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Summary

Health economic models are representations of judgements about the relationships

between the model’s input parameters and the costs and health effects that the

model aims to predict. We recognise that we can rarely define with certainty a

‘true’ model for a particular decision problem. Building an ‘incorrect’ model will

result in an uncertain prediction error, which we denote ‘structural uncertainty’.

The absence of observations on the total costs and health effects under each de-

cision option limits the use of data driven approaches to managing structural

uncertainty, such as model averaging.

We therefore propose a discrepancy based approach in which we make judge-

ments about structural error at the sub-function level within the model and in-

troduce a series of terms to ‘correct’ the errors. This is deemed to be easier than

making meaningful statements about the error at the level of the model output.

The specification of discrepancy terms within the model also allows us to use

sensitivity analysis methods to determine the relative importance of the different

structural uncertainties in driving output and decision uncertainty.

Following the computation of either the main effect index or the partial ex-

pected value of perfect information for each discrepancy term, we can review the

structure of those parts of the model where structural uncertainty is an important

source of model output or decision uncertainty. We interpret the overall expected

value of perfect information for all the discrepancy terms as an upper bound on

the expected value of model improvement (EVMI).

We illustrate the sub-function discrepancy method in two case studies: a simple

decision tree, and a more complex Markov model. Finally, we propose an efficient

method for computing the main effect index and the partial expected value of

perfect information when inputs and/or discrepancies are correlated.
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Chapter 1

Introduction

1.1 Motivation

Mathematical models are routinely used to aid healthcare resource allocation de-

cisions, with the majority of such models falling into the broad category of ‘cost-

effectiveness’ models. These models aim to predict the costs and health conse-

quences associated with a range of competing decisions. Although decision theory

tells us that we only need to know the expectation of the net benefit of the resource

costs and health effects under each decision option in order to make the optimum

choice, we will usually also want to quantify our uncertainty about the costs and

health effects. If we are sufficiently uncertain then we may wish to gather more

information before embarking on a decision that is costly to reverse, or commit-

ting resources that are potentially unrecoverable (McKenna and Claxton, 2011).

A cost-effectiveness model will be most helpful then if it allows us to properly

specify all of our uncertainty about the quantity we wish to predict.

There are two primary sources of uncertainty when basing statements about

costs and health effects on a mathematical model: uncertainty about the model

inputs and uncertainty about the model structure. Methods for quantifying the

first source of uncertainty are well established, but understanding and managing

the second is rather more difficult to since it involves making judgements about a

model’s ability to faithfully represent a (possibly highly complex) real life decision

problem.

1



CHAPTER 1. INTRODUCTION 2

The problem of uncertainty in deterministic mathematical model (or ‘computer

model’) predictions is common to many disciplines, and has been the subject of

much research (see for example Santner et al., 2003; Bayarri et al., 2009). Methods

for analysing the effects of input uncertainty are particularly well developed (Oak-

ley and O’Hagan, 2004; Saltelli et al., 2008), however the problem of structural

uncertainty has received much less attention. There are two broad approaches

to quantifying structural uncertainty: via model averaging (for example Draper,

1995; Kass and Raftery, 1995; Kadane and Lazar, 2004; Bojke et al., 2009; Jackson

et al., 2009) and via specification of model discrepancy (Kennedy and O’Hagan,

2001; Goldstein and Rougier, 2009).

There are, however, difficulties with both methods when applied in the context

of health economic models. There is usually an absence of direct observations on

the costs and health effects under the set of decision options being considered

in the economic evaluation. This means that in the model averaging approach

model weights cannot be based on some likelihood based measure, and in the

discrepancy approach there are no data that will directly inform beliefs about

the difference between the model output and the expected population costs and

benefits. Elicitation could in theory provide a means of specifying the necessary

weights or distributions, but it is not clear whether this is feasible in practice.

How would a modeller (or a decision maker) weight a set of competing computer

models? How would he or she make meaningful judgements about how wrong the

predictions of a given model might be?

The motivation then for this research is to develop a method for managing

structural uncertainty in health economic models that does not rely on past ob-

servations on the output quantities (the costs and health effects) that are pre-

dicted by the model. We use the term ‘managing uncertainty’ to include the goal

of understanding better the sources of structural uncertainty such that it can be

reduced through model revision, as well as the goal of formally quantifying the

uncertainty. We also consider the problem of deciding when it is worth spending

resources to improve a model. The output of a computer model is not a free

good. Considerable resources may be required to gather the necessary evidence
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to inform the input distributions and model structure, to program, debug and

validate the model, and to report the results in a meaningful fashion. Running a

complex model may also require expensive computer software and/or hardware,

and require long run times. Given a decision where we have considerable uncer-

tainty, how much is a computer model worth? Given a computer model that we

know is not perfect, how much should we pay to make it better?

Throughout the thesis we adopt a subjectivist Bayesian perspective since this

provides a sensible and coherent framework within which to think about decision

making under uncertainty (de Finetti, 1974; Dowie, 2006; Smith, 2010). In health

care resource management, a decision maker will choose from competing options

based on her own subjective uncertainty specification of the net benefits of the

various options open to her. This specification may well be informed by the results

of a mathematical model, but ultimately, it is the decision maker’s own personal

probabilities that will guide the decision.

1.2 Thesis overview

We begin in chapter 2 by introducing some basic decision theory that underpins

the economic evaluation methods that are used to inform resource allocation deci-

sions in health care. We go on to discuss health economic evaluation methods and

the use of computer models, and end the chapter by thinking about how models

used for economic evaluation might be ‘wrong’. Chapter 3 begins with a general

introduction to computer models, followed by a discussion of the management

of the different sources of uncertainty that are evident when we wish to make

predictions based on a computer model output. We recognise that we will often

need to quantify aspects of health economic model uncertainty in the absence of

data to inform the uncertainty distribution, and this motivates the use of formal

elicitation methods. We introduce some basic ideas about elicitation in chapter 4

and review the use of elicitation in health services research and health economic

evaluation.

In chapters 5 and 6 we consider the problem of health economic model uncer-
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tainty and introduce a novel approach to managing this source of uncertainty. We

illustrate the method in two case studies, the first concerning a simple decision tree

model, and the second a more complex Markov model. Sensitivity analysis tech-

niques are used to help us understand the implications of our uncertainty about

model structure, and chapter 7 contains the description of an efficient method for

calculating those sensitivity measures (the main effect index and the partial ex-

pected value of perfect information) when model inputs are correlated. The thesis

ends with a discussion in chapter 8 of the main themes along with implications

for future research and practice.



Chapter 2

Economic Evaluation in Health

2.1 Introduction

In this chapter we introduce the basic decision theory that underpins the economic

evaluation framework used to inform health care resource allocation decisions. We

see that economic evaluation methods seek to generate predictions about the costs

and health effects that will follow some set of competing decision options open

to the decision maker. For such predictions to be evidence based we must have

some mechanism for linking observations of the world that have taken place in

the past, to the predictions of costs and health effects that will take place in the

future under each decision option. It is this linking of past observations to future

predictions that motivates the building of a computer model.

We describe some types of computer model that are commonly found in health

economic analysis, and show that these are all particular cases of a general form

of model. Given this general model, we are able to identify a number of important

basic criteria that must be fulfilled in order to avoid error in the model predictions.

Towards the end of the chapter we begin to unpick the meaning of ‘structure’ in

the context of health economic decision models, and look ahead to methods for

quantifying uncertainty in this structure.

5
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2.2 The problem of allocating scarce resources

Healthcare resources are scarce. Demand for consultations, treatments, services

and health care programmes exceeds our ability to supply them within the re-

sources committed by society for this purpose. Scarcity necessitates resource

allocation choices (Weinstein and Stason, 1977).

We assume the existence of a single decision maker, whose responsibility it is

to allocate some set of scarce resources for the benefit of some population. Each

choice open to the decision maker will result in an outcome: a set of health (and

other) consequences, along with some degree of resource usage. Taken together,

the consequences and the size and nature of the resources used to achieve those

consequences has some net value to the decision maker. Following the description

given in Smith (2010) our decision maker wishes to act in a logical, coherent and

honest fashion; has responsibility for and the authority to enact the decision; and

is answerable to some higher ‘auditor’ for her actions. We recognise that in reality

decisions are rarely taken by single individuals acting in isolation, and that in

many circumstances the responsibility for making a decision belongs very explicitly

not to an individual, but instead to a group or committee (the committees of

NICE1 being a good example).

So, to give an example of a health resource allocation problem, a decision

maker may be faced with the choice to either recommend or not recommend the

use of a new drug treatment for some disease. Using the drug will result in costs

(i.e. an allocation of the scarce resources) and consequences, which include (but

are not necessarily limited to) the health outcomes for those who will take the

drug. By not allowing the drug to be used, other costs (perhaps those of an

existing drug treatment) and consequences (the health outcomes related to the

existing drug) will result. Given these two options, how should a decision maker

choose between them?

Formal methods for economic evaluation to inform health care resource alloca-

tion decisions have been routinely applied for several decades in many developed

countries, and there are now a considerable number of standard texts that de-

1The National Institute for Health and Clinical Excellence (http://www.nice.org.uk/).
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scribe these methods (e.g. Drummond et al., 2005; Gold et al., 1996; Neumann,

2005). Underpinning the economic evaluation approach is the theory of decision

making under uncertainty (Raiffa, 1968), and it is from this perspective that we

will review methods in the remainder of this chapter, and indeed this perspective

underpins the thesis as a whole.

2.3 Decision Theory

For any decision problem, the decision maker is faced with a range of competing

decision options. Each of these options will lead to a set of outcomes. The

decision maker is able to express preferences for the outcomes through a utility

function that describes the value to her of any particular set of outcomes. We

write the set of possible decisions as d = 1, . . . , D, and we denote the (vector

of) relevant outcomes following decision d to be Z(d). The decision maker has a

utility function, U{Z(d)}, either implicit or explicit, and a desire to choose the

option d∗ that maximises utility,

d∗ = argmax
d
U{Z(d)}. (2.1)

Decision makers are, however, faced with a problem. The outcomes that will

occur under each decision option are almost always unknown before the decision

is made. If this is the case then we can say that the decision maker has uncer-

tainty about the outcomes, and this uncertainty may (but not always) result in

uncertainty about which of the choices that are available has the greatest utility.

We now write the vector of outcomes as a function not only of the decision,

but of a vector of unknowns, θ ∈ Θ. Our optimal decision is now that which

maximises expected utility,

d∗ = argmax
d
E[U{Z(θ, d)}] = argmax

d

∫
θ∈Θ

U{Z(θ, d)}p(θ|d)dθ. (2.2)

We note in passing here that Eθ[U{Z(θ, d)}] = U [Z{E(θ), d}] if and only if

U{Z(θ, d)} is linear in θ (or multilinear in U{Z(θ, d)} with independence in the
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components of θ). If not, then we must somehow evaluate the integral on the RHS

of (2.2). If we have used a computer model to define U{Z(θ, d)} then we may find

that there is no closed form solution to this integral. If this is the case we typically

use Monte Carlo integration. In health economic evaluation this approach is called

‘probabilistic sensitivity analysis’ (Griffin et al., 2006). We return to this topic in

Chapter 3.

To show why the optimal decision is that which maximises expected utility we

first define two reference states, S0 and S1, that describe our least preferred and

most preferred outcomes with utilities U(S0) = u0 and U(S1) = u1. From the

definition of utility we have

U{Z(θ, d)} = qu1 + (1− q)u0, (2.3)

for some value q. Equation (2.3) implies that we have equal preference for Z(θ, d)

and a state Sq in which we will move to state S1 with probability q, and to state

S0 with probability 1− q.

If we were to learn the value of θ, then our conditional utility would be

U{Z(θ, d)|θ} = Pθu1 + (1− Pθ)u0, (2.4)

for some probability Pθ, following the same argument as above. We now write q

in equation (2.3) in terms of an integral over θ as follows:

q = P (move to state S1) (2.5)

=

∫
θ∈Θ

P (move to state S1|θ)p(θ)dθ (2.6)

=

∫
θ∈Θ

Pθp(θ)dθ. (2.7)



CHAPTER 2. ECONOMIC EVALUATION IN HEALTH 9

Our unconditional utility is therefore

U{Z(θ, d)} = qu1 + (1− q)u0 (2.8)

=

{∫
θ∈Θ

Pθp(θ)dθ

}
u1 +

{
1−

∫
θ∈Θ

Pθp(θ)dθ

}
u0 (2.9)

=

∫
θ∈Θ

{Pθu1 + (1− Pθ)u0} p(θ)dθ (2.10)

= Eθ[U{Z(θ, d)|θ}]. (2.11)

Therefore the utility of the outcome Z(θ, d) for uncertain θ, is its expectation

Eθ[U{Z(θ, d)}]. In order to maximise utility under uncertainty, the decision

maker simply chooses the decision option with maximum expected utility.

In an important sense the decision maker acts rationally by choosing d∗ in

this way to be the optimal choice: expected gains in utility are maximised and

conversely expected losses are minimised. This is shown by Raiffa (1968) in his

seminal text on decision theory, and comprehensively discussed in the explicitly

subjectivist introduction to decision analysis by Smith (2010).

We note that finding the optimal decision does not depend on the ‘statistical

significance’ of any measure of difference between the utilities of the different

decisions (or indeed the Bayesian posterior probability of equivalence), and as

such there is an ‘irrelevance of inference’ (Claxton, 1999). If we wish to make

the decision now, only the expectations (equation 2.2) are required to rationally

choose between options.

If the uncertainty in costs and consequences is such that there is uncertainty

as to which decision option has greatest net utility, then by making a choice the

decision maker is taking a risk. The choice may be the wrong choice. Choosing

a different option may have resulted in greater utility. The decision maker may

therefore also wish to quantify the probability that d∗ is the decision option that

maximises utility, given uncertainty about θ,

P [U{Z(θ, d∗)} ≥ U{Z(θ, d)} ∀d]. (2.12)

If new evidence θ′ becomes available at some point in the future we may find
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that the optimal decision d∗ is no longer optimal, i.e. that

argmax
d
E[U{Z(θ′, d)}] 6= argmax

d
E[U{Z(θ, d)}]. (2.13)

This is of little concern if a decision maker can costlessly switch between decision

options each time new evidence implies an optimal choice different to that cur-

rently adopted. However, this is usually not the case in health care. Adopting

or reimbursing a new intervention or service almost always implies certain ‘sunk’

costs; irrecoverable costs associated with the change in practice (Eckermann and

Willan, 2008). Identifying one of the decision options as optimal may also lead

to another important irreversibility; a trial or study that could gather additional

evidence to support the decision may be deemed unnecessary or unethical (Griffin

et al., 2011). If a decision maker anticipates that the adoption of the optimal

decision option (under current information, θ) will be associated with sunk costs

and/or other irreversibilities, then she may wish to quantify the value of reducing

uncertainty about θ first. We will consider methods for computing the value of

information in detail in our discussion of computer model uncertainty in chapter

3.

2.4 Utility functions

For brevity we denote the uncertain outcomes under decision d as the random

variable vector Zd where Zd = Z(θ, d), and the vector of outcomes under all

decisions as Z = (Z1, . . . ,ZD). Using this notation we can re-express (2.2) and

(2.12) respectively as

d∗ = argmax
d
E{U(Zd)} = argmax

d

∫
Zd

U(Zd)p(Zd)dZd, (2.14)

and

P{U(Zd∗) ≥ U(Zd) ∀d}. (2.15)

Each choice available to the decision maker results in a vector of outcomes,
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which we have denoted Zd. For example, this vector may comprise costs (of

drugs, primary and secondary care and so on), health outcomes, and a range of

non-health outcomes such as those related to the ability of the patient to work.

Let there be j = 1, . . . , J outcomes of interest, and the vector of outcomes under

decision d be Zd = {o1,d, . . . , oJ,d}. Note that the decision that maximises one

outcome may not be the same as the decision that maximises another. We treat

the outcomes here (and in the rest of this section) as known with certainty to

simplify the notation.

Given J outcomes of interest, the decision maker must choose which of the D

J-dimensional vectors of outcomes that she prefers. Even if we ignore uncertainty,

this is not a trivial problem and may involve complex value tradeoffs between

outcomes (Keeney and Raiffa, 1976). In order to proceed the decision maker

must express a utility function U(·), which can be thought of as a projection of

the J-dimensional outcome space onto the real line. The function must result

in U(Zd′) > U(Zd) if the outcome {o1,d′ , . . . , oJ,d′} is preferred to {o1,d, . . . , oJ,d},

U(Zd′) < U(Zd) if {o1,d, . . . , oJ,d} is preferred to {o1,d′ , . . . , oJ,d′} and U(Zd′) =

U(Zd) if there is indifference between the two vectors of outcomes.

We note at this point that any decision maker is likely in reality to have a

complex implicit utility function that includes not only costs and health conse-

quences, but also may include for example the political or personal (for example

in terms of career advancement) consequences of each decision option. The exis-

tence of some of these aspects of the decision problem may be quite hidden and

we will not consider this problem further, other to recognise that decisions are

rarely made solely on the result of an economic evaluation analysis.

2.5 What are the outcomes under each decision

option?

If we consider health as a measurable set of ‘health outputs’ that is produced at

the individual level in part as a result of ‘resource inputs’ in the form of health

care then we can divide the outcomes under each decision option into two sets:
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‘inputs’ which represent the allocation of resources, and ‘outputs’ which represent

health. We may also want to consider non-health outputs such as ability to work,

but in the simple case we will consider outcomes under each decision option as just

comprising a set of resource inputs (which we will often refer to just as ‘costs’),

and a set of health outputs (for which we will also use the term health effects).

2.6 Measuring resource inputs

Implementing a decision option will result in the allocation of resources. These

allocations are termed ‘inputs’ to whatever process that is generating health ‘out-

puts’. The relevant inputs are those that are expected to differ systematically

between the different decision options within the decision problem, since these dif-

ferences will inform the choice between the decision options. The decision maker

should therefore choose to include in their utility function all resource allocation

inputs that are expected to differ between the decision options. For example, if

we are considering a decision problem that relates to treatments for heart disease

then relevant inputs would include the competing treatments themselves, but also

resources committed for primary and secondary care if we believe that these will

differ between decision options. We would probably not be interested in resource

inputs relating to ophthalmic care, since these would not be expected to differ

between the decision options (though ophthalmic services may still be used by

individuals who have heart disease).

Inputs are usually valued in monetary units. For any health economy to func-

tion inputs to the health care process must be assigned monetary values to allow

accounting of resources.

Resource allocation decisions almost always relate to populations rather than

individuals, and the decision maker is therefore rarely interested in resource inputs

only for a single individual, but rather in the total or per person ‘average’ input in

some defined population. The decision maker is also likely to be interested in the

inputs committed over some period of time, rather than at a single point in time.

For decisions that have outcomes only in the short term, the mean per person cost
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of resources allocated may be of interest. Where the decision maker is interested

in outcomes over extended time periods, inputs might be expressed as mean per

person, per year, costs.

2.7 Measuring health outputs

There is no single accepted definition of health, and therefore no single measure

of health output. There is an established literature on the measurement of health

(e.g. Bowling, 1997; McDowell, 2006; Streiner and Norman, 1995). For our pur-

poses ‘health’ is the set of measurable characteristics that the decision maker

herself would define as comprising those aspects of an individual’s health relevant

to the decision problem. These characteristics may be objectively measurable us-

ing an instrument or test, such as blood pressure or cholesterol level, clinically

measurable (i.e. based on the opinion of a health care professional) such as the

presence or absence of a disease, or subjectively measurable, such as pain.

Given the set of measurable characteristics relevant to the decision problem,

an individual can be said to exist in a ‘health state’ comprising the set of measured

values of the characteristics. So, for example, the relevant health characteristics

for some decision problem might be chest pain (measured on a four level scale:

none, mild, moderate, severe) diagnostic status for angina (yes or no as diagnosed

by a cardiologist) and blood pressure (measured on a continuous scale in mmHg).

At some time t the health state of individual A might therefore be {no chest pain;

no angina; 120mmHg} while the health state for individual B might be {mild

chest pain; angina; 130mmHg}.

Again, the decision maker is rarely interested in the health of a single individ-

ual, but rather in the ‘average’ health experience within some defined population.

The decision maker is also likely to be interested in the health experience of the

population over some period of time, rather than at a single point in time, and be

specifically interested in changes in health experience that differ between decision

options. The decision maker therefore needs to consider meaningful measures of

health output that reflect the aggregated health experience of a population of
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individuals over time.

In a simple case in which there is a single health characteristic of interest, alive

or dead, then a sensible aggregate measure of population health output over time

could be mean survival time. If the health characteristic of interest is chest pain

on a four point scale (none, mild, moderate, severe), the aggregate measure might

be the mean number of days on which moderate or severe pain is experienced. It

is then be up to the decision maker to value this population aggregated health

output under each of the decision options, along with costs and other relevant

outcomes.

In the above examples health is measured in ‘natural’ units. ‘Natural units’

does not have a precise definition, but loosely speaking, a natural unit defines

some measure of health that we can measure directly (but which is not a measure

of health state preference or utility). So, for example for a set of decision options

relating to the treatment of cancer the ‘natural unit’ outcome of interest may

be the length of survival post treatment. For the treatment of hypertension the

outcome might be blood pressure; and for decision options concerning a screening

test the outcome may be numbers of cases of disease detected.

This may present a problem if there are different natural units for the differ-

ent decision options within some decision problem. So, for example, if we were

faced with the rather artificial decision problem: fund hip replacements versus

asthma treatment, then we might find it difficult to decide the relative value of

an increases in mobility versus a reduction in breathlessness. For this reason,

health measured in natural units is often transformed onto a health state prefer-

ence scale where a value of 1 represents perfect health, 0 represents death, and

negative values represent states worse than death. Given two health states h1

and h2 the preference scale transformation u(·) is defined such that if h1 is pre-

ferred to h2 then u(h1) > u(h2), if h2 is preferred to h1 that u(h2) > u(h1) and

if there is indifference that u(h2) = u(h1). The valuation of health in this way is

not straightforward and as for health measurement there is a large literature. A

comprehensive recent text on the subject is Brazier et al. (2007).

The preference for a health state can be elicited from the individual who
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is experiencing the health state, or from the general population who are asked

to imagine that they are in that health state. A commonly used method for

transforming health states to preferences elicited from the general population is

via a generic health outcome measurement instrument such as the SF36 (Brazier,

1993) or EQ5D (Brooks, 1996). These instruments measure health on a number of

dimensions, so for example in EQ5D there are five: degree of mobility impairment,

ability to self-care, ability to engage in usual activities, level of pain or discomfort,

and level of anxiety or depression, with three levels for each dimension. Each of the

resulting 243 health states is then associated with a measure of preference derived

from the responses of study participants drawn from the general population who

were asked to value each of the states, relative to full health and to death. The

preferences are elicited using methods such as time trade off or standard gamble

(see Drummond et al., 2005, for basic details).

Health state preference values can be considered to be measures of ‘quality

of life’ (Bowling, 1997). Quality of life values are aggregated over time to create

Quality Adjusted Life Years (QALYs). This generic measure of health outcome,

Q, measured in QALYs is defined as

Q =

∫ t1

t0

u{h(t)}dt, (2.16)

where h(t) describes the health state of an individual at time t and u(·) is the

health state preference transformation. Time t is measured in years within some

interval of interest (t0, t1). If time is considered discrete rather than continuous

then we replace the integral with a summation,

Q =

t1∑
t=t0

u(ht). (2.17)

2.7.1 Which health measures should the decision maker

choose?

Let us imagine a large randomised controlled trial where patients in each arm

of the trial are exposed to one of a set of decision options. Each individual in
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the trial will experience ‘health’ over the subsequent course of the trial. As we

have discussed above, this experience of health is multifaceted and it is up to

the decision maker to choose the appropriate measures to capture the ‘relevant’

aspects. What are the ‘relevant’ aspects? If our trial has randomised individuals

to various treatments for heart disease then we can see that health experience

related to heart disease is likely to be relevant. In this case we might measure

level of chest pain, breathlessness and blood pressure say. We could also measure

visual acuity or hair loss or knee joint flexibility, but we would probably not

consider these relevant. Why? Because we don’t expect there to be systematic

differences in these measures between the trial arms.

The relevant measures are therefore those that capture health experience that

is expected to differ systematically between those exposed to the different decision

options. We only expect to see systematic differences in those aspects of health

that are associated causally with some aspect of the decision option.

Before we describe the various approaches to mathematical modelling in health

economic evaluation, we briefly review four broad types of economic analysis.

2.8 Types of economic evaluation analysis

In the health economics literature, methods for economic evaluation are cate-

gorised according to the measurement units of the output of the analysis. Clas-

sically, four types of analysis are described: cost-minimisation analysis, cost-

effectiveness analysis, cost-utility analysis and cost-benefit analysis (Drummond

et al., 1997).

2.8.1 Cost-minimisation analysis

A cost-minimisation analysis is applicable if all outcomes, except costs, are identi-

cal under all decision options. So, if we denote costs over the relevant time period

(expressed as mean per person costs, say) as o1,d and the remaining J−1 outcomes

of interest as o2,d, . . . , oJ,d then the analysis is applicable if oj,d = oj∗,d ∀d, j >

1, j∗ > 1. The results of this analysis are the costs o1,d for each of the decision
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options. The decision maker usually then has a utility function of the simple form

U(o1,d) = −o1,d, (2.18)

i.e. negative costs. The optimal decision is that which maximises utility, and

therefore minimises costs, i.e.

d∗ = argmax
d∈D

−o1,d, (2.19)

hence the name cost-minimisation analysis. Given that we need to determine

that outcomes except costs really are equal before a cost-minimisation analysis is

applicable, a cost-minimisation analysis is better seen as just a special case of the

next analysis type, cost-effectiveness analysis.

2.8.2 Cost-effectiveness analysis

A cost-effectiveness analysis is applicable if health outcome is easily measurable

in ‘natural units’ under each decision option. The results of this analysis are the

(population mean per person) inputs in cost units, o1,d, and the (population mean

per person) health outcome in natural units, o2,d, for each of the decision options.

The decision maker must then value the health outcome on the monetary scale

via their ‘willingness to pay’ for one unit of this health outcome, λ, resulting in

the net benefit (or net monetary benefit) of decision option d,

NBd = λo2,d − o1,d. (2.20)

The decision maker’s utility for the outcomes (in monetary units) is usually then

assumed to be the net benefit itself, i.e.

U(o1,d, o2,d) = NBd (2.21)

= λo2,d − o1,d. (2.22)
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Net benefits can equally be expressed in health rather than monetary units, giving

the net health benefit (Stinnett and Mullahy, 1998),

NBd = o2,d − o1,d/λ. (2.23)

2.8.3 Cost-utility analysis

A cost-utility analysis extends the cost effectiveness method to the case where

there is no single common ‘natural’ measure of health outcome for all decision

options. Instead, health states are transformed onto a health state preference

scale and aggregated over time to generate population mean numbers of QALYs.

The results of this analysis are the population mean per person inputs in cost

units, o1,d, and the population mean per person health outcome on the QALY

scale, o2,d, for each of the decision options. Given the decision maker’s willingness

to pay for one QALY unit, λ, the net monetary benefit is

NBd = λo2,d − o1,d, (2.24)

and as above, utility in monetary units is assumed to equal the net benefit, i.e.

U(o1,d, o2,d) = NBd. Net benefit can be expressed in QALY rather than monetary

units,

NBd = o2,d − o1,d/λ. (2.25)

2.8.4 Cost-benefit analysis

A cost-benefit analysis is a more general approach to economic evaluation in which

all outcomes are transformed within the analysis onto the monetary scale. This

allows decision options that have outcomes across multiple sectors, e.g. health,

education, and transport to be compared. We again denote resource inputs, mea-

sured in cost units, as o1,d. If there are j = 2, . . . , J health and other outcomes of

interest for each decision d, and the monetary value of one unit of each outcome

oj,d is λj then the result of this analysis is {o1,d, λ2o2,d, . . . , λJoJ,d} for each decision
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option. The net monetary benefit is simply

NBd =
J∑
j=2

λnoj,d − o1,d, (2.26)

and again, the utility U(o1,d, . . . , oJ,d) is assumed to equal NBd itself. A cost

benefit analysis, which results in outcomes on the monetary scale, implies that all

outcomes are valued within the analysis itself.

2.9 Discounting

We allow costs and health outcomes to be time dependent in part because costs

and outcomes may change over time, but also to allow discounting. The decision

maker may wish to value resource inputs and health (and other) outputs that

are accrued at different points in time differently. This commonly takes the form

of discounting, where outcomes that are accrued in the future are reduced in

value to reflect society’s preference for rewards now rather than later. Costs and

consequences that are accrued now are valued more highly than those accrued in

the future (Krahn and Gafni, 1993). Discounting usually takes the form

U{oj,d(t)} = U{oj,d(t0)}(1 + rj)
−t, (2.27)

where rj is the discount rate per unit time for outcome j.

2.10 The role of mathematical modelling in eco-

nomic evaluation

In section §2.3 we defined Z = (Z1, . . . ,ZD) as the vector of outcomes (resource

inputs, health outputs, and possibly other outputs) under all decision options in

some population of interest, aggregated over some period of time. Some or all of

the components of Z are likely to be uncertain, and in order to determine the

decision option that maximises the expected utility, d∗ = argmaxdE{U(Zd)}, we
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must specify p(Z).

It is perfectly possible for a decision maker to derive her own distribution

p(Z), and therefore evaluate argmaxdE{U(Zd)} with little or no reference to any

external evidence. It is unlikely, however, that these statements will be useful,

and the resulting decision may easily be challenged. For a robust decision to be

made, meaningful, evidence informed statements must be made about Z, and it

is this that provides the primary motivation for the building of a computer model.

Building a model is usually seen as a necessary alternative to conducting a

study to determine the costs and consequences of the competing decision options.

Given a decision problem it is, at least in theory, possible to allocate the population

of interest randomly to the various decision options, follow up the groups for

some period of time judged to be adequate, and count all the relevant costs and

consequences in each of the study arms. Although conducting such a trial would

arguably provide the means of deriving p(Z), such a trial is usually not feasible.

Firstly, the decision maker may be interested in costs and health outcomes accrued

over a time period of the order of years or decades. Running a trial of such a length

is likely to be extremely expensive, and results will only be known at some point

far into the future. This is of little benefit if the decision needs to be be made

now. Secondly, it may be unethical to randomise participants to all the available

decision options if some decision options are already known to result in better

clinical outcomes than others (but perhaps at greater cost). Lastly, a trial, once

set up does not have the same flexibility of a mathematical model in its ability to

explore large numbers of alternative scenarios or sets of assumptions.

Within the context of health economic evaluation, models built to predict Z

are variously referred to as ‘health economic models’, ‘decision models’, ‘decision

analytic models’, ‘economic evaluation models’ or ‘cost-effectiveness models’ (note

that the term ‘cost-effectiveness’ is used here more loosely than in section §2.8.2

to encompass any economic evaluation analysis).

The primary purpose then of a health economic decision model is to provide

the decision maker with an ‘evidence based’ judgement about outcomes, i.e. the

model allows the decision maker to evaluate p(Z|D) for some data D, rather
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than just their prior beliefs p(Z). Models therefore link evidence (in the form of

parameters estimated from data along with other judgements about the world)

to the outcomes Z. Buxton et al. (1997) define a number of specific functions

that models perform: extrapolating beyond the data observed in a trial; linking

intermediate clinical endpoints to final outcomes; generalising from one setting to

another; and synthesising head-to-head comparisons where relevant trials do not

exist. These roles can all be thought of as falling under the banner of ‘evidence

synthesis’ in the sense that in each case we combine data from various sources,

perhaps with other evidence in the form of any elicited parameter values, and

evidence that is encoded in the model structure itself.

Brennan and Akehurst (2000) cite two additional roles for models in addition

to their use in synthesising evidence in order to make healthcare resource allo-

cation decisions: to inform research strategy and design, and to make explicit

the evidence supporting a decision. The first of these acknowledges that a deci-

sion maker always has the option of delaying a decision until more information is

available. Models can be used to quantify the expected value of any additional

information, and this can be combined with the costs of obtaining the informa-

tion (say, from a new study) to predict the net utility of delaying the decision to

gather data (see Bernardo and Smith (1994) and Howard (1966) for theoretical

discussions regarding the value of information, and Claxton and Posnett (1996),

Felli and Hazen (1998) and Chilcott et al. (2003) for discussions in the context of

health economic decision modelling).

Viewing models as vehicles for making explicit the evidence supporting a de-

cision is attractive, but potentially problematic. For this to be strictly true, the

decision would need to lie with the model, and not with the decision maker. There

would be no possibility that a decision maker could weigh the evidence from the

output of a model with other evidence or considerations from elsewhere, since the

model would then no longer be making explicit the evidence behind the decision!

By placing the model output in a wider ‘political’ context, say, the decision maker

is combining the model output with other evidence, using some implied concep-

tual model and a utility function that is almost certainty not explicitly stated (or
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even understood).

2.11 How do health economic evaluation models

work?

The majority of models that are used to aid healthcare resource allocation de-

cisions fall into the broad category of ‘cost-effectiveness’ models. Such a model

is, in one sense, just a representation of the modeller’s judgements about the

functional relationships between the inputs and outputs of the model, which in

turn is informed by their views about the processes by which a population utilises

healthcare resources and the causal chain that links health care utilisation to

health related events at the individual level. For example, if the decision was

whether or not to allow a new drug for diabetes, then the causal pathways linking

the costs and consequences to the use or not of the drug would be embedded

within the structure of the model.

Operationally, cost-effectiveness models synthesise information in order to

quantify the costs and consequences associated with each competing decision

option such that the optimum decision option can be chosen. The sources of

information synthesised for, say, a diabetes model may be: estimates of treatment

effects for the new drug and any alternatives, the costs of the new drug, its alter-

natives, and the other healthcare costs associated with diabetes, the epidemiology

and natural history of diabetes and related diseases, and the utility valuations of

the health care costs and health states associated with diabetes. These sources of

information become the model inputs. Cost-effectiveness models are typically de-

terministic, but because we are uncertain about the model inputs, this uncertainty

is propagated through to the model output.

Unless there has been a study that assesses the effect of the different decision

options in a population that is relevant to our decision, then we can not usually

derive the distribution on the outcomes under each decision directly. Instead, we

estimate the outcome (i.e. the vector of resource inputs and health outputs) for

each of a series of well defined states at each time point, along with the proportion
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of our population of interest who occupy that state at that time point.

2.12 Categorising health economic decision mod-

els

Models for economic evaluation can be categorised on a number of different dimen-

sions. Brennan et al. (2006) suggest a taxonomy based on the following criteria:

• whether individuals are explicitly modelled,

• whether interaction between individuals is modelled,

• whether time is modelled, and if so, whether it is treated as discrete or

continuous,

• whether transitions between states are assumed to be Markovian,

• whether the model is purely deterministic, or whether Monte Carlo sampling

is used to compute expectations.

This categorisation of the various economic models that were in use at the time of

the study led Brennan et al. (2006) to produce the following table of model types

(table 2.1).
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Figure 2.1: Taxonomy of model structures. (From Brennan et al., 2006)
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Although the range of model types used in economic analysis is broad, the

majority of models fall into one of the following three categories: decision trees,

Markov models and individual level simulation models.

2.12.1 Decision tree models

The simplest model commonly used in economic evaluation is the ‘decision tree’.

Figure 2.2 shows a decision tree designed to inform whether or not to fund an

exercise promoting intervention. The left-most (square) node represents the choice

between the two decision options, d = 1, no intervention, and d = 2, the exercise

promoting intervention.

The subsequent circular nodes are ‘chance nodes’. If we imagine a single

individual at the left most chance node, we expect them to proceed to an ‘exercise’

state with some probability p1 and to a ‘sedentary’ state with some probability

1− p1. The next chance node then represents the options open to an individual,

conditional on them being in the ‘exercise’ state: they will proceed to the ‘exercise

maintained’ state with probability p2 and to the ‘exercise not maintained’ state

with probability 1−p2. The third node represents the probability of eight mutually

exclusive ‘terminal’ states, conditional on each of the three outcomes from the first

two nodes: exercise that is maintained, exercise that is not maintained, and no

exercise (sedentary lifestyle).

We can calculate the probability of each of the ‘terminal’ states by multiplying

out the conditional probabilities along each of the possible paths through the tree

to the terminal state. Given the terminal state probabilities and a vector of

outcomes associated with each state (usually costs and some measure of health

output such as QALYs) we can analytically calculate the expected outcomes under

each decision. This process is sometimes described as ‘rolling back’ the decision

tree.

Decision tree models are typically ‘cohort’ models in that the values for the

conditional probabilities and the outcomes are population ‘average’ measures of

these quantities, and as such that the expected costs and health outputs relate to

the population, not any single individual. In this sense single individuals are not
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Figure 2.2: A simple decision tree designed to inform whether or not to fund an
exercise promoting intervention.

explicitly modelled in this form of simple decision tree, and neither is there any

explicit modelling of interaction between individuals.

Within a decision tree model as expressed in figure 2.2, time is implied from

left to right, in that the probabilities in the model relate to moving from some

state A to a state on the right of A, conditional on being in A (and in this sense

the model is Markovian, though the intermediate nodes in a decision tree may

not be obviously thought of as states). However, there is no explicit modelling

of time within the model. For the purposes of the computation all events can be

considered to occur simultaneously.

In a decision tree model population level expected outcomes can be computed

analytically without the need for Monte Carlo sampling, and as such these models

are entirely deterministic. Note that by defining the model as deterministic we

are not saying that the values of the model inputs (and hence the model outputs)

are known with certainty, just that each set of model inputs uniquely determines

a single model output set.
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2.12.2 Markov models

We may decide that in order to inform a particular decision we need to predict

outcomes over some period of time. Within this period of time (say the five years

following the implementation of the decision option), we expect that individuals

will move through various states, each state having different outcomes in terms

of resource inputs and health outputs. So, for example, if our decision problem

concerns a choice between a number of different cardiovascular drug treatments we

might define a set of states for each treatment option as ‘stable angina’, ‘unstable

angina’, ‘myocardial infarction’ and ‘dead’. We expect resource inputs and health

outputs (measured say in terms of quality of life) to differ between the states.

In order to compute the total resource inputs and health outputs over the time

period of interest under each decision option we wish to predict the proportion

of the population in each health state at each time point t, where we treat time

as a discrete variable. If we have data that allow us to estimate the probabilities

of transition to each state j at time point t + 1 conditional on being in state i

at time t, one approach would be to construct a decision tree that recursively

branches at each time point. Assuming D decision options and a time period of

interest that is divided into T time steps, this will result in a tree with D × 4T

branches - potentially a very ‘bushy’ tree indeed. It will be difficult to graphically

represent a decision tree of this type for any T that is not trivially small. In these

circumstances it is more convenient to specify a ‘Markov’ model rather than a

decision tree (Beck and Pauker, 1983; Sonnenberg and Beck, 1993).

In a Markov model we specify a ‘state vector’, πd(t) = {π1,d(t), . . . , πId,d(t)}′

that describes the proportions of the population that exist in each of the id =

1, . . . , Id states defined in the model at time point t under decision option d;

and a matrix of transition probabilities, Md(t), that describes the probability of

transition from state i at time point t to state j at time period t + 1. Given the

proportion of the population in each state at time point zero (under each decision
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Figure 2.3: Graphical representation of a Markov model for a decision concerning
treatment for HIV/AIDS

option) the proportion of the population in each state at time point t is given by

π′
d(t) = π′

d(0)
t∏

n=1

Md(t). (2.28)

Figure 2.3 shows a graphical representation of a four state Markov model first

described in Chancellor et al. (1997) and subsequently used for illustrative pur-

poses in Drummond et al. (2005) and Briggs et al. (2006). The purpose of the

model is to predict costs and health outcomes (life years) under two drug treat-

ment options in people with HIV. The directed arrows show ‘allowable’ transitions

between states. Where no arrow exists between states, the probability of transi-

tion is zero (this occurs, for example, for all transitions out of the dead state).

The j = 1, . . . , J outcomes associated with state id at time t are denoted oid,j(t)

and the total outcome j is therefore

oj =

t1∑
t=t0

Id∑
id=1

πid(t)oid,j(t). (2.29)

Markov models are described as ‘time homogeneous’ if Md(t) = Md ∀t. Re-

laxing this assumption allows the transitions between states to differ according

to, for example, age or the length of time since initial treatment with some drug.

As with decision tree models, Markov models in this simple formulation are

‘cohort’ models if the values for the conditional probabilities and the outcomes
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are population ‘average’ measures of these quantities. Single individuals are not

explicitly modelled, and neither is there any explicit modelling of interaction be-

tween individuals. In this form, outcomes can be computed analytically without

the need for Monte Carlo sampling, and as such Markov models are entirely de-

terministic.

2.12.3 Individual patient level simulation models

Individual patient level simulation models are a broad class of models in which

individuals are explicitly modelled. This approach allows outcomes to be func-

tions of individual level covariates, rather than functions just of population level

covariates.

This approach is often adopted if the relationship between outcomes and in-

dividual level covariates is non-linear. If we write outcome j for individual i as a

function η(·) of some individual level covariates v = vi, as well as uncertain inputs

X, then oij = η(vi,X). Assuming covariates vary across the population of in-

terest, the population mean outcome, Ev{η(v,X)}, will only equal η{Ev(v),X},

the function η(·) evaluated at the population mean value of the covariate, if η(·)

is linear in v. Even in a very simple case in which a single risk factor exists at

two levels within a population, Zaric (2003) shows that result of a Markov cohort

model is biased if transition probabilities are functions of the risk factor.

Evaluating the expectation Ev{η(v,X)} in an individual level model is usu-

ally difficult or impossible analytically, hence the use of Monte Carlo simulation.

Samples vi (i = 1, . . . , n) are drawn from a joint distribution p(v) that represents

individual level variability in the covariates, and η(vi,X) evaluated in each case.

The resulting sample set {η(v1,X), . . . , η(vn,X)} is then taken as a sample from

the distribution of the outcome oj across individuals in the population of interest

(conditional on X). From this the population level mean for the outcome can

be easily estimated by the sample mean of {η(v1,X), . . . , η(vn,X)}, along with

any other statistic of interest. This individual level variability is usually referred

to as ‘first order’ uncertainty (e.g. see Groot Koerkamp et al., 2010). It is quite

separate to any consideration of uncertainty about X, the values of the inputs to
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the model (‘second order’ uncertainty in this context).

If Monte Carlo simulation is used to evaluate the expectation Ev{η(v,X)}

then the model is no longer deterministic. However, as the simulation size n is

increased, the Monte Carlo estimate of the population mean outcome will converge

to Ev{η(v,X)}, which is uniquely determined for each input set. In this sense

individual level simulation models can be considered deterministic.

A second reason for adopting an individual level model is in the case where dif-

ferences in outcomes between different population subgroups is of interest. Rather

than having to run a cohort model with a new set of input parameters for each sub

group, an individual level model allows the sub group analysis to be performed

on the single set of results that the model generates. This may allow considerable

extra flexibility in defining the sub groups.

Thirdly, an individual level model can allow the incorporation of time and his-

tory dependence in transition probabilities in an intuitive manner. Incorporation

of time and history dependence is possible within a Markov cohort model, but

at the expense of generating an unwieldy model with a large number of states

(Karnon, 2003).

Lastly, by treating individuals within a model separately, interactions between

individuals can be considered. For example, we may want to model the effect of

herd immunity in the context of a decision scenario involving competing immu-

nisation schedules. Modified cohort model approaches to this problem have been

described (Bauch et al., 2009), but these are only approximate. Alternatively,

interaction may arise through competition for scarce resources such as hospital

beds. An individual level model can allow the probability that an individual en-

ters some state (e.g. occupying a hospital bed) at some time t to depend on the

number of other individuals already occupying that state at time t.
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2.13 The general formulation of a cost effective-

ness model

The various forms of cost-effectiveness model described above are all particular

forms of a more general model that we can specify as follows.

We imagine that for decision option d all of the individuals within our popula-

tion of interest exist at each time point t ∈ (t0, t1) in one of a set of id = 1, . . . , Id

states. Each state is associated with a vector of j = 1, . . . , J outcomes of interest

(i.e. resource inputs and health outputs) at each time point t. We write the nu-

merical value of the outcome j associated with state id at time t as oid,j(t). The

proportion of the population of interest that exists in state id at time t under

decision option d is denoted by πid(t). Alternatively, πid(t) can be thought of as

the probability that a single individual exists in state id at time t given decision

option d.

Summing over the states gives us the total outcome j at time t under decision

d,

oj,d(t) =

Id∑
id=1

πid(t)oid,j(t). (2.30)

Summing over time then gives us the total outcome j under decision d,

oj,d =

t1∑
t=t0

oj,d(t), (2.31)

=

t1∑
t=t0

Id∑
id=1

πid(t)oid,j(t). (2.32)

If we treat time as continuous we replace the summation over time with an integral,

oj,d =

∫ t1

t0

oj,d(t)dt, (2.33)

=

∫ t1

t0

Id∑
id=1

πid(t)oid,j(t)dt. (2.34)

Given the outcomes oj,d the decision maker then evaluates the utility for each

decision, U(o1,d, . . . , oJ,d), and (if we ignore uncertainty) chooses the decision that
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maximises this, i.e. d∗ = argmaxd U(o1,d, . . . , oJ,d). If outcomes are uncertain due

to uncertainties in πid(t) or oid,j(t) then the decision maker maximises expected

utility, i.e. d∗ = argmaxdE{U(o1,d, . . . , oJ,d)}.

So, for example, we have a decision problem relating to whether or not to

recommend a new anti-hypertensive drug (d = 1) versus an existing drug (d = 2).

The outcomes of interest are costs (j = 1) and health effects in QALYs (j = 2)

in some population of interest. There has been no trial of the new drug against

the old that measures these outcomes. We do, however, have trials that measure

the effects of the old and new drugs on the incidence of stroke and myocardial

infarction (MI). We define a set of four states under decision d = 1 as {well

after taking new drug; stroke after taking new drug; MI after taking new drug;

stroke and MI after taking new drug}, and index these states i1 = 1, . . . , 4. We

define a set of four states under decision d = 2 as {well after taking existing drug;

stroke after taking existing new drug; MI after taking existing drug; stroke and MI

after taking existing drug}, and index these i2 = 1, . . . , 4. The proportion of the

population that experiences state id under decision d at time t is πid(t).

We also have data on the costs of the drugs and the costs of treating stoke

and MI, and the population mean numbers of QALYs for those who are well, and

those who have had a stroke, MI, or both. The costs and the QALYs associated

with state id at time t are oid,1(t) and oid,2(t) respectively. We then sum over

the states and over time to obtain costs and QALYs under each decision d via

equation (2.31).

So the components of this general model are, oid,j(t), the outcomes associated

with each state as functions of time, and πid(t), the proportions of the population

in each health state, again as functions of time. Different types of economic

evaluation models primarily differ in the ‘machinery’ that determines how the state

vector, πd(t) = {π1d(t), . . . , πId(t)}′, evolves with respect to time. For example,

the evolution of the state vector may be explicitly determined by a simple Markov

process, or instead it may be determined indirectly as the result of an individual

level discrete event simulation. It is in this ‘machinery’ that much of the uncertain

‘structure’ of the model is.
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2.14 Sources of error in a health economic deci-

sion model

In chapters 5 and 6 of the thesis we will discuss in detail the management of struc-

tural uncertainty in the context of two cost-effectiveness model case studies. At

this point we consider some possible causes of model error, given the general for-

mulation of the model in the section above. This will help to provide a framework

for thinking about model structure uncertainty.

2.14.1 Choice of outcomes

First we note that to avoid potential structural error all of the j = 1, . . . , J

outcomes must be counted under all decision options. Any outcomes that are

missing from the model specification for a subset of decision options are implicitly

assumed to be zero. If in reality they are not zero, then this is a source of error. For

example, if a decision is between heart transplants (d = 1) and hip replacements

(d = 2), and we have counted only the costs of heart transplants for d = 1 and

only the costs of hip replacements in d = 2, we are implicitly assuming that there

are no costs associated with heart transplants for d = 2 and no costs associated

with hip replacements in d = 1. Likewise, when we are computing health outputs,

if the output is not included in the model specification it is assumed to be zero.

In many circumstances this may be entirely reasonable.

The set of outcomes that the model generates has to include all relevant out-

comes. If we are interested in a choice between cardiac drugs and in our model we

count costs and health outcomes that relate to ophthalmic care, then our model

might be entirely correct. However, it it will not be useful for the decision problem

at hand (the right answer to the wrong question, or an ‘error of the third kind’,

Kimball, 1957). Whether or not the model includes all relevant outcomes is a

judgement that the decision maker must make before they use the results of the

model to inform the decision.
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2.14.2 Determining the evolution of the state vector

Next, whatever the form of the model, it must generate the correct value for the

probability that an individual exists in state id at time t, πid(t), and the correct

value for outcome j associated with state id at time t, oid,j(t). Given that states

are just arbitrary constructs that allow probabilities (or population proportions)

and outcomes to be associated together, what we are really saying here is that the

model must correctly compute weights for a set of outcome values. If not, there

is error.

We can always write down a correct model. For example, if the resource costs

of interest under decision option d are od,1 and health effects are od,2 then we can

write the following model for the net benefit,

NBd = λod,2 − od,1. (2.35)

The model inputs are X = {(o1,1, o1,2), . . . , (oD,1, oD,2)}. If we learned the true

values of these inputs, then we would know the true net benefit under each decision

option, and there is no model error. The source of uncertainty about the target

quantity is therefore entirely located within the inputs, and there is no structural

uncertainty.

If we partition the population of interest into n sub groups we can again write

down a correct model. If the proportion of the population in subgroup i under

decision d is πi,d, and if subgroup i has mean costs oi,d,1 and mean health effects

oi,d,2, then the mean population net benefit is

NBd = λ

n∑
i=1

πi,doi,d,2 −
n∑
i=1

πi,doi,d,1. (2.36)

The inputs are now X = {(o1,1,1, o1,1,2), . . . , (on,D,1, on,D,2), π1,1, . . . , πn,D}. As

above, if we learned the true values of X we would know the net benefits, and

there is no structural error. Extending this argument further, we could introduce

a time element and write down a correct model in which we now also sum over



CHAPTER 2. ECONOMIC EVALUATION IN HEALTH 34

the time steps,

NBd = λ
t1∑
t=t0

n∑
i=1

πi,d(t)oi,d,2(t)−
t1∑
t=t0

n∑
i=1

πi,d(t)oi,d,1(t). (2.37)

The problem is how to correctly compute the population proportion terms πi,d(t).

Decision trees, Markov models and discrete event type models reflect different

levels of sophistication in generating the population proportion terms πi,d(t), and

therefore allow different levels of complexity in terms of assumptions regarding

the relationships between states in the model. We get structural error if the

assumptions embedded in the model that link inputs to the population proportion

terms πi,d(t) do not properly reflect the system. So, for example, if the Markov

assumption is invalid, then there is structural error, or if in a simple decision tree

there are branches missing, then we have structural error.

2.14.3 Choice of model states

The ultimate purpose of the model is to quantify p(Z|D), the conditional distri-

bution of the outcomes given some body of evidence. The model structure needs

to be chosen to facilitate the incorporation of D in such a way as to minimise

uncertainty. If we have good quality data on the costs and outcomes that relate

to a set of well defined states, along with good quality data from which we can

estimate the population proportions in each of these states, then using this set of

states in our model seems sensible. If we use a different set of states, less ‘con-

gruent’ with the data, then we are likely to introduce an uncertain error into our

predictions.

2.14.4 Choice of decision options

We have implicitly assumed that the set of decision options d = 1, . . . , D is given,

but it is worth noting that this is of course a ‘structural’ choice that must be

made, along with many others. To some extent there is an issue of semantics,

in that any single decision problem may be considered to be defined by the set
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of competing options chosen, and therefore that within the decision problem the

choice of options is given. If, however, we consider the wider problem of how to

maximise efficiency in resource allocation then the choice of decision options for

each analysis is important. By not including within the competing set an option

which is in fact the optimum choice, then resource allocation will be inefficient.

2.15 The health care decision context and NICE

Up to now we have discussed decision making in rather general terms without

considering any specific context in which resource allocation decisions are made.

In England and Wales the National Institute of Health and Clinical Excellence

(NICE) has been given a remit by parliament to make recommendations on the

use of new and existing interventions and programmes within the NHS, and as

such acts as a ‘decision maker’.

In its decision making capacity, NICE operates according to well defined pro-

cesses (see for example the methods manual for technology appriasal NICE, 2008).

These processes define certain aspects of the decision problem that would other-

wise be considered uncertain, and so, in a sense, reduce the space of θ in (2.2)

and (2.12). By making methods and processes explicit, decision problems become

more manageable, but more importantly, a certain degree of consistency across

decisions is ensured.

Table 2.1 shows the NICE ‘reference case’ for a decision problem that concerns

the assessment of a set of competing health technologies. It defines (to some

extent) the following: the technologies that should be considered as competing

decision options; the set of costs and outcomes that should be considered relevant;

the type of economic evaluation (though the term ‘cost-effectiveness analysis’ in

the table means cost-utility analysis as described in section §2.8.3); the sources of

evidence for various components of θ; the unit of measurement for health effects

(the QALY) and the discount rate for costs and effects. Not included in the table,

but implicit in the way in which NICE makes decisions, is the assumption that

the utility associated with a decision option is equal to its expected net monetary
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benefit.

Table 2.1: The NICE Reference Case
Element of health technology assess-
ment

Reference case

Defining the decision problem The scope developed by the Institute

Comparator Therapies routinely used in the NHS, includ-
ing technologies regarded as current best prac-
tice

Perspective on costs NHS and PSS

Perspective on outcomes All health effects on individuals

Type of economic evaluation Cost-effectiveness analysis

Synthesis of evidence on outcomes Based on a systematic review

Measure of health effects QALYs

Source of data for measurement of HRQL Reported directly by patients and/or carers

Source of preference data for valuation of
changes in HRQL

Representative sample of the public

Discount rate An annual rate of 3.5% on both costs and
health effects

Equity weighting An additional QALY has the same weight re-
gardless of the other characteristics of the in-
dividuals receiving the health benefit

HRQL, health-related quality of life; NHS, National Health Service; PSS, personal social
services; QALYs, quality-adjusted life years.
From NICE (2008) Guide to the methods of technology appraisal, p30.

By adopting the NICE reference case, the decision maker is restricting her

ability to properly compute her posterior beliefs about the ‘true’ utility for each

decision option. In fact, the reference case restricts the ability of the analysis to

properly estimate the uncertain future costs and health effects. Not all costs will

fall within the perspective of the NHS or social services, and ‘health’ cannot be

captured perfectly by the QALY. We are in some senses trading off bias against

uncertainty. An analysis that counts all relevant costs and measures health in

all its facets may lead to a better specification of posterior beliefs about the net

benefit of each decision option, but will result in larger uncertainties. We will

not discuss this problem further, other than to note that we will assume the
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constraints of the NICE reference case when presenting the two case studies.

Finally, we note that NICE play a role in determining the implied value of

health, in the sense that they set a ‘threshold’ value for a QALY. If an inter-

vention, programme or service can generate QALYs at a cost per QALY that

is less than this threshold value, then the intervention, programme or service is

usually adopted. The assumption is that when any new intervention is funded,

the activity that is displaced (due to the total budget constraint) was generating

QALYs at a cost per QALY greater than the threshold. The threshold therefore

represents an estimate of the ‘shadow price’ of the budget constraint, rather than

a ‘willingness to pay’ for one unit of health (Claxton et al., 2010; McCabe et al.,

2008; Culyer et al., 2007). Current NICE guidance is that the threshold should

be set at between £20,000 and £30,000 (NICE, 2008).

2.16 Conclusion

In this chapter we have reviewed some basic decision theory that underpins health

economic evaluation. We have identified the role of computer models in the process

of economic evaluation as allowing the decision maker to derive the uncertainty

distribution of relevant outcomes conditional on evidence. Various common types

of economic model were shown to be special cases of a general model that inte-

grates outcomes of interest over a population and over time. In order to compute

the integration a series of states is defined in such a way to allow the resulting

input parameters to be conditioned on evidence. The choice of states, along with

the structure of the model that determines the evolution of the state vector with

respect to time, is an important determinant of model ‘correctness’.

The next chapter reviews the literature on managing uncertainty computer

models. What can we learn from the wider literature that will help us to manage

uncertainty in cost-effectiveness models?



Chapter 3

Managing Uncertainty in

Computer Models

3.1 Introduction

We saw in chapter 2 that health economic evaluation methods typically make

use of some kind of computer model in order to make predictions about uncer-

tain future costs and health effects. In this chapter we broaden our perspective

and review the management of uncertainty in computer models in general. Com-

puter models are built for many different purposes and have a variety of forms,

but typically an individual model can be represented as a (known or unknown)

mathematical function, y = f(x), that is implemented in computer code.

We recognise that we are uncertain about the quantity we are trying to predict

(indeed that is why we build a predictive model), but that after building the model

we are almost always still uncertain about the true value of the target quantity.

We discuss three important sources of this uncertainty: uncertainty about the

‘true’ values of the model inputs, uncertainty about the model output when the

model is expensive (slow) to evaluate, and uncertainty about the ‘true’ structure

of the model. We define ‘true’ input and ‘true’ structure later in the chapter.

There is an extensive literature on the treatment of uncertainty in computer

models, particularly regarding the uncertainty in the inputs. More recently, meth-

ods for managing ‘code’ uncertainty (i.e. uncertainty due to an computationally

38
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expensive model) have been established, most notably those based on the con-

struction of a statistical ‘emulator’ for an expensive ‘simulator’. Finally we note

the emerging literature on the treatment of computer model structural uncer-

tainty in the field of health economics, including some applications of statistical

approaches to model uncertainty.

3.2 Computer models

3.2.1 Definitions

We can think of a computer model as a representation of some process by a series

of instructions that is understood and executed by computer. Computer models

are used widely in the physical and social sciences for the purposes of exploring

and understanding phenomenon, as well as for prediction. Importantly, models

usually attempt to represent a complex process that may or may not be fully

understood in a form that is less complex and/or better understood. This is

reflected in the following definitions in Bayarri et al. (2009):

“Computer models are computational representations of complex real-

world processes ... often based on numerical implementations of math-

ematical models developed to approximately describe the real-world

process, or on efforts at direct simulation of the process”

and Bunge (1967) (quoted in Devooght, 1998):

“a model is a reduced and parsimonious representation of a physical,

chemical, or biological system in a mathematical, abstract, numerical,

or experimental form.”

McKay and Morrison (1997) point out that a mathematical model is a formalisa-

tion of assumptions :

“a formal statement of assumptions about a relationship between known

quantities x and unknown quantities y. The structure of a model de-

fines how characteristics of y are determined from those of x. Struc-

ture, in this sense, is a mathematical or computational algorithm.”
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Santner et al. (2003) regard computer models as simulators for physical pro-

cesses and as such generate data just as physical processes do. We can therefore

conduct computer experiments in order to observe the output of a computer model.

This necessitates thinking about (statistical) design and analysis in a similar way

to that which we would for a natural experiment. Where models are explicitly

built to simulate a real world process in this way, the term ‘simulator’ is some-

times used. We will use this term when discussing the statistical emulation of

computationally expensive models in section §3.4.2.

Kotiadis and Robinson (2008) describe a series of stages between the world,

where the decision problem resides, and the computer model (figure 3.1). Firstly,

the authors postulate the existence, within the mind of the modeller, of a ‘system

description’ of the real world processes of interest. This is fairly loosely defined,

but represents the modeller’s understanding of all of the relevant real world pro-

cesses. Given the system description, the modeller then defines a ‘conceptual

model’: an abstraction and simplification of the system description that describes

the ‘objectives, inputs, outputs, content, assumptions and simplifications of the

model.’ (Robinson, 2008). Lastly, a ‘computer model’ is built (i.e. code is written)

to represent the conceptual model.

Figure 3.1: ‘Artifacts of conceptual modelling’ from Kotiadis and Robinson (2008).

This framework is helpful because it forces us to make a distinction between

what we know, but choose not to model, and what we do not know. We can not
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say anything useful about the world beyond our understanding that comprises

our system description. When we come to think about model error we can use

this distinction to partition the model error into a portion that represents error

that we can make some judgements about (the difference between the output of

the model I build and the best model I might be able to imagine), and a portion

that represents error that we can make no useful judgements about (the ‘unknown

unknown’) that exists in the world that is outside of my system description.

Our understanding is that our ‘best’ model above represents Goldstein and

Rougier (2009)’s reified simulator, the simulator that we do not expect to be

able to build, but which reflects all our useful judgements about the system.

Once we have conceived of our ‘best’ model we can, by definition, incorporate no

further useful judgements about the system. Thus, the residual error between the

prediction and reality is probabilistically independent (in the Bayesian subjective

sense) of the built model and the best model and their corresponding inputs.

3.2.2 Saltelli’s classification of models

Models vary in their purpose, as well as in their structure and underpinning as-

sumptions about the world. Saltelli et al. (2008) categorise models on two dimen-

sions: diagnostic versus prognostic, and data-driven versus law-driven.

The first of these dimensions, diagnostic versus prognostic, concerns the aim

of the model. Diagnostic models are used to understand a law or phenomenon,

whereas prognostic models are used for prediction. We may build a diagnostic

model for the purposes of exploring the emergent properties of a complex sys-

tem, or to play a series of ‘what-if’ games, or to better understand the range

of behaviour of some system when parameters are pushed to their limits. The

primary purpose is understanding the system, rather than to predict a quantity.

Prognostic models on the other hand are primarily built to predict the value of

an unknown quantity for the purposes of some decision or action. The distinction

is of course blurred, and many models are useful for both purposes.

Saltelli et al. (2008)’s second dimension concerns the broad distinction between

two underlying principles that drive the construction of models. Data-driven
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models begin with data and attempt to describe in functional form, usually as

parsimoniously as possible, the (unknown) underlying process that led to the

generation of the data. This contrasts with law-driven models that begin with an

understanding of the laws, or ‘building blocks’, that drive the processes within

some system, and explore the behaviour of a more complex process based on

some aggregation of the building blocks. In the social sciences the law-driven

nature of a model is sometimes encapsulated in the description of the model as

a logic or causal model, i.e. a model as a sequence of events or states linked

by causal pathways. This distinction between law-driven and data-driven models

has also been described as ‘mechanistic vs empirical’ (e.g. in the context of a

pharmacokinetic model in Nestorov et al., 1999) and in the econometrics literature

in terms of ‘highly structured vs reduced form’ (Cameron and Trivedi, 2005).

Statistical models typically fall within the data-driven category, whereas health

economic evaluation models typically fall within the law-driven category. Indeed,

health economic models are built because of a lack of data on long term costs and

health consequences. The aim of the model is to predict costs and consequences

under the competing decision options, and the ‘laws’ that are used to structure

the model are the plausible causal links between the various decision options and

the costs and health consequences. The law-driven nature of the cost-effectiveness

model has important implications for our choice of technique for managing struc-

tural uncertainty, as we discuss later.

Many other categorisations of computer models are possible, and even within

Saltelli’s classification, some models may have aspects of both diagnostic and

prognostic, data-driven and law-driven. Climate models are a good example. One

reason for the construction of these models is in order for us to make predictions

about future global temperature under various greenhouse gas emission scenarios,

and in this sense the models are clearly predictive. However, the models also

inform our understanding of the highly complex climate system and are therefore

also ‘diagnostic’. Climate models are law-driven in that they are constructed with

reference to well understood physical and chemical laws, but they also have data-

driven aspects, usually through some form of calibration. The calibration against
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data is necessary to allow for gaps in our knowledge of the underlying physics,

or our unwillingness (say, for practical reasons) to fully specify a model structure

that reflects a highly complex physical system.

3.2.3 Notation

We denote the ‘true’ unknown values of the vector of quantities that we wish

to predict as Z. We represent our predictive computer model by the function

y = f(x) where x is a vector of inputs, and y a vectors of outputs in the same

units as Z. Note that there may be no closed form expression for f(·), for example

if the model consists of a set of partial differential equations, or if the model is of

an individual level simulation form.

We may be uncertain about some or all the components of x and write the

‘true’ unknown values of the inputs as X. If we are uncertain about the inputs,

then this induces uncertainty in the outputs and we write the vector of outputs

(conditional on the model f) as Y = f(X). We may have additional uncertainty

about Y |X = x if the model f(·) is stochastic, or if the model is computationally

expensive such that we can only evaluate f(·) a small number of times.

The ‘true’ value of a component of Z or an input X is not easy to define,

and can have a somewhat different meaning depending on whether the quantity

has a real physical meaning, or whether it is in the model for the purposes of

‘tuning’ or ‘calibration’ (we will discuss the distinction below when we discuss

types of inputs). For a quantity that relates to a real physical counterpart the

‘true’ value is that which would be observed in a perfect study (e.g. for a drug

effect, the effect observed in a perfect randomised controlled trial with an infinite

number of patients). For a ‘tuning’ parameter, the meaning of ‘true’ is less clear,

but Kennedy and O’Hagan (2001) define it as that which leads to the best fit to

observations against which the model is calibrated. They go on to suggest that in

some circumstances inputs that have real physical meanings should be allowed to

deviate from their real values (even when known) if this produces a better model

fit.

Taking the three components X, Y and f(·) in turn, we make the following
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observations.

3.2.4 Types of inputs

It is often helpful to distinguish different types of input variable in a computer

model. We follow here the classification given in Santner et al. (2003). Firstly,

there are variables that are set by the owner or user of the model. These variables

represent quantities with values that can be chosen at will and are termed ‘control’

variables. So, for example, in the health economic context such variables would

usually include the time horizon of the model, the discount rate and the decision

maker’s willingness to pay for a unit of health effect. Such variables are not

considered uncertain. Our prediction of Z is conditional on the choice of the

values of the control variables.

Secondly, a model will usually have inputs that represent real world quantities

that are estimated from data, and therefore uncertain. These are termed ‘environ-

mental’ variables by Santner et al. (2003), but in the context of health economic

evaluation are usually called simply ‘parameters’. Examples would be the relative

risk of some health outcome given some intervention ‘A’ versus some control treat-

ment ‘B’, or the number of QALYs associated with living in some health state

for some period of time. Within a Bayesian framework we specify a joint prob-

ability distribution to reflect our judgements about the uncertain environmental

variables.

Santner et al. (2003) recognise a third type of input called a ‘model’ variable

or alternatively a ‘tuning parameter’. These variables represent quantities that

do not necessarily have a direct real world counterpart, but are used in a model to

describe relationships between real world quantities. Unobservable rate constants

in a pharmacokinetic model would fall into this class. Tuning parameters are often

estimated through a process of calibration, in which variables that are functions

of the tuning parameters (including perhaps the model output itself) are fitted to

observed data.

We distinguish a further type of input that is not strictly within our control

(and therefore not a ‘control’ input), but which we do not necessarily consider as
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uncertain. Covariates in a individual level simulation model would fall into this

class. We do not usually consider the value of a covariate as uncertain, but often

use a probability distribution to describe the variability of the covariate in our

population of interest, something that is outside of our control (this variability

is sometimes termed heterogeneity). One of the purposes of the individual level

simulation is to integrate outcomes with respect to the variability described by

this distribution (an integration that may not be possible analytically). Of course,

the hyperparameters of the (joint) distribution of the covariates may be considered

uncertain, and therefore themselves have an associated (joint) distribution.

3.2.5 Types of outputs

In the health economic context, the output of a cost-effectiveness model is usually

a low dimensional vector that consists of a cost and health output under each

decision d = 1, . . . , D, for small D. In other contexts, the model output may be

either a scalar quantity, or at the other extreme of very high dimension. High

dimensional outputs typically occur when the model output relates to a time

series, a spatially indexed quantity, or a quantity that is indexed both spatially

and temporally. For example, a weather forecasting model may seek to predict

hourly temperatures for several days into the future on a 4 km square grid over

some area large area of a country or continent.

3.2.6 The form of f(·)

We have represented our computer model by the function f(·) that takes inputs x

and results in outputs y. A computer model is a computer code implementation

of some underlying model that has a certain mathematical or logical form. We do

not seek to define ‘form’ rigorously, other than to describe certain broad types of

model that are commonly in use.

Firstly, a model can be either deterministic, where each choice of inputs

X = xi results in a unique Y = yi, or stochastic, where input X = xi in-

duces a distribution pi(Y ) in the output. As we noted in chapter 2, there are
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examples of both deterministic and stochastic models in use in health economic

evaluation. ‘Cohort based’ models that predict population level expected costs

and health outcomes tend to be deterministic, whereas models that explicitly in-

clude individual level covariates tend to be simulation based and stochastic. In a

stochastic model the component of the model output Y that represents population

level outcomes is obtained by simulating a large number of individuals, thereby

integrating out the covariates that vary across the population. As the number of

simulations increases this component of the output Y converges to some value.

We can think of these models as being deterministic for the expectation with

respect to the individual level variability.

Another important distinction between different model forms is whether or

not there are relationships between variables within the model that are defined

through differential equations. Differential equation models typically require the

use of numerical solvers and lead to approximate results. The choice of solver

method and solver resolution will determine the accuracy of the numerical estima-

tion, with greater accuracy usually coming at the expense of greater computational

burden. Apart from in the modelling of decisions that relate to interventions for

infectious diseases, differential equation type models are relatively rare in health

economic evaluation.

Lastly, we make the distinction between models that are ‘black boxes’ and

those that are ‘white boxes’. By this we mean to distinguish between models

that have a structure that is clearly comprehensible in its entirety (a white box

model), and one that is of sufficient complexity that this kind of understanding

is impossible (a black box model). Clearly, there is a continuum here rather

than a dichotomy. When considering structural uncertainty a white box model

implemented in a simple spreadsheet package may allow considerably more scope

for ‘getting inside’ the structure and thinking about how the model differs from

reality, than a black box model that is implemented as 100,000 lines of C code.
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3.3 Uncertainty

Uncertainty is described by de Finetti (1974) as ‘the extent of our own knowledge

and ignorance’. Uncertainty exists within the individual, rather than being a

property of the world. I own my uncertainty, along with any statements that

I make that characterises this uncertainty. There is no ‘objective’ uncertainty:

your uncertainty about some event can be quite different to my uncertainty about

the same event. The use of probability as a measure of personal uncertainty

goes back to the work of Savage (1954); DeGroot (1970) and de Finetti (1974).

They argued strongly for a subjectivist interpretation of probability as the single

coherent measure of uncertainty. Whether or not there really is a single ‘objective’

description of uncertainty about an unknown quantity is contentious and has

underpinned the long running debate between subjective Bayesian’s and the rest

of the statistics fraternity (see Gelman, 2008, and associated comments for a

flavour of this debate).

Sometimes the distinction is made between aleatory and epistemic uncertainty.

Aleatory uncertainty describes uncertainty that arises from the inherent random-

ness in a non-determined system, so for example, the toss of a coin generates

aleatory uncertainty. Epistemic uncertainty on the other hand describes uncer-

tainty due to lack of knowledge. Once the coin is tossed and has landed, I have

epistemic uncertainty about whether that particular coin toss has resulted in heads

or tails until I look to see which way up it lies. Although this distinction between

aleatory and epistemic uncertainty is sometimes useful, there are philosophical ar-

guments about whether this distinction really exists. If we knew everything, then

would there be any randomness? If randomness is merely a description of the

behaviour of systems that are not fully determined (i.e. systems for which we do

not have complete knowledge) then all uncertainty is surely epistemic (O’Hagan

and Oakley, 2004; Nilsen and Aven, 2003).



CHAPTER 3. MANAGING UNCERTAINTY IN COMPUTER MODELS 48

3.3.1 Uncertainty in the context of computer models

Imagine that an individual wishes to base a decision on some quantity Z. We

could elicit the individual’s judgements about Z, and hence specify a distribution

p(Z). This judgement reflects the individual’s ‘prior’ knowledge about the world,

and is entirely coherent, but such probability statements may be of limited use

in making the decision. The individual may wish to base her judgements about

Z, and therefore their decision, on evidence. She wishes to quantify p(Z|D), the

distribution that describes her judgements about the target quantity given some

observations on the world, D. It is the quantification of this ‘posterior’ probability

that motivates the building of a model. We need some method for linking D to

Z.

In the context of health economic evaluation our decision maker wishes to

determine argmaxdE{U(Zd)}, where Zd is the vector of uncertain outputs (costs

and health outputs) associated with decision option d ∈ D. The decision maker’s

prior beliefs about Z = (Z1, . . . ,ZD) is represented by the joint distribution p(Z).

The decision maker could choose to make the decision based on her prior beliefs

about Z. This may potentially lead to two problems. Firstly, if p(Z) is such that

there is considerable uncertainty as to which decision is optimum, the expected

opportunity loss could be large.

The expected opportunity loss of choosing decision option d′ is defined as

EOL = E{max
d
U(Zd)} − E{U(Zd′)}. (3.1)

The first term is the expectation of the random variable maxd U(Zd), which is

the utility of our optimum decision if we knew the true value of the vector Z.

The second term is the utility of the decision d′. If our optimal decision under

current uncertainty is d∗ = argmaxdE{U(Zd)} then the expected opportunity

loss of choosing this optimal decision based only on prior knowledge is

EOL = E{max
d
U(Zd)} − E{U(Zd∗)}, (3.2)

= E{max
d
U(Zd)} −max

d
E{U(Zd)}, (3.3)
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which is also the expected value of perfect information (Raiffa, 1968). We will

discuss value of information more fully in section §3.4.1.

Secondly, a decision based on the decision maker’s prior p(Z) may be all well

and good for the decision maker herself, if she alone must live with the conse-

quences. However, for decisions that effect others, it will probably be necessary

for the decision maker to justify the choice of p(Z). She therefore pays a modeller

to evaluate the distribution of Z, conditional on some evidence, some observations

of the world D. The primary motivation for building the model then is to link Z

to D in order to evaluate p(Z|D).

However, in section §3.2.3 we defined the model as Y = f(X) not Z = f(D),

so we need to describe the relationship between the quantity we wish to predict,

Z, the model, f , and the evidence, D. We write

p(Z|D) =

∫
X

∫
Y
p(Z|Y ,X,D)p(Y |X,D)p(X|D)dY dX, (3.4)

where we have factorised p(Z,Y ,X|D) into the three terms p(Z|Y ,X,D),

p(Y |X,D) and p(X|D).

3.3.2 Sources of uncertainty

The three terms in (3.4) capture three different sources of uncertainty. The term

p(X|D) is the specification of beliefs about the model inputs X given the obser-

vations D. The uncertainty in X is called ‘input uncertainty’, or in the health

economic evaluation context, ‘parameter uncertainty’.

The term p(Y |X,D) represents uncertainty about Y conditional on X and

D, though we usually consider that Y ⊥⊥ D|X and therefore that p(Y |X,D) =

p(Y |X). If f(·) is deterministic and computationally cheap to evaluate then Y

is known immediately that X is known, and p(Y |X) reduces to δ(Y − f(X))

where δ(·) is the Dirac delta function. If f(·) is computationally expensive such

that we can evaluate it only a small number of times {f(x1), . . . , f(xn)}, then

we have uncertainty about Y |X = x except at x ∈ {x1, . . . ,xn}. This source of

uncertainty is often termed ‘code’ uncertainty. These two sources of uncertainty,
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input and code, are termed internal uncertainties by Goldstein (2011).

Finally, the term p(Z|Y ,X,D) represents our beliefs about the target quan-

tity Z given the model output Y , inputs X and data D, though again we usually

consider that Z ⊥⊥ D|X,Y and therefore p(Z|Y ,X,D) = p(Z|Y ,X). If we

imagine that we could build a model that directly predicts Z, i.e. Z = f ∗(X∗)

then we can interpret p(Z|Y ,X) as in some way representing uncertainty about

the model f ∗(·) and on this basis call it structural uncertainty. Alternatively, if we

write Z = f(X) + δ, where δ is the discrepancy between the model output and

reality, we can consider the uncertainty in Z|Y ,X as arising from uncertainty

about the unknown structural error δ. This source of uncertainty is termed ex-

ternal uncertainty by Goldstein (2011).

In the context of health economic evaluation Briggs (2000) describes a fourth

source of uncertainty which is termed ‘methodological’. This describes uncertainty

about how to perform the economic analysis and includes choices about the per-

spective (what outcomes should be included?), the time horizon (what time frame

is relevant for this decision?) and the role of discounting (should discounting be

applied, and if so, at what rate?). In our view, methodological ‘uncertainty’ is

not really uncertainty, but describes a set of choices that need to be made a pri-

ori by the decision maker. These are control variables in the categorisation in

section §3.2.4 rather than uncertain environmental variables or structural choices.

The implementation of modelling guidelines, through for example the use of the

NICE reference case (NICE, 2008), is an attempt to reduce variation in choices of

methodology between decision models.

3.4 Managing uncertainty in computer models

In this section we discuss the ‘management’ of uncertainty, which we take to

include the following: uncertainty quantification, uncertainty propagation, uncer-

tainty analysis and sensitivity analysis. Under the broad heading of ‘management

of uncertainty’ we draw a distinction between those methods that seek to quantify

uncertainty, and those that seek to reveal the sensitivity of a result or predic-
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tion or decision to changes in the value of an uncertain input, or differences in

assumptions about the structure of the model. We will refer to the former as

uncertainty analysis and the latter as sensitivity analysis. A good introduction to

the management of uncertainty in cost-effectiveness analysis is Claxton (2008).

In an uncertainty analysis of a computer model output we wish to quantify the

uncertainty in Y = f(X) induced by uncertainty about X. Unless we believe our

model to be perfect, we may also wish to quantify uncertainty about our target

quantity of interest, Z, given our uncertainty about both X and f(·).

In a sensitivity analysis, we investigate how changes in the model inputs or

structure lead to changes in the model output, or to any decision that is made

based on the model output. Within the literature on sensitivity analysis as it

relates to inputs, a distinction is made between ‘local’ and ‘global’ sensitivity

analysis (Saltelli et al., 2008). Local sensitivity analysis quantifies the change in

the model output due to small perturbations in a model input around some fixed

point. Global sensitivity analysis seeks to understand the relationship between

changes in the model output and changes in an input across its whole range.

3.4.1 Managing input parameter uncertainty

In this section we discuss the management of uncertainty in the output of the

model due to uncertainty in the model inputs. We assume that the model itself is

both deterministic and computationally cheap to run, so that given X = xi, we

will immediately know Y = yi = f(xi)

Uncertainty analysis methods

We are uncertain about some or all of the inputs to our model, and represent our

beliefs about the inputs via a joint probability distribution p(X). Uncertainty in

X induces uncertainty in the model output Y = f(X), with the joint distribution

p(Y ) representing judgements about Y .

The typical approach to deriving p(Y ) is via Monte Carlo sampling. We

draw samples {x1, . . . ,xn} from p(X), and then evaluate {y1 = f(x1), . . . ,yn =

f(xn)}, treating this as a sample from p(Y ). In the health economics literature
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this is called ‘probabilistic sensitivity analysis’ (PSA) (Doubilet et al., 1985), and

is considered a standard method in the assessment of health technologies (Claxton

et al., 2005). As noted in section §2.3, even if we are just interested in the expecta-

tion E(Y ) = EX{f(X)} we will need to compute the integral
∫
X f(X)p(X)dX

if f(·) is non-linear in X, or multilinear in f(·) with correlated components of X

(Griffin et al., 2006). In the absence of a closed form solution to the integral, the

mean of the Monte Carlo ‘PSA’ sample provides an estimate of this expectation.

Simple Monte Carlo analysis is straightforward if the model is computationally

cheap to evaluate. We can obtain any degree of accuracy for any summary statistic

based on the sample from p(Y ) simply by ensuring an adequate number of samples

from the input space. If this is not practical due to either the cost of sampling

from p(X), or more likely the cost of evaluating f(·), then alternative methods

must be used.

McKay et al. (1979) show that greater efficiency (i.e. a reduction in the vari-

ance of the Monte Carlo estimator) can be gained by employing either a stratified

or Latin hypercube scheme when sampling from p(X). The gain in efficiency de-

pends on the choice of strata, the form of p(X) and the nature of the model. Stein

(1987) shows that the gain in efficiency for Latin hypercube sampling depends on

the degree of additivity in the model, with efficiency increasing with degree of

additivity. Thus, we can in most circumstances gain the same level of accuracy as

we would under simple Monte Carlo sampling with fewer model evaluations if we

employ stratified or Latin hypercube sampling. If the limitation on the number

of model evaluations due to computational cost means that we cannot gain suffi-

cient precision even with these sampling methods then we may have to consider

building an emulator for the computer model. We discuss this approach in section

§3.4.2.

Note that these Monte Carlo based methods (simple, stratified and Latin hy-

percube sampling) all quantify uncertainty in the model output, Y , due to un-

certainty in the model input, and not our uncertainty about the target quantity

Z. Alternatively, if we denote the unknown true model that links X to Z as

f ∗(·) then the sample f(x1), . . . , f(xn) represents a sample from the distribution
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of Z|f∗ = f . To properly represent uncertainty about Z we must also consider

uncertainty in the model structure. However, quantifying uncertainty in model

structure is hard since it requires judgements about a model’s ability to faithfully

represent a complex real life decision problem. We return to this point in section

§3.4.3.

Sensitivity analysis methods

Sensitivity analysis seeks to investigate the effects of changes to the inputs on

the output of the model, or on the decision made based on the output of the

model. ‘Local’ sensitivity analysis is concerned with determining the effect of small

perturbations in some input of interest, usually around some central value. This

contrasts with ‘global’ sensitivity analysis, which is concerned with determining

the behaviour of the model output over the whole range of the input of interest.

See (Saltelli et al., 2008) for an extensive discussion of model input sensitivity

measures.

The simplest form of global sensitivity analysis is to select an single input of

interest, and vary it over some plausible range while keeping all other inputs fixed.

This ‘one way’ sensitivity analysis is easy to perform, but may lead to misleading

results if inputs are correlated, or if the model is non-additive (Saltelli et al.,

2008).

In most cases, a more sophisticated analysis that accounts for correlated inputs

and/or non-additive model structure will be required. For a model with a scalar

output, Y = f(X), the variance based sensitivity analysis approach defines the

‘main effect’ of the input of interest, Xi, on Y as

Zi(Xi) = E(Y |Xi)− E(Y ), (3.5)

and the ‘main effect index’ as the variance of the main effect normalised by the

total variance of Y ,

varXi
{Z(Xi)}

var(Y )
=

varXi
{E(Y |Xi)}
var(Y )

. (3.6)
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Given the identity varXi
{E(Y |Xi)} = var(Y ) − EXi

{var(Y |Xi)} the main effect

index can be seen to be the expected proportional reduction in variance of Y on

learning Xi.

A related quantity is the ‘total effect index’

var(Y )− varX−i
{EXi

(Y |X−i)}
var(Y )

=
EX−i

{varXi
(Y |X−i)}

var(Y )
, (3.7)

where X−i is the vector of all inputs except Xi. The total effect index is a measure

of the overall effect of the input Xi, including any interactions. It is the expected

variance (as a proportion of the total variance) that is left when all inputs except

Xi are fixed. In general, the main effect index is useful in determining the effect

of learning a single input, whereas the total effect index is useful in determining

non-influential inputs.

The decision theoretic approach to determining sensitivity asks the more gen-

eral question, what effect does changing Xi have on the decision that will be

made given the model output, rather than on the model output itself? It is quite

possible for an input Xi to be highly influential on the output Y , but to have no

influence on the decision.

If we imagine that we will choose a decision option, d from some set of possible

options D, based on the value of the model output Y (note that Y is no longer

constrained to be scalar as it was above). We have a utility function U(d,Y )

for each decision d given the model output Y , and wish to choose the optimal

decision, defined as that which maximises expected utility,

d∗ = argmax
d∈D

E{U(d,Y )} = argmax
d∈D

E[U{d, f(X)}]. (3.8)

We call the maximised expected utility, maxd∈D E{U(d,Y )}, the baseline utility.

Within this framework, we can determine the value (in units of utility) of

learning some set of components of the inputs Xi. The maximised expected

utility given Xi is

max
d∈D

EX−i|Xi
{U(d,Y )}, (3.9)
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where X−i is the set of inputs not in Xi. The maximised expected utility (3.9)

itself is uncertain because Xi is uncertain, and has expectation

EXi
[max
d∈D

EX−i|Xi
{U(d,Y )}]. (3.10)

The expected gain in utility on learning Xi is the difference between (3.10) and

the utility at baseline,

EXi
[max
d∈D

EX−i|Xi
{U(d,Y )}]−max

d∈D
E{U(d,Y )}. (3.11)

This quantity is called the expected value of perfect information (EVPI) for Xi

(or sometimes the ‘partial’ EVPI, to reflect that we are conditioning on only a

subset of the inputs).

We can similarly derive expressions for the expected value of collecting a sam-

ple of data, D to inform the estimate of some subset of inputs Xi. This is known

as the expected value of sample information (EVSI).

It can be shown that the variance based measure is a special case of the EVPI

where the decision problem is to estimate Y , and where utility is negative squared

error, U(Y ) = −{Y − d}2 (i.e. quadratic loss). Utility is maximised (loss is

minimised) at d = E(Y ), so under these conditions the EVPI (3.11) is

EV PI = EXi
[max
d∈D

EX−i|Xi
{U(Y |Xi)}]−max

d∈D
E{U(Y )}, (3.12)

= EXi
[max
d∈D

−EX−i|Xi
{Y |Xi − d}2]−max

d∈D
[−E{Y − d}2], (3.13)

= EXi
[−EX−i|Xi

{Y |Xi − E(Y |Xi)}2] + E{Y − E(Y )}2, (3.14)

= EXi
{−varX−i|Xi

(Y |Xi)}+ var(Y ), (3.15)

= varXi
{EX−i|Xi

(Y |Xi)}, (3.16)

which is the numerator in (3.6).
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Dealing with correlation in the inputs

Calculating the expected value of perfect information (or the main effect in-

dex as a special case) requires the computation of the conditional expectation

EX−i|Xi
(Y |Xi) (or alternatively the conditional variance varX−i|Xi

(Y |Xi)). This

is problematic if there is no closed form solution to the expectation and no easy

(i.e. computationally cheap) way to sample from the conditional distribution of

X−i|Xi. Clearly, if Xi ⊥⊥ X−i then EX−i|Xi
(Y |Xi) reduces to EX−i

(Y |Xi), and

we only require to sample from the marginal joint distribution of X−i. It should

always be possible to use a numerical method such as MCMC to sample from

the conditional distribution of X−i|Xi, but this is likely to be computationally

demanding.

A number of solutions to this problem have been proposed. Firstly, Jacques

et al. (2006) propose a simple solution whereby the vector of n inputs, X, is

partitioned into p sub vectors, i.e.

X = (X1, . . . , Xn) (3.17)

= (X1, . . . , Xk1︸ ︷︷ ︸
U1

, Xk1+1, . . . , Xk1+k2︸ ︷︷ ︸
U2

, . . . ,

Xk1+k2+,...,+kp−1+1, . . . , Xk1+k2+,...,+kp︸ ︷︷ ︸
Up

), (3.18)

where k1 + k2+, . . . , kp = n. The partitioning is such that Ui ⊥⊥ Uj ∀i 6= j.

Sensitivity measures are then calculated for each subset of inputs Ui, i = 1, . . . , p,

noting that the conditional distribution EU−i|Ui
(Y |Ui) = EU−i

(Y |Ui). This is a

reasonable approach if X can be partitioned in this manner, and if the sensitivity

of Y to some subset of inputs Ui is of interest. If not, then this approach fails.

Da Veiga et al. (2009) suggest that for scalar Y and scalar Xi that the condi-

tional moments, EX−i|Xi
(Y |Xi) and varX−i|Xi

(Y |Xi) are estimated using a local

polynomial regression approach based. Firstly, given a single sample set, Y is

regressed on Xi for Xi in the neighbourhood of some point x, assuming the p-th
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order polynomial regression equation

Yi =

p∑
j=0

βj(Xi − x)j + εi. (3.19)

The error term εi is estimated by a second local polynomial regression, this time a

regression on Xi of the squared residuals from the first level of fit. The Da Veiga

et al. (2009) method has some similarities to the solution we propose to the prob-

lem of correlated inputs which we describe in chapter 8. In our method we ef-

fectively regress Yi on Xi for Xi in the neighbourhood of some x, but assume a

simple mean only linear regression Yi = β0 + εi with E(εi) = 0.

In theory the method presented by Da Veiga et al. (2009) is extendible to mul-

tidimensional Xi, but will suffer from the ‘curse of dimensionality’. If n samples

are required for some specified precision in the case of a scalar Xi, then for the

same precision with Xi of dimensionality d we will require a sample size of order

nd. This exponential growth in the number of samples required severely limits

this kind of analysis to problems in which the vector of inputs of interest, Xi is

of low dimension.

Bias modelling

So far we have implicitly assumed that the distribution p(X|D) represents the

decision maker’s judgements about the inputs, conditional on some observations

of the world (or at least, that the decision maker is happy to accept p(X|D) as

specified by the authors of the various studies who collected the data and wrote the

papers, or perhaps as specified by the modeller who trawled the primary research

literature). If for simplicity we take a single input Xi we find that in reality

the decision maker may have good reasons for making quite different judgements

about Xi|Di, than are specified in the p(Xi|Di) implied in the published results

of the paper(s) reporting Di. There are two reasons for this. Firstly, the decision

maker may have concerns about the internal validity of the study, and may wish to

correct certain important internal biases that may have arisen due to inadequacies

in either study design or analysis. Secondly, the decision maker may believe that
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the circumstances of the study are sufficiently different to those of the decision

problem that the resulting external biases must also be corrected.

Bias adjustment has received some attention in the literature, and we note

the contributions of Eddy et al. (1990, 1992) (the confidence profile method),

Spiegelhalter and Best (2003), Greenland (2005) and Turner et al. (2009). In

particular, Greenland (2005) and Turner et al. (2009) discuss the important role

of prior knowledge in specifying bias terms, given that these terms are typically

unidentifiable from the data. The structural discrepancy modelling approach that

we propose in chapters 5 and 6 of the thesis draws on these ideas of bias modelling,

but instead of making judgements about errors in the inputs, we are concerned

with making judgements about errors further ‘downstream’ within the structure

of the model.

3.4.2 Managing code uncertainty

In this section we discuss the management of uncertainty when the computer

model is expensive to run. A computationally expensive model adds an extra

layer of uncertainty: uncertainty about Y for all values of X = x where we do

not have the time or resources to evaluate y = f(x).

Increasing the efficiency of the computation

One approach to overcoming the limitations imposed by a computationally expen-

sive model is of course to use a faster computer. In particular, the type of problem

we face, that of evaluating a model repeatedly for a large number of inputs sets

lends itself to ‘embarrassingly parallel’ computation. An ‘embarrassingly parallel’

computation is one that can be easily divided into a number of independent tasks,

each of which can be performed on a separate processor (Foster, 1995). In this

form of parallel computation there is little or no communication required between

processors. Functions to implement embarrassingly parallel computation within

R (R Development Core Team, 2011) are readily available, for example within the

snow and snowfall packages.
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Alternatively, if the computer model is implemented in high level code, partic-

ularly if it is written in an interpreted language like R, then a significant gain in

speed may be obtained by rewriting the model in a low level compiled language

such as C.

Emulators for computationally expensive simulators

In this subsection we refer to our computationally expensive model, f(·), as the

simulator. Due to the complexity of the simulator, and because we can only run

it a small number of times, Y = f(X) is unknown for all input value sets except

those at which we have evaluated it. One solution in this situation is to build a

statistical model for the simulator. This model, which is called an emulator for

the simulator, is a full joint probability specification of f(·) that allows us not only

to determine f(x) for any x, but also allows us to quantify our uncertainty about

f(x) due to only having run the simulator a limited number of times (O’Hagan

and Oakley, 2004; Oakley, 2011).

We denote the limited number of simulator runs that we are able to obtain as

T = {y1 = f(x1), . . . ,yN = f(xN)}. We use these as ‘training data’ to construct

an estimate, f̂(·), of the unknown function f(·). An emulator should have the

following properties: firstly, it should result in f̂(xi) = yi for the ‘design’ points

xi ∈ {x1, . . . ,xN}; secondly, the mean value for f̂(x) should be a plausible in-

terpolation (or extrapolation) of the training data; and thirdly, the distribution

around the mean of f̂(x) should be a reasonable expression of uncertainty about

f(x) (Bastos and O’Hagan, 2009). The second and third of these criteria can

be checked by comparing additional runs of the simulator with the predicted val-

ues, or alternatively by constructing the emulator from only a subset of available

simulator runs, and using the remainder for validation.

An established method for modelling an uncertain function f(·) is via the

specification of a Gaussian process. A Gaussian process (GP) is a stochastic

process in which any finite set of samples has a multivariate normal distribution

(Grimmett and Stirzaker, 2001). The GP is specified by a mean function m(·)
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and a covariance function c(·, ·), and we write

f(·) ∼ GP{m(·), c(·, ·)}. (3.20)

Given a set of inputs, {x1, . . . ,xn}, for which we have not evaluated the simulator,

our uncertainty about the corresponding outputs, {f(x1), . . . , f(xn)} is described

by a multivariate normal distribution with some mean µ and covariance V .

The mean function is typically defined as having the following linear form

m(x) = h(x)Tβ, (3.21)

where h(·) is a vector of regressor functions called ‘basis’ functions. The simplest

case is h(x) = 1, which implies thatm(x) = β then represents an unknown overall

mean for the simulator output. Or, we could define h(x)T = (1,x), leading to

m(x) = β1+β2x1+ . . .+β1+pxp where p is the dimensionality of the input vector

x. This corresponds to a belief that the simulator output has a linear trend with

respect to all the inputs. Higher order polynomial forms for m(x) can be specified

through writing h(x)T = (1,x,x2), h(x)T = (1,x,x2,x3) and so on.

As with the mean function, there are many possible choices for the form of the

covariance function, with the most common being the ‘Gaussian’ form

σ2c(x,x′) = σ2 exp{−(x− x′)TC(x− x′)}. (3.22)

Here, C is a diagonal matrix, with diagonal elements {ω−2
1 , . . . , ω−2

p }. The hyper-

parameter ω = {ω1, . . . , ωp} is known as the correlation length and controls the

smoothness of the resulting Gaussian process. Prior beliefs about the smoothness

of the unknown function f(·) are specified through this hyperparameter.

Analytic solutions to the posterior Gaussian process conditional on training

data are shown in Kennedy and O’Hagan (2001) and Oakley and O’Hagan (2002)

for certain classes of prior distribution for β and σ2, and a plug-in estimate for ω.

A fully Bayesian posterior specification allowing for uncertainty in ω is obtainable

via MCMC, though this is computationally demanding (Neal, 1999).
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Given the posterior Gaussian process Oakley and O’Hagan (2004) show how

various measures of input uncertainty and sensitivity can be calculated either

analytically, or using Monte Carlo methods where the number of runs required of

the emulator is much smaller than would have been required of the simulator for

the same level of accuracy.

The use of emulation is not widespread in health economic evaluation, prob-

ably reflecting the relative simplicity of the models that are typically employed.

Notable examples of Gaussian process emulation for cost-effectiveness studies are

Tappenden et al. (2004), Stevenson et al. (2004) and Rojnik and Naversnik (2008).

Specifying beliefs about the simulator via a Gaussian process is not the only

route to building an emulator. An alternative approach, which only requires the

expression of beliefs about the first two moments of the uncertain simulator out-

put, is to build a Bayes linear emulator (Craig et al., 2001; Goldstein and Rougier,

2006, 2009; Goldstein, 2011). The Bayes linear approach has a somewhat differ-

ent underpinning philosophy from the fully Bayesian approach in that prior belief

statements are made as expectations rather than as probabilities. Treating expec-

tation as the primitive quantity avoids the need to make a full joint probabilistic

specification over the unknowns, which can be an extremely daunting task. Up-

dating the expectation of some random quantities B (about which we specify prior

second order beliefs) given some observations D generates an adjusted expectation

(in the Bayes linear terminology). For each element Bi in B the adjusted expecta-

tion, written ED[Bi] is the linear combination aTi D that minimises E[(Bi−aTi D)2].

This leads to expressions for the adjusted expectation for B,

ED[B] = E[B] + cov[B,D]var[D]−1(D − E[D]), (3.23)

and adjusted variance

varD[B] = var[B]− cov[B,D]var[D]−1cov[D,B]. (3.24)

The adjusted expectation, ED[B], is an approximation to the conditional expec-

tation E(B|D) that would be obtained under a full Bayesian prior-to-posterior
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analysis. The adjusted variance varD[B] provides an upper bound for the condi-

tional variance var(B|D). The approximations are exact in the case where the

joint probability distribution of B and D is multivariate normal.

3.4.3 Managing structural uncertainty

We now discuss the management of uncertainty about the target quantity Z due

to our uncertainty about the ‘true’ model. A law driven model can be thought

of as a representation of judgements about the relationship between the model

inputs and the model outputs. If we are uncertain what this ‘true’ structural

relationship is, then even if we were to run the model at its true inputs, there

would be an uncertain ‘structural error’ in the model prediction. We denote this

uncertain error ‘structural uncertainty’. Note that we use the term ‘true’ value

of the input to mean that which we would estimate in some perfect study with

infinite sample size, and ‘true’ structural relationship to mean a (possibly non-

unique) functional relationship that would result in the correct output given any

set of ‘true’ values of the inputs.

Unless we are able to build a model that is true in the sense above we should

expect an uncertain structural error in the model prediction. What are our judge-

ments about this error? Given that we are likely to be uncertain about some or all

of the model inputs is the uncertainty about the model structure important? Is

the imperfect model good enough for the decision that we will base on the model

output? If not, which bit of the model is inadequate? In the words of Box (1976)

“Since all models are wrong the scientist must be alert to what is

importantly wrong. It is inappropriate to be concerned about mice

when there are tigers abroad”.

Quantifying structural uncertainty is, however, difficult since it involves making

judgements about a model’s ability to faithfully represent a (possibly highly com-

plex) real life system.

We note two important distinctions that are made in the treatment of model

uncertainty. Firstly, is the focus of the uncertainty analysis the correctness of the
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model, or the discrepancy between the model output and reality? Historically, the

statistical treatment of model uncertainty has located the uncertainty in themodel

itself, explicitly seeking to determine the adequacy of the model (usually within

the context of a set of competing models). This contrasts with the treatment of

the problem in the computer models literature, where the uncertain model error is

primarily of interest. A key concept in this latter treatment is that of discrepancy :

the difference between the model run at its ‘best’ or ‘true’ input, and the true

value of the output quantity (Kennedy and O’Hagan, 2001; Goldstein and Rougier,

2009).

The second distinction we make is whether or not there are observations on the

target quantity Z. For a statistical model the answer is yes, since for statistical

models the data that are modelled are the observations on Z. These observations

are the beginning point for a statistical model, and as we have noted before, such

models are therefore termed data-driven. However, for law-driven models we may

be in a position where there are no observations on the target quantity. Certainly,

in the context of health economic evaluation, at the point of making a decision we

have no direct observations of the costs and health effects for each of our decision

options. However, this lack of data is not the case in all situations in which law-

driven models are used. In physical systems modelling for example, the target

quantity is often partitioned as Z = {Zo,Zu}, where we have (noisy) observa-

tions z on Zo, but no observations on Zu. We may have historic observations and

wish to predict future values (forecasting), or we may have observations at a set of

points in space and wish to predict values at locations in between (interpolation).

Of course, the problem of defining the ‘correct’ model structure arises whether or

not we have observations on Z, rather, the distinction is important since it deter-

mines whether we can use the likelihood (or similar measure) of the observations

on Z to update beliefs about the whole model structure (we will elaborate on this

when we discuss model averaging).
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Alternative scenario analysis

A basic form of structural sensitivity analysis is to explore the sensitivity of the

model prediction to underlying assumptions in a ‘what if’ scenario analysis in

which sets of alternative assumptions are modelled (see Bojke et al. (2009) for a

review of the methods that are currently used to manage health economic evalua-

tion model uncertainty, and Kim et al. (2010) for a specific example of modelling

alternative scenarios). However, this process cannot in any formal sense quantify

the sensitivity of the results to the assumptions, and nor can it quantify any re-

sulting prediction uncertainty. If a decision maker is presented with the results

of a number of different models, with each model having a different set of struc-

tural assumptions, it is not clear how she should proceed with her decision. What

should her posterior beliefs about Z be?

Model averaging

Model uncertainty has been addressed from a statistical perspective (e.g. Draper,

1995; Kass and Raftery, 1995). Here, a key concept is that of model averaging in

which the predictions or probability statements of a number of plausible models

are averaged, with weights based either on some measure of model adequacy, or

some measure of the probability that the statistical model is ‘correct’. Bernardo

and Smith (1994) and Kadane and Lazar (2004) offer a Bayesian decision theoretic

treatment of model averaging in the general statistical context, and Jackson et al.

(2009, 2010) and Bojke et al. (2009) illustrate its application to health economic

evaluation.

Suppose we have a set of plausible models {Mi, i ∈ I}, withMi = {fi(X), pi(X)}.

We draw on Bernardo and Smith (1994)’s notion of describing a set of possible

models as M− closed or M− open. A set of models, {Mi, i ∈ I}, is described as

M− closed if we believe that one of the models in {Mi, i ∈ I} is ‘true’, but we do

not know which. Conversely, a set of models is described as M− open if we do

not believe that one of the models in {Mi, i ∈ I} is correct. In model averaging,

we predict Z using a weighted mean value of the individual model outputs. The

weighting process could simply consist of choosing the model from the set that
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we believe is ‘best’ while discarding the rest, effectively placing all the weight on

a single model. Or, we may want to more formally assess our beliefs about how

likely the different models are, and weight the outputs by these probabilities.

If we have data, D, (that have not been used to inform the inputs X) and can

calculate some measure of the adequacy of the model, givenD, then we can weight

the model outputs by (some function of) the adequacy measure. If we believe our

set of models is M − closed then, within a Bayesian framework, we can specify

prior model probabilities, p(Mi), and calculate the posterior probabilities given

D via

p(Mi|D) =
p(D|Mi)p(Mi)∑
i∈I p(D|Mi)p(Mi)

, (3.25)

leading to a weighted mean output

p(Z|D) =
∑
i∈I

p(Z|Mi,D)p(Mi|D). (3.26)

Where there are two or more conflicting, defensible models, then such an

approach has obvious benefits, in comparison with using one model only and

ignoring the others. However, model averaging approaches are unlikely to be

sufficient for fully quantifying uncertainty about Z, and do have some practical

limitations.

The obvious shortcoming is that we will not usually believe any of the models

are correct: we do not believe that fi(X) = Z for any i. Jackson et al. (2010)

acknowledge this, and instead of using (3.25) to obtain weights for use in (3.26)

adopt an M− open view and derive a weight p(Mi|D) based on the probability

that model Mi “gives the best predictions on a replicated data set, among the

models being compared”. However, even with this weighting scheme, why should

we believe that a weighted average of the outputs from an M−open set of models

(i.e. a set of models that are all wrong) represents our posterior beliefs about Z?

Another important limitation is the form of the available data, D. Model

averaging approaches involve evaluation of a likelihood function for each model:

p(D|Mi) =

∫
X
pi{D|fi(X)}pi(X)dX. (3.27)
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However, in many applications, health economic evaluation included, we do not

have data D. There are no observations on the model output fi(X), as this would

have been the reason for building the model in the first place. We may, however,

have some relevant data, D∗. For example, in the health economics context, fi(X)

may correspond to mean costs and benefits over a twenty year period, and D∗

may be observations of the treatment efficacy in a clinical trial over a two year

period. If we imagine that fi contains a ‘sub-function’, gi, that describes efficacy

at two years, then we would have

p(D∗|Mi) =

∫
X
p{D∗|gi(X)}p(X)dX (3.28)

which we could plug into (3.25) to get (3.26).

This is helpful, but not sufficient. All those elements that differ between

models and that are downstream of the sub-function gi(·) (and which therefore

may lead to different predictions of Z) remain untested. These methods clearly

have a role in guiding structural choices for parts of the model where intermediate

outputs can be fitted to data, but they cannot guide choices about the whole

model structure since we do not observe future costs and health effects under

each of our competing decision options.

Finally, we may wish to consider competing models in the absence of any data

that would inform the choice between them. In this latter case we are left with

just our prior model probabilities p(Mi). If we were to adopt an M− closed view

then our posterior beliefs about Z would be

p(Z) =
∑
i∈I

p(Z|Mi)p(Mi). (3.29)

Learning about p(Mi) might now be considered to be an expert elicitation problem,

the extreme example being that of a modeller choosing a single model because

they believe it to be ‘best’. Elicitation of prior model probabilities is not, however,

a trivial problem. For example, how would an expert decide how much probability

to place on two competing Markov models, one with three health states, and one

with four?
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More likely is the situation in which we have a set of plausible models, none

of which we believe to be ‘true’, and we have no observations to guide model

selection. In this situation even the notion of the prior model probability is prob-

lematic, since by assuming that our model set is M − open we have already

effectively stated that p(Mi) = 0 ∀i.

Discrepancy based approaches

A fundamentally different approach to quantifying structural uncertainty is in-

stead to represent our uncertainty about model structure through our judgements

about the discrepancy between the model output and the ‘true’ quantities we

wish to make statements about. Rather than consider some measure of the ‘cor-

rectness’ of our model, we instead make judgements about the structural error

that arises from its imperfection. Important papers demonstrating the approach

include Kennedy and O’Hagan (2001); Craig et al. (2001); Higdon et al. (2005)

and Goldstein and Rougier (2009).

In the model discrepancy approach to structural uncertainty we focus on the

discrepancy, δ, between the output of a model evaluated at the ‘true’ inputs, and

the true target value,

Z = f(X) + δ. (3.30)

The discrepancy term, δ, quantifies the structural error : the difference between

the output of the model evaluated at its true inputs and the true target quantity.

Instead of specifying model weights, the key task is now to usefully quantify

our beliefs about the discrepancy via p(X, δ). We are explicitly recognising in

equation (3.30) that our model may be deficient, but note that when we speak

about model deficiency we are not concerned with mistakes, ‘slips’, ‘lapses’ or

other errors of implementation (for a discussion on this topic see Chilcott et al.,

2010b). Rather, we are concerned with deficiencies arising as a result of the gap

between our model of reality, and reality itself. Obtaining a joint distribution

that reflects our beliefs about inputs and discrepancies, p(X, δ), allows us then

to fully quantify our uncertainty in the target quantity due to both uncertain
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inputs and uncertain structure. This approach has the important advantage that

only a single model need be built, though methods for making inferences about

discrepancy in the context of multiple models have also been explored (Goldstein

and Rougier, 2009).

In the situation where we have partial, noisy, observations z on Z, Kennedy

and O’Hagan (2001) propose a method for fully accounting for the uncertainty

in Z, given z and uncertain inputs X. They begin by specifying a Gaussian

process for the model function f(·), and then specify a second Gaussian process

for the model discrepancy δ. Prior beliefs about the model and model error are

incorporated via the hyperprior terms in the Gaussian process specifications, and

observations (both z, and the output from the ‘simulator’ f(·) training runs) are

then used to update beliefs within a Bayesian framework.

Goldstein and Rougier address the same problem, but from the Bayes linear

perspective, for the case when there is a single simulator (Goldstein and Rougier,

2006) and when there are multiple simulators (Goldstein and Rougier, 2004, 2009).

The difficulty in health economics with any of the discrepancy approaches

described above is the lack of observations on the target quantity Z. We do not

directly measure the costs and health consequences of sets of competing decisions,

and calibration of the model output (Y ) against data (observations on Z) is

therefore usually not possible. In this case we are left with expert judgement

as the means by which to make statements about the model discrepancy δ. In

theory, the modeller at least should be a able to make some judgement about the

model error, if only a very crude one.

Imagine that a modeller builds a model to predict the incremental net benefit of

recommending drug A versus the current best alternative (incremental net benefit

here is the difference between the net benefits of the two decision options). The

model output suggests the expected incremental net benefit, given uncertainty in

all the inputs, is E(Y ) = £500 (per person treated).

When asked to estimate the model error (i.e. the difference between the true

incremental net benefit, Z, and the model output Y ) it is likely that the modeller

will at least be able to specify a distribution that is less vague than figure 3.2a.
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They might believe that their model will underestimate the true value and specify

something like figure 3.2b. Or perhaps the modeller has reasonable confidence

in the model, with figure 3.2c representing their beliefs. Of course, in reality,

the implied distribution on model error in most cases is figure 3.2d. We think

that in general, it is unlikely that a crude evaluation of the model error will be

particularly useful or robust to criticism.
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Figure 3.2: Possible distributions for hypothetical model error, δ = Z − Y
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Zio and Apostolakis (1996) suggested a possible solution to this problem when

a set of plausible models is available, one of which is considered by experts to

be the ‘best’. The case study the authors present concerns a set of six plausible

predictive models for ground water flow in the context of a radioactive waste

repository safety analysis. In the discrepancy analysis it is assumed that the

structural error for the best model is normally distributed with expectation equal

to the mean of the differences in output between this best model and the other five

models in the set (termed ‘residuals’), and variance equal to the sample variance

of the residuals. In a second analysis each model residual was weighted by the

probability that the corresponding model provided an ‘appropriate description of

the ground water phenomenon for the objective of the analysis’. This does beg

the question: how good does a model have to be to be ‘appropriate’ for some

analysis?

Zio and Apostolakis (1996)’s empirical approach to specifying the discrepancy

is attractive in that it directly incorporates information from all six models, but

it excludes any prior information that we may have, say, about a source of error

that is common to the whole set of models. What if we were faced with six models

that were similar in structure, with similar outputs, but were all very wrong?

3.5 Constructing a single framework

We are uncertain about the (comparative) net benefits of range of decision op-

tions. Our beliefs about these unknown net benefits are informed by ‘data’ that

we model statistically, but also by our ideas about the causal relationships (‘laws’)

that underlie the order that we observe in the world. We have a range of tech-

niques (parameter uncertainty analysis, bias modelling, emulation for expensive

simulators, model averaging, discrepancy analysis) that can help us make state-

ments about the unknown net benefits that are consistent with our knowledge of

the world, and that properly reflect our true uncertainty. None of the approaches

for managing uncertainty that we have discussed are mutually exclusive, and all

can coexist within a single modelling framework. More specifically, the techniques
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that relate to ‘structural’ uncertainty, model averaging and model discrepancy, can

comfortably sit together. Both rely on ‘augmenting’ an existing model or a set

of existing models to construct a larger augmented model or ‘meta-model’1 that

has additional parameters (model weights in the case of model averaging, and

discrepancy terms in the case of discrepancy analysis). Indeed, if we consider our

problem as determining p(Z|D) rather than p(Z|X) then we might envisage a

single ‘augmented’ model within which are located bias modelling parameters and

discrepancy terms and sub-model weights.

3.6 Conclusion

In this chapter we have reviewed the management of uncertainty in computer

models. We have determined the sources of our uncertainty about the target

quantity given the model we have built, and have considered some of the methods

available for managing these uncertainties. We have argued that the problem of

model uncertainty in health economic evaluation is particularly difficult because

we do not observe net benefits. We cannot assess the ‘fit’ of our model output to

data. This makes both likelihood based methods (model averaging) and model

calibration based methods (e.g. as proposed by Kennedy and O’Hagan, 2001)

challenging. Given an absence of data it is always possible for a Bayesian to turn

to expert judgement, but even this may be of little use when making judgements

about the net benefits of some set of decision options conditional on the output

of a health economic evaluation model.

In chapters 5 and 6 we return to the problem of specifying model discrepancy

in the absence of observations on the model output. We will suggest that instead

of making judgements about the discrepancy at the level of the model output,

that we ‘open up’ the model and make judgements about model error at the level

of the revealed intermediate parameters within the model.

1The term ‘meta-model’ is also used to denote a statistical emulator for a computationally
expensive simulator, so to avoid confusion we will use the term ‘augmented model’ instead



Chapter 4

Elicitation

4.1 Introduction

This chapter is about elicitation, the process of assisting an expert to express his

or her knowledge about an unknown quantity in a probabilistic form. We saw

in the last chapter that, in the context of health economic model uncertainty, we

are likely to be in a position of having to make statements about model error in

the absence of data. Hence, we briefly review some of the relevant theory that

underpins elicitation, describe methods that have been established to conduct

the process, and discuss examples of the use of elicitation in health services and

medical research.

We end the chapter with a discussion of some of the challenges that we are

likely to face when using elicitation to derive distributions in the context of model

structural uncertainty.

4.2 What is elicitation?

Elicitation is the process of extracting expert knowledge about an uncertain quan-

tity (or quantities), and representing this knowledge as a (joint) probability dis-

tribution for the unknown(s) (O’Hagan et al., 2006). We recognise that in many

decision problems experts have relevant information that either augments the

information contained within some data, or provides helpful statements about

72
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unknowns in the absence of data. Elicited information has a particular role in

forming the prior distribution for the purposes of doing Bayesian inference. Health

economic evaluation is inherently Bayesian because we wish to make probabilistic

statements about unknown quantities (costs and health effects) that represent our

beliefs about those quantities for the purposes of making some decision. Elicita-

tion fits naturally within this framework as a tool for formalising the process of

incorporating judgements into the decision making process (Stevens and O’Hagan,

2002).

Elicitation has been used in a wide range of applications including engineering

reliability (Bedford et al., 2006) accident risk analysis for nuclear power plants

(Cooke and Goossens, 2000), reliability of nuclear weapons (Wilson et al., 2011),

water industry planning (Garthwaite and O’Hagan, 2000), agricultural land man-

agement (Orton et al., 2011), climate science (Rougier, 2007; Dijkstra and Dixon,

2010), ecology (Kuhnert et al., 2010), including future polar bear populations

under climate change (O’Neill et al., 2008), seismic hazard (Klügel, 2008) and

the probability that unexploded ordnance will explode (MacDonald et al., 2008).

Quantifying very small risks for events that cause considerable levels of public

concern is a particularly fraught area for policy makers and elicitation has been

used here to assess the health impact of chemicals in food (van der Voet et al.,

2009), and the health risk of nano particles (Kandlikar et al., 2007). We note some

of the many other applications in health care and medical research in section §4.4.

4.3 How does elicitation work?

There has been a considerable volume of research directed at establishing robust

methods for elicitation. Some important papers are O’Hagan (1998); Garthwaite

et al. (2005) and the recent review by Johnson et al. (2010). A comprehensive

text on elicitation is O’Hagan et al. (2006). Software to assist the elicitation

process and to allow the fitting of probability distributions is available1 along

with accompanying tutorials for univariate (Oakley, 2010) and multivariate cases

1http://www.tonyohagan.co.uk/shelf/
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(Daneshkhah and Oakley, 2010).

The basic idea of elicitation is as follows. There are four ‘actors’: the decision

maker, the expert, the statistician and the facilitator (although it is common

for the last two roles to be played by the same person). We introduced the

decision maker in chapter 2. This is the individual who requires the probability

distribution for the purposes of making some decision. The expert is the individual

who is deemed to have useful subject matter knowledge, and can therefore provide

meaningful statements about the uncertain quantities in question (she2 needs not

be an ‘expert’ in any more formal way than this). The elicitation process involves

elements of training in the basic ideas of probability, and the validation of results,

both of which require a ‘statistician’ (again, not necessarily in a formal sense).

Finally the facilitator is the expert in the application of the elicitation process

who manages the dialogue with the expert.

Sometimes the term ‘analyst’ is used to describe the combined statistician and

facilitator role taken by a single individual, and in some circumstances the expert,

statistician and facilitator are the same person. In this latter case we refer to

the resulting process as self-elicitation. We note here that determining one’s own

probabilities is not easy, vagueness being the major obstacle (Savage, 1971). This

may be relevant later when we discuss the use of elicitation by modellers with the

aim of improving their own models.

The elicitation process involves a number of steps. First the uncertain quan-

tities are identified. This sounds trivial, but it is extremely important that the

expert is asked to provide information about the quantity or quantities that re-

ally are required for the inference or decision. Next the expert is identified and

recruited. The elicitation session itself begins with a careful explanation of the

process and training in the basic ideas of probability. After a process of calibra-

tion (which we discuss below) the expert is asked to make a series of statements

about the unknown quantity or quantities that reveal aspects of her underlying

subjective distribution. The facilitator or statistician fits a probability distribu-

tion to these summaries. Through an iterative process of feedback and checking

2We adopt the convention of referring to the expert as ‘she’ and the facilitator as ‘he’.
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the elicited distribution is refined until the expert is confident that it reflects her

judgements.

In the following sections we briefly review some specific issues involved in the

elicitation process.

4.3.1 Probabilities versus distributions

Firstly, we make a distinction between the elicitation of distributions versus prob-

abilities. An expert may be asked to make a statement about some quantity, for

example the relative risk of death given drug A versus drug B, and here the use

of a probability distribution to represent the expert’s beliefs about the relative

risk is clear. However, if the expert is asked to make a statement concerning a

single probability (“what is the probability that it will rain tomorrow?”) then

it is sometimes helpful to consider the probability as representing a long run fre-

quency or proportion, about which the expert can express beliefs via a probability

distribution.

4.3.2 Calibration

It is helpful to have some measure of the ‘quality’ of an expert’s ability to make

probabilistic statements about unknowns. We may wish, for example, to weight

each of a group of experts according to how accurate they are in judging uncertain

quantities. Calibration refers to the process of comparing an expert’s statements

with reality. The expert is asked to make a series of judgements about unrelated

quantities and then for each judgement a probability of some event is extracted

(e.g P (a < θ < b), where θ is the unknown quantity of interest). This results

in a set of probabilities. For the set of judgements concerning events in which

we have determined some event probability p we then compare p with the actual

relative frequency of those events. If the proportion of events is equal to p then

the expert is perfectly calibrated. Of note is the common finding that experts

are overconfident (for a set of events assigned probability 90%, only 60% occur),

and/or that they exhibit over-extremity (on low frequency events they place too
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low a probability, and on high frequency events they place too high a probability).

4.3.3 Specific methods for eliciting responses

There are a number of different methods for eliciting judgements that require the

expert to make statements about different, but related quantities. We will not

discuss this in detail, other than to note that since we are deriving a series of

statements of the form P (a < θ < b), methods can focus on judging P given a

and b (fixed interval methods), or focus on judging b (or a) given P and b (or a)

(variable interval methods).

4.3.4 Fitting a distribution

Once a series of statements of the form P (a < θ < b) for different a and b are made

then a probability distribution can be ‘fitted’ which reflects those statements. In

theory an infinite number of statements of the form P (a < θ < b) will need to be

made to properly determine the distribution of a continuous variable θ, and this

is one of the motivations for the Bayes linear approach in which only the first two

moments are specified (Goldstein, 1992). However, in practice, we can usually

assume that beliefs are represented by smooth (usually uni-modal) distributions,

allowing a fully Bayesian approach.

If we choose to use a parametric distribution to represent the beliefs, then we

will be guided in choice of distribution by the nature of the uncertain quantity,

whether unrestricted over the whole real line, strictly non-negative or positive,

or bounded. Respectively we may choose for example, a normal, a gamma, and

a beta distribution to represent the experts probability judgements. Once the

distribution form is chosen, it is ‘fitted’ to the probability statements obtained

from the expert. The fit will be exact if the expert’s probability statements

uniquely determine a single distribution. If we have elicited more probability

statements than required to determine a unique distribution, then the fit can be

based on a method such as least squares (this is called overfitting, which we discuss

below).
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4.3.5 Obtaining a ‘good’ elicited distribution: feedback

and overfitting

It is important to check with the expert that the distribution that is fitted following

the initial elicitation does really represent her judgements. This can be done by

reporting back to the expert some of the implications of the fitted distribution, a

process known as feedback. For example, if a N(5, 1) distribution is fitted to reflect

judgements about some unknown quantity θ, then the expert could be informed

that this implies that there is approximately only a 5% probability that the value

of θ lies outside the interval (3, 7). The expert then has a chance to review her

initial statements if the implied distribution does not fit her beliefs about θ.

Overfitting is a somewhat different approach to obtaining a ‘good’ representa-

tion of the expert’s beliefs. Here, the expert is asked to make more statements that

are necessary to fit the chosen form of parametric distribution. This (usually) then

results in a series of statements that are incompatible with a single distribution.

Fitting is then an optimisation problem whereby a single distribution is chosen

that best fits the range of statements made by the expert (e.g. via minimising a

sum of squared differences, or sum of absolute differences). The resulting distri-

bution is based on a greater number of pieces of information obtained from the

expert than in the simple approach, and as such might be expected to be a better

representation of her beliefs. Overfitting also allows the checking of ‘residuals’,

the differences between the expert’s probability statements and those implied by

the fitted distribution. The presence of large residuals may imply either that the

distribution form does not reflect the expert’s beliefs very well, or that there are

inconsistencies in the expert’s statements. In either case, further discussion with

the expert is necessary to ensure an adequate elicitation of beliefs.

4.3.6 Multivariate distributions

Elicitation of beliefs about independent quantities is hard. Elicitation of beliefs

about dependent quantities as even harder. Imagine we wish to learn the values

of two quantities: the efficacy of drug A relative to placebo (as a relative risk),
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and the proportion of patients taking the drug who will experience adverse effects

(again compared to placebo). We have reason to believe that there is a certain

action of the drug that causes both a component of the therapeutic effect and

an adverse effect. For the purposes of the elicitation the two uncertain quantities

are therefore not independent, and we must represent beliefs by a multivariate

distribution of some kind.

Immediately we envisage two problems. Firstly, how do we elicit beliefs about

dependent quantities, and secondly, how do we choose a distribution that reflects

these beliefs? Important issues include the choice whether to elicit joint summaries

or conditional summaries, and whether or not it is helpful to elicit second moments

or correlation coefficients directly (this can be difficult, see Kadane and Wolfson,

1998; Garthwaite et al., 2005).

There has been significant work done to formalise methods for elicitation of

the parameters of a multivariate normal distribution (e.g. Garthwaite and Al-

Awadhi, 2001), and for the parameters of regression models (both linear and

GLM, see e.g. Kadane et al., 1980; Bedrick et al., 1996), but the research question

remains very much open. Moala and O’Hagan (2010) propose a general non-

parametric approach in which the expert’s unknown multivariate density function

is modelled using a vague Gaussian process prior. The expert is asked to provide

certain (mainly marginal, but with some joint) summary quantities (probabilities

or quantiles, or perhaps means, etc). These are treated as data and a Bayesian

update performed to derive a posterior multivariate distribution that represents

the expert’s beliefs. In chapter 6 we describe a similar Gaussian process based

approach for representing beliefs about the model error in a Markov model.

4.3.7 Uncertainty about uncertainty? Imprecision and the

need for sensitivity analysis

An expert can not precisely state her subjective probability for some event. It

is not reasonable to expect that she can meaningfully make a statement that her

probability is 0.1 rather than 0.11, or 0.1002342 say. Elicitation is not precise.
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And, even if the expert were able to make such precise statements, there would

still be the problem of fitting the unique distribution that properly represents her

beliefs across the whole range of the uncertain quantity in question. For an expert

to specify her ‘true’ distribution for a continuous quantity would require to be able

to specify perfectly an infinite number of probabilities. This is not feasible, so, we

have epistemic uncertainty about the expert’s beliefs.

In order to avoid the infinite regress of specifying uncertainty about uncer-

tainty, O’Hagan and Oakley (2004) suggest that we consider the epistemic un-

certainty about the expert’s distribution as being owned by the facilitator (or

‘analyst’). The facilitator expresses his own prior beliefs about the expert’s den-

sity function, which are then updated by the expert’s beliefs in a formal Bayesian

analysis (see Oakley and O’Hagan, 2007). This approach implies that it is the an-

alyst’s posterior uncertainty that is of interest, and that the expert is treated as a

source of (noisy) data. Of course, in reality, it is the decision maker’s distribution

that will inform the decision. The decision maker may accept the distribution

that results from the elicitation exercise and adopt it as their own if they have

very weak prior knowledge (or perhaps more likely, they accept the elicited dis-

tribution if it does not conflict with the distribution they, in some informal sense,

elicit from themselves). This approach of treating the expert’s elicited summaries

as data does not entirely solve the imprecision problem since the facilitator’s (or

decision maker’s) prior distribution is only an imprecise representation of their

own uncertainty. The difference is that, in the case of the decision maker, they

own the problem, and therefore choose in some sense to live with the consequences

of the imprecise nature of their own probability statements.

A more informal approach to the problem of elicitation imprecision is to take

a range of distributions that may reflect the expert’s beliefs and determine the

sensitivity of the resulting inference or decision to changes in the uncertainty

specification. If the choice does not materially affect the outcome, then this is

reassuring.
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4.4 Elicitation in health services and medical re-

search

Formally elicited expert knowledge has been used in a diverse range of settings

within health services and medical research. We note the following practical appli-

cations of elicitation. In drug trials it has been used to inform patient allocation

in a clinical trial (Kadane, 1994); sample size (Oremus et al., 2002); dosage sched-

ules and dose response in early phase trials (Morita, 2011; Zohar et al., 2011); and

cancer survival in a phase 3 trial (Hiance et al., 2009). Elicitation has also been

used in the meta analysis of trial results to augment missing data (White et al.,

2008), and to ‘bias adjust’ studies (Turner et al., 2009).

Within the field of epidemiology, elicitation has been used to make judgements

about the outcomes of patients for whom follow-up data are incomplete (Shardell

et al., 2008; Paddock and Ebener, 2009), as well as in the context of studies

that assess the health benefits of air quality control (Kinney et al., 2010). In

the occupational health setting elicitation has been used to assess the probability

of nickel exposure in the workplace (Ramachandran et al., 2003), and in health

services management, the risk of clinical untoward events in a hospital pharmacy

department (Cagliano et al., 2011).

4.4.1 Elicitation in cost-effectiveness studies

There are very few reports in the literature of the use of elicitation to inform

parameters specifically for the purposes of a cost-effectiveness analysis3 despite

Stevens and O’Hagan (2002)’s call for its adoption. Five years later Leal et al.

(2007) noted the lack of the use of formal elicitation methods in health economic

evaluation studies, and developed a practical computer based elicitation tool with

the aim of introducing theoretically sound methods into practice. The tool was

3We note that in the context of health economic evaluation the term elicitation is commonly
used to describe the process of obtaining health state preferences (e.g. Ryan et al., 2001). This
is not elicitation in the sense in which we use the term to mean the assessment of subjective
uncertainty, but rather describes the collection of data on individuals’ preferences without any
assessment of their uncertainty.
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tested in an application in which six experts made judgements about a set of

parameters required for a cost-effectiveness model for the diagnosis of hypertrophic

cardiomyopathy. The invited experts reported that although the elicitation task

was difficult, the process was straightforward.

A ‘real life’ application of elicitation is described in Girling et al. (2007) where

informative priors were obtained from a group of experts for parameters that

represented perioperative mortality and median survival in patients who were fit-

ted with a left ventricular assist device. The device was deemed unlikely to be

cost effective at £30,000/QALY, largely due to its high cost of £60,000. Even if

the device were to be given away free there was still substantial decision uncer-

tainty, driven primarily by the uncertainty in the survival benefits of the device.

The elicited priors were therefore important in determining the expected value

of perfect information, which was reported as being greater than the cost of an

randomised controlled trial under certain assumptions. The authors made the

following (rather tongue in cheek) observation about their results:

“The subjective nature of the cost-effectiveness probabilities means

that healthcare providers may view them with little more than aca-

demic interest...”

This probably reflects a reality that properly elicited subjective information is

likely to be treated with scepticism in the health care allocation decision process,

even though the NICE health technology assessment methods guide explicitly

invites the use of formal elicitation methods (NICE, 2009).

Bojke et al. (2010) elicited progression rates for psoriatic arthritis in patients

on treatment with anti-tumour necrosis factor and after treatment failure in order

to populate a cost-effectiveness model. They found that the results (expressed as

incremental cost-effectiveness ratios) were sensitive to the method used to derive a

single distribution given multiple experts. This highlights the problem, inherent in

all group elicitation exercises, of how to derive a single distribution from multiple

experts.

We will not discuss multiple expert elicitation at length, other than to note

that methods for combining opinion fall into two broad categories: mathemat-
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ical or behavioural. Mathematical methods construct a single distribution p(θ)

from the experts densities {p1(θ), . . . , pn(θ)}, for example by linear pooling where

p(θ) =
∑n

i=1wipi(θ) for some set of weights w1, . . . , wn (O’Hagan et al., 2006). Or

the density may be derived using formal Bayesian methods (known in this con-

text as supra-Bayesian methods), an approach first proposed by Morris (1974).

Behavioural aggregation approaches attempt to elicit a single distribution from

the group of experts, who may or may not use a formal consensus generating

procedure (e.g. Delphi, or Nominal Group Technique).

Recently, Soares et al. (2011) described a comprehensive elicitation study to

inform the parameters for a cost-effectiveness study of pressure ulcer treatments.

Notably, this ambitious project showed that it is feasible to elicit from front line

health care workers the range of quantities necessary to parameterise a three state

Markov model with time varying transition probabilities. Twenty three nurses

took part in the exercise and distributions were pooled (with equal weighting),

despite highly discordant judgements about some quantities. Again, the problem

of how to derive a single distribution from multiple experts was not easy to resolve.

Finally, two further cost-effectiveness studies of note are Stevenson et al.

(2008), in which parameters concerning vCJD epidemiology and surgical instru-

ment decontamination were elicited in order to populate a patient level simulation

model, and Stevenson et al. (2009), in which beliefs about the long term efficacy

of an osteoporosis treatment were elicited. In this latter study, the purpose of

the economic model was explicitly to guide a decision on whether a randomised

controlled trial to establish the long term efficacy was cost-effective, rather than

guiding the drug adoption decision itself.

4.4.2 Elicitation and model uncertainty

Health economic model uncertainty may not be resolvable using data for the

reasons we have explained in chapter 3. Elicitation therefore has the potential

to play an important role in managing this source of uncertainty, but at present

there are very few published descriptions of its use in this context. In Bojke

et al. (2009)’s paper on the characterisation of structural uncertainty the authors
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suggest that expert elicitation could be used to derive distributions for model

weights for the purposes of averaging, or alternatively to provide distributions for

parameters that control choices between competing sub-models within a larger

model that encompasses the smaller models as special cases.

This approach was tested in the Bojke et al. (2010) paper described above. The

uncertainty in the psoriatic arthritis study was described as ‘structural’, reflecting

the approach of replacing a set of models that differ with respect to a set of

‘structual’ assumptions with a single model that contains uncertain parameters

that ‘index’ the assumptions. The newly introduced parameters are then the

subject of an elicitation exercise, and the value of learning them can be established

using standard methods (see also the related paper, Jackson et al., 2011).

The use of elicitation to inform model weights was tested by Negŕın and

Vázquez-Polo (2008) in a cost-effectiveness study of anti-retroviral treatment reg-

imens for HIV. The competing models were identical except for the parameteri-

sation of two linear regression equations that related costs and health effects to a

series of patient level covariates. Experts were asked to judge, for each covariate,

the probability that it should be included in the model. Models were then aver-

aged over this (joint) distribution. It is not clear from the paper how easy the

experts found this task. Eliciting beliefs about the probability that a covariate

should be included in a regression is quite removed from asking an expert to make

a statement about an observable quantity.

4.4.3 Some other challenges

In the clinical encounter, health care professionals are used to sequentially updat-

ing prior beliefs (knowledge of the background prevalence of disease in the present-

ing patient) with data in the form of the patient history, then data in the form of

examination findings and finally data in the form of test results. Decision making

under uncertainty and the ideas underlying Bayesian prior to posterior analysis

are therefore not alien to practitioners and researchers in the field (see for example

O’Connor and Sox, 1991). Quite properly there are reservations about the use of

a prior distribution derived from an expert with a conflict of interest (it is not ap-
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propriate to ask a drug company sponsor for their prior beliefs about the efficacy

of their new drug), but this should not prevent the use of elicitation per se (as ar-

gued by Stevens and O’Hagan, 2002). However, despite the comfort practitioners

may have with Bayesian decision making, there are still widespread objections to

the use of subjective information in health related research, as summed up by the

following from pharmaceutical statistician Senn (2008):

“... the gloomy conclusion to which I am drawn on reading de Finetti

(1974) is that ultimately the Bayesian theory is destructive of any form

of public statistics.”

A recent review of the use of elicitation by Johnson et al. (2010) found that

although there were now a reasonable number of studies (33 at that point) in the

health and medical literature, there had been very little evaluation of the methods

that had been employed. Given the hostility to the explicit use of subjective infor-

mation in medical decision making (as encapsulated in Senn’s statement above)

we would do well not to underestimate the importance of ensuring the quality of

the elicitation process.

4.5 Conclusion

In this chapter we have reviewed the process of eliciting expert judgements about

uncertain quantities in probabilistic form. We have reviewed some of the applica-

tions of elicitation in health services and medical research as well as specifically

in health economic evaluation. We have seen that formal elicitation methods,

though well described in the methodological literature, are not yet established

in routine research practice. Of concern is the general lack of evaluation of the

process where elicitation has been used. This makes it somewhat difficult to de-

termine at present how robust the process of elicitation is when used in every day

research practice.

A number of studies reported experts as describing the task of making judge-

ments about unknown quantities as difficult, even if the elicitation process was

straightforward. This difficulty is likely to increase with the complexity of the
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elicitation exercise, and particularly when there are many uncertain quantities

with a complicated dependency structure. This makes the application of formal

elicitation methods to the problem of making judgements about computer model

error potentially daunting.

In the next chapter we introduce a method for incorporating judgements about

model discrepancy into the analysis for a decision problem. We illustrate the

method in two case studies in which model discrepancy distributions were derived

in a rather informal process of ‘self-elicitation’. This elicitation approach was

deemed sufficient for the purposes of this initial ‘proof of concept’ piece of work,

but it is not clear whether informal self-elicitation would be sufficient in a real

application. We suspect though that any serious consideration of potential model

error will add value to the modelling process. How we might elicit such judgements

in a real application is an open question, and we return to this point in chapter 8.



Chapter 5

Case Study 1 - Managing

Structural Uncertainty in a

Decision Tree Model

5.1 Introduction

In this chapter1 we propose a method for quantifying model error in a health eco-

nomic model, and demonstrate the application of the method in a simple decision

tree cost-effectiveness model. We have seen in chapter 3 that making judgements

about model error is difficult, particularly in the context of health economic eval-

uation where there are no observations on the model output against which to

calibrate the model. However, one advantage that health economic modellers do

perhaps have over other modellers is the relative simplicity of their models. Health

economic models tend to be ‘white box’ models that can be ‘opened up’ and ex-

amined, unlike the highly complex models used, say, in climate science. Does

this ability to easily comprehend the internal structure of the model allow us to

make more informed statements about the model error than by just considering

the model output?

We propose a method for quantifying model discrepancy based on decompos-

1The content of this chapter is published as Strong M., Oakley J.E. and Chilcott, J. (2012).
Managing structural uncertainty in health economic decision models: a discrepancy approach.
Journal of the Royal Statistical Society, Series C (Applied Statistics). In press.
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ing the cost-effectiveness model into a series of sub-functions, and considering

potential error at the sub-function level, rather than at the model output level.

We then use a variance based sensitivity analysis to locate the important sources

of discrepancy within the model in order to guide model refinement. The resulting

improved model is judged to contain less structural error, and the distribution on

the model output better reflects our true uncertainty about the costs and effects

of the intervention.

In section §5.2 we introduce the model that forms the basis for our case study.

The model is a modified version of a cost-effectiveness model that was published

by the National Institute of Health and Clinical Excellence (NICE) and used

to inform a decision concerning interventions to promote physical activity in a

sedentary population (NICE, 2006). We finish the section by reporting the ‘base

case’ results without any assessment of structural uncertainty. In section §5.3 we

propose a method for managing structural uncertainty, and then in section §5.4

describe the application of the method to the case study model. We report results

of the discrepancy analysis in section §5.5.

5.2 The base case model: a physical activity in-

tervention cost-effectiveness model

Our simplified version of the NICE physical activity intervention cost-effectiveness

model aims to predict the incremental net benefit of two competing decision op-

tions: exercise on prescription (e.g. from a general medical practitioner) to pro-

mote physical activity (the ‘intervention’, d = 2), and a ‘do nothing’ scenario

(‘no intervention’, d = 1). We assume that the intervention impacts on health

by reducing the risks of three diseases: coronary heart disease (CHD), stroke and

diabetes and we wish to include in the model health effects that relate to these

three diseases. We are interested in costs that accrue as a result of the treatment

of the three diseases, as well as those that relate to the intervention itself. The



CHAPTER 5. CASE STUDY 1 88

net benefit under decision option d ∈ (1, 2) is

NBd = λQd − Cd (5.1)

where Qd is the population mean per person health effect measured in Quality

Adjusted Life Years (QALYs), Cd is the population mean per person cost, and λ is

the NICE ‘threshold’ monetary value of one QALY (as discussed in section §2.15).

Our target quantity is the incremental net benefit of decision 2 over decision 1,

measured in monetary units. This is defined as

Z = NB2 −NB1. (5.2)

The decision maker’s utility for decision option 2 over option 1 is taken to be

equal to Z, the incremental net benefit, and we assume the constraints of the

NICE Reference Case (section §2.15).

5.2.1 Description of ‘base case’ model - no assessment of

structural uncertainty

The model is a simple static cohort model which can be viewed as a decision tree

(figure 5.1). The left-most node represents the two decision options, d = 1, no

intervention, and d = 2, the exercise prescription intervention. The first ‘chance’

node represents the proportion of the population who undertake new exercise

under each decision option, with the second node representing the proportion

of the population who maintain exercise, conditional on starting new exercise.

The third node represents the proportion of the population who experience eight

mutually exclusive health states conditional on each of the three outcomes from

the first two nodes: exercise that is maintained, exercise that is not maintained,

and no exercise (sedentary lifestyle).
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Figure 5.1: The model expressed as a decision tree

The structure of the model represents our beliefs about the causal links be-

tween the intervention and exercise, and exercise and health outcomes. There are

no data available that relate to the model outputs; we have not observed costs

and health outcomes for control and treatment groups on the exercise interven-

tion. However, separate data sources are available regarding the effectiveness of

the intervention in promoting exercise, and the risks of the various disease out-

comes for active versus sedentary patients, and the availability of such data has

guided the choice of model structure.

In our model each comorbid health state (e.g. the state of CHD and stroke)

is treated as having a single onset point in time. Individuals do not progress, say,

from the disease free state, to CHD and then to CHD plus stroke as they might

do in reality. This is clearly unrealistic and is a consequence of the choice to use a

very simple decision tree structure. Modelling sequential events is possible using a

decision tree structure, but the number of terminal tree branches quickly becomes

very large in all but the simplest of problems (Sonnenberg and Beck, 1993). A

Markov or discrete event model structure would be more suited to addressing our

decision problem (see Karnon (2003) for a comparison of these methods), but

we have chosen to retain the important features of the structure of the model

published by NICE, upon which our case study is based (NICE, 2006).
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We denote the set of eight health states, disease free, CHD alone, stroke alone,

diabetes alone, CHD and stroke, CHD and diabetes, stroke and diabetes, CHD and

stroke and diabetes as H = {hi, i = 1, . . . , 8}, where i indexes the set in the order

given above. Each of the eight health states hi ∈ H, under each decision option d,

has a cost cid (measured in £), a health effect (measured in Quality Adjusted Life

Years) qid, and a probability of occurrence πid (as approximated by the relative

frequency with which this health state occurs within a large cohort). Total costs

and total health effects for decision d are obtained by summing over health states,

i.e. Cd =
∑

i=1 n
8cidπid and Qd =

∑8
i=1 qidπid. Given these, the model predicted

incremental net benefit, Y is

Y = λ(Q2 −Q1)− (C2 − C1) = λ∆Q−∆C. (5.3)

To relate the notation we have introduced here back to that of chapter 2, we

note that the relevant outcomes for health state i under decision d are the costs,

cid and health effects qid, i.e. that oid = {cid, qid}.

The costs cid, health effects qid, and health state probabilities πid are not

themselves input parameters in the model, but instead are functions of input pa-

rameters. There are 24 uncertain and three fixed input parameters that relate to

the costs, quality of life and epidemiology of CHD, stroke and diabetes, and the

effectiveness of the intervention in increasing physical activity. These inputs are

denoted X = (X1, . . . , X27), and uncertainty is represented via the joint distri-

bution p(X). Finally, we denote the deterministic function that links the model

inputs to the model output as f , i.e. Y = f(X), and call this the base case model.

5.2.2 Input distributions

Our case study, although for illustrative purposes only, is based on a published

model (NICE, 2006). However, the original modelling document did not contain

enough information to allow us to derive distributions for all uncertain inputs.

Where information was insufficient we derived plausible distributions through an

informal elicitation process. The input distributions are described in tables 5.1
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and 5.2. Starred entries denote those inputs for which distributions were derived

through informal elicitation.

Where we had only point estimates for inputs we considered the following

as plausible: costs were Gamma distributed with variance equal to the mean;

counts of cases were Poisson distributed; the correlation between the proportion

of the sedentary cohort who began new exercise in the intervention group and the

corresponding proportion in the non-intervention group was 0.5; the correlation

between the proportion of the new exercise cohort who maintained exercise in

the intervention group and the corresponding proportion in the non-intervention

group was 0.9; the standard deviations for the mean age of onset of disease and

mean ages of death from the three diseases were all 2 years.

The input parameters that relate to the effectiveness of the intervention in

increasing physical activity were estimated from a randomised controlled trial

(Lamb et al., 2002), cited in the modelling document (NICE, 2006). The observed

relative effectiveness would therefore be expected to be a reasonable estimate of

the ‘true’ relative effectiveness in a similar population to that recruited to the

Lamb et al. (2002) trial. In contrast, the inputs that relate to the risks of disease

conditional on exercise status were estimated from observational studies, and those

estimates are therefore more prone to bias and confounding. For the purposes of

our analysis, however, we assume that the distributions in table 5.1 represent

our best judgements about the inputs, given the limitations of the studies from

which they were obtained. Clearly, there is a large medical statistics literature

that relates to the problem of estimating treatment effects in trials, and similarly a

large epidemiology literature that relates to the problem of estimating associations

between risk factors and disease in observational studies.



CHAPTER 5. CASE STUDY 1 92

Table 5.1: Uncertain inputs and their distributions
Input Label Description Distribution Hyperparameters
X∗

1 c0 Intervention cost (£) Gamma shape=100; scale=1

X∗
2 tchd Total NHS costs (2005) for CHD (£) Gamma sh=3.677×109; sc=1

X∗
3 tstr Total NHS costs (2005) for stroke (£) Gamma sh=2.872×109; sc=1

X∗
4 tdm Total NHS costs (2005) for diabetes

(£)
Gamma sh=5.314×109; sc=1

X∗
5 nchd Number of UK cases of CHD Poisson µ = 2.60× 106

X∗
6 nstr Number of UK cases of stroke Poisson µ = 1.40× 106

X∗
7 ndm Number of UK cases of diabetes Poisson µ = 1.53× 106

X8 q
(dec)
chd Discounted decremental health effect

for CHD (QALYs)
Normal µ = 6.71; σ = 0.048

X9 q
(dec)
str Discounted decremental health effect

for stroke (QALYs)
Normal µ = 10.23; σ = 0.048

X10 q
(dec)
dm Discounted decremental health effect

for DM (QALYs)
Normal µ = 2.08; σ = 0.048

X∗
11 p

(ex)
1 Proportion of sedentary cohort who

begin new exercise in non-intervention
group

 MVN

µ = 0.246; σ = 0.038

ρ = 0.5

X∗
12 p

(ex)
2 Proportion of sedentary cohort who

begin new exercise in intervention
group

µ = 0.294; σ = 0.040

X∗
13 p

(mnt)
1 Proportion of new exercise cohort who

maintain exercise in non-intervention
group

 MVN

µ = 0.5; σ = 0.1

ρ = 0.9

X∗
14 p

(mnt)
2 Proportion of new exercise cohort who

maintain exercise in intervention group
µ = 0.5; σ = 0.1

X15 r
(sed)
chd Risk of CHD in a sedentary group Beta α = 80; β = 385

X16 r
(sed)
str Risk of stroke in a sedentary group Beta α = 226; β = 4072

X17 r
(sed)
dm Risk of diabetes in a sedentary group Beta α = 346; β = 3344

X18 RRchd Relative risk of CHD in active vs
sedentary pop

Lognormal µ = 0.666; σ = 0.130

X19 RRstr Relative risk of stroke in active vs
sedentary pop

Lognormal µ = 0.720; σ = 0.343

X20 RRdm Relative risk of diabetes in active vs
sedentary pop

Lognormal µ = 0.710; σ = 0.123

X∗
21 age(onst) Average age of onset of disease (same

for all diseases)
Normal µ = 57.5; σ = 2

X∗
22 age

(dth)
chd Average age of death for CHD (years) Normal µ = 71; σ = 2

X∗
23 age

(dth)
str Average age of death for stroke (years) Normal µ = 59; σ = 2

X∗
24 age

(dth)
dm Average age of death for diabetes

(years)
Normal µ = 61; σ = 2

Table 5.2: Fixed inputs
Input Label Description Value

X25 age(int) Average age of cohort at time of intervention (years) 50
X26 θ Discount rate (per year) 0.035
X27 λ NICE threshold for value of 1 QALY (£/QALY) 20,000
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5.2.3 Base case model results

The model function (which we describe in detail in section §5.4) was implemented

in R (R Development Core Team, 2010). We sampled the input space and ran the

model 100,000 times. The mean of the model output, Y , at λ=£20,000/QALY

was £247 and the 95% credible interval was (-£315, £1002). The probability that

the intervention is cost-effective, P (INB > 0), at λ =£20,000 was 0.77. Results

for the base case model are shown graphically in figure 5.2

Figure 5.2 shows the cost-effectiveness plane (with 100 Monte Carlo samples).

The sloped line shows the NICE threshold of £20,000 per QALY. To aid clarity

figure 5.2b is a contour plot representation of the cost-effectiveness plane, showing

the 95th percentile of an empirical kernel density estimate of the joint distribu-

tion of costs and effects. Figure 5.2c shows the cost-effectiveness acceptability

curve (i.e. a plot of P (INB > 0) against λ) for values of λ from £0/QALY to

£40,000/QALY. Finally, figure 5.2d shows the kernel density estimate for Y , the

base case model estimate of the incremental net benefit at λ =£20,000.

The expected population mean incremental net benefit of £247 implies that

the intervention will accrue costs and health effects that have a positive net value

of £247 per person treated (assuming that a QALY is valued at £20,000). The

probabilistic sensitivity analysis implies that, at λ=£20,000/QALY, a choice to

recommend the intervention would have a probability of 0.77 of being better than

the choice not to recommend.
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Figure 5.2: Base case model output shown as (a) cost-effectiveness plane (b)
cost-effectiveness plane contour plot (c) cost-effectiveness acceptability curve (d)
incremental net benefit empirical density.

5.3 Managing uncertainty due to structure: a

discrepancy approach

Given a model, written as a function f , with (uncertain) inputs X, we link the

model output Y = f(X) to the true, but unknown value of the target quantity

we wish to predict, Z via

Z = f(X) + δz, (5.4)
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The discrepancy term, δz, quantifies the structural error : the difference between

the output of the model evaluated at its true inputs and the true target quantity.

For the decision maker to base their decision on the model output, the model

must have credibility. The model must be judged good enough to support the

decision being made. The primary goal of our analysis is therefore to provide

a means for quantifying judgements about structural error and specifically to

determine the relative importance of structural compared to input uncertainty in

addressing the decision problem. If uncertainty about structural error is large then

we may wish to review the model structure. Conversely, if we can demonstrate

that the uncertainty about structural error is small in comparison to that due to

input uncertainty, then we have a stronger claim to have built a credible model.

In building the base case model we made a series of assumptions, for example

we assumed that occurrences of CHD, stroke and diabetes are independent at the

level of the individual and therefore that disease risks act multiplicatively. Such

assumptions drive the structural choices that we make when formulating a model,

and incorrect assumptions will lead to structural error. We must therefore focus

our attention on the assumptions within a model if we are to assess its adequacy

and properly quantify our uncertainty about the target quantity.

We therefore propose a method for deriving a distribution for the model dis-

crepancy, δz, as defined in equation (5.4). In contrast to the model averaging

approach (chapter 3) we do not attempt to make assessments about the adequacy

of the model structure in relation to alternative structures; we instead assess how

large an error might be due to the structure of the model at hand.

5.3.1 Discrepancy between model output and reality

Making meaningful judgements about the model discrepancy will be difficult,

though it should always be possible to make a crude evaluation of a plausible

range of orders of magnitude of δz, for example by asking questions like ‘could

the true incremental net benefit of decision 1 over decision 2 be a billion pounds

greater than that predicted by the model, or a million pounds greater, or only a

hundred pounds greater?’. However, it may be easier to make judgements about
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δz indirectly. If we consider f in more detail we may be able to determine where in

the model structural errors are likely to be located, and what their consequences

might be. We therefore propose making judgements about discrepancy at the

sub-function level.

5.3.2 Discrepancy at the ‘sub-function’ level

Any model f , except the most trivial, can be decomposed into a series of sub-

functions that link the model inputs to the model output. To illustrate, figure

5.3a shows a hypothetical model with ten inputs, Y = f(X1, . . . , X10), that aims

to predict a quantity Z. The model has been decomposed into a series of sub-

functions, for example Y1 = f1(X1, X2, X3) and Y2 = f2(X4, X5), revealing a set

of six ‘intermediate’ parameters Y1, . . . , Y6 that have ‘true’ values Z1, . . . , Z6.

For each sub-function, we ask the question ‘would this sub-function, if evalu-

ated at the true values of its inputs, result in the true value of the sub-function

output?’. If not then we recognise potential structural error and introduce an

uncertain discrepancy term, δj, either on the additive scale, i.e. Yj = fj(·)+ δj, or

multiplicative scale, i.e. log(Yj) = log{fj(·)} + log(δj). The idea is that, because

each sub-function represents a much simpler process than the full model f , mak-

ing judgements about discrepancy in fj will be easier than making judgements

about discrepancy in f .

Repeating the process for all sub-functions in the model will leave us with a

series of n discrepancy terms, which we denote δ = (δ1, . . . , δn). Note that for

some sub-functions we will judge there is no structural error, usually when an

intermediate parameter is by definition equal to the sub-function that generates

it.

Returning to our hypothetical model, we judge there to be structural error

in three of the sub-functions, and therefore introduce three discrepancy terms to

correct the error. The three terms are introduced on the additive scale giving:

Z1 = Y1+ δ1, Z5 = Y5+ δ2 and Z6 = Y6+ δ3. Figure 5.3b shows the incorporation

of the three uncertain discrepancy terms.
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Figure 5.3: (a) Hypothetical model with ten inputs and one output, decomposed
to reveal six intermediate parameters. (b) We suppose that there is structural
error in the sub-functions that result in Y1, Y5 and Y6. Three discrepancy terms
are added to correct the error, i.e. Z1 = Y1 + δ1, Z5 = Y5 + δ2 and Z6 = Y6 + δ3.

There will usually not be a unique decomposition of the model f into a series

of sub-functions that links the model inputs X to the model output Y . However,

some decompositions will be more useful than others for assessing discrepancy.

Following the advice that it is preferable to elicit beliefs about observable quan-

tities (Kadane and Wolfson, 1998; O’Hagan et al., 2006), we search for decompo-

sitions where both inputs and outputs of the sub-functions are observable.

Once we have introduced discrepancy terms at the locations within the model

where we judge there is potential structural error, we must make judgements about

the discrepancies via the specification of the joint probability distribution p(X, δ).

We assume in our case study that discrepancies are independent of inputs, such

that we can factorise the joint density p(X, δ)=p(X)p(δ). This independence

assumption does not need to hold for the discrepancy method to be valid, but
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specification of p(δ) independent of p(X) will clearly be easier than specifying

p(X, δ) where there is dependence.

Even if we are able to assume that discrepancies are independent of inputs, we

will need to think quite hard about the correlation structure in the discrepancies

themselves. For example, in figure 5.3b the discrepancy term δ1 is ‘proximal’ to δ2.

We are assuming that we have correctly specified δ1 when we specify δ2. We are

also (implicitly here) assuming that the joint distribution on the inputs, p(X), is

properly specified. This may have required introducing discrepancy components

even more ‘proximally’ at the level of the model inputs. This provides a nice link

to Turner et al. (2009)’s work on bias modelling.

In specifying p(δ) we begin by considering the mean and variance for each

discrepancy term δj, j = 1, . . . , n. In our case study we make judgements about

the sizes of the discrepancies relative to the mean values of the corresponding

intermediate parameters, and set variances such that
√

var(δj) = vj|E(Yj)|, with

vj chosen to reflect our judgements. Determining plausible values for vj may not

be a trivial task, a point to which we return later. We treat each δj as independent

of all other uncertain quantities, unless there are constraints that prevent this (a

constraint would arise, for example, in relation to a set of population proportion

parameters that must sum to one) or unless there are good reasons to assume

strong correlation between terms. Finally we select appropriate distributions with

the specified means and variances.

Propagating the uncertainty we have specified for δ through the model, along

with the uncertainty in the inputs, X, allows us to check that the uncertainty in

Z that our specification of p(δ) implies is plausible. If this is not the case then

we must rethink our choice of distributions for the components of δ, most easily

through altering our choices for vj.

The sub-function discrepancy approach has two important consequences. Firstly,

if we can adequately make judgements about all the discrepancy terms in the

model (there may be many) then we will derive p(δz) and hence be able to make

statements about our uncertainty about the incremental net benefit that incorpo-

rates beliefs about both inputs and structure. Perhaps more usefully though, we
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can use sensitivity analysis techniques to investigate the relative importance of the

different structural errors, allowing us improve the parts of the model where this

is most needed. If, after repeating the sensitivity analysis in our improved model,

we find that discrepancies now have a lesser impact on the output uncertainty,

then we have in an important sense built a more robust model structure.

5.4 Applying the sub-function discrepancy method

to our physical activity model

We now return to our base case physical activity model, and beginning at the net

benefit equation (5.3), work ‘backwards’ through the model, assessing potential

structural error at each sub-function.

5.4.1 Assessment of sub-function generating the output

parameter Y

The model output, Y predicts the incremental net benefit,

Y = λ(Q2 −Q1)− (C2 − C1) = λ∆Q−∆C. (5.5)

Evaluation of equation (5.5) at the true values of ∆Q and ∆C would, by definition,

result in the true value of the incremental net benefit, Z, so there is no structural

error at this point in the model, and therefore no discrepancy term. We take as

given that the two decision options are mutually exclusive and exhaustive, but

clearly, if this were not to be so, then this would be a (possibly very important)

source of structural error.
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5.4.2 Assessment of sub-function generating the interme-

diate parameter ∆Q

The incremental health effect of the intervention over the non-intervention, ∆Q

is

∆Q =
8∑
i=1

πi2qi2 −
8∑
i=1

πi1qi1, (5.6)

where πid and qid are the probabilities and discounted health effects in QALYs

respectively for health state i under decision d. Future health effects (and future

costs) are discounted to reflect time preference whereby higher value is placed

on benefits that occur in the near future than on those occurring in the distant

future. See Krahn and Gafni (1993) for a discussion of the role of discounting in

health economic evaluation.

Health effects for each state i are assumed to be equal under each decision d,

i.e. that qi1 = qi2 = qi. The total health effects are

∆Q = Q2 −Q1 (5.7)

=
8∑
i=1

πi2qi −
8∑
i=1

πi1qi (5.8)

=
8∑
i=1

(πi2 − πi1)qi (5.9)

=
8∑
i=1

(πi2 − πi1)(qi − q1) (5.10)

=
8∑
i=1

(πi2 − πi1)q
(dec)
i , (5.11)

where the final term is a re-expression in terms of the decremental health effect,

q
(dec)
i relative to the disease free state i = 1.

We ask the question, ‘given the true values of πid and qi, does (5.7) result in

the true value of ∆Q?’. Because we imagine that the intervention could have an

impact on a number of diseases other than CHD, stroke and diabetes we recognise

potential structural error and introduce an uncertain additive discrepancy term,
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δ∆Q into (5.7), which becomes

∆Q =
8∑
i=1

(πi2 − πi1)q
(dec)
i + δ∆Q. (5.12)

Since exercise can result in poor health outcomes as well as good outcomes,

for example through musculo-skeletal injuries or accidents, we specify a mean of

zero for δ∆Q. We could assume a non-zero mean for δ∆Q if we felt that increased

exercise was likely to be on balance beneficial. This will have the effect of shifting

the mean of the model output unless the sub-function related to the discrepancy

is entirely unimportant.

We judge that δ∆Q is unlikely to be more than ±10% of ∆Q, and we represent

our beliefs about δ∆Q using a normal distribution with a standard deviation equal

to 5% of the mean of ∆Q, i.e. δ∆Q ∼ N[0, {0.05× E(∆Q)}2].

5.4.3 Assessment of sub-function generating the interme-

diate parameter ∆C

The incremental cost of the intervention over the non-intervention, ∆C is

∆C =
8∑
i=1

πi2ci2 −
8∑
i=1

πi1ci1, (5.13)

where πid and cid are the probabilities and discounted costs respectively that are

associated with health state i under decision d.

Costs, not including the cost of the intervention itself c0, are assumed to be

equal across decision arms, i.e. that ci2 = ci1 + c0, and therefore that

∆C =
8∑
i=1

πi2(ci1 + c0)−
8∑
i=1

πi1ci1 (5.14)

= c0 +
8∑
i=1

(πi2 − πi1)ci1, (5.15)

where c0 is a model input.

As above, there may be costs that relate to diseases other than CHD, stroke
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and diabetes that are not included in ∆C and we therefore introduce an additive

discrepancy term, δ∆C , and specify that δ∆C ∼ N[0, {0.05× E(∆C)}2].

5.4.4 Assessment of sub-function generating the interme-

diate parameters ci1

The intermediate parameters ci1 represent the discounted cost associated with

the eight health states under decision 1. In the base case model the costs for

the eight states are derived from the costs associated with the three individual

diseases, with costs for comorbid states assumed to be the sum of the costs for

the constituent diseases, i.e.

c1,1 = cwell, (5.16)

c2,1 = cchd, (5.17)

c3,1 = cstr, (5.18)

c4,1 = cdm, (5.19)

c5,1 = cchd + cstr, (5.20)

c6,1 = cchd + cdm, (5.21)

c7,1 = cstr + cdm, (5.22)

c8,1 = cchd + cstr + cdm. (5.23)

Costs may not be additive in this way, so we introduce additive discrepancy

terms, δcj , for the intermediate parameters that relate to the comorbid states,

ci1 i = 5, . . . , 8 (equations (5.20) to (5.23)).

We judge that comorbid state costs could be higher or lower than the sum of

the constituent costs, so we assumed a mean of zero for each discrepancy term,

δci , i = 5, . . . , 8. We represent beliefs about δci via δci ∼ N[0, {0.05×E(ci1)}2], i =

5, . . . , 8.
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5.4.5 Assessment of sub-function generating the interme-

diate parameters cchd, cstr and cdm

The discounted costs for CHD, stroke and diabetes are

ck = c∗k × αk, (5.24)

where k indexes the set {CHD, stroke, diabetes}. Costs (other than the cost of the

intervention) are assumed to occur at some time in the future, and are discounted

at 3.5% per year. The parameters c∗k represent undiscounted costs, and αk, are

the discounting factors for the length of time between the intervention and the

occurrence of the relevant health outcomes.

Given true values for c∗k and αk equation (5.24) will result in a true value for

ck, and there is no structural error at this point.

5.4.6 Assessment of sub-function generating the interme-

diate parameters c∗chd, c
∗
str and c∗dm

The undiscounted mean per-person lifetime costs for CHD, stroke and diabetes

are

c∗k =
tk
nk

(
age

(dth)
k − age

(onst)
k

)
, (5.25)

where k indexes the set {CHD, stroke, diabetes}, and where tk are total annual

NHS costs for disease k, and where nk are UK prevalent cases of disease k for the

same year. The parameters tk, nk, age
(dth)
k and age(onst) are model inputs.

Mean per person undiscounted costs are calculated as the mean per person

annual NHS cost multiplied by the mean length of time in the disease state. If

the per person per year cost of disease is dependent on the length of time the

individual spends in the disease state (e.g. if costs are greater near to the end of

life), then c∗chd, c
∗
str and c

∗
dm as calculated will not equal the mean per person per

year costs. To properly calculate the mean we need to know the joint distribution

of the costs and length of time in the disease state. To account for the difference

we introduce discrepancy terms δc∗k .
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We judge that disease costs could in reality be higher or lower than the mod-

elled costs as a result of the structural error, so we assume a mean of zero for

each discrepancy term, δc∗k . We represent beliefs about δc∗k via δc∗k ∼ N[0, {0.05×

E(c∗k)}2].

5.4.7 Assessment of sub-function generating the interme-

diate parameters αchd, αstr and αdm

The discounting factors for CHD, stroke and diabetes are

αk = (1 + θ)−lk , (5.26)

where lk is the mean length of life remaining at the time of intervention for disease

k ∈ {CHD, stroke, diabetes}, and θ is the per-year discount rate for both costs

and health effects. The mean length of life remaining, lk, is given by

lk =
1

2

(
age

(onst)
k + age

(dth)
k

)
− age(int), (5.27)

where age
(onst)
k is the mean age of onset of disease k, age

(dth)
k is the mean age of

death from disease k and age(int) is the mean age of the cohort at the time of the

intervention. The parameters θ, age
(dth)
k , age

(onst)
k and age(int) are model inputs.

In the base case model we assume that the costs of each disease will be realised

at a time midway between the average age of disease onset, and the average age

of death from that disease. This is not necessarily true and we introduce additive

discrepancy terms δαk
.

Discount factors must lie in (0, 1], and so discrepancies must lie in (−αk, 1−αk].

To satisfy this constraint we assume that αk+ δαk
follows a beta distribution. We

have no reason to believe that the true values of the discount rates will be higher

or lower than the modelled values, so we assume that δαk
has mean zero for all k.

As above, we assume that the standard deviation is 5% of the mean value of the

intermediate parameter, i.e. that
√

var(δαk
) = 0.05E(αk).

The more general Dirichlet distribution specification of uncertainty is required



CHAPTER 5. CASE STUDY 1 105

for other discrepancy terms in the model, so for brevity we treat αk + δαk
and

1 − (αk + δαk
) as ‘sum-to-one’ parameters and the beta distribution as a special

case of the Dirichlet distribution. We describe in section §5.4.12 how we chose

Dirichlet distribution hyperparameters to satisfy these requirements.

5.4.8 Assessment of sub-function generating the interme-

diate parameters q
(dec)
i

The intermediate parameters q
(dec)
i represent the discounted decremental health

effects (in QALYs) associated with the eight health states. In the base case model

these terms are derived from the discounted decremental health effects associated

with the three individual diseases, with decremental effects for comorbid states

assumed to be the sum of the decremental effects for the constituent diseases, i.e.

q
(dec)
1 = 0, (5.28)

q
(dec)
2 = qchd − qwell = q

(dec)
chd , (5.29)

q
(dec)
3 = qstr − qwell = q

(dec)
str , (5.30)

q
(dec)
4 = qdm − qwell = q

(dec)
dm , (5.31)

q
(dec)
5 = (qchd − qwell) + (qstr − qwell) = q

(dec)
chd + q

(dec)
str , (5.32)

q
(dec)
6 = (qchd − qwell) + (qdm − qwell) = q

(dec)
chd + q

(dec)
dm , (5.33)

q
(dec)
7 = (qstr − qwell) + (qdm − qwell) = q

(dec)
str + q

(dec)
dm , (5.34)

q
(dec)
8 = (qchd − qwell) + (qstr − qwell) + (qdm − qwell)

= q
(dec)
chd + q

(dec)
str + q

(dec)
dm , (5.35)

where the parameters q
(dec)
chd , q

(dec)
str and q

(dec)
dm are model inputs. Decremental health

effects may not be additive in this way, so we introduce discrepancy terms δqi for

the comorbid health states i = 5, . . . , 8 (equations (5.32) to (5.35)).

We judge that comorbid state decremental health effects could be higher or

lower than the sum of the constituent terms, so assume a mean of zero for each

discrepancy term, δqi , i = 5, . . . , 8. We represent beliefs about δqi via δqi ∼

N[0, {0.05× E(qi)}2], i = 5, . . . , 8.
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5.4.9 Assessment of sub-function generating the interme-

diate parameters πid

The proportions of the population who are expected to experience each disease

state i = 1, . . . , 8 under decision options d = 1, 2 are

πid = p
(ex)
d p

(mnt)
d r

(ex)
i + p

(ex)
d

(
1− p

(mnt)
d

)
r
(sed)
i +

(
1− p

(ex)
d

)
r
(sed)
i , (5.36)

where r
(ex)
i and r

(sed)
i are the risks of disease state i in those who exercise and

in those who are sedentary, respectively. The probability of new exercise under

decision option d is p
(ex)
d , and the probability of maintenance of exercise is p

(mnt)
d .

The parameters p
(ex)
d and p

(mnt)
d are model inputs.

Parameters defining health state probabilities lie in [0, 1], and must sum to

one over i, so discrepancies must lie in [−πid, 1− πid], and must sum to zero over

i. To satisfy this constraint we assume a Dirichlet distribution for πid + δπid .

We have no reason to believe that the true values of the health state prob-

abilities would be higher or lower than the modelled values, so we assume that

E(δπid) = 0, ∀i, d. We assume that the standard deviation was 5% of the mean

value of the intermediate parameter, i.e.

1

8

8∑
i=1

√
var(δπid)

E(πid)
= 0.05. (5.37)

See section §5.4.12 for details of the calculation of the Dirichlet hyperparameters

that satisfy these requirements.

5.4.10 Assessment of sub-function generating the interme-

diate parameters r
(ex)
i and r

(sed)
i

The parameters r
(ex)
i and r

(sed)
i represent the risks of health state i in a population

that exercises and in a sedentary population, respectively. In the base case model

we assume that occurrences of CHD, stroke and diabetes are independent, and

therefore that the r
(ex)
chd , r

(ex)
str and r

(ex)
dm act multiplicatively to generate the r

(ex)
i
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(and similarly multiplicatively in the sedentary population). So for example,

r
(ex)
1 = (1− r

(ex)
chd )(1− r

(ex)
str )(1− r

(ex)
dm ). (5.38)

We assume that occurrences of CHD, stroke and diabetes are independent,

which may not be true, so we introduce additive discrepancy terms δ
r
(sed)
i

and δ
r
(ex)
i

.

Following the same argument as that in 5.4.9 we assume a Dirichlet distributions

for r
(ex)
i + δ

r
(ex)
i

and for r
(sed)
i + δ

r
(sed)
i

. We have no reason to believe that the true

values of the disease risks would be higher or lower than the modelled values,

so we assume that E(δ
r
(ex)
i

) = E(δ
r
(sed)
i

) = 0, ∀i. We assume that the standard

deviations were 5% of the mean values of the intermediate parameters, i.e.

1

8

8∑
j=1

√
var
(
δ
r
(ex)
i

)
E
(
r
(ex)
i

) =
1

8

8∑
i=1

√
var
(
δ
r
(sed)
i

)
E
(
r
(sed)
i

) = 0.05. (5.39)

5.4.11 Assessment of sub-function generating the interme-

diate parameters r
(ex)
k

The parameters r
(ex)
k where k indexes the set {CHD, stroke, diabetes} represent

the risks of CHD, stroke and diabetes in those who exercise. They are calculated

by multiplying baseline risk by the relative risk of disease given exercise, i.e.

r
(ex)
k = r

(sed)
k ×RRk, (5.40)

where r
(sed)
k and RRk are model inputs.

Given true values for r
(sed)
k and RRk, and an assumption that the relative effect

size is constant with respect to baseline risk, sub-function (5.40) will result in the

true value of r
(ex)
k by definition of a relative risk. There is therefore no structural

error at this point. The assumption of constant effect size with respect to baseline

is felt to be reasonable in this case, but if in another circumstance it was not then

we would add a discrepancy term at this point.



CHAPTER 5. CASE STUDY 1 108

5.4.12 Generating a sample from the distribution on the

discrepancy relating to a sum-to-one parameter

We denote a sum-to-one intermediate parameter as Y = (Y1, . . . , Yn), where Yj ∈

[0, 1] ∀j and
∑n

j=1 Yj = 1.

The true unknown value of the intermediate parameter is denotedZ = (Z1, . . . , Zn)

where Z = Y + δY and δY = (δY1 , . . . , δYn). The same constraints apply to Z as

to Y , i.e. Zj ∈ [0, 1] ∀j and
∑n

j=1 Zj = 1.

We state the following beliefs about δY . Firstly, that E(δYj) = 0 ∀j, and

secondly that the mean of the ratio of the standard deviation of the discrepancy

to the expected value of the parameter is some constant v, i.e. that

1

n

n∑
j=1

√
var(δYj)

E(Yj)
= v. (5.41)

We generate a sample from p(Z) as follows. Firstly, we sample {ys, s =

1, . . . , S} from p(Y ). Conditional on Y we then generate a sample {zs, s =

1, . . . , S} from p(Z), where each zs is a single draw from p(Z|Y = ys). The

conditional distribution of Z|Y = ys is Dirichlet with hyperparameter vector

γys = (γy1,s, . . . , γyn,s).

The expectation of δYj is

E(δYj) = E(Zj)− E(Yj) = EYi{EZj
(Zj|Yj)} − E(Yj) = 0, (5.42)
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as required. The variance of δYj is

var(δYj) = var(Zj) + var(Yj)− 2Cov(Zj, Yj) (5.43)

= EYj{varZj
(Zj|Yj)}+ varYj{EZj

(Zj|Yj)}

+var(Yj)− 2cov(Zj, Yj) (5.44)

= EYj{varZj
(Zj|Yj)}+ varYj{EZj

(Zj|Yj)}

+var(Yj)− 2var(Yj) (5.45)

= EYj{varZj
(Zj|Yj)}+ var(Yj) + var(Yj)− 2var(Yj) (5.46)

= EYj{varZj
(Zj|Yj)} (5.47)

= EYj

{
(Yj(1− Yj)

γ + 1

}
(5.48)

=
E(Yj){1− E(Yj)}

γ + 1
− var(Yj)

γ + 1
(5.49)

' E(Yj){1− E(Yj)}
γ + 1

. (5.50)

The final step follows because var(Yj) is small relative to E(Yj){1 − E(Yj)} in

this application. The Yj (j = 1, . . . , n) are intermediate parameters in the case

study model where they represent proportions of the population in certain states.

Because they are derived from other uncertain quantities they usually do not have

a standard distribution. However, if we assume that Yj is approximately beta

distributed with hyperparameters αj and βJ , then the ratio of E(Yj){1− E(Yj)}

to var(Yj) is approximately equal to αj + βj + 1. Unless the distribution of Yj is

very dispersed, α + β + 1 will not be small and therefore E(Yj){1 − E(Yj)} will

dominate var(Yj).

The hyperparameter γ is chosen such that the mean of the ratio of the standard

deviation to the expected value of the parameter is v, i.e. so that

1

n

n∑
j=1

√
var(δYj)

E(Yj)
=

1

n

n∑
j=1

√
E(Yj){1−E(Yj)}

γ+1

E(Yj)
= v. (5.51)
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Approximating E(Yj) by the sample mean ȳj and rearranging gives

γ =
1

v2

{
1

n

n∑
j=1

√
1− ȳj
ȳj

}2

− 1. (5.52)

5.5 Discrepancy analysis results

Following the discrepancy analysis in the case study model a total of 48 discrep-

ancy terms were introduced. The addition of the discrepancy terms ‘corrects’ any

structural error, and allows us now to write

Z = f ∗(X, δ), (5.53)

where f ∗ takes the same functional form as f , but with the inclusion of the

discrepancy terms as described in section §5.4.

5.5.1 Model output after inclusion of discrepancy terms

We sampled the input and discrepancy distributions and ran the model f ∗ 100,000

times. This resulted in a predicted mean incremental net benefit of £247, which is

equal to the that predicted by the base case model. The 95% credible interval was

-£886 to £1444, which is wider than that of the base case model, reflecting the

recognition of our additional uncertainty about the true incremental net benefit

due to possible model structural error.

Figure 5.4 shows the model results after the addition of the 48 discrepancy

terms. We note the larger cloud of points on the cost-effectiveness plane (figures

5.4a and 5.4b), reflecting the additional uncertainty. The additional uncertainty

has reduced the probability that the intervention is cost-effective, P (INB > 0),

at λ =£20,000 to 0.66 (closer to the value of 0.5 that represents complete un-

certainty), and flattened the cost-effectiveness acceptability curve towards the

horizontal line at P (INB > 0) = 0.5 (figure 5.4c). The additional uncertainty is

also reflected in the wider empirical distribution in figure 5.4d.
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Figure 5.4: Results after the addition of discrepancy terms as (a) cost-effectiveness
plane (b) cost-effectiveness plane contour plot (c) cost-effectiveness acceptability
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5.5.2 Determining important structural errors via vari-

ance based sensitivity analysis

Following our analysis of structural error we may then wish to make improvements

to the model. It is unlikely that all the sub-model discrepancy terms are equally

‘important’, by which we mean that some terms may be located in parts of the

model in which structural errors contribute very little to uncertainty about Z, the

incremental net benefit. If we can identify the most important discrepancy terms,

we can consider reducing structural errors through better modelling, perhaps by

relaxing certain assumptions, or by including features that were omitted initially.

Similarly, identifying unimportant discrepancy terms will tell us where it is not

worth improving the model.

Note that any re-modelling following a sensitivity analysis may not reduce

uncertainty about Z, for example if the improved model structure introduces

new, uncertain parameters. In this situation we are effectively ‘transferring’ our

uncertainty from structure to inputs. This may be helpful simply because input

uncertainty is generally easier to manage, but in any case we believe that a formal

consideration of the balance between uncertainty due to model structure and

uncertainty due to model inputs is desirable.

We can identify a set of important discrepancy terms using sensitivity analysis

techniques. Various methods exist (as discussed in chapter 3), but for the purposes

of this case study we have chosen to use a variance based sensitivity analysis

approach. In this approach the measure of importance for each discrepancy term,

δj j = 1, . . . , n, is defined as its ‘main effect index’,

varδj{E(Z|δj)}
var(Z)

. (5.54)

Given the identity var(Z) = varδj{E(Z|δj)} + Eδj{var(Z|δj)} the numerator of

the main effect index gives the expected reduction in the variance of Z obtained

by learning the value of δj.

The main effect index for uncorrelated discrepancy terms is straightforward to

calculate using Monte Carlo methods. In this case E(Z|δj) can be approximated
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by

E(Z|δj) '
1

S

S∑
s=1

f∗(xs, δ−j,s, δj), (5.55)

where {(xs, δ−j,s), s = 1, . . . , S} is a (large) sample from the distribution p(X, δ−j).

However, if δj is correlated with other discrepancy terms or inputs, then

this method would require us to draw samples from the conditional distribution

p(X, δ−j|δj). Such conditional distributions may not be known, so we approx-

imated the conditional expectation using a novel method that we describe in

chapter 7.

Following a variance based sensitivity analysis of the discrepancy terms in our

model, eight of the terms appeared to be important, having main effects > 5%.

The pattern of importance suggests that re-expressing the sub-functions for the

parameters πid is key to reducing structural error (table 5.3).

Table 5.3: Main effect indices for discrepancy terms (> 5% in bold)

Discrepancy Main effect Discrepancy Main effect Discrepancy Main effect

δ
r
(ex)
1

0.002 δπ1,1 0.266 δc∗chd 0.002

δ
r
(ex)
2

0.002 δπ2,1 0.128 δc∗str 0.002

δ
r
(ex)
3

0.003 δπ3,1 0.076 δc∗dm 0.001

δ
r
(ex)
4

0.002 δπ4,1 0.002 δdchd 0.002

δ
r
(ex)
5

0.003 δπ5,1 0.054 δdstr 0.002

δ
r
(ex)
6

0.002 δπ6,1 0.025 δddm 0.002

δ
r
(ex)
7

0.003 δπ7,1 0.014 δq5 0.002

δ
r
(ex)
8

0.004 δπ8,1 0.010 δq6 0.002

δ
r
(sed)
1

0.002 δπ1,2 0.257 δq7 0.002

δ
r
(sed)
2

0.002 δπ2,2 0.124 δq8 0.002

δ
r
(sed)
3

0.002 δπ3,2 0.076 δc5 0.002

δ
r
(sed)
4

0.002 δπ4,2 0.002 δc6 0.002

δ
r
(sed)
5

0.002 δπ5,2 0.049 δc7 0.002

δ
r
(sed)
6

0.002 δπ6,2 0.025 δc8 0.002

δ
r
(sed)
7

0.002 δπ7,2 0.013 δ∆q 0.003

δ
r
(sed)
8

0.002 δπ8,2 0.008 δ∆c 0.001

We noted in section §3.4.1 that the main effect index does not measure the

sensitivity of the decision to changes in the inputs, and we will address this prob-

lem in the next case study by computing the expected value of perfect information
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rather than the main effect index. If, however, the focus of a modelling effort is to

predict an unknown quantity rather than to support a decision, then the variance

based approach is entirely reasonable. In this case, we would also compute the

total effect index for each input in order to ensure that inputs that have a small

main effect index are not influential due to interactions with other inputs. The

total effect index for Xi is

var(Y )− varX−i
{EXi

(Y |X−i)}
var(Y )

=
EX−i

{varXi
(Y |X−i)}

var(Y )
, (5.56)

where X−i is the vector of all inputs except Xi. As discussed in section §3.4.1

the total effect index measures the overall effect of the input Xi, including any

interactions. It is the expected variance (as a proportion of the total variance)

that is left when all inputs except Xi are fixed. In general, the main effect index is

useful in determining the effect of learning a single input, whereas the total effect

index is useful in determining non-influential inputs.

5.5.3 The relative importance of parameter to structural

error uncertainty

We may also wish to understand the relative importance of the contributions of

uncertainty about structural error and uncertainty about input parameters to the

overall uncertainty in Z. We can measure this using the structural parameter

uncertainty ratio, which we define as

varδ{EX(Z|δ)}
varX{Eδ(Z|X)}

. (5.57)

This is straightforward to calculate if δ is independent of X since EX(Z|δ = δ′) =

EX{f ∗(X, δ)|δ = δ′} = EX{f∗(X, δ′)} and Eδ(Z|X = x) = Eδ{f ∗(X, δ)|X =

x} = Eδ{f∗(x, δ)}. If δ and X are not independent calculating the conditional

expectations is more difficult, though methods are available (for example via the

specification of a Gaussian process emulator, Oakley and O’Hagan, 2004).

The structural parameter uncertainty ratio in our model is 2.0 indicating that,
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given our specification of discrepancy, learning the discrepancy terms would result

in double the expected reduction in the variance of the output compared with

the expected reduction in variance on learning the true values of all the input

parameters.

5.5.4 Analysis of robustness to different choices of vj

In our case study we set vj (the ratio of the discrepancy standard deviation to

the mean of the corresponding intermediate parameter) to 5% equally for all dis-

crepancy terms, judging this to be an appropriate reflection of the likely range

of structural error. The resulting additional uncertainty in the model output was

plausible, and the variance based sensitivity analysis implied that there was impor-

tant structural error in the sub-model that generates the health state probability

parameters, πid (section §5.4.9).

In order to test the robustness of our conclusion to minor variations in the

specification of the discrepancies we altered values for vj over a plausible range. We

grouped the discrepancy terms into four sets: terms relating to cost parameters,

terms relating to health effect parameters, terms relating to population proportion

parameters, and terms relating to the discount factors. Within each set the values

for vj were either doubled, halved or maintained at 5%. Given three levels for vj

and four sets of discrepancy terms there are 34 = 81 combinations of choices for

vj including our original specification of vj = 5% for all j.

In all 81 cases a very similar pattern of main effect indexes to that reported

in table 5.3 was observed, with the δπid terms dominating, indicating robustness

to choices of vj over the range 2.5% to 10%.

5.5.5 Remodelling the sub-functions where there is impor-

tant structural error

Variance based sensitivity analysis has identified δπid to be important discrepancy

terms, indicating that we have important structural error in the sub-model that

generates the health state probability parameters, πid.
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In the base case model the proportion of people who begin and then maintain

exercise is assumed constant over time. If we believe that there will be a decline

in the proportion of people who exercise over time then we could re-structure the

model sub-function to reflect this. We could, for example, assume an exponential

decline, whereby the proportion exercising at each year in the future is equal

to the proportion exercising in the previous year multiplied by some (uncertain)

constant. If the risk of each disease state i decreased (increased for the well state)

linearly from r
(sed)
i to r

(ex)
i with increasing time spent exercising (with a threshold

achieved after, say, four years exercise), then we could write

πid =
(
1− p

(ex)
d

)
r
(sed)
i + p

(ex)
d (1−md) r

(sed)
i

+ p
(ex)
d

(
md −m2

d

)(1

4
r
(ex)
i +

3

4
r
(sed)
i

)
+ p

(ex)
d

(
m2
d −m3

d

)(1

2
r
(ex)
i +

1

2
r
(sed)
i

)
+ p

(ex)
d

(
m3
d −m4

d

)(3

4
r
(ex)
i +

1

4
r
(sed)
i

)
+ p

(ex)
d m4

dr
(ex)
i , (5.58)

where md is the proportion of the population who exercised in year t who continue

to exercise in year t+ 1, under decision d.

To complete the new model specification we need to specify distributions for

m1 and m2. After informal discussion with an expert we specified m1 and m2 as

jointly normally distributed with means of 0.5, variances of 0.01 and a correlation

of 0.9.

5.5.6 Results following sub-function remodelling

The mean net benefit following remodelling was £71 (95% credible interval -£273

to £572), with the probability that the intervention is cost-effective, P (INB > 0),

at λ =£20,000 equal to 0.59. Figure 5.5 shows the results after remodelling. We

see that there is now a smaller cloud a points on the cost-effectiveness plane,

and that these are shifted towards the left and the line of no effect (at ∆Q =

0). The cost-effectiveness acceptability curve (figure 5.5c) suggests that following

remodelling we predict that the intervention has a lower probability of being cost-

effective than predicted by the base case model at all values of λ. The leftwards
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shift of the incremental net benefit density towards zero supports this (figure

5.5d).
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Figure 5.5: Results after remodelling as (a) cost-effectiveness plane (b) cost-
effectiveness plane contour plot (c) cost-effectiveness acceptability curve (d) in-
cremental net benefit empirical density.

By re-structuring the important sub-function in the model to better incor-
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porate our beliefs about real-world processes, we find that the incremental net

benefit distribution is shifted downwards. This is due to our judgement that a

proportion of those who begin new exercise will cease exercising, and that instead

of this drop being a single step change, the fall will be exponential over time.

This results in a lower proportion of maintained exercise in both the intervention

and non-intervention groups, and a lower absolute reduction in disease risk and

smaller incremental benefit.

5.6 Conclusion

In this chapter we introduced a method for making judgements about model dis-

crepancy at the level of the intermediate parameters within the model. We showed

how it is possible to determine the subset of discrepancy terms that are impor-

tant in driving model output uncertainty. This then allowed us to reconsider those

parts of the model where the structure is uncertain, and where this uncertainty

was an important contributor to output uncertainty. The resulting model better

reflected our judgements about the underlying process. However, the method re-

lies on the ability to meaningfully specify judgements about the model error at

the sub-function level via p(X, δ). This may not be easy. We return to this point

in chapter 8.

In the next chapter we apply our method in a rather more complex model,

a Markov model where the addition of time dependency considerably increases

the number of discrepancy terms that must be specified. We recognise that the

main effect index is not an adequate measure of importance for the discrepancy

terms in a decision theoretic context and therefore compute the expected value of

perfect information instead.



Chapter 6

Case Study 2 - Managing

Structural Uncertainty in a

Markov Model

6.1 Introduction

In this chapter we illustrate the application of the discrepancy method that we

introduced in chapter 5 to another common type of health economic decision

model, the Markov model. We imagine a scenario where we have built a relatively

simple Markov model, but recognise that reality is more complex. We do not

believe that even if we were to learn the ‘true’ values of the Markov transition

probabilities and all other uncertain inputs in the model, that the predicted costs

and health outcomes would equal their true values. We know that the model is a

simplification, and we seek to answer the question ‘is it good enough?’.

The Markov model that we use for this second case study predicts the costs and

health effects of two competing treatments for HIV/AIDS. The time dependency

that is present in the Markov model, but was absent from the decision tree model,

presents us with the new challenge of specifying a joint distribution for a large

number of discrepancy terms that are correlated in time, as well as within and

between decision options. In order to parsimoniously specify the distribution on

these terms we use a Gaussian process to represent our judgements about the

119
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model error.

In chapter 5 we used a variance-based sensitivity analysis to determine the

relative importance of the discrepancy terms in driving the uncertainty in the

output. In this chapter we adopt a decision theoretic approach and compute the

expected value of learning the true values of the discrepancies. This avoids the

need for the output of the model to be scalar, and more importantly tells us

where uncertain model structure is likely to have an effect on the decision, rather

than just on the model output. It is quite possible for a discrepancy term to be

influential on the model output, but not to change the decision. If the value of

learning the true values of the discrepancies is small compared with the expected

value of learning the true values of inputs, then this offers reassurance that our

current model is good enough for the decision at hand. We interpret the expected

value of perfect information for the discrepancy terms as giving an upper bound

on the expected value of model improvement (EVMI).

The chapter is organised as follows. In section §6.2 we introduce the case

study: a simple Markov model designed to predict the costs and health effects

of two competing treatment options for HIV/AIDS. In section §6.3 we apply the

discrepancy analysis method in three scenarios that represent plausible sets of

assumptions regarding the structural error. In section §6.4 we present results

including the ‘expected value of model improvement’ (EVMI) in each scenario.

6.2 Case study model

In order to illustrate the method we introduce a case study that is based on a

four state Markov model first described in Chancellor et al. (1997) and subse-

quently used for illustrative purposes in Drummond et al. (2005) and Briggs et al.

(2006). The purpose of the model is to predict costs and health outcomes (in

life years) under two decision options, zidovudine monotherapy versus zidovudine

plus lamivudine combination therapy, in people with HIV. Allowable transitions

between the four health states are shown in figure 6.1. The authors of the original

paper chose time steps of 1 year and ran the model to a time horizon of 20 years.
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State 1

CD4 > 200

CD4 < 500

State 3

AIDS

State 2

CD4 < 200

State 4

Death

Figure 6.1: Structure of the case study Markov model

Note that this is no longer a credible model given the development of our

understanding of the pathology of HIV/AIDS. Importantly, it is now understood

that transitions can occur from worse to better states (see for example the models

described in Miners et al., 2001; Simpson et al., 2004), transitions that are not

possible in the Chancellor et al. (1997) model.

6.2.1 Notation

We index the monotherapy and combination therapy decision options d = 1, 2

respectively, the four mutually exclusive health states as i = 1, . . . , 4, and the

time steps in years as t = 0, . . . , 20. If we imagine a cohort of people exposed

to decision option d, we denote πdjt as the proportion of the cohort who are in

health state i during time step t (alternatively, πdjt represents, under decision

option d at time step t, the probability that a single individual exists in health

state i versus the other states). We call πdt = (πd1t, . . . , πd4t)
′ the state vector for

decision option d at time step t, and note the constraint
∑4

i=1 πdjt = 1 ∀d, t.

We denote the costs and health effects accrued for health state i during time

step t under decision d as cdjt and edjt respectively. Costs and outcomes are

time dependent to allow the discounting of costs and effects accrued in the future

(Krahn and Gafni, 1993). We can therefore write costs and effects at time step

t in terms of costs and effects at time zero via cdjt = cdi0(1 + rc)
−t and edjt =

edi0(1 + re)
−t, where rc and re are the per-year discount rate for costs and health

effects. The health effect of interest for this decision problem is life years, so
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edi0 = 1 for health states i = 1, 2, 3, and zero for the death state i = 4. We

denote the vector of costs for all health states at time step t under decision d as

cdt = (cd1t, . . . , cd4t)
′, and the vector of health effects as edt = (ed1t, . . . , ed4t)

′.

6.2.2 The Markov model

The authors assumed a simple time-homogeneous Markov process (i.e. transition

probabilities remain fixed for all time steps). Under this assumption the prob-

ability that an individual will move from health state x to health state y under

decision d is given by pdxy, and we note the constraints that pdxy ≥ 0 ∀d, x, y and∑4
y=1 pdxy = 1 ∀d, x.

Transition from a worse health state to a better health state is considered

impossible in this decision scenario. The transition matrix for the monotherapy

(d = 1) option is therefore of the form,

M1 =


p111 p112 p113 p114

0 p122 p123 p124

0 0 p133 p134

0 0 0 1

 , (6.1)

where the lower diagonal elements are zero. Death is an absorbing state.

The matrix M1 is modified by the incorporation of a combination therapy

treatment effect parameter, RR, to give the transition matrix for the combination

therapy (d = 2) option,

M2 =


1−RR(p112 + p113 + p114) RR · p112 RR · p113 RR · p114

0 1−RR(p123 + p124) RR · p123 RR · p124
0 0 1−RR · p133 RR · p134
0 0 0 1

 .

(6.2)

Given the transition matrix Md and state vector πdt, we can generate πd,t+1

via the evolution equation

π′
d,t+1 = π′

dtMd, (6.3)
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and we can therefore express πdt in terms of the state vector at time step 0, i.e.

π′
dt = π′

d0M
t
d, where M t

d =
∏t

l=1 Md.

If we value (in cost units) one unit of health outcome at λ, our final model for

the net monetary benefit associated with decision option d is

NBd = λetotd − ctotd = λ

20∑
t=0

π′
d0M

t
dedt −

20∑
t=0

π′
d0M

t
dcdt. (6.4)

Assuming that we are uncertain about some or all the inputs into the model, our

optimum decision is that which maximises the expected net benefit.

6.2.3 Base case input parameter values

Transition probabilities, costs and the treatment effect parameter are all consid-

ered uncertain in the base case model, with distributions shown in tables 6.1 and

6.2.

Table 6.1: Transition probability distributions for d = 1

(p111, p112, p113, p114) ∼ Dirichlet (1251,350,115,14)
(p121, p122, p123, p124) ∼ Dirichlet (0,731,512,15)
(p131, p132, p133, p134) ∼ Dirichlet (0,0,1312,437)
(p141, p142, p143, p144) = (0, 0, 0, 1)

Table 6.2: Cost and relative risk distributions
Label Description Distribution Mean SD
cc1 Undiscounted care costs of 1 time step in state 1 (£) normal 2756 400
cc2 Undiscounted care costs of 1 time step in state 2 (£) normal 3052 437
cc3 Undiscounted care costs of 1 time step in state 3 (£) normal 9007 1449
RR Treatment effect (combi vs monotherapy) lognormal log(0.509) 0.05

Drug treatment costs are considered fixed and known, as are discount rates

(table 6.3). We assume that the combination therapy is effective throughout the

whole of the modelled 20 year period, rather than just for the first year (this is

presented as an alternative scenario rather than the base case in Chancellor et al.,

1997).
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Table 6.3: Fixed inputs

Label Description Value

cZ Zidovudine cost (£) 2278
cL Lamivudine cost (£) 2087
rc Discount rate for costs 3.5% per year
re Discount rate for outcomes 3.5% per year

6.3 Discrepancy analysis

6.3.1 Incorporating judgements about model structural

error into the Markov model

We believe that the transition of individuals through health states is not ad-

equately described by the simple ‘base case’ time-homogeneous Markov model

described above, and therefore expect there to be error in the predicted costs and

health effects. We wish to quantify this structural error to determine whether

we need to build a more complex model. In particular we wish to determine the

expected value of improving the model. We restrict ourselves in this case study to

considering only structural error that relates to the Markov model itself. In many

applications a Markov model is part of a larger model that may also include, for

example, a decision tree element where we may also judge there to be structural

error.

We recognise that there are many potential sources of structural error in our

base case model, given its simplicity, and the new knowledge that has accumulated

in the 15 years between the development of the model and now. In our analysis

we will explore three potential sources of error in order to illustrate our method.

Clearly, the three scenarios that we present are in no way exhaustive.

We introduce a series of discrepancy terms, each of which represents the dif-

ference between the output of a sub function in the built model and the true value

of that output quantity. Discrepancy terms are incorporated in the model at the

level of the evolution of the health state vector, replacing equation (6.3) with

π′
dt = π′

d,t−1Md + δdt, (6.5)
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where δdt is a vector of discrepancy terms that quantifies the error in the state

vector at time t for decision option d.

In the analysis for our case study we have found it more intuitive to think

about discrepancies as applying to the transition matrix rather than to the state

vector, writing δdt = π′
d,t−1∆dt and expressing judgements about the model error

via ∆dt, a matrix of discrepancy terms of the same dimensionality as Md. We

re-express equation (6.5) as

π′
dt = π′

d,t−1Md + δdt,

= π′
d,t−1Mdt + π′

d,t−1∆dt,

= π′
d,t−1(Md +∆dt). (6.6)

The matrix (Md+∆dt) must obey the same constraints asMd, i.e. all elements

must lie within the interval [0, 1] and each row must sum to one. We can ensure this

if each element of ∆dt, δdtxy, is constrained to lie in the interval [−pdxy, 1− pdxy],

and if each row of ∆dt sums to zero.

Given the transition probability matrices (equations 6.1 and 6.2), there are

potentially six such unconstrained discrepancy terms per decision option per time

step, and we denote these δdjt, j = 1, . . . , 6. The discrepancy matrix ∆dt is

therefore

∆dt =


−(δd1t + δd2t + δd3t) δd1t δd2t δd3t

0 −(δd4t + δd5t) δd4t δd5t

0 0 −δd6t δd6t

0 0 0 0

 . (6.7)

We may judge that structural error relates only to a subset of the transitions in

the model. Where we judge there to be no structural error the corresponding

discrepancy term will be zero.
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6.3.2 Scenario 1 - time dependent transition probabilities

In the first scenario of our case study we judge that there is an important time

dependent relationship between age and the probability of death that is not cap-

tured in the simple time homogeneous model. We therefore introduce three dis-

crepancy terms (per time step per decision), one for each transition from an alive

state to the death state. Given the general expression for the discrepancy ma-

trix in equation (6.7) we expect that δdjt is non-zero for j = 3, 5, 6, and zero for

j = 1, 2, 4. Given three discrepancy terms per decision option per time step there

are 3× 2× 21 = 126 discrepancy terms in total. Specifying judgements about the

model discrepancy via the joint distribution of such a large number of terms clearly

requires a parsimonious parametrisation that reflects the dependencies between

discrepancy terms.

To illustrate our approach to this specification problem we consider the dis-

crepancy term, δd6t, that describes the structural error in the built model with

respect to the probability of transition from AIDS to death. We judge that the

probability of this transition increases monotonically over time rather than being

constant in the base case model, but we are unsure as to the exact nature of the

relationship between the probability of death and time. This belief implies that

the uncertain discrepancy term δd6t must also increase monotonically with respect

to time. We judge that at t = 0 the probability of death may be approximately

20% lower than the constant value (0.250) in the built model, and at t = 20 may

be approximately 20% higher, but we have considerable uncertainty. Figure 6.2

represents some plausible realisations of the discrepancy δd6t as a function of time

for d = 1.
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Figure 6.2: Four plausible realisations of the discrepancy term δd6t for d = 1 in
scenario 1

6.3.3 Parametrising the discrepancy using a Gaussian pro-

cess

We wish to find a convenient and parsimonious parametrisation for the joint distri-

bution of the 126 discrepancy terms δdjt, d = 1, 2, j = 3, 5, 6, and t = 0, . . . , 20. We

begin by noting that the reason for choosing a Markov model structure for our built

model was to reflect a dynamic time dependent process, so it seems reasonable to

consider discrepancy as a function of time step, i.e. δdjt = fdj(t). We then assume

that the functions fdj(t) follow a Gaussian process, i.e. that {f1,1(0), . . . , f2,6(20)}

has a multivariate normal distribution with mean function, E{fdj(t)} = m(d, j, t)

and covariance function Cov{fdj(t), fd∗j∗(t∗)} = c(d, j, t, d∗, j∗, t∗).

This highly flexible and parsimonious parametrisation of set of unknown func-

tions allows us to specify not only our uncertainty about each δdjt, but also the

correlation structure of discrepancies through time, the correlations between the

three non-zero discrepancy terms per decision, and the correlation between the

discrepancy terms for the d = 1, 2 decisions for each transition j.

Gaussian processes are well understood and have many attractive properties,
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hence their widespread use in the modelling of unknown complex processes (their

use is ubiquitous in the Managing Uncertainty in Complex Models project for

example, see www.mucm.ac.uk). However, we must remember that the Gaussian

process is only a model for the unknown discrepancy ‘process’, and its attractive-

ness may be illusory. Does the Gaussian process with the mean and covariance

functions that we specify really represent our beliefs about the discrepancies? It

may be very difficult to answer this.

We may judge that an alternative representation of our beliefs about the dis-

crepancies is more appropriate. Other options for characterising the joint distri-

bution of the discrepancies on the transition matrix would include the use of a

copula (Possolo, 2010). A copula is a device for generating a multivariate distri-

bution that has univariate margins with certain defined properties. So, in our case

we might want to define a copula with a Beta distributed margin corresponding to

each discrepancy. Our beliefs about the correlation between discrepancies would

be specified by the hyperparameters of a multivariate normal distribution. The

copula can be thought of as the function that links the univariate Beta marginals

to the underlying multivariate normal distribution.

A second possibility, given the sum-to-one constraint on the rows of the tran-

sition matrix, is the specification of a series of Dirichlet distributions. However,

the difficulty with this approach is the problem of describing correlations between

rows and over time. This is not straightforward. It may be possible to combine

these latter two approaches and specify a copula with Dirichlet marginals; an

interesting area for further work.

Specifying the mean function

We specify the mean for each discrepancy, E{fdj(t)}, as a function m(d, j, t). For

scenario 1 a linear form, E{fdj(t)} = m(d, j, t) = β0,dj + β1,djt, adequately reflects

our judgements, but depending on the decision problem alternative choices might

be higher order polynomial, E{fdj(t)} = m(d, j, t) = β0,dj+, . . . ,+βn,djt
n, expo-

nential, E{fdj(t)} = m(d, j, t) = β0,dj + β1,dj exp(β2,djt), or stepped, E{fdj(t)} =

m(d, j, t) = β0,dj + β1,djI(t > β2,dj). We placed normal distributions on the linear
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mean function parameters β0,dj and β1,dj with hyperparameters shown in table

6.4.

Table 6.4: Hyperparameters to specify GP mean function
Hyperparameter Scenario 1 Scenario 2 Scenario 3 Transition
Intercept (β0,dj) Mean (sd) ×10−3 Mean (sd) ×10−3 Mean (sd) ×10−3 state x to y; decision
β0,11 0 (0) 0 (0) 0 (0) 1 to 2; monotherapy
β0,12 0 (0) 0 (0) 0 (0) 1 to 3; monotherapy
β0,13 -1.0 (0) 0 (0) 0 (0) 1 to 4; monotherapy
β0,14 0 (0) 0 (0) 0 (0) 2 to 3; monotherapy
β0,15 -1.2 (0) 0 (0) 0 (0) 2 to 4; monotherapy
β0,16 -25.0 (0) 0 (0) 0 (0) 3 to 4; monotherapy

β0,21 0 (0) 0 (0) 0 (0) 1 to 2; combi therapy
β0,22 0 (0) 0 (0) 0 (0) 1 to 3; combi therapy
β0,23 -0.5 (0) 0 (0) 0 (0) 1 to 4; combi therapy
β0,24 0 (0) 0 (0) 0 (0) 2 to 3; combi therapy
β0,25 -0.61 (0) 0 (0) 0 (0) 2 to 4; combi therapy
β0,26 -12.7 (0) 0 (0) 0 (0) 3 to 4; combi therapy

Slope (β1,dj) Mean (sd) ×10−4 Mean (sd) ×10−4 Mean (sd) ×10−4 state x to y; therapy
β1,11 0 (0) 0 (0) 0 (0) 1 to 2; monotherapy
β1,12 0 (0) 0 (0) 0 (0) 1 to 3; monotherapy
β1,13 1.0 (0) 0 (0) 0 (0) 1 to 4; monotherapy
β1,14 0 (0) 0 (0) 0 (0) 2 to 3; monotherapy
β1,15 1.2 (0) 0 (0) 0 (0) 2 to 4; monotherapy
β1,16 25.0 (0) 0 (0) 0 (0) 3 to 4; monotherapy

β1,21 0 (0) 24.8 (13.78) 0 (0) 1 to 2; combi therapy
β1,22 0 (0) 8.2 (4.57) 0 (0) 1 to 3; combi therapy
β1,23 0.51 (0) 1.2 (0.68) 0 (0) 1 to 4; combi therapy
β1,24 0 (0) 50.0 (27.8) 0 (0) 2 to 3; combi therapy
β1,25 0.61 (0) 1.5 (0.82) 0 (0) 2 to 4; combi therapy
β1,26 12.7 (0) 30.7 (17.0) 0 (0) 3 to 4; combi therapy

Specifying the covariance function

We make a number of simplifying assumptions when specifying the covariance

function, but note that all of these assumptions may be relaxed at the cost of

specifying a greater number of hyperparameters. We assume in scenario 1 that

the variance of each discrepancy δdjt remains constant for all t, requiring the

specification of 2×3 = 6 variances, which we denote σ2
dj. We state beliefs about the

within-decision, between-transition term correlation through a parameter φj,j∗ =

cor(δdjt, δdj∗t), assuming that this is constant over time t and across decisions. We

state beliefs about the between-decision correlation through a parameter ψd,d∗ =

cor(δdjt, δd∗jt), assuming that this is constant over time t and across transitions j.

Finally we state beliefs about the correlation of the discrepancies through time

by defining a correlation function ρ(·, ·) that depends on the distance between time

steps, assuming this holds for all d and j. For the purposes of scenario 1 we use
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the ‘Gaussian form’

ρ(t, t∗) = exp

{
−
(
t− t∗

ω

)2
}
, (6.8)

where ω is the correlation length. The correlation length determines the degree of

correlation between discrepancy terms at any particular ‘distance’, where distance

is the number of Markov time steps between the terms. See Neal (1999) for a

discussion of alternatives to this simple Gaussian form of correlation function.

The overall covariance function is therefore

Cov{fdj(t), fd∗j∗(t∗)} = c(d, j, t, d∗, j∗, t∗),

= σdjσd∗j∗ψd,d∗φj,j∗ρ(t, t
∗),

= σdjσd∗j∗ψd,d∗φj,j∗ exp

{
−
(
t− t∗

ω

)2
}
. (6.9)

Finally we specify a correlation structure for the discrepancies as they evolve

through time via the correlation function with parameter ω (equation 6.8). Values

chosen are shown in table 6.5.

Table 6.5: Hyperparameters to specify GP covariance function
Variance Scenario 1 Scenario 2 Scenario 3 Transition
hyperparameters (σjd) (×10−3) (×10−3) (×10−3)
σ11 0 0 28.9 A to B monotherapy
σ12 0 0 9.6 A to C monotherapy
σ13 1.0 0 1.4 A to D monotherapy
σ14 0 0 58.1 B to C monotherapy
σ15 1.2 0 1.7 B to D monotherapy
σ16 25.0 0 35.7 C to D monotherapy

σ21 0 5.1 14.7 A to B combi therapy
σ22 0 1.7 4.9 A to C combi therapy
σ23 0.51 0.25 0.7 A to D combi therapy
σ24 0 10.4 29.6 B to C combi therapy
σ25 0.61 0.31 0.9 B to D combi therapy
σ26 12.7 6.4 18.1 C to D combi therapy

Correlation Scenario 1 Scenario 2 Scenario 3 Description
hyperparameters
φ 0.8 0.9 0 Between discrepancy term correlation
ψ 0.9 0 0 Between decision correlation
ω 32 7 7 Correlation length parameter

Monotonicity constraint for fdj(t)

We have chosen the Gaussian process as a method to model the discrepancy terms,

with discrepancy with respect to time being considered an uncertain function,
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fdj(t). We may wish to constrain the form of fdj(t), and in particular we may

wish to ensure that fdj(t) is monotone with respect to t to reflect our belief that

the probability of death increases with time. However, realisations of a Gaussian

process tend to be ‘wiggly’ non-monotone functions, with the degree of ‘wiggliness’

controlled by the ω parameter. Increasing values of ω will result in an increasingly

smooth functions, so by carefully choosing ω we can ensure that the realisations of

the Gaussian process are constrained to be monotone to reflect our beliefs about

the relationship between discrepancy and time.

Monotonicity with respect to t implies that, for a once differentiable function

fdj(t) that ∂fdj(t)/∂t > 0 ∀t, or ∂fdj(t)/∂t < 0 ∀t. Informally then, we can ensure

monotonicity by choosing hyperparameters for the mean and covariance functions

such that this holds with some probability α.

It is a property of an n times differentiable Gaussian process f(x) ∼ GP{m(x), c(x, x∗)}

with n times differentiable mean and covariance functions, that ∂nf(x)/∂xn is also

a Gaussian process with mean function

E

{
∂n

∂xn
f(x)

}
=

∂n

∂xn
m(x), (6.10)

and covariance function

cov

{
∂n

∂xn
f(x)

∣∣∣
x=x

,
∂n

∂xn
f(x)

∣∣∣
x=x∗

}
=

∂2n

∂xn∂x∗n
c(x, x∗). (6.11)

See O’Hagan (1992) for further details.

This implies that ∂fdj(t)/∂t is the Gaussian process,

∂

∂t
fdj(t) ∼ GP

{
∂

∂t
m(d, j, t),

∂2

∂t∂t∗
c(d, j, t, d, j, t∗)

}
, (6.12)

and we can ensure monotonicity of fdj(t) with some pre-specified probability α by

choosing parameters of m(·) and c(·, ·) such that

∣∣∣ ∂
∂t
m(d, j, t)

∣∣∣− Φ−1(α)

√
∂2

∂t∂t∗
c(d, j, t, d, j, t∗) > 0, (6.13)
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where Φ−1(α) is the inverse normal cumulative distribution function (Montes Diez

and Oakley, 2010).

Given a linear mean function, m(d, j, t) = β0,dj+β1,djt, and a Gaussian form for

the correlation function with respect to time, c(d, j, t, d, j, t∗) = σ2
dj exp

{
−
(
t−t∗
ω

)2}
,

equation (6.13) becomes

∣∣∣β1,dj∣∣∣− Φ−1(α)

√
2σ2

dj

ω2
> 0, (6.14)

which by solving for ω gives

ω >
Φ−1(α)

√
2σdj

β1,dj
. (6.15)

We can therefore, given β1,dj and σ
2
dj, ensure with some probability α that fdj(t) is

monotone through a choice of correlation length parameter ω that obeys (6.15). If

β1,dj is itself uncertain this approach is more difficult. In this case we may choose

ω such that

ω >
Φ−1(α)

√
2σdj

β0.025
1,dj

, (6.16)

where β0.025
1,dj is the value of the 2.5th centile of the distribution of the random

variable β1,dj.

For scenario 1, β1,dj was considered known with certainty allowing us to use

(6.15). We set α = 0.95 and chose ω accordingly.

We must keep in mind that this approach relies on properties of the Gaussian

process, which is only a model for our unknown function. We do not know for

certain that the ‘true’ function that describes the relationship between discrepancy

and time is smooth n times differentiable. Indeed, if we have reason to believe

that it is not, then choosing a Gaussian process representation of the unknown

function may well be inappropriate.

Ten samples from the Gaussian process for discrepancy term δ1,6,t are shown

in figure 6.3. Note the variation in functional form generated by the Gaussian

process, reflecting our uncertainty about the relationship between probability of

death and time, but with the constraint that the relationship between discrepancy
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and time should be monotone.
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Figure 6.3: Ten samples from the distribution on discrepancy term δ1,6,t in scenario
1

6.3.4 Sensitivity analysis to determine whether the dis-

crepancies make any difference to the decision

Given our specification of discrepancy for our built model we can determine

whether we should build a more complex model by examining the sensitivity

of the decision to the discrepancy. We calculate, using standard Monte Carlo

methods, the expected value of learning the true value of the discrepancy terms

via the partial expected value of perfect information (EVPI),

EVPI(δ) = Eδ{max
d
EX|δ(NBd)} −max

d
E(NBd),

where X is the vector of model inputs, and δ is the vector of discrepancy terms

(see chapter 3 for discussion of EVPI). If EVPI(δ) is large compared with the value

of learning the inputs, EVPI(X), then we conclude that the potential structural

error in adopting the simple Markov model is important.

The expected value of learning the discrepancy terms, EVPI(δ), is the ‘ex-
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pected value of model improvement’ (EVMI) under the assumption that any new

input parameters that are introduced into the model during the structural im-

provement are known with certainty. It is likely however that model improvement

will involve the addition of new uncertain input parameters. In this case the

EVPI(δ) provides an upper bound for the EVMI. If the EVPI(δ) is small this of-

fers us some reassurance that the model is good enough for the decision, whereas

if it is large we know our uncertainty about the model structure is resulting in

decision uncertainty. In the latter case improving the model may be worthwhile,

but this will depend on the degree of decision uncertainty induced by any newly

introduced uncertain inputs.

6.3.5 Scenario 2 - an uncertain relationship between effi-

cacy and time since treatment commencement

The duration of effect of the combination therapy was a key uncertainty at the time

of publication of Chancellor et al. (1997), and the authors presented results for

three alternative scenarios: effectiveness lasting one year, two years and 20 years.

We ask the following question: if our built model assumes that the combination

therapy is effective over 20 years, but we are uncertain whether this is true, do we

need to build a more complex model that incorporates an uncertain relationship

between efficacy and time from commencement of treatment?

The treatment effect acts on six unconstrained terms in the transition matrix

for the combination therapy (equation 6.2), but does not act on the transition

matrix for the monotherapy, therefore resulting in six non-zero discrepancies per

time step, δ2,1,t, . . . , δ2,6,t. This specification of discrepancy is equivalent to incor-

porating a time varying treatment effect parameter (RR), but with the additional

flexibility that allows the treatment effect to vary across the different transitions

in the model (e.g. HIV to AIDS versus HIV to death).

We believe that efficacy falls over time, and therefore that the discrepancy

between our built model and reality increases over time. We again chose a linear

mean function E(δ2jt) = β0,i + β1,jt with uncertain slope. The intercept param-
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eter β0,j is zero in this case to reflect our judgement that during time step 1 the

treatment effect parameter RR correctly determines the effectiveness of the com-

bination therapy. We placed normal distributions on the six β1,j parameters with

hyperparameters µβ1,j and σ2
β1,j

shown in table 6.4.

Next, we specify the covariance function. Our uncertainty about the six dis-

crepancies δ2,1,t, . . . , δ2,6,t is controlled through variance terms σ2
2,1, . . . , σ

2
2,6, as-

sumed to hold for all t. We specify our judgement about the dependency between

the discrepancy terms for the six transitions through a single correlation param-

eter φj,j∗ = φ ∀j 6= j∗ which we assume constant for all t. Since there is no

discrepancy for the monotherapy option d = 1 in this scenario we do not need

to specify between-decision correlations (i.e. there is no ψd,d∗ correlation parame-

ter). Finally we specify a correlation structure for the discrepancies as they evolve

through time via a Gaussian form correlation function with parameter ω (equation

6.8), ensuring via equation (6.15) that discrepancy as a function of time is mono-

tone with probability α = 0.95. Values for all covariance function parameters are

shown in table 6.5.

Ten samples from the Gaussian process for discrepancy term δ2,1,t are shown

in figure 6.4. Note the variation in functional form generated by the Gaussian

process, reflecting our uncertainty about the relationship between efficacy and

time.
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Figure 6.4: Ten samples from the distribution on discrepancy term δ2,1,t in scenario
2

6.3.6 Scenario 3 - relaxation of the memoryless property

In scenario 3 we judge that the probability of transition to state y at time step t+1

is dependent not only on the state x at time t but on the states occupied at time

steps ≤ t − 1. We therefore want to relax the Markov assumption and consider

more complex time dependencies that would necessitate a more flexible modelling

framework (for example using a discrete event or agent based approach). In order

to judge whether this is necessary we add relatively unstructured discrepancy to

allow for a wide range of possible deviations from the simple memoryless Markov

process. Hyperparameters are shown in tables 6.4 and 6.5. Ten samples from the

Gaussian process for discrepancy term δ2,1,t are shown in figure 6.5.
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Figure 6.5: Ten samples from the distribution on discrepancy term δ2,1,t in scenario
3

6.4 Results

6.4.1 Base case model

We implemented the model in R (R Development Core Team, 2011). We sampled

from the base case model input parameters and ran the model 10,000 times. The

mean incremental cost of combination therapy over monotherapy was £45,402

and the mean incremental benefit was 3.86 life years, representing a cost per

life year gained of £11,749. Figure 6.6 shows the cost-effectiveness plane and

cost-effectiveness acceptability curve (CEAC) for the base case, representing the

uncertainty due to uncertainty in the model inputs.

Value of information analysis with λ = £12, 000 per life year1 suggests that

decision uncertainty is being driven by uncertainty in the treatment effect pa-

rameter with EVPI(RR)=£169.91 (EVPI index, 46.5%), and uncertainty in the

1We assumed for the purposes of this case study that the value of one QALY is λ = £12, 000
per life year to ensure that we were in the region of decision uncertainty. This is lower than
the ‘threshold’ value that would be used for decisions in many Western health economies. At
λ = £30, 000 there is almost no decision uncertainty with EVPI negligible for all inputs and
discrepancies.
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cost parameters with EVPI(costs)=£194.41 (53.2%). See table 6.6. It is not the

case that the partial EVPI values necessarily sum to the overall EVPI. The par-

tial EVPI values are expressed as percentages of overall EVPI (the ‘EVPI index’)

merely to aid comparison of their relative sizes.
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Figure 6.6: (a) cost-effectiveness plane (b) CEAC for base case model

Table 6.6: Partial EVPI results
Parameter Partial EVPI (EVPI index†)

Base case Scenario 1 Scenario 2 Scenario 3
Transition probabilities £0 (0%) £0 (0%) £0 (0%) £1.17 (0.1%)
Relative risk £169.91 (46.5%) £193.09 (48.1%) £64.63 (19.4%) £164.55 (17.2%)
Costs £194.41 (53.2%) £201.72 (50.2%) £65.17 (19.55%) £167.53 (17.5%)
Discrepancy terms - £7.86 (2.0%) £110.21 (33.1%) £699.06 (73.0%)

Overall EVPI £365.42 £401.53 £333.43 £957.28

† The partial EVPI as a proportion of the overall EVPI

6.4.2 Scenario 1

After the addition of discrepancy to reflect the judgements about model error due

to the time homogeneity assumption, the mean incremental cost of combination

therapy over monotherapy was £44,697 and the mean incremental benefit was 3.80

life years, representing a cost per life year gained of £11,769. Figure 6.7 shows

the cost-effectiveness plane and cost-effectiveness acceptability curve (CEAC) for
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scenario 1, overlaid on those for the base case. Note the similarity between scenario

1 and the base case suggesting that the discrepancy terms have not introduced

significant new uncertainty.

Value of information analysis suggests that the decision uncertainty is still

dominated by the uncertainty in the inputs with EVPI(RR)=£193.09 (48.1%) and

EVPI(costs)=£201.72 (50.2%). There is little value in learning δ with EVPI(δ)

=£7.86 (2.0%), indicating that building a more complex model is not advisable

at a willingness to pay for one life year of λ = £12, 000.

It appears that uncertainty regarding the model error that results from the

time homogeneity assumption is not a significant driver of decision uncertainty.

This would suggest that our simple built model is ‘good enough’ for the decision

in this scenario.
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Figure 6.7: (a) cost-effectiveness plane (b) CEAC for scenario 1

6.4.3 Scenario 2

After the addition of discrepancy terms to reflect the judgements about model er-

ror due to the constant treatment efficacy assumption, the mean incremental cost

of combination therapy over monotherapy was £39,741 and the mean incremental

benefit was 3.20 life years, representing a cost per life year gained of £12,409.
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Figure 6.8 shows the cost-effectiveness plane and cost-effectiveness acceptability

curve (CEAC) for scenario 2, overlaid on those for the base case. Note the shift

in the cloud of points on the CE plane towards the origin reflecting the reduced

efficacy of the drug and consequent reduction in both life years gained, and care

costs accrued. With smaller benefits and costs the combination therapy inter-

vention will only now be cost effective at higher values of the willingness to pay,

hence the shift of the CEAC curve to the right.

Value of information analysis (table 6.6) suggests that although there is still

some value in learning the treatment effect and cost parameters, it is the dis-

crepancy terms that are now most important in driving decision uncertainty at

λ = £12, 000. In this scenario there is value in improving the model such that

it better reflects our judgements about the decision problem, as well as value in

reducing parameter uncertainty.
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Figure 6.8: (a) cost-effectiveness plane (b) CEAC for scenario 2

6.4.4 Scenario 3

After the addition of discrepancy terms to reflect the judgements about model

error due to the Markovian assumption of memorylessness, the mean incremen-

tal cost of combination therapy over monotherapy was £45,111 and the mean
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incremental benefit was 3.84 life years, representing a cost per life year gained of

£11,744. Figure 6.9 shows the cost-effectiveness (CE) plane and cost-effectiveness

acceptability curve (CEAC) for scenario 3, overlaid on those for the base case.

Note the somewhat larger cloud of points on the CE plane and flatter CEAC

reflecting the additional uncertainty.

Value of information analysis (table 6.6) suggests that the decision is again sen-

sitive to the discrepancy terms, and that building a more complex model to better

represent non-Markovian transitions between health states may be worthwhile.
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Figure 6.9: (a) cost-effectiveness plane (b) CEAC for scenario 3

6.5 Could we have added fewer discrepancy terms?

Adding discrepancies to the transition probabilities for each time step resulted in

a large number of terms. In order to manage this large number of uncertain terms

we specified a stochastic model for their joint distribution, the Gaussian process.

An alternative would have been to consider adding the discrepancy further ‘down-

stream’ in the model. So, instead of adding discrepancies to the transition matrix,



CHAPTER 6. CASE STUDY 2 142

giving

NBd = λetotd − ctotd = λ
20∑
t=0

π′
d0(Md +∆dt)

tedt −
20∑
t=0

π′
d0(Md +∆dt)

tcdt (6.17)

we might add discrepancies to total costs and effects at time t.

NBd = λetotd − ctotd = λ

20∑
t=0

(
π′
d0M

t
dedt + δet

)
−

20∑
t=0

(
π′
d0M

t
dcdt + δct

)
. (6.18)

There is a trade off here. There may be fewer discrepancies to specify downstream,

but the discrepancies may be more difficult to make judgements about. Eventually

we reach the model output, and here we are back in the position we discussed in

section §3.4.3. At this level it might be very difficult to say anything particularly

meaningful about the discrepancy. By adding discrepancy ‘upstream’ we can

potentially utilise our detailed knowledge about how specific parts of the model

might differ from our ‘best conceptual’ model of the problem.

Where to add discrepancies is a judgement in itself. We could start at the

model output and consider whether we are able to make useful judgements at

this point. If not, we would then work upstream towards the model inputs until

we came to a level in the model at which we can make useful judgements about

discrepancy. This is one possible approach. Finding an the best solution to this

problem requires future research.

6.6 Conclusion

In this chapter we applied the discrepancy method to a Markov model. This ne-

cessitated making judgements about a large number of discrepancy terms. We

imposed structure on the set of uncertain discrepancy terms by respecifying them

as a Gaussian process. We determined the value of learning the uncertain discrep-

ancy terms by calculating the partial expected value of perfect information. We

interpreted this as an upper bound on the expected value of improving the model

(EVMI).
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As we noted at the end of chapter 5, specifying a meaningful distribution on

the discrepancy terms is likely to be hard. We return to this point in chapter

8. In the next chapter we describe a novel method for calculating conditional

expectations for the purposes of sensitivity analysis when inputs are correlated.



Chapter 7

Efficient Computation of the

Main Effect Index and Partial

Expected Value of Perfect

Information when Inputs are

Correlated

7.1 Introduction

In this chapter1 we describe a novel method for efficiently computing the main

effect index and the partial expected value of perfect information when inputs are

correlated. In the context of the discrepancy analyses in chapters 5 and 6, each

discrepancy term would be considered as just another ‘input’ to the model for the

purposes of calculating these two sensitivity measures. In both our case studies

discrepancy terms were correlated.

The standard two level Monte Carlo approach to calculating both the main

effect index and the partial EVPI is to sample a value of the input parameter of

interest in an outer loop, and then to sample values from the joint conditional

1A paper based on the content of this chapter was submitted to Medical Decision Making in
October 2011.

144
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distribution of the remaining parameters and run the model in an inner loop

(Brennan et al., 2007; Koerkamp et al., 2006). Sufficient numbers of runs of both

the outer and inner loops are required to insure that these quantities are estimated

with sufficient precision. For the computation of partial EVPI there is the added

complication that without sufficient numbers of inner loop samples the EVPI will

be estimated with an unacceptable level of upward bias due to the maximisation

step (Oakley et al., 2010).

We recognise two important practical limitations to the standard two level

Monte Carlo approach to calculating the main effect index and partial EVPI.

Firstly, the nested two level nature of the algorithm with a model run at each

inner loop step can be highly computationally demanding for all but very small

loop sizes if the model is expensive to run. Secondly, we require a method of

sampling from the joint distribution of the inputs (excluding the parameter of

interest) conditional on the input parameter of interest. If the input parameter of

interest is independent of the remaining parameters then we can simply sample

from the unconditional joint distribution of the remaining parameters. Indeed,

Ades et al. (2004) show that in certain classes of model, most notably decision

tree models with independent inputs, the Monte Carlo inner loop is unnecessary

since the target inner expectation has a closed form solution. However, if inputs

are not independent we may need to resort to Markov chain Monte Carlo (MCMC)

methods if there is no closed form analytic solution to the joint conditional dis-

tribution. Including an MCMC step in the algorithm is likely to increase the

computational burden considerably, as well as requiring additional programming.

In this chapter we present a simple one level ‘ordered input’ algorithm for

calculating the main effect index and the partial EVPI that takes into account

any dependency in the inputs. The method avoids the need to sample directly

from the conditional distributions of the inputs, and instead requires only a single

set of the sampled inputs and corresponding outputs in order to calculate the

main effect index and partial EVPI values for all input parameters.

We introduce the method in section §7.2 and present a theoretical justification

in section §7.4. We derive the sampling distribution of the estimator and discuss
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sample size choices in section §7.5, followed by a case study in section §7.6 where

we use the method to calculate EVPI. In section §7.7 we discuss some strengths

and limitations of the approach.

7.2 Method for partial EVPI

We assume we are faced with D decision options, indexed d = 1, . . . , D, and

have built a computer model yd = f(d,x) that aims to predict the net benefit

of decision option d given a vector of input parameter values x. We denote

the true unknown values of the inputs X = {X1, . . . , Xp}, and the uncertain

net benefit under decision option d as Yd. We denote the parameter for which

we wish to calculate the partial EVPI as Xi and the remaining parameters as

X−i = {X1, . . . , Xi−1, Xi+1, . . . , Xp}. We denote the expectation over the full

joint distribution of X as EX , over the marginal distribution of Xi as EXi
, and

over the conditional distribution of X−i|Xi as EX−i|Xi
. The partial EVPI for

input Xi is

EV PI(Xi) = EXi

[
max
d
EX−i|Xi

{f(d,Xi,X−i)}
]
−max

d
EX{f(d,X)}. (7.1)

We wish to evaluate the partial EVPI for each input Xi without sampling

directly from the conditional distribution X−i|Xi, since this may require compu-

tationally intensive numerical methods if inputs are correlated.

Our method for avoiding this difficulty rests on recognising the following.

Given a Monte Carlo sample of S input parameter vectors drawn from the joint

distribution p(X), we can order the set of sample vectors with respect to the

parameter of interest Xi, i.e.,
x
(1)
1 . . . x

(1)
i . . . x

(1)
p

x
(2)
1 . . . x

(2)
i . . . x

(2)
p

...
...

...
...

...

x
(S)
1 . . . x

(S)
i . . . x

(S)
p

 , (7.2)
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where x
(1)
i ≤ x

(2)
i ≤ . . . ≤ x

(S)
i . Then, for some small integer δ and index k where

δ < k ≤ S − δ the vectors x
(k−δ)
−i , . . . ,x

(k)
−i , . . . ,x

(k+δ)
−i are approximate samples

from the conditional distribution X−i|Xi = x
(k)
i if S is large compared to δ. We

can approximate the problematic expectation in equation (7.1) by

EX−i|Xi
{f(d,Xi,X−i)} ' 1

δ + 1

k+δ∑
j=k−δ

f
(
d,x(j)

)
. (7.3)

The second term in the RHS of equation (7.1) can be estimated simply via Monte

Carlo sampling, i.e.

max
d
EX{f(d,X)} ' max

d

1

N

N∑
n=1

f(d,X). (7.4)

7.2.1 Algorithm for calculating partial EVPI via the one

stage ‘ordered input’ method

We propose the following algorithm for computing the first term in the RHS of

equation (7.1). Code for implementing the algorithm in R (R Development Core

Team, 2011) is shown in section §7.2.2.

Stage 1

We first obtain a single Monte Carlo sample M = {(xs, ys1, . . . , ysD), s = 1, . . . , S}

where xs are drawn from the joint distribution of the inputs, p(X), and ysd =

f(d,xs) is the evaluation of the model output at xs for decision option d =

1, . . . , D. Note the use of superscripts to index the randomly drawn sample sets.

We let M be the matrix of inputs and corresponding outputs

M =


x11 . . . x1p y11 . . . y1D

x21 . . . x2p y21 . . . y2D
...

...
...

...
...

...

xS1 . . . xSp yS1 . . . ySD

 . (7.5)
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Stage 2

For parameter of interest i, we extract the xi and y1, . . . , yD columns and reorder

with respect to xi, giving

M∗ =


x
(1)
i y

(1)
1 . . . y

(1)
D

x
(2)
i y

(2)
1 . . . y

(2)
D

...
...

...
...

x
(S)
i y

(S)
1 . . . y

(S)
D

 , (7.6)

where x
(1)
i ≤ x

(2)
i ≤ . . . ≤ x

(S)
i .

Stage 3

We partition the resulting matrix into k = 1, . . . , K sub matrices M∗(k) of J rows

each,

M∗(k) =


x
(1,k)
i y

(1,k)
1 . . . y

(1,k)
D

x
(2,k)
i y

(2,k)
1 . . . y

(2,k)
D

...
...

...
...

x
(J,k)
i y

(J,k)
1 . . . y

(J,k)
D

 , (7.7)

retaining the ordering with respect to xi, and where the row indexed (j, k) in

equation (7.7) is the row indexed (j + (k − 1)J) in equation (7.6). Note that

J ×K must equal the total sample size S.

Stage 4

For eachM∗(k) we estimate the conditional expectation µ
(k)
d = E

X−i|Xi=x
∗(k)
i

{f(d,Xi,X−i)}

for each decision option by

µ̂
(k)
d =

1

J

J∑
j=1

y
(j,k)
d , (7.8)
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where x
∗(k)
i =

∑J
j=1 x

(j,k)
i /J . The maximumm(k) = maxdEX−i|Xi=x

∗(k)
i

{f(d,Xi,X−i)}

is estimated by

m̂(k) = max
d
µ̂
(k)
d . (7.9)

Finally, we estimate the first term in the RHS of equation (7.1) by

¯̂m =
1

K

K∑
k=1

m̂(k). (7.10)

Stages 2 to 4 are repeated for each parameter of interest. Note that only a single

set of model runs (stage 1) is required.

7.2.2 R code for implementing the partial EVPI algorithm

The partial.evpi.function function as written below takes as inputs the costs

and effects rather than the net benefits. This allows the partial EVPI to be

calculated at any value of willingness to pay, λ.

partial.evpi.function<-function(inputs,input.of.interest,costs,effects,lambda,J,K)

{

S <- nrow(inputs) # number of samples

if(J*K!=S) stop("The number of samples does not equal J times K")

D <- ncol(costs) # number of decision options

nb <- lambda*effects-costs

baseline <- max(colMeans(nb))

perfect.info <- mean(apply(nb,1,max))

evpi <- perfect.info-baseline

sort.order <- order(inputs[,input.of.interest])

sort.nb <- nb[sort.order,]

nb.array <- array(sort.nb,dim=c(J,K,D))

mean.k <- apply(nb.array,c(2,3),mean)

partial.info <- mean(apply(mean.k,1,max))

partial.evpi <- partial.info-baseline
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partial.evpi.index <- partial.evpi/evpi

return(list(

baseline = baseline,

perfect.info = perfect.info,

evpi = evpi,

partial.info = partial.info,

partial.evpi = partial.evpi,

partial.evpi.index = partial.evpi.index

))

}

7.3 Method for main effect index

We assume we have built a computer model y = f(x) with a scalar output,

and a vector of input parameter values x. We denote the true unknown val-

ues of the inputs X = {X1, . . . , Xp}, and the uncertain output Y . We de-

note the parameter of interest as Xi and the remaining parameters as X−i =

{X1, . . . , Xi−1, Xi+1, . . . , Xp}. We denote the expectation over the full joint dis-

tribution of X as EX , over the marginal distribution of Xi as EXi
, and over the

conditional distribution of X−i|Xi as EX−i|Xi
. The main effect index for Xi is

varXi

[
EX−i|Xi

{f(Xi,X−i)}
]

var(Y )
. (7.11)

7.3.1 Algorithm for calculating the main effect index via

the one stage ‘ordered input’ method

We propose the following algorithm for computing the numerator of (7.11). Code

for implementing the algorithm in R is shown in section §7.3.2.

Stage 1

We first obtain a single Monte Carlo sample M = {(xs, ys), s = 1, . . . , S} where

xs are drawn from the joint distribution of the inputs, p(X), and ys = f(xs) is
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the evaluation of the model output at xs. Note the use of superscripts to index the

randomly drawn sample sets. We letM be the matrix of inputs and corresponding

outputs

M =


x11 . . . x1p y1

x21 . . . x2p y2

...
...

...
...

xS1 . . . xSp yS

 . (7.12)

Stage 2

For parameter of interest i, we extract the xi and y columns and reorder with

respect to xi, giving

M∗ =


x
(1)
i y(1)

x
(2)
i y(2)

...
...

x
(S)
i y(S)

 , (7.13)

where x
(1)
i ≤ x

(2)
i ≤ . . . ≤ x

(S)
i .

Stage 3

We partition the resulting matrix into k = 1, . . . , K sub matrices M∗(k) of J rows

each,

M∗(k) =


x
(1,k)
i y(1,k)

x
(2,k)
i y(2,k)

...
...

x
(J,k)
i y(J,k)

 , (7.14)

retaining the ordering with respect to xi.
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Stage 4

For eachM∗(k) we estimate the conditional expectation µ(k) = E
X−i|Xi=x

∗(k)
i

{f(Xi,X−i)}

for each decision option by

µ̂(k) =
1

J

J∑
j=1

y(j,k), (7.15)

where x
∗(k)
i =

∑J
j=1 x

(j,k)
i /J .

Finally we estimate the variance of the conditional expectation by

v̂ar(µ̂(k)) =
1

K − 1

K∑
k=1

(
µ̂(k) − ¯̂µ(k)

)2
, (7.16)

Stages 2 to 4 are repeated for each parameter of interest. Note that only a single

set of model runs (stage 1) is required.

7.3.2 R code for implementing the Main Effect Index al-

gorithm

The main.effect.index.function function as written below takes as inputs the

incremental costs and incremental effects rather than the incremental net benefit.

This allows the main effect index to be calculated at any value of willingness to

pay, λ.

main.effect.index.function<-function(inputs,input.of.interest,costs,effects,lambda,J,K)

{

S <- nrow(inputs) # number of samples

if(J*K!=S) stop("The number of samples does not equal J times K")

inb <- lambda*effects-costs

var.Y <- var(inb)

sort.order <- order(inputs[,input.of.interest])

sort.inb <- inb[sort.order]

inb.array <- array(sort.inb,dim=c(J,K,1))
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mean.k <- apply(inb.array,c(2,3),mean)

var.exp <- var(mean.k)

return(list(

var.Y = var.Y,

var.exp = var.exp,

main.effect.index = var.exp/var.Y

))

}

7.4 Theoretical justification

The ordered algorithm is a method for efficiently computing the inner expectation

in the first term of the RHS in the EVPI equation (7.1), and the numerator in

the main effect index expression (7.11). Dropping the decision option index d for

clarity but without loss of generality, our target is EX−i|Xi=x∗i
{f(x∗i ,X−i)} where

x∗i is a realised value of the parameter of interest, and X−i are the remaining

(uncertain) parameters with joint conditional distribution p(X−i|Xi = x∗i ).

Given a sample
{
x
(1)
−i , . . . ,x

(J)
−i

}
from p(X−i|Xi = x∗i ), the Monte Carlo esti-

mator for EX−i|Xi=x∗i
{f(x∗i ,X−i)} is

ÊX−i|Xi=x∗i
{f(x∗i ,X−i)} =

1

J

J∑
j=1

f
(
x∗i ,x

(j)
−i

)
. (7.17)

In our ordered approximation method we replace (7.17) with

ÊX−i|Xi=x∗i
{f(x∗i ,X−i)} =

1

J

J∑
j=1

f
(
x∗i + εj, x̃

(j)
−i

)
, (7.18)

where {x∗i+ε1, . . . , x∗i+εJ} = {x(1)i , . . . , x
(J)
i } is an ordered sample from p(Xi|Xi ∈

[x∗i ± ζ]) for some small ζ (and therefore ε̄ ' 0), and x̃
(j)
−i is a sample from

p(X−i|Xi = x∗i + εj).
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The expression (7.18) is an unbiased Monte Carlo estimator of

EXi∈[x∗i±ζ]
{
EX−i|Xi

f(Xi,X−i)
}

=

∫
X−i

∫
Xi

f(Xi,X−i)p(X−i|Xi)p(Xi|Xi ∈ [x∗i ± ζ])dXidX−i, (7.19)

which we can rewrite by introducing an importance sampling ratio as

∫
X−i

∫
Xi

f(Xi,X−i)p(X−i|Xi)p(Xi|Xi ∈ [x∗i ± ζ])dXidX−i

=

∫
X−i

∫
Xi

f(Xi,X−i)
p(X−i|Xi)p(Xi|Xi ∈ [x∗i ± ζ])

p(X−i|Xi)p(Xi|Xi = x∗i )
p(X−i|Xi)p(Xi|Xi = x∗i )dXidX−i

=

∫
X−i

∫
Xi

f(Xi,X−i)
p(X−i|Xi)

p(X−i|Xi = x∗i )
p(Xi|Xi ∈ [x∗i ± ζ])dXi p(X−i|Xi = x∗i ) dX−i.

(7.20)

We write the terms f(Xi,X−i)
p(X−i|Xi)

p(X−i|Xi=x∗i )
within the inner integral as a function

g(·), i.e.

f(Xi,X−i)
p(X−i|Xi)

p(X−i|Xi = x∗i )
= g(Xi, x

∗
i ,X−i).

If g(·) is approximately linear in the small intervalXi ∈ [x∗i±ζ] then we can express

g(Xi, x
∗
i ,X−i) as a first order Taylor series expansion about g(x∗i , x

∗
i ,X−i), giving

f(Xi,X−i)
p(X−i|Xi)

p(X−i|Xi = x∗i )
= g(Xi, x

∗
i ,X−i),

' g (x∗i , x
∗
i ,X−i) + (Xi − x∗i )

∂g (Xi, x
∗
i ,X−i)

∂Xi

∣∣∣
Xi=x∗i

= f(x∗i ,X−i) + (Xi − x∗i )
∂g (Xi, x

∗
i ,X−i)

∂Xi

∣∣∣
Xi=x∗i

.

Substituting back into (7.20) with c =
∂g(Xi,x

∗
i ,X−i)

∂Xi

∣∣∣
Xi=x∗i

gives

∫
X−i

∫
Xi

f(Xi,X−i)
p(X−i|Xi)

p(X−i|Xi = x∗i )
p(Xi|Xi ∈ [x∗i ± ζ])dXi p(X−i|Xi = x∗i ) dX−i

'
∫
X−i

∫
Xi

{f(x∗i ,X−i) + c(Xi − x∗i )} p(Xi|Xi ∈ [x∗i ± ζ]) dXi p(X−i|Xi = x∗i ) dX−i.
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Since
∫
Xi
c(Xi − x∗i )p(Xi|Xi ∈ [x∗i ± ζ])dXi = EXi∈[x∗i±ζ]{c(Xi − x∗i )} ' 0 and∫

Xi
p(Xi|Xi ∈ [x∗i ± ζ]) dXi = 1, then

∫
X−i

∫
Xi

{f(x∗i ,X−i) + c(Xi − x∗i )} p(Xi|Xi ∈ [x∗i ± ζ]) dXi p(X−i|Xi = x∗i ) dX−i,

'
∫
X−i

f(x∗i ,X−i)p(X−i|Xi = x∗i ) dX−i,

= EX−i|Xi=x∗i
{f(x∗i ,X−i)}.

Hence, we have shown that as long as g(Xi, x
∗
i ,X−i) = f(Xi,X−i)

p(X−i|Xi)
p(X−i|Xi=x∗i )

is

sufficiently smooth such that it is approximately linear in some small intervalXi ∈

[x∗i ± ζ], the ordered approximation method (7.18) will provide a good estimate of

our target conditional expectationEX−i|Xi=x∗i
{f(x∗i ,X−i)}. For f(Xi,X−i)

p(X−i|Xi)
p(X−i|Xi=x∗i )

to be smooth both the model function f(Xi,X−i) and the conditional probability

density function p(X−i|Xi) must be smooth with respect to Xi in the interval

[x∗i ± ζ]. Economic models tend to be smooth functions of their inputs, and it is

also likely that in most health economic modelling scenarios that the conditional

density p(X−i|Xi) will be smooth with respect to Xi.

7.5 Sample size considerations for the estima-

tion of partial EVPI

In this section we derive the sampling distribution of the estimator for the partial

EVPI, and suggest a method for choosing optimum values of J and K.

7.5.1 Estimating the precision of the partial EVPI estima-

tor

For the purposes of this section we assume that we can estimate the second term in

the RHS of equation (7.1) with sufficient accuracy by choosing large N in equation

(7.4), and therefore that this second term does not contribute significantly to the

variance of the estimate of the partial EVPI.
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If we denote d∗k = argmaxd

(
µ̂
(k)
d

)
we can rewrite equation (7.10) as

ÊXi
(m̂(k)) = ¯̂m =

1

K

K∑
k=1

m̂(k),

=
1

K

K∑
k=1

µ̂
(k)
d∗k
,

=
1

K

K∑
k=1

(
1

J

J∑
j=1

y
(j,k)
d∗k

)
,

=
1

S

K∑
k=1

J∑
j=1

y
(j,k)
d∗k

. (7.21)

The variance of ¯̂m is

var( ¯̂m) = var

(
1

S

K∑
k=1

J∑
j=1

y
(j,k)
d∗k

)
,

=
1

S2

K∑
k=1

J∑
j=1

var
(
y
(j,k)
d∗k

)
, (7.22)

since the y
(j,k)
d∗k

are independent. The estimator for var( ¯̂m) is therefore simply

v̂ar( ¯̂m) =
1

S(S − 1)

K∑
k=1

J∑
j=1

(
y
(j,k)
d∗k

− ¯̂m
)2
. (7.23)

We see therefore that the precision of the estimator does not depend on the indi-

vidual choices of J and K, but only on S = J ×K.

7.5.2 Choosing values for J and K

We assume that we have a fixed number of model evaluations S and wish to choose

values for J and K subject to the constraint J ×K = S.

Firstly we note that for small values of J the EVPI estimator is upwardly

biased due to the maximisation in equation (7.9) (Oakley et al., 2010). Indeed for

J = 1 (and K = S) our ordered input estimator for the first term in the RHS of
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equation (7.1) reduces to

1

S

S∑
s=1

max
d

(ysd), (7.24)

which is the Monte Carlo estimator for the first term in the expression for the

overall EVPI, EX {maxd f(d,X)} −maxdEX{f(d,X)}.

Secondly we note that for very large values of J , and hence small values of K,

the EVPI estimator is downwardly biased, and converges to zero when J = S. In

this case our ordered input estimator for the first term in the RHS of equation

(7.1) reduces to

max
d

1

S

S∑
s=1

ysd, (7.25)

which is the Monte Carlo estimator for the second term in the RHS of equation

(7.1).

Given that the algorithm is computationally inexpensive we can find appropri-

ate values for J and K empirically by running the algorithm at a range of values

of J and K, subject to J ×K = S (in practice we only need choose J ×K ≤ S).

Figure 7.1 shows values for the estimated partial EVPI against J (on the log10

scale) for input X6 in scenario 1 of the case study that we introduce in section

§7.6. The total number of model evaluations, S, is 1,000,000. Note the upward

and downward biases at extreme values of J , but also the large region of stability

between J = 100 (K = 10, 000) and J = 100, 000 (K = 10).
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Figure 7.1: Partial EVPI at values of J ranging from 1 to 106 where the total
number of model evaluations, S, is 106.

7.6 Case study

In this case study we compare the ordered input method with the standard two

level Monte Carlo method for calculating partial EVPI. The model for the case

study is a hypothetical decision tree model previously used for illustrative purposes

in Brennan et al. (2007), Oakley et al. (2010) and Kharroubi et al. (2011). The

model predicts monetary net benefit, Yd, under two decision options (d = 1, 2)

and can be written in sum product form as

Y1 = λ(X5X6X7 +X8X9X10)− (X1 +X2X3X4), (7.26)

Y2 = λ(X14X15X16 +X17X18X19)− (X11 +X12X13X4), (7.27)
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where X = {X1, . . . , X19} are the 19 uncertain input parameters listed in table

7.1, and the willingness to pay for one unit of health output in QALYs is λ =

£10, 000/QALY. We implemented the model in R (R Development Core Team,

2011).

Parameter Mean (sd)
d = 1 d = 2

Cost of Drug (X1, X11) £1000 (£1) £1500 (£1)
% Admissions (X2, X12) 10% (2%) 8% (2%)
Days in Hospital (X3, X13) 5.20 (1.00) 6.10 (1.00)
Cost per day (X4) £400 (£200) £400 (£200)
% Responding (X5, X14) 70% (10%) 80% (10%)
Utility Change if respond (X6, X15) 0.30 (0.10) 0.30 (0.05)
Duration of response (years) (X7, X16) 3.0 (0.5) 3.0 (1.0)
% Side effects (X8, X17) 25% (10%) 20 (5%)
Change in utility if side effect (X9, X18) -0.10 (0.02) -0.10 (0.02)
Duration of side effect (years) (X10, X19) 0.50 (0.20) 0.50 (0.20)

Table 7.1: Summary of input parameters

7.6.1 Scenario 1: correlated inputs with known condi-

tional distributions

In scenario 1 we assume that a subset of the inputs are correlated, but with a

joint distribution such that we can sample from the conditional distributions of

the correlated inputs without the need for MCMC. We assume that the inputs

are jointly normally distributed, with X5, X7, X14 and X16 all pairwise correlated

with a correlation coefficient of 0.6, and with all other inputs independent. In a

simple sum product form model the assumption of multivariate normality allows

us to compute the inner conditional expectation analytically, as well as allowing

us to sample directly from the conditional distribution X−i|Xi in the standard

nested two level method, but this will not necessarily be the case in models with

additional non-linearity.

We calculated partial EVPI using three methods. Firstly, we calculated the

partial EVPI for each parameter using a single loop Monte Carlo approximation

for the outer expectation in the first term of the RHS of equation (7.1) with 106
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samples from the distribution of the parameter of interest, and an analytic solution

to the inner conditional expectation. Next, we calculated the partial EVPI values

using the standard two level Monte Carlo approach with 1,000 inner loop samples

and 1,000 outer loop samples (i.e 106 model evaluations in total). Finally, we

computed the partial EVPI values using the ordered sample method with a single

set of 106 samples and a value of J = 1, 000.

Standard errors for the two level method estimates were obtained using the

method presented in Oakley et al. (2010), and for the ordered input method esti-

mates via equation (7.23). We measured the total computation time for obtaining

EVPI values for all 19 parameters. We performed the computations on a single

processor core on a 2.93GHz Intel Core i7 machine running 64 bit Linux.

Results for scenario 1

Calculating the expected net benefits for decision options 1 and 2 analytically

results in values of £5057.00 and £5584.80 respectively, indicating that decision

option 2 is optimal. Running the model with 106 Monte Carlo samples from the

joint distribution of the input parameters results in option 2 having greater net

benefit than option 1 in only 54% of samples, suggesting that the input uncertainty

is resulting in considerable decision uncertainty. This is confirmed by the relatively

large overall EVPI value of £1046.10.

The partial EVPI values for parameters X1 to X4, X8 to X13 and X17 to X19

were all less than £0.01 and therefore considered unimportant in terms of driving

the decision uncertainty. Results for the remaining parameters are shown in table

7.2. The standard errors of the EVPI values estimated via the ordered input

method are considerably smaller than those estimated via the two level method,

and computation time is reduced by a factor of five.
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Parameter Partial EVPI (SE), £
Analytic conditional Two level Ordered input

expectation Monte Carlo method

X5 22.50 9.52 (65.20) 25.29 (3.26)
X6 612.38 614.76 (33.16) 612.63 (3.15)
X7 11.56 77.65 (66.38) 14.86 (3.28)
X14 230.94 312.39 (69.59) 233.63 (3.19)
X15 271.52 315.02 (29.52) 273.00 (3.30)
X16 458.97 502.91 (77.98) 462.42 (3.12)

Computation time† 57 seconds 12 seconds

† Computation time is for all 19 input parameters

Table 7.2: Partial EVPI values for scenario 1

7.6.2 Scenario 2: correlated inputs with conditional dis-

tribution sampling requiring MCMC

In scenario 2 we assume that a subset of the inputs are correlated, but with a

joint distribution such that we can only sample from the conditional distributions

of the correlated inputs using MCMC. We assume, as in scenario 1, that X5, X7,

X14 and X16 are pairwise correlated, but with a more complicated dependency

structure based on an unobserved bivariate normal latent variable Z = (Z1, Z2)

that has expectation zero, variance 1 and correlation 0.6. Conditional on this

latent variable, which represents some measure of effectiveness, the proportions

of responders (X5 and X14) are assumed beta distributed, and the durations of

response (X7 and X16) assumed gamma distributed. The hyperparamters of the

beta and gamma distributions are defined in terms of Z such that X5, X7, X14

and X16 have the means and standard deviations in table 7.1.

We calculated partial EVPI for each parameter using a the standard two level

Monte Carlo approach with 1,000 inner loop samples and 1,000 outer loop samples

(i.e 106 model evaluations in total) using OpenBUGS (Lunn et al., 2009) to sample

from the conditional distribution of X−i|Xi.
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Parameter Partial EVPI (SE), £
Two level Monte Carlo Ordered input
with MCMC inner loop method

X5 102.55 (34.48) 34.65 (3.26)
X6 610.82 (38.02) 618.80 (3.10)
X7 132.16 (36.10) 56.25 (3.25)
X14 334.13 (51.94) 368.87 (3.18)
X15 223.09 (25.73) 275.78 (3.25)
X16 554.20 (64.00) 663.25 (3.13)

Computation time† 2.7 hours 12 seconds

† Computation time is for all 19 input parameters

Table 7.3: Partial EVPI values for scenario 2

Results for scenario 2

Running the model with 106 samples from the joint distribution of the input

parameters resulted in expected net benefits of £5043.12 and £5549.93 for decision

options 1 and 2 respectively, indicating that decision option 2 is optimal, but again

with considerable decision uncertainty. Based on this sample, the probability that

decision 2 is best is 54% and the overall EVPI £1240.33.

Partial EVPI results are shown in table 7.3. Values for parameters X1 to

X4, X8 to X13 and X17 to X19 were again all less than £0.01 and are not shown.

Standards errors for the partial EVPI values estimated via the order input method

are again smaller than those estimated via the two level method. The total time

required to compute partial EVPI for all 19 inputs was approximately 2.7 hours.

In comparison, the ordered input method with a single set of 106 samples and a

value of J = 1, 000 took just 12 seconds, an approximately 1,000 fold reduction

in computation time.

7.7 Conclusion

We have presented a method for calculating the main effect index and partial ex-

pected value of perfect information that is simple to implement, rapid to compute,

and does not require an assumption of independence between inputs. In a case

study we showed that the saving in computational time is particularly marked
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if the alternative is to use a nested two level approach in which the conditional

expectations are estimated using MCMC. The method is straightforward to apply,

even with little programming knowledge in a spreadsheet application.

Our approach requires only a single set of model evaluations in order to calcu-

late the main effect index and/or partial EVPI for all inputs, allowing a complete

separation of the sensitivity analysis from the model evaluation. This separation

may be particularly useful when the model has been evaluated using specialist

software (e.g. for discrete event or agent based simulation) that does not allow

easy implementation of the sensitivity analysis, or where those who wish to per-

form the sensitivity analysis do not ‘own’ (and therefore cannot directly evaluate)

the model.

As presented, the method calculates the main effect index and the partial EVPI

for single inputs one at a time. We may however wish to calculate the value of

learning groups of inputs simultaneously. There are good reasons for this. Firstly,

for certain forms of model we may find that learning single inputs alone has

little value, but learning a group of inputs has high value due to the interactions

between those inputs within the model. It is important to note that interactions

result from non-additive effects within the model, and can occur even if inputs

are uncorrelated. Secondly, a certain subset of model inputs may be derived from

a single study, and therefore learning one input in this set (by conducting the

‘perfect’ study) implies learning them all. If we are considering the value of a

study in reducing uncertainty about inputs, we will consider the value of all the

information that arises from the study, not just the information which informs a

single input.

The value of our method may then be in ‘drilling down’ to specific inputs, or

small groups of inputs within some larger group of inputs that is judged to be pol-

icy relevant. If inputs can be partitioned into broad ‘policy relevant’ groups (i.e.

those which might be considered together when a decision is made to commission

further research), and if these groups can be treated as uncorrelated, then calcu-

lating the EVPI for each group of inputs using two level Monte Carlo methods is

straightforward. At this point, the ordered approximation method could be used
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to compute the value of single inputs (or small groups of inputs) if this was felt

necessary.

Although it is possible to extend our approach to groups of inputs, we quickly

come up against the ‘curse of dimensionality’. This is because the method relies on

partitioning the input space into a large number of ‘small’ sets such that in each set

the parameter of interest lies close to some value. This works well where there is a

single parameter of interest, but if we wish to calculate the sensitivity measures for

a group of parameters, the samples quickly become much more sparsely located

in higher dimensional space. Given a single parameter of interest imagine that

we obtain adequate precision if we partition the input space into K = 1, 000 sets

of J = 1, 000 samples each. With two parameters of interest, we would need to

order and partition the space in two dimensions, meaning that to retain the same

marginal probabilistic ‘size’ for each set we now require K2 = 1, 000, 000 sets of

J = 1, 000 samples each.

Another problem arises when considering more than one input. How do we

partition an n-dimensional space into sets of equal probabilistic size (i.e. con-

taining equal numbers of samples) when the inputs are correlated? If inputs are

uncorrelated this is straightforward. In two dimensions we can imagine placing a

grid over the cloud of points in two dimensions, partitioning the space (figure 7.2).

But the same method will not work when inputs are correlated, as in figure 7.3.

In this case we must apply some kind of transformation to the inputs; in effect

distorting the grid (figure 7.4). One approach is to transform the grid based on

the principal components of the correlated variables of interest.
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Figure 7.2: Uncorrelated variables with grid based on marginal empirical deciles.
This partitions the space into 10 x 10 equal probability sub-spaces with equal
numbers of samples in each sub-space.

−4 −2 0 2 4

−
4

−
2

0
2

4

Var 1

V
ar

 2

Figure 7.3: Correlated variables with grid based on empirical deciles that are
correct for margins. This results in different numbers of samples in each sub-
space.
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Figure 7.4: The same correlated variables as in figure 7.3, but now with a grid
based on empirical deciles derived from the principal components of Var 1 and
Var 2. There are equal numbers of samples in each sub-space.

For groups of more than two or three inputs, the standard two level approach

is likely to be more efficient due to the curse of dimensionality that plagues our

ordered input method. If this is impractical an alternative such as emulation may

be necessary (Oakley and O’Hagan, 2004; Oakley, 2009).



Chapter 8

Conclusion

8.1 Summary

We have considered the problem of managing structural uncertainty in health eco-

nomic decision models. We have seen that we will almost always be in a position

of making judgements about the ‘correct’ model structure, or the size of the model

error, in the absence of observations on the model output. This difficulty has moti-

vated the development of the model discrepancy approach that we have presented

in chapters 5 and 6 of the thesis. In our method we incorporated beliefs about

structural error through the addition of discrepancy terms at the sub-function

level in the model because this was easier than making similar judgements at the

level of the model output. Adding discrepancy terms at the sub-function level

allowed us to understand the relative effect of the different structural uncertain-

ties on the model output and on the decision. This was helpful in guiding choices

about model improvement.

In the first case study we used the discrepancy method to determine the sources

of structural error that had an important impact on the output uncertainty and

hence were able to make a rational choice about how best to improve the model.

In a complex model it may not be at all obvious which are the most important

sources of structural error, and so the method reveals features of the model that

are otherwise hidden.

In the second case study we showed how it is possible using the sub-function

167
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discrepancy method to establish an upper bound on the expected value of model

improvement (EVMI) using value of information methods. This approach will

be most valuable in cases where the decision problem is complex, but due to

difficulties in obtaining input parameter estimates or lack of time or resources we

have built a simple model. We feel that this may be of particular relevance in the

emerging field of economic evaluation of public health interventions where decision

problems generally have many complex elements, but models are often relatively

simple (for good examples see descriptions of the models that have been used by

the National Institute for Health and Clinical Excellence to support public health

intervention resources allocation decisions in England1).

We believe the approach offers some advantages over model averaging meth-

ods where, in the absence of data, elicitation of model weights is required. Mak-

ing probability statements about models, which are by definition abstract non-

observables is likely to be very difficult. The sub-function discrepancy terms iden-

tified in our method are, by contrast, defined such that they relate to observables,

precisely so that judgements about them are easier to elicit.

A model’s structure rests upon a series of assumptions regarding the relation-

ships between the inputs, the intermediate parameters and the output. In any

modelling process it is unavoidable that such assumptions are made, and in one

sense model building is just a formal representation of a set of assumptions in

mathematical functional form. Health economic modellers sometimes explore the

sensitivity of the model prediction to underlying assumptions in a ‘what if’ sce-

nario analysis in which sets of alternative assumptions are modelled. However,

this process cannot in any formal sense quantify the sensitivity of the results to

the assumptions, and nor can it quantify any resulting prediction uncertainty.

Our method is an attempt to formally quantify the effect of all assumptions in

the model about which we do not have complete certainty.

The method is most useful as a sensitivity analysis tool, highlighting areas

of the model that may require further thought. However, if the modeller can

satisfactorily specify a joint distribution for the inputs and the discrepancies,

1http://www.nice.org.uk/Guidance/PHG/Published
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then the method results in a proper quantification of uncertainty about the ‘true’

incremental net benefit of one decision over an alternative, taking into account

judgements about both parameters and structure.

We determined the sensitivity of the model to the discrepancies from two per-

spectives, variance based, and value of information. The variance based approach,

which we applied in case study 1 in chapter 5, quantifies the expected reduction

in variance on learning the value of an uncertain input or discrepancy term. This

gives us a direct measure of the sensitivity of the output to variations in an in-

put or discrepancy, taking into account any correlations. However, it does have

limitations. In this formulation the main effect index can only be calculated for

a scalar model output, and more importantly it does not tell us about decision

uncertainty. If there is very little decision uncertainty in a particular decision

problem, then even an input that has a very large main effect index will have a

very small EVPI. This limitation does not matter if the primary purpose of the

discrepancy analysis is to manage the uncertainty in the prediction that arises due

to uncertainty about model structure, but for a decision model, calculating EVPI

will usually be more appropriate.

In case study 2 in chapter 6 we adopted a decision theoretic perspective and

quantified the sensitivity of the decision to the uncertain structure by calculating

the partial EVPI for the discrepancy terms. We interpret this a being an up-

per bound on the expected value of model improvement (EVMI). Reviewing the

structure of a model may introduce new uncertain inputs, which is why the EVPI

for the discrepancies will not necessarily equal the EVMI. The value of modelling

is rarely discussed in the literature, but implicit in all decisions to commission a

model is the belief that it will be worth the resources that are committed for the

purpose.

This is an interesting area for further exploration. Is it possible to meaningfully

quantify the expected value of building a model in the first place? Given no

model, my beliefs about some quantity under decision d ∈ D are p(Zd). If I

decide to commission a model Y = f(X) to tell me about Z = (Z1, . . . ,ZD),

then my posterior beliefs will be p(Z|Y ,X, f). The expected value of the model
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is therefore

EY ,X,f [max
d
EZ|Y ,X,f{U(Zd)}]−max

d
E{U(Zd)}. (8.1)

Can I meaningfully determine p(Y ,X, f) and p(Z|Y ,X, f) without building the

model?

In both case studies we specified a joint distribution for the discrepancies in

which terms were correlated. This motivated the development of the ‘ordered

input’ method for quantifying the main effect index and the EVPI for correlated

terms. In chapter 7 we demonstrated the method in a small case study along with

presenting a theoretical justification. We showed that not only does the method

allow for correlation, it also provides a gain in efficiency (both statistical and

computational) over the standard two level Monte Carlo method.

8.2 Model complexity and parsimony

Current good practice guidance on modelling for health economic evaluation states

that a model should only be as complex as necessary (Weinstein et al., 2003), but

this well intentioned advice does not actually help us make judgements about

how complex any particular model should be. Another guiding principle is the

requirement for a model to be comprehensible to the non-modeller: a decision

maker’s trust in a model can easily be eroded if the model is so complicated that

its features cannot be easily communicated (Taylor-Robinson et al., 2008).

Our view is that, in the health economic context, increasing the model com-

plexity can have the effect of transferring uncertainty about structural error, which

we express through the specification of model discrepancy terms, to uncertainty

about model input parameters. Structural error often arises when a simple model

is used to a model a complex real world process, thereby omitting aspects that

could effect costs or consequences. If we make the model more complex by includ-

ing such omitted features, typically we will then have more input parameters in

the model.

Increasing the complexity of a model will therefore be desirable if the ad-

ditional complexity relates to parts of the model in which discrepancy terms are
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influential, and if we have suitable data to tell us about any extra parameters that

are required. This is because, to the decision-maker, data-driven probability dis-

tributions for model parameters will be preferable to distributions on discrepancy

terms based solely on subjective judgements of the modeller.

Our framework can help guide the choice of model complexity by identifying

which discrepancy terms are likely to be important. If we are satisfied that a

structural error will have little effect on the model output, then increasing the

complexity of the model to reduce such an error is likely to have little benefit.

8.3 How might this work in practice?

We envisage that the sub-function discrepancy approach has the greatest poten-

tial if used prospectively during model building. This will allow the modeller to

incorporate judgements about structural error as they construct the model, en-

couraging an explicit recognition of the potential impact of the structural choices.

Model development is a sequential, hierarchical, iterative process of uncovering

and evaluating options regarding structure, parameterisation and incorporation of

evidence (Chilcott et al., 2010a). The process depends on the modeller developing

an understanding of the decision problem, which is by its nature subjective. This

understanding of the decision problem is the foundation upon which judgements

are made in the model building process, and also provides the basis for making

judgements about the likely discrepancy inherent in different model formulations.

The essence of the discrepancy approach is that it allows a formal quantification

of the impact of the choices made throughout the model building process.

Ultimately, the validity of the method relies on the ability to meaningfully

specify the joint distribution of inputs and discrepancies, p(X, δ). In both case

studies we represented our beliefs about p(X, δ) fairly crudely, making assump-

tions of independence between inputs and discrepancies and independence be-

tween groups of discrepancies that were not otherwise constrained. Whilst we felt

that this was sufficient in the case studies for the purposes of identifying impor-

tant model sub-functions we recognise that making defensible judgements about



CHAPTER 8. CONCLUSION 172

model discrepancies is in general likely to be difficult. If we wish to proceed to

a full quantification of our uncertainty about the target quantity then a more

sophisticated specification of p(X, δ) will typically be required.

We could choose to make only a crude specification of uncertainty, as long

as we are ‘generous’ with our uncertainty. The expected value of learning δ will

then provide an upper bound on the value of better modelling. If EVPI(δ) is small

compared with the value of learning the inputs, even with the generous estimate of

uncertainty about the structural error, then we can be reassured that the current

model as ‘good enough’. In contrast, if EVPI(δ) dominates EVPI(X) then we

conclude that it is worthwhile either to think a little harder about the model

discrepancy, or to rebuild the model so that it better reflects our beliefs about

the relationships between the inputs and the target quantities we wish to predict.

Developing practical methods for making helpful judgements about p(X, δ) is an

area for future research.
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Books.

Oakley, J. and O’Hagan, A. (2002). Bayesian inference for the uncertainty distri-

bution of computer model outputs, Biometrika, 89 (4): 769–784.

Oakley, J. E. (2009). Decision-theoretic sensitivity analysis for complex computer

models, Technometrics , 51 (2): 121–129.



REFERENCES 185

Oakley, J. E. (2011). Modelling with deterministic computer models, in Simplicity,

Complexity and Modelling , edited by Christie, M., Cliffe, A., Dawid, P. and

Senn, S. S., John Wiley and Sons.

Oakley, J. E., Brennan, A., Tappenden, P. and Chilcott, J. (2010). Simulation

sample sizes for Monte Carlo partial EVPI calculations, Journal of Health Eco-

nomics , 29 (3): 468–477.

Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity of complex mod-

els: a Bayesian approach, Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 66: 751–769.

Oakley, J. E. and O’Hagan, A. (2007). Uncertainty in prior elicitations: a non-

parametric approach, Biometrika, 94: 427–441.

O’Connor, G. T. and Sox, H. C. (1991). Bayesian reasoning in medicine, Medical

Decision Making , 11 (2): 107–111.

O’Hagan, A. (1992). Some Bayesian numerical analysis, in Bayesian Statistics ,

edited by Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M.,

vol. 4, pp. 345–363, Oxford University Press.

O’Hagan, A. (1998). Eliciting expert beliefs in substantial practical applications,

Journal of the Royal Statistical Society. Series D (The Statistician), 47 (1):

21–35.

O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H.,

Jenkinson, D. J., Oakley, J. E. and Rakow, T. (2006). Uncertain Judgements:

Eliciting Expert Probabilities , Chichester: John Wiley and Sons.

O’Hagan, A. and Oakley, J. E. (2004). Probability is perfect, but we can’t elicit

it perfectly, Reliability Engineering and System Safety , 85 (1-3): 239–248.

O’Neill, S. J., Osborn, T. J., Hulme, M., Lorenzoni, I. and Watkinson, A. R.

(2008). Using expert knowledge to assess uncertainties in future polar bear

populations under climate change, Journal of Applied Ecology , 45 (6): 1649–

1659.



REFERENCES 186

Oremus, M., Collet, J.-P., Corcos, J. and Shapiro, S. H. (2002). A survey of

physician efficacy requirements to plan clinical trials, Pharmacoepidemiology

and Drug Safety , 11 (8): 677–685.

Orton, T. G., Goulding, K. W. T. and Lark, R. M. (2011). Geostatistical predic-

tion of nitrous oxide emissions from soil using data, process models and expert

opinion, European Journal of Soil Science, 62 (3): 359–370.

Paddock, S. M. and Ebener, P. (2009). Subjective prior distributions for model-

ing longitudinal continuous outcomes with non-ignorable dropout, Statistics in

Medicine, 28 (4): 659–678.

Possolo, A. (2010). Copulas for uncertainty analysis, Metrologia, 47 (3): 262–271.

R Development Core Team (2010). R: A Language and Environment for Statistical

Computing , R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-

900051-07-0.

R Development Core Team (2011). R: A Language and Environment for Statistical

Computing , R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-

900051-07-0.

Raiffa, H. (1968). Decision Analysis. Introductory Lectures on Choices Under Un-

certainty , Reading, Massachusetts: Addison-Wesley.

Ramachandran, G., Banajee, S. and Vincent, J. (2003). Expert judgement and

occupational hygiene: Application to aerosol speciation in the nickel primary

production industry, Annals of Occupational Hygiene, 47 (6): 461–475.

Robinson, S. (2008). Conceptual modelling for simulation Part I: definition and

requirements, Journal of the Operational Research Society , 59 (3): 278–290.

Rojnik, K. and Naversnik, K. (2008). Gaussian process metamodeling in Bayesian

value of information analysis: A case of the complex health economic model for

breast cancer screening, Value in Health, 11 (2): 240–250.



REFERENCES 187

Rougier, J. (2007). Probabilistic inference for future climate using an ensemble of

climate model evaluations, Climatic Change, 81 (3-4): 247–264.

Ryan, M., Scott, D. A., Reeves, C., Bate, A., van Teijlingen, E. R., Russell,

E. M., Napper, M. and Robb, C. M. (2001). Eliciting public preferences for

healthcare: a systematic review of techniques., Health Technology Assessment ,

5 (5): 1–186.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,

Saisana, M. and Tarantola, S. (2008). Global Sensitivity Analysis: The Primer ,

Chichester: John Wiley and Sons Ltd.

Santner, T. J., Williams, B. J. and Notz, W. I. (2003). The Design and Analysis

of Computer Experiments, New York: Springer.

Savage, L. (1954). The Foundations of Statistics , New York: Wiley.

Savage, L. J. (1971). Elicitation of personal probabilities and expectations, Journal

of the American Statistical Association, 66 (336): 783–801.

Senn, S. (2008). Comment on article by Gelman, Bayesian Analysis , 3: 459–462.

Shardell, M., Scharfstein, D. O., Vlahov, D. and Galai, N. (2008). Sensitivity anal-

ysis using elicited expert information for inference with coarsened data: Illustra-

tion of censored discrete event times in the AIDS link to intravenous experience

(ALIVE) study, American Journal of Epidemiology , 168 (12): 1460–1469.

Simpson, K. N., Luo, M. P., Chumney, E., Sun, E., Brun, M. and Ashraf, T.

(2004). Cost-effectiveness of Lopinavir/Ritonavir versus Nelfinavir as the first-

line highly active antiretroviral therapy regimen for HIV infection, HIV Clinical

Trials , 5 (5): 294–304.

Smith, J. Q. (2010). Bayesian Decision Analysis. Principles and Practice, Cam-

bridge: Cambridge University Press.

Soares, M. O., Bojke, L., Dumville, J., Iglesias, C., Cullum, N. and Claxton, K.

(2011). Methods to elicit experts’ beliefs over uncertain quantities: application



REFERENCES 188

to a cost effectiveness transition model of negative pressure wound therapy for

severe pressure ulceration, Statistics in Medicine, e-pub ahead of print.

Sonnenberg, F. A. and Beck, J. R. (1993). Markov models in medical decision

making, Medical Decision Making , 13 (4): 322–338.

Spiegelhalter, D. J. and Best, N. G. (2003). Bayesian approaches to multiple

sources of evidence and uncertainty in complex cost-effectiveness modelling.,

Statistics in Medicine, 22 (23): 3687–709.

Stein, M. (1987). Large sample properties of simulations using Latin hypercube

sampling, Technometrics , 29 (2): 143–151.

Stevens, J. W. and O’Hagan, A. (2002). Incorporation of genuine prior informa-

tion in cost-effectiveness analysis of clinical trial data, International Journal of

Technology Assessment in Health Care, 18 (4): 782–790.

Stevenson, M. D., Oakley, J. and Chilcott, J. B. (2004). Gaussian process mod-

eling in conjunction with individual patient simulation modeling: A case study

describing the calculation of cost-effectiveness ratios for the treatment of estab-

lished osteoporosis, Medical Decision Making , 24 (1): 89–100.

Stevenson, M. D., Oakley, J. E., Chick, S. E. and Chalkidou, K. (2008). The

cost-effectiveness of surgical instrument management policies to reduce the risk

of vCJD transmission to humans, Journal of the Operational Research Society ,

60 (4): 506–518.

Stevenson, M. D., Oakley, J. E., Lloyd Jones, M., Brennan, A., Compston, J. E.,

McCloskey, E. V. and Selby, P. L. (2009). The cost-effectiveness of an RCT

to establish whether 5 or 10 years of bisphosphonate treatment is the better

duration for women with a prior fracture, Medical Decision Making , 29 (6):

678–689.

Stinnett, A. A. and Mullahy, J. (1998). Net health benefits: A new framework

for the analysis of uncertainty in cost-effectiveness analysis, Medical Decision

Making , 18 (2): S68–80.



REFERENCES 189

Streiner, D. L. and Norman, G. R. (1995). Health Measurement Scales: A Practical

Guide to Their Development and Use, Oxford: Oxford University Press, second

edn.

Tappenden, P., Chilcott, J. B., Eggington, S., Oakley, J. and McCabe, C. (2004).

Methods for expected value of information analysis in complex health economic

models: developments on the health economics of interferon-γ and glatiramer

acetate for multiple sclerosis, Health Technology Assessment , 8 (27).

Taylor-Robinson, D., Milton, B., Lloyd-Williams, F., O’Flaherty, M. and

Capewell, S. (2008). Policy-makers’ attitudes to decision support models for

coronary heart disease: a qualitative study, Journal of Health Services Research

Policy , 13 (4): 209–214.

Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. and Thompson, S. G. (2009).

Bias modelling in evidence synthesis, Journal of the Royal Statistical Society:

Series A (Statistics in Society), 172 (1): 21–47.

van der Voet, H., van der Heijden, G. W., Bos, P. M., Bosgra, S., Boon, P. E.,

Muri, S. D. and Bruschweiler, B. J. (2009). A model for probabilistic health im-

pact assessment of exposure to food chemicals, Food and Chemical Technology ,

47 (12): 2926–2940.

Weinstein, M. C., O’Brien, B., Hornberger, J., Jackson, J., Johannesson, M.,

McCabe, C. and Luce, B. R. (2003). Principles of good practice for decision

analytic modeling in health-care evaluation: Report of the ISPOR task force

on good research practices-modeling studies, Value in Health, 6 (1): 9–17.

Weinstein, M. C. and Stason, W. B. (1977). Foundations of cost-effectiveness

analysis for health and medical practices, New England Journal of Medicine,

296 (13): 716–721.

White, I. R., Higgins, J. P. T. and Wood, A. M. (2008). Allowing for uncertainty

due to missing data in meta-analysis Part 1: Two-stage methods, Statistics in

Medicine, 27 (5): 711–727.



REFERENCES 190

Wilson, A. G., Anderson-Cook, C. M. and Huzurbazar, A. V. (2011). A case study

for quantifying system reliability and uncertainty, Reliability Engineering and

System Safety , 96 (9): 1076–1084.

Zaric, G. S. (2003). The impact of ignoring population heterogeneity when Markov

models are used in cost-effectiveness analysis, Medical Decision Making , 23 (5):

379–386.

Zio, E. and Apostolakis, G. E. (1996). Two methods for the structured assessment

of model uncertainty by experts in performance assessments of radioactive waste

repositories, Reliability Engineering and System Safety , 54 (2-3): 225–241.

Zohar, S., Baldi, I., Forni, G., Merletti, F., Masucci, G. and Gregori, D. (2011).

Planning a Bayesian early-phase phase I/II study for human vaccines in HER2

carcinomas, Pharmaceutical Statistics , 10 (3): 218–226.


