

Investigation and

Optimization of Novel Stack

Structures

Savan Pankajkumar Vachhani

PhD

University of York

Computer Science

December 2018

ii

Simple living and high thinking – Gandhi

iii

ABSTRACT

This thesis revolves around investigation and optimization of SSIA and will

answer the following - Can the performance of SSIA be significantly improved by the

use of advanced design techniques, and will this make them more competitive with

register file? To answer this, a baseline performance model has been presented – and this

was used to measure the enhancement of new SSIA models utilizing custom design

approach (such as wider MOSFET v/s multi-finger MOSFET). The custom design has

been one of the major challenges but using the custom implementation (SSIA_B) we

have been able to reduce the power by 15% and area by 5% from standard cell

implementation. Another custom implementation (SSIA_C) has been able to reduce the

propagation delay by 37% at the cost of the higher area. A tool (SSIA Predictor +

DARWIN) that can assist in the component selection of SSIA has been proposed. Using

DARWIN the higher cost of the area of SSIA_C has been reduced. SSIA designs have

been compared with the previous implementation by Bailey and Mullane and register

files, SSIA is indeed shown to be very competitive with modern register file structures. In

the final analysis, it is clearly demonstrated that significant improvements can be

delivered by advanced VLSI techniques and that the performance and scalability of SSIA

structures compared to register files is greatly improved. The novelty of this research lies

in the thorough investigation and optimization of SSIA.

iv

TABLE OF CONTENTS

Abstract .. iii

List of Figures .. ix

List of Tables ... xiii

Acknowledgements .. xviii

Declaration .. xx

CHAPTER 1 Introduction... 1

1.1 Background ... 2

1.2 Recent Technology Trends ... 4

1.2.1 Miniaturization of technology: 5nm ... 5

1.2.2 Parallelism... 5

1.2.3 Three Dimensional Integrated Circuits (3D ICs) .. 6

1.2.4 Stack Processors: Back to the future ... 7

1.2.5 A concluding remark... 8

1.3 Introduction to Stack Architecture .. 8

1.4 Motivation and Rationale .. 12

1.4.1 Advantages .. 13

1.4.2 Clear lack of research.. 14

1.4.3 Promising results from previous research ... 14

1.4.4 Research Question .. 15

1.5 Thesis Structure .. 16

1.6 Summary ... 19

v

CHAPTER 2 Literature Review ... 20

2.1 Stack Processors ... 20

2.1.1 Stack Processors: First Generation ... 21

2.1.2 Stack Processors: Second Generation ... 25

2.1.3 Stack Processors: 21st Century .. 28

2.1.4 Stack Processors at York .. 30

2.1.5 Stack Processors at York: Superscalar Stack Issue Array (SSIA) 32

2.2 VLSI Optimization ... 36

2.2.1 Introduction ... 36

2.2.2 VLSI Optimization Techniques .. 37

2.2.3 Summary ... 40

2.3 Summary ... 40

CHAPTER 3 Standard Cell Implementation of SSIA .. 42

3.1 Introduction ... 42

3.2 Experimental Setup and Methodology ... 43

3.2.1 Fundamental Components .. 44

3.2.2 Multiplexer .. 54

3.2.3 Design Decisions .. 58

3.3 Fundamental Components .. 60

3.3.1 Area ... 61

3.3.2 Delay ... 63

3.3.3 Capacitance ... 65

3.3.4 Power .. 68

3.4 Multiplexer .. 70

3.4.1 Area ... 71

vi

3.4.2 Delay ... 72

3.4.3 Alternative methodology - for multiplexer simulations................................ 73

3.5 Superscalar Stack Issue Array (SSIA) .. 77

3.5.1 Area ... 78

3.5.2 Delay ... 79

3.6 Summary ... 82

CHAPTER 4 Custom Cell Implementation of SSIA .. 84

4.1 Introduction ... 84

4.2 Transistor Property Variation ... 85

4.3 Fundamental Components .. 89

4.3.1 Area ... 89

4.3.2 Delay ... 91

4.3.3 Capacitance ... 94

4.3.4 Power .. 97

4.4 Multiplexer .. 99

4.4.1 Area ... 100

4.4.2 Delay ... 100

4.5 Cost-benefit analysis ... 100

4.6 2g and 3g Implementation for f2 .. 102

4.7 Equal sized NMOS and PMOS - equalNP .. 103

4.8 Hybrid Multiplexers .. 106

4.9 Comparison of different multiplexer implementations 108

4.10 System-level customisation .. 109

4.11 Summary ... 110

CHAPTER 5 Investigation of SSIA ... 112

vii

5.1 Introduction ... 112

5.2 Methodology ... 113

5.2.1 Area ... 115

5.2.2 Delay ... 115

5.2.3 Power/Energy Consumption ... 118

5.2.4 Performance Parameters of an SSIA Version ... 124

5.3 Manual Selection for SSIA ... 124

5.3.1 Area ... 124

5.3.2 Delay ... 126

5.3.3 Power .. 129

5.3.4 SSIA Predictor .. 130

5.4 Automated selection for SSIA using DARWIN ... 133

5.4.1 Section DARWIN ... 133

5.4.2 Comparison with manual selections ... 136

5.4.3 Analysis of DARWIN Recommendations .. 140

5.4.4 Summary ... 143

5.5 Comparison with Previous SSIA implementations .. 144

5.6 Summary ... 150

CHAPTER 6 Evaluating Future OpportunitIes for Advanced VLSI Design Techniques

... 151

6.1 Dynamic-logic .. 151

6.2 Power gating ... 154

6.3 MOS Current Mode Logic (MCML) Implementation 158

6.4 Summary ... 159

CHAPTER 7 Conclusion and Future Work .. 161

7.1 A Reminder of the Research Question ... 161

viii

7.2 Summary of Contributions .. 162

7.2.1 Develop a Baseline Performance Model ... 162

7.2.2 Evaluate the custom design approach ... 163

7.2.3 Compare the SSIA Structures ... 163

7.2.4 SSIA versus Register File Models .. 164

7.2.5 Advanced VLSI Design Techniques ... 164

7.3 Discussion of Contributions .. 165

7.3.1 Develop a Baseline Performance Model ... 165

7.3.2 Evaluate Custom Design Approach .. 165

7.3.3 Compare the SSIA Structures ... 166

7.3.4 SSIA versus Register File Models .. 166

7.3.5 Advanced VLSI Design Techniques ... 167

7.4 Opportunities for Future Work and Refinements ... 167

7.5 Concluding Remarks ... 168

APPENDIX A Dataset .. i

Abbreviations .. ii

Bibliography .. vi

ix

LIST OF FIGURES

Figure 1-1: 1965 estimation by Gordon Moore about the number of

components(transistor) per integrated function (IC chip) for the next ten years. [9]. 3

Figure 1-2: Number of transistors(000), clock speed (MHz), Power (W), and

Performance/Clock (ILP) for Intel CPUs from 1970 to 2000. [3]. 4

Figure 1-3: Four common types of instruction set architecture based on the storage

location of their operand [15]. .. 9

Figure 1-4: A block diagram for the architecture of a generic register machine [16]. 11

Figure 1-5: A block diagram for the architecture of a generic stack machine. [17]. 12

Figure 2-1: Two stills from BBC Micro episode about Transputer which are

depicting parallel processing capability [33]. ... 27

Figure 2-2: Possible number of instruction-per-clock (IPC) in the stack code. [8]. 32

Figure 2-3: Diagram of 4-issue wide and 4-elements deep Superscalar Stack Issue

Array (SSIA). .. 33

Figure 2-4: Propagation delay of various multiplexer implementations for issue

widths 1 to 4 [1]. ... 34

Figure 2-5: FO4 delay data for various register files and SSIA by Bailey and Mullane

with respect to the number of Read+write ports [1]. .. 35

Figure 3-1: Fundamental Components (a) Inverter schematic (b) Tristate buffer

schematic (c) Inverter symbol (d) Tristate buffer symbol. ... 44

Figure 3-2: Layout and symbol of a transistor side-by-side. ... 45

Figure 3-3: Layouts of fundamental components (Left layout – inverter; Right layout

– tristate buffer) of SSIA (with rulers). ... 46

Figure 3-4: A typical test bench which has an inverter as UUT and has a fanout of

four. ... 47

Figure 3-5: Output waveforms of an inverter when supplied with a square wave

signal as input. .. 48

x

Figure 3-6: Superimposed input and output waveform of an inverter showing

propagation delay. ... 49

Figure 3-7: Equivalent Resistance –Capacitance model for an inverter. 50

Figure 3-8: The capacitance calculation for two connected inverters based on the

equivalent model in Figure 3-7. .. 51

Figure 3-9: Screenshot of capacitance calculation using Cadence Virtuoso [64]. 52

Figure 3-10: Screenshot of power calculation using Cadence Virtuoso [64]. 53

Figure 3-11: (a) Schematic for 2g (b) Symbol of 2X1 multiplexer 55

Figure 3-12: A typical test bench which has 2X1 multiplexer as UUT and has a

fanout of 4. .. 55

Figure 3-13: A simple box diagram if the layout of the 2X1 multiplexer is to be

produced. ... 57

Figure 3-14: Picture showing the layout of two distinct transistors and their layout

when abutted. .. 61

Figure 3-15: Test benches for fanout of 1, 4 and 8 commonly used in experiments. 63

Figure 3-16: Graph showing the trend of propagation delay across various fanouts

and schematic, layout for fundamental components. .. 65

Figure 3-17: Diagram showing a transistor level schematic of the test benches to

explain their capacitances at nodes. .. 68

Figure 3-18: 3X1, 4X1 and 5X1 Multiplexer Schematics and Symbols (Left to right). . 71

Figure 3-19: 2g (ganged component) (a) schematic (b) symbol. 74

Figure 3-20: : 3g (ganged component) (a) schematic (b) symbol. 74

Figure 3-21: Layout of 2g(top) and 3g(bottom) ganged components. 75

Figure 3-22: Diagram of 4-issue wide and 4-elements deep Superscalar Stack Issue

Array (SSIA). .. 78

Figure 4-1: Screenshot of properties(such as width, length, numbers of fingers etc.)

of n-channel MOSFET from Cadence. ... 86

Figure 4-2: Layout of Inverter (a)FW = 1, and (b) FW = 3. .. 87

Figure 4-3: Transistor (n-channel) layouts (a) Normal (b) Multi-finger (c) Wider. 88

xi

Figure 4-4: Layout of Tri-state Buffer (a)FW = 1, and (b) FW = 4. 88

Figure 4-5: Graph showing the trend of increment in areas of wider and multi-finger

inverters for each finger width/multiplier. .. 90

Figure 4-6: Graphs showing the comparison for wider and multi-finger

implementations of inverter and tri-state buffers. ... 93

Figure 4-7: Diagram showing the change of capacitance on changing finger width for

tri-state buffer with a fanout of four. .. 94

Figure 4-8: Layout of (a) inverter, and (b) inverter_equalNP. 104

Figure 4-9: Schematic of hybrid multiplexers (a) 3X1_hybrid, (b)4X1_hybrid, and

(c)5X1_hybrid. .. 107

Figure 5-1: SSIA_A version of SSIA (depth = 8). .. 114

Figure 5-2: Delay dependency chart. ... 116

Figure 5-3: Static Power Consumption of Multiplexers. ... 121

Figure 5-4: Cadence screenshot of power/energy calculations of the tri-state buffer. .. 122

Figure 5-5: Simple flow chart of SSIA Predictor. ... 130

Figure 5-6: Simple flow chart of SSIA Predictor and DARWIN. 133

Figure 5-7: Screenshot of DARWIN (State - Reset). .. 136

Figure 5-8: Screenshot of DARWIN (State – Evolved for Area). 136

Figure 5-9: Graph of SSIA_A evolution for area optimization. 137

Figure 5-10: Graph of SSIA_A evolution for delay/speed optimization. 138

Figure 5-11: Graph of SSIA_C evolution for area optimization. 140

Figure 5-12: Graph of SSIA_F evolution for better area and speed. 142

Figure 5-13: SSIA and register file comparison by Bailey & Mullane (2014). 146

Figure 5-14: SSIA_A superimposed over Bailey & Mullane comparison graph. 147

Figure 5-15: Comparison graph of SSIA_A, SSIA_H and register file. 149

Figure 5-16: Comparison graph of SSIA_H and register files. 149

Figure 6-1: Dynamic-logic schematic, waveform and an example circuit [72]. 152

xii

Figure 6-2: Schematics of tristate buffers (a) Standard tristate buffer, (b) 3T tristate

buffer and (c) 4T tristate buffer. ... 153

Figure 6-3: Power gating diagram for a 3X1 multiplexer showing header switch and

footer switch.. 155

Figure 6-4: Graphs showing propagation delay getting closer to normal with an

increase in the size of a powergated transistor for multiplexers. 156

Figure 6-5: Graphs showing GND bounce and VDD bounce getting closer to normal

with an increase in the size of a powergated transistor for multiplexers. 157

Figure 6-6: Graphs for 5X1 multiplexers for the investigation related to the impact of

header switch and footer switch (Quadrant 1)propagation delay, (Quadrant 3)VDD

swing and (Quadrant 4)GND swing. .. 158

xiii

LIST OF TABLES

Table 2-1: Prefix and postfix mathematical notation for expression [2*(3+3)/3]. 21

Table 3-1: Length, width and area of fundamental components inverter and tristate

buffer. .. 48

Table 3-2: Inverter delay data. ... 50

Table 3-3: Fixed and variable, input and output capacitance of schematic and layout

of inverter in femtofarad. .. 52

Table 3-4: Static and peak dynamic power consumption of inverter in nW.................... 54

Table 3-5: Length, width and area of a 2X1 multiplexer. .. 57

Table 3-6: Propagation delay data for the 2X1 multiplexer which has a fanout of

four. ... 58

Table 3-7: Length, width and area of fundamental components and abutted tristate

buffer. .. 62

Table 3-8: Schematic and layout propagation delay data of an inverter for fanout

ranging from 1 to 8. .. 64

Table 3-9: Schematic and layout propagation delay data of a tri-state buffer for

fanout ranging from 1 to 8. ... 64

Table 3-10: Fixed and variable, input and output capacitance of schematic and layout

of inverter for fanout ranting from 0 to 8 in femtofarad. .. 66

Table 3-11: Fixed and variable, input and output capacitance of schematic and layout

of tristate buffer for fanout ranting from 0 to 8 in femtofarad. ... 66

Table 3-12: Peak dynamic and static power consumption of an inverter in nanowatts

for low to high and high to low input transitions. ... 69

Table 3-13: Peak dynamic and static power consumption of a tristate buffer in

nanowatts for low to high and high to low input transitions. ... 70

Table 3-14: Calculated length, width and area of multiplexers of SSIA. 72

xiv

Table 3-15: Propagation delay of 3X1, 4X1 and 5X1 of SSIA for relevant fanouts in

picoseconds. .. 72

Table 3-16: Calculated length, width and area of ganged components and their

respective multiplexers. .. 76

Table 3-17: Propagation delay of 2X1 and 2X1g for fanouts 1,4 and 7 in

picoseconds. .. 76

Table 3-18: Length, width and area of multiplexers designed using ganged

components with a column for normal values for comparison. .. 77

Table 3-19: Propagation delay of ganged 3X1, 4X1 and 5X1 of SSIA for relevant

fanouts in picoseconds with columns for normal and the difference. 77

Table 3-20: Area of SSIA and ganged SSIA for depths 4 to 8 of the stack. 79

Table 3-21: Individual delay of the component (multiplexer) of SSIA. 80

Table 3-22: Individual delay of the component (ganged multiplexer) of SSIA. 80

Table 3-23: Cumulative delay of the component (multiplexer) of SSIA. 81

Table 3-24: Cumulative delay of the component (ganged multiplexer) of SSIA. 82

Table 4-1: Area of fundamental components for various finger widths in um2. 90

Table 4-2: Areas of wider and multi-finger inverters for comparison. 90

Table 4-3: Propagation delay of wider and multi-finger inverters for fanout ranging

from 1 to 8 (schematic simulations).. 91

Table 4-4: Propagation delay of wider and multi-finger tri-state buffers for fanout

ranging from 1 to 8 (schematic simulations). ... 92

Table 4-5: Propagation delay of inverter and tri-state buffer for finger widths 1 to 4

and fanout ranging from 1 to 8 (layout simulations). ... 93

Table 4-6: Total input and output capacitance of inverter of finger widths 1 to 4 for

fanout ranging from 0 to 8 in femtofarad. ... 95

Table 4-7: Total input and output capacitance of a tri-state buffer of finger widths 1

to 4 for fanout ranging from 0 to 8 in femtofarad. .. 96

Table 4-8: Peak dynamic and static power consumption of an inverter of finger width

1 to 4 for fanout ranging from 1 to 8 in nanowatts for low to high and high to low

input transitions. .. 97

xv

Table 4-9: Peak dynamic and static power consumption of a tri-state buffer of finger

width 1 to 4 for fanout ranging from 1 to 8 in nanowatts for low to high and high to

low input transitions.. .. 98

Table 4-10: Calculated area of 3X1, 4X1 and 5X1 of finger widths 1 to 4 in um2. 99

Table 4-11: Propagation delay of multiplexers (of finger widths 1 to 4) of SSIA for

relevant fanouts in picoseconds in picoSeconds. .. 99

Table 4-12: Delay comparison relative to finger width 1 for fundamental

components. .. 101

Table 4-13: Delay comparison relative to finger width 1 for multiplexers. 102

Table 4-14: Length, width and area of ganged components and ganged multiplexer of

finger width 2 in um2. ... 103

Table 4-15: Propagation delay in picoseconds of finger width 2 ganged 3X1, 4X1

and 5X1 of SSIA for relevant fanouts in picoseconds with columns for normal and the

difference. ... 103

Table 4-16: Area of equalNP and normal components. ... 105

Table 4-17: Propagation delay data of 3X1 Multiplexer made using Custom

Fundamental Components. ... 106

Table 4-18: Area of normal and hybrid multiplexers. ... 107

Table 4-19: Propagation delay data of hybrid multiplexers. .. 108

Table 4-20: Multiplexers and their possible versions. ... 109

Table 5-1: Configuration of SSIA_A (standard cell version). 114

Table 5-2: Cumulative Delay of SSIA_A Components. .. 117

Table 5-3: Static power consumption data of fundamental components. 120

Table 5-4: Static power consumption data of multiplexers. .. 120

Table 5-5: Energy consumption of inverter for various fanouts in femtojoules. 122

Table 5-6: Energy consumption of tri-state buffer for various fanouts in femtojoules. 123

Table 5-7: Energy consumption of various multiplexers. .. 123

Table 5-8: Performance parameters of SSIA_A (the standard cell version). 124

Table 5-9: Different versions of 3X1 multiplexers and their area. 125

xvi

Table 5-10: Configuration of SSIA_B (lowest area version). 125

Table 5-11: Performance parameters of SSIA_B (lowest area version). 126

Table 5-12: Cumulative delay of SSIA version made up of finger width 3 MOSFETs. 127

Table 5-13: Cumulative delay of SSIA_C components. .. 128

Table 5-14: Configuration of SSIA_C (lowest delay version). 128

Table 5-15: Performance parameters of SSIA_C (lowest delay version). 129

Table 5-16: Lookup Table.. 132

Table 5-17: Performance parameters of SSIA_A (the standard cell versions). 135

Table 5-18: Performance parameters of SSIA_B (lowest area version). 137

Table 5-19: Configuration of SSIA_D (A DARWIN Recommendation)...................... 138

Table 5-20: Performance parameters of SSIA_D. ... 139

Table 5-21: Configuration of SSIA_F (A DARWIN Recommendation). 141

Table 5-22: Performance parameters of SSIA_F and SSIA_C. 141

Table 5-23: Configuration of SSIA_G (A DARWIN Recommendation)...................... 142

Table 5-24: Performance parameters of SSIA_G. ... 143

Table 5-25: Cycle time and Access time for SSIA designed in UMC 90nm................. 145

Table 5-26: Cycle time and Access time for SSIA_A. .. 147

Table 5-27: Cycle time and Access time for SSIA_H. .. 148

Table 6-1: Rise time and fall time propagation delay of various kinds of tri-state

buffers. .. 154

Table 6-2: Propagation delay of multiplexers in picoseconds for powergated

transistor of finger widths 1, 3, 6 and 9. ... 156

Table 6-3: Speculated propagation delay data for the MCML multiplexer. 159

Table 6-4: Prediction for SSIA based on the speculation shown in table 6-3. 159

Table A-1: Propagation delay data of old and new implementation of SSIA..................... i

xvii

xviii

ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude to my supervisor Dr

Christopher Crispin-Bailey for his guidance, ideas, and the support throughout my

studies. I thoroughly enjoyed having a discussion with him, even though it got intense at

times. Dr Crispin-Bailey’s expertise in the field and moral support has been invaluable,

and I am especially grateful for his help in arranging the funding for PhD. This PhD

studies happened because Dr Crispin-Bailey accepted my request for a summer internship

way back in 2012 (made through a cold email). Thanks also go to members of my Thesis

Advisory Panel (Dr James Walker, Dr Jim Austin and Dr Leandro Soares Indrusiak) for

their suggestions, feedback and questions.

The funding for PhD came from various places – Department of Computer

Science at York, Bestway Foundation, Sidney Perry Foundation, Vegetarian Charity,

Ameobi Hardship Fund for International Students (AHFIS), and loans from friends and

family – I am eternally grateful for the generosity of all of them.

This PhD studies wouldn’t have started (and finished!) without my family. It is

my father’s unconditional faith in me that gave me the courage to take on this arduous

adventure. Lows experienced during this journey would have been impossible to navigate

without the support & inspiring words from my mother, my sister (Shreya) and my

brother-in-law (Rashesh). My sister (Shruti) and my brother-in-law (Hardip) had to

xix

endure the most because they are here in the UK. I can’t thank them enough for all they

have done for me.

Last but not the least I thank my friends – Amit and Arpita became my family in

the UK; Florence, Kuntal, Moon and Zhenyu took care of me like an elder siblings would

do; I couldn’t have asked for a better housemates then Izabela and Pratik; Holgate Hall

family (especially Christine, Helen, Konstantinos (Kosta) and Sue) has been my rock;

Chaitanya and Mudita have provided very good emotional support. There are many more

whom I met at York – all have been very supportive in more ways than I can mention

here! My time in York has become far more special because of meeting you all, I will

cherish the time we shared for the rest of my life.

xx

DECLARATION

I declare that this thesis is a presentation of original work and I am the sole

author. This work has not previously been presented for an award at this, or any other,

University. All sources are acknowledged as References.

I declare that the spreadsheet mentioned in section 5.4 has been developed by Dr

Crispin-Bailey and the data in it has been obtained from experiments conducted by me.

I certify any ideas, techniques, quotations, or any other works of other people

included in my thesis are fully acknowledged in accordance with the standard referencing

practices.

1

CHAPTER 1

INTRODUCTION

Superscalar Stack Issue Array (SSIA) is a novel stack structure that has the

superscalar capability on top of other advantages. This thesis revolves around the

investigation and optimization of SSIA, which was proposed by Bailey and Mullane [1],

more details on SSIA will be presented in CHAPTER 2 of the thesis.

According to key texts of Computer Architecture, there are four kinds of

processor based on internal storage structures, and one of these kinds uses the stack-based

structure for internal storage – they are widely known as Stack Processors. SSIA will

find its usage in the stack processors. Hennessy and Patterson, writers of one of the key

texts on computer architecture, argue against the stack processors based on historical

arguments [2]. One of the reasons for stack processors’ limited capability is due to

unavailability of parallelism in stack processors – SSIA is designed to overcome this

particular limitation. Nowadays improving computer processors is becoming more and

more difficult [3] , many also believe we are near to the end of semiconductor scaling [4]

– more on this is in the next section (1.1). Hence it’s important to look at the alternatives

– more details on this in section 1.2. At the Advanced Computer Architecture Group

(ACAG) of University of York, we are investigating if Stack Processor can offer any

advantages [1] [5] [6] [7] [8]. One of the next things to investigate is VLSI Optimization

2

for stack processor to equalize the playing field with the widely popular counterpart –

register-based processors. This thesis aims to make progress in the direction of VLSI

Optimisation for stack processors.

1.1 Background

Gordon Moore, the co-founder of Intel and then director research & development

division of Fairchild Semiconductor, predicted in 1965 that by the year 1975 the number

of components in the single integrated chip (IC) will be 65,000, by doubling every 12

months. This prediction is widely known as Moore’s Law. Later in 1975 Moore revised

this statement that the numbers of components will double every 24 months. Till today

this prediction remains valid, in fact, revised prediction can be considered little

pessimistic because the number has roughly doubled every 18 months. The constant

doubling of components has been achieved mainly by miniaturization of semiconductor

device fabrication node. The latest technology nodes today, which are in mass production

and available to consumers, are 14nm/10nm/7nm. ‘14nm’ in the 14nm technology node is

typically the size of process’ gate length. It is this consistent miniaturization which allows

Moore’s law to remain valid till today. But this progress wasn’t a straightforward task.

There were many challenges that needed to be tackled to continue the miniaturization and

in sustaining Moore’s law. Some of these challenges are mentioned below.

• For 180nm technology of 1999, the conductor in use was too resistive, so

engineers replaced aluminium with copper [4].

• For 130nm technology of 2001, features were smaller than light wavelength, thus

conventional lithography was replaced with computational lithography [4].

3

• For 90nm technology of 2004, there was a limitation in the active current – this

was overcome by strained silicon [4].

• For 45nm technology, the gate leakage was limiting downscaling of technology,

so the conventional metal gate was replaced by Hi-K metal gate [4].

Figure 1-1: 1965 estimation by Gordon Moore about the number of

components(transistor) per integrated function (IC chip) for the next ten years. [9].

Figure 1-1 is a prediction graph drawn by Moore for Moore’s Law in his

revolutionary paper published in 1965 [9]. Figure 1-2 is a graph of CPU trend and it

validates Moore’s prediction (the green line – the number of transistors) [3]. It can be

seen in Figure 1-2 that clock speed (blue line) started to stall after 2004 – which was

consistently increasing at the beginning. The same can be said for instruction level

parallelism too (Purple line – Perf/Clock).

4

1.2 Recent Technology Trends

Constant efforts are being made by the semiconductor industry to sustain Moore’s

law (or in other words to continually enhance processors’ performance), some of the

recent innovations, of widespread interest, are listed below.

Figure 1-2: Number of transistors(000), clock speed (MHz), Power (W), and

Performance/Clock (ILP) for Intel CPUs from 1970 to 2000. [3].

5

The following sub-sections will provide more details on the below-mentioned

ideas/innovations.

• Miniaturization of technology: 5nm

• Parallelism

• Three Dimensional Integrated Circuits (3D ICs)

• Stack Processors: Back to the Future

1.2.1 Miniaturization of technology: 5nm

As mentioned earlier, Moore’s law has remained valid since 1965, mainly

because of this particular approach. It is widely believed that this will continue for some

time. The latest development (as of September 2018) in this direction is the development

of Apple’s A12 Bionic processor using 7nm technology node, for the mass consumer

market. Next in line is 5nm technology which is expected to arrive in 2020. Intel has

confidently announced that Moore’s law isn’t going to end any time soon. However, Intel

hadn’t revealed the next big invention yet [10]. Though looking at the history this is

evident, because Intel usually hadn’t revealed its innovation well in advance. One of the

Intel’s technical manufacturing managers mentioned that Intel hadn’t stopped working on

its past inventions and is continually evolving them e.g. Intel is still working on the

fourth generation of strained silicon, the third generation of the high-k metal gate and the

second generation of tri-gate.

1.2.2 Parallelism

One of the topics of interest is parallelism – thread level parallelism. This may not

be helpful in sustaining Moore’s law but can certainly improve the processor’s

performance. Tasks performed by processors can be categorized into either serial task or

6

parallel task. In a heterogeneous architecture (CPU & GPU combined) the task of serial

nature will be executed by CPU, whereas those of parallel nature will be better executed

by GPU because of their expertise in respective areas. Therefore having a heterogeneous

system of CPU and GPU can enhance the performance. Its working example is an

internet browser Internet Explorer. IE 9 has a capability of harnessing heterogeneous

system architecture and according to experts IE 9 has been 400% faster than IE 8 for

certain web pages [10]. AMD is one of the leading companies working on developing

heterogeneous system architecture. Another kind of parallelism is Instruction Level

Parallelism (ILP) where multiple instructions can be executed simultaneously. ILP is a

standard feature in register-based architectures but was believed to be impossible for

stack-based architecture, but some efforts have been made in this direction [1] [5].

1.2.3 Three Dimensional Integrated Circuits (3D ICs)

In section 1.1 and 1.2.1, it was explained that cramming more and more

components and scaling down of technology node is becoming more and more difficult.

One way to overcome this problem is to use the third dimension, instead of planar 2D

contemporary version. 3D IC is just one way of utilizing the third dimensions in

semiconductor technology [11]. Apart from Moore’s law being sustained, there are other

advantages too of using the third dimension, such as heterogeneous integration, design

and circuit security [12].

Another effort, slightly different from 3D ICs, is related to changing the building

block of the IC – the transistor. IBM recently tweaked transistor, a basic element of an

integrated circuit. The new transistor contains one atom thick graphene layer coating [4].

Major issue after cramming a large number of components into a chip is leakage current.

7

Leakage current leads to power loss and heating. The coating helps overcome the leakage

current. Consequently, this technique is believed to be a saviour for Moore’s law and will

cut down the cost of computing. Though this transistor is yet to be used in any chip and

has only been demonstrated for a simple circuit. It is expected to come out as a chip

before 2020. Further, it is hoped that this technology will enable to scale clock speed of

transistor to 100 GHz [5].

1.2.4 Stack Processors: Back to the future

As mentioned earlier on page 1 that here, at Advanced Computer Architecture

Group (ACAG) of University of York, we are investigating if stack processors can help

sustain Moore’s law or in other words improve the performance of processors using an

alternative architecture. Literature review suggests that stack processors are an excellent

choice for small embedded systems because of their inherent advantages, mentioned later

in this document [13]. It was also found that they could be attractive for many-core

systems as well. As the vast majority of processors in the real world are embedded in

nature stack processors appear appealing field of investigation. One bottleneck to stack

processors that has resisted many attempts to overcome it is the inability to support ILP,

as mentioned earlier, however the past research conducted at ACAG on stack processors

busted a myth that stacks processor doesn’t do parallelism and thorough investigation for

Instruction level parallelism had already been done by Brendan and Mullane, and the

door now seems open for ILP to be exploited in stack processors [1] [6]. Scheduling

techniques, already very much used in register-based processor, was also proposed and

integrated into a novel C compiler [7]. Currently, ACAG is working on NOMAD, a novel

8

superscalar stack processor, funded by Technology Strategy Board (now called Innovate

UK) and Cybula [14].

1.2.5 A concluding remark

The above list by no means is supposed to be comprehensive and is just to give an

idea about some of the efforts made by the community of researchers to enhance the

processor performance. Trends presented above are the only tip of the ice-berg for

technologies/ideas out there, but it’s safe to say that there are plenty of ways to

continually improve the performance of the processor, whether Moore’s Law may sustain

(or not!), as explained above in this section.

1.3 Introduction to Stack Architecture

According to Hennessy & Patterson, there are 4 major class of processor based on

instruction set architecture and their internal storage [15]. Among them, the class of

processors which uses stack structure for internal storage is stack-based processors and is

widely known as stack processors.

9

Figure 1-3: Four common types of instruction set architecture based on the storage

location of their operand [15].

Stack processors have been around since the early days of computers. In fact,

stack processors dominated the industry back then. Two generations of stack processor –

entirely independent of each other – can be found in the literature. The first generation,

like any other early days computers, were aimed at complex mathematical computation,

whereas the second generation, mostly initiated by Charles Moore, covered the chip

based, application specific processors. Current days’ stack processors are still considered

to be part of the second generation. More details on both generations have been covered

in section 2.1 of the literature review chapter of the thesis. JAVA, one of the most

important modern day programming languages, can also be associated with the stack.

Compilers of JAVA produce an intermediate language called Java Bytecodes. Processing

of Java Bytecodes requires a software interpreter called Java Virtual Machine (JVM).

JVM uses stack-based architecture. Thus JVMs are the most recent or say modern days

stack processors. The purpose of the JVM is to provide software compatibility across

many platforms, with the hope of “write once, run everywhere.”

Stack processors can be better understood by reflecting on its differences from the

register-based processor. Figure 1-4 and Figure 1-5 represent architectures of both types

of processor architecture in a highly simplified form. Both architectures have different

process unit. Arithmetic and logic unit (ALU) of stack-based architecture obtains its

operand from the stack. These operands are the top two elements of the stack and implicit

to ALU whereas ALU of register-based architecture has to define their operands

explicitly. Operands of register-based architecture can come either from registers or from

10

memory. The same operation is performed differently in both processors architecture.

Following the example of the addition of two numbers, A and B will further clarify the

differences between the two architectures. The register-based processor will use two

registers R1 and R2. Initially, data will be moved to these registers and later these two

registers will be added after explicit addressing. Result of addition will be stored in the

accumulator register. Pseudo code for this operation is shown below.

MOVE R1 A

MOVE R2 B

ADD R1 R2

Whereas in stack processors PUSH instruction will put both numbers on the stack

then instruction ADD will implicitly add both numbers and put the results on the top of

the stack. Pseudo code for this operation is shown below.

PUSH A

PUSH B

ADD

11

Figure 1-4: A block diagram for the architecture of a generic register machine [16].

12

Figure 1-5: A block diagram for the architecture of a generic stack machine. [17].

1.4 Motivation and Rationale

Key motivations to research the stack processors are as follows. Firstly, due to the

advantages of stack processors such as simpler architecture which can be advantageous

in the niche area where simple and small microprocessors are required. Secondly, it

appears that there is a clear lack of research in this area because prominent ideas such as

parallelism and multi-core processing haven’t been investigated for the stack-based

processor. Thirdly, previous research at York (and elsewhere) has shown promising

13

prospects for stack processors. The following sub-sections goes into more details of just

now mentioned key points. The last sub-section (1.4.4) states the rationale in the form of

a research question. The research question also sets out a task that needs to be

completed to answer the research question. The work in thesis keeps coming back to

these tasks to make sure our efforts are in the desired direction.

1.4.1 Advantages

Stacks are considered to be the most basic structure that can be used in processing

well-structured code [17]. Further, the efficiency of the stack at an expression evaluation

is a well-known fact in the industry. Implicit addressing scheme of stack entails quite a

few advantages – such as retrieval of an operand for the computation without specifying

the location. Implicit Addressing combined with simpler instruction complexity offers

added advantages, which includes small program size, better processor performance, fast

procedure calls & interrupt handling, less processor & system complexity, and suitability

for the embedded system [17]. As a smaller program reduces the requirement of memory

and power in the processor, it also benefits the stack processor. A procedure call,

interrupt handling and recursion can be handled more effectively by stack-based

processor then register-based processor. System complexity & processor complexity are

well maintained in stack processor compared to CISC, which has more processor

complexity, and RISC, which has more system complexity. These specific advantaged

makes stack processors preferable over register-based processors for application

requiring embedded systems. Stack processors are also much more efficient at running

certain types of the program than the register-based machine, particularly program which

is well modularized [17].

14

1.4.2 Clear lack of research

‘Computer Architecture: A Quantitative Approach’ is a key text written by

Hennessy & Patterson on the field that details architectural ideas and compiler

technologies developed over the past 60 years. Only a few mentions of stack processors

in this book give the impression that there is a clear lack of research in this area. This

belief is further strengthened by the fact that investigation of Instruction Level

Parallelism (ILP) for stack processor is a very recent activity (2006), whereas researchers

have fully exploited ILP for register-based processors by 2004 (such inference is because

Hennessy & Patterson stated that now there is very limited scope left for ILP in register-

based machine). Further, it is widely believed that stack machine will involve a huge data

movement between processor and memory and it doesn’t have good compiler [2] but

recent research by Shannon on this area has shown that a well-designed compiler can

reduce this movement [7]. This belief is not surprising considering the presence of only

Forth language compilers for stack processors. Thus, the dearth of research of ideas, such

as ILP, multicore processing, compiler technology and VLSI optimization, is a genuine

concern that should be addressed. Therefore we, at advanced computer architecture

group, are wondering – What if stack processors would have received the same amount

of research efforts as that of register-based processor and integration of currently

available advanced techniques? Hence our motivation is to give stack processors a fair

chance and ultimately estimate the capabilities of stack processors.

1.4.3 Promising results from previous research

Recent research in the area of stack processor has resulted in promising results

and hence this is one of the motivations behind exploring this area further. At York, we

15

have made progress towards improving stack processors. Research on instruction level

parallelism (ILP) and scheduling algorithm has been already mentioned in sub-section

1.2.4 [5] [6]. VLSI Optimization for stack processor has also begun [1]. Charles Moore,

who was at the forefront in designing a second-generation stack processor, is

investigating multi-core for stack processor [18]. Hennessy and Patterson expressed

concerns that there aren’t that many hardware specifically to execute Java Virtual

Machine (JVM) – which has stack architecture, but Schoeberl has proposed one recently

in 2005 [19]. Therefore it appears progress is being made in this direction and it’s

important to continue.

1.4.4 Research Question

Given that there are particular goals in this PhD project, and that these are driven

by the motivation given in preceding sub-sections (and also introduction given in

preceding sections) a clear research question can be posed for this thesis:

“Can the performance of superscalar stack structure be

significantly improved by the use of advanced design techniques,

and will this make them more competitive with register file?”

To answer the above question, there may be several valid approaches. From these,

a methodology was formulated that allowed the research question to be addressed

competently in the realistic timescale of a PhD and the following tasks have been set:

1. Develop a baseline performance model, the Standard Cell Library, which builds

upon existing work, and which can form a point of comparison against any

improvements achieved.

16

2. Evaluate the custom design approach, create a new Custom Cell library, and

evaluate their performance relative to the above point (1).

3. Given a standard cell library, and a custom cell library, compare the SSIA

structures possible in each case and evaluate how much improvement can be

obtained.

4. With suitable optimal or highly optimized designs for SSIA, repeat the

comparison of Bailey and Mullane for SSIA versus register file models, and

determine if competitiveness has improved significantly.

5. Document and test more advanced VLSI design techniques that can be used in the

future to inform future research directions, and highlight possibilities for

continued work in future research.

1.5 Thesis Structure

This thesis consists of 6 more chapters and they are organized as follows:

CHAPTER 2 is a literature review chapter and has three sections. The first section

reviews literature related to stack processors, starting from the very first stack processors

to modern day stack processors with emphasis on stack processor research that happened

at York which also includes SSIA – a superscalar stack structure on which this thesis is

centred. The second section reviews literature related to VLSI design techniques. The

third and the last section provided an explanation of some general terminology.

CHAPTER 3 starts with an explanation of the experimental setup and

methodologies that are going to be used throughout the thesis. The chapter is intended to

evaluate the performance of Fundamental Components and Multiplexers of SSIA. The

evaluation is done in varying fanout condition. An important rationale for performing this

17

initial work is to establish a benchmark for SSIA performance, remembering that the

hypothesis of this thesis is to answer the question ‘Can advance VLSI design techniques

improve the performance of SSIA?’ The cell library developed out of this chapter is

going to be referred to as a Standard Cell library throughout the thesis. This chapter

presents the baseline data that is going to be used to measure any improvements that are

made in later chapters through more sophisticated design techniques. Additionally, the

baseline data includes many performance parameters (such as Area, Delay, Power,

Capacitance and Fanouts), these help in painting a realistic picture of performance. The

components of SSIA are used in varying fanout conditions; hence the detailed fanout

analysis helps us see the trend of their performance. The baseline data also allows

observing the close relationship between capacitance and propagation delay.

CHAPTER 4 explores the effect of varying transistor parameters in order to create

high-performance components. The chapter starts with a comparison of wider transistors

and multi-finger MOSFET implementations. The aim of the chapter is to know what the

performance gains are and what the cost penalties are and thereby investigate the tradeoff

and also if there is a best possible approach for SSIA implementation? The chapter also

investigates the custom design approach at various design levels (Transistor, Component

and System level). The important rationale - here as well - relates to the fundamental

question asked in the hypothesis - Can custom design deliver worthwhile benefits over

and above those achieved using the Standard Cell approach? The cell library developed

out of this chapter is going to be referred to as a Custom Cell Library. In particular, it is

found that faster components are possible at the expense of larger chip area and

diminishing return trend is observed. It is also observed that it is advantageous to use

18

multi-finger MOSFETs to achieve higher drive strengths, but also that there is a tradeoff

against the penalty of the effect of ‘self-loading’. Generally, this implies a certain number

of fingers offer the best performance gains. It is also observed that, contrary to the naive

view, deliberately reducing the speed of some components may offer area benefits,

without reducing overall system performance.

In CHAPTER 5, the impact of using the custom vs standard cell library is

evaluated at a higher level. Specifically, the impact of various component designs are

considered with respect to the more complex structure of the Superscalar Stack Issue

Array (SSIA), and it is demonstrated that many permutations of component combinations

are possible, delivering better speed, better area, better power, or indeed a compromise

where some or all of these factors are balanced. Because so many permutations are

possible, we contrast the manually chosen (directed design) cases, against those

developed by a simple evolutionary algorithm, which attempts to find a best case

combination of components for a given design goal. It is observed that suitable

component combinations may achieve high speed, low area, as might be expected.

However, high speeds can also be achieved with far less area cost penalty than the ‘naive’

solutions, by exploiting the individual members of the component library. Likewise,

power and speed may be traded off beneficially. The use of evolutionary approaches also

yields solutions that balance specific design priorities in ways that are not easily arrived

at through manual design processes (i.e. trial and error).

In CHAPTER 6, we consider further techniques to improve the performance of

SSIA, and selected techniques, such as pre-charging, power-gating and current-mode

implementation, have been analyzed and preliminary results have been produced. New

19

avenues for SSIA enhancement have been proposed and some preliminary exploratory

work on the potential of these cases has been undertaken. It is observed that speed can be

improved by the use of pre-charging techniques. It is also observed that power-gating is a

useful technique to save power at cost of reduced speed. Finally, it is predicted that the

current mode can improve SSIA performance.

CHAPTER 7 is to summarize all the evidence and discuss the significance of

work in relation to the research question set in sub-section 1.4.4. A future direction for

the research has also been provided in this chapter.

1.6 Summary

This chapter provided some background to set the context of the work in section

1.1 and then the following section (1.2) discussed the recent technology trends and has

sub-section dedicated to stack processor research. The third section (1.3) provided an

elementary introduction to the stack processor. The fourth section (1.4) listed some of our

initial motivations to investigate the stack processors in general. The fifth (1.5) section

provided the structure of the thesis. The next chapter reviews the literature. Please note in

advance that the data presented in the thesis, particularly in the contribution chapters

(Chapter 3, 4, 5 and 6), are rounded off to suitable precision to improve the presentation

of data.

20

CHAPTER 2

LITERATURE REVIEW

This is a literature review chapter and has three sections. The first section reviews

research related to stack processors starting from the very first stack processors to

modern day stack processors with emphasis on stack processor research that happened at

York and SSIA – on which this thesis is centred. The second section reviews VLSI

Optimizations and the last section (2.3) presents the identified gap, prospective impact of

bridging the gap.

2.1 Stack Processors

This section reviews the past research related to the stack processor. The section

is categorized into sub-sections. The categorization of stack processors into generation

has been inspired by LaForest’s thesis titled ‘Second-Generation Stack Computer

Architecture’ [20]. The first sub-section (2.1.1) talks about stack processors during the

early days of computers (1960 - 1980). The second sub-section (2.1.2) talks about the

new wave of stack processors that developed with the advancement in VLSI technology

(1980 - 2000). The third sub-section (2.1.3) talks about stack processors of the 21st

Century and can be called 3rd generation, but it is a continuation of the 2nd generation

with new ideas. The fourth sub-section (2.1.4) is focused on stack processor research

21

done by members of the ACAG research group. The last sub-section provides more

details on the SSIA of stack processor.

2.1.1 Stack Processors: First Generation

Table 2-1: Prefix and postfix mathematical notation for expression [2*(3+3)/3].

Prefix Representation Postfix Representation

/ * 2 + 3 3 3

/

/ *

/ * 2

/ * 2 +

/ * 2 + 3

/ * 2 + 3 3

/ * 2 6

/ 12

/ 12 3

4

2 3 3 + * 3 /

2

2 3

2 3 3

2 3 3 +

2 6

2 6 *

12

12 3

12 3 /

4

Origin of stack principle can be attributed to Jan Łukasiewicz. Łukasiewicz

proposed prefix notation, also known as Polish Notation, in his book Elements of

Mathematical Logic [21]. Using his method parenthesis-free mathematical expression can

be written. Taking inspiration from prefix notation Charles Leonard Hamblin proposed

postfix notation [22], which became a founding principle for stack processors. In the

22

postfix notation, also known as Reverse Polish Notation, operators are put after the

operands, unlike prefix notation in which operators are before both operands.

Consider following simple arithmetic expression with and without parentheses.

The second expression (without parentheses) doesn’t lead to intended results, hence the

same expression should be written using either prefix or postfix notation, to obtain the

correct answer if the parentheses-free notation is required, as shown in Table 2-1 above.

2*(3+3)/3 = 4

2*3+3/3 = 7

The idea of prefix notation of Jan Łukasiewicz was realised in Stanislaus relay

calculator by Friedrich Ludwig Bauer [23]. Bauer’s relay calculator had ZahlKeller1 and

OperationsKeller2 (more details on it are available in [24]). Bauer’s ideas were later used

in developing language called ALGOL 60, and according to Philip J Koopman Jr.

ALGOL like languages share a close relationship with stack architecture [17].

The idea of using stack like structure was proposed by Alan Turin too,

independently, and his idea was to use of stack-like data structure for subroutine related

computation in Automatic Computing Engine (ACE). Much later in 2003, David E

Newton wrote that Turing had proposed use of BURY (analogous to PUSH) and

UNBURY (analogous to POP) operations in ACE [25].

During these early years of computer, stack principle was under active

investigation and draw widespread interest from industries, universities, and independent

researchers. This resulted in stack principle manifested into many sophisticated stack

1 German word meaning Number Cellar
2 German word meaning Operations Cellar

23

processors during 1960s and 1970s [17]. Some of them (popular once) are mentioned

below.

Burroughs Corporation: Burroughs Corporation designed and manufactured

many stack processors during the early period of computers. Burroughs was one of the

major computer companies of the United States in the 1960s. Computers sold by

Burroughs fell into three major categories - Small Systems, Medium Systems and Large

Systems. Large Systems were mainly pure stack processors, i.e. no programmer

addressable registers [26]. The first computer of large systems series was B5000. After

B5000, a number of improved and transformed stack processors were designed and

manufactured at Burroughs. LaForest’s, after his historical review of stack processors,

confirmed Koopman’s belief that all the large systems computers were aimed at

improving the execution efficiency of ALGOL [20]. Important industries (banking,

aerospace, academic research, military, etc.) were using Burroughs computers [26]. Some

of the well-known clients of the above-mentioned industries were Barclays [27], NASA,

and US Army [26].

Digital Equipment Corporation (DEC): DEC produced a series of PDP 11, a

16-bit microcomputer. Like Burroughs, DEC was another major company of the United

States in the 1960s. PDP 11s WERE NOT stack processor, but Koopman writes that this

was an early general-purpose register machine, and as opposed to today, included the

only a subset of capabilities possessed by stack processor [17].

English Electric Company: English Electric Company developed a stack

processor named KDF9 [28]. KDF9 drew inspiration of stack principle from Hamblin’s

postfix notation. Unlike another first-generation stack computer, KDF9 used pair of

24

stacks, this is important, because it is major differentiation between first and second

generation (discussed later in sub-section 2.1.2) of stack processor, according to

LaForest. He wrote that most first generation processor uses a single stack whereas most

second generation stack processors used dual-stack [20]. This way KDF9 can be

considered ahead of time second generation stack processor. But, most likely, the

company’s focus was to compete with B5000 and IBM 360 (extremely successful

computer of the time) instead of improving KDF9 [20]. Koopman wrote the following

quote about KDF9 [17].

“… [KDF9] introduced many of the features found on modern (second

generation) stack computer… ”

Hewlett-Packard (HP): One of the stack processors developed by HP was HP

3000. LaForest, after his historical review of stack processors, wrote that HP 3000 was

very similar to Burroughs’ computers – with modification and improvements [20]. HP

3000 had one of the longest lifetimes, and support was available until the current decade.

HP renamed this to HP e3000, this was to emphasize that the system was equipped for

web and internet uses [20]. The first processor of this series was launched in 1972. As

technology immensely progressed from 1972 to 2003, it seems that the size of later

models would have considerably reduced from earlier models.

International Business Machine (IBM): IBM was one of the major computer

companies of the 1960s, and its revenue was higher than the combined revenue of all

other computer companies of the United States [29]. At IBM, two – EULER and APL

Language – stack-based micro-coded emulations3 were investigated which ran on IBM

3 Micro-coded emulation is process of translating code for a particular machine to another

machine.

25

360. EULER is an extension of the ALGOL language and APL is an inherently

interpreted language. Both processors were direct execution engines for respective

languages [17].

There were many more stack processors that were part of the first generation,

more on it can be found in [17]. With VLSI technology becoming feasible the first

generation started to fade, and the second generation started to take shape. The review of

the second generation stack processor is provided in the following sub-section.

2.1.2 Stack Processors: Second Generation

Stack processors which came out after 1980 has been categorized as the second

generation. During the 1980s the first microprocessor was already in the market and it

was full of innovation for the technology industry – the first PC was launched, and

research on RISC began. Similarly, a completely new wave of stack processors was

generated in the 1980s. LaForest, after his historical review, wrote that the new wave of

stack processors was mainly initiated by Charles Moore and documented (in form of a

book titled “Stack Processors: the new wave”) by Philip J Koopman Jr. [20]. Charles

Moore was a freelance programmer in 1960s, around the same time Moore invented

computer language Forth and founded Forth Inc. Forth language is heavily dependent on

the stack structure. Program written in Forth is executed with the help of Forth Virtual

Machine [30]. Moore wasn’t satisfied with hardware used by Forth and thus he started

developing custom processors for Forth [31], these custom processors’ for Forth became

major candidates of second-generation stack processors. Efforts in direction of

developing custom hardware for Forth led him to start his second company Novix Inc. At

Novix, Moore designed the first prototype NC4000. It was improved and launched with

26

the name NC4016 in 1985. Its further improvement led to NC6016 which was licensed to

Harris semiconductor and marketed with name RTX200 in 1987. Later Moore

collaborated with Russel Fish and proposed Sh-Boom in 1988.

During the 1980s one of the major debate was about RISC v/s CISC. Amidst this

debate slightly less known approach was MISC. Charles Moore wrote the following [32]

“… the principle of simplicity (in RISC) was not enforced enough to realize the

full benefit from this principle. In the MISC architecture, we like to explore the power of

simplicity to its limit …”

Moore’s idea about achieving the above was through stack architecture. Another

notable processor, among the MISC, is INMOS Transputer, explained in the next

paragraph. Moore also invented MuP21. It was first of a family of chips termed MISC in

1995. Around the same time, he also invented P series stack processors in VLSI using

his CAD tool OKAD. Internet was a new thing around that time, so he developed i21

using OKAD for internet usage. Later in 1998 he collaborated with Jeff Fox and co-

founded his third company Ultra Technology, there he developed F21. More details

related to this is available in Koopman’s book about stack processors and some

unpublished information is available at Jeff Fox’s online repository [17] [32].

Transputer’s popularity was attributed to its parallel computing ability. Transputer

was among one of the early architecture to exploit parallel computing. Transputer was

designed and produced by INMOS. INMOS was an early computer company (of the

1980s) based out of Bristol in the United Kingdom. Transputer derived its name from

Transistor and Computer. Inventors believed that Transputer will become the building

block (just like a transistor) for the yet to come computers of the future and hence the

27

name. It seems the same belief would have demanded simplicity and hence the stack

architecture. As already mentioned, Transputer was popular because of the ability of

parallel processing. John Catsoulis wrote that Transputer was among the first few

processors which exploited parallel processing. Alan Clement, in his book about

Computer Architecture, wrote that modern parallel processing is inspired by the

Transputer.

Figure 2-1: Two stills from BBC Micro episode about Transputer which are depicting

parallel processing capability [33].

Above screenshots are taken from an episode about Transputer on BBC Micro

Live. The episode presented the simplified working of Transputers. The animation shows

a particular butterfly roaming around two different screens. Both screens are connected to

their respective Transputers and both coordinates and communicate with each other and

then produce the animation [33].

Koopman’s Processors: Alongside documenting Moore’s work Koopman

designed WISC 16, WISC32 /RTX 32P [17]. These processors were of great use for

stack-based processing. These were the successor of Forth-language processors but also

supported other programming languages.

28

FPGA based stack processors: Quite a few stack processors of the second

generation are based on FPGAs. Various inventors, around the globe independent of each

other, came out with FPGA implementation for stack processors. They are documented

by Jeff Fox in his online repository [31].

NORMA: Burroughs developed a stack processor, named NORMA (Normal

Order Reduction MAchine) in 1986. NORMA was a graph reduction processor [34].

4stack: In 1996 Bernd Paysan published his Diploma thesis titled Implementation

of 4stack Processor in Verilog. In 1993, Paysan started an investigation to fulfil the

shortcomings of stack processors compared to superscalar RISC processor. During this

investigation, he came up with novel 4stack architecture. He went on to develop complete

instruction set architecture for 4stack and simulator to test benchmarks. Conducted

experiments concluded that 4stack processor was very well capable of exploiting

parallelism. So for his thesis, he went on to describe ISA in RTL and Structural Verilog.

He also documented the synthesis for the design target ASIC process [35].

The second generation of stack processors continues into the 21st century, but

with new ideas, and this has been reviewed in the next sub-section (2.1.3).

2.1.3 Stack Processors: 21st Century

Charles Moore’s collaboration with Jeff Fox, to form Ultra Technology,

developed Forth processor ‘F21’ in 1998. F21 was successor/extended-version of MuP21,

mentioned earlier in sub-section 2.1.2, and its important feature was the presence of video

processor. Moore further modified F21 to produce ‘C18’ in 2001. C18 was intended for

parallel processing. Unfortunately, Ultra Technology ceased its operation in 2002 but

Moore continued his work. In order to investigate multicore capabilities and founded

29

Async Arrays in 2003, which was renamed Intellsys in 2006. There Moore developed

multicore Forth processors SEAFORTH 24 and SEAFORTH 40, where 24 and 40 are a

respective number of cores present. In 2009, Moore founded another company called

Green Arrays. There also he is developing multicore Forth processors – GA4, GA32 and

GA144 are some of them [26].

In 2005, Soo Yuen Jien investigated high-level language support and low-level

instruction execution for stack processor. In particular, he investigated superscalar and

speculative execution of an instruction in stack processors. Jien also went on to design

simulator for its novel stack processor SAFA for evaluating its benchmark [36].

In 2008, Charles Eric LaForest designed a simplistic modern stack processor

named Gullwing. He compared Gullwing with DLX RISC, the processor used by

Hennessy & Patterson in their book on computer architecture. Experiments conducted by

him concluded theoretical facts that stack processors are efficient at executing recursive

code and not very useful in iterative code [20].

In 2014, Subbarao designed a low-power microprocessor based on stack

architecture at Lund University. It was designed using 65nm technology node and also

occupies the comparatively low area [13].

In recent times, quite a few FPGA implementations of stack processors were

made, but there is hardly any published material available on them now. Few examples of

this implementation are P series processors developed by EForth Academy Taiwan, G16

Yoda developed by Opencores.org, MSL16 – a Forth Chip – developed by Philip Leong

and Microcore [32].

30

As already mentioned, at the Advanced Computer Architecture Group (ACAG) of

University of York, we are investigating if Stack Processor can offer any advantages,

therefore it’s important to look at past efforts of our group and hence the next sub-section

(2.1.4) is focused on stack processor research that happened at York.

2.1.4 Stack Processors at York

The research on stack processor at Advanced Computer Architecture Group of the

University of York is led by Christopher Crispin-Bailey. Crispin-Bailey’s PhD research

at Teesside University and thesis published in 1996 is about optimization technique for

stack processor. In 1990s computer architecture research was around RISC vs CISC

debate. But Crispin-Bailey, in his thesis, wrote that concepts like instruction complexity

and alternative architecture are also equally important [37], and that’s where his

investigation of stack processor began. Crispin-Bailey went on to review stack

processor’s behaviour and high-level language issues and thus design concepts of stack

processor [38] [39]. He identified techniques for improvement, developed mathematical

models for major system components, and also proposed a revised model for stack

processor hardware. Crispin-Bailey’s thesis concluded that after application of

investigated techniques stack processor performance can be increased. It can even match

register-based processors. Crispin-Bailey continued his research on stack processor at

York. At York, first he investigated interrupts and its impact on stack spill for stack

processors, and then he started investigating opportunities of parallelism and scheduling

techniques for stack-code. In 2002, Huibin Shi, under the guidance of Crispin-Bailey

started PhD research. Shi experimented with Instruction Level Parallelism (ILP)

techniques commonly applied to register-based processor specially loop unrolling,

31

superblock formation and branch prediction [6]. Shi’s thesis concluded that there are a

few ILP techniques which can be applied and those can ultimately improve the

performance. Soon after, in 2005, Mark Shannon started investigating register allocation

(stack scheduling) for stack processors. ‘Register allocation’ is a technique of keeping

commonly used variables on the stack, so that those can be reused easily. During that

time register allocation techniques for register-based processors, such as graph colouring,

were already in use. The specific aim of Shannon was to produce a C compiler for

Ubiquitous Forth Object (UFO) stack machine. UFO was designed by Crispin-Bailey and

Stephen Pelc. It was one of the projects of AMADEUS, an initiative funded by DTI to

develop better component technologies for computing environments [40]. Shannon built

upon the simple stack scheduling techniques proposed by Koopman and proposed two

new scheduling algorithms. He also implemented all three algorithms in novel C

Compiler, intended for a stack machine, and compared for performance. Development of

C Compiler is also an important contribution as most of the previous compilers of stack

machines were for Forth [7].

The recent project at York is Non-Standard Operand Mechanism Architecture

Demonstrator (NOMAD). NOMAD is a collaboration between the University of York

and Cybula Ltd. NOMAD is a superscalar stack processor developed with special

consideration for its power consumption. It uses a novel approach of nomadic operands.

Most recently, Antonio Arnone has used NOMAD for comparing power consumption in

CPU v/s Core. In a broad sense, he investigated if there is a benefit of applying

accelerator core techniques in stack structure [8]. One aspect of Arnone’s research tried

to find out the number of instruction-per-clock (IPC) that can be executed in stack code

32

on custom hardware – the relevant graph is shown in Figure 2-2. This can also be

interpreted as available parallelism in stack code. Figure 2-2 also shows an example of

scenarios with and without any code optimization. In Figure 2-2, it can also be seen that,

out of 1600 cases which were tested, most cases (nearly 80%) have IPC of 3, 4 or 5. This

finding is particularly useful to research presented in this thesis. This finding proves that

parallelism in stack code is possible, and hence something like SSIA which can exploit

the parallelism will be extremely useful. SSIA was proposed by Crispin-Bailey and

Mullane in 2014 and that’s the focus of next sub-section.

Figure 2-2: Possible number of instruction-per-clock (IPC) in the stack code. [8].

2.1.5 Stack Processors at York: Superscalar Stack Issue Array (SSIA)

Superscalar Stack Issue Array (SSIA) is an alternative operand management

structure and a novel stack structure that has the superscalar capability on top of other

33

advantages. It is widely assumed that stack are serial in nature, and rightly so, but a

technique can be invented through which stack can be used in parallel, and one such

technique is used in SSIA and it uses tags. This tag match logic and memory are realised

using multiplexers and latches. All of the above concepts were presented as a tutorial at

HiPEAC 2012 and slides have been made public and can be downloaded from here [41].

Figure 2-3: Diagram of 4-issue wide and 4-elements deep Superscalar Stack Issue

Array (SSIA).

SSIA consists of multiplexers of a varying number (3, 4 and 5) of inputs. Crispin-

Bailey and Mullane demonstrated in their paper that the use of various cascade logic

styles to build multiplexers and ganged tristate models were viable techniques, but that

ganged tri-state buffer (TNN model in Figure 2-4) had much superior performance,

almost twice as fast as the slowest combinational logic option [1]. The relevant graph is

shown in Figure 2-4 below. The research presented in this thesis also validates the tri-

state buffer approach to be superior later in sub-sub-section 5.2.3.1 on page number 119.

34

More investigation on making multiplexers using tri-state buffer found that other

researchers also confirmed the similar advantages in the past, independently [42].

Figure 2-4: Propagation delay of various multiplexer implementations for issue widths

1 to 4 [1].

The full SSIA in operation hasn’t been observed in the past but that’s something

that can be pursued as future research and has been mentioned as future work in section

7.4. Meanwhile, the comparison to SSIA delay predictions against those of equivalent

superscalar register files (shown in Figure 2-5 below) showed that firstly SSIA can be

competitive with register files in general, but also that for high issue widths, SSIA rapidly

becomes less competitive. We can summarize some important key points here:-

• Ganged tri-states buffer was demonstrated to be the optimal choice for a standard

cell library in terms of delay

• SSIA can compete with register files for modest issue widths, with similar

performance

35

• SSIA suffers from scalability issues for the delay – at high issue widths, it

becomes less competitive than register file.

Figure 2-5: FO4 delay data for various register files and SSIA by Bailey and Mullane

with respect to the number of Read+write ports [1].

However, these results were gained from a standard cell library, without the

benefit of any more advanced VLSI techniques, whereas the register file data is largely

based on highly optimized designs using semi or full custom VLSI design approaches.

Hence advanced VLSI design technique has been one of the main goals of the research

presented in this thesis, as mentioned earlier in the previous chapter. Please note that the

research presented in this thesis revisits this graph based on the new data later in section

5.5. There it will be possible to see that third of the above three observation, which is a

limitation related to scalability issues at higher issue width has been overcome.

36

This section started with a review of the first ever stack processors produced in

the 1960s to stack processors of today. The next section reviews the literature related to

advanced VLSI optimization techniques.

2.2 VLSI Optimization

This section reviews the research related to VLSI Optimization. The first sub-

section provides an introduction to VLSI and also provides some context. The second

sub-section provides a review of VLSI Optimization techniques.

2.2.1 Introduction

VLSI stands for ‘Very Large Scale Integration’. VLSI refers to chip design

technology that contains hundreds of thousands of transistor in a single chip. Nowadays

there are millions of transistors in a single chip, which is sometimes termed ULSI (Ultra

Large Scale Integration) but the term VLSI and ULSI are used interchangeably. Before

VLSI we had SSI, MSI and LSI. SSI stands for ‘Small Scale Integration’ and has more

than ten transistors in a single chip. MSI stands for ‘Medium Scale Integration’ and has

more than a hundred transistors in a single chip. LSI stands for ‘Large Scale Integration’

and has more than a thousand transistors in a single chip. From SSI to VLSI, optimization

of Area, Delay and Power have been a key concern for designers. These factors have

been a focus in this thesis as well (e.g. in sections 3.3, 3.4, 3.5, 4.3, 4.4, and 5.3).

Nowadays, at VLSI level, the complexity is extremely high. That’s why the design

process involves the help of computers – CAD designs – and Electronic Design

Automation (EDA) tools. The conventional approach is to use standard cell design

techniques to reduce production time. An automated approach is used to optimize the

design, but this process comes with drawbacks, such as area and delay aren’t the best

37

possible. Custom design (or semi-custom) design approach can be used to counter this

drawback at the cost of time and efforts. That approach has been used in this thesis too.

The idea of VLSI optimization stems from past research related register files. The register

files have been heavily optimized and plenty of research has been done in improving

them using advanced VLSI Optimization techniques [1]. These VLSI Optimization

techniques have been discussed in the next sub-section and these techniques will be used

later in the contribution chapters (CHAPTER 3, CHAPTER 4, and CHAPTER 6) to

improve the SSIA design.

2.2.2 VLSI Optimization Techniques

• Full-custom Design

• Multi-finger MOSFET

• Dynamic Logic

• Domino Logic

• Power-gating

• MOS Current Mode Logic (MCML)

In this sub-section, above VLSI optimization techniques have been covered.

Please note that the above list isn’t an exhaustive list, because of the broad nature of the

topic, there are other ways and other techniques too [43].

Full-custom Design: Full custom design requires a designer to spend a lot of time

making sure the area of the layout is most compact ensuring the smaller size of the final

design. The design must reflect the higher performance too. The full-custom design will

significantly raise the Design Expenses component of below equation (Eq. 2-1) but the

hope is that design will be very good that there will be demand for the product raising the

38

Production Volume component of the Eq. 2-1 and thereby compensating the extra cost

[44]. The components (such as inverter, tri-state buffer, and multiplexer) required in the

design are available off-the-shelf from Standard Cell Library in most cases, as it makes

the business sense. A typical profit equation for IC manufacturing is shown below.

Earlier the product is released more is the profit. Delay in rolling out product can

significantly affect the profit so it makes sense to not spend a large amount of time in

doing full-custom design. But there has been a lot of research out there which compares

the standard cell and full custom design approach and confirms the advantage and cost

mentioned above [45].

 [
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡

𝑜𝑓 𝑎𝑛 𝐼𝐶
] =

𝐷𝑒𝑠𝑖𝑔𝑛 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑉𝑜𝑙𝑢𝑚𝑒
+ [

𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔
 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝐼𝐶

] Eq. 2-1

Multi-finger MOSFET: The change in an aspect ratio of the transistor can have a

significant impact on the performance [46]. Another important parameter of the transistor

is finger-width and it has been proven that this parameter also has a significant impact on

the performance [47]. Folding transistor in multiple-fingers (such as 2, 3 and 4) is

beneficial. More numbers of fingers mean more number of channels for current and thus

more drive strength. As the channels are in parallel, the channel resistance also becomes

parallel, thereby reducing the equivalent resistance. But this comes at the cost of a large

area. In this thesis, we have explored the impact of multi-finger MOSFET in CHAPTER

4.

Dynamic Logic: Dynamic logic offers a fast and power efficient alternative to

commonly used static logic. Static logic has both pull up and pull down networks in the

digital circuit. Dynamic logic uses a pre-charging transistor instead of the whole pull up

39

the network. This way the output of the digital circuit is always high. If inputs are so that

output needs to be low then pull down network pulls down the output. This way dynamic

digital circuit overcome the slow rising time to generate high output and saves the

constant static power consumption between the power supplies. Pre-charging is also a

similar technique which uses a transistor to pre-charge the output. Like pre-charging,

there can also be a pre-discharging digital circuit which sets the default output low.

Domino Logic: Static CMOS circuits don’t require a special circuit to cascade the

different logic gates, but dynamic CMOS circuits require domino logic. Without the use

of domino logic circuitry, outputs of cascaded dynamic CMOS circuit fails and falls like

cascaded dominos. Thus it is called domino logic.

Power Gating: Power gating is a technique of turning off the inactive parts of the

circuit. This reduces the leakage current and unnecessary power consumption of the

circuit. There is a technique similar to this that is called Clock Gating that too saves the

power by pruning the clock.

MOS Current Mode Logic (MCML): MCML is another kind of logic style, as

opposed to CMOS logic style. This logic style boasts of low noise and greater noise

immunity. Current mode style can achieve better speed without the high cost of the area

as well. Also, the power dissipation is superior compared to CMOS at the high operating

speed [48]. Many researchers have compared both of the logic styles with other logic

styles to prove the above benefits [49] [50] [51]. Further, various techniques that

optimize logic gates especially inverter and tri-state buffer have already been published

[52] [53] [54] [55]. There are other similar techniques such as pseudo-NMOS, Source-

40

Coupled Logic (SCL), Positive Feedback SCL (PFSCL) etc. which can achieve similar

benefits.

2.2.3 Summary

This section provided a review of VLSI Optimization techniques which have been

used in the thesis, starting with Full-custom and multi-finger MOSFET which is the focus

of Chapter 3 and Chapter 4. This review was followed by a brief explanation of Dynamic,

Domino and Current Mode logic techniques. The explanation has been brief as it wasn’t

the main focus of thesis and it is just for Chapter 6 which is to evaluate future

opportunities for advanced VLSI design techniques for SSIA.

2.3 Summary

Section 2.1.4, 2.1.5 covered research related to stack processor happening at

York. VLSI Optimization for Stack Processor seems like an area which is unexplored and

can add another dimension (after compilers for Stack Processor, and ILP in Stack

Processors). This was the major driving force to choose VLSI Optimization for Stack

Processor. The previously done investigation of SSIA was done using standard cell

design techniques and using 90nm technology node, so the clear progression from this

seemed to be a full-custom design approach [45]. As a full-custom design approach is a

time and labour intensive, the semi-custom design approach has been used [44] [47].

Inverter and tri-state buffers are the fundamental components of SSIA and there is plenty

of research out there that deals with making inverter and tri-state buffers better [56] [49]

[52] [53] [54] [57]. The first step for us seemed to evaluate different aspect ratios [46]

and multi-finger MOSFET implementations [58]. This has been investigated and results

have been presented in CHAPTER 3 and CHAPTER 4, please note as advanced

41

technology node (65nm) was also available at the start of research hence the 65nm was

used for experiments. CHAPTER 6 dives deeper and evaluated more advanced VLSI

Optimization techniques for inverter and tri-state buffer reviewed in the previous section

[59] [60] [61] [62]. The main benefit of this work is that this work will establish the

benchmark for SSIA performance and implementation better that benchmark will also be

established. This will benefit all the application which has the potential to use SSIA such

as future stack processor (e.g. NOMAD) [14]. This is the end of the literature review

chapter and next chapters present the contributions made by this research.

42

CHAPTER 3

STANDARD CELL IMPLEMENTATION OF SSIA

3.1 Introduction

This chapter starts with an explanation of the experimental setup and

methodologies that are going to be used throughout the thesis. The chapter is intended to

evaluate the performance of the fundamental components and multiplexers of Superscalar

Stack Issue Array (SSIA). As the SSIA components have varying fanout condition the

performance evaluation is done for fanout ranging from 1 to 8. An important rationale for

performing this initial work is to get a baseline data of SSIA the performance,

remembering that the research question (mentioned in section 1.4.4) is to find out

whether the performance of SSIA can be improved. The fundamental components and

multiplexers designed in this chapter have been put together in a single cell library, and

the library has been referred to as a ‘Standard Cell’ library throughout the thesis.

Contributions made through this chapter are presented in the list below.

• Standard Cell library - created in 65nm CMOS process technology.

• The fundamental components have been quantified in terms of performance

parameters such as area, propagation delay, power, and capacitance.

• The impact of fanout has been evaluated.

43

• Multiplexers have been designed using the fundamental components and they

have also been quantified in terms of performance parameters such as area and

delay.

• Multiplexers have been simulated using an alternative methodology and the

results from both methodologies have been compared.

• First order projection of SSIA performance, designed using Standard Cell library,

has been presented.

3.2 Experimental Setup and Methodology

This section covers the design (of fundamental components and multiplexers

circuits and experiments), simulation, associated experimental setup and methodologies

employed to calculate the performance parameters. It is done using examples of an

inverter, tri-state buffer and 2-input (2X1) multiplexer. All the circuit implementations

are done using the 65nm technology of TSMC4 and Cadence Virtuoso. The simulations

are done in Analog Design Environment (ADE) of Cadence.

4 TSMC – Taiwan Semiconductor Manufacturing Company

44

3.2.1 Fundamental Components

Inverter and tri-state buffer are designed using Complementary MOSFET (CMOS)

technology. CMOS contains both NMOS and PMOS transistors which are arranged in a

complementary fashion. The size of PMOS is twice that of NMOS to ensure equal rise

time and fall time. Another important parameter of MOSFETs is finger width [58]. For

Standard Cell library finger width has been kept at one. In later chapters, when we use the

custom approach, size and finger width have been changed. Figure 3-1 shows the CMOS

implementation of inverter and tri-state buffer. CMOS implementation of inverter

contains one PMOS and one NMOS transistors and CMOS implementation of the tri-

state buffer contains two PMOS and two NMOS transistors. PMOS is labelled ‘pch’ and

Figure 3-1: Fundamental Components (a) Inverter schematic (b) Tristate buffer

schematic (c) Inverter symbol (d) Tristate buffer symbol.

45

NMOS is labelled ‘nch’. The input pin is denoted as ‘In’ and Output pin is denoted as

‘Op’. The tri-state buffer contains select signal ‘S’. ‘S’’ should always be opposite of S

to achieve the functionality of tri-state buffer. Figure 3-1 also contains symbols of the

fundamental components.

Figure 3-2: Layout and symbol of a transistor side-by-side.

Schematics are enough for simulation and quantifying the performance trend,

however, the layout allows us to get more precise simulation data and hence layout

simulation data is also obtained. The more realistic output is due to the fact that it takes

the parasitic capacitance into consideration. Additionally, layout design allows us to

customise the power rail and pin placements as per our own requirements. Figure 3-2

shows layout and symbol of a MOSFET (NMOS to be specific). Here, B means Bulk

Substrate, S means Source, D means Drain, and G means Gate. Figure 3-3 shows the

layout drawings of inverter and Tristate Buffer. Layouts presented in the thesis have

passed the Design Rule Check (DRC) and Layout Versus Schematic (LVS) checks. It can

be noted in the below figure that pitch of inverter is larger. It is kept intentionally large so

46

that its height (cadence refers this as a width) matches to that of a tri-state buffer, to keep

the fundamental components modular. All of the components follow the same power rail

regime (i.e. same width/height). Pins are also placed accordingly so that it’s easier to

connect other components. Its advantages will become clear when layouts of the more

complex component are presented later (such as Figure 3-21 in section 3.4).

Figure 3-3: Layouts of fundamental components (Left layout – inverter; Right layout –

tristate buffer) of SSIA (with rulers).

Figure 3-4 shows a typical test bench used in the experiments. It can be seen that,

initially, the ideal signal is passed through an inverter. This is to ensure that a realistic

slew rate can be achieved. The UUT in the test bench means the ‘Unit Under Test’. For

fundamental components, UUT can be either inverter or a tri-state buffer, and for

47

multiplexers, UUT can be any multiplexers from 2-input mux (2X1) to 8-input mux

(8X1). But only 3X1, 4X1 and 5X1 are most important as SSIA uses only those

multiplexers, as explained earlier in section 2.1.5. UUTs can have any number of fanout,

ranging from 1 to 8. In this example, UUT is an inverter and fanout is four (FO4). In

some cases, the tri-state buffer is used for fanout to simulate condition close to reality.

Figure 3-4: A typical test bench which has an inverter as UUT and has a fanout of

four.

The performance of fundamental components is quantified using the following

four parameters and this section explains how their measurement is done.

• Area – Layout/chip area,

• Delay - Propagation Delay

• Power - Power Consumption

• Capacitance – Capacitance at Input or Output node of the device.

Area

48

Area of the component has been measured from their layout. The length and

width of the component have been calculated using ‘ruler’ functionality of Cadence

Virtuoso and area is the product of both. The length and width of inverter and tri-state

buffer can be seen in Figure 3-3. Area data is presented in Table 3-1. The data in the

table has rounded off to make it presentable and the same practice has been followed

throughout the thesis.

Table 3-1: Length, width and area of fundamental components inverter and tristate

buffer.

Components (↓) Length (um) Width (um) Area (um2)

Inverter 2.8 1.2 3.4

Tristate 2.8 1.5 4.2

Delay

Figure 3-5: Output waveforms of an inverter when supplied with a square wave signal

as input.

49

Propagation delay (tp) has been measured using the waveforms generated from the

simulation of the component. Figure 3-5 shows a typical input and output waveforms.

Propagation delay is clearly visible when Input and Output waveforms are superimposed,

as shown in Figure 3-6 below. We measure the delay at 50% of the Vhigh of the input

signal and the overall propagation delay of the component is calculated using Eq. 3-1,

where 𝑡𝐻𝐿 is the delay during high to low transition and 𝑡𝐿𝐻 is the delay during low to

high transition. It can also be seen in Figure 3-6 that delay of layout simulation is higher

compared to that of the schematic, this is due to the presence of parasitic capacitance.

Table 3-2 shows the data of example that we have considered just now.

 𝑡𝑝 =
𝑡𝐻𝐿 + 𝑡𝐿𝐻

2

Eq. 3-1

Figure 3-6: Superimposed input and output waveform of an inverter showing

propagation delay.

50

Table 3-2: Inverter delay data.

Component (Fanout) Schematic Layout

Inverter (FO4) 23.7 ps 43.8 ps

Capacitance

Figure 3-7: Equivalent Resistance –Capacitance model for an inverter.

The propagation delay is mainly due to the time spent on charging and

discharging the parasitic capacitance. An inverter can be seen as an RC circuit of

parasitic capacitance and resistance as shown in Figure 3-7. Transistor has various kinds

of parasitic capacitance as shown in Figure 3-7 and Figure 3-8. Gate Capacitance (CG) is

between the gate and the underlying channel. Source/Drain Capacitance (CD) is between

Source and Drain. CGN and CGP are Gate Capacitance associated with NMOS and PMOS

51

respectively. Similarly, CDN and CDP are Source/Drain Capacitance associated with

NMOS and PMOS respectively. CLoad is an equivalent capacitance at the node

ADE simulation calculates the load capacitance CLoad when ‘captab’ option of

Cadence Virtuoso is enabled. To understand our capacitance calculation, consider a

typical test bench of Figure 3-4. We calculate CLoad at Node B and Node C. Node B

Capacitance is represented as an Input Capacitance of UUT and Node C Capacitance is

Output Capacitance for simplicity. The parasitic capacitance of MOSFETs has both linear

and non-linear components. The non-linear component is the direct result of depletion

regions in the MOSFETs. As the depletion region of MOSFETs is dependent on applied

Vds the region itself is variable and hence the parasitic capacitance is also variable [63].

Cadence also generates the individual components (Fixed and Variable) of CLoad and they

are presented in Table 3-3. The values are in femtofarad.

Figure 3-8: The capacitance calculation for two connected inverters based on the

equivalent model in Figure 3-7.

52

Table 3-3: Fixed and variable, input and output capacitance of schematic and layout of

inverter in femtofarad.

Inverter Schematic Layout (fF)

Fixed Variable Total Fixed Variable Total

Input (fF) 0.2 0.2 0.4 0.8 0.2 1.0

Output (fF) 1.0 1.1 2.1 2.7 1.1 3.8

Figure 3-9: Screenshot of capacitance calculation using Cadence Virtuoso [64].

53

Power

The process of calculating power consumption is similar to that of Capacitance.

The power consumption data is also generated during ADE simulation and has been

noted from there (See Figure 3-10). The power consumption of UUT is dependent on its

output state as well as the output transition. We have measured two kinds of power

consumption data - static power consumption and the peak value of dynamic power

consumption. This is presented in Table 3-4.

Figure 3-10: Screenshot of power calculation using Cadence Virtuoso [64].

54

In the table, four different values of power consumption have been presented. The

first row is for the peak value of power consumption when input value transitions from

low to high. This value comes out to be 59.5nW. The second row is for the peak value of

power consumption when input value transition in the other direction and this value is

slightly higher at 59.6nW. The next two rows are for static power consumption that

means when the input to the inverter is constant i.e either GND (ground) or VDD (Source

Voltage). More on power consumption has been discussed later in section 5.2.3. Their

dynamic power calculation is presented in terms of energy consumed during a transition.

Table 3-4: Static and peak dynamic power consumption of inverter in nW.

Type of Power Consumption Value (nW)

Peak Dynamic Power - I/P = Low → High 59.5

Peak Dynamic Power - I/P = High → Low 59.6

Static Power - I/P = High 1.2

Static Power - I/P = Low 1.0

3.2.2 Multiplexer

The remainder of this section explains the methodologies used for multiplexer

using an example of the 2X1 multiplexer. The approach of designing multiplexers which

uses tri-state buffers and inverter has been explained earlier in section 2.1.5 of the

literature review chapter.

55

Figure 3-11: (a) Schematic for 2g (b) Symbol of 2X1 multiplexer

Figure 3-12: A typical test bench which has 2X1 multiplexer as UUT and has a fanout

of 4.

56

Figure 3-11 shows schematic and symbol of the 2X1 multiplexer. In the

schematic of 2X1 multiplexers, there are two select signals in each tri-state buffer. Those

two signals are just the opposite of each other. Hence, ideally, there is only one unique

select signal per tri-state. Test benches for multiplexer experiments, shown in Figure

3-12, remain similar to the previously explained typical test bench (Figure 3-4) but now

the UUT is 2X1 multiplexer instead of the fundamental component. The performance of

multiplexer is quantified using two parameters – Area and Delay.

Area

A multiplexer is made up of fundamental components. It contains tri-state buffers

- equivalent to its’s number of inputs (n) - and an inverter. In our approach, when it

comes to layout, all the components are aligned horizontally and hence the length of the

multiplexer is the length of any single component (all components have equal length) and

width will be the addition of widths of each component as shown below in Figure 3-13

and Eq. 3-2.

 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟𝑊𝑖𝑑𝑡ℎ = 𝑛 ∙ 𝑡𝑟𝑖𝑠𝑡𝑎𝑡𝑒𝑊𝑖𝑑𝑡ℎ + 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑊𝑖𝑑𝑡ℎ Eq. 3-2

Area (length X width) calculated using this first order projection for the 2X1

multiplexer is presented below in Table 3-5. Please note that the actual area would be

slightly larger because of the area required for wiring them together. If that extra space

is not left than it results in Design Rule Violation errors. The same conditions apply for

the area data presented later in CHAPTER 4, and CHAPTER 5.

57

Figure 3-13: A simple box diagram if the layout of the 2X1 multiplexer is to be

produced.

Table 3-5: Length, width and area of a 2X1 multiplexer.

Component Length (um) Width (um) Area (um2)

2X1 2.8 4.1 11.5

Delay

The propagation delay of the multiplexer is the total delay occurred when a signal

travels from node B to node C in a test bench similar to a one shown in Figure 3-12. The

process of obtaining schematic data is similar to that of the fundamental components.

There are two possible ways of collecting the post-layout simulation data. One involves

doing the full layout similar to what is done for fundamental components, this is a very

58

time intensive process and hence the other approach has been used. In this approach,

Cadence Virtuoso settings are changed. Due to the change Cadence Virtuoso considers

the layout of fundamental components for simulation. But this approach ignores the

wiring, the wiring that connects the tri-state buffers to the inverter. At this stage, the

impact of wiring is ignored. This is to allow many permutations of the circuit to be

designed without having to do a full layout for every case – which is a labour intensive

task as mentioned earlier. But to gauge how significant this simplification is, with respect

to the accuracy, a further set of experiments has been performed, these are presented in

section 3.4 of the chapter.

Table 3-6: Propagation delay data for the 2X1 multiplexer which has a fanout of four.

Component Delay

2X1 FO4 101 ps

3.2.3 Design Decisions

In this sub-section list of explanation has been provided for some of the key

design decision and pros and cons have been discussed wherever necessary.

• CMOS logic technology – In this thesis, we have used CMOS technology to

construct our components. Alternatives are BJT, TTL or NMOS based

technology. It has been proven that CMOS has high noise immunity and low

power consumption. Although there are more transistors one of the pair is always

off.

• Multiplexer implementation using Tri-state buffer – There are many ways of

designing multiplexers, e.g. 5X1 multiplexers can be designed using one 3X1 and

59

two 2X1 multiplexers as well. But previous research investigated that it’s better to

design multiplexers using tri-state buffers [1].

• The pitch of inverter deliberately kept longer – It is visible in Figure 3-3 that

layout of the inverter is not as compact as a tristate buffer. This is deliberately

done. Because this will allow the future design of multiplexers easier if their pitch

is the same, as shown in a box diagram of 2X1 in the previous section (3.2.2) in

Figure 3-13.

• Testbench Design – One of the choices we have made to obtain the data in the

thesis is to not use the ideal signal. This has been done by passing the input signal

through an inverter initially. This can be seen in all the testbenches in this thesis,

e.g. as shown in Figure 3-4.

• Layout simulation – Schematic as well as layout both the design have been

simulated and both the data has been presented. There are an advantage and

disadvantage of using this approach.

o Pros

▪ Simulation results are more realistic.

▪ Impact of parasitic capacitance can be observed

o Cons

▪ This approach is time intensive due to the time required to draw

layouts.

▪ Although data is more realistic, the actual value can still be a little

bit different as layout models are not 100% accurate.

60

3.3 Fundamental Components

A simple evaluation of fundamental components (as well as a multiplexer) of

SSIA has been done in the past [1]. It was done using the 90nm technology of UMC, but

that evaluation was limited to only propagation delay, and that too just for schematics and

considered only very simple fanout scenario. In this thesis, advanced technology has been

used and fanout ranging from 1 to 8 have been considered. Additionally, the test benches

have been designed carefully to be more precise about the evaluation and both schematic

and layout measurements have been done. In this section, each parameter of performance

has been given their own separate sub-section and their contribution & significance have

been discussed.

61

3.3.1 Area

Figure 3-14: Picture showing the layout of two distinct transistors and their layout

when abutted.

The first parameter of performance that we have considered is the area that a

fundamental component will occupy on the chip. Areas of both fundamental components

– inverter and tri-state buffer – have already been presented in section 3.2. It is presented

62

again in Table 3-7 below. Although optimizations are presented in later chapters, one

simple optimization has been done even for ‘Standard Cell’ design – Abutting [65].

Abutting can minimize the area. In our case, two MOSFETs of tri-state buffers are

abutted as shown in Figure 3-14 below. Cadence Virtuoso has an in-built abutting

capability and that has been used. It can be seen that the area of tri-state has been reduced

significantly by the use of the abutting technique.

Table 3-7: Length, width and area of fundamental components and abutted tristate

buffer.

Components (↓) Length (um) Width (um) Area (um2)

Inverter 2.8 1.2 3.4

Non- abutted tri-state buffer 2.8 2.3 6.4

Abutted tri-state buffer 2.8 1.5 4.1

63

3.3.2 Delay

Figure 3-15: Test benches for fanout of 1, 4 and 8 commonly used in experiments.

The second parameter of performance is the propagation delay. Fundamental

components having fanout ranging from 1 to 8 have been simulated. Figure 3-15 shows

some of these test benches. Delay data for fanout ranging from 1 to 8 has been collected

presented in Table 3-8. This data has been plotted, and the resulting graph has been

shown in Figure 3-16. In the table, it can be seen that as the fanout increases propagation

delay also increases, and the graph suggests propagation delay shares a linear relationship

with fanout. Looking at schematic data and layout data it can be observed that delay of

‘FO4 schematic’ is equivalent to that of ‘FO1 layout’ proving the point that actual layout

64

data is quite far from that of schematic data and signifies the importance of post-layout

simulation data.

Table 3-8: Schematic and layout propagation delay data of an inverter for fanout

ranging from 1 to 8.

Fanouts (↓) Schematic (ps) Layout (ps)

FO1 13 23

FO2 17 30

FO3 20 37

FO4 24 44

FO5 27 51

FO6 31 57

FO7 34 64

FO8 38 71

Table 3-9: Schematic and layout propagation delay data of a tri-state buffer for fanout

ranging from 1 to 8.

Fanout (↓) Schematic (ps) Layout (ps)

FO1 31 41

FO2 39 54

FO3 46 68

FO4 53 81

FO5 60 94

65

FO6 67 108

FO7 74 122

FO8 82 136

Figure 3-16: Graph showing the trend of propagation delay across various fanouts and

schematic, layout for fundamental components.

3.3.3 Capacitance

The third parameter of performance is Capacitance. Input and output capacitance

data of inverter and tri-state buffer is presented below in Table 3-10. Both components –

fixed and variable – of total capacitance have been presented. The table can be seen as an

extended version of Table 3-3.

66

Table 3-10: Fixed and variable, input and output capacitance of schematic and layout of

inverter for fanout ranting from 0 to 8 in femtofarad.

Fanout

(↓)

Schematic Layout

Fixed Variable Total Fixed Variable Total

Input Capacitance (fF)

All F/O 0.2 0.2 0.4 0.8 0.2 1.0

Fanout

(↓)

Output Capacitance (fF)

Fixed Variable Total Fixed Variable Total

NOC 0 0 0 0.2 0 0.2

FO1 0.2 0.3 0.5 0.8 0.3 1.1

FO2 0.5 0.5 1.0 1.5 0.5 2

FO3 0.8 0.8 1.6 2.1 0.8 2.9

FO4 1.0 1.1 2.1 2.7 1.1 3.8

FO5 1.3 1.3 2.6 3.4 1.3 4.7

FO6 1.5 1.6 3.1 4.0 1.6 5.6

FO7 1.8 1.9 3.7 4.7 1.9 6.6

FO8 2.0 2.2 4.2 5.3 2.2 7.5

NOC = No Connection and hence zero fanout.

Table 3-11: Fixed and variable, input and output capacitance of schematic and layout of

tristate buffer for fanout ranting from 0 to 8 in femtofarad.

Fanout

Schematic Layout

Fixed Variable Total Fixed Variable Total

67

(↓) Input Capacitance(fF)

All F/O 0.2 0.2 0.4 0.7 0.2 0.9

Fanout

(↓)

Output Capacitance(fF)

Fixed Variable Total Fixed Variable Total

NOC 0 0 0 0.2 0 0.2

FO1 0.2 0.3 0.5 0.8 0.2 1.0

FO2 0.5 0.5 1 1.5 0.4 1.9

FO3 0.8 0.7 1.5 2.1 0.7 2.8

FO4 1.0 1.0 2.0 2.7 0.9 3.6

FO5 1.3 1.2 2.5 3.4 1.1 4.5

FO6 1.5 1.5 3.0 4.0 1.3 5.3

FO7 1.8 1.8 3.6 4.6 1.5 6.1

FO8 2.0 2.0 4.0 5.3 1.8 7.1

NOC = No Connection and hence zero fanout.

 At first, it was a surprise to see that capacitance of tri-state buffer is slightly lower

compared to the inverter. It can be attributed to the presence of an extra transistor in-

series in the tri-state buffer. Two equivalent capacitors in series halve the overall value

and then it is added to calculate overall CLoad. Figure 3-17 explains this idea further.

68

Figure 3-17: Diagram showing a transistor level schematic of the test benches to

explain their capacitances at nodes.

3.3.4 Power

Fourth and the last parameter of performance is power consumption. Post-layout

power consumption data of inverter and tri-state buffer for fanout ranging from 1 to 8 is

presented below. Power consumption is slightly different for high to low and low to high

transition and therefore both sets of data are presented below. Power is consumed when

there is no activity in the circuit i.e. static power consumption is also presented below.

69

Table 3-12: Peak dynamic and static power consumption of an inverter in nanowatts for

low to high and high to low input transitions.

Peak Value of Dynamic Power

Fanout (↓) I/P = Low → High (nW) I/P = High → Low (nW)

FO1 47 46

FO2 53 52

FO3 57 56

FO4 59 60

FO5 62 62

FO6 64 64

FO7 66 65

FO8 67 66

Static Power

Fanout (↓) I/P = Low (nW) I/P = High (nW)

All fanout 1.2 1.0

70

Table 3-13: Peak dynamic and static power consumption of a tristate buffer in

nanowatts for low to high and high to low input transitions.

Peak Value of Dynamic Power

Fanout (↓) I/P = Low → High (nW) I/P = High → Low (nW)

FO1 36 32

FO2 37 33

FO3 38 34

FO4 38 35

FO5 39 35

FO6 39 36

FO7 40 36

FO8 40 36

Static Power

Fanout (↓) I/P = Low (nW) I/P = High (nW)

All fanout 3.2 3.2

3.4 Multiplexer

This section presents data of multiplexer and fanout that are relevant for SSIA

only and these are 3-input (3X1), 4-input (4X1) and 5-input (5X1) multiplexers. 3X1 has

a fanout of 3, 4X1 has a fanout of either 4 or 5, and 5X1 has a fanout of 5. Multiplexers

having input ranging from 2 to 8 have been simulated to find out the trend and have been

presented in the Table A-1 of APPENDIX A. Multiplexer methodology has been

71

explained previously using the example of 2-input (2X1) multiplexer in section 3.2.2.

Figure 3-18 shows schematics and symbols of 3X1, 4X1 and 5X1 Multiplexers.

Figure 3-18: 3X1, 4X1 and 5X1 Multiplexer Schematics and Symbols (Left to right).

Like fundamental components, a simple evaluation of multiplexer has already

been done in the past [1], but our evaluation is better because it is more in-depth, as

mentioned previously in section 3.3. Details of two parameters of performance – area and

delay – is presented in following subsections. The alternative methodology for

multiplexer simulation, mentioned earlier, has also been explained in this section.

3.4.1 Area

The first parameter of performance that we have considered is the area that a

fundamental component will occupy on the chip. The width of multiplexers can be

72

calculated using the Eq. 3-2 and then using the methodology explained in section 3.2.2.

Areas of 3X1, 4X1 and 5X1 multiplexers have been calculated and are presented below

in Table 3-14. As mentioned earlier in section 3.2 the area data is slightly optimistic as

the impact of internal wiring has been ignored at this stage.

Table 3-14: Calculated length, width and area of multiplexers of SSIA.

Component (↓) Length (um) Width (um) Area (um2)

3X1 2.8 5.6 15.7

4X1 2.8 7.0 19.7

5X1 2.8 8.5 23.8

3.4.2 Delay

The second parameter of performance is the propagation delay. The propagation

delay of the multiplexers used in SSIA is shown below in Table 3-15.

Table 3-15: Propagation delay of 3X1, 4X1 and 5X1 of SSIA for relevant fanouts in

picoseconds.

Components – Fanout (↓) Delay (ps)

3X1 – FO3 110

4X1 – FO4 131

4X1 – FO5 137

5X1 – FO5 151

73

3.4.3 Alternative methodology - for multiplexer simulations

As mentioned previously, our previous simulation methodology for multiplexer

ignores the impact of internal wiring. Hence, two new components – 2g and 3g – have

been designed by ganging transistors together. The idea is that by ganging tri-state buffer

together wires interconnect between cells is introduced. If this wire effect is large, then

the delay data will change significantly. If the wire effect is small, then the delay data

will not change much (which would suggest that the simplified methodology is

acceptable). The schematic, symbol and layout of 2g and 3g are presented in figures

below. Pin placement in the layout, shown in Figure 3-21, needed the care to avoid

design rule violations.

74

Figure 3-19: 2g (ganged component) (a) schematic (b) symbol.

Figure 3-20: : 3g (ganged component) (a) schematic (b) symbol.

Areas of components 2g and 3g are measured from the layout shown in Figure

3-21 and have been presented in Table 3-16. The table also includes the area of 2X1

designed normally (2X1) as well using 2g (2X1g). 2X1g has been simulated in 3

different fanout conditions and delay data measured have been presented in Table

3-17 below.

75

Figure 3-21: Layout of 2g(top) and 3g(bottom) ganged components.

76

Table 3-16: Calculated length, width and area of ganged components and their

respective multiplexers.

Component (↓) Length (um) Width (um) Area (um2)

2g 2.8 3.4 9.5

3g 2.8 5.3 14.8

2X1g 2.8 4.6 12.9

2X1 2.8 4.1 11.5

Table 3-17: Propagation delay of 2X1 and 2X1g for fanouts 1,4 and 7 in picoseconds.

Fanouts (↓) 2X1g (ps) 2X1 (ps)

FO1 82 79

FO4 104 101

FO7 122 119

More multiplexers, designed using this approach, were added to Standard Cell

library. New 3X1 has been designed using 3g and an inverter, new 4X1 has been

designed using two 2g cells and an inverter, and new 5X1 has been designed using 2g, 3g

and an inverter. Area and delay of these components have been presented in tables below.

From this data impact of wiring, the area can also be inferred. It has been calculated that

Normal Multiplexer reports 10%-15% smaller area than more realistic Ganged

Multiplexer but this is the difference is likely to be less for bulkier multi-finger

implementations of the next chapter.

77

Table 3-18: Length, width and area of multiplexers designed using ganged components

with a column for normal values for comparison.

Component (↓) Length (um) Width (um) Area (um2) Normal

3X1g 2.8 6.5 18.2 15.7

4X1g 2.8 8.0 22.4 19.6

5X1g 2.8 9.9 27.7 23.8

Table 3-19: Propagation delay of ganged 3X1, 4X1 and 5X1 of SSIA for relevant

fanouts in picoseconds with columns for normal and the difference.

Component -

Fanout (↓)

Normal (ps) Ganged (ps) Difference

(ps)

Percentage

3X1g - FO3 110 116 6 5%

4X1g - FO4 131 134 3 2%

4X1g - FO5 137 141 4 3%

5X1g - FO5 151 159 8 5%

 As the observed change is less than 5%, it can be concluded that although not

very precise, the normal methodology can be used without being too far from real value.

3.5 Superscalar Stack Issue Array (SSIA)

Although SSIA design is not very complicated, doing full custom layout can be

time & labour intensive, and hence first-order projection has been used. By first-order

projection we mean the overall performance has been stipulated based on the

78

performance of individual components. First-order projection won’t be far from actual

data because the test bench has been designed carefully to be similar to actual condition,

e.g. consider issue width 2 of SSIA. All tri-state buffers receive an input from an inverter

and output of tri-state is fed to an inverter which has either 4 or 5 tri-state buffer as a

fanout. Our test bench contains all the just mentioned components and hence we believe

that our prediction will be very close to actual data.

The performance of SSIA has been quantified using two performance parameters:

area and delay. Both parameters have their own separate sub-section below where their

contribution & significance have been discussed.

Figure 3-22: Diagram of 4-issue wide and 4-elements deep Superscalar Stack Issue

Array (SSIA).

3.5.1 Area

The first parameter of performance that we have considered is the area. Area of

the SSIA will be sum total of the area of each individual component, it can be calculated

using data from Table 3-14 and Eq. 3-3, and it is mentioned below in Table 3-20 for

various depths of SSIA. There are four columns, or Issue Widths (IWn = 4), in SSIA and

79

each issue width contains two 5-input (5X1) multiplexers and two 4-input (4X1)

multiplexers. 3-input (3X1) multiplexers aren’t shown in Figure 3-22 but its number will

be four less than the depth (D) of the stack. Normal multiplexer data has been used

instead of the ganged multiplexer at this stage and also SSIA level abutting can also be

employed for reducing the area but that is beyond the scope of this thesis.

 𝐴 = 𝐼𝑊𝑛 ∗ [2 ∗ 5𝑋1𝑎𝑟𝑒𝑎 + 2 ∗ 4𝑋1𝑎𝑟𝑒𝑎 + (𝐷 − 4) ∗ 3𝑋1𝑎𝑟𝑒𝑎] Eq. 3-3

Table 3-20: Area of SSIA and ganged SSIA for depths 4 to 8 of the stack.

Depth of Stack Area(um2) Areag (um2)

4 347 401

5 410 474

6 473 546

7 536 619

8 598 692

Please note that the area data of SSIA is rather optimistic as the impact of internal

wiring has been ignored, as mentioned earlier in the sub-sections 3.2.2, and 3.4.1.

3.5.2 Delay

The second parameter of performance is the propagation delay. Delay of the SSIA

will be worst-case delay an input signal incurs traversing through SSIA. Following four

tables present the delay data of SSIA implemented using components of a standard cell

library. Each cell of a tables can be considered as a component of SSIA (i.e. the rows of

the tables are rows of SSIA and columns of the tables are columns; the first row of the

table is row of 5-input (5X1) multiplexer; the second and the third row of the table is a

80

row of a 4X1 multiplexer; the fourth row is a row of a 5X1 multiplexer; all the remaining

rows of the table are rows of a 3X1 multiplexer) and their content is the delay incurred.

Table 3-21 and Table 3-22 show the individual delay. Table 3-23 and Table 3-24 show

cumulative total delay at that point in SSIA.

Table 3-21: Individual delay of the component (multiplexer) of SSIA.

 IW1 (ps) IW2 (ps) IW3 (ps) IW4 (ps)

S0 151 151 151 151

S1 137 137 137 137

S2 131 131 131 131

S3 151 151 151 151

S4 110 110 110 110

…

…

…

…

…

…

…

…

…

…

SD-1 110 110 110 110

IWi = ith issue width of SSIA; Sj = jth element of stack; D = Depth of stack;

Table 3-22: Individual delay of the component (ganged multiplexer) of SSIA.

 IW1 (ps) IW2 (ps) IW3 (ps) IW4 (ps)

S0 159 159 159 159

S1 141 141 141 141

81

S2 134 134 134 134

S3 159 159 159 159

S4 116 116 116 116
…

…

…

…

…

…

…

…

…

…

SD-1 116 116 116 116

IWi = ith issue width of SSIA; Sj = jth element of stack; D = Depth of stack;

Table 3-23: Cumulative delay of the component (multiplexer) of SSIA.

 IW1 (ps) IW2 (ps) IW3 (ps) IW4 (ps)

S0 151 301 452 602

S1 137 288 439 589

S2 131 281 432 582

S3 151 301 452 602

S4 110 261 411 562

S5 110 220 371 522

S6 110 220 331 481

S7 110 220 331 441

…

…

…

…

…

…

…

…

…

…

SD-1 110 220 331 441

IWi = ith issue width of SSIA; Sj = jth element of stack; D = Depth of stack;

82

Table 3-24: Cumulative delay of the component (ganged multiplexer) of SSIA.

 IW1 (ps) IW2 (ps) IW3 (ps) IW4 (ps)

S0 159 317 476 634

S1 141 300 300 617

S2 134 293 451 610

S3 159 317 476 634

S4 116 274 433 591

S5 116 231 390 548

S6 116 231 347 505

S7 116 231 347 462

…

…

…

…

…

…

…

…

…

…

SD-1 116 231 347 462

IWi = ith issue width of SSIA; Sj = jth element of stack; D = Depth of stack;

Now the worst case scenario for propagation delay would be when the signal

travels through 5X1 multiplexer for all the issue widths and that is 602ps for normal

design and 634ps for ganged design.

3.6 Summary

This chapter presented the baseline data that is going to be used to measure any

improvements that are made in later chapters through more sophisticated design

techniques. Additionally, the baseline data included many performance parameters (such

as area, propagation delay, power, capacitance and fanout), which means quite precise

83

performance data and accurate quantification. The components within SSIA are used in

varying fanout condition and hence the detailed fanout analysis of this chapter was

helpful as it shows the trend of the performance. The baseline data also allows us to

observe and confirm the relationship between capacitance and propagation delay.

The chapter began with an explanation of the experimental setup and

methodologies (Section 3.2). The section used examples of the inverter, tri-state buffer

and 2X1 multiplexer and had separate sub-sections for explaining fundamental

components and multiplexer methodologies. Section 3.3 presented the performance

parameters of the fundamental component and also showed how they change with fanout

and section 3.4 repeated the same process for multiplexers. Section 3.4 also explained the

alternative methodology to evaluate the impact of wiring in performance. Section 3.3 and

3.4 presents the baseline data that can be used to measure any improvements that will be

made in later chapters. Section 3.5 predicted the performance of SSIA if implemented

using the standard cell library. Next chapter is going to collect similar data and show the

enhancement that can be using the custom design approach.

84

CHAPTER 4

CUSTOM CELL IMPLEMENTATION OF SSIA

4.1 Introduction

This chapter investigates the custom design techniques to improve the SSIA

performance [45]. This chapter mainly explores the effect of varying transistor properties

on the performance [47]. The main aim of the chapter is to know what the performance

gains are and what the cost penalties are and thereby investigate the associated trade-offs.

Investigation in the first few sections of the chapter is similar to the previous chapter - in

terms of methodology, fanout conditions and test benches. The last section investigates

the custom design approach at various design levels (Transistor, Component and System

level). The important rationale for performing this work is to get the pieces of evidence to

prove the hypothesis by answering the following question - What are the advantages of

using custom cell design for SSIA?

The fundamental components and multiplexers designed in this chapter have been

put together in a single cell library, and the library has been referred to as a ‘Custom Cell’

library throughout the thesis.

Contributions made through this chapter are presented in the list below.

• Custom Cell library - created in 65nm CMOS process technology.

85

• A comparison of wider v/s multi-finger MOSFET implementation of fundamental

components.

• An evaluation for performance, similar to the previous chapter, has been carried

out for fundamental components made up of multi-finger MOSFETs. (As the

above-mentioned comparison found multi-finger implementation advantageous).

• An Investigation, with a similar methodology to the previous chapter, for

multiplexers implemented using the Custom Cell library, has been carried out.

• Novel components employing custom design approach at various design levels

have been created.

4.2 Transistor Property Variation

Figure 4-1 is a screenshot of Cadence Virtuoso Property Editor and shows the

various properties of a MOSFET. From those properties ‘Width’ and ‘Number of fingers’

have been picked and have been changed for conducting the analysis presented in this

chapter. This idea is the result of inspiration from similar work done previously by others

(changing finger widths) and associated benefits [47] [46].

86

Figure 4-1: Screenshot of properties(such as width, length, numbers of fingers etc.) of

n-channel MOSFET from Cadence.

Doubling the ‘width’ or ‘finger width’ has almost the same increment in the area

but the reduction in propagation delay is different (explained later in sub-sections 4.3.1

and 4.3.2). The reduction in delay, in other words, improvement in speed, is higher in the

case of multi-finger implementation. This is due to the fact that parasitic resistances of

the transistor become parallel [47]. It also keeps the height/width same which is useful in

keeping layout modular. Normal transistor symbol and layout has been shown earlier in

87

Figure 3-2. Figure 4-3 shows the normal transistor layout alongside layouts of multi-

finger and wider transistors. Figure 2-3 and Figure 4-4 shows inverter and tri-state

buffer made using multi-finger MOSFETs.

Figure 4-2: Layout of Inverter (a)FW = 1, and (b) FW = 3.

88

Figure 4-3: Transistor (n-channel) layouts (a) Normal (b) Multi-finger (c) Wider.

Figure 4-4: Layout of Tri-state Buffer (a)FW = 1, and (b) FW = 4.

89

4.3 Fundamental Components

The evaluation of fundamental components in this section is similar to section 3.3.

The same methodology is used, fanouts ranging from 1 to 8 have been considered, and

the same care has been taken in designing test benches. But the analysis in this chapter

has been extended by collecting data for various finger widths, instead of only basic

components. The evaluation of the area and delay also includes a comparison of wider v/s

multi-finger implementation. The decision of choosing multi-finger implementation has

been made after this comparison. The overall analysis of this section and the following

section 4.4 will be helpful in choosing components for SSIA in later chapters. In this

section, each parameter of performance has been given their own separate sub-section

and their contribution & significance have been discussed.

4.3.1 Area

The first parameter of performance is the area. Figure 2-3 and Figure 4-4 have

already shown an inverter and a tri-state buffer of finger widths 1 and 3 respectively.

Their respective area has been calculated using the method described in section 3.2 of the

previous chapter. Table 4-1 presents the area data of inverter and tri-state buffer. The

table contains values for finger widths one to four. Table 4-2 presents the area data of

‘wider’ and ‘multi-finger’ inverter and Figure 4-5 is a visual representation of this data.

Each increment, in both the implementations, increases the area by approximately 25%.

This cost is similar for both the implementations and can also be seen in the graph in

Figure 4-5. If the area is the only priority then it is better to use wider implementation.

90

Table 4-1: Area of fundamental components for various finger widths in um2.

Component (↓) FW = 1 (um2) FW = 2 (um2) FW = 3 (um2) FW = 4 (um2)

Inverter 3.4 4.5 5.3 5.9

Tri-state buffer 4.1 8.1 9.4 11.0

FW = Finger width;

Table 4-2: Areas of wider and multi-finger inverters for comparison.

Implementation (↓) Normal

(um2)

2 x Normal

(um2)

3 x Normal

(um2)

4 x Normal

(um2)

Multi-finger 3.4 4.5 5.3 5.9

Figure 4-5: Graph showing the trend of increment in areas of wider and multi-finger

inverters for each finger width/multiplier.

91

Wider 3.4 4.1 4.8 5.6

4.3.2 Delay

The second parameter of performance is the propagation delay. Table 4-3 and

Table 4-4 show propagation delay of inverter and tri-state buffer respectively from

schematic simulations and their layout simulation data are presented in Table 4-5. Tables

contain values for finger widths one to four and fanout ranging from 1 to 8. It can be

seen that higher the ‘finger-width’ or the ‘width’, lesser is the delay. Thus, a decrease in

the delay is one of the benefits of increasing the number of fingers.

Table 4-3: Propagation delay of wider and multi-finger inverters for fanout ranging

from 1 to 8 (schematic simulations).

Fanout

↓

FW = 1

W = 0.2

Wider Implementation Multi-finger Implementation

W = 0.4 W = 0.6 W = 0.8 FW = 2 FW = 3 FW = 4

FO1 13 13 14 15 12 13 13

FO2 17 16 16 16 14 15 15

FO3 20 18 18 18 16 16 16

FO4 24 18 19 19 18 17 17

FO5 27 22 21 20 20 19 19

FO6 31 24 22 22 22 21 20

FO7 34 25 23 23 24 22 21

FO8 38 27 25 24 25 23 22

FW = Number of fingers (finger widths); W = Width in micrometers (um)

92

Table 4-4: Propagation delay of wider and multi-finger tri-state buffers for fanout

ranging from 1 to 8 (schematic simulations).

Fanout

↓

FW = 1

W = 0.2

Wider Implementation Multi-finger Implementation

W = 0.4 W = 0.6 W = 0.8 FW = 2 FW = 3 FW = 4

FO1 31 31 31 32 27 28 29

FO2 39 35 34 34 31 31 31

FO3 46 38 37 36 35 33 32

FO4 53 42 39 38 38 35 34

FO5 60 46 42 40 41 38 36

FO6 67 50 44 42 45 40 38

FO7 74 53 47 44 48 42 40

FO8 82 57 50 46 52 45 41

FW = Number of fingers (finger widths); W = Width in micrometers (um)

The area cost of larger ‘width’ is slightly less compared to higher ‘finger-width’

and as shown earlier in Table 4-2 and Figure 4-5. Table 4-3, Table 4-4, Table 4-5 and

Figure 4-6 present pieces of evidence, based on propagation delay data as to why multi-

finger implementation is superior compared to wider implementation for SSIA e.g. delay

of multi-finger is less compared to all the wider implementation for FO3, FO4 and FO5

as shown in the graph below. Higher finger-width transistors have the same height/length.

This gives the benefit of modular design which isn’t present in wider transistor design.

Also, reducing delay is more important to us then reducing area. Hence, investigation for

the next parameters chose higher finger-width fundamental components. If there was

more time investigation for wider transistors would have also been carried out.

93

Table 4-5: Propagation delay of inverter and tri-state buffer for finger widths 1 to 4 and

fanout ranging from 1 to 8 (layout simulations).

Fanout

↓

Inverter Tri-state buffer

FW= 1 FW= 2 FW= 3 FW= 4 FW= 1 FW= 2 FW= 3 FW= 4

FO1 23 19 22 24 41 38 42 47

FO2 30 22 24 26 54 41 44 49

FO3 37 25 26 28 68 45 46 50

FO4 44 27 28 31 81 48 48 52

FO5 51 30 30 31 94 52 50 53

FO6 57 32 31 33 108 55 52 55

FO7 64 34 33 34 122 58 53 56

FO8 71 36 34 36 136 62 55 57

FW = Number of fingers (finger widths);

Figure 4-6: Graphs showing the comparison for wider and multi-finger

implementations of inverter and tri-state buffers.

94

4.3.3 Capacitance

Figure 4-7: Diagram showing the change of capacitance on changing finger width for

tri-state buffer with a fanout of four.

The third parameter of performance is Capacitance. A general trend of

capacitance with respect to finger width can be seen in Figure 4-7. Table 4-6 and Table

4-7 present the capacitance data of inverter and tri-state buffer respectively. Tables

contain values of both input and output node capacitances for finger widths one to four

and fanout ranging from 1 to 8. For simplicity, only the total value of the capacitance has

been presented (not individual fixed and variable components). It can be observed that

output capacitance doesn’t change much with a change in finger widths. This could be

due to the fact that the output capacitance is mainly dependent on drain capacitance of

UUT. Hence, it is the same for all finger widths (after schematic simulation) or changes

95

only marginally (after layout simulation). Thus, for capacitance, there isn’t a significant

cost or benefit of an increasing the number of fingers.

Inverter

Table 4-6: Total input and output capacitance of inverter of finger widths 1 to 4 for

fanout ranging from 0 to 8 in femtofarad.

Fanout

↓

FW = 1 FW = 2 FW = 3 FW = 4

Sch. Lay. Sch. Lay. Sch. Lay. Sch. Lay.

Total Input Capacitance (fF)

All 0.4 1.0 0.9 2.4 1.3 4.8 1.7 8.1

Total Output Capacitance (fF)

Fanout

↓

FW = 1 FW = 2 FW = 3 FW = 4

Sch. Lay. Sch. Lay. Sch. Lay. Sch. Lay.

NOC 0 0.2 0 0.3 0 0.5 0 0.6

FO1 0.5 1.1 0.5 1.2 0.5 1.4 0.5 1.5

FO2 1.0 2 1.0 2.1 1.0 2.3 1.0 2.5

FO3 1.6 2.9 1.6 3.1 1.6 3.2 1.6 3.3

FO4 2.1 3.8 2.1 4.0 2.1 4.1 2.1 4.3

FO5 2.6 4.7 2.6 4.9 2.6 5.0 2.6 5.2

FO6 3.1 5.6 3.1 5.8 3.1 6.0 3.1 6.1

FO7 3.7 6.6 3.7 6.7 3.7 6.9 3.7 7.0

FO8 4.2 7.5 4.2 7.6 4.2 7.8 4.2 7.9

FW = Number of fingers (finger widths); Sch. = Schematic Data; Lay. = Layout

96

Data; femtoFarad (10-15)

Tri-state

Table 4-7: Total input and output capacitance of a tri-state buffer of finger widths 1 to 4

for fanout ranging from 0 to 8 in femtofarad.

Fanout

↓

FW = 1 FW = 2 FW = 3 FW = 4

Sch. Lay. Sch. Lay. Sch. Lay. Sch. Lay.

Total Input Capacitance (fF)

All 0.4 0.9 0.9 2.4 1.3 4.8 1.7 8.1

Total Output Capacitance (fF)

Fanout

↓

FW = 1 FW = 2 FW = 3 FW = 4

Sch. Lay. Sch. Lay. Sch. Lay. Sch. Lay.

NOC 0 0.2 0 0.4 0 0.6 0 0.7

FO1 0.5 1.0 0.5 1.3 0.5 1.5 0.5 1.6

FO2 1 1.9 1 2.2 1 2.4 1 2.5

FO3 1.5 2.7 1.5 3.0 1.5 3.2 1.5 3.3

FO4 2.0 3.6 2.0 3.9 2.0 4.1 2.0 4.2

FO5 2.5 4.5 2.5 4.7 2.5 5.0 2.5 5.1

FO6 3.0 5.3 3.0 5.6 3.0 5.8 3.0 5.9

FO7 36 6.2 3.6 6.5 3.6 6.7 3.6 6.8

FO8 4.1 7.0 4.1 7.3 4.1 7.8 4.1 7.7

FW = Number of fingers (finger widths); Sch. = Schematic Data; Lay. = Layout

Data; femtoFarad (10-15)

97

4.3.4 Power

The fourth and last parameter of performance is power consumption. Tables

contain values of both static and peak dynamic power for finger widths one to four and

fanout ranging from 1 to 8.

Table 4-8: Peak dynamic and static power consumption of an inverter of finger width 1

to 4 for fanout ranging from 1 to 8 in nanowatts for low to high and high to low input

transitions.

Peak Value of Dynamic Power (uW)

Fanout

↓

FW = 1 FW = 2 FW = 3 FW = 4

L → H H → L L → H H → L L → H H → L L → H H → L

FO1 47 46 76 73 99 97 133 130

FO2 53 52 89 88 106 106 138 136

FO3 57 56 100 98 115 113 142 141

FO4 60 60 108 110 123 122 147 146

FO5 62 62 119 119 131 131 151 151

FO6 64 64 128 126 137 139 157 157

FO7 66 65 136 135 144 147 163 164

FO8 67 66 142 142 153 153 168 170

Static Power (nW)

Fanout

↓

FW = 1 FW = 2 FW = 3 FW = 4

I/P= L I/P= H I/P= L I/P= H I/P= L I/P= H I/P= L I/P= H

ALL 1.2 1.0 5.5 5.1 12.2 13.6 25.3 22.4

98

FW = Number of fingers (finger widths); IP = Input State; L = Low state; H =

High state; L → H = Transition of input state from Low to High and vice versa.

As we increase the number of fingers power consumption also increases. Table

4-8 and Table 4-9 present the post-layout power data of inverter and tri-state buffer

respectively. Power (along with area) is the cost of an increasing number of fingers.

Table 4-9: Peak dynamic and static power consumption of a tri-state buffer of finger

width 1 to 4 for fanout ranging from 1 to 8 in nanowatts for low to high and high to low

input transitions..

Peak Value of Dynamic Power (uW)

Fanout

↓

FW = 1 FW = 2 FW = 3 FW = 4

L → H H → L L → H H → L L → H H → L L → H H → L

FO1 36 32 109 95 161 145 202 185

FO2 37 33 113 98 167 152 206 188

FO3 38 34 116 103 173 157 210 193

FO4 38 35 119 107 178 162 215 199

FO5 39 35 121 109 182 167 220 205

FO6 39 36 123 112 186 170 225 210

FO7 40 36 125 114 190 174 229 214

FO8 40 36 127 115 193 179 233 218

Static Power (nW)

Fanout

↓

FW = 1 FW = 2 FW = 3 FW = 4

L → H H → L L → H H → L L → H H → L L → H H → L

99

ALL 3.2 3.2 16.4 16.4 32.0 32.0 56.9 56.9

FW = Number of fingers (finger widths); IP = Input State; L = Low state; H =

High state; L → H = Transition of input state from Low to High and vice versa.

4.4 Multiplexer

The evaluation of multiplexers in this section is similar to section 3.4 but extends

for finger widths 1 to 4, and is using the Custom Cell library. Performance data for area

and delay are presented in following subsections, its significance is discussed in the next

section (4.5).

Table 4-10: Calculated area of 3X1, 4X1 and 5X1 of finger widths 1 to 4 in um2.

Component (↓) FW = 1 (um2) FW = 2 (um2) FW = 3 (um2) FW = 4 (um2)

3X1 15.7 28.7 33.5 38.8

4X1 19.7 36.7 42.8 49.8

5X1 23.8 44.8 52.2 60.8

FW = Number of fingers (finger widths)

Table 4-11: Propagation delay of multiplexers (of finger widths 1 to 4) of SSIA for

relevant fanouts in picoseconds in picoSeconds.

Component - Fanout FW = 1 (ps) FW = 2 (ps) FW = 3 (ps) FW = 4 (ps)

3X1 - FO3 110 77 79 80

4X1 - FO4 131 87 86 89

4X1 - FO5 137 89 88 91

100

5X1 - FO5 151 96 94 98

FW = Number of fingers (finger widths)

4.4.1 Area

The first parameter of performance is an area of multiplexers. The methodology

used for calculation is the same as sub-section 3.4.1. Areas of 3X1, 4X1 and 5X1

multiplexers for various finger widths have been calculated and are presented in Table

4-10.

4.4.2 Delay

The second parameter of performance is the propagation delay. Propagation

delay data of the multiplexers are shown in Table 4-11.

4.5 Cost-benefit analysis

In section 4.3 and 4.4 we looked at various parameters of performance for finger

widths 1 to 4. In this section, we will present the cost-benefit analysis of changing finger

widths. In general, it can be said that performance improves with higher finger widths.

We will analyze how much improvement can be achieved through each increment in a

number of fingers. Performance parameter that benefits from higher finger width is

propagation delay, and hence we will be analyzing data presented in Table 4-5 and Table

4-11. Table 4-12 presents the data of Table 4-5, and similarly Table 4-13 for Table

4-11, in terms of percentage of reduction in a delay relative to finger width 1. Green

shading represents delay has improved compared to its predecessor. Blue shading

represents delay has improved relative to finger width 1 but is less than the predecessor.

Red shading represents delay has worsened. It can be observed that going from finger

width 1 to 2 has been advantageous for all cases, and going from finger width 2 to 3 has

101

been advantageous for most but the improvement is far less (hence the diminishing

return). In addition, going from finger 3 to finger width 4 isn’t advantageous for any case.

This behaviour can be attributed to self-loading. Increasing finger width or width

increased the drive current and hence the delay starts to decrease but after a point

capacitance also increases quite a lot and hence improvement starts to fade [66]. Thus, we

found out that finger width 2 are the most beneficial, considering the diminishing return

and the area cost. That’s why 2g and 3g implementation (presented in the next section)

has been investigated only for finger width 2.

Table 4-12: Delay comparison relative to finger width 1 for fundamental components.

Fanout

↓

Inverter Tri-state buffer

FW= 1 FW= 2 FW= 3 FW= 4 FW= 1 FW= 2 FW= 3 FW= 4

FO1 0 0.17 0.04 -0.04 0 0.07 -0.02 -0.15

FO2 0 0.27 0.20 0.13 0 0.24 0.19 0.09

FO3 0 0.32 0.30 0.24 0 0.34 0.32 0.26

FO4 0 0.39 0.36 0.30 0 0.41 0.41 0.36

FO5 0 0.41 0.41 0.39 0 0.45 0.47 0.44

FO6 0 0.44 0.46 0.42 0 0.49 0.52 0.49

FO7 0 0.47 0.48 0.47 0 0.52 0.57 0.54

FO8 0 0.49 0.52 0.49 0 0.54 0.60 0.58

Yellow – Starting Point; Green – Improvement; Blue – Diminishing Return; Red

– Worsened;

102

Table 4-13: Delay comparison relative to finger width 1 for multiplexers.

Component – Fanout (↓) FW = 1 FW = 2 FW = 3 FW = 4

3X1_FO3 0% 30% 28% 27%

4X1_FO4 0% 34% 34% 32%

4X1_FO5 0% 35% 36% 34%

5X1_FO5 0% 36% 38% 35%

Yellow – Starting Point; Green – Improvement; Blue – Diminishing Return; Red

– Worsened;

4.6 2g and 3g Implementation for f2

2g and 3g components, which consider the impact of internal wiring and

explained earlier in section 3.4.3 have been implemented using multi-finger MOSFETs of

finger width 2 in this section, and their performance data are presented. They are labelled

as 2gF2 and 3gF2 and multiplexers designed using them have been given subscripts ‘gF2’.

Table 4-14 presents the area and Table 4-15 presents the propagation delay. Table 4-15

is analogous to table in sub-section 3.4.3. There the difference of delay in percentage was

less than 5% of the original value but here it’s much larger. Therefore it can be concluded

that it’s important to consider the factor of internal wiring in the calculation to be more

precise.

103

Table 4-14: Length, width and area of ganged components and ganged multiplexer of

finger width 2 in um2.

Component (↓) Length (um) Width (um) Area (um2) GFW1 (um2)

2gF2 2.8 7.4 20.6 9.5

3gF2 2.8 9.7 27.2 14.8

3X1gF2 2.8 11.2 31.3 18.2

4X1gF2 2.8 16.2 45.3 22.4

5X1gF2 2.8 18.5 51.9 27.7

GFW1 – Ganged design and finger width = 1;

Table 4-15: Propagation delay in picoseconds of finger width 2 ganged 3X1, 4X1 and

5X1 of SSIA for relevant fanouts in picoseconds with columns for normal and the

difference.

Component –

Fanout (↓)

Ganged Design

(ps)

Normal Design

(ps)

Difference in

Percentage

3X1gF2 - FO3 91.2 77.0 18%

4X1gF2 - FO3 104.8 86.6 21%

4X1gF2 - FO4 110.8 88.8 25%

5X1gF2 - FO5 121.9 96.1 27%

4.7 Equal sized NMOS and PMOS - equalNP

The standard CMOS implementation of Inverters has an aspect ratio of 2:1 in

order to get equal rise time and fall time. In this section, the impact of changing that

104

aspect ratio to 1:1 has been investigated. This will result in unequal rise time and fall time

but as we consider the worst-case delays in calculation this won’t pose a major challenge.

Figure 4-8: Layout of (a) inverter, and (b) inverter_equalNP.

These novel fundamental components, customised at the transistor level, have

the suffix ‘equalNP’ to their names as they have equal size NMOS and PMOS. We

designed inverter and tri-state buffer with NMOS and PMOS of equal width and

105

designed the 3X1 multiplexer using these fundamental components. Multiplexers made

using these fundamental components have also been given the same suffix ‘equalNP’

e.g. 3X1_equalNP.

Table 4-16: Area of equalNP and normal components.

Components (↓) EqualNP area (um2) Normal area (um2)

Inverter 3.0 3.4

Tri-state buffer 3.7 4.1

Inverter (finger width = 2) 3.7 4.5

Tri-state buffer (finger width = 2) 7.2 8.1

3X1 14.0 15.7

3X1g 16.8 18.2

3X1F2 25.3 28.3

3X1gF2 27.8 31.3

The measurements of 3X1 multiplexer have been given in These novel

fundamental components, customised at the transistor level, have the suffix ‘equalNP’ to

their names as they have equal size NMOS and PMOS. We designed inverter and tri-state

buffer with NMOS and PMOS of equal width and designed the 3X1 multiplexer using

these fundamental components. Multiplexers made using these fundamental components

have also been given the same suffix ‘equalNP’ e.g. 3X1_equalNP.

Table 4-16 and Table 4-17, where it can be seen that area is lesser compared to

normal approach and for finger width 2 delay is also lesser, that’s clearly a win-win

situation. There is more investigation that can be done in this direction such as area,

106

delay, power and capacitance of ‘Inverter_equalNP’, and ‘Tri-state_buffer_equalNP’ can

be measured, and 4X1_equalNP and 5X1_equalNP can be designed and their area and

delay can also be calculated.

Table 4-17: Propagation delay data of 3X1 Multiplexer made using Custom

Fundamental Components.

Components (↓) Normal (ps) equalNP (ps)

3X1 110.2 117.7

3X1g 115.5 128.0

3X1F2 77.0 76.9

3X1gF2 91.2 80.1

4.8 Hybrid Multiplexers

In previous designs, all tri-state buffers of a multiplexer are uniform (i.e. all finger

width 1, 2, 3 or 4). In our component level customization, the novel multiplexers have

been designed. The customisation attempted here involves changing some of the tri-state

buffers from finger width 1 to a finger width 2. This is done to speed-up those tri-state

buffers with minimal area cost. We changed one of the three tri-state buffers in 3X1, two

of the four in 4X1, and two of the five in 5X1. We believe these are the number of tri-

state buffers which will be used frequently in the respective multiplexers. As multiplexers

are hybrid of the transistor of finger width 1 and finger width 2 we have added the suffix

‘hybrid’. In this section, measurements of the performance parameters such as area and

delay have been presented. Table 4-18 presents the area and Table 4-19 presents the

delay. We observed that both kinds, finger width one and two, of tri-state buffer

107

experiences different delays. The delay measurements have been done for both kids and

have been presented in Table 4-19.

Figure 4-9: Schematic of hybrid multiplexers (a) 3X1_hybrid, (b)4X1_hybrid, and

(c)5X1_hybrid.

Table 4-18: Area of normal and hybrid multiplexers.

Components (↓) Hybrid area (um2) Normal area (um2)

108

3X1 19.6 15.7

4X1 27.7 19.7

5X1 31.8 23.8

Table 4-19: Propagation delay data of hybrid multiplexers.

Components – Fanout - Remark (↓) FW1 (ps) FW2 (ps) Average (ps)

3X1 – FO3 – 3 FW1 110.3 N/A 110.3

3X1_hybrid – FO3 – 2 FW1 and 1 FW2 128.3 77.8 111.8

4X1 – FO4 – 4 FW1 130.5 N/A 130.5

4X1_hybrid – FO4 – 2 FW1and 2 FW2 167.8 92.8 130.3

4X1_hybrid – FO5 – 4 FW1 137.4 N/A 137.4

4X1_hybrid – FO5 – 2 FW1 and 2 FW2 175.7 98.9 137.3

5X1 – FO5 – 5 FW1 150.6 N/A 150.6

5X1_hybrid – FO5 – 3 FW1 and 2 FW2 188.3 102.6 154.0

FW1 = Finger width = 1; FW2 = Finger width = 2;

4.9 Comparison of different multiplexer implementations

This section provides a comparison of various multiplexers presented so far, i.e.

Multi-finger Multiplexer implementation, equalNP Multiplexer implementation, and

Hybrid Multiplexer implementation. Multifinger - A cost-benefit analysis of Multi-finger

implementation has been provided earlier in section 4.5. As the finger widths of

MOSFETs increases, the area also increases with benefit in speed. One of the

109

improvements we thought of is to use higher finger widths for only some of the

multiplexers. That way increase in the area won’t be that much and if multiplexers are

selected carefully then speed benefit can be really good but the disadvantage of this

approach is that each multiplexer has to be customised for each application – that can be

resource intensive.

The conventional approach in CMOS design is to use ‘pch; transistor twice the

size of ‘nch’. This is to make sure rise time and fall time of the gate is equal. We decided

to experiment with the unconventional approach of having ‘pch’ and ‘nch’ of equal size.

As presented in section 4.7 we were able to reduce the area at the cost of higher

propagation delay, which can be beneficial for components which are not in critical

timing path. They can be made slower without affecting the overall propagation delay at

the benefit of the lesser area.

4.10 System-level customisation

Table 4-20: Multiplexers and their possible versions.

Multiplexers (↓) Different possible versions

5X1 5X1F1, 5X1F2, 5X1F3, 5X1F4, 5X1_hybrid

4X1 4X1F1, 4X1F2, 4X1F3, 4X1F4, 4X1_hybrid

3X1 3X1F1, 3X1F2, 3X1F3, 3X1F4

3X1F1_equalNP, 3X1F2_equalNP, 3X1_hybrid

The SSIA is made up 3X1, 4X1 and 5X1 multiplexers and there are many choices

available for these multiplexers, as presented earlier in this, and the previous chapters, e.g

there are 7 different versions for 3X1, and 5 different versions for 4X1 and 5X1. The

110

performance data of each version can be different. The users can customise the SSIA at

system level based on their requirement. For example, if all multiplexers have a finger

width one transistor then the area will be quite less but delay won’t be as good as multi-

finger versions. Area and delay can be further traded-off for finger widths 2, and 4. In

SSIA of depth 5, there are eight 5X1, eight 4X1 and four 3X1 multiplexers. Thus, there

can be 366 trillion – 74x58x58 – different possible versions of SSIA. Considering this

number it can be assumed, without a doubt, that the analysis of system level

customisation can get quite lengthy.

4.11 Summary

It is demonstrated that the faster components are possible at the expense of larger

chip area, although the trend is kind of diminishing return. Further, the impact of self-

loading also has also come in sight, which implies a certain number of fingers (two in our

case) offer the best performance gains. With more customisation, it was found that there

is scope for improvement using system level customisation – this topic is further

discussed in the next chapter (CHAPTER 5).

The chapter began with a discussion related to transistor property variations in

section 4.2. In section 4.3 and 4.4, it was found that faster components are possible at the

expense of a larger chip area and diminishing return trend has been observed which was

specifically explained in section 4.5. In the same section, the impact of self-loading also

came in sight, which implied a certain number of fingers (two in our case) offered the

best performance gains. In section 4.9, it was found that there is huge scope for

improvement using system level customisation and that the system level customisation

111

can get quite complex. Thus, their discussion has been presented separately in the next

chapter (CHAPTER 5).

112

CHAPTER 5

INVESTIGATION OF SSIA

5.1 Introduction

In the previous chapter (in sub-section 4.9), it was demonstrated that there are

trillions of different versions of SSIA. Different versions of SSIA offers different benefits

at a different cost, and these cost-benefits have been discussed in this chapter. The

chapter starts with an explanation of the methodology for calculating performance

parameters of SSIA. This chapter also discusses a novel tool called SSIA Predictor,

which can predict a suitable version of SSIA based on user requirements [67]. Thus, the

chapter mainly discusses SSIA versions which have been chosen either manually or using

an algorithm. At the end of the chapter comparison of SSIA with register files are also

included.

Contributions made through this chapter are presented in the list below.

• Power/Energy consumption at SSIA level has been calculated and discussed

• Using manual analysis recommendations have been made for SSIA version that:

o Occupies the least area on the chip.

o Offers the smallest worst-case delay.

o Consumes the least power.

113

• SSIA Predictor – an excel dashboard and DARWIN – an automated toolset have

been proposed. These tools permit SSIA design space exploration, evaluation, and

can ultimately make a recommendation using an algorithmic approach.

• Recommendations made by SSIA Predictor have been discussed and some are

also compared with those, which were chosen manually.

• A new comparison of SSIA v/s register files, first done by Crispin-Bailey and

Mullane, has been provided [1].

5.2 Methodology

Investigation of SSIA covers three performance parameters: Area, Delay and

Power. A preliminary investigation of SSIA has already been presented in Section 3.5.

This chapter extends that investigation and is more in-depth. Like preliminary

investigation, here as well first order projection has been used. The SSIA that we

consider for this chapter has an Issue Width of four and Depth of eight elements as shown

in Figure 5-1. This section uses standard cell version of SSIA (SSIA_A) as an example,

its configuration is shown in Table 5-1.

This section has sub-sections for each parameter which explains the

methodologies used to calculate them. Some of the necessary backgrounds for this

chapter has also been covered in this section.

114

Figure 5-1: SSIA_A version of SSIA (depth = 8).

Table 5-1: Configuration of SSIA_A (standard cell version).

 IW1 IW2 IW3 IW4

S0 5X1_F1_FO5 5X1_F1_FO5 5X1_F1_FO5 5X1_F1_FO5

S1 4X1_F1_FO5 4X1_F1_FO5 4X1_F1_FO5 4X1_F1_FO5

S2 4X1_F1_FO4 4X1_F1_FO4 4X1_F1_FO4 4X1_F1_FO4

S3 5X1_F1_FO5 5X1_F1_FO5 5X1_F1_FO5 5X1_F1_FO5

115

S4 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3

S5 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3

S6 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3

S7 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3

5.2.1 Area

The area calculation has been explained previously during preliminary

investigation in sections 3.5. The area of SSIA is simply the sum total of area of all

components which make up the SSIA structure. As we have fixed the issue width to four

and depth to eight for this chapter, the new simplified equation for this chapter is Eq. 5-1.

Based on the Eq. 5-1 and Table 3-14, the area of the example – standard cell version of

SSIA (SSIA_A) – is 598 um2.

𝐴 = 4 ∗ [2 ∗ 5𝑋1𝑎𝑟𝑒𝑎 + 2 ∗ 4𝑋1𝑎𝑟𝑒𝑎 + 4 ∗ 3𝑋1𝑎𝑟𝑒𝑎]

= 8 ∗ [5𝑋1𝑎𝑟𝑒𝑎 + 4𝑋1𝑎𝑟𝑒𝑎 + 2 ∗ 3𝑋1𝑎𝑟𝑒𝑎]
Eq. 5-1

5.2.2 Delay

The delay calculation has also been explained previously during preliminary

investigation in subsection 3.5.2. Each input signal of stack array will experience a

different amount of delay based on its journey in the SSIA. Hence the worst-case delay

values are of the interest and have been presented in the chapter. The cumulative worst-

case delay of each component is dependent on elements through which signal travels

before arriving there. Each component through which signal passes adds some delay. A

chart to explain this delay dependency of each component of an issue width is presented

in Figure 5-2 below.

116

Figure 5-2: Delay dependency chart.

The worst-case cumulative delay of the component is the sum total of the delay of

the component and worst-case delay of components on which it is dependent. Consider

S2 element of issue slot 2 (i2) as an example (red border block of Figure 5-2). It’s the

4X1 multiplexer with a fanout of 4 (4X1_FO4) and highlighted in blue and its individual

delay is approximately 131ps according to Table 3-15 on page 72. Its cumulative worst-

case delay is the sum of individual delay and worst-case individual delay of components

highlighted in red in i1 – which is approximately 151ps – and hence S2’s cumulative

worst-case delay is approximately 281ps (it’s not 282ps because values have been

117

rounded off to nearest integer). This cumulative worst-case delay of all components is

presented in Table 5-2.

Table 5-2: Cumulative Delay of SSIA_A Components.

 IW1 (ps) IW2 (ps) IW3 (ps) IW4 (ps)

S0 151 301 452 602

S1 137 288 439 589

S2 131 281 432 582

S3 151 301 452 602

S4 110 261 411 562

S5 110 220 371 522

S6 110 220 331 481

S7 110 220 331 441

…

…

…

…

…

…

…

…

…

…

SD-1 110 220 331 441

The table has 4 columns like SSIA and the respective cell position correspond to

elements position in SSIA. This is similar to Table 3-21 which showed the delay of an

individual component. An equation, like Eq. 5-1 for the area, and for the delay, may be

hard to write but it can be said that the worst-case delay for the SSIA will be the

highest delay in the final issue slot and that will be used as a performance

118

parameter. In our example of the standard cell design model, this value is approximately

602ps.

5.2.3 Power/Energy Consumption

Unlike area and delay, the power/energy consumption at SSIA level wasn’t

discussed in CHAPTER 3, only power consumption at component level was investigated.

Based on certain assumption and the data of fundamental components, data for SSIA

power consumption can be estimated. This sub-section explains this approach and

assumptions underlying the approach. Though this estimation will only be close

approximation, because to estimate real power/energy consumption of SSIA a model for

stack behaviours during its execution would be required, which represents the average

switching behaviour of every bit of every stack element, based on an accurate model of

real-world workloads, but unfortunately this is beyond the scope of this thesis. Instead,

we use a worst-case mode where every multiplexer is assumed to change its input

selection and its output state for every clock cycle. This provides a worst-case

performance ceiling for each design, in reality, power will almost always be lower than

this estimate. The data may be approximate but as the approach is the same for all the

versions and hence this can certainly provide an accurate comparison of various versions.

In addition to the methodology, this sub-section also presents the results of power/energy

consumption experiments of fundamental components. The power/energy consumption

of SSIA has been estimated under the following assumptions.

• The static component is presented as power consumption.

• The dynamic component is presented in terms of energy consumed during a single

switching event.

119

• Static power consumption calculation assumes no switching.

• In one clock cycle

o Only two switching events occur for any multiplexer – one in the tri-state

buffer and the other in the inverter.

o Each multiplexer has only one active tri-state buffer.

• Dynamic energy consumed by a tri-state buffer of the multiplexer in high

impedance (high-Z) state is very low and can be considered null (As verified in

measurements from simulation and can be seen in Figure 5-4).

• A multiplexer is assumed to swap the input channel, to make sure we have the

worst-case scenario.

• Active tri-state has a 50/50 Hi/Low switching behaviour – again for the worst-

case calculations.

In this chapter, power/energy consumption of SSIA is presented in two

components - the static component (power consumption when there is no switching) and

dynamic component (energy consumed due to switching events). Each of them is

explained in their own sub-sub-sections.

5.2.3.1 Static Component – Power Consumption of SSIA

Static power consumption of inverter and tristate buffer has been presented earlier

in section 4.3.4 in Table 4-8 and Table 4-9 on page 97. The same measurements have

been done again and resulting data has been presented in Table 5-3. Using our

assumptions, static power consumption of multiplexer has been calculated and presented

below in Table 5-4. Similarly, the power consumption of SSIA can be calculated using

120

Table 5-4 and Eq. 5-2. For our example, standard cell version of SSIA (SSIA_A) this

value is approximately 420 nW.

Table 5-3: Static power consumption data of fundamental components.

Components

(↓)

FW = 1 FW = 2 FW = 3 FW = 4 equalNP

FW = 1 FW = 2

Inverter 1.1nW 5.3nW 12.9nW 23.9nW 0.8nW 3.9nW

Tri-state buffer 3.2nW 16.5nW 32.0nW 56.9nW 2.1nW 10.9nW

FW = Finger width;

Table 5-4: Static power consumption data of multiplexers.

Components (↓) FW = 1 FW = 2 FW = 3 FW = 4

3X1 10.7nW 54.5nW 108.9nW 194.6nW

3X1_equalNP 6.9nW 36.6nW - -

4X1 13.9nW 70.9nW 140.9nW 251.5nW

5X1 17.1nW 87.3nW 172.9nW 308.4nW

FW = Finger width;

An equation to calculate the value for SSIA

 𝑃𝑠 = 8 ∗ [5𝑋1𝑝𝑜𝑤𝑒𝑟 + 4𝑋1𝑝𝑜𝑤𝑒𝑟 + 2 ∗ 3𝑋1𝑝𝑜𝑤𝑒𝑟] Eq. 5-2

121

Figure 5-3: Static Power Consumption of Multiplexers.

It is interesting to note that the power data reinforces the idea that the ganged tri-

state is a very effective design model. It can be estimated that 2X1 multiplexer will

consume 7.5nw power given the linear relationship is shown in Figure 2-3. Four 2X1

multiplexers will be required to build a 5X1 multiplexer and thus its power consumption

will be around 30nw, whereas 5X1 multiplexer that is designed using tri-state buffers will

consume only 17.1 nW.

5.2.3.2 Dynamic Component – Energy consumption of SSIA

Previously in the section 4.3.4 peak value of dynamic power has been presented.

A better estimation of power/energy due to transition would be the total energy consumed

rather than the peak values; those values have been calculated and presented in this

section. Figure 5-4 is a screenshot of one of the graphs that are used to measure these

values. In the figure, the red line is a graph for power consumption and the yellow is for

energy consumption. The data obtained have been presented in Table 5-5 and Table 5-6.

122

Using our assumptions and data of fundamental components, the energy consumption of

multiplexer can be calculated and are presented in the Table 5-7. Similarly, energy

consumption of SSIA can be calculated using Table 5-7 and Eq. 5-3. For our example –

standard cell version of SSIA (SSIA_A) – this value is approximately 192 fJ.

Table 5-5: Energy consumption of inverter for various fanouts in femtojoules.

Fanout ↓ FW = 1

(fJ)

FW = 2

(fJ)

FW = 3

(fJ)

FW = 4

(fJ)

equalNP (fJ)

FW = 1 FW = 2

FO1 1.11 1.81 3.62 8.13 0.96 1.45

FO2 1.67 2.37 4.09 8.45 1.525 2.015

Figure 5-4: Cadence screenshot of power/energy calculations of the tri-state buffer.

123

FO3 2.24 2.94 4.57 8.76 2.09 2.58

FO4 2.82 3.51 5.09 9.14 2.67 3.145

FO5 3.40 4.08 5.61 9.51 3.25 3.71

Table 5-6: Energy consumption of tri-state buffer for various fanouts in femtojoules.

Fanouts

(↓)

FW = 1

(fJ)

FW = 2

(fJ)

FW = 3

(fJ)

FW = 4

(fJ)

equalNP (fJ)

FW = 1 FW = 2

FO3 2.82 6.03 10.01 15.66 2.48 4.71

FO4 3.40 6.58 10.55 16.18 3.06 5.27

FO5 3.99 7.14 11.09 16.70 3.65 5.83

Table 5-7: Energy consumption of various multiplexers.

 FW = 1 FW = 2 FW = 3 FW = 4

3X1_FO3 5.06 8.97 14.58 24.42

3X1_equalNP 4.56 7.29 - -

4X1_FO4 6.22 10.09 15.64 25.32

4X1_FO5 6.80 10.66 16.15 25.69

5X1_FO5 7.38 11.21 16.69 26.21

124

An equation to calculate SSIA value is shown below.

𝑃𝐷 = 4 ∗ [2 ∗ 5𝑋1_𝐹𝑂5𝑝𝑜𝑤𝑒𝑟 + 4𝑋1_𝐹𝑂5𝑝𝑜𝑤𝑒𝑟

+ 4𝑋1_𝐹𝑂4𝑝𝑜𝑤𝑒𝑟 + 4 ∗ 3𝑋1_𝐹𝑂3𝑝𝑜𝑤𝑒𝑟]

Eq. 5-3

5.2.4 Performance Parameters of an SSIA Version

Table 5-8: Performance parameters of SSIA_A (the standard cell version).

Area 598 um2

Delay (worst-case) 602 ps

Static - Power Consumption 420 nW

Dynamic – Energy Consumption 192 fJ

5.3 Manual Selection for SSIA

The performance of SSIA can be quantified in terms of three parameters (area,

delay and power), as explained in the previous section (5.2). Through this section, the

version of SSIA is recommended which are best for each of the three parameters i.e.

version of SSIA that will:

• Occupy the lowest area.

• Have the smallest worst-case delay.

• Have the lowest power consumption.

5.3.1 Area

Standard cell design has a low area compared to all the custom design approach,

except equalNP version – an example of this for the 3X1 multiplexer is shown in Table

125

5-9. So, standard cell implementation of SSIA in which 3X1 multiplexers are replaced

with 3X1_equalNP multiplexer will offer the lowest area. The configuration for this

version (SSIA_B) is shown in the table below. The hybrid versions also can’t provide an

SSIA version better than this because some of the components of the hybrid have higher

finger width which means larger than the normal area.

Table 5-9: Different versions of 3X1 multiplexers and their area.

Type of 3X1 Multiplexer Area (um2)

Finger width = 1 15.7

Finger width = 2 28.7

Finger width = 3 33.5

Finger width = 4 38.8

Finger width = 1 (equalNP) 14.0

Finger width = 2 (equalNP) 25.3

Table 5-10: Configuration of SSIA_B (lowest area version).

 IW1 IW2 IW3 IW4

S0 5X1_F1_FO5 5X1_F1_FO5 5X1_F1_FO5 5X1_F1_FO5

S1 4X1_F1_FO5 4X1_F1_FO5 4X1_F1_FO5 4X1_F1_FO5

S2 4X1_F1_FO4 4X1_F1_FO4 4X1_F1_FO4 4X1_F1_FO4

S3 5X1_F1_FO5 5X1_F1_FO5 5X1_F1_FO5 5X1_F1_FO5

S4 3X1_F1_equalN 3X1_F1_equalN 3X1_F1_equalN 3X1_F1_equalN

126

P_FO3 P_FO3 P_FO3 P_FO3

S5 3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

S6 3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

S7 3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

3X1_F1_equalN

P_FO3

Table 5-11: Performance parameters of SSIA_B (lowest area version).

 Parameters SSIA_A SSIA_B % difference

Area 598 um2 572 um2 4.34 % (↓)

Delay (worst-case) 602 ps 602 ps N/A

Static - Power Consumption 420 nW 360 nW 14 % (↓)

Dynamic – Energy Consumption 192 fJ 184 fJ 4.16 % (↓)

5.3.2 Delay

As explained in the methodology section, finding the SSIA version that has the

lowest worst-case delay is slightly complicated compared to other parameters. Table 5-2

earlier on page number 117 presented the delay data for SSIA_A, which is baseline data

for SSIA. It was observed in section 4.5 and Table 4-13 that it is advantageous to go

from finger width 2 to 3 for most components, so implementing SSIA with MOSFETs of

finger width 3 should be good. The resulting performance of this configuration is

127

presented in Table 5-12 below. It can be seen that the worst-case delay has gone down to

376ps from 602ps (bold and underlined in Table 5-12), a reduction of 37.5% in the delay.

In section 4.5 and Table 4-13, it was also observed that there wasn’t any improvement

going from finger width 2 to 3 for 3X1 multiplexer and 4X1 multiplexer (which has a

fanout of four). Thus replacing those components with finger width 2 should also offer

the same performance (or better). The new configuration due to this change, SSIA_C, is

shown in Table 5-14, and its resulting performance is presented in Table 5-13 (bold and

underlined text represents the improvement). Although the area isn’t a priority, that too

improves, because we have moved back from finger width three to two. This is because

we have downgraded non-critical components to a slower speed and smaller area without

affecting the critical path.

Table 5-12: Cumulative delay of SSIA version made up of finger width 3 MOSFETs.

 IW1 IW2 IW3 IW4

S0 94 188 282 376

S1 88 182 275 369

S2 86 180 274 368

S3 94 188 282 376

S4 79 173 267 360

S5 79 157 251 345

128

S6 79 157 236 330

S7 79 157 236 315

Table 5-13: Cumulative delay of SSIA_C components.

 IW1 IW2 IW3 IW4

S0 94 188 282 376

S1 88 182 275 369

S2 87 181 274 368

S3 94 188 282 376

S4 77 171 265 359

S5 77 154 248 342

S6 77 154 231 325

S7 77 154 231 308

Table 5-14: Configuration of SSIA_C (lowest delay version).

 IW1 IW2 IW3 IW4

S0 5X1_F3_FO5 5X1_F3_FO5 5X1_F3_FO5 5X1_F3_FO5

S1 4X1_F3_FO5 4X1_F3_FO5 4X1_F3_FO5 4X1_F3_FO5

S2 4X1_F2_FO4 4X1_F2_FO4 4X1_F2_FO4 4X1_F2_FO4

S3 5X1_F3_FO5 5X1_F3_FO5 5X1_F3_FO5 5X1_F3_FO5

S4 3X1_F2_FO3 3X1_F2_FO3 3X1_F2_FO3 3X1_F2_FO3

S5 3X1_F2_FO3 3X1_F2_FO3 3X1_F2_FO3 3X1_F2_FO3

129

S6 3X1_F2_FO3 3X1_F2_FO3 3X1_F2_FO3 3X1_F2_FO3

S7 3X1_F2_FO3 3X1_F2_FO3 3X1_F2_FO3 3X1_F2_FO3

Table 5-15: Performance parameters of SSIA_C (lowest delay version).

Parameters SSIA_A SSIA_C % difference

Area 598 um2 1181 um2 197.5 % (↑)

Delay (worst-case) 602 ps 376 ps 37.5 % (↓)

Static - Power Consumption 420 nW 3104 nW 739 % (↑)

Dynamic – Energy Consumption 192 fJ 382 fJ 199 % (↑)

The hybrid versions and equalNP can’t reduce the worst-case delay any further.

But it’s possible to obtain a better version which will have lesser area and power

consumption then this version keeping the delay parameter same. It can be obtained by

deliberately slowing the faster components to an extent that they don’t worsen the worst-

case delay parameter. This is discussed in the next section (5.4) of this chapter.

5.3.3 Power

Power/energy consumed increases with increase in the finger width and it’s also

relatively proportional to area, so SSIA_B, the version of SSIA which occupies the least

area, also consume the lowest power.

130

5.3.4 SSIA Predictor

Figure 5-5: Simple flow chart of SSIA Predictor.

As already explained, there are so many different versions of SSIA, based on

various designed components that it will be useful to have a tool to explore this design

space. The SSIA Predictor is a tool that can be used for this exploration. It is a Microsoft

Excel spreadsheet/dashboard consisting of several sheets working together:

• The CONFIG sheet contains a list of possible SSIA configurations – each

configuration is simply a set of component numbers for SSIA.

• The LOOKUP sheet contains data for the area, delay, and power/energy

consumption for components that make up the SSIA. The current version of SSIA

Predictor has a total of 18 components. This lookup sheet is shown in Table 5-16.

• The SSIA predictor sheet looks up the data for each component specified in the

configuration chosen from the CONFIG sheet and calculates area, delay, and

131

power/energy consumption according to the methodology detailed earlier in

section 5.2.

Using the SSIA predictor, it is possible to quickly calculate the data for any valid

SSIA configuration, the data such as area, delay, and power/energy consumption of

SSIA. A user can also interactively modify the configuration to get closer to the desired

set of parameters (e.g. improve area, power or delay). This was also used to verify our

manual calculation of SSIA.

The SSIA predictor can be loosely contrasted to register file generators, such as

[67]. SSIA will be part of Stack Processor and will be used to store data within the

processor. In the FPGAs, the equivalent is on-chip block-RAM(BRAM) – BRAMs in

FPGA is used to store data which can have various usage. Though there is a subtle

difference between both. In the SSIA Predictor, user can provide their

priority/requirement for the area, delay and power. Whereas, in the MPRFGEN of [67]

user can provide parameters of register files such as Read mode, number of write ports,

number of read ports, Bitwidth of each memory entry and Memory size. They are

different because the user can provide their priority/requirement for the area, delay and

power of register files.

132

Table 5-16: Lookup Table

Components (↓) Area

(um2)

Delay

(pS)

Static Power

(nW)

Dynamic

Energy (fJ)

5X1_F4_FO5 60.4 98.4 308.36 26.21

5X1_F3_FO5 51.7 93.9 172.87 16.69

5X1_F2_FO5 44.4 96.1 87.31 11.21

5X1_F1_FO5 23.8 150.6 17.08 7.38

4X1_F4_FO4 49.5 89.5 251.46 25.32

4X1_F3_FO4 42.3 86.4 140.87 15.64

4X1_F2_FO4 36.4 86.6 70.91 10.09

4X1_F1_FO4 19.7 130.5 13.88 6.22

4X1_F4_FO5 49.5 91.5 251.46 25.69

4X1_F3_FO5 42.3 87.6 140.87 16.15

4X1_F2_FO5 36.4 88.8 70.91 10.66

4X1_F1_FO5 19.7 137.4 13.88 6.80

3X1_F4_FO3 38.5 80.2 194.56 24.42

3X1_F3_FO3 32.9 78.7 108.87 14.58

3X1_F2_FO3_equalNP 25.3 76.9 36.60 7.29

3X1_F2_FO3 28.3 77 54.62 4.56

3X1_F1_FO3_equalNP 14 117.7 6.85 5.06

3X1_F1_FO3 15.6 110.2 10.68 5.06

133

5.4 Automated selection for SSIA using DARWIN

Figure 5-6: Simple flow chart of SSIA Predictor and DARWIN.

This section starts with an explanation of a component called DARWIN - Digital

Architecture Refinement With INheritance. The component can make a recommendation

similar to what was made in the previous section but using an algorithm rather than

manual experimentation. The new recommendations have been generated using

DARWIN and have been analyzed as well as compared with the old recommendation

from the previous section.

5.4.1 Section DARWIN

The SSIA predictor can be extended by an additional component – DARWIN.

The single performance factor is rarely a priority, most of the times all three factors are

important with different priorities. In our tool we can specify the weight for multiple

factors (area and delay OR area and power OR delay and power OR all three of them)

134

and the tool will make the recommendation accordingly based on the user’s requirement.

DARWIN starts with a base model (SSIA_A) and calculates the cost and score and

comes to the recommendation using a search algorithm – explanation of both are

provided below.

• Cost and Score: The default configuration of the SSIA is based upon the standard

cell components before any optimisation work is carried out. That is the baseline.

The area, power and delay parameter of this configuration is used as a

normalisation function. Such that for a given parameter, the cost for a given

configuration is:

 C =
Mc

 Ms
 Eq. 5-4

Where C is the cost, Mc is the parameter metric measured for the current

configuration and Ms is the same parameter metric for the standard configuration.

This ensures that all three parameter metrics are expressed as costs in terms of a

number of the same range (typically <=1.0). By normalizing the ranges, it is then

possible to combine costs using a weight applied to each cost. For example, where

only speed is important, the weight for delay would be 100% and 0% for the other

components, if speed and area are of equal importance they might be weighted

50%/50%, and so on. The sum of the weighted, normalized, costs is the score of

the function.

• Search Algorithm: DARWIN generates various SSIA configurations, in a closed

loop, such that each new variation results in a new set of outputs from the SSIA

Predictor. If the score of the new output is better than the previous ones, then the

135

new configuration is kept. If the new configuration is worse than the previous

one, it is discarded. DARWIN implements a very simple hill-climbing algorithm,

effectively a primitive evolutionary algorithm, by randomly ‘mutating’ small

numbers of SSIA components. At each iteration, variations in performance can be

discovered, some better, some worse. By only keeping the better mutations, the

configuration gradually improves, according to the specified criteria [68].

Importantly, automation means that solutions to complex cases can be discovered

easily. For example, it would be very difficult to manually find a solution that offers good

delay but also finds moderate area and power. DARWIN is good at exploring the design

space to identify particular trade-off solutions.

The previous section used SSIA of depth 8, whereas this section considers SSIA

of depth 16 to be closer to the realistic scenario. Also, the calculations here are for full 32

bits unlike previous section (Table 5-8) where the calculations were only for a single bit.

32-bit data corresponding to Table 5-8 is shown in Table 5-17 below. DARWIN is also

capable of minimizing the spread of worst-case and best-case delay but these

explanations have been omitted for the purpose of simplicity.

Table 5-17: Performance parameters of SSIA_A (the standard cell versions).

Performance Parameters Depth = 8; 1 bit Depth = 16; 32 bits

Area 598 um2 35098 um2

Delay (worst-case) 602 ps 602 ps

Static - Power Consumption 420 nW 24386 nW

Dynamic – Energy Consumption 192 fJ 11326 fJ

136

Figure 5-7: Screenshot of DARWIN (State - Reset).

Figure 5-8: Screenshot of DARWIN (State – Evolved for Area).

5.4.2 Comparison with manual selections

Through this sub-section, versions of SSIA are recommended which are best for

each performance parameter, but this time using DARWIN, i.e. version of SSIA that will:

• Occupy the least area.

• Have the smallest worst-case delay.

• Have the least power consumption.

137

The following sub-sub-sections present the results of DARWIN (and also give a

glimpse of the tool).

5.4.2.1 Area

This sub-sub-section presents the result of an experiment when the SSIA predictor

is set to evolve SSIA_A so that a new version that has the least area. We get SSIA_B as

the output from the SSIA Predictor, the same version we get manually. It is expected that

we get the same results as the area is fairly easy to optimize. The graph for this evolution

is shown in Figure 5-9 below and performance parameters are presented in Table 5-18

below.

Figure 5-9: Graph of SSIA_A evolution for area optimization.

Table 5-18: Performance parameters of SSIA_B (lowest area version).

Parameters SSIA_A SSIA_B % difference

Area 35,098 um2 34,278 um2 2.33 % (↓)

Delay (worst-case) 602 ps 602 ps -

Static - Power Consumption 24,386 nW 22,435 nW 8.00 % (↓)

Dynamic – Energy Consumption 11,326 fJ 11,071 fJ 2.25 % (↓)

138

5.4.2.2 Delay

This sub-sub-section presents the result of an experiment when the SSIA predictor

is set to evolve SSIA_A so that a new version that has the least delay. We got SSIA_D as

the output. It’s different from the one we came up manually and is also not better in

performance compared to SSIA_C – the version that we derived manually for the

optimized delay. Though it may possible to obtain the same or better result if we run

DARWIN long enough. This is one of the limitations of DARWIN and can be improved

with a more sophisticated algorithm – something to investigate for future work. The

graph for this evolution is shown in Figure 5-10 below, the configuration in Table 5-19

and the performance parameter is presented in Table 5-20.

Figure 5-10: Graph of SSIA_A evolution for delay/speed optimization.

Table 5-19: Configuration of SSIA_D (A DARWIN Recommendation).

 IW1 IW2 IW3 IW4

S0 5X1_F3_FO5 5X1_F4_FO5 5X1_F2_FO5 5X1_F1_FO5

S1 4X1_F4_FO5 4X1_F4_FO5 4X1_F4_FO5 4X1_F1_FO5

S2 4X1_F3_FO4 4X1_F2_FO4 4X1_F2_FO4 4X1_F1_FO4

139

S3 5X1_F3_FO5 5X1_F4_FO5 5X1_F2_FO5 5X1_F3_FO5

S4 3X1_F2_FO3 3X1_F3_FO3 3X1_F2_FO3_equalN

P

3X1_F2_FO3

S5 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3

S6 3X1_F1_FO3 3X1_F2_FO3_equalN

P

3X1_F1_FO3 3X1_F1_FO3

S7 3X1_F1_FO3 3X1_F1_FO3 3X1_F1_FO3 3X1_F4_FO3

Table 5-20: Performance parameters of SSIA_D.

Parameters SSIA_A SSIA_C SSIA_D A & D %

difference

Area (in um2) 35,098 66,778 48,810 139 % (↑)

Delay (worst-case) (in ps) 602 376 441 27% (↓)

Static - Power Consumption (nW) 24,386 155,253 106,458 436 % (↑)

Dynamic – Energy Consumption 11326 fJ 21,404 fJ 17,372 fJ 153 % (↑)

5.4.2.3 Power/Energy

This sub-sub-section presents the result of an experiment when the SSIA predictor

is set to evolve SSIA_A so that a new version that has the least power/energy

consumption. We got SSIA_B as the output for the same reason as what was mentioned

in sub-section 5.3.3 of Manual selection of SSIA. Power/energy consumed increases with

140

increase in the finger width and it’s also relatively proportional to area, so SSIA_B, the

version of SSIA which occupies the least area, also consume the lowest power.

The SSIA predictor, which uses DARWIN, suggested the same version of SSIA

for area parameter and power parameter, but for delay parameter, the tool couldn’t

suggest the same or better solution than what was derived manually. But DARWIN can

be helpful in reducing the area of the version which has the least worst-case delay –

experiments of this kind have been presented in the next sub-section (5.4.3).

5.4.3 Analysis of DARWIN Recommendations

5.4.3.1 Best delay, better area

This sub-sub-section presents the result of an experiment when the SSIA predictor

is set to evolve SSIA_C, the version that has the least propagation delay. In the

DARWIN, we have a limit function. The function can limit the value of a performance

parameter. In our case, we limit the delay at 376 ps. After evolving, DARWIN

recommends SSIA_F. The graph for this evolution is shown in Figure 5-11 below, the

configuration is in Table 5-21, and performance parameters are presented in Table 5-22.

Figure 5-11: Graph of SSIA_C evolution for area optimization.

141

Table 5-21: Configuration of SSIA_F (A DARWIN Recommendation).

 IW1 IW2 IW3 IW4

S0 5X1_F3_FO5 5X1_F3_FO5 5X1_F3_FO5 5X1_F3_FO5

S1 4X1_F2_FO5 4X1_F2_FO5 4X1_F2_FO5 4X1_F2_FO5

S2 4X1_F2_FO4 4X1_F2_FO4 4X1_F2_FO4 4X1_F2_FO4

S3 5X1_F3_FO5 5X1_F3_FO5 5X1_F3_FO5 5X1_F3_FO5

S4 3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

S5 3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F1_FO3

S6 3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F1_FO3 3X1_F1_FO3

S7 3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F1_FO3 3X1_F4_FO3

Table 5-22: Performance parameters of SSIA_F and SSIA_C.

Parameters SSIA_C SSIA_F % difference

Area 66,778 um2 62,934 um2 7 % (↓)

Delay (worst-case) 376 ps 376 ps -

Static - Power Consumption 155,253 nW 132,937 nW 14% (↓)

142

Dynamic – Energy Consumption 21,404 fJ 19,486 fJ 9% (↓)

5.4.3.2 Better delay, better area, better power

This sub-sub-section presents the result of an experiment when the SSIA predictor

is set to evolve SSIA_F, the version that has the best delay & better area. This time the

limit is a little bit relaxed, 400 ps, to reduce the area and power. After evolving,

DARWIN recommends SSIA_G. The graph for this evolution is shown in Figure 2-3

below, the configuration is in Table 5-23 and performance parameters are presented in

Table 5-24

Figure 5-12: Graph of SSIA_F evolution for better area and speed.

Table 5-23: Configuration of SSIA_G (A DARWIN Recommendation).

 IW1 IW2 IW3 IW4

S0 5X1_F2_FO5 5X1_F2_FO5 5X1_F2_FO5 5X1_F2_FO5

S1 4X1_F2_FO5 4X1_F2_FO5 4X1_F2_FO5 4X1_F2_FO5

S2 4X1_F2_FO4 4X1_F2_FO4 4X1_F2_FO4 4X1_F2_FO4

S3 5X1_F2_FO5 5X1_F2_FO5 5X1_F2_FO5 5X1_F2_FO5

143

S4 3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F1_FO3

S5 3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F1_FO3_eq

ualNP

S6 3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F1_FO3_eq

ualNP

3X1_F1_FO3_eq

ualNP

S7 3X1_F2_FO3_eq

ualNP

3X1_F2_FO3_eq

ualNP

3X1_F1_FO3_eq

ualNP

3X1_F1_FO3_eq

ualNP

Table 5-24: Performance parameters of SSIA_G.

Parameters SSIA_C SSIA_F SSIA_G C & F %

difference

Area (in um2) 66778 62934 60499 9 % (↓)

Delay (worst-case) (in ps) 376 ps 376 ps 399 ps 6 % (↑)

Static - Power Consumption (nW) 155253 132937 109807 29 % (↓)

Dynamic – Energy Consumption 21,404 fJ 19,486 fJ 17,932 fJ 16 % (↓)

5.4.4 Summary

Sections 5.3 and 5.4 presented 6 different versions of SSIA each offers different

benefits at different cost. All of these are optimized for a single parameter. This

investigation can be extended by optimizing SSIA for multiple performance parameters

(i.e. different permutation and combinations of the area, delay, and power). Thus, by

using DARWIN, even better version of SSIA could be obtained. The next section ()

144

revisits the Crispin-Bailey and Mullane comparison with register file using this newly

optimized versions of SSIA.

5.5 Comparison with Previous SSIA implementations

Bailey and Mullane have compared their SSIA implementations with register

files. As the vast majority of mainstream processors use register files, the comparison is a

necessity for the investigation of SSIA. As the implementations of SSIA and register files

are different, the comparison is difficult and required them to make an assumption to

establish the common ground, e.g. if we have a total of eight stack elements, the question

is raised: is this SSIA equivalent to a register file of eight registers?

Answer to the above question, as well as the rationale for comparison has been

established before [1], the investigation in this thesis builds upon that. It was established

that SSIA with issue width 1, 2, 3 and 4 are equivalent to 3, 6, 9 and 12 superscalar

register ports respectively. In a typical superscalar register machine, there is one write

port for every two read ports. In SSIA, we have two read ports for each issue width ({x,

y}1, {x, y}2 ,{ x, y}3 , {x, y}4 in Figure 5-1) same as register files.

The investigation involves a comparison of Cycle Time and Access Time of

register files and SSIA. For SSIA cycle time is the time it requires to complete the full

cycle and access time is the time needed to access the data.

In our comparison, we use FO4 delay metrics as they are independent of

technologies [69]. Delay fluctuates a lot, and to counter this problem, a standardized

delay metric (FO4 delay) has been developed and its fluctuation is rather less [70]. One

FO4 delay unit is equivalent in the delay of an inverter that is driving other 4 inverters of

the same size [71]. This value in our case is 44 ps. Cycle time and access time for SSIA

145

can be obtained from SSIA predictor. These values in terms of FO4 delay metrics are

provided in Table 5-26 and Table 5-27.

The original experiment by Crispin-Bailey and Mullane showed that Cycle Time

using UMC 90nm technology was comparable to a population of register files under the

comparable read/write port equivalence explained above. The same finding was observed

for Access Time as a function of superscalar register read ports. Data, provided by

Crispin-Bailey has been presented in Table 5-25 below, and the corresponding graph is

shown in Figure 5-13 below.

Table 5-25: Cycle time and Access time for SSIA designed in UMC 90nm.

Superscalar Register

Ports (Issue Width)

Access Time/ Read Time

(in number of FO4s)

Cycle Time

(in number of FO4s)

3 (1) 0 8.8

6 (2) 4.3 13.1

9 (3) 8.7 17.3

12 (4) 13 21.8

Data have been provided by Crispin-Bailey.

146

Figure 5-13: SSIA and register file comparison by Bailey & Mullane (2014).

In Figure 5-13,

- RF Read stands for Register File Access Time/Read Time

- RF Cycle stands for Register File Cycle Time

- Linear (BAIL READ) stands for Access Time/Read time of SSIA designed in

UMC 90 nm by Crispin-Bailey and Mullane.

- Linear (BAIL CYCLE) stands for Cycle time of SSIA designed in UMC 90 nm by

Crispin-Bailey and Mullane.

The corresponding data for Standard Cell SSIA (SSIA_A) version, obtained from

SSIA Predictor, are presented in Table 5-26 and Figure 5-14 below. Cycle Time by

147

Crispin-Bailey and Mullane is very optimistic, potentially due to temperature and fanouts

condition was assumed ideal.

Table 5-26: Cycle time and Access time for SSIA_A.

Superscalar Register

Ports (Issue Width)

Access Time/ Read Time

(in number of FO4s)

Cycle Time

(in number of FO4s)

3 (1) 0.0 7.3

6 (2) 3.4 10.7

9 (3) 6.8 14.1

12 (4) 10.3 17.5

Figure 5-14: SSIA_A superimposed over Bailey & Mullane comparison graph.

148

In Figure 5-14,

- LINEAR(BASE READ) is Read Time for SSIA_A

- LINEAR(BASE CYCLE) is Cycle Time for SSIA_A

It was found out in the previous section that finger width 3 offers very good delay

performance, and hence the SSIA version made up of finger width 3 transistors (let’s call

it SSIA_H) should offer better performance than SSIA_A. We have presented cycle time

and access time data for SSIA_H Table 5-27 below, and the graph is shown in Figure

5-15 below. Figure 5-16 shows only SSIA_H data and register files data. It can be seen

that SSIA_H data are far lower in the graph signifying that this is a very competitive

circuit in comparison to register files and also gives a direct proof for the hypothesis that

SSIA can be optimized by use of advanced VLSI design techniques.

In Figure 5-15 and Figure 5-16

- LINEAR(FW3 READ) is Read Time for SSIA_H

- LINEAR(FW3 CYCLE) is Cycle Time for SSIA_H

Table 5-27: Cycle time and Access time for SSIA_H.

Superscalar Register

Ports (Issue Width)

Access Time/ Read Time

(in number of FO4s)

Cycle Time

(in number of FO4s)

3 (1) 0.0 6.0

6 (2) 2.1 8.1

9 (3) 4.3 10.2

12 (4) 6.4 12.4

149

Figure 5-15: Comparison graph of SSIA_A, SSIA_H and register file.

Figure 5-16: Comparison graph of SSIA_H and register files.

150

5.6 Summary

It was observed in the previous chapter that suitable component combinations can

achieve high speed at the expense of the area. This chapter shows that the same high

speeds can also be achieved with a little lesser area than the ‘naive’ solutions, by

exploiting the individual members of the component library. Power consumption has

been investigated which is an important performance parameter. The use of an

algorithmic approach (and SSIA Predictor) also yields solutions that balance specific

design priorities (combinations of the area, delay, and power) in a way that is difficult to

figure out through a manual selection process. Register files are used widely in

mainstream processor design hence it’s important to provide the comparison of our SSIA

and register files. Plus, the comparison suggests that using custom design previous

limitation of SSIA, highlighted by Crispin-Bailey and Mullane, can be overcome.

The chapter started with an explanation of the methodology for calculating the

performance parameters (Area, Delay and Power/Energy) of SSIA using SSIA_A version

as an example. The power consumption at SSIA level wasn’t explored before but it’s an

important parameter of performance measurement hence it is a novel and important part

of the investigation of section 5.2. Section 5.3 recommended version of SSIA which are

suitable for each performance parameter and those recommendations were improved

further by using the SSIA Predictor spreadsheet and DARWIN. Overall this chapter

shows that the high speeds can also be achieved with a little lesser area than the ‘naive’

solutions, by exploiting the individual members of the component library. Lastly, the

comparison with register files helps establish the credibility of SSIA in relation to

mainstream architecture and provided direct evidence that proves the hypothesis.

151

CHAPTER 6

EVALUATING FUTURE OPPORTUNITIES FOR ADVANCED VLSI

DESIGN TECHNIQUES

A review of advanced VLSI optimization techniques has been provided earlier in

section 2.2.2 of the literature review chapter of the thesis. The preliminary experiments of

some of these techniques are presented in this chapter. This preliminary experiment paves

the path for more optimization of SSIA in future. The techniques include dynamic-logic,

power gating and current mode implementations.

Contributions made through this chapter are presented in the list below.

• A VLSI Optimization technique - dynamic-logic - is examined for tri-state buffer

and its benefits are presented.

• Another VLSI Optimization technique – power gating - is examined for

multiplexers and its impact on propagation delay is investigated. Power gating

causes ground bounce and their measurement has been done in our experiments.

Though it has been minimized using suitable design techniques.

• The improvements in performance that can be achieved by the use of current-

mode techniques are predicted.

6.1 Dynamic-logic

Dynamic-logic and pre-charging were briefly explained earlier in section 2.2.2.

152

Figure 6-1: Dynamic-logic schematic, waveform and an example circuit [72].

153

Figure 6-2: Schematics of tristate buffers (a) Standard tristate buffer, (b) 3T tristate

buffer and (c) 4T tristate buffer.

In our previous experiments static CMOS implementation of inverter and tri-state

buffer have been used. In theory, use of dynamic-logic – instead of static logic – should

offer better speed and reduced power consumption [72]. One of the main things that

differ in dynamic-logic is the storage of signal voltages in parasitic capacitance. A typical

dynamic-MOS logic circuit is shown in Figure 6-1. Dynamic-logic circuit also requires a

clock (ø) which is fed to the p-channel transistor at the top, and to the n-channel transistor

at the bottom. When the clock input is low it’s a pre-charge phase of the circuit and

otherwise, it’s an evaluation phase. In this chapter, two different dynamic-logic

implementations of tri-state buffer have been proposed which are shown in Figure 6-2.

154

These tri-state buffers have been simulated to measure propagation delay data and data

have been presented in Table 6-1. It can be seen that the worst-case delay increases, but

overall performance of delay should improve as the delay due to rise time is nil, dynamic

logic must have reduced the area and power consumption as well because pull up

network is replaced with single transistor.

Table 6-1: Rise time and fall time propagation delay of various kinds of tri-state

buffers.

Tristate Rise Time Fall Time

Standard 49 ps 47 ps

4T Tristate 0 ps (Pre-charged) 58 ps

3T Tristate 0 ps (Pre-charged) 38 ps

From the above data, it can be said that worst-case delay in dynamic-logic is

significantly lower compared to standard tri-state made up of finger width 1. Given more

time and investigation data of multiplexer and SSIA designed using this tri-state buffer

can be obtained. A slightly less or similar improvement can be safely assumed for the

multiplexers and SSIA.

6.2 Power gating

Power gating is a technique of turning off the inactive parts of the circuit, in order

to reduce the leakage current and unnecessary power consumption of the circuit. The

benefits come at expense of complexity, increase in area, increase in delay of the circuit

and extra power gating controller circuitry.

155

Figure 6-3: Power gating diagram for a 3X1 multiplexer showing header switch and

footer switch.

Our internal power gating technique is fairly simple and involves using power

gating transistors (as shown in the figure above) which will act as switches (PMOS as a

header switch and NMOS as a footer switch) to turn on and off the component. Size of

transistors used as a switch (Power gate size) is an important parameter and as a rule of

thumb, this is three times the normal transistor [73]. In our experiments, power gating

techniques and the power gate size parameter have evaluated for 3X1 and 5X1

multiplexers. In particular, we have measured the cost of this technique on the

propagation delay of a component. Data have been presented in Figure 6-4 and Table

6-2.

156

Table 6-2: Propagation delay of multiplexers in picoseconds for powergated transistor

of finger widths 1, 3, 6 and 9.

FW of Power Gate

Transistor

3X1 (in ps) 4X1 (in ps)

(estimated value)

5X1 (in ps)

1 168 194 221

3 133 155 176

6 124 144 164

9 121 140 159

No Power Gating 110 130 150

FW = Finger width

Figure 6-4: Graphs showing propagation delay getting closer to normal with an

increase in the size of a powergated transistor for multiplexers.

It can be seen in the measurements that delay increases when power gating is

applied, as might be expected. However, for reasonable sized gating transistor delay

increase is only around 10% for the multiplexer of interest. Therefore designers have an

opportunity here to accept slower multiplexer in exchange for potential reduction in

157

power consumption. We have seen in the previous chapter that slower components can

sometimes be used in non-critical paths without affecting overall SSIA delay.

Power gating causes VDD and GND bouncing [74] and our observation of that

phenomenon has also been presented below. Experiments (using 5X1 multiplexer as an

example) have also been conducted to investigate the impact when one of the switches

(either header or footer) is removed. All of the experimental results are presented in

tables and figures below.

Figure 6-5: Graphs showing GND bounce and VDD bounce getting closer to normal

with an increase in the size of a powergated transistor for multiplexers.

158

Figure 6-6: Graphs for 5X1 multiplexers for the investigation related to the impact of

header switch and footer switch (Quadrant 1)propagation delay, (Quadrant 3)VDD

swing and (Quadrant 4)GND swing.

6.3 MOS Current Mode Logic (MCML) Implementation

MOS Current Mode Logic (MCML) Implementation (or simply current mode

implementation) has been explained briefly in the section 2.2.2 of literature review

chapter.

It has been proven by N. Pandey et al. that the propagation delay of tri-state buffer

can be reduced by 11% to 60% by using PFSCL methodology [53], K. Gupta et al. are

able to reduce the delay of inverter by nearly 20% using MCML [49], and Khule et al. are

able to reduce the delay of inverter by nearly 75% using MCML [54]. Based on their

159

research very conservative speculation of 10% to 20% reduction in delay can be made.

With that assumption, new data for SSIA has been calculated and has been presented in

Table 6-3 and Table 6-4 below. It can be seen that it may be possible to even halve the

worst-case delay using current mode implementation.

Table 6-3: Speculated propagation delay data for the MCML multiplexer.

 Original 10% 15% 20%

5X1_F3_FO5 94 85 80 75

4X1_F3_FO5 88 79 75 70

4X1_F2_FO4 86 77 73 69

3X1_F2_FO3 79 71 67 63

Table 6-4: Prediction for SSIA based on the speculation shown in table 6-3.

Parameters Current Mode SSIA_C SSIA_A % difference

Delay

(worst-case)

300 ps 376 ps 602ps 50% (↓)

6.4 Summary

The review suggested that there is scope for optimization of SSIA. It is observed

here that speed can be improved (or in other words, propagation delay can be reduced) by

use of dynamic-logic techniques. It is also observed that power-gating is a useful

technique in the SSIA design to save power at cost of reduced speed. Finally, SSIA

160

improvements that could be attained using current mode have been speculated. As

mentioned earlier, three optimization techniques have been explored.

The first section (6.1) about dynamic-logic presented the propagation delay data

of dynamic Tri-state buffer - two novel implementations. As explained previously in

section 2.2.2 that Dynamic Logic replaces the pull-up network with a single pull-up

transistor. Replacing the pull-up network with a pull-up transistor will offer a reduction in

area. In general, dynamic implementation is fasters too – those are the advantages of

choosing dynamic implementation at the expense of complexity and less robust design.

SSIA_A (on page number 114) is static CMOS implementation of SSIA. Comparison of

SSIA_A with the dynamic implementation of SSIA will be an insightful work which

couldn’t be done due to lack of time and is a candidate for future work.

The second section on power gating (6.2) explained how the technique impacts

the propagation delay of the multiplexer, and also mentioned about the ground bounce.

Power gating is relevant for SSIA because during each instruction only one of the

multiplexers of SSIA is in use. Though more research is required to make a case it is

feasible to design power gated SSIA.

The third section (6.3) about current mode implementation speculated the

improvement using the optimization techniques. Comparison of MCML implementation

of SSIA with the dynamic implementation of SSIA will also be an insightful work but

this as well couldn’t be completed and is also a candidate for future work.

This is the last contribution chapter of the thesis. The next chapter will present

consolidated conclusions of all the contribution chapters (CHAPTER 3, CHAPTER 4,

CHAPTER 5, and CHAPTER 6) and future direction for the thesis.

161

CHAPTER 7

CONCLUSION AND FUTURE WORK

Previous thesis chapters presented evidence to answer the main research question.

In this chapter, the evidence has been summarized, and their significance has been

discussed – in relation to the main research question. A future direction for the research

has also been provided in this chapter.

7.1 A Reminder of the Research Question

This section restates the research question stated previously in the sub-section

1.4.4 of CHAPTER 1. In order to answer the very broad research question specific tasks

were set and they are also mentioned below in a numbered list.

“Can the performance of superscalar stack structure be

significantly improved by the use of advanced design techniques,

and will this make them more competitive with register file?”

1. Develop a baseline performance model, the Standard Cell library, which builds

upon existing work, and which can form a point of comparison against any

improvements achieved.

2. Evaluate the custom design approach, create a new Custom Cell library, and

evaluate their performance relative to the above point (1).

162

3. Given standard Cell library, and custom cell library, compare the SSIA

structures which are possible and evaluate how much improvement can be

obtained over the baseline implementation.

4. With suitable optimal or highly optimized designs for SSIA, repeat the

comparison of Bailey and Mullane for SSIA versus register file models, and

determine if competitiveness has improved significantly.

5. Document and test more advanced VLSI design techniques that can be used in

the future to inform future research directions, and highlight possibilities for

continued work in future research.

7.2 Summary of Contributions

This section presents all the contribution made using previous chapters in relation

to the research question and its tasks, restated in the previous section. The contributions

in this section have been categorised based on the tasks.

7.2.1 Develop a Baseline Performance Model

• Standard Cell library has been created in 65nm CMOS process technology.

• The fundamental components of the Standard Cell library have been quantified in

terms of performance parameters such as area, propagation delay, power, and

capacitance. The impact of fanout on performance has also been evaluated.

• Multiplexers for Standard Cell library have been designed using the fundamental

components and they have also been quantified in terms of performance

parameters such as area and delay.

163

• Multiplexers have been simulated using an alternative methodology (which takes

the impact of internal wiring), and the comparison with original methodology has

also been provided. The comparison helps gauge the impact of internal wiring.

• First order performance projection of SSIA, which is designed using the Standard

Cell library, has also been presented.

7.2.2 Evaluate the custom design approach

• Custom Cell library has been created in 65nm CMOS process technology.

• Two custom design approaches wider MOSFET implementation and multi-finger

MOSFET implementation have been compared.

• An evaluation for performance has been carried out for fundamental components

made up of multi-finger MOSFETs (As the above-mentioned comparison found

multi-finger MOSFET implementation advantageous).

• Like Standard Cell library, multiplexers have been designed for Custom Cell

library and have also been quantified in terms of performance parameters such as

area and delay.

• Novel components have been created – employing custom design approach at

various design-levels.

7.2.3 Compare the SSIA Structures

• SSIA versions have been compared based on their performance parameters – such

as area, delay and power.

• SSIA versions – such as SSIA_A, SSIA_B, SSIA_C, etc. – have been selected

manually that:

o occupies the least area on the chip.

164

o offers the smallest worst-case delay.

o consumes the least power.

• SSIA Predictor – an excel dashboard, and DARWIN – a toolset have been

proposed. These tools permit SSIA design space exploration, evaluation, and can

ultimately make a recommendation using an algorithmic approach.

• Recommendations made by SSIA Predictor have been discussed and some are

also compared with those, which were chosen manually.

7.2.4 SSIA versus Register File Models

• Result of baseline performance model (SSIA_A) is found to agree with work done

by Crispin-Bailey and Mullane in 2014 [1] (Figure 5-14).

• Standard cell design (SSIA_A) could be improved significantly with custom cell

design (SSIA_H) as noted in Figure 5-15.

• Performance of SSIA_H is found to be on par with the register file as noted in

Figure 5-16.

7.2.5 Advanced VLSI Design Techniques

• A review of advanced VLSI optimization techniques has been presented.

• A VLSI Optimization technique, pre-charging, has been examined for tri-state

buffer and its benefits have been presented.

• Another VLSI Optimization technique, power-gating, has been examined for

multiplexers and their impact on propagation delay has been investigated.

• Improvements in a performance that can be achieved by the use of current-mode

techniques have been predicted.

165

This section presented a sub-section for each task of the research question, and

each sub-section presented a list of the contribution relevant to the task made in previous

chapters.

7.3 Discussion of Contributions

The structure of this section is the same as the previous section, i.e. a sub-section

for each task of the research question. In this sub-section, we discuss the significance of

the contributions listed above section and how they help answer the research question.

7.3.1 Develop a Baseline Performance Model

One of the aims of this research is to advance the preliminary investigation and

find out if the performance of SSIA can be improved. In order to answer this baseline

performance data is a necessity. The baseline performance data obtained in CHAPTER 3

can be used to measure any enhancement of performance of SSIA that will be achieved

using sophisticated design techniques. Additionally, the data included many performance

parameters (such as Area, Delay, Power, Capacitance and Fanouts), these are useful in

painting a realistic picture of performance. Components (such as inverter, tri-state buffer

and multiplexers) of SSIA are used in varying fanout conditions hence the detailed fanout

analysis has been performed to find out the trend of their performance. Also, results were

found to agree well with Crispin-Bailey and Mullane work as seen in Figure 5-14 of

section 5.5.

7.3.2 Evaluate Custom Design Approach

It has been identified during the literature review that custom cell design

technique can be used to improve the SSIA, but these benefits will come at a cost. The

measurements have revealed that faster components are possible at the expense of larger

166

chip area although the trend is of diminishing return. It has also been observed that it is

advantageous to use multi-finger MOSFETs to achieve higher drive strengths, but also

that there is a tradeoff against the penalty of the effect of ‘self-loading’, generally, this

implies a certain number of fingers offer the best performance gains. Further, it can be

observed that, contrary to the naive view, deliberately reducing the speed of some

components may offer area benefits, without reducing overall system performance.

7.3.3 Compare the SSIA Structures

As mentioned earlier the development of two libraries resulted in various versions

of components and hence the sheer number of possible versions of SSIA and

accompanying trade-off. Therefore a tool (SSIA Predictor) can be useful in the

exploration and evaluation. Through the tool, it could be discovered that high speed of

best level can also be achieved with a little lesser area than the ‘naive’ solutions, by

exploiting the individual members of the component library. The use of an algorithmic

approach (in SSIA Predictor) also yielded solutions that balance specific design priorities

(combinations of the area, delay, and power) in a way that is difficult to figure out

through a manual selection process.

7.3.4 SSIA versus Register File Models

Register files are used widely hence it’s important to provide the comparison of

our SSIA and register files. Comparison of SSIA and register files have been provided in

section 5.5. The first graph (Figure 5-13) in the section has been taken from work done

previously by Crispin-Bailey and Mullane, it can be seen there that at higher issue width

SSIA performance wasn’t as good as register files. This limitation has been overcome by

SSIA_H (custom design) and has been shown in Figure 5-16.

167

7.3.5 Advanced VLSI Design Techniques

The review signifies that there is more scope for optimization of SSIA. As it has

been observed that speed and power can be improved, this suggests an even better

version of SSIA is possible and it can be deduced that SSIA better than register files can

be designed because our comparison in the previous task found SSIA and register files

equivalent in performance.

This section (7.3) presented a sub-section for each task of the research question,

and each sub-section presented the significance of the contribution relevant to the tasks.

7.4 Opportunities for Future Work and Refinements

For this thesis, the only a preliminary investigation could be conducted for

advanced optimization in the time we had. In future, it would be useful to find out what

more could be achieved for SSIA using Dynamic Logic, Domino Logic and Current

Mode Implementation. An investigation was limited to TSMC 65nm technology but it’s

possible to obtain FO4 data and extrapolate the results for advanced technology using

other research [75]. It would also be useful to simulate the full SSIA circuit, see SSIA in

action, and provide more realistic input data – this will provide new results for SSIA and

can even be compared to the first order projection. DARWIN – a toolset for SSIA

recommendations – can be made more advanced to, as already mentioned in the relevant

chapter.

Another direction that can be taken is towards Java Virtual Machine. JVM is

modern and quite successful platform and uses stack architecture. Hennessy and

Patterson expressed that their hardware implementation is yet to see commercial success.

168

A recent attempt in that direction has been made by some [19]. It is a topic that can be a

dimension of stack processor research at York.

7.5 Concluding Remarks

From the discussions in previous sections, it is safe to say that there many

evidence that advanced VLSI design techniques can improve the performance of SSIA,

and IT IS advantageous to use custom design techniques for SSIA – which answers the

first part of the research question. Further, test benches and their simulation are done

keeping realistic conditions in mind and worst-case scenario has been assumed (e.g. in

the delay calculation and temperature of the simulation). In the thesis, a baseline model

performance has been presented that can be used to measure the enhancement of SSIA,

custom design approach (such as wider MOSFET v/s multi-finger MOSFET) has been

investigated, a tool that can assist in the component selection of SSIA has been proposed,

SSIA designs have been compared with register files and it has been found out that SSIA

can be as competent as register files – this answers the second part of the research

question. Preliminary investigations of advanced VLSI techniques have also been

presented.

i

APPENDIX A
DATASET

Table A-1: Propagation delay data of old and new implementation of SSIA.

Components

(↓)

90nm UMC 65nm TSMC Reduction (in

percentage) Standard Cell Custom Cell

Tristate 89.0 ps 70.2 ps 57.7 ps 35.2 %

2X1 98.0 ps 83.2 ps 65.2 ps 33.5 %

3X1 107.0 ps 95.5 ps 72.1 ps 32.6 %

4X1 116.0 ps 107.3 ps 79.0 ps 31.9 %

5X1 125.0 ps 118.9 ps 85.6 ps 31.5 %

6X1 134.0 ps 130.3 ps 92.1 ps 31.3 %

7X1 143.0 ps 141.3 ps 98.5 ps 31.1 %

8X1 152.0 ps 151.2 ps 104.7 ps 31.1 %

ii

ABBREVIATIONS

ACAG Advanced Computer Architecture Group

ACE Automatic Computing Engine

ADE Analog Design Environment

ALU Arithmetic Logic Unit

AMADEUS Architectures Machines And Devices for Efficient Ubiquitous

Systems

AMD Advanced Micro Devices (Company name

ASIC Application Specific Integrated Circuit

CAD Computer-Aided Design

Cdn NMOS Drain/Source Capacitance

Cdp PMOS Drain/Source Capacitance

Cgn NMOS Gate Capacitance

Cgp PMOS Gate Capacitance

CISC Complex Instruction Set Computer

Cload Load Capacitance (Equivalent Capacitance at Node)

CPU Central Processing Unit

D Depth of a stack

DARWIN Digital Architecture Refinement With INheritance

DEC Digital Equipment Corporation

iii

DLX RISC processor architecture pronounced 'deluxe'

DRC Design Rule Check

DTI Department of Trade and Industry

equalNP The model name for an inverter with same size NMOS and

PMOS

FOX Fanout of X (e.g FO4; X ranges from 1 to 8 in this thesis)

FPGA Field Programmable Gate Array

FW Finger Width

GND Ground

GPU Graphics Processing Unit

HP Hewlett Packard

I/P = H and I/P = L Input value high(1) and low (0)

IC Integrated Circuits

IE Internet Explorer

ILP Instruction Level Parallelism

IPC Instruction Per Clock-cycle

ISA Instruction Set Architecture

Iwx Issue Width (X can be from 1 to 4)

JVM Java Virtual Machine

L → H Low to High transition

LVS Layout Versus Schematic

MCML MOS Current-Mode Logic

MISC Minimal Instruction Set Computer

iv

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MUX Multiplexer

NMOS n-channel MOSFET

NOC No Connection (and hence zero fanout)

NOMAD Non-standard Operand Mechanism Architecture Demonstrator

NORMA Normal Order Reduction Machine

NX1 N-input MUX (e.g 3X1)

PFSCL Positive Feedback Source-Coupled Logic

PMOS P-channel MOSFET

RC Resistor-Capacitor

RF Register Files

RISC Reduced Instruction Set Computer

RTL Register-Transfer Level

SAFA Stack and Frame Architecture

SCL Source-Coupled Logic

Sj the jth element of the stack

SRAM Static Random-Access-Memory (RAM)

SSIA Superscalar Stack Issue Array

SSIA_X Model X of SSIA (‘X’ ranges from A to H in the thesis)

TNN Tristate multiplexer model with Nonencoded select inputs, and

Noninverting output per stage

TSMC Taiwan Semiconductor Manufacturing Company

UFO Ubiquitous Forth Objects

v

UMC United Microelectronics Corporation

UUT Unit Under Test

VDD Positive supply voltage

VLSI Very-Large-Scale Integration

vi

BIBLIOGRAPHY

[1] C. Bailey and B. Mullane, "Investigation of a Superscalar Operand Stack Using

FO4 and ASIC Wire Delay Metric," VLSI Design, vol. 2014, p. 13, 2014.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, Fourth ed., San Fransisco: Morgan Kauffman, 2007, pp. K9-K10.

[3] H. Sutter, "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in

Software," [Online]. Available: http://www.gotw.ca/publications/concurrency-

ddj.htm.

[4] J. Handy, "The End of Semiconductor Scaling," 13 November 2011. [Online].

Available: https://www.forbes.com/sites/jimhandy/2011/11/13/the-end-of-

semiconductor-scaling/. [Accessed 2018].

[5] C. Bailey and M. Weeks, "An experimental Investigation of Single and Multiple

Issue," in EuroForth, Cheshire, 2000.

[6] H. Shi, Investigating opportunities for instruction-level parallelism for stack

machine code, University of York, 2006.

[7] M. Shannon, A C Compiler for Stack Machines, University of York, 2006.

[8] A. Arnone, "Feasibility of Accelerator Generation to Alleviate Dark Silicon in a

Novel Architecture," University of York, 2017.

[9] G. Moore, "Cramming more components onto integrated circuits, Reprinted from

Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.," IEEE Solid-State

Circuits Newsletter, 2006.

[10]

]

B. Chacos, "Breaking Moore's Law: How chipmakers are pushing PCs to blistering

new levels," PCWorld, April 2013. [Online]. Available:

https://www.pcworld.com/article/2033671/breaking-moores-law-how-chipmakers-

are-pushing-pcs-to-blistering-new-levels.html.

[11] Applied Materials, "3D Chip Technology for Dummies - Video," appliedschannel,

YouTube, 2012.

vii

[12] J. Knechtel, O. Sinanoglu, I. M. Elfadel, J. Lienig and C. C. N. Sze, "Large-Scale

3D Chips: Challenges and Solutions for Design Automation, Testing, and

Trustworthy Integration," IPSJ Transactions on System LSI Design Methodology,

vol. 10, pp. 45-62, 2017.

[13] G. A. Subbarao, "Low-power Microprocessor based on Stack-Architecture," 2015.

[14] C. Crispin-Bailey, "NOMAD Funding Success," [Online]. Available:

https://www.cs.york.ac.uk/arch/news/nomad-funding-success.html.

[15] J. L. Henessey and D. A. Patterson, Computer Architecture, Elsevier/Morgan

Kauffman, 2007.

[16] E. Valderrama and J.-P. Deschamps, "Digital Systems: From Logic Gates to

Processors," Coursera, [Online]. Available: https://www.coursera.org/learn/digital-

systems.

[17] P. Koopman, Stack Computers, E. Horwood, 1989.

[18] GreenArrays, Inc., "Homepage," [Online]. Available:

http://www.greenarraychips.com/index.html.

[19] M. Schoeberl, "Design and Implementation of an Efficient Stack Machine," in 12th

IEEE Reconfigurable Architecture Workshop, Denver, Colorado, 2005.

[20] C. E. LaForest, "Second Generation Stack Computer," 2008.

[21] J. Łukasiewicz, Elements of Mathematical Logic, New York: Macmillan, 1963.

[22] C. L. Hamblin, "An Addressable Coding Scheme Based on Mathematical Notation,"

in Proceeding of the First Australian Conference on Computing and Data

Processing, 1957.

[23] F. L. Bauer, "The Formula-Controlled Logical Computer "Stanislaus","

Mathematics of Computation, vol. 14, 1960.

[24] K. Samelson and F. Bauer, "Sequential Formula Translation," Comm. of the ACM,

vol. 3, pp. 76-83, 1960.

[25] D. E. Newton, Alan Turing: A Study in Light and Shadow, USA: Xilbris

Corporation, 2003.

[26] G. Gray, "Unisys History Newsletter - Burroughs Third-Generation Computers,"

October 1999. [Online]. Available: https://archive.li/Eepw. [Accessed 2018].

viii

[27] I. Martin, "Too far ahead of its time: Barclays, burroughs, and real-time banking,"

IEEE Annals of the History of Computing, 2012.

[28] B. Findlay, "The English Electric KDF9," [Online]. Available:

http://www.findlayw.plus.com/KDF9/The%20English%20Electric%20KDF9.pdf.

[Accessed 2018].

[29] J. C. Dvorak, "IBM and the Seven Dwarfs — Dwarf One: Burroughs," [Online].

Available: http://www.dvorak.org/blog/ibm-and-the-seven-dwarfs-dwarf-one-

burroughs/.

[30] T. Napier and E. Krieg, "Lost at C? Forth May Be the Answer," [Online].

[31] J. Fox, "Moore Forth - Chuck Moore's Comments on Forth," [Online]. Available:

http://www.ultratechnology.com/moore4th.htm.

[32] C.-h. Ting and C. H. Moore, "MuP21 - A High Performance MISC Processor,"

[Online]. Available: http://www.ultratechnology.com/mup21.html.

[33] Micro Live, "Computer architectures 1986 (Transputers)".

[34] M. Scheevel, "NORMA: a graph reduction processor," in ACM Conference on LISP

and Functional Programmin, Cambridge, Massachussetts, USA, 1986.

[35] B. Paysan, "Implementation of the 4stack Processor Using Verilog," Technical

University of Munich, 1996.

[36] S. Y. Jien, "SAFA: Stack and frame architecture," 2006.

[37] C. Bailey, "Optimization Techniques for Stack Based Architecture," University of

Teeside, 1996.

[38] C. Bailey and R. Sotudeh, "HLL Enahancement for Stack Based Processor,"

Microprocessing and MIcroprogramming, vol. 40, pp. 685-688, 1994.

[39] C. Bailey and R. Sotudeh, "Quantitative Assessment of Machine-Stack Behaviour

for Better Computer Performance".

[40] C. Crispin-Bailey, "AMADEUS," [Online]. Available:

https://www.cs.york.ac.uk/amadeus.

[41] C. Crispin-Bailey, H. Shi and M. Shannon, "Towards Scalable Parallelism with

Stack Machines," Paris, 2012.

ix

[42] P. Corsonello, S. Perri and V. Kantabutra, "Design of 3:1 multiplexer standard cell,"

Electronics Letters, vol. 36, no. 24, pp. 1994 - 1995, 2000.

[43] IIT Guwahati, "Optimization techniques for Digital VLSI Design," National

Programme on Technology Enhanced Learning, 2019.

[44] W.-K. Chen, VLSI handbook, CRC Press, 1999.

[45] H. Eriksson, P. Larsson-Edefors, T. Henriksson and C. Svensson, "Full-custom vs.

standard-cell design flow: an adder case study," in Asia and South Pacific Design

Automation Conference, 2003.

[46] P. Gautam, D. Kaushik and R. P. G. P. Sharma, "Design of CMOS Inverter Using

Different Aspect Ratios," International Journal of Scientific Research Engineering

&Technology (IJSRET), no. EATHD-2015 Special Issue, pp. 132-137, 2015.

[47] L. E. Han, V. B. Perez, M. L. Cayanes and M. G. Salaber, "CMOS Transistor

Layout Kung Fu," 2005.

[48] A. P. Martınez, "Design of MOS Current-Mode Logic Standard Cells,"

Microelectronics Systems Laboratory, EPFL, Lausanne, 2007.

[49] K. Gupta, R. Sridhar, J. Chaudhary, N. Pandey and M. Gupta, "Performance

comparison of MCML and PFSCL gates in 0.18 μm CMOS technology," in

International Conference on Computer and Communication Technology - ICCCT,

Allahabad, 2011.

[50] K. Gupta, N. Pandey and M. Gupta, "Performance improvement of PFSCL gates

through capacitive coupling," in IMPACT-2013, Aligarh, 2013.

[51] M. Sumathi and Y. C. Kartheek, "Performance and analysis of CML Logic gates

and latches," in 2007 International Symposium on Microwave, Antenna,

Propagation and EMC Technologies for Wireless Communications, Hangzhou,

2007.

[52] K. Gupta, R. Sridhar, J. Chaudhary, N. Pandey and M. Gupta, "New Low-Power

Tristate Circuits in Positive Feedback Source-Coupled Logic," Journal of Electrical

and Computer Engineering, vol. 2011, 2011.

[53] N. Pandey, B. Choudhary, K. Gupta and A. Mittal, "New Sleep-Based PFSCL Tri-

State Inverter/Buffer Topologies," Journal of Circuits, Systems and Computers, vol.

26, no. 12, 2007.

[54] R. Khule, M. Kajale, S. Kshatriya and S. Sardar, "ANALYSIS OF MCML

INVERTER," International Journal of Advance Research and Innovative Ideas in

x

Education, vol. 3, no. 3, pp. 1808 - 1816, 2017.

[55] K. Gupta, N. Pandey and M. Gupta, "Multithreshold MOS Current Mode Logic

Based Asynchronous Pipeline Circuits," ISRN Electronics, vol. 2012, 2012.

[56] S. Badel and Y. Leblebici, "Tri-state buffer/bus driver circuits in MOS current-

mode logic," in 2007 Ph.D Research in Microelectronics and Electronics

Conference (PRIME), Bordeaux, France, 2007.

[57] R. Singh, G.-M. Hong, M. Kim, J. Park, W.-Y. Shin and S. Kim, "Static-switching

pulse domino: A switching-aware design technique for wide fan-in dynamic

multiplexers," Special Issue of GLSVLSI 2011: Current Trends on VLSI and Ultra

Low-Power Design, vol. 45, no. 3, pp. 253-262, 2012.

[58] F. Maloberti, Analog Design for CMOS VLSI Systems, Boston, MA: Springer US,

2003.

[59] M. Tohidi, J. K. Madsen, M. J. R. Heck and F. Moradi, "Low-power comparator in

65-nm CMOS with reduced delay time," in 2016 IEEE International Conference on

Electronics, Circuits and Systems (ICECS), Monaco, 2016.

[60] P. Meher and K. K. Mahapatra, "A Low-Power Circuit Technique for Domino

CMOS Logic," in 2013 International Conference on Intelligent Systems and Signal

Processing (ISSP), 2013.

[61] A. K. Pandey, R. A. Mishra and R. K. Nagaria, "Leakage Power Analysis of

Domino XOR Gate," ISRN Electronics, vol. 2013, p. 7 page, 2013.

[62] R. Thakur, A. K. Dadoria and T. K. Gupta, "Comparative analysis of various

Domino logic circuits for better performance," in 2014 International Conference on

Advances in Electronics, Computers and Communications (ICAECC), 2014.

[63] Cadence, "Spectre Circuit Simulator User Guide," Cadence, 2018.

[64] M. Shams, "Advanced Digital Electronics (ELEC-4708)," 2014. [Online].

Available:

http://www.doe.carleton.ca/~shams/ELEC4708/Lab1SchematicTut2014.pdf.

[65] H. E. Graeb, Analog layout synthesis, New York: Springer, 2011.

[66] J. M. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuit, 2003.

[67] N. Kavvadias, "mprfgen manual," [Online]. Available:

http://www.nkavvadias.com/doc/mprfgen/mprfgen-README.html.

xi

[68] S. Skiena, The Algorithm Design Manual, 2nd ed., Springer Science+Business

Media, 2010, p. 253.

[69] M. Horowitz, D. Harris, R. Ho and G.-Y. Wei, "The Fanout-of-4 Inverter Delay

Metric," [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.831&rep=rep1&type=

pdf. [Accessed 2018].

[70] D. Harris, R. Ho, G.-Y. Wei and M. Horowitz, "The Fanout-of-4 Inverter Delay

Metric," Unpublished.

[71] D. Harris and I. Sutherland, "Logical effort of carry propagate adders," in 37

Asilomar Conference on Signals, Systems & Computer, Pacific Grove, CA, USA,

2003.

[72] A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University Press,

Inc..

[73] Murali, "ASIC-System on Chip-VLSI Design," 2008. [Online]. Available:

http://asic-soc.blogspot.com/2008/04/power-gating.html.

[74] UltraCAD Design, Inc, "Ground Bounce," Printed Circuit Design, a Miller Freeman

publication, August and September 1997.

[75] R. Kumar and V. Kursun, "Impact of temperature fluctuations on circuit

characteristics in 180nm and 65nm CMOS technologies," in 2006 IEEE

International Symposium on Circuits and Systems, Island of Kos, Greece, 2006.

[76] R. Shioya, K. Horio, M. Goshima and S. Sakai, "Register Cache System Not for

Latency Reduction Purpose," in 43rd IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2010.

[77] H. Shen-Fu and W. Pu-Cheng, "Design of low-leakage multi-port SRAM for," in

IEEE International Symposium on Circuits and Systems (ISCAS), 2014.

[78] T. Shakir, "Low-Power, Low-Voltage SRAM Circuit Designs For Nanometric

CMOS Technologies," University of Waterloo, 2011.

[79] J. Shah, "Low-Power Soft-Error-Robust Embedded SRAM," University of

Waterloo, 2012.

[80] J. M. Shah, "Modeling and Mitigation of Soft Errors in Nanoscale SRAMs,"

University of Waterloo, 2008.

xii

[81] A. Neale, "Digital Timing Control in SRAMs for Yield Enhancement and Graceful

Aging Degradation," University of Waterloo, 2010.

[82] B. Merchant, "IBM Patented a One Atom-Thick Graphene Transistor That Works

1,000 Times Faster Than Silicon - Motherboard," February 2013. [Online].

Available: https://motherboard.vice.com/en_us/article/kbb9wx/a-single-atom-thick-

graphene-transistors-transmits-electricity-1000-times-faster-than-silicon-chips.

[83] Y. Li, L. Zhang, Q. Zhang, Z. Wang and L. Mao, "A Low Power Area Efficient Full

Custom 3-Read 3-Write General Purpose Register in 65nm Technology," in

International Conference on Computer Sciences and Applications (CSA), 2013.

[84] K. Kwong, "Design of a Robust, Low-Leakage Register File for Sub-130nm

Technologies," University of Waterloo, 2004.

[85] T. Karim, "On-Chip Power Supply Noise: Scaling, Suppression and Detection,"

UWSpace, 2012.

[86] S. Galal and M. Horowitz, "Energy-Efficient Floating-Point Unit Design," IEEE

Transaction on Computers, vol. 60, pp. 913-922, 2011.

[87] Y. L. P. A. D. Farmer, "Graphene field-effect transistors with self-aligned gates,"

Applied Physics Letter, 2010.

[88] Chuang, "High-Performance, Energy-Efficient CMOS Arithmetic Circuits,"

University of Waterloo, 2014.

[89] A. Alvandpou, R. Krishnamurthy, K. Soumyanath and S. Borkar, "A lowleakage

dynamic multi-ported register file in 0.13um CMOS Technology," in International

Symposium on Low Power Electronics and Design, 2001.

[90] Stanford University, "21st Century Computer Architecture," 2012.

[91] O. Z. YONG, "LOW-POWER RF DESIGN: SELECTIVE POWER-GATED

DOMINO MULTIPLEXER," Universiti Tunku Abdul Rahman, perak, Malaysia,

2014.

