone near the nucleation site which was often feature­

less due to smearing by the compressive forces and inc­

lined at between 30° and 45° to the stress axis,

(ii) an intermediate zone on which features typical of fatigue 

could be observed (this was frequently normal to the 

stress axis, although slant fracture surfaces were also 

obtained), and

L
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(iii) a region of ductile shear caused by monotonie fracture.

Figure 84 shows a low magnification S.E.M. micrograph in which nucléat­

ion has, in fact, occurred at three separate sites and the growing 

cracks have coalesced to produce a larger crack which has grown across 

the cross section of the specimen.

The fracture surfaces near the initiation site correspond to the 

Stage I growth^^of the embryonic fatigue cracks. Very little detail 

was observable in this region. The fracture surfaces formed during 

Stage II growth, whether during planar or slant growth, were found to 

exhibit two distinct types of features. All the annealed materials dis­

played very marked fatigue striations and exhibited a very ductile 

fracture surface. Figure 85 shows a typical set of fatigue striations 

which were observed in a depressed region of the fracture surface, 

Presumably protected from post fracture damage by the elevated regions 

which surrounded it. (This also indicates that the smearing is not 

caused by mating of the surfaces immediately after the crack has passed 

but by damage when the crack has grown to a considerably longer length).

Similar ductile features were observed on the fracture surfaces of 

material III80 for the 0° and 90° orientations at all stress levels, 

figure 86 corresponds to propagation at high rate, large strain amplitude 

and long crack length, and illustrates the exceptionally ductile nature 

°f the fracture. The striations lie on small ledges which appear to be 

separated from each other by sheared surfaces. The striations can be 

seen to be continuous from one ledge to another so that the region which 

Produces the peak of a striation on the ledge will develop a depression 

°n the shear surface.

The Stage II fracture regions in the other cold worked specimens 

displayed pronounced facet-like features, (shown in Figure 87) in

L
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contrast to the ductile appearance of the other specimens. The most 

striking contrast is between corresponding specimens of III80 material 

in the 0° or 90° orientations and the 45° orientation. The 45° 

oriented specimens display the facet-like features shown in Figure 87 

in contrast to the ductile striations exhibited by theO'^^oriented 

specimens (Figure 86). Closer examination of the cube oriented speci­

mens of III80 revealed facet-like features at locations close to the 

crack nucléation sites (Figure 88). It was also noted that the facet- 

like features tended to be more prevalent at shorter crack lengths and 

ln specimens subjected to lower amplitude strain cycling.

The position of the sites of fatigue crack nucléation, and the sub­

sequent direction of crack propagation were found to be unrelated to 

the reference directions in the plate materials.

5.6.2 Crack Propagation Specimens

The fatigue cracks produced during the crack propagation experi- 

ments displayed surprisingly rough features. At very short crack 

ler>gths, presumably within the plastic zone of the starter notch, the 

cTacks are reasonably planar (Figure 89). At longer crack lengths the 

Crack morphology becomes less planar, exhibiting macroscopic peaks and

troughs.

The appearance of the fracture surfaces of all specimens are very 

similar when viewed at high magnification. Figure 90 shows a typical 

surface. The facet-like features appear, very similar to those noted 

0ri the fracture surfaces of the strain-life specimens, the ductile 

striations which had been evident on the more ductile fracture surfaces 

the strain-life specimens were, however, not observed. Although 

exPeriments were attempted using soft specimens, these were not success- 

in producing fatigue cracks without gross cross section yielding.

k
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It is also possible that well marked ductile striations were not 

observed on the fracture surfaces of the crack propagation specimens 

because the crack propagation rates were below those encountered during 

the strain life testing, since in the crack propagation testing,the 

tests were terminated before the crack reached 70% of the specimen

width.

7 Texture Development During Fatigue 

5.7.1 Simulation

The results of the simulations based on the Taylor-Bishop and Hill 

model of plastic deformation are given in Table 3 (together with the 

starting textures). The fatigue simulations tend to develop components 

in the positions (100}<031> and {100}<013>, the relative strengths of 

the components in each orientation are dependent on the prior "deformat­

ion". Thus, the cube textured material tends to develop a much lower 

severity as the peak width at {l0l}<010> broadens towards {00l}<031>. 

Similarly, the shear texture, {100}<011> develops a much broader peak, 

enveloping the {100}<031> orientations, eventually developing small 

side peaks in those orientations.

5*7.2 Experimental Measurement of Texture Development During Fatigue

The texture which was measured from the specimen which had been 

subjected to 5300 cycles at ± 0.0037 strain amplitude is shown in 

Figure 91. This should be compared with the initial texture G8585 

which is shown in Figure 49. The most emphatic difference is that the 

Peak height has fallen from 7.7x random to 4.7x random and similarly, 

the severity has also decreased from 0.98 to 0.68. The quantitative

k
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nature of the c.o.d.f. and its formulation as a series expansion, permit 

the difference function of two c.o.d.f.'s to be evaluated. Thus, the 

relative changes in orientation may be evaluated between Figure 91 and 

Figure 49. This difference function is plotted in Figure 92. It is 

clear that while the orientations near {100}<011> have become depleted, 

no specific orientations have been preferentially augmented.

The results of the texture measurements indicate, therefore, that 

in contrast to the predictions of the simulations based on the theory 

of Taylor and Bishop and Hill, the action of fatigue cycling is to
t

randomise the texture.
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CHAPTER 6

Discussion

The review of the literature has shown that the fatigue properties 

of cubic single crystals are expected to be orientation dependent. By 

expressing the cyclic stress-strain curves, in terms of the resolved 

shear stress and strain amplitudes, Laird^^^has shown that materials 

deforming by wavy slip should be expected to display a unique cyclic 

stress strain curve. The anisotropy of cyclic behaviour is, therefore, 

dependent upon the Taylor factor. Kettunen^14^attempted to rationalise 

the behaviour of single crystals and polycrystals using the Taylor 

factor. Inherent in these approaches has been the premise that the poly­

crystals which were employed for comparative purposes were free from 

texture and exhibited a Taylor factor of 3.06 (which corresponds to a 

randomly oriented aggregate of crystals).

The effect of orientation on the rate of crack nucléation in
( O f  1single crystals was demonstrated by Avery et al and a corresponding 

dependence of the orientation dependence of the development of surface 

topography in polycrystals was noted by Arnell and Teer , i.e. 

grains which developed long straight slip bands were oriented so that 

the stress axis lay at the centre of the stereographic triangle. It 

aPpears that the rate of crack propagation in single crystals is also 

influenced by the crystal orientation^38 .̂ However, these data may 

n°t be directly relevant to the fatigue of polycrystals since crack 

growth data has been correlated with the tendency towards multiple slip 

°^and, in polycrystals, it would be expected that the constraints of
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neighbouring grains would promote polyslip in all grains.

The only data which have examined the effect of preferred orien-
r i 3 3 ' itation on cyclic properties are those of Nair and LeMay^ . These

workers correlated a difference in the fatigue properties in the trans­

verse and rolling directions of cold rolled plate with texture measure­

ments. It was also found that in materials which displayed either 

"cube" or "random" textures the two orthogonal orientations produce 

much more similar fatigue behaviour. Unfortunately, Nair and LeMay 

were only able to correlate distinct differences in fatigue behaviour
t

with distinct differences in orientation, e.g. Nair considers that the 

S-N data for the annealed copper polycrystals form a single curve (see 

figure 93). However, it could be argued that the orientations are not 

identical but that the scatter bands of the two data-sets overlap. 

Similarly, the use of incomplete pole figures is an inadequate descript­

ion of the texture. In particular, the presence of a strong cube text- 

Ure component does not per-se mean that the 0° and 90° orientations 

are texturally identical since the presence of min or components will 

affect the anisotropy of mechanical properties. Also, it is possible 

that grain shape may affect the S-N curve. Because the only differences 

that Nair and L e M a y f o u n d  in the fatigue data were in the cold worked 

specimen it has not been proved conclusively that the difference in 

■^tigue properties is attributable to texture since in one orientation 

*he long grain boundaries are parallel to the stress axis while in 

the other the boundaries are perpendicular to the stress axis.

1 Preliminary Experiments

In order to assess the possibility of textural effects in the 

fatigue of copper it is necessary to remove any other causes of anis­

otropy ¿nd also to ensure that the anisotropy due to texture is as
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large as possible. Fortunately, cold rolled copper sheet may be 

annealed to produce an equiaxed grain structure which exhibits a strong 

cube texture component, thus fulfilling the conditions of strong 

crystallographic anisotropy and weak microstructural anisotropy. The 

texture data for the sheet material MBCUB indicate that the 0° and 90° 

orientations are texturally equivalent. This implies that the large 

cube component dominates the mechanical anisotropy and that no signifi­

cant minor components exist. (A situation which is probably untrue 

f°r the material of Nair. Reference 133, Figure 5.4).
0

The data from the preliminary experiments clearly show that under 

stress amplitude controlled conditions of high cycle fatigue the stress- 

life data falls into two sets, the 0° and 90° specimens form one set at 

a lower life while the 45° oriented specimens showed enhanced fatigue 

resistance in that regime. Using the yield stress calculated for the 

three orientations by the Taylor ̂ 17^-Bishop and Hill ̂.118-*method it is 

found that the 0° and 90° orientations display similar yield stresses 

which are below the yield stress calculated for the 45° orientation. 

^ Us» the fatigue data at constant stress amplitude shows that the 

Aerials with the lower yield stress fail prematurely, i.e. the 

^atigue data agrees qualitatively with the texture prediction.

On the basis of these results, it is not possible to discriminate 

between the nucleation and propagation phases of fatigue crack growth. 

However, since crack propagation at such a low stress level occupies 

a small fraction of life^it is clear that the nucleation of fatigue 

Cl>acks is dependent on the texture and orientation. It appears that 

texture also affects the fatigue crack propagation. The fracture 

behaviour will be more fully discussed in conjunction with the fatigue 

Crack propagation data from series NUJ1G and CROC? but the results of 

e fractographic observations on the thin sheet fractures do indicate
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the effect of texture. Although the high magnification views of the 

fatigue fracture surfaces are very similar, the macroscopic topography 

of the fracture surfaces depends on the orientation, the cube oriented 

specimens exhibit flat fractures and the 45° specimens have slant or 

roof-top type fracture. It appears, therefore, that the micromechanism 

of fatigue crack propagation is the same for all the specimens while 

the macroscopic crack orientation is determined by the texture.

It is tempting to analyse the fracture in terms of crack propagat­

ion along {ill} type planes as suggested by L a i r d N e u m a n n ^ ^
0

suggests that slip is controlled by slip on two {lll}<110> systems pro­

ducing crack fronts aligned along <110> type directions. The macro­

scopic fracture plane depends on the relative amounts of slip on the 

systems at the crack tip. This explanation is acceptable in the des­

cription of crack propagation in single crystals but it should be 

noted that the fractures produced in the fatigue of thin sheet display 

chevron markings over distances which are larger than the grain size of 

the material. Since the material is not a single crystal, approximately 

only 25% of the volume is oriented within 10° of the {001}<110> orien­

tation, such a rigorous crystallographic argument should not be 

aPPlied. However, this model, which has also been suggested by 

Pelloux^^^, may be applied in a more generalised form. Rieu et al^  ̂

suggested that the slip occurs in "bands of shear" at the crack tip, 

as opposed to slip on a specific plane. The orientation of the bands 

and the sense of the shears is prescribed, of course, by crystallographic 

considerations. If the macroscopic shearing behaviour is now considered 

it will be seen that the shear at the crack tip must be influenced 

by texture.

In the case of the cube textured material, strain is easily 

accommodated within the plane of the sheet if the stress axis lies at 0
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or 90° to the rolling direction. Conversely, elongation at 45° to the 

rolling direction results in considerable through-thickness straining, 

see R-value in Table 5. Since the crack propagation, in the case of 

thin sheet, always began at the edge of one of the broad faces, crack 

propagation occurs to accommodate an elongation in the direction of 

the stress axis. In the cube oriented specimens it appears that macro­

scopic plane strain conditions are maintained at the crack tip.

Although local deviations occur, the effect of the notch and the con­

straints imposed by the texture effectively produce macroscopic plane
*

strain crack propagation, even in specimens of such thinness! Due, 

however, to the low R-ratio of the 45° oriented specimens the shear 

at the crack tip cannot be accommodated by plane strain and a slant 

mode of fracture develops. Thus, the crack tip deformation is accommo­

dated by a system of shears which do not lie in the plane of the sheet. 

While considerable thinning of the specimen occurred at the crack tip 

in the 45° specimens, it may not be totally correct to regard the 

difference between the two fractures as simply plane stress vs plane 

strain. Because of the orientation of the fracture surface in relation 

to the through thickness direction the fracture may contain some 

degree of mode III opening. The effect of the crack angle on the rate 

°f crack propagation is not shown by these data but Rieu et al^  ̂

showed that planar fractures occurred at faster rates than propagation 

which was not perpendicular to the stress axis.

6.2 Strain-Life

The strain-life/cyclic stress-strain approach considers that the 

endurance of a material under fatigue conditions is determined by the 

mechanical response under cyclic loading, which can be described by 

the cyclic stress-strain curve. This approach implies that for a given
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applied strain amplitude the material will develop a unique stress 

amplitude. This description of the stable stress-strain response is 

facilitated if materials exhibit the classical response of rapid harden­

ing or softening followed by a saturation stage which is terminated only 

by fracture. The cyclic stress strain curve is determined by the 

saturation stress amplitudes as a function of the applied strain ampli­

tudes. However, many materials do not exhibit a true saturation stress, 

but often display a continuous slow softening. For example, Abel^135  ̂

has noted that the saturation apparently exhibited by single crystals 

of copper is really producing softening at very slow rates (10 7 per 

cycle). Since the lack of saturation is often more marked it is 

imperative to define a comparative point at which to determine the 

stress and strain amplitudes. This point is often taken as the half 

life(136).

The use of the cyclic stress-strain curve from saturation values

implies that the material structure attains a stability under the

cyclic conditions and it follows that the rate of accumulation of

fatigue damage is determined by the dislocation substructure. Feltner

and Laird^6,21-*suggested that "wavy slip" materials should display

unique cyclic stress strain curves which would be independent of prior

Mechanical history. Conversely, materials which exhibited low stacking

fault energy were observed to display cyclic stress-strain responses

wbich were dependent on mechanical history, i.e., the "saturation

stress at a given strain amplitude would'be raised by pre-strain. The

Question of the uniqueness of the cyclic stress-strain behaviour of
.(137)wavy slip materials has recently been clarified by Laird et al

While the uniqueness of the cyclic stress strain curve of copper has
1138")been widely accepted, the data of Tuler and Morrow1 is at variance 

with this view, since they found that heavily cold worked material
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displayed a cyclic saturation stress which was not uniquely determined

by the applied strain amplitude. The work of Feltner and Laird which

concluded that copper exhibited a unique cyclic stress-strain cycle

was limited to low levels of pre-strain ( n, 20%). The data presented

by Laird et a l shows that heavily cold worked copper displayed a

cyclic stress strain curve which lay considerably above the cyclic

stress strain curve of annealed material. Similarly, Lukas and Klesnil 
(1391 reported that, while the cyclic stress-strain curves of copper 

in the annealed and 20% tensile pre-strained conditions coincided, the 

curves for 30% and 40% prestrained material were found at increased 

stress levels.

The cyclic stress-strain curves which are shown in Figures 63 to 

70 show a similar demarcation, the cold worked materials display cyclic 

stress strain curves which rise considerably above the curves of the 

annealed materials. A similar trend is observed in the strain-life 

curves. At high strain, the total strain-life curves lie within the 

same region, although the four curves which relate to the annealed 

material lie below three of the four curves for the cold worked mater­

ials.

In the high cycle fatigue regime all the data pertaining to the 

cold worked materials lie below the annealed copper data. The correlat­

ions between plastic strain amplitude and fatigue life do not appear to 

discriminate between cold worked and annealed materials while the plots 

°f the Basquin relationship show that thè cold worked materials lie 

above the annealed materials. (The plots of total strain amplitude vs 

life, plastic strain amplitude vs life and elastic strain amplitude 

vs life are given in Figures 94-96).

The difference in fatigue lives of cold worked materials and 

annealed materials was originally noted by Kemsley^ _ ^who compared
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the lives of annealed and cold worked copper specimens under constant 

stress amplitude cantilever bending. The cold work material produced 

longer fatigue lives. Similarly the data presented by Nair (see Figure 

25) show that cold worked materials exhibit enhanced life in comparison 

to the same material which is fatigued from an annealed state. It is 

exceptionally difficult to compare the fatigue life data with work that 

has been published previously since the different methods of collecting 

and presenting fatigue life data result in a profusion of S/N curves 

from stress controlled tests, total strain-life curves and plastic 

strain life curves from tests pefformed under different conditions of 

strain control. Additionally, while the use of cantilever bending 

facilitates the gathering of S/N data, the stress levels calculated 

for this type of deformation often ignore the strain hardening proper­

ties of the specimen, Karjalainen^^has pointed out that this is a 

common source of error which produces discrepancies between fatigue 

data measured by uniaxial cycling and those obtained by bending. It 

is, therefore, only possible, in comparing the present data to 

Previously published results, to remark that these results are of the 

same magnitude and follow similar trends to the data available in 

other publications.

The assessment of textural effects is facilitated by the method 

of machining specimens from different orientations of the same plate, 

thus maintaining constant all factors except crystallographic orientat­

ion. As mentioned above, it is also the intention to compare the data 

from annealed plate material with annealed fibre material and similarly 

to compare data from cold worked specimens. However, the discussion 

will be facilitated by initially comparing only the data from speci­

mens taken from the same plate.
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The texture of the cold rolled plate material is shown in Figure 

48. This is not the texture which is usually reported for cold rolled 

copper and did not generate the cube texture component on subsequent 

recrystallisation. The data are, therefore, not directly comparable 

with those of Nair^^^and LeMay and Nair^ The mechanical property

predictions which are given in Table 6 indicate that the 0° and 90 

orientations should be almost identical while the 45° orientation 

should have different mechanical properties. The strain amplitude-life 

and cyclic stress-strain data fall into two groups, the 0 and 90 

specimens produce one data-set while the 45° orientation produces data 

which obviously belongs to a different set. The strain-life curves 

show that the 45° orientation produces a superior life at all strain 

levels under constant strain amplitude cycling while the cyclic stress- 

strain curves indicate that for a given imposed level of strain the 

stress amplitude developed by the 45° orientation is lower than in 

the 0°-90° specimens. This correlation, in which the material that 

displays the stronger cyclic stress strain curve also displays the 

inferior life under strain cycling agrees both with the premises 

°f the cyclic stress strain method of fatigue analysis, and in partic­

ular, with the parametric approach which was employed. This follows 

since Morrow^has shown that in order for the constants in the life 

R a t i o n  to be related to the cyclic stress-strain curve the 

accumulation of fatigue damage must be related to the hysteresis work 

involved during cycling. That is, if oj. and e* represent a point on 

the cyclic stress strain curve they do so because damage accumulation 

is determined by the area of the hysteresis loop. Since in this 

investigation (and in most investigations into the cyclic properties 

of metals) the parameters characterising the cyclic stress strain 

CuTve agree when calculated either from strain-life or saturation stress
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and strain amplitude values it is to be expected that the material with ■ 

the lower stress-strain curve exhibits superior life under imposed 

strain controlled cycling. The converse, i.e. that the stronger material 

exhibits the longer life, would be expected under stress controlled 

cycling. This was observed for the thin sheet material.

The agreement between the 0° and 90° orientations seems to indicate 

that there is little effect of grain orientation on the fatigue proper­

ties and that the difference in the fatigue properties observed in the 

45° oriented specimens is due to crystallographic texture. Since the 

grain shape exhibited a ratio of about 20 (consistent with a rolling 

reduction of 80%) it may be assumed that if copper exhibited a grain 

size effect then the 0° and 90° orientations should be influenced by 

the grain shape. The present results suggest that the cyclic proper­

ties of copper are not influenced by grain size, as proposed by 
(3)Laird^ , and agrees with the theoretical predictions of Thompson et

Í821alv . The result is in agreement with the data of Bucci and Thomp­

son who demonstrated that fatigue crack growth in truly poly­

crystalline f.c.c. metals is not influenced by grain size and confirms 

that Nair and LeMay^ Jwere correct in ascribing the difference in 

fatigue properties of their cold worked materials to textural effects.

The elastic modulus measurements are in the ratio,

E 1*5 
Ego

115
121 0.95 (6 . 1)

while the predicted ratio of the Youngs moduli are all lower, of the 

order of 0.82. The plastic property predictions agree quite well with 

the ratio of the cyclic yield stress as defined by S1, the cyclic 

stress amplitude produced by a cyclic plastic strain amplitude of 0 .2%,
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i.e. the ratio of the 45° data to the 0-90° data is 1.045 for the pre- • 

dictions based on the Taylor-Bishop and Hill theory and 1.050 for the 

values in Table 18. On this basis it appears possible to predict from 

the texture measurements that the orientation which exhibits the higher 

flow stress will display poorer fatigue resistance under conditions of 

imposed strain cycling. In the case of material III80 the elastic 

properties bear a similar orientation dependence to the plastic proper­

ties and thus the orientation which is predicted by x-ray measurements 

to be soft is also able to accommodate the total strain amplitude at
0

a lower stress amplitude. (It is emphasized that elastic and plastic 

Properties do not have the same origin, the plastic properties depend 

°n the f.c.c. structure and the {111}<110> slip mode while the 

elastic properties depend on the single crystal elastic constants 

cn » c 12 and Cm, which are material constants).

Because the cold rolled material developed a retained shear 

component on recrystallisation at low temperature (at higher recrystal­

lisation temperatures the texture was almost totally random) the mech- 

anical property predictions at 0° and 90° were identical and therefore 

sPecimens were taken from only the 45° and 90° orientations. Due to 

the lower texture severity of G8585 the difference between the 90 

ar>d 45° orientations is not as pronounced as in III80. Consequently, 

the fatigue data are found to exhibit greater similarity than in the 

Case of the cold worked material. The strain-life and cyclic stress- 

strain data follow the same trends as the data from the cold worked 

Material. The 45° orientation shows superior life and a slightly 

lowe cyclic stress strain curve compared to the 90° orientation. The 

scatter in these data, however, is greater than for the cold rolled 

Plate. This is more obvious on the cyclic stress-strain curves than 

In the strain-life plots. However, the coefficients of correlation
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show that the data can be fitted more accurately by two distinct 

curves than by one set which includes all the data. It is obvious, 

however, that the two sets of data are covered by the "factor of two" 

spread which is usually considered to be acceptable in fatigue data^^. 

Quantitatively the values of the elastic moduli, as measured, and the 

i ' a cyclic yield stress calculated from the cyclic stress strain curves 

are in reasonable agreement with the values calculated from the cylic 

stress strain curves are in reasonable agreement with the values cal­

culated from the texture measurements.
t

S« M[*5
7 i~ : T,—  = 0.960 : 0.970 .... (6.2)
S90 M9°

where S is the 2% offset stress amplitude and M is the corresponding 

Predicted Taylor factor, while the elastic moduli appear to correlate 

with the Reuss average i.e. the predicted values of 112GPa and 99.8GPa.

The cold worked rods show little difference in the predicted 

elastic moudli and yield stresses along the axis of the rod. Similarly, 

*he cyclic stress-strain curves which are developed by the strain life 

data are very close together. Surprisingly, the strain-life curves 

aPpear to diverge somewhat more than should be predicted from the cyclic 

stress strain curves. In particular, the curves for material FAREN lie 

helow the curves for FBREN on both plots. However, the cyclic stress- 

strain curves are calculated on the basis of the stress strain amplitudes 

and not on the n 1 and K1 values derived from the strain-life data. It 

ls n°ticeable (see Table 18) that there is a greater discrepancy between 

n 1 and K1 values calculated by the two methods for these sets of 

^a^a than for the other sets of data. The ratio of the cyclic yield 

Stress is almost equivalent to the ratio of the calculated Taylor Factors,



107

however, since this ratio is of the order of 1.005, any error is 

certainly within the limits of experimental measurement.

The annealed fibre textured materials similarly displayed cyclic 

stress strain curves, which lie very close to each other. Again, the 

texture measurements indicate that the mechanical properties should 

be very similar. The predicted Taylor factors for A3500 and B3500 are 

3.036 and 3.086respectively, a ratio of 0.983, which compares to the 

cyclic offset stress amplitudes of 156 and 159 MPa, a ratio of 0.981.

The strain-life data indicate that the material A3500 has a flatter
9curve than B3500, since the plastic strain-life lines are closely aligned. 

The difference must be ascribed to the difference in the elastic strain- 

life relation, A3500 displaying a much more horizontal curve. Compar- 

lng the predicted values of the elastic modulus it is found that the 

B3500 material shows a much lower elastic modulus than predicted by 

the texture measurements. It is suspected, therefore, that these 

discrepancies are related and that higher value of the modulus for B3500 

would agree with the texture measurements and would agree more closely 

with the hysteresis loop data, although measurement of the modulus was 

exceptionally difficult on the loops from the annealed rod material.

The effect of change in the modulus in this manner would be to produce 

a more horizontal line, primarily by reducing the contribution of the 

elastic strain in the low cycle region. However, since the data from 

A3500 and B3500 are obviously very similar the results have been pre­

sented as shown in order to illustrate how susceptible the strain- 

life parameters are to the selection of constants. This effect is 

important since it illustrates that techniques of analysis which 

employ the technique of averaging the elastic modulus do not minimise 

errors but tend to propagate them. It should also be noted that the 

correct modulus pertaining to a given set of specimens should always
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be measured since the variation of elastic modulus due to texture 

can be significant (see Table 18) consequently, the use of an average 

elastic modulus, e.g. from standard tables will influence the correlat­

ions in the cyclic stress strain analysis.

The effect of the incorrect choice of the elastic modulus is 

shown in Table 18. The material code B35XX refers to the stress-strain, 

strain-life data of material B3500, analysed using an elastic modulus 

of 122 GPa. (This value was calculated from the elastic modulus of 

A3500 by assuming that the ratio of the elastic moduli of the two 

Materials may be predicted by texture measurements). The cyclic stress- 

strain curve and the strain-life curves calculated for the parameters 

given in Table 18 are shown in Figures 97 and 98 respectively. These 

data coincide with the data of A3500 more accurately than when the 

data are analysed using the lower value of the elastic modulus. It 

Nay be expected that since the annealed materials were exceptionally 

s°ft the measurements of the elastic moduli may be in error. Thus, 

it is concluded that the difference in cyclic properties between A3500 

and B3S00 is not due to textural effects but is due to inaccuracy of 

the stress-strain analysis.

Comparison between the plate materials and the rod material shows 

that the elastic modulus predictions for all the materials are in 

agreement with the measured values, correlating more closely with the 

Reuss average than with the Voigt or Hill values. The predicted 

Values of the Taylor factor of the annealed materials are of the same 

°rder for both plate and rod materials. However, the cyclic stress- 

strain curves of the rod materials lie below the curves of the plate 

Materials. Similarly, the strain-life curves for the rod material lie 

below the strain-life curves for the plate material. The difference m  

the cyclic stress-strain parameters, however, is seen to be small.
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In particular, the parameters and c are very similar for A3500, 

G8545 and G8590. The elastic strain-life parameters show less agree­

ment, which results in the rod materials displaying superior life in 

the high cycle fatigue regime. It should be noted that data were not 

measured in this regime due to the impracticality of such an experi­

ment. A fatigue test which lasts for 5 x 108 cycles would take 27 

days even at 100Hz which is the maximum cycling frequency of a servo- 

hydraulic testing machine. -Life predictions using the cyclic stress-

strain approach tend to be conservative in this regime since the
*

analysis ignores the possibility of a fatigue limit. The cyclic 

stress-strain relationships, of course, reflect the greater stiffness 

°f the plate materials. Since the materials did not differ greatly 

in grain size, and it appears from the cold worked material III80 

and reports in the literature that grain size has no effect on fatigue 

properties, it is difficult to explain this discrepancy. The hystere­

sis loop traces shown in Figure 99 show the same behaviour. The rod 

material shows a sharper yielding behaviour, i.e. the "turnover" is 

more pronounced, but the work hardening is lower. (The agreement 

between the loop shape and the cyclic stress-strain curve has been

noted by Morrow and Hal ford and has been employed as a rapid
„ • (136).technique in the assessment of the cyclic stress-strain curve j.

In the case of the cold worked materials, the cyclic stress-strain 

Curves of the fibre textured materials lie above the cyclic stress- 

strain curves for the cold rolled plate specimens. This is predicted 

by the Taylor factor, calculated from the texture measurements, but 

is in contradiction to the data for the annealed materials. The fibre 

bextured materials also display lower fatigue life in the high cycle 

regime. In this case, it appears, therefore, that the stronger 

material displays the lower fatigue life.
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Bhat and Laird*-2 2''and Mughrabi("144')have shown that the cyclic 

stress-strain curves of single crystals and polycrystalline f.c.c. 

metals may be compared by employing the Taylor factor to transform 

the tensile stress and strain amplitudes to shear stress and strain 

amplitudes. Furthermore, Laird^-'has shown that the fatigue limit of 

polycrystalline copper may be predicted from the value obtained from 

single crystals oriented for single slip^*^. The use of the Taylor 

factor in this manner may be criticised since the Taylor factor actually 

relates to deformation on more than one slip system. (Strictly, the 

Taylor factor relates the macroscopic tensile stress to the arithmetic 

sum of the shear strains on the individual slip systems^4^ \  i.e.

E / y / = Me )• .... (6-3)
i i

If the cyclic stress-strain data are analysed in the manner pro­

posed by Bhat and Laird, the data fall into two sets which coincide 

with the annealed and cold worked initial states respectively (Figure 

100). Por clarity, the data have been replotted on logarithmic 

co-ordinates in Figures 101 and 102 for the annealed and cold worked 

materials respectively. The two sets of data analysed using a least 

squares fit on logarithmic co-ordinates to the equation

Ax = k 11 (Ay)n .... (6 -4)

The straight lines which are drawn on Figures 101 and 102 represent 

the results of the regression analysis, which are also presented in 

Table 21. The data for the individual sets of material were calculated
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from the longitudinal cyclic stress strain analyses reported in Table 18,

^  = C^)/M .... (6.5)

and ilE = M ( ^ )  .... (6 .6)

if (^) = K1^ ) " 1 ....C6'7)

similarly, = k 11̂ ^ . ) 1111 .... (6.8)

therefore, n 11 = n 1 .... (6 .9)

Figure 101 shows that the cyclic stress-strain data of the annealed 

Materials, when expressed in terms of shear stress and strain amplitudes 

forms a reasonable single data set, although it is seen that the data 

from material G8585 lie consistently above the data from the rod speci- 

mens. Since the metallographic analysis displayed little difference 

between the two sets of material and spectrographic chemical analysis 

Was unable to detect any compositional differences between the two sets 

°f materials, it is not possible to ascribe this discrepancy to any 

Particular source.

Figure 102 shows the correlation for the shear stress-shear strain 

data for the cold worked materials. In this case, the fibre textured 

Materials are seen to produce data sets which lie above the data from 

fhe plate material. This difference must be due to the different amounts 

°f cold work in the two sets of materials. As Laird^^7^has shown, the
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cyclic stress-strain curve of wavy slip materials is not independent 

°f prior cold work. The uniqueness of the cyclic stress-strain curve 

ls determined by the ability of the imposed cyclic deformation to 

overwhelm the dislocation structure created by prior deformation and 

to develop a sub-structure which is characterised only by the 

amplitude of the cyclic deformation. The dislocation structures which 

are usually found in fatigue, i.e. cells^, walls^, ladders^14^  are 

all low energy configurations^16^and the initial dislocation structure 

must be reformed into such a structure during the rapid hardening/soft- 

ening stage of cycling. Winter^4^has described the microstructure 

°f fatigued copper single crystals in terms of the PSB structure which 

Carries the plastic strain and a matrix structure of a higher plastic 

resistance which consists of dislocation dense arrays of dislocation 

dipoles and multipoles and is, therefore, a higher energy configurat- 

l0n. The metastable structure is preserved because, since the plastic 

strain is concentrated in the P.S.B.'s, the dislocation motion necessary 

rearrange the dipoles and multipoles does not occur in the matrix 

structure.

The rapid hardening/softening stage is therefore, determined by 

the prior cold work and the applied strain amplitude and achievement 

a stable saturation stage is determined by the ability of the strain 

aroplitude to break down the cold worked dislocation structure. There- 

f°re, while the cold work in the rolled plate and the drawn rods is 

aPProximately equivalent, the difference- in prior cold work and the 

deformation state (i.e. rolling vs drawing) producesdifferent sub­

structures and hence, the cyclic shear stress-shear strain curves are 

different. It should be noted, however, that the annealed materials 

exhibit a higher degree of cyclic work hardening than the cold worked
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materials and it might be expected that at higher plastic strain ampli-' 

tudes, the cyclic stress-strain response would be similar for the 

annealed and cold worked materials. (It has been suggested that cold 

worked materials would eventually attain a saturation state which is 

determined by a history independent cyclic stress-strain curve if 

fracture could be prevented .

It appears therefore, that the textural dependence of the cyclic

stress-strain response of coppper (and presumably of other wavy slip

f.c.c. metals) may be rationalised using the Taylor factor to reduce

the longitudinal cyclic stress-strain curve to a resolved shear

stress-shear strain curve. However, due to the discrepancies between

the different sets of data, it must be concluded that, while the

effect is detectable and may be predicted quantitatively within a given

aggregate, it is of secondary importance in comparison to effects such

as cold work. Also, the effect of texture would be further abated in

the presence of microstructural anisotropy e.g. see Appendix III for

the effect of MnS inclusions on the fatigue properties of textured

SAE 4161 C-Mn steel.
(14)Kettunen 'has similarly suggested that the Taylor factor may 

he used to analyse S/N data and has shown that the S/N data for copper 

single crystals of various orientations may be reduced to a single 

curve by plotting the resolved shear stress on the primary slip plane 

against the number of cycles to failure. The same author also attempted 

to compare the S/N curves of single crystal and polycrystalline iron 

(see Figures 17 and 18). However, it is obvious that the predictions 

and the data diverge at higher strains, which is the very region in 

which the Taylor theory ought to be more applicable.

In order to relate single crystal properties to the stress or 

strain life data of polycrystals, it is necessary to understand how
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fatigue failure occurs. Obviously, fatigue damage and hence crack 

nucléation can only occur by the accumulation of locally non-reversed 

plastic strainv . Unfortunately, microplasticity may occur under 

nominally elastic conditions thus, the strain-amplitude-life curve is 

analysed in terms of two components of the strain, elastic and plastic. 

It should, therefore, be emphasized that truly elastic strain cannot 

cause fatigue failure and, indeed, anelastic strain should similarly 

be reversible. The elastic strain life correlations must then relate 

to microplastic strain which may be non-reversed.

For all the specimens which were examined, fatigue failure 

occurred in a similar manner. In particular, cracks were always 

observed to be associated with grains which showed a specific set of 

slip bands i.e. long parallel bands. Arnell and Teer^"^observed that 

failures in fatigued aluminium were associated with grains which 

showed similar markings. Employing x-ray microdiffraction they were 

able to show that the grains which developed such markings were oriented 

so that the stress axis lay at the centre of the stereographic triangle. 

The slip markings observed on the grains which were susceptible to 

cracking were found to conform with these data using a trace analysis 

technique. Thus, the failure process is dependent on the cyclic 

deformation which is experienced by a grain in the "soft" orientation 

and the textural dependence of the fatigue process should be determined 

by the relation between the macroscopic stresses and strains and the 

microscopic stresses and strains.

The problem of relating a macroscopic stress-strain state to a 

microscopic stress-strain state is very similar to the problem of crack 

nucléation at a notch, see Figure 103. Topper et al employed 

Neubers^^^rule to relate the stress and strain at a notch root to
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the macroscopically imposed stress state. Similarly, Smith et a l ^ ^  

have suggested that mean stress effects may be accommodated by employ­

ing a single stress-strain function, amax^£ which governs the fatigue 

°f metals.

In a similar manner to the assumption that the fatigue of notched 

bodies is controlled by the local stress-state it will be assumed that 

the fatigue of polycrystals is governed by the stress state in a grain 

°f a soft orientation. Employing the function Ay- Ay- is equivalent 

to describing the accumulation of fatigue damage in terms of the 

hysteresis work which is absorbed*during a single cycle (Morrow^^ 

points cut that this factor strictly pertains only to the plastic work 

ar*d the quantity should be multiplied by a shape factor which describes 

the hysteresis loop). Using equations 6.5 and 6 .6 it can be shown that

Aa Ae = Ax Ay .... (6.11)

Again, this should strictly relate only to plastic work but it will be 

used to describe the total work due to the uncertain nature of the 

deformation in the nominally elastic region of the strain life curve. 

The curves of the function AaAe/4 vs 2Nf are shown in Figures 104 to 

*07 for the data which were presented earlier in Figures 63 to 78. 

Because of equation 6 .11, in plotting the product of the longitudinal 

stress and strain amplitudes, one is effectively plotting the local 

shear work i.e. AxAy against the fatigue life. If, therefore, the 

cyclic stress-strain response of the material can be expressed as a 

Ur>ique shear stress-shear strain curve, then the fatigue life data 

should be dependent upon a similar function of the local shear stress 

and strain amplitudes providing, of course, that damage is always 

accumulated in the same manner. Since fracture was always observed in
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the same type of grain, and it must be emphasised that in a truly 

polycrystalline material, there will always be some grains which are 

oriented favourably, it is reasonable to assume that the deformation 

may be characterised by damage accumulation in the region in which 

failure occurs. Figure 104 shows that by plotting the data in this 

manner, the two sets of data points fall almost on the same curve, 

the solid lines which are shown on the diagram correspond to the pre­

dicted value of the function' —  ~  calculated from the materials

Parameters a£ £f b and c which were given in Table 18. Similarly,
»

the data for the cold worked rods is presented in Figure 105 and the 

values of the function for the annealed plate and rod materials are 

Plotted in Figures 106 and 107 respectively. The data plotted for 

material B3500 correspond to the analysis using the corrected value 

°f the elastic modulus as described earlier.

Comparison of the plots in Figures 104 to 107 with the total 

strain-life curves in Figures 71 to 78 show that the data for similar 

materials, i.e. of the same origin and of the same degree of cold 

w°rk, have been reduced to a single data set irrespective of textural 

differences. The differences between the different materials are 

still discernable, especially as a function of cold work. The cold 

worked materials still display a greater endurance particularly in 

the high cycle fatigue regime. Comparing the cold worked fibre 

texture data with the cold worked plate data i.e. Figure 105 vs Figure 

104, shows that the data fall very close together and may be described 

by a single curve. Although the data for the annealed materials falls 

Very closely together, it is obvious that there is a systematic 

trend for the data for the plate material to lie above those for the 

r°d material. This is similar to the trend in the total strain life 

Plots and should also be correlated with the shear stress amplitude-
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shear strain amplitude curve shown in Figure 101 where the data from 

the G8585 was found to lie consistently above that for the rod mater­

ials.

^•3 The Development of Texture During Fatigue

The development of texture during fatigue could influence the 

Material response to the imposed cyclic deformation and it is therefore 

important to establish whether fatigue causes the development of a new 

texture. The results of the simulations are clearly at odds with the 

experimental evidence e.g. Table 3 vs Figure 92. The predictions of 

the Taylor— Bishop and Hill theory state that fatigue should impose 

a texture of the type {001}<110> + {00l}<310> while the experimental 

data indicate that the influence of the cyclic deformation is to 

randomise the texture.
f581Inakazu and Yamamoto1 Jshowed that drawn aluminium wire exhibited 

a greater endurance in high cycle fatigue due to the presence of 

texture components lying between {110}<111> and {112}<111>. It was 

Suggested that the greater endurance of this material was due to the 

stability of these orientations under strain cycling. The texture 

Measurements made in this investigation were made on specimens cut 

^r°m the surface of the fatigued rod. Figure 108 illustrates the 

difference between the textures generated by the present fatigue 

Emulations and the stable orientations suggested by Inakazu and
y
amamoto. This is not in agreement with.the predictions using the 

Present simulation technique. Using the present technique, the simulat- 

l0n of texture developed under torsional conditions would produce 

texture components which are related to the {001}<310> and {0 0l}<110> 

*exture components by a rotation of 45° about the normal direction for 

a torsional axis parallel to the normal direction.
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The findings of the present experimental work agree with the con­

clusions of Hayashi and S u z u k i t h a t  fully reversed cyclic deformat­

ion tends.to randomise the texture. These authors suggested that the 

rearrangement occurred during the rapid hardening stage of fatigue and 

was accomplished by the formation of subgrains which are rotated with 

respect to each other. The re-orientation could be accomplished by 

the formation of a dislocation cell structure, equivalent to the P.S.B. 

type of structure and Winter^^^has recently shown that the P.S.B.

structure may be found in the interior grains in fatigued polycrystal-
»

line copper. The postulate that crystallographic re-orientation may 

be accomplished by the formation of dislocation cells is in disagreement 

with the findings of Laird et a l ^ ^ w h o  suggested that the difference 

between the cell structures of materials which were initially cold 

worked or annealed was that only the annealed structures contained cell 

walls which were balanced with respect to dislocations of opposite signs. 

Such conclusions are based on transmission electron microscopy which 

shows little contrast across a fatigue dislocation cell boundary e.g. 

see Figure 109 which is taken from reference 152. It is, however, 

clearly not possible to state that the imaging conditions across a cell 

wall are identical and that the orientation of adjacent cells are, 

therefore, identical. If a small mis-match is permitted across a cell 

boundary, the accumulated mis-match across a grain could be significant 

and therefore the randomisation could be accommodated by this process.

The major objection to the use of the Taylor-Bishop and Hill 

aPProach is therefore that it fails to predict the generation of texture 

during fatigue. Recently, Rasmussen and Pedersen^  ̂have attempted 

t° describe the fatigue of polycrystalline f.c.c. metals by employing 

a Sachs-type approach. The basis of their approach is that within
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P.S.B.'s slip occurs on the primary slip system only. The persistent 

slip bands are considered to be lenticular platelets which are con­

strained by the surrounding matrix region. This constraint develops 

a back stress within the slip band which must be subtracted from the 

saturation stress of polycrystals in order to compare the cyclic shear 

stress-shear strain curve with that of single crystals. By employing 

this technique, Rasmussen and Pedersen were able to show that the 

cyclic shear stress-shear strain curves of polycrystalline and single 

crystals of copper can be made to coincide by using the Sachs factor 

rather than the Taylor factor, i.e. for a random aggregate M = 2.24 

rather than 3.06. There is, however, in this work a small difference 

between the cyclic shear stress-shear strain curve from the single 

crystals and the curve calculated on the basis of the Sachs model for 

Polycrystals. Figure 110 is reproduced from reference 153, bearing in 

mind that,

A a = Aa/M and Ayp = MAEp

can be seen that the effect of increasing M is to lower the shear 

stress amplitude and to extend the region of the plateau. This plateau 

*n the cyclic stress strain curve has been reported by Laird^16^and 

^ughrabi^^^using Taylor type calculations and has been attributed to 

regime in which the imposed cyclic plastic strain may be accommodated 

Wlthin one or more P.S.B.'s which operate at a specific strain amplitude.
'T V

e volume fraction of material which is occupied by the P.S.B. struct- 

Ul>e varies until the whole of the material is consumed by the P.S.B.

structure. '
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It appears, therefore, that a choice between the Sachs or Taylor 

model cannot be made using the examination of the cyclic shear stress- 

shear strain curves. In the present work the major criticism of the 

Taylor model has been that it fails to predict the development of 

texture during fatigue. However, the Sachs model, involving slip on 

only one system, would predict that fatigue deformation should not 

affect the texture. Witzel('154’ 155^has employed torsional fatigue 

to study the development of texture under cyclic deformation. Using 

Very large cyclic strain amplitudes, 0.02 < — ■ < 0.16, Witzel concludes 

that torsional fatigue should develop a {110}<110> to {112}<111> 

described by Inakazu and Yamamoto^^. It should be emphasised, 

however, that the strain amplitudes employed by Witzel are exception­

ally large (and there must always be some imprecision associated with 

the measurements of mechanical properties when strain gradients exist 

across the gauge section of the specimen). The (110}<110> component 

Is also predicted to develop during monotonic torsional deformation.

It: is possible, therefore, that the large strain amplitude employed 

hy Witzel may produce texture development which is not typical of 

^afigue at lower strain amplitudes.

Due to the nature of the cyclic hardening curves, it is suggested 

that any textural changes should occur before saturation. During 

Saturation, the dislocation structure remains stable and presumably 

the slight softening observed by Abel occurs due to a sharpening 

°f the dislocation structure but is not related to any major orientat- 

ion changes. The development of a 3-D dislocation structure requires 

that deformation occurs on more than one slip system. Thus, the 

n’°del which is employed to predict the variation of yield stress as a 

function of orientation should take this into account. It is most 

Probable that the major cause of the difference between the predicted 

fixture development and the empirical measurement is that fatigue is
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a localised process while the Taylor theory is based on the concept of 

homogeneous deformation. Consequently, while a single grain may deform 

ln an apparently homogeneous manner, i.e. it maintains the same shape 

ar>d has an apparently uniform dislocation structure, the accumulation 

°f damage is localised e.g. the slip markings in Figure 82. Thus, 

while the stress-strain relationship may be predicted by the Taylor 

theory the rotations calculated by the theory may be invalid due to 

the inhomogeneity of distribution of the damage.

»
^•4 Fatigue Fracture

The cyclic stress-strain experiments produce only limited informat- 

!on relative to the fracture behaviour. Due to the small size of the 

specimens fatigue crack propagation is very rapid because of the rapid 

decrease of the net cross section. Fractography of the smooth sided 

specimens revealed that the nucleation of the fatigue cracks was 

related to grain orientation and was not related to the orientation of 

*he specimen reference axes. As noted earlier, the fatigue cracks were 

found to nucleate in grains which developed a specific type of slip 

Pattern. In particular the cracking appears to be enhanced in the 

Presence of twin and grain boundaries. These results are in agreement 

with the results of Boettner et a l w h o  showed that twin boundaries 

n’a>r be susceptible sites for fatigue crack nucleation. It has been 

shown that in low stacking fault copper alloys that the formation of 

annealing twins can subsequently influence the topographical develop- 

nierit during fatigue. For example, the grain boundaries on which 

tinned grains impinge may be subjected to large strain incompatibilities 

arid are thus suitable sites for fatigue crack initiation^*^. Kim and 

faird^15 »̂ ̂ ^ h a v e  reported optical observations including interferro- 

','nttac. measurements of grain boundary cracking of copper in high
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strain fatigue. They state that during cyclic deformation, the grain 

boundaries may exhibit large amounts of highly localised deformation 

which is especially severe if the slip was directed towards the bound- 

ary over a long distance. In order to perform their optical measure­

ments, however, Kim and Laird were constrained to use polycrystalline 

copper of large grain sizes. The observations reported in section 5.6 .1.1 

were conducted at higher magnification and it is probable that the 

discrepancies between the present results and those of Kim and Laird

are due to the stress concentrating effects of grain and twin boundar-
«

res being of more importance in the finer grained material used in this 

investigation. It is also probable that the higher resolutions of a 

scanning electron microscope facilitates the observation of cracking 

within the P.S.B. whereas optical microscopy is able only to detect 

the large relative motion of the two sides of the grain boundary after 

the embryonic crack has grown out of the slip band and along the grain 

boundary.

To some extent these data and the results and Arnell and Teer^^

are at odds with the results of the single crystal work of Avery et al 
(26) , who showed that the slip band extrusion rate was related to the 

shear stress on the cross slip system. There is also conflict with the 

results of Kemsley and Paterson^^’'^who showed that the coarse slip 

band development was associated with greater cross slip. Figure 81 

shows that the simple slip pattern developed in the susceptible grains 

is by no means the most severe damage and it is therefore wrong to 

associate the general coarseness of topographical development with 

easy crack nucleation. The work of Avery et a l ^ ^ m a y  not be relevant 

to the polycrystalline behaviour since in the case of single crystals 

deformation on more than one system is determined only by the crystal 

orientation whereas in polycrystals the tendency to deform on more
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than one slip system is imposed by the requirements of strain compat­

ibility across grain boundaries.

The appearance of the fracture surfaces of the specimens tested 

under fully reversed strain cycling was complicated by the smearing 

effects caused by the compressive deformations. The major features, 

however, can be described by the appearance of ductile striations or 

the facet-like features illustrated in Figure 87. The ductile striat­

ions were more prevalent in the annealed materials and in the cold 

worked materials at higher loads. The facet-like features appear at
0

lower strain amplitudes and are usually found closer to the notch.

Nair and LeMay^^’^^noted similar behaviour and analysed the differ- 

ence in fracture surface appearance in terms of Wood's^models of 

fatigue failure. In particular, they suggested that the facets were 

produced by a limited ductility fracture mode which involved brittle 

crack propagation along dislocation cell boundaries (i.e. Woods 

F-mechanism). However, Awatani et al^^^have shown using T.E.M. that 

fatigue cracks do not employ cell boundaries as preferential paths but 

propagate across the cells.

Facets have been reported in copper, at low crack propagation 

r a t e s ^ ^ a n d  under ultrasonic fatigue^^\ in brass^^^, in alumin­

i u m ^ ^ ’ *^^and in aluminium alloys (36,65,67) , exact determination

°f the crystallographic orientation of the facets is difficult due to 

the very severe deformation produced by the propagation of the fatigue 

cracks. Etch pitting and electron channeling pattern observations 

were unable to identify the crystallography of the facets found in this 

investigation. Because of the degree of deformation at the fracture 

surface, it is incorrect to describe the facets as a brittle mode of 

failure and it is probable that the facets form due to crystallographic 

constraints on the deformation at the crack tip. It is also highly



124

probable that this mode of failure is influenced by environmental effects 

Priddle and Walker ̂ ^^have reported that similar facets which 

they found on the fatigue fracture surfaces of 316 stainless steel, were 

most numerous when the reverse plastic zone at the crack tip was approx­

imately equal to the grain size. However, the x-ray measurements 

suggested that the facets were parallel to {ill}, which is in contra­

diction to the work of Garrett and Knott , Forsyth et al and 

Koterazana and Shino^^^on aluminium alloys who reported {100} fracture

facets. The latter authors rule out the possibility of brittle
$

cleavage in the precipitation hardened alloy by noting that the fracture 

facets were found to consist of fine striations and slip lines when 

examined at high magnification. Weber and Hertzberg^^^claim to have 

found facets of {ill}, {110} and {100} types on the fracture surfaces 

of 70/30 Brass fatigued at low crack growth rates.

In the present investigation, it has not been possible to identify 

the crystallographic orientation of the facets, although the presence 

°f the facets has been correlated with lower crack propagation rates.

The facets were most prevalent on the fracture surfaces of the 45° 

specimens of III80. The influence of texture produces a low Taylor 

factor for this orientation and encourages through thickness yielding 

which is reflected by the high R-value (Table 6). Presumably, at low 

values of the stress intensity amplitude the softer material is more 

easily able to accommodate■the stress intensity at the crack tip by 

plastic flow and fracture occurs on a localised scale, producing the 

faceted-type appearance which has been correlated with the restricted 

plastic zone size.

The major effect of texture on fatigue crack growth appears to be 

the ability to reorient the crack growth away from the direction which 

is normal to the stress axis. Tables 19 and 20 show that the orientations
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which displayed slant type fractues were found to display significantly 

lower crack propagation rates when measured in the manner described i.e. 

projected onto the plane which is normal to the stress axis. In this 

case, the calculation of AKj is actually invalid since the analysis 

should consider the stress field at the tip of the crack which is 

oblique to the stress axis. However, the use of "AK^' is not, in this 

case, meant to imply the mode I stress intensity amplitude but merely 

a mathematical function of the crack length and the applied load (in 

particular it relates to the uncracked cross-section and the macro- 

scopically applied load).

The effect of specimen thickness on the fatigue crack propagation 

has been reported by Ritchie et al^^^and Heiser and Mortimer^^*^.

The fracture plane in both investigations was found to develop a slant 

orientation i.e. at 45° to the through thickness direction, as the 

thickness was reduced. The two sets of results are, however, contra­

dictory as regards the effect of specimen thickness' on the rate of 

fat igue crack propagation. Ritchie et al showed that at constant AK 

the fatigue crack growth rate in thicker specimens is faster than in 

thinner specimens, while Heiser and Mortimer found that the exponent 

"m" in the Paris equation increased as the thickness of the specimen 

increased and concluded that the rate of fatigue crack propagation was 

accelerated by plane strain conditions at the crack front. Garrett 

bas suggested that the problem is not, however, simply a question of 

"plane stress" vs. "plane strain" but of.the opening mode at the crack 

tip and that there is a difference in the macroscopic opening of the 

crack. It is frequently observed that due to a change in loading or 

at a particular crack length the crack propagation changes from a planar 

to a slant mode (or v.v.).
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Pook^^^has suggested that slant growth is favoured over planar 

growth at specific regimes of AK although this is only a necessary but 

not a sufficient condition for the tensile-to-shear transition. Pook 

has also noted the effect of crystallographic texture in suppressing 

slant crack growth by inhibiting through thickness yielding. Schijve 

has shown that the problem may be much more complex than a simple 

dependence on the ability to develop plane strain crack propagation by 

showing that internal fatigue cracks which grow in vacuum develop a 

shear mode of failure while cracks which grow in a more aggressive 

environment do so in a tensile manner. However, Schijv^^^did comment 

that the slant fracture appeared to be related to the original axes of 

the plate from which the specimens were taken and, thus, was probably 

1nfluenced to some degree by texture.

In the present investigation, the faster crack propagation rates 

Were observed in specimens which developed macroscopically planar 

fractures. Besides being in agreement with the results of Heiser and 

Mortimer these data correlate with the work of Rieu et al , Neumann 

ar>d Neumann et al^^who observed that crack propagation was faster when 

Planar fracture surfaces were obtained. The correlations between crack 

growth rates in flat and shear mode have been made under constant 

loading conditions while the studies of the interaction of

1,11 Xed mode opening have tended to study the effect of an increasing 

secondary component of stress on the crack propagation while maintain- 

lng the primary constant, i.e. increasing AK̂ j. while maintaining AKi 

c°nstant _ Under such conditions it has been shown that an

1ncrease in AKjj causes an increased rate of fatigue crack propagation 

under constant AKj. P o o k ^ ^ h a s  demonstrated that the effect of propa­

gation is primarily controlled by the residual mode I stress intensity 

*n mixed mode opening and Hurd and Irving^^^have most recently shown
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that for a given absolute amplitude of the stress intensity crack propa

gation under mode III is much slower than under mode I.

The present results, therefore, reflect the different modes of

crack propagation as a function of texture. The stress intensity at

the tip of a slant crack contains components AK^, AKjj and AK^^ while

the stress intensity at the tip of a planar crack is effectively

dependent on AK^ only. However, the mode I stress intensity in the

two cases is not the same. For the same loading conditions and the

same projected crack length the mode I opening stress intensity at the
$

tip of a slant crack is much less than at the tip of a flat c r a c k .

i.e. AKi = KA sin2$

= ^ cbos 3 1 abs

where 3 is the angle between the crack plane and the stress axis and 

is the projected crack propagation rate while ~ĵ 0abs is the rate 

°f crack extension which occurs along the crack. Garrett^^^has also 

shown that the frequently observed point of inflexion in crack propa­

gation curves as a function of applied AK is due to a tensile-to-shear 

transition and is effectively caused by a reduction in the mode I stres 

intensity amplitude associated with the reorientation of the crack.

More recently, Sih and Barthelemy^^^^have used an energy density 

criterion of damage accumulation to show that under constant loading 

conditions deviation of the crack orientation from the direction normal 

to the stress axis, lying in the plane perpendicular to the stress axis 

should result in a decrease in the rate of crack propagation.

Despite the different macroscopic appearance of the fracture 

surfaces of the crack propagation specimens the microscopic views of
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the fracture surfaces appeared very similar. Although the fracture 

surfaces of the smooth sided specimens displayed greater differences 

microscopically it should be emphasized that these were obtained at 

much higher rates of propagation and presumably there is some influence 

of monotonic deformation e.g., the shear features in Figure 86 which 

link the regions of striations^^^. Under conditions of lower stress 

intensity it appears that the microscopic modes of crack propagation 

are very similar in thin sheet (Figure 61), fully reversed strain 

controlled fatigue (Figure 87) and thick plate S.E.N. specimens (Figure 

90).

There is, however, a fundamental difference between the fractures 

in the thin sheet and in the specimens machined from the thicker 

Plate. In the thin sheet specimens the orientation which produces 

slant growth is inclined at 45° to the rolling direction. The slant 

fracture observed in the S.E.N. specimens also occurs in the 45° 

specimens yet the major components of the two textures, {0 0l}<100> and 

i o o i } < n o >  are related by a 45° rotation about the rolling plane 

normal. Consequently, while the slant fracture in the sheet material 

occurs at the lowest value of the R-value, the slant fracture in the 

thicker material occurs in the orientation which is predicted to develop 

the higher R-value (see Table 6).

It is difficult to resolve the paradox of these two contradictory 

textural effects and no firm explanation can be presented. However, 

a tentative rationalisation may be advanced as follows. The difference 

in the thin sheet behaviour is regarded primarily as due to plane 

stress conditions prevailing in the 45° specimen while plane strain 

conditions prevail at the crack tip in the 0° and 90° orientations.

Table 6 shows that in the 0 ° and 90° orientations shear is easily 

accommodated within the plane of the sheet thus the deformation at the
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crack tip (see Figure 111) may be confined to planar shears within the 

bands as suggested by L a i r d N e u m a n n a n d  Rieu^^, i.e. the bands 

shown in Figure 111 contain only shears which lie in the plane of the 

crack tip thus the crack grows in the direction z if the shears are 

equal. This is probable since the slip direction in f.c.c. materials 

is <110> and the directions at 45° to the stress axis in the 0° and 90° 

are parallel to the <110> directions of the major component of the 

texture. In the 45° specimens in-plane yielding is suppressed accord­

ing to Table 5 and the predominant constraint is one of plane stress.

At the tip of a crack nucleus the deformation is concentrated and a

plane strain condition develops along a band which is inclined to the 
(127)stress axis . The crack is then constrained to develop along the 

band. In the case of a fatigue crack it is probable that the stress 

concentration produces the plane strain at the crack tip which causes 

the propagation of a small band of through thickness strain ahead of 

the crack at the prescribed angle. The fatigue crack is then constrained 

to propagate along the band of reduced nett cross-section and the process 

continues. For an isotropic solid the shear band formed in monotonic 

Plane stress ductile fracture is formed at 54° to the stress axis. It 

can be shown however, that this angle is a function of the anisotropy 

°f the material .

In the case of the thicker material, it is assumed that plane 

strain conditions prevail at the crack tip, due to the thickness of the 

Material, for both orientations. For the 90° orientation, the shear 

bands at the crack tip may be formed at about 45° to the rolling direct­

ion. Table 5 indicates that in this region, the R-ratio is large and 

thus shear along the bands es as shown in Figure 111, is possible with 

the suppression of deformation along the line of intersection of the 

two bands. Therefore, the crack is able to propagate in plane strain
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in the manner described by Rieu et a l a n d  a planar fracture is pro- ‘ 

duced which as has been noted earlier, tends to produce rapid crack 

propagation. In the case of the 45° specimens if the bands form at 

about 45° to the tensile axis the r-value predictions of Table 5 suggest 

that in-plane shears are suppressed at the expense of through thick­

ness shears, i.e. the shears Et^ in Figure 111 are promoted. However, 

due to the thickness of the specimen,the parts of the specimen,through 

which the crack has already passed,constrain the crack tip to resist

the through thickness strain. The deformation at the crack tip may,
»

therefore, be achieved by producing through thickness strains which 

are in the opposite sense in each band. The shears at the crack tip 

thus constitute a mixture of mode I and mode III, antiplane shear, 

opening. Presumably, under the influence of these shears, the crack 

reorients to produce a slant crack orientation. The complex set of 

shears continue to operate as the crack reorients and the lower rate 

of growth may be ascribed to the mixed mode of crack opening as postulated 

by Garrett .

In summary, therefore, it appears that the influence of texture on 

the fatigue crack morphology is different in thick and thin material.

In thin materials, cracks may propagate perpendicular to the through 

thickness direction and the stress axis of the strains at the crack tip 

can be accommodated within the plane. If the texture tends to induce 

through thickness strain, the controlling influence becomes the require­

ment of plane stress and propagation occurs by a process of through 

thickness strains along a shear band which is inclined to the stress 

axis. In this case, the strain along the direction of the shear band 

is expected to be very small. In contrast, in the thicker material, 

the fatigue cracks propagate by the action of shear bands at the crack
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tip but because of the thickness of the material in this case the 

deformation should be parallel to the direction of the band in order to 

attain flat crack growth. If the texture causes the tendency towards 

through thickness deformation in the shear bands, the crack reorients 

into a slant mode.

Due to the similarity of high.magnification micrographs of the 

different fatigue fracture surfaces examined in this investigation, 

it must be concluded that texture has very little effect on the micro­

scopic mode of failure. The influence of texture on crack propagation
t

may be rationalised by considering the constraints imposed by the bulk 

°f the materaial upon the slip processes which may act at a given 

site in the crack front. The requirements of the compatability of 

strain at the crack front should counteract the perhaps favourable 

local crystallography to produce more uniform crack growth. Thus, 

even though one particular grain may be favourably oriented for crack 

growth the crack front may not accelerate through that grain because 

of the arresting effect of contiguous grains. Similarly the micro­

scopic crack plane is probably determined not only by the local crystal 

lography, as proposed by Neumann^^and Pelloux^'^, but also by the 

orientation of the crack in surrounding grains. It would, therefore, 

be wrong to suggest that fatigue crack propagation must occur on 

thkL} planes in a polycrystalline material under conditions of ductile 

fatigue failure.
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CHAPTER 7

Summary, Conclusions and Suggestions for Further Work 

7•1 Summary and Conclusions

1. The experimental results have shown that texture affects the 

cyclic stress-strain response and the strain amplitude-life curve of
t

copper tested in fatigue.

2. Within a given material the effect of preferred orientation 

on the cyclic stress-strain relation may be predicted by texture 

analysis. The magnitude of the texture influence is dependent upon 

the severity of the texture and is much more important in copper than 

grain size effects. This may, however, not be true for materials 

which have been observed to exhibit grain size dependence of fatigue 

properties. It is also expected that the effect of texture may be of 

secondary importance in the presence of microstructural anisotropy 

such as elongated inclusions.

3. Although the Taylor theory was found to predict the orientat­

ion dependence of the cyclic properties, it has been shown that the 

development of texture as predicted by the Taylor theory does not agree 

with the empirical measurements of texture developments during fatigue. 

It was found that in practice, fatigue tends to randomise the texture. 

It has been suggested that the failure of the Taylor theory to predict 

the generation of texture results from the inhomogeneous nature of 

fatigue.deformation.
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4. It has been noted that in comparing the predictions of texture

with the fatigue behaviour, the errors involved in the fatigue analysis 

are much greater than those involved in texture measurements. The 

uncertainty in fatigue data results from the inherently nature

of the failure process so that small differences due to textural effects 

may be obscured by the imprecision of the fatigue results.

5. Although the use of the parametric expression of fatigue prop­

erties in terms of e^, b, Cj.n1 and K1 may be expected to reduce 

the errors involved in assessing texture effects it has been shown 

that the cyclic stress-strain analysis is subject to serious errors

if care is not taken in ascribing the relevant portions of damage to 

the elastic and plastic regimes respectively. In particular, this is 

relevant since the texture influences the elastic modulus and this 

parameter is frequently employed to apportion the strain ranges. It 

has been shown that the incorrect choice of the elastic modulus has a 

significant effect on the cyclic stress-strain analysis.

6 . It has been found that, within the same material, the orien­

tations which develop the greater resistance to constant strain cycling 

show a softer cyclic stress-strain curve and that the strength of the 

cyclic stress strain curves may be predicted on the basis of texture 

measurements.

7. It has been shown that the different cyclic stress-strain 

curves may be rationalised to a single cyclic shear stress shear strain 

(At  vs Ay) for materials with the same starting condition by using 

the appropriate Taylor factor. The cyclic stress strain curve was not
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found to be independent of strain history although the harder mater­

ials exhibited a lower degree of cyclic work hardening than the softer 

ones. It is suggested that the cyclic stress-strain curve is deter­

mined by the ability of the applied strain amplitude to cause a break­

down of the prevailing dislocation structure and generate a dislocat­

ion structure which uniquely determines the cyclic stress-strain curve, 

if is suspected that the history dependence or otherwise of the cyclic 

stress-strain curve is a function of the prior mechanical history and 

the applied strain amplitude.

8 . Examination of the slip markings on the sides of the speci­

mens revealed that the slip line patterns were dependent upon the 

orientation of the grain. It was found that fatigue cracks did not 

Nucleate in the grains which displayed the apparently most severe 

surface damage but in grains oriented primarily for single slip which 

developed long narrow parallel slip bands. Particularly prone to 

crack nucleation were regions where the long slip bands impinged on 

twin and grain boundaries.

9. The strain amplitude-life data were reanalysed in terms of 

the parameter AaAe v 2Nf and it was shown that this tends to produce 

a function which is independent of orientation. The independence of 

this function has been rationalised by noting that fatigue failures 

were always nucleated in grains of the same orientation. It is 

suggested that the function AaAe is identical to the function ArAy 

'"hich are the shear stress and shear strain amplitudes respectively

in the weakest grain. Thus, it is effectively assumed that the fail­

ure process is related to the damage accumulation in the weakest grain 

because of the uniqueness of the shear cyclic stress-strain curve.
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10. The effect of preferred orientation on fatigue crack 

propagation is to cause reorientation of the crack to promote strain 

compatibility at the crack tip. When this induces a slant-type fract­

ure the rate of crack propagation is found to be reduced.

11. The criteria/ for slant-type fracture were found to be 

different in thin materials and thick materials. In thin materials, 

slant fracture was found to occur when the texture was unable to con­

tain the strain within the plane of the sheet. The slant-type fatiguet

fracture in this case was considered to be due to the propagation of 

the crack along a shear band which forms at an acute angle to the 

stress axis. In thick materials, the slant-type fracture forms because 

the shear bands which form at the crack tip (and produce the increments 

°f crack growth) are constrained by the material thickness not to 

produce thinning of the material while the textural influence tends 

to promote through thickness yielding. In this case, the crack is 

observed to re-orient into a slant mode and to accommodate the shears 

in the slip bands by employing a mixed mode of crack tip opening.

7.2 Suggestions for Further Work

It has been established that textural effects may influence 

fatigue processes in a pure f.c.c. metal which deforms by wavy slip. 

Before applying the results to more complex commercially applicable 

systems, it would be desirable to investigate the effect of texture 

on the fatigue properties of cubic metals which do not deform readily 

on {ill}<110> systems with easy cross slip.

1. Pure single phase f.c.c. metal of low stacking fault 

energy may be investigated since the restrictions of



136

planar slip may produce a more severe dependence 

upon crystallographic orientation.

Single phase b.c.c. metals and alloys should be 

investigated to determine whether the difference in 

slip modes between b.c.c. and f.c.c. metals proves 

significant in fatigue.

2. Super pure material, e.g. Fe may be investigated to 

determine the relevance, of symmetric slip, which 

has been shown (see Chapter 2) to influence the 

fatigue of single crystals, on the textural effects 

in polycrystals of b.c.c. materials.

3. The influence of pencil glide deformation on the

anisotropy of fatigue properties may be different 

from that of restricted glide.

The examination of textural anisotropy-^ fatigue of commercially 

applicable materials may require studies of,

4. Precipitation hardening alloys since these often 

display precipitate morphologies which are orien­

tation dependent. Such an orientation dependence 

may influence the single crystal anisotropy and 

hence affect the textural influences on the fatigue 

of polycrystals.

5. The relative effects of microstructural anisotropy 

might be investigated. In a commercial steel,
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anisotropy may result from texture, phase distri­

bution and morphology, e.g., ferrite grain shape,

' and the orientation of elongated inclusions.

6 . The present investigation has also revealed the 

very interesting interaction between specimen size 

and texture upon the rate of fatigue crack propagat 

. ion. Further investigations into the effects of 

stress state and texture on the mode of crack propa 

gation would appear to provide a promising area of

research.
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Duquette D.J., Cell M. and Piteo J.W., Met. Trans., 1_, (1970), 3107. 

Nageswararao M. and Ceroid V., Metal Science, 11, (1977), 31.

Meyer R., Ceroid V. and Wilhelm M., Acta. Met., 25, (1977), 384.

Pook L.P., J. Soc. Environ. Eng. , lj5_, (1976), 3.

Ishii H. and Weertmann J., Met. Trans, 2_, (1971), 3441.

Weertmann J., Int. J. Frac. Mech. , 2_, (1966), 460.

Santner J.S. and Fine M.E., Met. Trans., Ik, (1976), 583.

Yeske R.A. and Weertmann J., Met. Trans., 5, (1974), 2033.

Kettuner P.O., Phil. Mag., 16̂ , (1967), 253.



44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

6 2 .

Hempel M.R., "Slip Band Formation and Fatigue Cracks under Alter­

nating Stress" in "Basic Mechanisms of Fatigue - ASTM-STP 

237", ASTM, Philadelphia, (1958), 52.

Nine H.D., J. Appl. Phys., 46, (1975), 3260.

Nine H. D., Appl. Phys. Lett., 22_, (1973), 382.

Nine H.D., Scripta. Met., 4_, (1970), 887.

Etermad B. and Guiu F., Scripta. Met., 8_, (1974), 931.

Doner M. , Di Primio J.C. and Salkoritz E.I., Acta. Met., 21_, (1973), 

1547.

Nine H. D., J. Appl. Phys., 44, (1973), 4875.

Mughrabi H. and Wuthrich C., Phil. Mag., 33, (1976), 1406.

Neumann R., Zeit fur Met., 66_, (1975), 26.

Nine H. D., Phil. Mag. 33, (1976), 1406.

Neumann P., Vehoff H. and Fuhlrott II., "On the Mechanism of Fatigue 

Crack Growth" in "I.C.F.-4 Fracture 1977", Pergammon 

Press, London (1978), 1313.

Rieux P., Driver J. and Rieu J., Acta. Met., 27_, (1979), 145.

Davies G. J., J. of Metals, 28, (1976), 21.

Hayashi I. and Suzuki S., "Investigation on the Axisymmetrical

Deformation Texture of Polycrystalline Copper under Static 

Load and Cyclic Load" in "Proc. 20th Congress on Materials 

Research", Soc. of Mat. Sci., Japan (1977), 18.

Inakazu N. and Yamamoto H., J. Jap. Inst. Met., 39, (1975), 339.

Packer M.E., and Coyle R.A., Metal Science, 1_2, (1978), 421.

Le May I. and Nair K.D., J. Basic Eng. Trans. ASME(D), 91, (1970), 

115.

Nair K. D. and Le May I., Metallography, £, (1971), 243.

Nair K.D. and Le May I., "The Use of Electron Fractography in



63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

76.

77.

78.

79.

80.

Interpreting the Mechanism of Fatigue Crack Propagation" 

in "Electron Microfractographv - ASTM STP 453", ASTM 

Philadelphia, (1969), 134.

Ruberg T., Ph.D. Thesis, University of Cambridge, (1973).

Tchorzewski R.W. and Hutchinson W.B., Metal Science, 1_2, (1978),

109.

Arnell R.D. and Teer D.G., Met. Sci. J., J5, (1969), 126.

Forsyth P.J.E., Stubbington C.A. and Clark D., J. Inst. Met., 90, 

(1961-62), 238. $

Garrett G.G. and Knott J.F., Acta. Met., 23^ (1975), 841.

Fukui Y. , Higo Y. and Nunomura S., J. Jap. Inst. Met., 4J_, (1977), 

400.

Richards C.E., Acta. Met., 19̂ , (1971), 583.

Pook L.P., Metal Science, 10, (1976), 334.

Miller K.J., Metal Science, 11_, (1977), 432.

Burke M.A. and Davies G.J., "The Correlation of Textures and

Fatigue" in "Strength of Metals and Alloys", ed. P. Haasen, 

V. Gerold and G. Kosters, Pergammon, London (1979), 1181.

Fegredo D.M. , Met. Trans, _3, (1972), 1943.

Larson F.R. and Zarkades A., "Improved Fatigue Life in Titanium 

through Texture Control" in "Texture and Properties of

Materials", The Metal Society, London (1975), 210.
Bo^en o2\S
Bowen A.IV., Acta. Met., 23_, (1975), 1401.

Lee D., "The Effect of Plastic Anisotropy in the Low Cycle Fatigue 

Behaviour of Zircalloy" in "Mechanical Behaviour of 

Materials", Soc. Mat. Sci., Japan (1972), 165.

Lee D. , Met. Trans., _3, (1972), 315.

Dillamore I.L. and Roberts W.T., Met. Rev., 10, (1965), 271.

Kallend J.S., Ph.D. Thesis, University of Cambridge, (1970).



81.

82.

83.

84.

85.

86 .

87.

8 8 .
89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Ozturk T., Ph.D. Thesis, University of Cambridge, (1979).

Thompson A.W. , Baskes M.I. and Flanagan W.F., Acta. Met., 21_, (1973), 

1017.

Freda A. and Cullity B.D., Trans. AIME-TMS, 215, (1959), 530.

Shultz L.G., J. Appl. Phys., 20, (1949), 1030.

Lopata S. and Kula E., Trans. AIME-TMS, 224, (1962), 865.

Meieran E.S., Rev. Sci. Inst., 33, (1962), 319.

Pospiech J. and Jura J., Zeit fur Metal., 65, (1974), 324.

Elias J. A. and Heckler A.J., Trans. AIME-TMS, 239, (1967), 1237. 

Morris P.P., Ph.D. Thesis, University of Cambridge, (1976).

Neff H., Siemens Review, 31_, (1957), 93.

Heckler A.J., Elias J.A. and Woods P., Trans. AIME-TMS, 239,

(1967), 1241.

Northcliffe J. and Roberts M., J.I.S.I., 157, (1947), 345.

Chalmers B. and Quarrell A.G., "The Physical Examination of Metals", 

Edward Arnold, London, (1960), 567.

Mitchell M.R., "Fundamentals of Modern Fatigue Analysis for Design" 

in "ASM - Fatigue and Microstructure Seminar - St. Louis 

1976", ASM, Metals Park, (1977).

Dabell B.J., Hill S.J., Eaton D.E. and Watson P., J. Soc. Environ. 

Eng., _1_6, (1976), 3 .

Basquin O.H., Proc. ASTM, 10, (1910), 625.

Coffin L.C., Trans. ASME, 76, (1954), 931.

Manson S.S., "Behaviour of Materials Under Conditions of Thermal 

Stress" in "Heat Transfer Symposium", University of 

Michigan Press, (1953), 9.

Rebbeck R.G. and Watson P., Railway Eng. Journal, (1975), 1.



100.

101.
102.

103.

104.

105.

106.

107.

108.

109.

Ho.

Ul.

112.
113.

114.

115.

116. 

117. 

*18.

119.

120.

Paris P.C. and Erdogan F., J. Basic Eng. Trans. ASME(D), 85,

(1963), 528.

Davenport R.T., Ph.D.Thesis, University of Salford, (1977).

McCartney L.N. and Cooper P.M., N.P.L. Report 'Mat. App. 23', (1972).

Walker B.F. and May M.J., BISRA Open Report MC/E/307/67, (1967).

Hurd N.J., Ph.D. Thesis, University of Sheffield, (1979).

Knott J.F., "Fundamentals of Fracture Mechanics", Butterworth,

London, (1975).

Bunge H.J., "Mathematische Methoden der Texturanalyse", Akademie- 

Verlag, Berlin (1969).

Roe R.J., J. Appl. Phys., 36, (1965), 2024.

Hutchinson W.B. and Hatherly M., "An Introduction to Textures in 

Metals", Institute of Metallurgists, London, (1979).

Roe R.J. and Krigbaurm R.S., J. Chem. Phys., 4£, (1964), 2608.

Davies G.J., Goodwill D.J. and Kallend J.S., J. Appl. Cryst., £,

(1971), 67.

Kallend J.S. and Davies G.J., in Quantitative Relation between

Properties and Microstructure, Israel, U.P. (1970), 45.

Pursey H. and Cox H.L., Phil. Mag., 45_, (1954), 295.

Bateman R.M., Unpublished Work.

Voigt W., "Lehrbuch der Krystallphysik", B.G. Tuebner Verlag 

Liepzig, (1929).

Reuss A., Zeit. Any. Math. Mecha., £, (1929), 49.

Hill R., Proc. Phys. Soc., A65 , (1.952), 349.

Taylor G.I., J. Inst. Met., 62, (1938), 307.

Bishop J.F.W. and Hill R., Phil. Mag., 42_, (1951), 414.

Sachs G., Zeit. v. Deuts. Ing., 72, (1928), 734.

Hosford W. and Backofen W.A., "Strength and Plasticity of Textured



Materials" in "Fundamentals of Deformation Processing",

122.
123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

121.

133.

134.

135.

136.

137.

Syracuse U.P., (1964).

Schmid E. and Boas W., "Plasticity of Crystals", Hughes, London, 

(1950).

Kallend J.S. and Davies G.J., Phil. Mag., 28_, (1976), 21.

Van Houtte P., Acta. Met., 26, (1978), 591.

Bishop J.F.W. and Hill R., Phil. Mag., 42, (1951), 1298.

Truzkowski W., Krol J. and Major B. , Met. Trans., 11A, (1980), 749.

Backofen W.A., "Deformation Processing", Addison Wesley, London,

(1972), 47.

Hill R., "The Mathematical Theory of Plasticity", Clarendon Press, . 

Oxford, (1951).

Holt J.M. and Stewart B.R., SAE Technical Paper No. 79046, (1979), 

Soc. Auto. Eng. Inc., Warrendale (Pa).

Wetzel R.M., Private Communication.

ASTM Designation E606-77T ASTM Book of Standards pt. 10, (1977),

ASTM Philadelphia.

Callender W.R., Private Communication.

Laird C., "Recent Adrances in Understanding the Cyclic Deformation 

of Metals and Alloys" in "Work Hardening in Tension and 

Fatigue", AIME (1977), New York, 150.

Nair K.D., Ph.D. Thesis, University of Saskatchewan, (1970).

Pelloux R.M., "Fracture - 2nd Int. Conf.", Chapman and Hall,

London, (1969), 731.

Abel A., Mat. Sei. and Eng.,36, (1978), 117.

Landgraf R.W., Morrow J. and Endo T., J. of Material, 4_, (1969), 176.

Laird C., Finney J.M., Schwartzmann R. and De la Veaux R., J. Test 

and Evaluation, 3, (1975), 435.



138.

139.

140,

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Tuler R. and Morrow J., "Cycle Dependent Stress-Strain Behaviour 

of Metals - Theoretical and Applied Mechanics Report 

No. 239", University of Illinois, (1963).

Lukas P. and Klesnil M., "Cyclic Stress-Strain Response in the 

Low Amplitude Region" in "Work Hardening in Tension 

and Fatigue", AIME, New York, (1977), 177.

Kemsley D.S., J. Inst. Met.,'87_, (1958-59), 10.

Karjalainen L.P., Metal Science, 12, (1978), 571.

Bucci R. and Thompson A.W., Met.'Trans, £, (1973), 1173.

Morrow J. and Halford G.R., Proc. ASTM, 62^ (1962), 695.

Mughrabi H., Scripta Met., j_3, (1979), 479.

Kocks U.F., Acta Met., 6_, (1958), 85.

Awatani A., Katagira K., Omura A. and Shiraishi T., Met. Trans.,

6A, (1975), 1029.

Winter A.T., Phil. Mag., 28, (1973), 57.

Topper T.H., Wetzel R.M. and Morrow J., J. of Materials, £,

(1969), 200.

Neubcr II., J. Appl. Mcch., (Dec. 1961), 544.

Smith K.N., Watson P. and Topper T.H., J. of Matls., 5^ (1970), 767.

Winter A.T., Acta. Met., 2S_, (1980), 963.

Burke M.A., M.S. Thesis, University of Pittsburgh, (1977).

Rasmussen K.V. and Pedersen O.B., Private Communication, Riso Nat. 

Lab. Denmark.

Witzei W., Scripta Met., 1_3, (1979) , 665.

Witzcl W., "The Problem of the Saturation Range in Low Cycle Fatigue" 

in "5th Meeting of Working Croup on Service Strength - 

Stuttgart 1979", Deutscher Verband für Materialprüfung 

e.v. Stuttgart, 1979.



156.

157.

158.

159.

160. 
161. 
162.

163.

164.

165.

166.

167.

168.
169.

170.

171.

172.

173.

174.

175.

176.

Kim W.H. and Laird C., Acta. Met., 26, (1978), 777.

Inckle A.E., Birbeck G. and Waldron G.W.J., J. Mat. Sci., 8_, (1973), 

1058.

Awatani A., Nakai H. and Katagira K., Met. Trans., 9A, (1978),

111 .

Inckle A.E., Birbeck G. and Waldron G.W.J., J. Mat. Sci., 8_,

(1973), 1058.

Stanzl S.E., Scripta Met., 14_, (1980), 749.

Weber J.H. and Hertzberg R.W., Met. Trans., 2_, (1971), 3498. 

Koterazawa R. and Shimo D., J. Soc. Mat. Sci. Japan, 25, (1976), 

535.

Hur K.S., Nam S.W., Maeng S.C. and Chun S.S., J. Korean Inst. Met., 

_15, (1977), 477.

Priddle E.K. and Walker F.E., M. Mat. Sci., 11_, (1976), 386.

Ritchie R.O., Smith R.F. and Knott J.F., Met. Sci., £, (1975),

485.

Heiser F.A. and Mortimer W., Met. Trans., j5, (1972), 2119.

Garrett G.G., Met. Trans., 10A, (1979), 648.

Schijve J., Eng. Frac. Mech., 6_, (1974), 245.

Pook L.P., Metal Sci., 10, (1976), 334.

Schijve J., Eng. Frac. Mech., 10, (1978), 359.

Miller K.J., Metal Sci., 11_, (1977), 432.

Iida S. and Kobayashi S.A., Trans. ASME(D), J. Basic Eng., 9J_,

(1969), 764.

Pook L.P., Eng. Frac. Mech., 3̂, (1971), 205.

Hurd, N.J. and Irving P.E., to be published in ASTM STP series,

ASTM Philadelphia - Presented at ASTM Balharbour Con­

ference, November 1980.

Sih G.C. and Barthelemy B.M., Eng. Frac. Mech.,13, (1980), 439. 

Hoepner D.W., Met. Sci., 1_2, (1978), 489.



jAppendices



APPENDIX  1

1 FATIGUE: 000000102 PROCEDURE (PARMLIST) OPTIONS(MAIN) ,* a 000000203 /»THIS PROGRAM FITS A SET OF STRAIN-LIFE FATIGUE DATA TO THE * / 000000304 /♦MATERIAL PARAMETERS SIGMA',EPSILON'',b,c,K',N' AS */ , 000000405 /» IN THE RELATION, */ 000000506 /»Et/2=SIGMA'/E*(2Nf)**-b + EPSIL0N'*(2Nf)**-c */ 000000607 /»USING A LEASTSQUARES FIT ON LOGARITHMIC STRAIGHT LINES,THE * / 000000708 /» DATA IS INPUTTEDAS TOTAL-STRAIN,PLASTIC-STRAIN,STRESS AND * / 000000309 /* # OF REVERSALS TOFAILURE. */ 0000009010 /* The first tine through the pro-gran uses the static elastic * / 0000010011 /» elastic Modulus and the stress anplitude to deternine the * / 0000011012 /* elastic strain aMplitude,the second tine it uses the */ 0000012013 /* differenc between the total strain and the strain width of */ 0000013014 /» the hysteresis loop as the elastic strain aMplitude * / 0000014015 DECLARE 0000015016 PARMLIST CHAR(12) VAR, 0000016017 BPARM(2) CHAR(6), 0000017018 APARM CHAR(12),* 0000013019 STATMOD FLOAT DECIMAL INITIAL(O), 0000019020 ROUTE FIXED(1,0) INITIAL(O), 0000020021 M0DIFE(50) FLOAT DECIMAL INITIAL« (50)0), 0000021022 (NN, 0000022023 I, 00000230
24 • J, 0000024025 N) FIXED(4,0) INITIAL(O), 00000250
26 (ELPSO, 0000026027 ELPSTP) FLOAT DECIMAL INITIAL«», 00000270
28 ( EPLSO, 0000028029 PLST) FLOAT DECIMAL INITIAL(O), 0000029030 BASEDATA(50,6)FL0AT DECIMAL INITIAL«(300)0), 0000030031 L0GDATA(50,6) FLOAT DECIMAL INITIAL<(300)0), 00000310
32 (RPLSO, 0000032033 RPLST, 00000330
34 EPLST, 00000340
35 EPLSTP) FLOAT DECIMAL INITIAL(0), 00000350
36 ( PLSCOUNT, 00000360
37 PLSREV, 00000370
38 SQPLST, 00000380
39 SQPLSREV, “ 00000390
40 PLSCROSS, 00000400
41 PSTST, 00000410
42 STRESS, 00000420
43 SQSTRESS)FLOAT DECIMAL INITIAL(O), 00000430
44 ( ELSCOUNT, 00000440
45 ELST, 00000450
46 ELSREV, 00000460
47 SOELST, 00000470
48 SQELSREV, 00000480
49 ELSCROSS) FLOAT DECIHAL INITIAL(0), 00000490
50 MODL FIXED(2,0) INITIAL(O), 00000500
51 ( MODULUS, 00000510
52 SQMOD, 00000520
53 SIGMASQ, 00000530
5455 SIGMA,AVEMOD) FLOAT DECIMAL«12) INITIAL(O),

00000540
56 (ALPHA, 00000560
57 LOGC, 00000570
58 EPSILONF, 00000580



59
¿061
62
63
64
65
6667
6869
7071
727374757677
787980 81 
828384
85
8687
88
89
9091
92939495969798
99 

100 
101 
102103
104
105106107108109
110 
111 
112113114115116

PLASR) FLOAT DECIMAL INITIAL(0),( BETA,LOGB,
BASQUIN,
SIGNAEFF) FLOAT DECIMAL INITIAL(0),( ELASR,
ENPRIME,KAYPRINE,
OFFSET) FLOAT DECIMAL INITIAL«)),( LOGK,KPRIME,NPRIME,CYCLICR,
SPRIME) FLOAT DECIMAL INITIAL(O),TITLE CHARACTER(8);DECLAREUNLIST ENTRY EXT;ON ENDFILE (FDATA)GO TO START;NN=0;
aparm=parmlist;CALL UNLIST (APARM BPARM, N) JTITLE=BPARM(1);
STATMOD=BPARN(2);LAB:
NN=NN+1;
GET FILE(FDATA) LIST((BASEDATA(NN,I) DO 1=1 TO 4)); GOTO LAB;START:
NN=NN-1;

' DO 1=1 TO nn;'“"... ...... .
BASEDATA(I,6)=STATM0D;BASEDATA(1,5)»BASEDATA(1,3)/BASEDATA(1,6);/* N.B.USING STRESS AND ELASTIC MODULUS TO CALCULATE */ END;

/* ELASTIC STRAIN*/GO TO CALC,*AGAIN:
DO 1=1 TO NN;BASEDATA(1,5)=BASEDATA(1,1)-BASEDATA(1,2); BASEDATA(1,6)=BASEDATA(1,3)/BASEDATA(1,5);END;CALC:
DO 1=1 TO NN;

DO J=1 TO 6;LOGDATA(I,J)=L0G(BASEDATA(I,J))J
end;END;

PLSC0UNT=0;PLST=o;
plsrev=o;
sqplst=o;SQPLSREV=0;PLSCR0SS=0;
pstst=o;STRESS=0;SGSTRES5=0;ELSC0UNT=0J

00000590 00000600 
00000610 
00000620 
00000630 
00000640 
00000650 00000660 
00000670 00000680 00000690 00000700 00000710 ■ 00000720 00000730 00000740 00000750 00000760 00000770 00000780 00000790 00000800 00000810 00000820 00000830 00000840 00000850 00000860 00000870 00000880 

"'00000890 
00000900 00000910 00000920 00000930 00000940 00000950 00000960 00000970 00000980 00000990 
00001000 
00001010 
00001020 00001030 00001040 
00001050 00001060 00001070 00001080 00001090 
00001100 
00001110 
00001120 00001130 00001140 00001150 00001160



117118 
1 1? 
120 
121 
122123124125126127
128 
12? 
130.131
132133134135136137138 13?140141
142143144145146147
148 
14?150151152153154155156157158 
15? 160 
161 162
163164
165166167168 
16?170171172173174

elst=o;ELSREV=0;SGELST=0;SGELSREV=0;EL5CR0SS=0;PLASTIC:DO N=1 TO NN;
IF BA5EDATA(N, 2)<E-03 THEN GOTO elastic;PLSCOUNT=PLSCOUNT+1;PLST=PLST+LQGDATA(N,2);PLSREV=PLSREV+LOGDATA(N,4); 
SGPLST=SGPLST+L0GDATA(N,2)**2;SGPLSREV=SGPLSREV+LOGDATA < N , 4 ) * * 2 ;  PLSCRQ5S=PLSCRDSS+L0GDATA(N, 4)*LOGDATA(N,2); PSTST=PSTST+LOGDATA(N, 2)*LQGDATA< N, 3); STRESS=STRESS+L0GDATA(N,3);SQSTRESS=SGSTRESS-+LOGDATA < N, 3) * * 2 ;ELASTIC:
ELSC0UNT=ELSC0IJNT+1;
ELST=ELST+L0GDATA(N,5);ELSREV=ELSREV+L0GDATA(N,4);
SGELST=SaELST+lGGDATA ( N, 5) * * 2 ;SGELSREV=SGELSREV+L OGDATA< N, 4)**2; ELSCROSS=ELSCROSS+LOGDATA(N, 4)*LOGDATA< N, 5);END;

I10DULUS=0;
sgnod=o;YOUNGS:
DO MODL=1 TO nn;N0DULUS=MQDULU5+BA5EDATA< MODL,6 );

SGMOD=SQMOD+BASEDATA (NGDL, 6 ) **2 ,*END;
SIGMÂ ABS ((SQM0D-NQDULUS:**2/NN) / (NN-1));SIGNA=SQRT(SIGMA);
avenod=nodulus/nn;ALPHA*-(PLSCROSS-PLST+PLSREV/PLSCOUNT)/< SQPLSREV-PLSREV**2/PLSCDUNT);LQGC= <PLSREV*PLSCRQSS-PLST:*5GPLSREV) / (
PLSREV**2-PLSC0UNT*SGPLSREV);
EPSILONF=EXP(LOGC)JBETA*-(ELSCROSS-ELST*ELSREV/ELSCOUNT)/( SGELSREV-ELSREV**2/ELSCQUNT);LOGB=(ELSREV*ELSCROSS-ELST*SGELSREV)/( 
ELSREV**2-ELSC0UNT*SGELSREV);
BASQUIN=EXP(LOGB);
BASQUIN=EXP(LOGB);SIGNAEFF=BASGUIN*AVENOD;
enprine*beta/alpha;
kayprime*signaeff/epsilonf**enprime;
OFFSET=KAYPRINE* (0.002) **ENPRIME;RPLSO*(PLSCROSS-PLST*PLSREV/PLSCOUNT);RPLST=PLSCQUNT* SQRT(SGPLSREV/PLSC0UNT-(PLSREV/PLSC0UNT)**2); 
RPLST=RPLST+SQRT(SQPLST/PLSCOUNT-(PLST/PLSCOUNT)**2);
plasr=rplso/rplst;ELPSO*(ELSCROSS-ELST+EISREV/ELSCQUNT);
ELPSTP=ELSCQUNT*SORT(SGELSREV/ELSCOUNT-(ELSREV/ELSCOUNT)**2);

000011700000118000001190
00001200
00001210
00001220
0000123000001240000012500000126000001270
0 0 0 0 1 2 8 00000129000001300000013100000132000001330000013400000135000001360000013700000138000001390000014000000141000001420000014300000144000001450000014600000147000001480
00001490

00001510 00001520 00001530 00001540 00001550 00001560 00001570 00001580 00001590 
0 0 0 0 1 6 0 0  
0 0 0 0 1 6 1 0  00001620 00001630 
00001640 00001650 00001660 
00001670 00001680 
00001690 00001700 
0 0 0 0 1 7 1 0  
0 0 0 0 1 7 2 0  00001730 i



175 ELPSTP=ELPSTP*SGRT(SQELST/ELSCOUNT-(ELST/ELSCOUNT)*+2); 00001740176 ELASR-ELPS0/ELP5TP; 00001750177 CYCLIC: 00001760178 L0GK=(PSTST;*PLST-STRESS*SGPLST)/(PLST*:*2-SQPLST*PLSC0UNT); 0000177017? KPRIME=EXP(LOGK),* 00001780180 NPRIME=(PSTST-STRESS+PLST/PLSCOUNT)/( 00001790181 SGPLST-PLST**2/PLSC0UNT); 00001800182 SPRIME=KPRIME*0.002**NPRIME; 00001810i 83 CYCLICR=(PSTST-STRESS*PLST/PLSCOUNT)/PLSCOUNT; 00001820184 CYCLICR=CYCLICR/SQRT(SQPLST/PLSC0UNT-(PLST/PLSC0UNT)*:*2); 00001830185 CYCLICR=CYCLICR/ 00001840186 SORT(SGSTRE5S/PLSC0UNT-(STRESS/PLSCOUNT)* * 2 ); 00001850187 TABLE: 00001860188 . PUT PAGE; 0000187018? PUT SKIP(4) EDIT (•'FATIGUE DATA ANALYSIS FOR~,TITLE) ( ~0000í8801?0 COLUMNdO) ,A(28) ,A(8)); 000018901?1 IF R0UTE=0 THEN 000019001?2 PUT SKIP 000019101?3 EDIK 000019201?4 •'Fatigue analysis enploying static Modulus and stress aMplitude000019301?5 to calculate the elastic strain range" 000019401?6 )( 000019501?7 C0L<16),A<100)); 000019601?8 ELSE 000019701?? PUT SKIP 00001980200 EDIT« 00001990201 'Fatigue analysis eMploying total strain and plasti strain to C00002000202 alculate the elastic strain range" 00002010203 )( 00002020204 C0L(18),A(97)); 00002030205 PUT SKIP ( 3 ) EDIT ("STRAIN-LIFE DATA")(C0LUMN(53),A(18)),' 00002040206 PUT SKIP(2) EDIT("CYCLIC PLASTIC PARAMETERS')( 00002050207 C0LUMN(40),A(25)); 00002060208 PUT SKIP EDIT("COFFIN EXPONENT = ",ALPHA)( 0000207020? C0LUMN(30),A(18),E(14,6)); 00002080210 PUT SKIP EDIT("CYCLIC FRACTURE STRAIN = ",EPSILONF)( 00002090211 C0LUMN(30),A(25),Et14,6)); 00002100212 PUT SKIP EDIT("CORRELATION COEFFICIENT RP = ",PLASR>< 00002110213 C0LUMN(30),A(29),E(14,6)),* 00002120214 PUT SKIP(2) EDIT("CYCLIC ELASTIC PARAMETERS")( 00002130215 C0LUMN(40),A(25)); 00002140216 PUT SKIP EDIT("BASQUIN EXPONENT = ",BETA)( 00002150217 C0LUMN(30),A(19),E(14,6)); 00002160
218 PUT SKIP EDIT("CYCLIC FRACTURE STRESS = ",SIGMAEFF)( 00002170
21? COLUMN(30),A(25),E(14,6)); 00002180
220 PUT SKIP EDIT("CORRELATION COEFFICIENT RE = ",ELASR)( 00002190
221 C0LUMN(30),A(29),E(14,6)),’ 00002200
222 PUT SKIP 00002210
223 EDIT("MEAN ELASTIC MODULUS =",AVEMOD,"STANDARD DEVIATION = ", 00002220
224 SIGMA)(C0LUMN(30),A(23),E(14,6),A(21),E(14,6)); 00002230
225 PUT SKIP 00002240
226 EDIT("CYCLIC STRESS-STRAIN PARAMETERS FROM STRAIN-LIFE DATA")( 00002250
227 C0LUMN(40),A(53)); 00002260
228 PUT SKIP EDIT("CYCLIC STIFFNESS CONSTANT = ",KAYPRIME)( 00002270
22? C0LUMN(30),A(28),E(14,6)),* 00002280
230 PUT SKIP EDIK "CYCLIC HARDENING EXPONENT = ",NPRIME)( 00002290231 C0LUMN(30),A(28),E(14,6)); 00002300
232 PUT SKIP EDIT("0.22 OFFSET STRESS = ",OFFSET)( 00002310 i



233234
235236 23 7  
238 23? 
240 24}
242243244
245246 
24? 
248 24?
250251252
253
254255256 25? 
258 25? 
260 
261 
262
263264
265
266 
26? 
268 
26? 
2?0 
2?1

C0LUMN(30),A(21),E(14,6)),*
PUT SKIP(3) EDIT ('CYCLIC STRESS-STRAIN ANALYSIS-')( C0LUMN(50),A<29));
PUT SKIP(2) EDIT('CYCLIC STIFFNESS CONSTANT = ',KPRIME)( C0LUMN(30),A(26),E(14,6>>;PUT SKIP EDIT('CYCLIC HARDENING EXPONENT = ',ENPRIMEH COLUMN(30),A(28)rE(14,6));PUT SKIP EDUC'D.22 OFFSET STRESS = ',SPRINE)(C0LUNN(30),A(28),E(14,6)) JPUT SKIP EDIT('CORRELATION COEFFICIENT RC = ',CYCLICR>(COLUMN(30),A(29),E(14,6));/♦END*/
DO 1= 1 TO nn;

MODIFE(I)= BASEDATA(1,2)+BASEDATA(1,5);
end;
PUT SKIP(3) EDIT('DATA DEVELOPED BY THIS CALCULATION')(COL(31), A(34))J PUT SKIP
EDITC'Total strain','Plastic strain','Stress','Reversals to', 'Elastic strain','Elastic','Corrected strain')«COL(1),A(12),C0L(17), A(14),C0L(35),A(6),C0L(52),A(12),C0L<68), 
A(14),C0L(86),A(7), C0L(104),A(16))J PUT SKIP
EDIT('Amplitude','Anplitude','Anplitude','Failure', 'Amplitude', 'Modulus','Amplitude')(C0L(4),A(9),C0L(20),A(9),C0L(37),A(9),C0L(55), A(7),C0L(71), 
A(9), C0L(88),A(7),C0L(110),A(9));DO 1= 1 TO nn;PUT SKIP

EDIT(BASEDATA(1,1),BASEDATA(1,2),BASEDATA(I,3),BASEDATA(I,4), BASEDATA(1,5),BASEDATA(I,6 ),MODIFE(I))<COL(1),E(14,6),C0L(17),E(14,6), C0L(35),E(14,6),C0L(52),E(14,6),COL(68),E(14,6),C0L(86),E(14,6),COL(104), E(14,6)); 
END;
ROUTE=ROUTE-*1 *,
IF ROUTE =1 THEN 

GO TO AGAIN;FINISH:
END FATIGUE,'

00002320
000023300000234000002350
Q Q Q 0 2 3 6 0
0000237000002380
0000239000002400
0000241000002420000024300000244000002450
000024600000247000002480000024900000250000002510000025200000253000002540000025500000256000002570000025800000259000002600
000026100000262000002630
00002640000026500000266000002670
000026800000269000002700



APPENDIX II

The Mathematical Rëlationship Between the c.o.d.f. and 
The Pole Distribution

The data are measured as a set of data points q(C , n) describing 

the orientation distribution of the pole i as a function of the polar 

and azimuthal angles, cos and D > with respect to the s p 

axes. These data may be described by a series expansion

00 L i Lrr -v -ironq±( ?n5 - n E
1 L=0 m=L

where q J are the series coefficients and PL are the associated 1 g xLm
Polynomials.

The coefficients may be determined due to the orthogonality 

of legendre polynomials i.e.,

+1
’ i

pm rn pm (O d(s) = l if l = l
PL U),PL • 0 if L f L'

-1

hence,

Q
i
Lm 2tt I  j  q. (çn)P^COe-imn dçdn

0 -1

The crystallite orientation distribution function, c.o.d.f., also may



be expressed as a series of spherical harmonics,

w(ÿÇ<J0 =
co L L 
E E £ 
L=0 m=-L n=-

W. Z. fÇ)e Ye Lmn Lmn

where 2, is a generalisation of the associated legendre function and 
Lmn

^Lmn are t*ie series coefficients.
The relationship between the c.o.d.f. and the q^(Cn) and thus

between the coefficients of and W is obtained by setting a temporary^Lm Lmn
co-ordinate system x'y'z* such that the z’ axis coincides with the 

i-plane normal. Thus,

ip' = n and
0

V  = ç

which produces:

r 2tt
q^sn) =

Jo

where is the c.o.d.f.

system. Expanding and W

w ccnd> * D dd>T

with respect to the temporary co-ordinate

oo L 
E £
L=0 m=-L

Qj P?xLm L (Oe
-imp

r2ir
Z Z 
L=0 m=

L
£

•L n=-L
WLmnZL m n ^ e in<̂  d</>•

integrating,

°» L 
E E 
L=0 m=-L «î.,ûim e '“ n

CO L
2ttE Z 

L=0 m=-L WLmOZLmO(-Ç̂ e
-imri



ZL m O ^

by comparison,

Q?" = 2tt Wi nxLm LmO

The relationship between the coefficients and the coefficients

^Lmn *s relate<̂  by the legendre addition theorem:

now since P™ (£) =

WiLmn = [•2L + 1J
+ 1
Z
p=-L

W pPfcos 0 .)e Lmp L 1

This statement represents, for a given value of L, a set of linear 

simultaneous equations with 2L + 1 unknowns. However, crystal and 

specimen symmetry restrict the.values of and W^mn" F°r cubic 

crystal symmetry and orthotropic specimen symmetry:

(i) Q* and WT are real Lm Lmn

(ii) When L = 2 W. = Qj = o Lmn Lm
L t 2K WT = Q. = o Lmn Lm
m ^ 2K W = 0T = 0 Lmn xLm
n f CM W. = Qt = o Lmn Lm

(iii) Wf = W. - = W -  = W -- Lmn Lmn Lmn Lmn

(iv) Q = Q - Lm xLm

Cv) For fixed values of L and m the W. values are linearly relatedLmn
Thus,

(•2 IT f + 1
Qim = 2? ]0 j . j  ^ K iD P jt O c o s  rnn d? dn



00 L L 
Wfijii#) = E E E

L=0 m=-L n=-L
W ZT Lmn Lmn (Ç)cos (mijj+ntJO

and the set of simultaneous equations becomes

L̂m = 2tt [2L + 1
% +LI2 E W
p=-L LmpP?L(cos 0i) . cos (pi>i)

This set of equations, taken together with the conditions i) to v') may

now be solved. The IV coefficients may be determined up to the 22ndLmn
order by measuring two complete pole figures.



APPENDIX III

Cyclic Stress-Strain/Strain-Life Properties of SAE 4161

Specimens were taken in the 90° and the 45° orientations from a 

rolled plate of SAE-4161 steel (0.9% Cr 1% Mn). After rough machining 

the fatigue specimens were quenched and tempered prior to final machin­

ing and polishing of the gauge length. The specimens were tested in 

the same manner as described earlier for the copper specimens and the 

texture measurements were made on specimens cut from the rolled plate 

which were heat treated with the specimen blanks.

The c.o.d.f. is shown in Figure A3-1. The cyclic stress-strain 

curves for the two orientations are shown in Figure A3-2, along with 

the monotonic curves for the two orientations. Figure A3-3 shows the 

strain-life data with the curves which were produced by the parametric

analysis.

The c.o.d.f. shows that the material is textured only very weakly, 

severity parameter =0.11 and the max:fn ht = 1.3. The mechanical 

properties predicted on this basis show a very slight degree of 

anisotropy. The predictions are confirmed by the cyclic and monotonic 

stress strain curves shown in Figure A3-2. (The monotonic curves have 

heen drawn while ignoring the yield points since the yield point effects 

were found to be only small pertubations on the curve and the cyclic 

stress-strain curves do not display this phenomenon thus complicating 

comparisons between the two sets of data). The comparison between the 

cyclic and monotinic data shows the necessity to design on the basis of 

fatigue data rather than monotonic since considerable plastic strain



may be produced by cyclic loading well below the monotonic yield point.

The strain-life data, however, shows a considerable degree of 

anisotropy. Figure A3-3 shows that the cyclic anisotropy is most 

Narked in the range 102 <2Nf <105. This, range of life corresponds to 

strain amplitudes between 5 x 10 3 and 1 x 10 , a range of strain 

amplitudes over which the cyclic stress strain responses of the two 

orientations are very similar.

The anisotropy is, therefore, caused by an effect other than

preferred crystallographic orientation. Examination of the fracture

surfaces revealed a further manifestation of the anisotropy of the

fatigue properties. Macroscopic examination of the fractures showed

that all specimens developed planar fractures but, whereas in the 90

specimens the fracture plane was normal to the stress axis, the fracture
0

Plane in the 45° specimens was steeply inclined to the stress axis.

By comparing the fracture surface orientation with the reference mark- 

lags on the specimens the fracture surfaces were, in all cases found 

to coincide with the transverse plane of the rolled plate (Figure 

^3-4). Scanning electron microscopy of the fracture surfaces showed 

that the fracture was composed of ductile areas separated by regions 

which contained elongated inclusions e.g., Figure A3-5. Energy dis 

Persion x-ray analysis facilitated element mapping and Figure A3-6 shows 

that the inclusion contains a high concentration of manganese. * »

therefore, concluded that the inclusions are the well-known type II 

MnS stringers which have been reported ta have a deleterious influence

i a1» a2°n the mechanical properties of steels

It is difficult to ascribe a definite role to the MnS inclusions 

in accelerating the failure of the smooth sided fatigue specime 

The inclusions may influence both nucleation and propagation of fatigue 

Cracks, indeed the absence of fatigue markings around the inc



may indicate that decohesion has occurred during the rolling processes 

designed to induce texture. Whether or not decohesion occurs prior to 

fatigue the region around the inclusion is subject to the stress con­

centrating effect of the inclusion/void, the fracture path appears to 

be constrained to follow the alignment of the inclusions which are 

known to align parallel to the rolling direction . In the case of the 

90° specimens it is expected that the stress concentrating effect of 

the inclusions would produce accelerated fatigue fracture in the usual 

orientation, normal to the stress axis. In the case of the 45° specim­

ens the fatigue crack is constrained to propagate at 45° to the stress 

axis and the mode I stress intensity amplitude AKj is consequently 

reduced as compared to th'e case in which the inclusions lie perpendicular 

to the stress axis . (Of course, in the case which actually
'  V

Pertains the rate of propagation for slant propagation is greater than 

for 90° propagation with the inclusions at 45° to the stress axis).

The anisotropy in strain-life behaviour may therefore be 

•Ascribed to the stress concentrating effects of aligned inclusions.

The fatigue anisotropy was found to correlate with the monotonic 

fracture behaviour in which the 90° specimens exhibited a 15% reduction 

in area while the R.A. for the 45° specimens was 30%. The fatigue data 

shows that in the regime 102 < 2Nf < 105 the 45° specimens display a 

increase in life of the order of a factor of five. Therefore, although 

the cyclic stress-strain response is adequately predicted by the text­

ure data, the anisotropy of fracture behaviour, for both monotonic 

and cyclic deformation, is controlled by microstructural anisotropy 

in the form of elongated inclusions. Although, in this investigation, 

the texture which was induced in the steel was very weak, it is 

expected that, since the anisotropy due to the inclusions is so 

pronounced, even if very strong textures could be induced the fracture



behaviour would still be dominated by the inclusion content and 

morphology.

Auxiliary Références:

al Baker, T.J. and Charles, J.A., "Effect of Second Phase Particles 

on the Mechanical Properties of Steel", Proc. ISI/BISRA Conf. 

March 1971, ISI (1971).

a2 Kiessling, "The Effect of Sulphide Inclusions on the Mechanical 

Properties of Steel", p.187.

v



V
Tables



TABLE 1

Comparison of the persistent slip band markings on copper and copper-aluminium w

• Copper Copper - 5 atomic %  
aluminium

Distribution of 
pei'sistent 
slip bands

Length of slip 
lines- on (541) 
surface

Length of slip 
line on (111) 
surface

Directions of 
persistent 
slip bands.

Direction of 
bands of 
persistent 
slip bands

Grouped bands, which are 
separated by regions 
of inactive surface

Mostly over 200//m, though 
some are shorter, 
particularly in the 
irregularly shaped bands

Generally considerably 
greater than 20(̂ /m

Delineate trace of primary 
slip plane

Fairly uniform distribution; in 
some regions there are groups 
of persistent slip bands with 
small regions of inactive 
surface between the groups.
This effect is not as prominent 
as in copper.

Mostly 50 to 200//m long, some 
shorter segments.

Generally 100 to 400//m iong, 
but many considerably 
shorter segments in banded 
regions.

Delineate trace of primary 
slip plane.

Often delineate trace of 
primary slip plane, but 
some bands have orien­
tations which do not 
correspond to simple 
crystallographic 
directions

For the crystals studied ( 52, 54) 
very few bands present, the 
orientations of the bands 
present being close to that of 
the primary slip plane, though 
there is no simple crystal­
lographic direction associated 
with them.



TABLE 2CONCENTRATION COELEMENT CAST A CAST B PLATE
P <.005 <.005 . <.001Sb <.02 <•02 <.001Pb <.01 <.01 <.005As <.02 <.02 <.001Si <.02 <.02 <.001Bi <.02 <.02 <.001Mn <.02 <.02 <.001Be <.02 <.02 <.001
Sn <'.02 <.02 v <.001Se <.02 <.02 <.001Cd <.02 <.02 <.001
Zn <.02 <.02 <.001A-3 <.02 <.02 <.001
Ni <.02 <.02 . <.001
Co <.02 <.02 <.001Fe <.02 <.02 <.001A1 <.02 <.02 <.001In <.02 <•02 <.0010 .00045 .00045 .00005



Table 3

Changes in Texture Piyrameters during Simulated Fatigue

Before Simulation After'Simulation

Texture Principal Maximum Texture Principal Maximum Texture
Type texture function severity texture function severity

component(s) height* parameter** components height* parameter**

(a) strong
{l00}<001>

54. 0 5.47 {100}<001> 31.0 3.78 '

(b) weak
{100}<001>

5.0 .0.48 {1C0}<001>
+ {100}<013>V,

9.2 1.34

(c) ret ained 
rolling tube 
{ll0}<112>-* 
{112}<111>

8.6 1.69 retained 
rolling tube 
+{l00}<013>

10.1 2.44

Cd) mixed retained 
rolling + cube .

6.4 1.57
S'

mixed retained 
rolling + cube 
+ {l00}<013>.

8.3 ■ 1.80

(e) {100}<011> 7.7 0.98 {100}<011> + 
{100}<013>

12.4 1.76

(*) random 1.5 0.33 {100}<011> + 5.5 0.91
•

» {100}<013> •

* times random a random texture has a zero value



TABLE 4GRAIN SIZE MEASUREMENTSELEMENT GRAIN SIZE
( M.)

GRAIN SHAPE
11180 5* Elongated in rolling dim.FAREN 4* Elongated along rod axisFBREN 4+ Elongated along rod axisG8585 18« EquiaxedA3500 19« EquiaxedB3500 13« EquiaxedMBCUB 140$ Equiaxed

* Measured on the section n o m a l  to the 10113e 
.dinension of the grain structure,assuMin 
"pancake" grain shap 

ft AssuMing equiaxed grain shape 
$ Measured on the plane parallel to therollin 

plane,assuning equiaxed grain shape

TABLE 5 
TEXTURE DATA

HATERIAL MAJOR MAXIHUM SEVERITY COMPONENT Fn. Ht.
MBCUB 100 <001> 54.0 5.47
11180 100 <011> 7.7 0.98
G8585 100 <011> 4.0 0.52
NUJIG 100 <011> 3.5 0.87
CROCP 100 <011> 2.9 0.72
FAREN <111>FIBRE 10.8 1.65
FBREN <111>FIBRE+ 14.3 1.97

<100>FIBRE 3.0
B3500 <100>FIBRE+ 5.1 0.90

<111>FIBRE 3.28
A3500 <111>FIBRE+ 3.0 0.85

<100>FIBRE 2.85



TABLE 6MECHANICAL PROPERTY PREDICTIONS
MATERIAL ANGLE YIELD R-VALUE ELASTIC MODULUS

TO R.D. STRESS REUSS VOIGT HILL
0 3.013 0.244 117 152 135III80 45 2.884 0.667 93 124 10890 3.010 1.157 114 150 132
0 3.026 0.443 110 145 127G8585 45 2.997 0.769 102 137 11990 3.089 0.564 112 148 130
0 *2.899 0.032 85 111 98MBCUB 45 3.001 0.007 115 150 13390 2.993 0.614 90 120 105
0 3.105 0.716 V122 157 140NUJIG 45 2.984 0.88 99 133 11690 2.922 0.245 108 144 126
0 3.156 0.466 128 161 144

CROCP 45 2.926 1.200 95 126 11090 2.993 0.116 117 152 135
FAREN• TT 3.219 1.309 135 168 151FBREN TT 3.233 1.209 133 165 149B3500 TT 3.086 0.709 115 151 133A3500 TT 3.036 0.937 111 147 130



TABLE 7
RESONANCE BETERNINATION OF MATERIAL SPECIHEN BIMNSCODE ANGLE t 1TO R.D. (H) <Î1)11180 90 4.82E-3 9.49E-245 4.75E-3 1.17E-190 4.43E-3-9.04E-2

88585 45 3.04E-3 1.25E-10 3.84E-3 9.27E-2
90 5.62E-4 8.77E-2

HBCUB 45 4.00E-4 8.47E-20 4.44E-4 8.42E-2FAREN TT 7.52E-4 1.23E-1FBREN TT 7.91E-4 1.24E-1A3500 TT 1.44E-3 1.35E-1B3500 TT 1.21£-3 1.10E-1

ELASTIC NOBULUS
RESONANT FREQUENCIES

209? 5419 1015? 18044-24379 1224 3445 7078 
1713 5137¿7? 198? 3974 4591 1839,4577 13822 
230 552 1109 183?
327 1477 2751 4443 x 183,54? 971 1230 142)18? 544 1087 178718? 432 G5 9 1724311 877 1794 2904 4354 408349 1021 2039 3380 5007

ELASTIC HOBULUSEl 1 Pa AVERAGE(GPa)1.27 1.194 1.17 0.9? 1201.043 1.224 1.195 114
.903 1.14 1071.00 1.134,1.18 1.18 1101.43 1.17 1.02 121.84 .44 .47 .47 .48 4?
1.29 1.14 1.14 1.35 124.78 .93 .75 .80 811.2 1.42 1.37 1.35 133
1.14 .78 .81 1.19 97.97 1.01 1.11 1.07 1051.04 1.18 1.22 1.23 118



TABLE 8THIN SHEET FATIGUE DATA

ORIENTATION

0 AND 90 45

CYCLES TO FAILURE [E+6 cycles.)
1.43+0.16 6.1- 3.0

ANGLE BETUEEN TRACE OF FRACTURE PLANE AND STRESS AXIS
BROAD FACE THIN FACE 90° 9 0 °61 i 1° 641 5°



TABLE  9

MECHANICAL PROPERTIES FOR 18045 MONOTONIC DATA 
ELASTIC N0DULUS=108.5GPa YIELD STRENGTH=328.0MPa.U.T.S.=340.0MPa CYCLIC DATASTRAIN FATIGUE STRESS PLAS.STRN. ELASTICAMPLITUDE LIFE AMPLITUDE AMPLITUDE MODULUS(REVS) (MPa) (GPa)
0.00940 2000 217.0 0.00780 135.ó0.00463 7740 197.0 0.00300 120.80.00275 128260 191.0 0.00097 107.3' 0.00194 358000 178.0 0.00030 108.50.00170 1582800 158.0 0.00030 112.8

TABLE 10

• v

MECHANICAL PROPERTIES FOR 18000 MONOTONIC DATA 
ELASTIC MODULUS-121.¿GPa YIELD STRENGTH=335.0MPa.U.T.S.=350.0MPa CYCLIC DATASTRAIN FATIGUE ■ STRESS PLAS.STRN. ELASTICAMPLITUDE LIFE AMPLITUDE AMPLITUDE MODULUS(REVS) (MPa) (GPa)
0.00482 5060 215.0 0.00313 Í27.20.00281 29700 205.0 0.00113 122.00.00187 173100 175.0 0.00043 121.50.00138 1076400 179.0 0.00019 150.4

MECHANICAL PROPERTIES FOR 18090 MONOTONIC DATA 
ELASTIC MODULUS3111.9GPa YIELD STRENGTH=312.OMPa.U.T.S.=349.0MPa CYCLIC DATASTRAIN FATIGUE STRESS PLAS.STRN. ELASTICAMPLITUDE LIFE AMPLITUDE AMPLITUDE MODULUS

(REVS) (MPa) (GPa)
0.00188 172200 181.0 0.00060 141.40.00113 8147400 147.0 0.00003 133.60.00490 6178 209.0 0.00310 116.1
0.00950 1580 239.0 0.00790 149.3



T ABLE  11

MECHANICAL PROPERTIES FOR G8545 
MONOTCNIC BATA 
ELASTIC M0DULUS=103.5GPa 'YIELD STRENGTH=131.3MPa.U.T.S.=268.0MPa CYCLIC DATASTRAIN FATIGUE STRESS PLAS.STRN. ELASTICAMPLITUDE LIFE AMPLITUDE AMPLITUDE MODULUS

(REVS) (MPa) (GPa)
0.00255 38200 150.0 0.00120 111.10.00250 30200 140.0 0.00125 112.00.00844 720 208.0 0.00625 94.90.00500 3780 187.0 0.00330 110.00.00385 18500 155.0 0.00185 77.50.00149 249720 126.0 0.00060 115.50.00120 3746680 95.4 0.00014 90.00.01000 700 208.0 0.00750 83.20.00387 10200 168.0 0.00225 103.7

*

TABLE 12
V

MECHANICAL PROPERTIES FOR G8590 MONOTONIC DATA 
ELASTIC MODULUŜ  10.OGPa YIELD STRENGTH=119.2MPa.
U.T.S.=272.0MPa CYCLIC DATASTRAIN FATIGUE STRESS PLAS.STRN. ELASTICAMPLITUDE LIFE(REVS) AMPLITUDE(MPa) AMPLITUDE MODULUS(GPa)
0.01000 390 228.0 0.00810 120.00.00510 3740 183.0 0.00325 98.90.00263 60080 149.0 0.00125 107.90.00126 752960 111.0 0.00030 115.60.00350 9340 186.0 0.00212 134.70.00250 88000 158.0 0.00120 121.50.00200 120860 133.0 0.00082 112.70.00146 450000 100.0 0.00028 84.7



TABLE  13

MECHANICAL PROPERTIES FOR FAREN 
MONOTONIC DATA 
ELASTIC MODULUS=126.7GPa YIELD STRENGTH=251.1MPa.
U.T.S.=290.0MPa 
CYCLIC DATASTRAIN FATIGUE STRESS PLAS.STRN. ELASTIC
AMPLITUDE LIFE(REVS)

AMPLITUDE
(MPa)

AMPLITUDE MODULUS(GPa)
0.00805 1872 272.0 0.00603 134.6
0.01006 1334 283.0 0.00775 122.5
0.00205 6200 232.0 0.00076 179.8
0.00503 4280 239.0 0.00331 138.9
0.00404 7998 246.0 0.00213 128.7
0.00099 4300000 118.0 0.00001 120.4
0.00200 87800 225.0 0.00002 113.6
0.00151 345000 181.0 0.00011 129.2
0.00303 17758 271.0 0.00105 136.8

TABLE 14

MECHANICAL PROPERTIES FOR FBREN MONOTONIC DATA ELASTIC MODULUS=125.OGPa 
YIELD STRENGTH=255.2MPa.U.T.S.=310.0MPa 
CYCLIC DATASTRAIN FATIGUE STRESS PLAS.STRN. ELA5TICAMPLITUDE LIFE AMPLITUDE AMPLITUDE MODULUS(REVS) (MPa) (GPa)
0.01000 1286 288.0 0.00760 120.00.01240 268 332.8 0.00958 118.00.00740 2102 267.0 0.00544 136.20.00497 6544 251.0 0.00247 100.40.00305 43560 2 2 9 . 0 0.00122 125.10.00250 80200 225.0 0.00083 134.70.00219 92340 218.0 0.00062 138.80.00319 832 298.0 . 0.00581 125.20.00395 14140 234.0 0.00210 126.40.00200 139140 229.0 0.00027 132.3



TABLE  15

MECHANICAL PROPERTIES FOR A3500 HONDTONIC DATA ELASTIC M0DULUS=115.2GPa YIELD STRENGTHS54.4MPa.U.T.S.=247.0MPa CYCLIC DATASTRAIN FATIGUE STRESS PLAS.STRN. ELASTIC
AMPLITUDE LIFE(REVS) AMPLITUDE(MPa) AMPLITUDE MODULUS(GPa)
0.00200 87490 126.0 0.00089 113.50.00149 227000 135.0 0.00037 120.50.00506 3220 163.0 0.00350 104.4
0.00375 4356 165.0 0.00230 113.70.00502 1400 169.0 0.00359 118.10.00300 11396 156.0 0.00164 114.70.00247 28420 151.0 0.00116 115.2
0.00097 615360 115.0 0.00019 147.4

TABLE 16

MECHANICAL PROPERTIES FOR B3500 MONOTONIC DATA ELASTIC MODULUS-111.2GPa 
YIELD STRENGTH=157.OMPa.
U.T.S.=252.0MPa CYCLIC DATASTRAIN FATIGUE STRESS PLAS.STRN. ELASTICAMPLITUDE LIFE AMPLITUDE AMPLITUDE MODULUS

(REVS) (MPa) (GPa)
0.00197 32500 134.0 0.00083 117.50.00300 12600 159.0 0.00165 117.70.00600 4190 •180.0 0.00431 106.50.00700 1462 184.0 0.00531 103.8
0.00900 1258 185.0 0.00712 98.4
0.00400 6500 165.0 0.00236 100.6
0.00500 4046 170.0 0.00348 111.8
0.00253 12800 145.0 0.00126 114.1
0.00095 1111200 96.8 0.00019 127.3
0.00146 327660 122.0 0.00049 125.7



TABLE 17
FATIGUE DATA ANALYSIS FOR G8545

Fatigue analysis eMploying static Modulus and stress aMplitude to calculate the elastic strain range
STRAIN-LIFE DATA CYCLIC PLASTIC PARAMETERS COFFIN EXPONENT * 4.445437E-01

CYCLIC FRACTURE STRAIN = 1.328072E-01
CORRELATION COEFFICIENT RP = -7.974163E-01CYCLIC ELASTIC PARAMETERS 'BASQUIN EXPONENT = 9.117228E-02CYCLIC FRACTURE STRESS = 3.8341S5E+02CORRELATION COEFFICIENT RE = -9.94S147E-01
MEAN ELASTIC MODULUS = 9.900000E+C4STANDARD DEVIATION = 3.498571E+01CYCLIC STRESS-STRAIN PARAMETERS FROM STRAIN-LIFE DATA CYCLIC STIFFNESS CONSTANT * 5.800869E+02CYCLIC HARDENING EXPONENT = 2.041008E-010.2% OFFSET STRESS = 1.¿21648E+02CYCLIC STRESS-STRAIN ANALYSIS CYCLIC STIFFNESS CONSTANT 5.765171E+02 CYCLIC HARDENING EXPONENT = 2.050918E-010.2% OFFSET STRESS = 1 .¿21<525E+02
CORRELATION COEFFICIENT RC = 9.924557E-Ô1DATA DEVELOPED BY THIS CALCULATIONTotal strain Plastic strain Stress Reversals to Elastic strain Elastic Corrected strainAmplitude AMplitude AMplitude Failure AMplitude Modulus AMplitude

2.550000E-03 1.200000E-03 1.500000E+0.2 3.820000E+04 1.515151E—03 9.900000E+04 2.715151E-03
2.50000tu-03 1.250000E-03 1.40CC00E+02 3.82000CZ+04 1.414141E—03 9.900000E+04 2.464141E-03
8.439999E-03 6.249998E-03 2.08̂ '0Cr+02 7 . 2 Q 0 C C 0 E * 0 2 2.101010E-03 9.900000E+04 8.351006E-03
4.999999E-03 3.300000E-03 1.870000E+02 3.780000E+03 1.838889E-03 9.900000E+04 5.188886E-03
3.850000E-03 1.850000E-03 1.550000E+02 1.850000E+04 1.5<5565*F-03 9.900000E+04 3.415656E-03
1.¿90000E-03 5.999999E-04 1.240000E+02 2.497200E+05 1.272727E-03 9.900000E+04 ' 1.872727E-03
1.200000E-03 1.4CCO0OE-O4 . 9.539999E401 3.746<S80E+0<5 9.43<43<42E-04 9.900000E+04 1.10363AE-03
9.999998E-03 7.499997E-03 2.C-80000E+02 7.00CC.:-jE+02 2.101010E-03 9.900000E+04 9.A01004E-03
3.870C!) Oc-CÎ 2.250000E-03 1.¿Q0000E+02 1.02000ÜE+04 1.¿94970E-03 9.900000E+04 3.944967E-03



TABLE 18
MATERIALS PARAMETERS FROM STRAIN-LIFE ANDCYCLIC STRESS-STRAIN DATA MATERIAL STRAIN-LIFE PARAMETER STRESS-STRAIN PARAMETERS ELASTICPLASTIC ELASTIC STRAIN-LIFEANALYSIS CYCLIC STRESS-•STRAIN ANALYSISNODULUSf —c r f -b r K n S K n S r(MPa) (MPa) (MPa) (MPa) (MPa) (GPa)G 8 5 4 8 .132 .445 .997 383 .0912 .995 530 .2041 162 577 .2051 162 .993 99.G8590 .124 .439 .980 370 .0845 .936 552 .23 7 167 739 .193 169 .983 112A 3 5 0 0 .135 .473 .982 272 .0618 .951 354 .124 157 339 .130 156 .919 118B3500 .213 .504 .979 • 505 .125 .973 737 .181 158 479 .248 155 .966 10518045 .327 .510 .978 295 .0409 .948 322 .0758 196 312 -.0803 195 .917 11518090 .488 .574 .997 327 .0474 .970 346 .0825 207 346 .0825 207 .972 121FAREN .234 .810 .980 597 .104 .971 534 .127 241 529 .128 241 .978 133FBREN .181 . 6 7 7 .981 560 .0875 .980 766 .133 245 564 .1834 246 .938 126B35XX .213 .504 .979 366 .0922 .978 485 .181 155 479 .183 155 .986 122

TABLE 19
FATIGUE CRACK DATA FOR NUJIG

SPECIMEN MODE M C K90.2 FLAT 1.67 7.2E-10 0.306
90.3 FLAT 1.41 3.9E-9 0.074
90.4 FLAT 3.03 7.3E-13 2.372
90.6 FLAT 2.07 8.7E-11 1.069
45.2 SLANT 3.36 1.0E-14 12.6
45.3 SL, ,.,'T 2.78 1.6E-12 4.43
45.5 SLANT 3.31 1.2E-13 7.63



TABLE 20
FATIGUE CRACK BATA FOR CROCPSPECIMEN MODE n C K90.1 FLAT 1.91 3.3E-7 0.53890.2 FLAT 4.42 6.4E-10 3.6290.3 FLAT 3.¿8 2.90E-9 2.61645.1 SLANT 4.35 3.84E-9 2.1245.2 SLANT 2.41 4.81E-8 1.35345.3 SLANT 3.12 5.93-9 2.45?45.4 SLANT 3.33 4.9E-9 2.46

-
TABLE 21

MATERIAL TAYLOR « K" n" V

r S"FACTOR (MPa) (MPa)
FAREN 3.21? 121 .1215 .978 76.4FBREN 3.233 126 .1548 .938 74.5A3500 3.036 96 .1308 .919 51.4B3500 3.986 117 .2482 .986 50.2G8590 3.08? 193 .1927 .983 54.7G8545 2 .997 150 .2268 .993 54.118090 3.010 92 .2075 .972 67.618045 2.884 88 .1951 .917 71.8

COLD UORKED 150 .136 .75 63.2ANNEALED 127 .175 .95 42.6
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A K

urc •: . General form of the dependence of the rate offatigue crack propagation upon the applied stress 
intensity. The dotted line indicates the regime 
in which the relation da/dN = C( AK)m may be applied.



The orientations of the stress axes in the crystals 
employed by Broom and Ham (ref. 12).

C r y s t a l F a t ig u e  S h e a r  S tr e s s , g  m m 1
C y c le s  t o  f a i l u r e

34B ± 700 SO.3007B ± 680 426.000
30 B ± 700 185.0002V B 114.0(H)24B 243.00025B 637.00028B 323.00026B >2 - 10-
32 a35 B31 B

ĵ lgure 3. The cyclic hardening response of aluminium single 
crystals fatigued at a cyclic shear stress = 
^yOOgm mm“2. The orientation of the tensile axes 
with°respect to the crystal axes is shown in the. 
inset. The accompanying table- indicates the 

■ differences in fatigue life (taken from ref. 13).
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—¿S-Ure A,. The S/N curve of copper single crystals expressed 
by Kettunen (ref. 14) in terms of the shear stress 
amplitude on the primary slip system.

The anisotropic cyclic hardening of copper single 
crystals as demonstrated by Patterson (ref. 17).
The inset figures show the relative stress axis 
crystal orientations.' The plots show the maximum resolved shear stresses, in tension and compression, 
as the cyclic hardening occurs.

jj-gure 5.



The data of Sastry et al, illustrating the anisotropy 
of cyclic hardening of silver single crystals (ref. 20).

The cyclic stress-strain curves
copper (---- ) single crystals.
et al (ref. 20).

of silver(------ ) andTaken from Sastryfigure 7 .



crystals and polycrystals expressed by Bhat and Laird 
(ref. 22) in terms of the shear stress amplitude and 
the shear strain amplitude.

9



jj-Rure 9. The development of intrusion/extrusion pairs 
the PSB’s in fatigued copper.

within

5



(Ill)

A B

£jL~LUre 10. From ref. 26. The difference in extrusion rate of
copper single crystals as a function of the shear 
stress on the cross-slip system. Both crystals 
were fatigue hardened, electropolished and then 
given 50 additional cycles. The extrusions are 

5 shown by taper sectioning (ref. 26).



5

Figure 11. The . differences in slip line pattern developed in 
fatigue copper single crystal. Crystal A oriented 
for easy glide. Crystal B oriented so that the 
cyclic stress axis lay close to , (ref. 17).



figure 12.

3

( f t )

Optical micrographs of the fatigue fracture surfaces 
of notched copper single crystals from the work of 
Neumann (ref. 31). Crack propagation is from top 
to bottom. The white markings indicate crack rest 
lines every 400 cycles due to the programmed loading 
employed. The difference in crack front orientation 
is caused by the orientations of the crystals with 
respect to the stress axes and crack fronts.



f igure 13 ♦ SEM Fractographs of fatigue fracture surfaces of 
copper single crystals from ref. 31, which indicate 
that the local direction of crack propagation is always 
perpendicular to <011> directions.



jj-gure 14. The crack propagation data of Donch and Haasen for 
copper single crystals. The inset shows the 
crystal-stress axis orientations, (ref. 33).

S t r e s s  I n t e n s i t y  F a c t o r ,

5 10 20

Figure 15. The crack propagation data of I-shii and Weertmann 
for copper single crystals. The inset shows the 
crystal-stress axis orientations, (ref. 40).
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Figure 17. The S/N data of iron single crystals. Orientation 
of crystals phown in inset, from Hempel ref. 44.

Figure 18. The data of fig. 17 as reanalysed, by Kettunen (ref. 15).



.Figure 19. The lenticular shaped markings due to asymmetric
cyclic slip in torsionally fatigued niobium single 
crystals as reported by Nine ref. 45.

3



.006

Figure’ 20. The S/N data of torsionally fatigued niobium single 
crystals from Nine, ref. 45, indicating that the 
data consist of two distinct populations.

— gpre 21.- a) The Cyclic stress-strain for iron single crystals
reported by Mughrabi and Wuthrich (ref. 51) showing 
a three stage curve.
b) The dependence of the degree of. slip asymmetry 
upon the applied strain amplitude.



Sure 22 The cyclic stress-strain behaviour 
single crystals reported by Etemad

of molybdenum 
and Guiu (ref. 48)

m e  cyclic scress-scrain aaca or uoner ei_ ai ror 
niobium single crystals (ref. 49).

?ure ZJ.



¿•Lgure 24. The shape changes in initially circular cross
section iron single crystals after cycling due to 
slip asymmetry from Mughrabi and Wuthrich (ref. 51).
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Figure 25. The S/N curves of textured polycrystalline materials,
a) cold rolled copper, b) annealed copper, c) cold 
rolled Al-Mg alloy, d) annealed Al-Mg alloy. The 
specimens were taken from the transverse or longitudinal 
directions of the plate as shown (ref. 59).
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Figure 26. The effect of testing direction, rotation of the
stress axis from the sheet rolling direction, upon 
the rate of fatigue crack propagation in grain 
oriented (G-0) and random textured (R) silicon iron, 

i (from ref. 68.)



Number of Cycles

Figure 27 The effect of testing direction 
on the fatigue properties of textured 
T 1 - 4 A 1 - 4 V  plate.(ref.73)



A B

Figure 28 Moulds employed in casting billets for 
extrusion.



w

Figure 29 The stacking sequence used to ensure averaging of the 
quadrant pole figure during the fabrication of composite samples from thin sheet material.



Figure 30 The stacking sequence used to fabricate acomposite from thick 
plate.



<r 7J5* 10 ±3Zl *

Figure 31 Plan drawing of alignment jig employed to slice the blocks produced 
by the bonding process described in figure 30.



Figure 32 Schematic diagram of the starting position of the texture 
specimen in the goniometer circle.This position corresponds to the 
beginning of the spiral in fig.33.



rolling direction

(a)

Figure 33 The spiral path traced by the 
diffracting plane normal during data 
acquisition.The crosses indicate the 
data sampling points.



Figure 34 The thin sheet fatigue specimens produced by filing in a template jig.



• S o

t *Figúre 35 FG-6 fatigue specimen dimensions.



Figure 36 The electropolishing apparatus used for 
FG-6 specimens.



Figure 37 FG-6 specimens after electropolishing.The 
upper specimen shows the finish required.The lower 
specimen shows the strips of tape used to ensure non 
sliding contact.



Driving
Crystal

Detecting
Crystal

Sine-wave
Generator

•Figure 38 Schematic representation of apparatus employed to determine the 
resonant frequency of the copper strips in order to calculate the elastic 
modulus.



1.62  ■5” 1.625" 0.25"

Figure 39 Dimensions of single edge notch (SEN) specimen 
employed in crack propagation experiments.



Figure 40
CRACK PROPAGATION SPECIMENS

Texture (001)1110] * Random 
c.o.d.f. maximum 4-5 
c.o.d.f. severity 0-87



Figure 41 The electropolishing apparatus used 
for SEN specimens.





Complex Crack-opening 
Mixed-Mode

Figure 43 Schematic representation of modesl,ll 
and III opening of a crack,together with a schematic 
diagram of the complex crack orientation observed 
in some specimens.



NORMAL DIRECTION

Figure 44 The set of Euler angles used in the c.o.d.f.
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Figure 56 Low magnification optical micrographs. 
)Crack orientation in a 45 specimenof MBCUB 
)Crack orientation in a 90 specimen of MBCUB



figure 57 Low magnification optical micrograph of 
through-thickness section of 4 5 specimen of MBC.UB.



Figure 58 Stereopair SEM micrograph of fatigue fracture surface of a 45 specimen 
of MBCUB.



Figure 59 SEM micrograph of typical fatigue fracture 
surface in a 90 specimen of MBCUB.Magnification 200x.



Figure 60 Stereopair SEM micrograph of 'chevron' markings showing crack 
propagation on two different planes.Magnification 200x.



Figure 61 SEM micrograph showing that striations are 
continuous across 'chevron' markings.Magnification lOOOx.



a b c
Figure 62 The effect of waveform and frequency on the shape of the 
stress—strain hysteresis loop.(a) Sine-wave,0.1Hz. (b) Sine—wave,1Hz. 
( c ) Triangular-wave,0.1Hz.
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Figure 63 Cyclic stress-strain curve for 18045
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Figure 64 Cyclic stress-strain curve 
for 18090.
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Figure 65 Cyclic stress-strain curve 
for G8545.
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Figure 66 Cyclic stress-strain curve for G8590.
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Figure 67 Cyclic stress-strain curve 
for FAREN.
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Figure 68 Cyclic stress-strain curve for FBREN.
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Figure 70 Cyclic stress-strain curve 
for B3500.
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Figure 71 Strain-life curves for 18045 
Total# Plastic* Elastic»
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Figure 72 Strain-life curves for 18000 and 18090 
Total# PlasticA Elastic»
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Figure 74 Strain-life curves for G8590 
Total# Plastic* Elastic*





Figure 75 Strain-life curves for FAREN 
Total# Elastic» PlasticA





Figure 76 Strain-life curves for FBREN 
Total# Plastic* Elastic«
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Figure 77 Strain-life curves for A3500 
Total^ Plastic a  Elastic ■
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Fiqure 78 Strain-life curves for B3500 
Total# Plastic* Elastic«
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Figure 79 Sample data from crack propagation analysis 
showing a set of data considered to be well fitted 
by the computer program.



Figure 80 Secondary crack on the smooth side of
a cylindrical specimen.SEM micrograph magnification 
200x.



Figure 81 The four different types of surface markings observed on the sides of 
fatigued copper polycrystals.SEM micrographs,magnification 500x.



Figure 82 SEM micrograph of grain which displays long, 
parallel slip markings.magnification 800x.



Figure 83 Stereopair SEM micrograph showing the formation of a fatigue crack near 
a twin-grain boundary intersection.Magnification lOOOOx.



Figure 84 SEM micrograph of a fatigue fracture.The 
angular appearance of the surface is due to crack 
nucleation at two sites.Magnification 15x.

Figure 85 SEM micrograDh of fatigue fracture of 
annealed copper tested in tension-comoression.The 
ductile striations have been preserved in the 
depressions in the surface.Magnification 500x.



Figure 86 SEM micrograph of the fracture surface of 
a specimen of 18090 showing the 'ductile' appearance 
of the surface.Magnification 500x.

F i g u r e  8 7  S E M  m i c r o g r a p h  o f  t h e  f r a c t u r e  s u r f a c e  o f
a s p e c i m e n  o f  1 8 0 4 5  s h o w i n g  'f a c e t s ' . M a g n i f i c a t i o n  5 0 0 x .



Figure 88 SEM micrograph of the fracture surface of 
a specimen of 18090 close to site of nucléation. 
Magnification 150x.

F i g u r e  89 S E M  m i c r o g r a p h  o f  t h e  f r a c t u r e  s u r f a c e  o f
a n  S E N  s p e c i m e n . M a g n i f i c a t i o n  l O O x .



Figure 90 SEM micrograph of the fatigue fracture 
region in a specimen of NUJIG 90 orientation. 
Magnification 800x.
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<i> = 63*4 $ = 71.6
Figure 91 C.o.d.f. plot of material G8545 after 5300 cycles at Ae/2 = .0037. Contour interval 
0.5x random.Max.Fn.Ht. 4.7.Severity 0.68.

I
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Figure 92 The c.o.d. difference function plot 
between fig.91 and fig.49.Contour interval 
0.5x random.Max.Fn.Ht. 3.1.Severity 0.57
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Figure 93 The S/N data of Fair and Le May
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1 18045
2 18090
3 G8590 
U G8545
5 B3500
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7 FBREN
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Figure 95 Summary of the plastic strain 
-life data developed in this investigation.
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Figure 97 The cyclic stress-strain curve for B35XX.
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Figure 98 The strain-life curves for B35XX 
Total# Plastic a Elastic ■
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Figure 99 Comparison o f  the loop shape betwe oecimens c y c l e d  a t  approximately the same str
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Figure 100 The shear cyclic 
stress-strain data for all th 
materials employed in this 
investigation.N.B.linear axes
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Figure 101 Cyclic shear stress-shear strain 
data for annealed materials.
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Figure 102 Cyclic shear stress-shear strain data 
for cold worked materials.
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P o ly c ry s ta l l in e  F a tig u e  c ra c k  n u c lé a t io n

c ra c k  n u c lé a t io n  in  in  a  n o tc h e d  b o d y
a  s o f t  g ra in

F i g u r e  1 0 3  T h e  a n a l o g y  b e t w e e n  a ' s o f t '  g r a i n  i n  a
p o l y c r y s t a l  a n d  t h e  n o t c h  r e g i o n  i n  a  c o n t i n u u m .
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Figure 108 C.o.d.f. plot showing the texture components 
which have been reported to develop during fatigue.
Z Z  present work,uniaxial. ✓'✓'✓''Inakazu and Yamamoto, low amplitude torsion. Vi\Witzel,high amplitude torsion.
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Figure 109 Dislocation cell structure observed 
after high strain fatigue of a copper-base alloy



"t

Figure 110 The cyclic shear stress-strain data 
of Rasmussen and Pedersen (ref.153).The curve 
for the single crystal data is taken from the 
work of Mughrabi (ref.24).



Figure 111 Representation of the ductile propagationof a fatigue crack by the formation of bands of shear at the 
crack tip.



Auxiliary Figures



» G

Figure A3-I C.o.d.f. plot of material SAE-4161CQ T)• 
Contour interval 0.1.Max. Fn.IIt.=1.3x random,severity=0.11



Figure A3-2 Stress-strain curves for SAE-4161(0 T).



Figure A3-3 Strain-life data for SAE-4161(0 T).



Figure A3-4 Schematic representation of the fracture morphology in SAE-4161(0 T).



Figure A3-5 Scanning electron micrograph of fracture surface 
of SAE-4161(0 T),showing elongated inclusion.Magnification 900x.



Secondary electrons X-ray map Mn. X-ray map Fe.

Figure A3-6 SEM fractography of SAE-4161 with X-ray element mapping



Material Codes

MBCUB Thin sheet,cube texture,0,45 and 90 specimens used for constant load amplitude tests.
III80 Thick plate,sheer texture,0,45 and 90 orientations used

for strain-life tests as 18000,18045,and 18090.Cold rolled.
G8585 Thick plate,retained shear texture,45 and 90 orientations 

used for strain-life tests as G8545 and G8590.Annealed.
NUJIG Thick plate,.':hear texture,45 and 90 orientations used for 

crack propagation tests.Cold rolled.
CROCP Thick plate,shear texture,45 and 90 orientations used for 

crack propagation tests.Cold rolled.
FAREN Fibre textured rod,cold drawn from cast A.
FBREN Fibre textured rod,cold drawn from cast B.
A3500 Fibre textured rod,FAREN+3 hours at 770K
B3500 Fibre textured rod,FBREN+ 3 hours at 770K.


