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Abstract 
Chinese Hamster Ovary (CHO) cell is a major manufacturing platform for one of the most 

valuable biopharmaceutical products: monoclonal antibodies. Being an immortal cell line 

adapted to different environments, CHO has been accumulating massive mutations in its 

genome. Continuous effort has been invested into building a computational model to predict 

CHO cell productivity. However, not much attention has been focused on its proteins which 

are surely effected by the mutations accumulated to some extent.  

In this project, we focused on the functional effect caused by non-synonymous variants found 

in CHO genome. A tool was built to firstly identify these variants and then predict their 

potential function effect by preservation, a concept derived from evolutionary conservation. 

Firstly, the PANTHER subfamilies, which defined on the base of potential function change 

within gene trees, were extended by adding proteins from species not covered by PANTHER. 

Sequences within the same subfamily were then aligned and had Hidden Markov Models 

(HMMs) built on these alignments. The HMMs were used to identify homologs in CHO 

proteins. After that preservation were calculated in every site of the alignments, which was 

then used to predict the function alterations caused by mutations on every site.  

Our tool was then validated using data from origin PANTHER subfamilies, PANTHER-PSEP 

which also calculated site preservation and BLAST, a well-accepted homolog searching 

algorithm. CHO protein sequences were then imported and analysed by our tool. For 

comparison, protein sequences from Chinese hamster were also analysed alone with two 

published CHO cell lines: CHO-K1 and CHO-K1GS. The predictions of proteins from these three 

genomes were then compared by mapping onto Gene Ontology (GO). Some detailed case 

studies were also demonstrated. Our tool showed good performance in validations, however, 

they failed to produce useful hypotheses that would motivate further experiments on bench. 

The potential causes are discussed at the end. 

 

 

 
  



III 
 

Contents 
Acknowledgements ..................................................................................................................... I 

Abstract ...................................................................................................................................... II 

Contents .................................................................................................................................... III 

List of Abbreviations ..................................................................................................................V 

List of Tables ............................................................................................................................VII 

List of Figures ..........................................................................................................................VIII 

1 Introduction ............................................................................................................................ 1 

1.1 Research background and motivations ............................................................................ 1 

1.2 Objectives ......................................................................................................................... 3 

1.3 Thesis structure ................................................................................................................ 4 

2 Literature Review .................................................................................................................... 6 

2.1 Chinese Hamster Ovary Cells ........................................................................................... 6 

2.2 High-throughput Sequencing Techniques ...................................................................... 10 

2.3 Bioinformatics Techniques ............................................................................................. 12 

2.3.1 Sequence Alignment ................................................................................................ 12 

2.3.2 Hidden Markov Models ........................................................................................... 14 

2.3.3 Phylogenetic Tree Construction .............................................................................. 15 

2.3.4 Protein Structure Prediction .................................................................................... 19 

2.3.5 Non-synonymous Nucleotide Variant Impact ......................................................... 19 

2.4 Important Databases ...................................................................................................... 21 

2.4.1 Gene databases ....................................................................................................... 21 

2.4.2 Single Nucleotide Variation (SNV) databases .......................................................... 22 

2.4.3 Protein databases .................................................................................................... 23 

2.4.4 Function and pathway databases ............................................................................ 25 

2.5 Related Data Resource and Researches on CHO ........................................................... 26 

3 Methodology ......................................................................................................................... 29 

3.1 Homolog Selection ......................................................................................................... 30 

3.2 Aligning Sequences ......................................................................................................... 32 

3.3 Phylogenetic Tree Construction ..................................................................................... 33 

3.4 Member Selection for Extended Subfamilies ................................................................. 34 



IV 
 

3.5 Building HMMs ............................................................................................................... 37 

3.6 Preservation Calculation ................................................................................................ 37 

3.7 CHO Data Analysis and Prediction ................................................................................. 39 

3.8 Related Software Description ........................................................................................ 41 

3.8.1 MAFFT ...................................................................................................................... 41 

3.8.2 HMMer .................................................................................................................... 43 

3.8.3 RAxML ...................................................................................................................... 46 

3.8.4 TreeFix ..................................................................................................................... 48 

4 Model validation and performance ...................................................................................... 49 

4.1 HMM validation .............................................................................................................. 49 

4.2 Preservation analysis ...................................................................................................... 52 

4.3 Summary ........................................................................................................................ 63 

5 Model Predictions on CHO Related Data .............................................................................. 65 

5.1 Prediction Overview ....................................................................................................... 65 

5.2 Verification with BLAST .................................................................................................. 67 

5.3 Expression and Prediction Correlation ........................................................................... 70 

5.4 Comparison of Predictions of Different CHO Related Genomes ................................... 73 

5.5 Summary ........................................................................................................................ 79 

6 Case Studies and Hypotheses ............................................................................................... 80 

6.1 Mutations on TP53 ......................................................................................................... 80 

6.2 Glycolytic Process ........................................................................................................... 81 

6.3 Apoptosis ........................................................................................................................ 82 

6.4 DNA repairing ................................................................................................................. 84 

6.5 Protein Glycosylation ..................................................................................................... 89 

7 Conclusion ............................................................................................................................. 94 

7.1 Result summary .............................................................................................................. 94 

7.2 Achievements and limitations ........................................................................................ 95 

7.3 Future works .................................................................................................................. 96 

Reference ................................................................................................................................. 98 

 

  



V 
 

List of Abbreviations 
 

CHO Chinese Hamster Ovary 

mAb monoclonal antibody 

PTM post translation modification 

HMM Hidden Markov Model 

PANTHER Protein Annotation Through Evolutionary 
Relationship 

BLAST Basic Local Alignment Search Tool 

IgG Immunoglobulin G 

Fab Fragment antigen-binding 

Fc Fragment crystallisable 

DNA Deoxyribonucleic acid 

dNTP deoxyribonucleotide triphosphate 

ddNTP Dideoxynucleotides triphosphates 

PCR Polymerase chain reaction 

HGP Human Genome Project 

HTS High-throughput sequencing 

NCBI National Center of Biotechnology 
Information 

MC Markov chain 

MCMC Markov Chain Monte Carlo 

ILS incomplete lineage sorting 

UPGMA unweighted pair-group method based upon 
arithmetic averages 

NJ Neighbour Joining 

ML Maximum Likelihood 

PAM point accepted mutation 

BLOSUM Blocks Substitution Matrix 

CASP Critical Assessment of methods of protein 
Structure Prediction 

TBM template-based model 

FM free model 

PSSM position-specific scoring matrix 

nsSNV non-synonymous Single Nucleotide Variant 

nsSNP non-synonymous Single Nucleotide 
Polymorphism 

ENA European Nucleotide Archive 

EMBL European Molecular Biology Laboratory 

DDBJ DNA Data Bank of Japan 

INSCO International Nucleotide Sequence 
DataBase Collaboration 

RefSeq Reference Sequence 

ORF open reading frame 

PDB Protein Data Bank 



VI 
 

GO Gene Ontology 

SNV Single Nucleotide Variation 

OMIM Online Mendelian Inheritance in Man 

HGMD Human Gene Mutation Database 

UniProt Universal Protein Resource 

EBI European Bioinformatics Institute 

SIB Swiss Institute of Bioinformatics 

PIR Protein Information Resource 

UniProtKB UniProt Knowledgebase 

UniParc UniProt Archive 

UniRef UniProt Reference Cluster 

UniMES UniProt Metagenomic and Environmental 
Sequence 

NMR nuclear magnetic resonance 

PSSM position-specific score matrices 

PANTHER-PSEP PANTHER position-specific evolutionary 
preservation 

KEGG Kyoto Encyclopaedia of Genes and Genomes 

MFA metabolic flux analysis 

FBA flux balance analysis 

FWI Fowlkes-Mallows index 

TP true positive 

FP false positive 

FN false negative 

FFT Fast Fourier Transform 

RAxML Randomised axelerated maximum 
likelihood 

FPKM Fragments Per Kilobase of transcript per 
Million mapped reads 

 

  



VII 
 

List of Tables 
 

Table 2.1 Top 10 best-selling drugs in 2014 .............................................................................. 7 

Table 2.2 Performance comparison of DNA sequencing technologies. .................................. 11 

Table 4.1 The numbers of sites with different marks with different preservation level. ....... 54 

Table 4.2 Functional prediction results for rat and rhesus. ..................................................... 61 

Table 4.3 Part of result of enrichment analysis from PANTHER website. ............................... 63 

Table 5.1 Number of subfamily returned negative result on CHO related genomes.............. 66 

Table 5.2 Functional prediction of proteins on CHO related genomes. .................................. 66 

Table 5.3 Sequential preservation profile of genes of different expression levels. ................ 72 

Table 5.4 Number of common subfamily reporting abnormal result ..................................... 74 

Table 5.5 GO mapping for common altered functions ............................................................ 75 

Table 5.6 GO mapping of altered function shared by CHO related genomes ......................... 76 

Table 5.7 GO mapping of altered function shared by CHO related genomes, rat and rhesus 76 

Table 5.8 GO mapping for altered proteins common in CHO related genomes but normal in 

rat and rhesus .......................................................................................................................... 77 

Table 5.9 GO mapping of altered functions common in CHO-K1 and CHO-K1GS but normal in 

Chinese hamster ...................................................................................................................... 77 

Table 5.10 GO mapping for proteins altered in CHO-K1 but normal in Chinese hamster ...... 78 

Table 5.11 GO mapping for proteins altered in CHO-K1GS but normal in Chinese hamster .. 79 

Table 6.1 TP53 preservation in CHO related genomes ............................................................ 81 

Table 6.2 BLAST result of TP53 in CHO genome from NCBI .................................................... 81 

Table 6.3 Details of prediction results for 6 glycolysis related genes ..................................... 82 

Table 6.4 Predictions on apoptosis related genes ................................................................... 83 

Table 6.5 Predictions on DNA repair related genes ................................................................. 84 

  



VIII 
 

List of Figures 
 

Figure 2.1 Phylogenetic tree of some most widely used CHO cell lines .................................... 9 

Figure 2.2 Incongruence between gene tree and species tree and ILS ................................... 18 

Figure 3.1 Flow chart of building the function predicting tool. ............................................... 30 

Figure 3.2 Mammalian species tree generate by iTOL 3 ......................................................... 31 

Figure 3.3 Samples showing homologs grouping with phylogenetic tree. .............................. 36 

Figure 3.4 Species tree used for preservation calculation. ..................................................... 39 

Figure 3.5 Profile HMM with searching structure ................................................................... 44 

Figure 3.6 HMMer 3 HMM for comparing sequences ............................................................. 45 

Figure 4.1 Average of molecular age on preservation levels. ................................................. 53 

Figure 4.2 Preservation distributions on different annotated sites. ....................................... 59 

Figure 5.1 Comparison of BLAST similarity and preservation score of predicted intact proteins.

.................................................................................................................................................. 68 

Figure 5.2 Comparison of BLAST similarity and preservation score of predicted defected 

proteins. ................................................................................................................................... 69 

Figure 5.3 The mean and variance of sequential preservation in different expression levels 

divided by FPKM value. ............................................................................................................ 73 

Figure 6.1 KEGG pathway of apoptosis. ................................................................................... 84 

Figure 6.2 KEGG pathway of mismatch repair. ........................................................................ 86 

Figure 6.3 KEGG pathway of NER. ............................................................................................ 87 

Figure 6.4 KEGG pathway of BER. ............................................................................................ 88 

Figure 6.5 KEGG pathway of double-strand break repair. ....................................................... 89 

Figure 6.6 Species specific N-glycosylation on Asn. ................................................................. 90 

Figure 6.7 N-glycosylation pathway ......................................................................................... 91 

Figure 6.8 KEGG pathway of glycosylation. ............................................................................. 92 

  



1 
 

1 Introduction  
 

1.1 Research background and motivations 

Chinese Hamster Ovary (CHO) cell is a mammalian cell line which has been cultured for more than 

three decades. For different research or manufacturing purposes, it had been adapted to different 

culture environments and therefore derided many descendent cell lines with various characters. 

Some of them were adapted to inorganic environments of cheap, easy-to-control, scalable, massive 

culture for industrial production. One of its most valuable products is the monoclonal antibody 

(mAb), an important compound secreted by the human immune system. In spite of recent recession 

in the pharmaceutical market, the global sale of mAbs and their functional fragment maintains 

stable in its growth. However, the complexity of mAbs also laid down substantial restrictions on 

manufacturing platforms. One of the most significant requirement is human compatible post 

translation modification (PTM). CHO cell as a mammalian cell line inherently shared a big part of 

protein synthesising pathways with humans and therefore, became one of the most promising 

candidates of expression platform. However, expressing exogenetic product brings large stress to 

the cell and the productivity was extremely low at the beginning. After decade’s development on 

both culture process and cell lines, the productivity has been largely improved by tens of times. 

However, most of the improvements were made by process optimisation and the knowledge of CHO 

cell biology remains fairly limited. The first genome of CHO was not made available until 2011 (Xu 

et al., 2011). It came from a CHO cell line parent to many production cell lines: CHO-K1. The 

development of sequencing techniques allow cheap and fast acquirement of genomic data, enabling 

further research on CHO biology. However, processing and interpreting the massive data generated 

by sequencing machine became the bottleneck for current research. 

Bioinformatics is a technique developed for resolving this problem. The CHO industry community is 

longing for a computational model that can predict and improve CHO productivity before the culture 

starts. It requires integration of large amounts of various types of data ranging from nutrition in the 

media to the gene expression in the cell. The first consensus CHO metabolic model was merely 

published in late 2016 (Hefzi et al., 2016). While metabolic flux are extensively modelled, the 

proteins carrying related functions were not getting enough attention. As a cell line being 

engineered for different purposes, mutations are intensively accumulated in CHO genome. It is very 
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often that these mutations change the function of the CHO proteins, which is also the reason that 

CHO could quickly adapt to major changes in the culturing environment. Given the knowledge of 

how these mutations affect the function of protein related to production process, accurate protein 

efficacy can be predicted for the metabolic model. Also, as genome editing tools, such as CRISPR 

techniques (Sander & Joung, 2014), had been made available, it is possible to optimise cellular 

production process in the molecular level given that knowledge. However, it has rarely been 

explored on CHO. Current use of genome editing techniques, such as CRISPR/CAS9, only focus on 

transgene integration(J. S. Lee et al., 2016) and engineering on glycan profile (Sun et al., 2015). 

The ration between mutations and protein function is mainly studied in the human genome (Wong 

& Zhang, 2014; Zeng et al., 2014; Wu & Jiang, 2013). It is not rare that genetic information is used 

for understanding cancer pathology and predictions of cancer (Shihab et al., 2013; Reva et al., 2011). 

Computational tools had been developed to analyse sequence variant effect on human disease in 

residue level (Wong & Zhang, 2014; Hu et al., 2007). These tools are mostly supported by data from 

clinic researches and all focus on disease related genes in the human genome. Transferring these 

tools on production or metabolism related genes on CHO would need to counter a major challenge 

of lack of supporting data. Additionally, the first draft human genome was published in 2001 (Venter 

et al., 2001), 10 years earlier than CHO. Since then, annotating human genome has been conducted 

intensively by research groups around the world making the human genome one of the best 

understood animal genomes. In comparison, the CHO genome was only assembled in the scaffold 

level and the annotation works have been conducted by the CHO community for a few years. 

In this project, we aimed to develop a tool predicting function impact of sequential variant in CHO 

proteins. As a starting point, we were minimising hypotheses application in our tool to reduce bias 

and allow various hypotheses application in further development. Data from other species, 

especially rodents, would be used to compensate for the lack of data for CHO. To use these data 

from different species, phylogenetic information which is also used by tools predicting human 

diseases, were extensively applied. We identified types of mutations and developed models 

accordingly which would all contribute to the predictions. Related data and tools would be used for 

validation and comparison to evaluate the performance of our tools and finally, hypotheses would 

be made on the generated predictions.    
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1.2 Objectives 

The main target of this project is developing a computational tool that could predict functional 

change of proteins. To achieve this target, it was broken down to several objectives: 

 Identify the most suitable tools and data resource from the related literature. Well-

developed tools should be used as the foundation of our tool. Therefore, performance 

surveys of tools built for different purposes need to be reviewed. The underlying 

assumptions adopted by tools used in our pipeline must not conflict with each other. In 

addition, although large amount of data would be required to generate reliable prediction, 

the data needs to be selected to reduce unnecessary noise in the system. 

 Build the predicting tool (models) using related with minimum assumptions. In this process, 

underlying concepts and assumptions would also be identified. Assumptions should be 

derived from existing assumptions adopted by tools with good performance. Inherent 

limitations should also be identified. 

 Validate the tool with proper data and related tools. Data for validation should be selected 

before the tool was built and isolated from the building process. Inherent difference 

between the tool built in this project and tools used for validation should also be identified 

and standard for evaluating tools should be made clear. Performance and limitation of the 

tool should be examined with the concepts and assumption adopted. Matrices used by the 

tool should also be adjusted in this stage.  

 Apply the tool to CHO proteins and generated hypotheses. Methods of interpreting the 

prediction results into hypotheses should be described. Certain hypotheses should be made 

for comparison with existing knowledge to estimate the quality of other hypotheses made 

for inspiring research.  

 Identify the limitations and potentials of the tools and its resulted hypotheses. Depend on 

the quality of the hypotheses the prediction could provide, assumptions and potential 

improvements of the tool should be discussed. 

It is worth to mention that not all the objectives above were successfully accomplished in this thesis 

but actions or resources required to fully accomplish these objectives will be discussed at the end. 

After all, this project merely set up a starting point for further sophisticated development of models 

which could make significant contribution to CHO cell engineering. 
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1.3 Thesis structure 

Firstly, the research background and knowledge required to understand the rationales of related 

tools is provided by reviewing related literatures. The importance of CHO cell as a manufacturing 

platform and its most valuable product mAbs is highlighted in the literature review. The main 

sequencing platforms are then acknowledged as the source of sequences intensively used in this 

project. Important tools for comparing sequences, calculating phylogenetic distance and topology 

and predicting protein function and structure are then detailed. Lastly in that chapter, databases 

storing and managing related data and relevant research on CHO are briefly introduced.  

After that, a methodology chapter follows with detailed descriptions of the pipeline of the tools, 

accompanied by justifications in every step. An overview of the pipeline is provided at the beginning 

of the chapter. In short, we used Hidden Markov Models (HMMs) to integrate sequential 

information of every homolog groups and identify the best available homolog in CHO. Then site 

conservation was calculated and provided evidence to make predictions on function alteration. The 

detailed description of the step is started from data selection, alignment to phylogenetic tree 

construction and the final HMM construction and conservation calculation. A detailed description 

of external tools used by the pipeline will be provided in the end of the chapter.  

The validation of the built tool is described in chapter 4. As the homolog selection we used were 

mainly derived from PANTHER subfamilies, subfamily members not used for building HMMs were 

used to validate the performance of the HMMs we built. On the other hand, we compared the 

preservation result calculated by another tool with ours. At last, we validated the site preservation 

results with functional site annotations from UniProt. 

In chapter 5, analysis of sequence data of three published CHO related genome using the tool we 

developed is described. We randomly selected prediction results to compare with BLAST results. 

And then we used published CHO expression results to verify a hypothesis we made given the site 

preservation was correctly calculated. Lastly, we compared prediction difference between three 

CHO related genomes by mapping the prediction onto GO. 

Several case studies are described in chapter 6. We studied mutations on TP53 of three CHO related 

genomes. Then we chose glycolytic process, apoptosis, DNA repair and glycosylation to inspect in 
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detail. A discussion of the achievements and limitations of the tool is provided in the final chapter 

with the potential future works. 
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2 Literature Review 
 

In this chapter, background information will be first provided in order to explain the motivations 

and objectives of this project. Then related bioinformatics techniques, tools and databases will be 

introduced, where basic concepts, strategies and algorithms are described briefly suggesting the 

selection of tools in this project. Lastly, CHO related research and the data they generated will be 

reviewed, explaining the challenges and novelty of the works in this thesis. 

 

2.1 Chinese Hamster Ovary Cells 

Despite the recent economic recession the global pharmaceutical market has remained strong 

(EFPIA, 2015), with biopharmaceuticals - drugs manufactured using biological cells - showing 

consistent growth. Including monoclonal antibodies (mAbs), hormones, enzymes, blood-related 

proteins, vaccines, interferons and gene therapy-based products, biopharmaceuticals are used to 

treating conditions such as cancer, haemophilia, diabetes and rheumatoid arthritis. According to 

Walsh (2014), since the first approval of recombinant protein (human insulin) in 1982 there were 

246 biopharmaceuticals approved in the United States and European Union up to 2014. In 2014 

these medications generated sales of $140 billion (Walsh, 2014) and this is projected to maintain 

growth in the near future.  

mAbs are dominant in both sales and sales growth. As shown in Table 2.1, half of the top 10 best-

selling biologics in 2014 are mAbs. Together mAbs accounted for over $40 billion sales in 2013. The 

number one product (Humira), which generated global sales of $10 billion in 2013, has reached a 

20% increase resulting in $12 billion sales in 2014 (Philippidis, 2015). Most of the top-selling mAbs 

were developed by Roche, along with others by AbbVie, Johnson & Johnson, Merck and Gilead 

Sciences. mAbs also accounts for 23% of biologics approved since 1995 (Walsh, 2014). 

mAbs are antibodies secreted by the plasma cell in the immune system that target a specific antigen. 

Licenced therapeutic mAbs are all Immunoglobulin G (IgG), consisting of two heavy chains and two 

light chains, mAb can be divided into three fragments: two Fragment antigen-binding (Fab), 

responsible for specifically binding to the antigen, and one Fragment crystallisable (Fc) that triggers 

downstream immune activities by binding to receptors on the cell surface. Due to the specificity of 
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mAbs they are often designed for cancer treatment (Adams & Weiner, 2005) and autoimmune 

diseases (Feldmann & Maini, 2003). 

 

 

Table 2.1 Top 10 best-selling drugs in 2014 
Data comes from www.genengnews.com 

Name Drug type Sponsor Sale (billion) 

Humira Mab AbbVie $12.543 

Sovaldi Nucleotide analogue Gilead Sciences $10.283 

Remicade Mab J & J and Merck $9.240 

Rituxan Mab Roche (Genentech) and Biogen $8.678 

Enbrel Fusion protein Amgen and Pfizer $8.538 

Lantus Insulin analogue Sanofi $7.279 

Avastin Mab Roche $6.957 

Hercepin Mab Roche $6.793 

Advair Formulation GlaxoSmithKline $6.431 

Crestor Small molecule AstraZeneca and Shionogi $5.869 

  

 

Therapeutic mAbs require an expression platform with proper (specifically, human-like) protein 

folding and post-translation modification mechanisms. Therefore, mammalian cell lines are 

preferable as less genetic engineering is required to reconstruct these mechanisms (that is, they 

natively fold and modify proteins in a human-like manner). Currently, available mammalian 

manufacturing platforms include baby hamster kidney cells, human cell lines Hek 293 and PERC.C6 

(Swiech et al., 2012), and Chinese Hamster Ovary (CHO) cells, which are the most favoured platform 

for mAb production (Wlaschin & Yap, 2007). Up to 2014 35.5% of the total approved 

biopharmaceuticals are manufactured by CHO (Walsh, 2014), including the majority of mAbs and 

some mAb fragments, which account for most of the revenues. Compared to other platforms, which 

only recently succeeded in expressing functional mAbs, CHO has been manufacturing correctly 

folded, glycosylated (in human form) proteins for the past few decades. Apart from the main reason 

of their capacity to correct PTMs, other reasons behind CHO’s popularity include 1) it has been 

proven safe as a medicine manufacturing cell line for over two decades, which makes it easier to be 

approved by drug administration agencies (Kim et al., 2012); 2) it resists most human viruses; 3) it 

can easily adapt to serum-free suspension conditions which allow large scale manufacturing; and 4) 

as a result of 20 years’ optimisation by the biopharma industry, bioprocesses in CHO have been well 
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established. Due to the dominant position in drug production, CHO has become the production cell 

line of greatest interest for industry-related research and manufacturing.  

Most CHO productivity improvements were achieved by optimising culture media and the process 

design (Hacker et al., 2009). Hacker et al. (2009) suggested that further improvements in protein 

yield can be achieved by high throughput transfection and screening. Although large-scale screening 

has been proven effective for obtaining productive clones, it largely relies upon uncontrollable 

factors that could lead to failure when the clones for screening are insufficient. While highly 

productive cell lines were mainly obtained by screening, function manipulation in CHO engineering 

is restricted by a lack of knowledge of the CHO genome’s sequence and organisation. Despite great 

interest in CHO, the first CHO genome was only published a few years ago (Xu et al., 2011). While 

this enabled better understanding both across the whole CHO genome and of its details, allowing 

derived research to thrive in recent years, our knowledge of CHO biology remains relatively limited.  

In contrast, human cancer genomes have been more intensively studied and better understood. 

Although undertaken for totally different purposes, research on human cancer genomes also speaks 

to CHO as CHO shares many genotype and phenotype characteristics with cancers (Lewis et al., 2013; 

Kojima et al., 2009; Tannock & Guttman, 1981). A characteristic shared by all cancer cell lines and 

CHO is genetic instability, which is described as a ‘hallmark of the cancer cell’ by Loeb and Loeb 

(2000). Genetic instability is present at multiple scales, from point mutations through to 

chromosomal aberrations (Roychowdhury & Chinnaiyan, 2016; Weinstein, 2012). It was found long 

ago that most of these mutations are located in non-coding regions (Stoler et al., 1999), but the 

regulation mechanisms of these non-coding regions were only discovered recently and our 

knowledge of these remains limited (Ling et al., 2015). Compared to point mutations, which affect 

only one gene, chromosomal aberration can result in large region rearrangements affecting multiple 

genes. Genetic information, including family history and genome profile, has been used for cancer 

prognosis, diagnosis and treatment response assessment (Roychowdhury & Chinnaiyan, 2016; Ling 

et al., 2015; Weitzel et al., 2011). To acquire related information, systems containing multiple cancer 

cell lines have been set up on different aspects (Barretina et al., 2012; Weinstein, 2012). A series of 

genes have been associated with certain cancers (Weitzel et al., 2011) but surprisingly some 

research has shown that mutated cancer genes are rarely shared even by cancers observed in the 

same organ except TP53 (Podlaha et al., 2012). Cortés and Calvo (2014), however, pointed out that 

the same driver mutations are observed in cancer in different organs and proposed that cancers 
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with the same driver mutations express similar treatment responses. Their findings suggest that 

although universally-shared cancer mutations are extremely rare, certain mutation patterns could 

be found on cancers sharing common drivers. Research effort has also been invested into addressing 

cancer drivers and, more broadly, genetic variances which cause human diseases (Frousios et al., 

2013; Gray et al., 2012). Therefore, while CHO shares many features with cancer cell lines, by 

understanding the common drivers behind CHO we might better comprehend which cancer 

research results are of most relevance. 

 

 

Figure 2.1 Phylogenetic tree of some most widely used CHO cell lines 
The popular CHO cell lines presented are CHO DG44, CHO-K1 and CHO-S which are all 

derived from Chinese hamster separately. (Vishwanathan et al., 2017; Kaas et al., 2015; 

Lewis et al., 2013) The CHO-K1 cell line has been extensively cultured and deriving CHO 

DXB11 and another cell line which then separated into four different cell lines.  

 

While there are many things we might learn about CHO from studying the Chinese hamster genome 

from which it is derived, it is important to note that after decades of engineering and being cultured 

in different environments, the CHO genome should be expected to be substantially different from 

the source organism. Therefore, referencing the host genome (note that the fully assembled 

Chinese hamster genome has not yet been available by the time this thesis is composed) may not 

be as beneficial as in human cancer research. However, compared to large numbers of human 

cancer cell lines, CHO cell lines in use nowadays are derived from only a few ancestor cell lines 

(Figure 2.1), which should have a simpler evolutionary history than cancer cell lines. Therefore, the 

evolution of CHO is easier to track once the cell lines in the lineage are sequenced. Transferring 

methods and concepts from cancer research, certain phenotypes of CHO might be diagnosed. 
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However, being restricted by the data available, information from non-coding regions may not 

support liable diagnosis, while information from coding regions, also known as the exome, could 

provide more supportive results. 

 

2.2 High-throughput Sequencing Techniques 

Genome sequencing was the basis of the genetic analyses mentioned in the previous section. 

Biologists have been trying to sequence DNA since it was found to possess a certain pattern. One of 

the most successful sequencing techniques, developed in 1977, is known as Sanger sequencing 

(Sanger, Nicklen, et al., 1977), which is based upon DNA replication and gel electrophoresis 

techniques. DNA replication techniques synthesise a complementary chain of the template DNA 

chain with DNA polymerase and four basic dNTPs. The concept of Sanger sequencing is to terminate 

the chain extension process of complementary DNA synthesis at certain points using ddNTPs - 

substances that can replace corresponding dNTPs but not accommodate another nucleotide at the 

next position. Controlling the concentration of dNTPs and ddNTPs in a PCR-like process enables the 

synthesis of DNA copies of different lengths (depending upon whether the terminator is 

incorporated or not), which can be separated using gel electrophoresis. Labelling four types of 

ddNTPs with different dyes (now usually fluorescent) then enables direct readout of the sequence 

after separation using imaging techniques. Using Sanger sequencing the first genome, 

bacteriophage phi X 174 genome, was sequenced (Sanger, Air, et al., 1977). Sanger sequencing was 

then improved to increase accuracy and read length, and reduce cost (Shendure & Ji, 2008) before 

being applied in the Human Genome Project (HGP) to sequence an entire human genome. The HGP 

eventually cost 15 years and about three billion dollars with the collaboration of six countries 

(Collins et al., 2003). Despite the cost, Sanger sequencing is still used as a main approach of 

sequencing short DNA fragments due to its high accuracy and read length. 

Genome sequencing required higher throughput to be cost effective. Next generation sequencing 

techniques, now often referred to as High-throughput sequencing (HTS), became the answer. 

Similar to Sanger sequencing, most of the HTS techniques adopt the concept of sequencing by 

synthesis. They achieve high throughput by employing a shotgun strategy to parallelise the 

sequencing process. In a comprehensive review of HTS techniques by Loman et al. (2012) the 

sequencing process was summarised in four steps: fragmentation, tagging, amplification and 
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sequencing. In brief, the target genome is broken down into short fragments that are then 

immobilised separately on a surface where the fragments are amplified and sequenced. The 

sequencing process conducted by HTS is also different from Sanger sequencing. Instead of 

permanently terminating the extension process, reversible terminators (or even no terminator) are 

employed to pause the process after one base being added to the new molecule. Then the added 

base will be readout, via a series of reactions culminating in a fluorescent signal, before the 

extension continues. In practice, the fragmentation and tagging are often finished in usual labs with 

no sequencing machines, and then the samples (usually referred to as libraries) are sent to 

sequencing facilities where amplification and sequencing are performed by experts. The most 

popular HTS platforms include HiSeq/MiSeq from Illumina (Turcatti et al., 2008), 454 series from 

Roche (Margulies et al., 2005) and SOLiD 5500 series from Life Technologies (Shendure, 2005). 

Although similar strategies are applied, different chemistries are employed by different platforms, 

which lead to differences in performance (Table 2.2). HTS technologies have reduced the cost of 

sequencing the human genome to the order of a few thousand dollars (Loman et al., 2012) which 

allows routine whole genome sequencing. Most genomes now available online were sequenced by 

the HTS technologies introduced above (Ellegren, 2014).  

 
Table 2.2 Performance comparison of DNA sequencing technologies. 
Three most widely used high throughput platforms are represented showing 

difference in time length and amount of data generated for each run, error 

rate and length of reads. 

Platform Run time Gb per run Quality Read-length(bp) 

HiSeq 2000/2500 11 days (regular) 600 10-2-10-3 2*100 

454 GS FLX+ 23 hours 0.7 10-3-10-4 700~800 

5500xl SOLiD 8 days 150 10-2-10-3 75+35 

 

 

Not every sequencing technology has been described here since they have not made significant 

contribution to the genome database. For example, another technology known as nanopore 

sequencing, whose commercial product was announced in 2012 (Loman et al., 2012), uses 

transverse tunnelling current to detect nucleobases when the DNA strand is driven through the 

nanopore (Branton et al., 2008). There is no tagging or amplification required for this technology 

and it is found to be able to sequence DNA methylation in current research (Simpson et al., 2017). 
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While the approach holds much promise, it is mentioned only briefly here as it has yet to contribute 

significantly to genome databases. 

 

2.3 Bioinformatics Techniques 

With the capacity to acquire large sequence data sets, annotating and analysing these data becomes 

the next challenge. For related proteins, which is the main focus of this project, most annotation 

and analyses are centred upon their function and structure. Novel functions and structures of 

proteins can be obtained by laboratory experiments, while computational tools can annotate 

proteins without experimental evidence based upon sequential similarity or phylogenetic distance. 

The most popular tools for this will be introduced in this section.  

 

2.3.1 Sequence Alignment 

Building a sequence alignment usually is the first step of computational analysis applied right after 

the sequencing data is obtained. It lays down the foundation for downstream processes such as 

homologue analysis and phylogeny analysis. Therefore, the quality of the alignment would 

profoundly affect the performance of these afterward process. In protein sequence alignment, 

ideally sequences should be aligned on their function carrying structure so that functional 

annotation could propagate through alignments (Aniba et al., 2010; Thompson et al., 1999). Based 

on such goals, some benchmarks created wholly and partly by manual alignment according to 

protein structural information acquired from X-Ray crystallography, such as BAliBASE (Thompson et 

al., 1999), are used as gold standards to test the performance of automatic aligners. Although these 

benchmark databases contain high quality multiple sequence alignments, they are limited in 

alignment number and fail to cover all protein types (Le et al., 2017).  

 

At the very beginning, alignment algorithms were focused upon pairwise alignment. Some classic 

algorithms, such as Needleman-Wunsch (Needleman & Wunsch, 1970) and Smith-Waterman (Smith 

& Waterman, 1981), are still widely used in small scale searching. The most widely used searching 

tool is the Basic Local Alignment Search Tool (BLAST) which has been made available on NCBI and 

Ensembl website. To achieve fast search on large databases, BLAST employs heuristic methods 

wherein short sub-sequences are used instead of full length sequences (Altschul et al., 1990, 1997). 

After decades of development, BLAST was specialised for a variety of purposes such as blastp and 
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blastn (Ye et al., 2012; Morgulis et al., 2008) and a slower but more accurate version, known as 

Position-Specific Iterated BLAST (PSI-BLAST), is also available. 

 

Based on the results of sequence search, more intensive aligning between similar sequences has 

also attracted a great deal of research interest. Specified aligning tools were built to align multiple 

sequences to identify features such as genetic distance and sequence conservation. After decades 

of continuous effort, a great number of multiple sequence aligning tools have been developed for 

accurately aligning multiple sequences at relatively high speed. The most popular aligners include 

CLUSTAL W (Thompson et al., 1994), T-coffee (Notredame et al., 2000), MUSCLE (Edgar, 2004), 

MAFFT (Katoh & Standley, 2013; Katoh et al., 2002) and Probcon (Do et al., 2005). In general, the 

above methods employ the same aligning strategy laid down by Thompson et al. (1994) in the 

development of CLUSTAL W. They firstly calculate the distance between involved sequences, which 

is then used to construct a guide tree. After that, progressive alignment is performed according to 

the guide tree and the alignment is optimised on certain criteria in this process. The main differences 

between these methods are how alignments are evaluated and internal details of the aligning 

algorithms, which result in different alignment accuracy and time cost. By default, CLUSTAL W scores 

the alignments with PAM (Dayhoff & Schwartz, 1978) along with assigning weights to different 

sequences. Higher penalties are assigned when starting a gap while expending the gap costs less in 

scores. T-coffee inherits many features from CLUSTAL W but instead of aligning columns 

indistinguishably, T-coffee uses a library of high confidence short alignments as seeds and aligns the 

whole sequence by extending these seeds. MUSCLE also applies similar features to CLUSTAL but 

jointly improves the guide tree and alignment in a progressive optimisation phase. MAFFT vectorises 

residues on their chemical characters and uses fast Fourier transform to locate homologous regions. 

Lastly, Probcon adopts Hidden Markov Model (HMM) and Bayesian statistics to assess alignments. 

The results are then used to build a guide tree and refine the alignments.  

 

With multiple high performance aligners available, the best of them remains arguable. In general, 

Probcon seems to create more accurate results in some aspects but it is also the most time 

consuming, while MAFFT creates equal or slightly worse results but at a much higher speed 

(Thompson et al., 2011; Blackshields et al., 2006). MAFFT also is one of a few methods that can 

create large alignment with about 10,000 sequence in an acceptable time period (Sievers et al., 

2011). 
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2.3.2 Hidden Markov Models 

Hidden Markov Models (HMM) are an advance version of Markov chain (MC) models. In simple 

words, MC is a model of a sequence of events where the order of events can be varied but the 

selection of the next event is solely dependent upon the current event regardless of the previous 

event sequence. In statistics, MC can be used to calculate the probability of a certain sequence of 

events or the probability of certain events occurring at a certain position of the sequence. One of 

its most important applications in Statistics is Markov Chain Monte Carlo (MCMC), which can be 

used to approximate Bayesian posterior probability when the actual posterior is hard or impossible 

to calculate. In the MCMC process, the concept of MC is only used to generate samples as every 

sample in the process is generated on the base of the previous sample and certain random variables. 

More details of posterior calculation with MCMC will be introduced in the tree construction section. 

 

Based on the MC model, Hidden Markov Model (HMM), was developed. Similar to the MC, HMM 

describes an event sequence. However, in HMM the true events cannot be directly or completely 

observed and therefore are considered hidden. The hidden event sequence can be estimated by the 

observed sequence it derives. Similar to MC, algorithms, such as forward and backward algorithm, 

have been developed to calculate the probability of certain hidden sequence and certain events in 

the sequence. In bioinformatics, profile HMM (Eddy, 1998) was developed to describe the profile of 

given multiple sequence alignment. In profile HMM, the possible residue distribution of each 

position can be observed while the biological or statistical content of the position is considered 

hidden (Eddy, 2004). To enable easy application of profile HMM, HMMer (Eddy, 1998, 2011; Finn et 

al., 2011) was developed. HMMer is a package of basic HMM tools including building HMM given a 

sequence alignment, searching sequences using a profile HMM, searching profile HMMs with a 

given HMM and alignment sequences according to given HMM. Based on the profile HMM, more 

tools have been developed for other purposes, such as HHalign (Söding, 2005) adopted by Clustal 

Omega(Sievers et al., 2011) which aligns distant homologues by aligning their profile HMM, and 

ProbCons (Do et al., 2005) which employs HMM to create accurate multiple sequence alignments. 

HMM is able to capture features of a given sequence groups and provides high sensitivity sequence 

search. This allows databases based upon HMM to be built for protein families and conserved 

domains. Popular, HMM-based databases include PANTHER (Mi et al., 2016), which focuses upon 
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functionally-related subfamilies and has been adopted by Ensembl (Yates et al., 2015), and Pfam 

(Finn et al., 2016) which is a UniProt (Bateman et al., 2017) member database focusing upon protein 

domains. Recently, HMM was even used to detect DNA methylation with nanopore sequencing 

(Simpson et al., 2017). 

 

2.3.3 Phylogenetic Tree Construction 

Phylogenetic tree construction is another important part of bioinformatics that forms the 

foundation of much biological research. Understanding the evolutionary history of genes and 

species can provide evidence for genetic and taxonomic research. Based upon sequence alignment, 

the genetic distance between two genes, which is often defined as the minimum number of edits 

required to transform one gene into another, can be assessed. However, errors could be introduced 

by many factors such as: incorrect alignment, incomplete search of possible tree topology and 

incomplete lineage sorting (ILS) (Figure 2.2) (Noutahi et al., 2016a; Mirarab et al., 2016; Boussau et 

al., 2013), which make constructing accurate trees a challenge. 

 

The unweighted pair-group method based upon arithmetic averages (UPGMA) (Sneath & Sokal, 

1973) and Neighbour Joining (NJ) (Nei et al., 1987) are two of the most widely used tree building 

methods. They both build binary trees by combining genetically close homologues. Where UPGMA 

assigns equal distance between the ancestral node and its two offspring as a simplification, NJ 

assigns a more accurate branch length. However, the simple assumptions they rely upon - that the 

edit distance between sequences is proportional to their genetic distance - does not include the fact 

that the evolution rate varies over different times and species. Despite it being well acknowledged 

that their performance highly depends upon the order of the input sequences, meaning that 

multiple topologies may be created from the same data depending upon the order in which they 

are presented (Backeljau et al., 1996), they are still used by many software, such as CLUSTAL (Higgins 

& Sharp, 1988), to create draft trees. By adopting parsimony methods, they are able to construct 

trees on a small amount of data with high speed, but they lack the ability to examine and optimise 

the accuracy of the trees.  

 

In order to build optimised and accurate trees on large data, more advanced methods have been 

developed, of which the most accurate ones are likelihood based methods adopting Maximum 
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Likelihood (ML) (Felsenstein, 1981) or Bayesian approaches (Yang & Rannala, 1997; Rannala & Yang, 

1996). The most popular methods includes RaxML (Stamatakis, 2014), PhyML (Guindon et al., 2010; 

Guindon & Gascuel, 2003), MrBayes (Ronquist et al., 2012) and PhyloBayes (Lartillot et al., 2009).  

 

The likelihood of a phylogenetic tree is the product of the likelihood of the branches, which in turn 

are calculated based upon substitution models. Similar to substitution matrixes such as PAM 

(Dayhoff & Schwartz, 1978) and BLOSUM (Henikoff & Henikoff, 1992), substitution models describe 

the substitution rate between nucleotides or amino residues but more parameters may be involved 

apart from log-odds scores. Such likelihood has been used as a standard to find the best tree, which 

has yielded promising results, but the high cost of the required processing power is a drawback 

(Guindon et al., 2010; Stamatakis et al., 2005; Holder & Lewis, 2003). Additionally, exhaustively 

searching all possible trees for the best tree is only possible for small amount of data and therefore 

heuristic searching must be used in most cases. The strategy of achieving the best tree with heuristic 

methods, which is often described as hill-climbing, involves altering the tree with the current best 

likelihood until no further improvement on likelihood can be made. The confidence of the tree is 

then assessed by bootstrapping how well the observed data supports the mooted tree by 

resampling the sequences (and replacing sequences generated from the observed alignment) to 

reconstruct the same tree. Such a process brings an extremely heavy computational burden since 

the iterating likelihood calculation for the tree search would be conducted after each bootstrapping 

which in turn repeat multiple times. Note that bootstrap scores only show the likelihood that the 

same result can be acquired when more data is imported, but not the accuracy of the result (Alfaro 

et al., 2003; Holder & Lewis, 2003). Software adopting ML such as RaxML and PhyML have 

significantly improved the speed of the integrated process but intensive computation is still required 

for large families. For example, analysing a 16S dataset of nearly 28,000 sequence with RaxML 

requires more than 1,200 hours (K. Liu et al., 2011).  

 

Bayesian inference uses posterior probability that correlates with likelihood to evaluate trees. 

According to the hypothesis made, posterior probability can involve parameters not included by 

traditional likelihood calculations, which increases the flexibility of the Bayesian approach (Holder 

& Lewis, 2003). A form of posterior probability that only involves substitutions in sequence 

alignments, substitution models and the tree branch length was described by Huelsenbeck and 

Ronquist (2001). However, the authors also pointed out that analytically calculating the posterior 
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probability is too complicated to achieve. Therefore, Markov chain Monte Carlo (MCMC) method is 

used to achieve the approximate posterior. The general idea of using MCMC is to randomly explore 

the space of all trees step by step using certain criteria, such as change of likelihood or prior between 

current step and the next step (Huelsenbeck & Ronquist, 2001), using a random variable to decide 

the next move. A conceptual chain is then formed by these steps as they tend to stay in certain 

regions (of high likelihood if increase of likelihood is used as moving criterion) of the space. The ratio 

of steps in the region to total steps can be used as a valid approximation of the posterior probability. 

Different models and hypotheses have been proposed and the calculation has been optimised for 

higher speed on tools such as MrBayes and PhyloBayes. Note that MCMC would create many more 

trees than bootstrapping but each tree bootstrapping created requires tree search which could test 

many trees before the final and each tree in MCMC process is created under certain restrictions by 

random. Therefore, the MCMC process may be faster than bootstrapping in some situations. 

Greater comparison of bootstrapping and MCMC is discussed by Alfaro et al. (2003) and Holder & 

Lewis (2003). 

 

The methods described above mainly account for substitutions between sequences. However, 

current research shows that the information contained by the sequences is insufficient for 

constructing accurate trees and reconciliation with certain additional information, such as 

taxonomic trees, which could significantly improve accuracy (Noutahi et al., 2016a; Boussau et al., 

2013; Nguyen et al., 2013; Akerborg et al., 2009). Note that combining information from gene trees 

and species trees invokes a circular problem as the construction of accurate species trees depends 

upon multiple accurate gene trees, whose reconstruction requires reference from species tree 

(Szöllosi et al., 2013; Boussau & Daubin, 2010). Boussau and Daubin (2010) suggested joint inference 

as a solution to the problem. However, while species trees need to be first constructed as reference, 

arguments are raised between two conflicting species tree constructing approaches: concatenation 

and coalescence. While concatenation considers the gene tree and species tree to be identical, 

coalescence takes incongruence between the gene tree and species tree (Figure 2.2), which is well 

known (Maddison, 1997), into consideration. Maddison (1997) summarised the biological causes of 

the discord between gene phylogeny and species phylogeny. These biological events lead to ILS, 

where some alleles fail to present in certain lineages, which in turn leads to an important error in 

concatenation trees. Therefore, there is an increasing preference for using coalescence methods 
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(Simmons & Gatesy, 2015; Liu et al., 2009) although some research shows that both approaches 

result in statistically equivalent accuracy (Tonini et al., 2015; Warnow, 2015).  

 

 

Figure 2.2 Incongruence between gene tree and species tree and ILS 
An example of incongruence of gene tree and species tree is shown in a. The species trees 

are presented in blue bars and the gene trees are presented in black lines. The ILS that 

could cause such incongruence is illustrated in b. Red lines with dots at the end represent 

genes missed by sequencing or annotation. Losing these genes represented by red lines can 

also lead to the same incongruence.  

 

 

Different methods have been developed for reconciliation between a species tree and gene tree to 

create a more accurate gene tree. In general, they focus on modelling evolutional events including 

duplication, loss, transfer (Boussau et al., 2013; Szöllosi et al., 2013; Rasmussen & Kellis, 2011; 

Akerborg et al., 2009) and occasionally speciation (Nguyen et al., 2013). The benefits to gene 

function inference of analysing these evolutionary events have been recognised by researchers 

(Blackstone, 2006; Eisen, 1998). While most methods focus upon gene trees, some of the methods, 

such as PHYLDOG (Boussau et al., 2013), also reconstruct a species tree when correcting gene trees. 

Bayesian approaches and MCMC are used to calculate likelihood or related posterior in these 

methods. Although these methods are able to increase the gene tree accuracy, the main drawback 

that most suffer are intensive computation and overfitting to the species tree (Noutahi et al., 2016a; 

Wu et al., 2013). 
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2.3.4 Protein Structure Prediction 

It is common knowledge that certain protein structure is required for its function. Proteins with 

distorted structure, mostly due to incorrect folding, would be actively disassembled. The number of 

protein structures increased with the number of sequenced proteins, but still only a very small 

proportion of proteins have experimental structures (Moult et al., 2014). It is believed that the 

protein sequence alone contains enough information to determine the three-dimensional structure 

(Marks et al., 2012). Therefore, computational prediction of protein structure based upon sequence 

could potentially fill the gap. However, it has been a major challenge for more than four decades 

(Marks et al., 2012). 

To facilitate better development of predictive models, the Critical Assessment of methods of protein 

Structure Prediction (CASP) tournament has been held to evaluate predictive models (Moult et al., 

2014). According to CASP, there are two types of predictive models: template-based models (TBM) 

and free models (FM). TBM compares query sequence to (homologous) sequences with known 

structure and generates structure prediction by refining the known structure. In contract, FM 

usually predicts structure ab initio, although distant related templates may be used (Tai et al., 2014). 

Some predictors adopt both types of modelling, finding closely related templates or constructing 

novel structures when templates fail. The best predictive tools suggested by CASP include QUARK 

(Xu & Zhang, 2012, 2013), I-TASSER (Roy et al., 2010) and Phyre (Kelley & Sternberg, 2009).  

In most cases, TBM achieves better accuracy than FM when available (Huang et al., 2014; Tai et al., 

2014). Predictors with TBM are mostly based upon recursive improvement of profile alignments, 

where profiles can be in different forms such as position-specific scoring matrix (PSSM) and HMM. 

The modelling accuracy has largely improved in the last two decades, but only in relatively few cases 

can an accurate prediction be obtained (Moult et al., 2014). One consequence of the difficulty of 

predicting structure from sequence is that it remains very common to predict protein function 

directly from sequence without referencing the protein structure. 

 

2.3.5 Non-synonymous Nucleotide Variant Impact 

It is clear that changing protein structure can change function but the function could also be largely 

affected by the change of a few residues. Such changes are caused by non-synonymous Single 

Nucleotide Variant (nsSNV), which are also referred to as non-synonymous Single Nucleotide 
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Polymorphisms (nsSNPs) in some cases. These have attracted particular interest especially in the 

field of human disease. Experimentally these nsSNV can only be examined with very low throughput. 

Therefore, computational methods have been developed to predict the functional impact of these 

nsSNVs. The best predictors nowadays rely upon information such as phylogenetic conservation, 3D 

protein structure and chemical character of the residues. Protein structure could provide useful 

information for predicting nsSNV impact on protein function. For example, a nsSNV at the 

interaction site on a protein surface would significantly change the protein function (David et al., 

2012). The most popular predictors include SIFT (Kumar et al., 2009), PolyPhen 2 (Adzhubei et al., 

2010), PANTHER-PSEC (Thomas & Kejariwal, 2004; Thomas et al., 2003), PROVEAN (Choi et al., 2012), 

MutationAssessor (Reva et al., 2011), MutationTaster (Schwarz et al., 2010) and Condel (González-

Pérez & López-Bigas, 2011). These are mostly focusing on predicting deleterious impact in human 

diseases. In general, these predictors can be divided into three types: 1) predictors based on certain 

model and hypotheses, mainly of genetic conservation and protein structure, such as SIFT, 

PANTHER-PSEC, PROVEAN and MutationAssessor; 2) predictors collecting various types of features 

and adopting machine learning classification methods such as naïve Bayes and random forest to 

make predictions, such as MutationTaster; 3) consensus predictors which summarise predictions of 

other predictors (usually predictors of first type) to generate their own predictions, such as Condel 

which integrates five other predictors including SIFT, PolyPhen2 and MutationAssessor. The last two 

types often include features involved by the multiple predictors in the first type. However, 

consensus predictors often generate integration scores using scores from other predictors with 

certain algorithms, while machine learning predictors assign different weight to the features 

depending on the training data, which means the same feature may be assigned different weight 

according to the training set. 

The consensus predictors appear to outperform other predictors in performance surveys (Frousios 

et al., 2013; Gray et al., 2012) by taking advantage of including multiple features and hypotheses. In 

fact, features and hypotheses on multiple aspects enable machine learning based predictors to 

generate improved results (Wong & Zhang, 2014; Zeng et al., 2014). However, no single predictor 

generally outperforms others (Katsonis et al., 2014). Currently, Grimm et al. (2015) pointed out two 

circularities that could lead to erroneous conclusions on performance comparisons mentioned 

above. These circularities are caused by the fact that these predictors were trained and compared 

upon overlapping data sets and variants of the same genes are jointly labelled in variant databases. 

Based on that, Grimm et al. (2015) proposed using a subset of SwissVar to evaluate predictor 
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performance. In addition, Katsonis et al. (2014) suggested selection of predictors could be based 

not only on accuracy but also the hypotheses or features adopted.  

Although structure information is useful for estimating the functional impact of a single residue 

change, using protein structure only is not practical since the structural information is not available 

for most proteins and the alternative way to access structure information, via structure predicting 

tools, is limited by accuracy. Also, a low number of nsSNVs are not likely to significantly change the 

protein structure and addressing interaction sites can be achieved by sequence alignments or HMMs 

with homologous annotation. Therefore, protein structure predictors are mostly unnecessary in 

estimating such functional impact. 

  

 

2.4 Important Databases 

To effectively make use of biological data and related annotations, sophisticated management of 

these information is required. Multiple databases were built and maintained by specialised 

institutes to facilitate the collection, storage and delivery of various types of biological data. 

Databases storing gene and protein related information were involved in this project and therefore 

reviewed in this section. 

 

2.4.1 Gene databases 

Genome sequences are commonly used as the base of molecular biology research. To keep these 

data up to date and available globally, three databases - GenBank built by the National Center of 

Biotechnology Information (NCBI), European Nucleotide Archive (ENA) operated by European 

Molecular Biology Laboratory (EMBL) and the DNA Data Bank of Japan (DDBJ) - collaborate with 

each other as partners of the International Nucleotide Sequence DataBase Collaboration (INSCO), 

exchanging data daily to maintain information consistency (Clark et al., 2015). Current sequencing 

techniques are not able to sequence genomes or chromosomes in the whole. The genome or 

chromosome sequence is obtained by sequencing fragmented nucleotide pieces then assembling 

these pieces with computational techniques. However, such a strategy is problematic in handling 

repeat content and duplicate regions in practice as assembling tools often fail to distinguish short 

reads from different copies. Pair-end sequencing techniques could help to improve the assembly 
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but still fail to bridge the entire duplication area (Alkan et al., 2011). Alkan et al. (2011) found 

substantial loss of these regions on genomes created solely by assembling short read generated by 

current high-throughput sequencing. Their research shows 93% of the exons were completely 

recovered while 43.7% of genes were underrepresented. Genome Reference Consortium improves 

the genome assembly using high-quality long sequences. However, they only work on a few 

genomes including two mammalian species: human and mouse.  

Basing on specific genome assembly, annotations then can be made. Consisting of more than 

340,000 species, GenBank also contains the corresponding annotations, which can be supplied by 

the authors who generate the sequence or the annotation pipeline provided by the manage 

institutes. Quality annotations are crucial for making use of the sequence data and can be generated 

in different ways with different quality and redundancy. NCBI initiated the Reference Sequence 

(RefSeq) project to collect and integrate such published annotations (Pruitt et al., 2014), while EMBL 

established Ensembl together with the Wellcome Trust Sanger Institute for the same purpose (Yates 

et al., 2015). Similarly, the annotation pipelines they provide rely on supporting evidence such as 

cDNA libraries, protein sequences and RNA-seq data. For annotating newly sequencing genomes 

which lack supporting data, sequences from related organisms will be used as reference. On this 

process, the annotation of existing sequence would transfer to newly discovered gene based on 

their sequential similarity. The annotations made by these pipelines include identifying open 

reading frames (ORFs), introns and exon and splice variances, homologous grouping and function 

inference based on homologue and assigning IDs to genes and proteins. One of the differences 

between the pipelines provided by NCBI and Ensembl is that the NCBI pipeline is more likely to 

create ab initio gene models when the supporting data is insufficient. Cross reference of external 

databases such as PDB and GO will be made when available. Sequence search and aligning tools are 

also available on their websites for easy access and comparison of interested data.  

 

2.4.2 Single Nucleotide Variation (SNV) databases  

SNV is frequently observed throughout the entire genome. It had been associated with human 

diseases and become a research hot spot of bioinformatics application in medicine (Ling et al., 2015; 

Cline & Karchin, 2011). Up until December 2017, data of 55,707 unique SNVs (referred as Single 

Nucleotide Polymorphisms, SNPs) had been collected by Genome-wide association studies (GWAS 
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http://www.ebi.ac.uk/gwas/home). Although SNVs in non-coding regions have been found to 

significantly contribute to disease in the last decade (Ling et al., 2015), most of the works have been 

focusing on SNVs on coding regions that change the protein sequence since it is believed that these 

non-synonymous SNVs (nsSNVs) are the major contributor (X. Liu et al., 2011). In some works, nsSNV 

is more often referred to as non-synonymous SNP (nsSNP). The main databases storing nsSNV data 

are: the Online Mendelian Inheritance in Man (OMIM) database (Hamosh, 2004), the Human Gene 

Mutation Database (HGMD) (Stenson et al., 2009) and the UniProt database (The UniProt 

Consortium, 2014). While OMIM and HGMD focus on deleterious nsSNVs, UniProt preserves both 

neutral and deleterious nsSNVs and therefore was used for training tools that are developed for 

predicting function impact of nsSNVs. For training purposes, neutral and deleterious SNV sets are 

often separated from databases mentioned above. For example, HumVar and HumDiv, were 

extracted from UniProt and specialised as neutral set and deleterious set respectively (Adzhubei et 

al., 2010). Among these specialised data sets, Grimm et al. (2015) showed that a unique subset of 

SwissVar (Mottaz et al., 2010), known as SwissVarSeleted is the most appropriate data set for 

comparing performance of the deleterious SNV predicting tools (Tang & Thomas, 2016). There are 

also database specified for results generated by popular predictors, instead of experiment proven 

results, for further research on potential candidates, such as dbNSFP (Liu et al., 2013). 

 

2.4.3 Protein databases 

Proteins are the gene product that facilitates most of the biological activities. In eukaryotic cells, 

one gene may encode more than one protein due to splicing, therefore the number of proteins in 

an eukaryotic cell could be much more than the number of genes. Compared to DNA, whose 

function mainly relies on the codes and subtle changes of certain nucleotides, proteins require 

certain three-dimensional structure and post-translational modifications (PTMs) to enact their 

functions. Accordingly, annotations stored by protein database involve more aspects than that of 

DNA. A summary database for proteins - Universal Protein Resource (UniProt) – contains the best 

available resources of these annotations. UniProt is maintained by the UniProt Consortium of three 

partners: European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB) and the 

Protein Information Resource (PIR). It consists of four databases: the UniProt Knowledgebase 

(UniProtKB), which will be the focus of this review; the UniProt Archive (UniParc); the UniProt 
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Reference Cluster (UniRef); and the UniProt Metagenomic and Environmental Sequence (UniMES) 

database (Apweiler et al., 2014). In short, UniProt is a high quality collection of all protein-related 

data that has been well organised for easy comprehension (The UniProt Consortium, 2014). Detailed 

annotations collected by UniProt include not only the basic sequence, family, function and 

homologue, but also PTM, sequence variance, mutation, expression, structure, cellular location, 

protein-protein interaction and related pathology. Manual curation is heavily involved in order to 

maintain the high quality and up-to-date aspect of the annotation. The manual curation is made on 

the experimental evidence together with structural information. Cross reference is also made with 

multiple databases including Protein Data Bank (PDB), Protein Annotation Through Evolutionary 

Relationship (PANTHER), Interpro and Pfam.  

PDB is a protein structure database focusing on collecting, annotating and distributing three-

dimensional coordinate data of protein structures obtained mainly from x-ray crystallography, 

nuclear magnetic resonance (NMR) and electron microscopy techniques. Along with the structures 

of proteins, information on ligands, binding sites and protein-protein interactions are also stored in 

PDB. Structure alignment tools are available on PDB for structure comparison and searching (Rose 

et al., 2013). PDB is intensively referenced by UniProt in terms of protein structure and manual 

curation. Pfam is a database of protein domain families. It consists of a collection of high quality 

models of protein domains (Sonnhammer et al., 1997). The foundation of Pfam is a huge number of 

profile HMM built upon multiple protein sequence alignments. Manual curation is applied to 

maintain the quality of the profile HMM conserved. Profile HMM built on alignments without 

curation were only generated after Pfam 29.0 and they do not represent potential domains (Finn et 

al., 2016). The manually curated Pfam domain annotation is one of the main sources referenced by 

Interpro. InterPro is a database of protein and domain families. Instead of using genetic distance 

like ordinary databases, it integrates information, which is termed signatures, including profile 

HMMs, position-specific score matrices (PSSM) and regular expression to classify proteins into 

families which allows prediction of domains and sites (Finn et al., 2017). To collect signature 

information, InterPro has extended its consortium from four databases to fourteen up to 2016 (Finn 

et al., 2017; Mitchell et al., 2014). Apart from protein search for the domains and site it contains, 

InterPro allows searching domain for proteins it composes. PANTHER is another database 

intensively referenced by InterPro. However, instead of focusing on domains and sites, PANTHER 

relies on traditional phylogeny-base protein classification to infer protein function. The protein 

phylogenetic trees preserved by PANTHER were constructed with reconciliation of species 
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phylogeny with GIGA (Thomas, 2010) to capture evolution events that may lead to function 

deviation such as duplication and transfer (Mi et al., 2016). Subfamilies were then defined according 

to these evolution events and manually reviewed. Ideally, members within the same subfamily 

should share the same function which is significantly different from other subfamilies within the 

family. Profile HMMs were built on every protein family and subfamily to provide predictions for 

query sequences. In addition, Gene Ontology (GO) enrichment analysis is also made available on 

PANTHER website. Recently, PANTHER-PSEP (position-specific evolutionary preservation) was 

introduced for predicting the potential function impact cause by non-synonymous single nucleotide 

variants based on its phylogenetic position (Tang & Thomas, 2016). 

 

2.4.4 Function and pathway databases 

As the number of sequenced genes increases, the amount of function annotation follows. 

Systematic organisation of annotated function is required for easy access and systematic analyses. 

Classification by function characters and by pathways are the most popular systems. As function 

characters can be set in arbitrary manners, classification on such base is highly flexible and able to 

easily achieve high coverage of known genes. A popular example is Gene Ontology (GO) which 

classifies functions into three main aspects. In contrast, classification on pathways is more centred 

on the nature of biological activities and able to present clearer pattern of the interaction network. 

However, it requires a high level of annotation on individual genes, which becomes the main 

restriction from including a large number of genes. Well known examples of such systems are the 

KEGG pathway and Reactome databases. 

GO organises biological annotations with a tree-base system in three different aspects: molecular 

function, biological process and cellular component, which are the three ontologies in GO (Harris et 

al., 2004). Genes (or gene products) are attached to the tree through GO terms, which are certain 

biological concepts, and in turn every GO term is attached to their parent terms until the root of the 

tree. All GO terms are ultimately rooted on one of the three parent ontologies being the three 

aspects mentioned above. The backbone relation between these terms is “is a” relation, but other 

relations such as “part of”, “regulate” and “localized to” are also included. The quality of annotations 

and the accuracy of their relations are crucial. Therefore, similar to other high quality databases, 

manually creating high quality annotations from literatures is one of the main missions of GO (The 

Gene Ontology Consortium, 2013). Up to September 2014, 391,174 manually annotated genes and 
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gene products had been created in GO and the total number of annotations had reached 4,185,478 

converged on 41,775 GO term covering 461,573 species (Blake et al., 2015). Although a large 

number of manual annotations had been made, the corresponding proportion remained low. The 

overall annotation quality is continually improved by cross-referencing and collaborating with many 

other databases such as PANTHER and UniProtKB. Tools such as AmiGo and GO slims are developed 

for easy use of GO data. 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) is a resource integrating information about 

genomes, biological systems, medicine and biochemistry on 15 main databases, of which 13 are 

entirely manually created by KEGG and the other two are created combining external databases 

with KEGG annotations (Kanehisa et al., 2012). The main focus of KEGG is the molecular network 

and pathway maps, which are manually generated diagrams containing rich information from 

experimental results about molecular interactions, reactions and locations. Mapping tools are also 

provided for mapping genes to the pathway and mapping transcripts abundance to analyse 

expression levels in the pathway context. The Colour Pathway tool in KEGG can present gene related 

values, such as expression levels, on top of the pathway diagram (Kanehisa et al., 2012). KEGG 

Pathway has been widely used in pathway level studies. 

Similar to KEGG pathway, Reactome is another molecular reaction knowledge base. Compared to 

KEGG pathway, which is more metabolism orientated (Kanehisa et al., 2014), Reactome made 

efforts to cover both metabolic and signalling pathways. Most of the manual efforts were invested 

in human pathways, especially disease related pathways whose mutated forms are also covered by 

Reactome, while pathways from other species are inferred automatically from their human 

counterparts (Croft et al., 2014). In a recent update (Fabregat et al., 2015), the pathway browser 

has gone through significant changes to allow more interactive navigation. By referencing GO, the 

Reactome pathways are organised in a hierarchical structure derived from the biological process 

ontology. Compared to KEGG, Reactome offers a more interactive interface for pathway navigation 

and transcriptomic data of expression levels in different tissues are also presented if available. 

 

2.5 Related Data Resource and Researches on CHO 

CHO, as a cell line is widely utilised in mammalian cell biology research and biopharmaceutical 

manufacturing, it has drawn much interest from researchers in different fields. Many attempts at 

unveiling CHO cell biology profile have been performed before the CHO genome was sequenced. 
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However, not until the year 2011, when the first CHO genome was published by Xu et al. (2011), did 

most of the large-scale surveys become possible. To integrate CHO data resources in various 

perspectives, a Chinese hamster specific database, chogenome.org (Kremkow et al., 2015), was 

created. Up to the year this thesis is written (2017), four CHO related genomes were made available 

on NCBI: a CHO-K1 genome submitted by Xu et al. (2011), a CHO-K1GS genome submitted by Eagle 

Genomics Ltd and two Chinese hamster genomes submitted by Lewis et al. (2013) and Brinkrolf et 

al. (2013) respectively. Only the first CHO-K1 genome and the first Chinese Hamster genome, which 

both have accompanied transcriptomes reference, have been annotated by RefSeq and others were 

used to improve the annotation by NCBI. Annotation of the assembly of CHO-K1 was also performed 

by Ensembl, but the gene count on RefSeq annotation was different from that of the Ensembl 

version. Another annotation was done on the CHO-K1GS provided by Horizon Eagle and is available 

on Ensembl. Lewis et al. (2013) and Kaas et al. (2015) also conducted whole genome sequencing on 

CHO cell lines other than CHO-K1. However, these data are not available on public databases such 

as NCBI. Recently, the mitochondrial genome was intensively sequenced in multiple CHO cell lines 

to deepen understanding of the CHO energy metabolism (Kelly et al., 2017). The four CHO related 

genomes stored by NCBI are only assembled to scaffold level. Despite efforts of creating 

chromosomal map (Lewis et al., 2013; Brinkrolf et al., 2013; Xu et al., 2011), more evidence is 

required to order and orientate scaffolds to form chromosome map for Chinese Hamster or CHO. 

NCBI also continually improves the assemblies of these three genomes and integrates them into two 

reference assemblies, which are available on their ftp site, for Chinese Hamster and CHO-K1 

respectively. Le et al. (2015) compared the RefSeq genomes released in 2012 and 2014 and the later 

shows significant improvement, indicating the importance of resequencing CHO related genomes.  

Multiple sets of CHO related transcriptomics data are also available on NCBI. Compared to genomics 

data, expression data can be obtained not just by high-throughput sequencing but also by 

microarray. Up until 2017, 11 sets of expression profiling microarray data and five sets high 

throughput sequencing data had been made available in Gene Expression Omnibus (GEO) database 

on NCBI. Not all of this data was generated on CHO cell lines, for example, seven of the series were 

generated on hybrid cell lines which are also widely used in manufacturing.  

 

Most of the research on CHO focuses on protein production processes: transgene expression, 

metabolism and protein secretion (Hefzi et al., 2016). To analyse and model these processes 

required input of transcriptome and metabolome. Some of the transcriptomic data was generated, 



28 
 

mostly with microarrays, even before the CHO genome was published. Full transcriptomic profile 

analyses were conducted on CHO cell lines at different growth rates (Doolan et al., 2013), in 

response to butyrate (De Leon Gatti et al., 2007), and at low temperature treatments (Kantardjieff 

et al., 2010) to understand cell metabolism in various environments. More broadly, transcriptomic 

data also supports specific interests focused upon miRNA (Hernández Bort et al., 2012) and product 

genes amplification (Vishwanathan et al., 2014). High throughput RNA sequencing was used more 

often after the first CHO genome. Multiple transcriptomic data have been generated on different 

CHO cell lines and different conditions to support research from different perspectives. Rupp et al. 

(2014) developed tools for integrating RNA-Seq data generated by different platforms to enable the 

reusing of this data for different purposes.  

Another computational tool widely used to analyse CHO metabolism is flux models. Combining the 

genome and the metabolome could provide a systematic view of the metabolic network, upon 

which flux models can be built to predict the phenotype with metabolic flux analysis (MFA) and flux 

balance analysis (FBA) (Chen et al., 2012; Ahn & Antoniewicz, 2011; Goudar et al., 2010). These 

models are mostly focused on core metabolism and derive from models built for mice, so that they 

only partly cover the protein production process for CHO. Models that could accelerate cell 

engineering, clone selection and help optimise bioprocesses require genome scale multivariate 

input. Genome scale metabolic models have been proposed (Popp et al., 2016) and recently Hefzi 

et al. (2016) integrated models and data from different group and successfully constructed a 

consensus model for CHO accompanied by serval models specialised for widely used cell lines. They 

reported that the consensus model is able to predict metabolic features of CHO. The construction 

of these models is made possible by the availability of CHO related genomes and the transcriptome 

and proteome data derided from them. 

As the CHO specific model being available, bioinformatics research on CHO could focus on improving 

the existing model by providing detailed information. While the genome-scale metabolic CHO model 

covers multi-omics of CHO, properly analysing the related data with statistic method and integrating 

the results to improve the metabolic model could be one of the main aspects of CHO related 

bioinformatics research. Although significant improvements have been made, a big part of CHO 

metabolism, particularly the regulation mechanisms, remain unknown. Combining high-throughput 

experiments and bioinformatics techniques would provide useful tools to reveal these unresolved 

parts so that more accurate models can be built.   



29 
 

3 Methodology 

In this chapter, the analysis pipeline will be introduced followed by detailed descriptions and 

rationales of every step. Important concepts and criteria will be described with the steps involved. 

Lastly, the algorithms and detail settings of external tools will be described.  

The main task of this project is to develop computational tools that could identify proteins with 

altered functions. The related functions and proteins, which will be referred to as defective or 

altered according to likelihood of significant alteration in this work, are considered to either have 

completely lost function or suffered mutations that change their wildtype function and biological 

efficacy. We only investigate mutations within coding areas as proteins are the main operators of 

biological activities. Although non-coding regions have been found responsible for regulation, 

identifying functional impacts on mutations on these regions is limited by the knowledge of 

regulatory mechanisms. In addiction, as the CHO genome at this stage is mostly generated by short 

read sequencing techniques and not yet fully assembled, genes are likely to be underrepresented, 

while the coding region (exons to be more precise) are more likely to be completely recovered 

(Alkan et al., 2011). Protein mutations with functional impacts were divided into two types: 1) 

mutations such as truncation and chromosomal aberration affecting large portions of the protein 

sequence, and 2) mutations such as SNV affecting only a small part of the sequences. 

Correspondingly, two strategies were used for different types of mutations: HMMs for detecting 

large area mutations, and site analysis for spotting mutations at important sites. HMMs were only 

used to generate global scores for the entire protein, while site analysis was used only for scoring 

locally for single sites. In effect, HMMs capture function-related patterns from sequence alignments 

and site analysis captures evolutionary history of each column of the alignment. Both of these 

strategies rely on sequence alignments and phylogenetic information of the target protein families. 

Therefore, a series of publicly available tools were used to construct alignments and phylogenetic 

trees in optimised settings. The general process is shown in Figure 3.1. 
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Figure 3.1 Flow chart of building the function predicting tool. 
Firstly, homologous sequences from PANTHER and Ensembl were aligned. Phylogenetic 

gene trees were then built on these alignment referencing the species tree retrieved from 

Ensembl. According to the gene trees, new genes were added to the subfamilies forming 

an extended set of subfamily collection. The sequences of extended subfamilies were then 

aligned for building HMMs and preservation calculation. Sequences from the same tree but 

not in the subfamily were used for training machine learning algorithm which will 

contribute to prediction making with site preservation. Lastly, CHO cell data was analysed 

by the models. 

 

3.1 Homolog Selection 

Homologous sequences are frequently used for function inference for newly discovered proteins. 

Homologous proteins are often grouped together by sequential similarity forming families. Both 

NCBI and Ensembl have created a collection of protein families under slightly different criteria. 

These families are built on evolutionary relations without explicit reference to functionality. 

Although members within a short genetic distance are often expected to have similar functions, it 

is not rare that members within the same family encode completely different functions. To create 

groups based upon functional similarity, PANTHER proposed subfamilies on the basis of common 

protein families. They created subfamilies based on gene duplication events since these events 
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signal functional deviation between descendant linages (Mi et al., 2005) and manual curations were 

performed to improve the quality of the subfamilies. Such classifying methods largely inspired this 

research. However, this project is focused upon mammalian genomes and at the time this thesis is 

written (2017), only seven mammalian genome were included by PANTHER collection: human, 

chimpanzee, rhesus, mouse, rat, dog and cow.  

 

Figure 3.2 Mammalian species tree generate by iTOL 3 
The figure was created using iTOL 3 (Letunic & Bork, 2016). The branch length is not 

proportional to the genetic distance. Only tree topology is presented. The tree topology 

was obtained by integrating data from Ensembl and NCBI. 

 

To allow more accurate capturing of sequence patterns we integrated more mammalian genomes 

into PANTHER subfamilies to create an extended subfamily set. The organisms involved and their 

phylogenetic relations are shown in Figure 3.2. The special phylogenetic information was retrieved 

from NCBI and Ensembl. Data from fourteen genomes were used to construct HMMs, of which three 

of them: rhesus (Macaca mulatta), rat (Rattus norvegicus) and sheep (Ovis aries) were used as a test 
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set, while others were used to train models. The selection of these organisms was based on the 

species collection of PANTHER and their annotation level. It is clear that the extended set is centred 

on mouse and human since these are model organisms with the best annotated genomes. In 

addition, according to Ensembl, Chinese hamster and CHO-K1 genome are genetically very close to 

mouse. Therefore, a training set centred on mouse could yield better performance for CHO analysis. 

 

Instead of scanning entire genomes for homologs, we use Ensembl protein families to guide 

homolog import into subfamilies. Since Ensembl protein families were built based upon sequence 

similarity, rebuilding these families using sequence searching tools such as BLAST should yield 

equivalent results. Therefore, using the existing family collection avoids the compute expensive 

recalculation. Compared to Homologene, the NCBI collection, Ensembl families cover all species 

selected for this project. By comparing Ensembl families and PANTHER subfamilies, we mapped 

subfamilies onto Ensembl families and extended the subfamilies by adding sequences in the same 

Ensembl families. For all the homologue collections we used, only members from selected 

organisms mentioned above were considered. 

 

3.2 Aligning Sequences 

All the multiple sequence aligning was performed by MAFFT 7 (version 7.313) (Katoh & Standley, 

2013). As mentioned in the previous chapter, MAFFT is one of the most accurate and fastest aligners. 

It is also frequently used by PANTHER and data management institutes such as EBI as a component 

of their pipelines. In this project, MAFFT was used to align protein family members for phylogenetic 

tree construction, subfamily members for training HMMs and query sequences to corresponding 

alignments for identifying functional important sites. To preserve the integrity of conserved patterns, 

MAFFT was set to optimise local alignment even at the cost of global alignment score at all stages. 

When aligning new sequences to a given alignment, MAFFT provides options to avoid changes in 

the given alignment and generate additional map file for location look up. A detailed description of 

MAFFT is available in section 3.8.1. It is important to note that full-length protein sequences were 

targeted in the grouping and aligning process. Therefore, proteins created by splicing are considered 

fragmented. However, compared to assessing the intactness of wildtype function in individual 
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proteins, we were more focused on the function intactness of the proteome. Therefore, as long as 

full length sequences can be recovered with certain conservation in the proteome, we considered 

the function intact.  

 

3.3 Phylogenetic Tree Construction 

PANTHER uses conciliated gene trees generated by GIGA (Thomas, 2010), a tree building tool 

highlighting gene duplication events. Gene duplication is considered an important signal of function 

deviation in PANTHER. Compared to other gene tree building methods, GIGA is more reluctant to 

achieve high likelihood derived from sequential similarity while focusing on evolutionary events. 

Therefore, it is easily confused by sequence fragments and does not guarantee high sequence 

similarity within subfamily. In fact, the early version PANTHER (7.0) did include subfamilies with 

members of such low similarity that the HMMs built on the subfamily could not recognise these 

members (these subfamilies were removed on version 8.0) (Mi et al., 2013). In addition, most 

mammalian genomes involved in this project are mainly constructed by short read assembly which 

tends to underrepresent duplication regions. Therefore, duplication events may be missed in these 

genomes, which corrupts the performance of GIGA. In this project, we first built gene trees of 

Ensembl protein families using RAxML (version 8.2.11) (Stamatakis, 2014) and TreeFix (version 1.0.2) 

(Wu et al., 2013), then added new members to PANTHER subfamilies based on the corresponding 

gene tree. Alignments of members of extended subfamilies were then used to build HMMs for 

function prediction.  

The combination of RAxML and TreeFIx was chosen since they are among the fastest and most 

accurate tree building tools (Noutahi et al., 2016b). Both tools are likelihood centred which could 

reduce the change of including distant homologs in the final subfamily collection and improve 

specificity of the HMM it derived. RAxML was first used to build preliminary unrooted binary trees 

from family member alignments generated by MAFFT. It is one of the most popular sequence-based 

gene tree constructors. Some surveys showed the RAxML outperformed other popular counterparts 

such as PHYML and MrBayes (Rasmussen & Kellis, 2011; Stamatakis et al., 2008). RAxML achieve 

accurate gene trees by maximising tree likelihood introduced by Felsenstein (1981). As mentioned 

in the previous chapter, maximising tree likelihood is highly computationally expensive. After years 
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of optimisation, the speed of RAxML has been significantly improved. RAxML provides optional 

substitutional models and is capable of automatically selecting the model that yields the highest 

likelihood. Here automatic model selection on protein families with less than 400 members was 

allowed. A GTRGamma model, which is one of the fastest models for RAxML, was assigned to protein 

families with more than 400 members. The most time expensive step for RAxML, the bootstrapping, 

was not performed at this stage. As tree modifications may be conducted at the next stage, 

examining tree confidence before the finalising step is unnecessary. The best trees generated by 

RAxML were taken for the next step. 

Gene trees generated by RAxML were then rooted using the mid-point method. Mid-point rooting 

is the simplest rooting method that requires no additional parameter. As TreeFix requires a rooted 

tree but the root will not affect performance, mid-point method was sufficient. TreeFix can reconcile 

gene trees with a given species tree without significantly lowering the likelihood of the gene tree. It 

requires a gene tree, a species tree and a map of genes and species. All trees imported should be 

rooted and binary. The binary species tree was imported from Ensembl, and only species within the 

training set were included. TreeFix adopts similar likelihood calculation as RAxML but requires a 

specified substitution model. The GTRGamma model was used again and bootstrapping was 

performed in default settings.  

 

3.4 Member Selection for Extended Subfamilies 

Gene trees generated by TreeFix were used to create new subfamily collections. At this stage only 

the topology of the gene trees was used. Ideally all members of the same subfamily should share a 

common ancestor that in turn does not have descendants from subfamilies that include members 

of different lineages (Figure 3.3 a and b). Therefore, subfamily members were first mapped onto the 

trees to locate their closest common ancestors, then proteins under the ancestors were assigned to 

the same subfamily unless the proteins were included by another subfamily entirely derived from a 

descendent node of the common ancestor (for example, Figure 3.3 b). PANTHER subfamilies were 

defined using similar criteria. However, since tools with different tree constructing criteria were 

used, the new trees may conflict with PANTHER trees. Such conflicts would result in a situation 

similar to Figure 3.3 c where sequences of the different subfamilies are highly similar. Manual 
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curation after careful review of the alignments and related annotation could be a solution for this 

situation, but this was not feasible given the lack of human curator resources available. Therefore, 

two rules were used to resolve this problem: 1) when all the involved subfamilies contain less than 

four sequences, merge these subfamilies into a bigger subfamily; and 2) only add sequences one 

topology step away from the original member into the subfamily when the first role cannot apply. 

When two subfamilies both contain a small amount of highly similar sequences, HMMs built on their 

alignment would fail to distinguish members from these subfamilies. Therefore, merging these 

subfamilies could allow clearer separation between member and non-member sequences. In rare 

cases, a subfamily contains members from multiple Ensembl protein families so that such 

subfamilies would gather members from all related families. The new collection was intended to 

extend PANTHER subfamilies instead of changing them. As these subfamilies have been released, 

used and actively maintained for a long time, major errors of the collection had been corrected by 

manual curations and experimental evidences. Changing such collection using pure in silico results 

is not likely to lead to an improvement to the collection, hence the design of the second rule. The 

tree analysis was performed using the ete3 Python package at this stage.  

After the member sequences were assigned, non-member sequences were selected as negative 

controls for final prediction. Since HMMs were allowed to report negative results, negative controls 

were used for identifying the score threshold between positive and negative result and to evaluate 

model performance. Non-member homologous sequences within the same protein family were first 

selected as negative controls. In less common cases, when non-member homologous sequences 

were not available, all non-member protein sequences from mice were used. As the mouse genome 

is well studied and relatively close to the CHO genome, being able to distinguish member sequences 

from other non-member mouse sequences indicates the model’s capacity to perform well for CHO. 

As machine learning algorithms were used at later steps, the size of negative control sets was 

designed to be similar to the positive set unless not enough negative controls were available or the 

positive set was too large. When the number of reported negative controls is close to the number 

of positive results or reaches 200, the selection process ceases. As not every negative control could 

be reported by the models, the number of reported negative control could be far less than the 

positive results or even zero, in which case thresholds were not necessary since no evidence can be 

used to support the thresholding and we want to minimise artefact bias in this process.  



36 
 

 

        

 

Figure 3.3 Samples showing homologs grouping with phylogenetic tree. 
Three examples of phylogenetic tree with genes are presented. Balls of different colour 

representing genes of different PANTHER subfamilies. Grouping in a and b are acceptable 

while grouping in c is not. 
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3.5 Building HMMs 

The sequences of new subfamilies were then aligned by MAFFT and HMMs were built on these 

alignments. The HMMs were built with HMMer 3 (version 3.1b1) on default settings. By default, 

HMMer evenly distributes weight to every variant observed regardless of the frequency. In addition, 

a built-in background residue pseudo-frequency would be used so that even if a residue is never 

observed in a certain position, the probability of observing that residue would not be 0. Such settings 

allow high sensitivity for detecting homologous sequences. At this stage we allowed our models to 

report non-member sequences as long as they could be distinguished from member sequences by 

scores.  

 

3.6 Preservation Calculation  

Non-synonymous SNV (nsSNV) impact on protein function has been widely studied for human 

cancer and diseases diagnosis. Therefore, most of the tools developed are biased towards humans 

and not suitable to be applied to CHO. The most popular tools that only rely upon alignment and 

phylogenetic information include SIFT (Ng & Henikoff, 2003) and PANTHER-PSEP (Tang & Thomas, 

2016). As PANTHER-PSEP reported a significantly better performance, its concepts were largely 

adopted in this project. A core concept of PANTHER-PSEP is preservation, proposed by Marini et al. 

(2010), which means site conservation within related lineage. In PANTHER-PSEP, preservation was 

reported as the molecular age for which a site remains unchanged. Conservation usually refers to 

the frequency of residues observed in position, while preservation focuses on the genetic distance 

that certain residues have gone through.  

In this project, we calculated site preservation as the number of species sharing the same variant. 

In PANTHER-PSEP preservation calculation, phylogenetic trees containing only orthologues were 

used. They constructed sequences for common ancestors and calculated preservation using those 

sequences. According to the estimation made by Ensembl, Chinese hamster and CHO shared a 

common ancestor with the mouse and the rat. Therefore, in the tree containing only species 

involved (Figure 3.4), only four ancestors (internal nodes) would be involved in the calculation. 

Although some gene trees may differ from the species tree, such incongruence should be less 

significant for orthologues from species separated by a long genetic distance. Thus, we focused on 
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three common ancestors (shown in Figure 3.4) with distinct distance, and divided species into three 

tiers accordingly so that we could calculate preservation according to the topology of the species 

tree. Molecular age was used by PANTHER-PSEP as a normalised measurement of mutation. As 

mutation rate can be affected by many factors such as population and generation time, molecular 

age is a rather approximate estimation. As we only compare preservation within subfamily, 

normalising between subfamilies was not required. Additionally, only three (out of four) distinct 

common ancestors were involved, which allows further simplifying of the preservation comparison 

into tier and species. Starting from mouse, the three tiers are referred to as tiers 1 to 3 with 

increasing genetic distance. We only calculate relative preservation. A variant shared by species only 

in tier 1 is less preserved than variants shared by species in both tier 1 and 2, and when variants are 

shared by species in the same tiers, variants shared by more species are more preserved. However, 

a variant shared by species in tier 1 and tier 3 is considered only preserved in tier 1. The maximum 

preservation that a variant can be is the number of tiers and species included by the subfamily. 

Based on these rules, the preservation of different sites of a protein can be easily compared. As the 

mouse genome is close to CHO and well annotated, preservation calculation was performed on 

mouse-related subfamilies, then transferred to CHO proteins using sequence alignment.  
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Figure 3.4 Species tree used for preservation calculation. 
Species labeled in different colour box are assigned to different tiers representing the 

variants contained by ancetor node ladeled with the same colour. As CHO is genetically 

close to mouse, in calculating position preservation, mouse was used as a starting point to 

go through the marked nodes, from botton to top, and count species that share the same 

recidue in the same position in the process. The tiers mouse went though and the number 

of species sharing the same recidue in the same position would form the preservation level. 

 

 

3.7 CHO Data Analysis and Prediction 

After the models and the preservation were obtained, Chinese hamster and CHO sequences were 

imported to be analysed. HMMer contains BLAST like tools to compare models and sequences and 

report similarity scores: the E-value and bit score. These two scores are also used by BLAST and 

should be familiar to most biologists. In simple words, E-value is the expected probability of 

observing a sequence of equal or better similarity by chance, while bit score is a form of E-value 
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normalised by the length of query sequence. We used bit scores as it only relies on similarity. We 

searched for the best matching sequences in CHO using the models. As copy number variant was 

not considered in this project, finding the best available sequence for every sequence should obtain 

the same result as searching for the best fitting models for every sequence. After the CHO scores 

were obtained, protein sequences were used to build HMMs and the negative control sequences 

were also scored. 

When negative control was available, a simple machine learning algorithm: nearest centroid 

classifier was used to identify the potentially defective or outgroup proteins. Given positive and 

negative controls, identifying such proteins can be considered as a classification problem, where 

being classified as negative means being out-of-group or potentially defective. Classification was 

done on one-dimensional data and thus a simple classification algorithm would be sufficient. 

Nearest centroid classifier is a straightforward tool for supervised classification available in Python 

package scikit-learn (Pedregosa et al., 2012). The main strategy of this classifier is gathering sample 

points that are close to each other which is consistent with our expectation of matching score 

distribution. It requires no parameters other than training data set and provides non-probabilistic 

predictions. However, it adopts an underlying assumption that the positive and negative training 

set share the same variance. The classifier was first trained by the positive and negative control sets, 

and then used to predict the classification (intact or potentially defected) of CHO proteins. The 

prediction was made according to the distance to the centroid (mean) of the training set.  

The Fowlkes-Mallows index (FWI) was used to evaluate the classification performance. FWI is an 

evaluation index based on the number of true positive (TP), false positive (FP) and false negative 

(FN) without making assumptions. It can be calculated by: 

𝐹𝑀𝐼 =
𝑇𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)
 

FMI is bounded on 0 to 1 where 1 means perfect classification and 0 means total disagreement with 

the expectations. Only classifications with FWI higher than certain threshold would be used for 

predictions. 

CHO proteins deemed positive were then examined by preservation. To estimate mutation impact 

in function, Swiss-Prot annotations were also used with the preservation. Swiss-Prot is a subset of 
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the Uniprot Knowledgebase that has been reviewed by experts. Although Swiss-Prot covers most of 

the site annotations found, only a small proportion of sites were annotated. Preservation analysis 

could provide evidence for estimating the impact of unannotated sites. Although it is true that the 

number of mutation at highly preserved sites is not proportional to the functional impact they cause, 

high mutation rates at preserved site does suggest a higher chance of functional disruption. 

Therefore, the proportion of sites losing their preservation was used to support prediction of 

function alterations on CHO proteins. We defined function predictions as 1) defective, 2) altered or 

3) intact (also referred to as normal in places), these being 1) completely lost and no full length 

proteins found, 2) likely being altered in function to some extent, and 3) functioning as wildtype, 

respectively. The detailed parameters were decided according to a preservation survey of annotated 

sites, described in the next chapter.   

 

3.8 Related Software Description 

In this project, we used multiple publically available tools. These tools are all well developed with 

powerful functions that may not be mentioned in this thesis. Comprehensive tutorials and 

documentations of these tools are available online. For readers who are not familiar with these tools, 

we provide brief introductions on their function related to this project.  

 

3.8.1 MAFFT 

In this project, MAFFT (version 7.313) (Katoh & Standley, 2013), one of the best performing aligners, 

was used as a primary aligning tool for quickly aligning with high accuracy. MAFFT applies a 

mathematical measure known as correlation, which can achieve character-by-character comparison 

but is significantly accelerated by Fast Fourier Transform (FFT). The correlation of two sequences 

works in a swiping card manner. The head of one sequence is firstly aligned with the tail of the other 

sequence where the overlapping area is compared. Then the overlapping area is then enlarged by 

moving one sequence toward the end of the other sequence step by step, and comparisons are 

made in every step during such process. In the case of alignment protein sequences, instead of the 

actual residues, vectors, which consist of the products of the volume values and of the polarity 
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values, are used in the comparison. To align multiple sequences, a guide tree is used to progressively 

increase the number of sequences involved. When high accuracy alignments are required, the guide 

tree is reconstructed according to the alignment and is used to reconstruct the alignment again. This 

process iterates to improve aligning accuracy until the maximum iteration number is reached or no 

changes are made on the new alignment. 

MAFFT has multiple aligning algorithms built in for achieving different accuracy-speed requirements. 

In this project, the most accurate and time-consuming built-in algorithm was used for high quality 

alignments. Although applying the most time-consuming algorithm, MAFFT is still one of the fastest 

programs to achieve such quality of alignment. The actual command in this project was: 

Mafft --localpair --maxiterate 2000 --anysymbol <raw_sequence_file> > <alignment_file> 

where three options were used. Option “--anysymbol” instructs MAFFT to use not only the general 

one letter amino acid alphabet, which contains 20 usual residues but also the alphabet which 

contains unusual charters such as ‘U’ as selenocysteine. Option ‘--localpair’ instructs MAFFT to focus 

upon achieving the best performance on conserved domains and allow long gaps added in variant 

regions when aligning sequences. MAFFT provides two general alignment strategies: 1) ‘localpair’ 

focuses on aligning the most similar part of the sequence, and 2) ‘globalpair’ focuses upon achieving 

best match for every residue in the sequence, even if that means adding more short gaps in the 

alignments. Using ‘localpair’ in this project is based on the hypothesis that critical sites spread across 

the peptide as short sequence islands and regions between these islands carry more mutations. 

Adding gaps to the critical sites to achieve better matching on non-conserved regions would mislead 

the models to reduce weight on highly conserved residues. Option ‘--maxiterate 2000’ sets the 

maximum iteration number for refining alignments, avoiding excessive time cost and potential 

deadlocks. 

The same options were used when adding new sequences to a given alignment with two additional 

options ‘--addfull’ and ‘--mapout’. When ‘--addfull’ option is applied, one sequence or more will be 

required. A guide tree containing all the sequences including the new sequences, then alignment 

calculation will be performed on nodes related to new sequences. ‘--mapout’ instruct MAFFT to 

generate an additional file recording the residue position in original sequence and within the 

alignment. When ‘--mapout’ is used, an additional option ‘--keeplength’ is automatically activated 
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to avoid gaps added to the alignment and disable iterative alignment refinement so the given 

alignment will not be changed. Otherwise, gaps may be added to the given alignment even when 

alignment refinement is disabled. The command used in this project is: 

Mafft --localpair –anysymbol –addfull <new_sequence_file> --mapout <reference_alignment_file> > 

<new_alignment_file> 

When multiple cores are available, option ‘--thread’ can be used to run aligning using multiple cores, 

which could significantly increase the speed. The number of core used can be specified after the 

option. 

 

3.8.2 HMMer 

HMMer is a software first developed by Sean Eddy (1998), who further improved its searching power 

in version 3 (Eddy, 2011). HMMer (the version used is 3.1b1) is based on the Hidden Markov Model 

(HMM) which derives from Markov Chain (MC). Both types of models describe a series of events or 

states occurring in order. 

In HMMer 3, HMMs are built by a tool called hmmbuild based on the method introduced by Krogh 

et al. (1994). Three different kinds of states in alignments are modelled: match, insert and delete. 

The HMM architecture allows each site to be modelled by any of the three states. The emission 

probability of match states is subject to the observed distribution of residues on the site. Certain 

background residue distributions and pseudocounts, which essentially count residues that are not 

observed, are applied, so that the observed residues have a relative probability showing the 

significance of their observation, and other residues that are not observed have probabilities other 

than zero but subject to the background. Insertion and deletion events are modelled by insert and 

delete states respectively. The core HMM architecture used by HMMer is stringently linear, which 

complies with the linearity of biological sequences. The HMMs built to describe alignments are 

called profile HMMs (Figure 3.5 with core model in black and grey) in the literature (Eddy, 1998, 

2011; Finn et al., 2011). By default, the background residue distribution is set to the residue 

frequency in Swiss-Prot 50.8, which is hardcoded into the software. Alternatively, the background 

can be set to a uniform distribution or subject to the profile (Eddy & Wheeler, 2013). However, 
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HMMer does not simply adopt the residue frequency from the alignment but instead, weights the 

sequences in the alignment first by default. It generally assigns more weight to sequences carrying 

more variants to retain maximum information. 

 

Figure 3.5 Profile HMM with searching structure 
The figure was created by Eddy (2011). The core model is marked in black and grey. Ms 

stand for match state, Is for insertion and Ds for deletion. State S and T stand for the start 

and termination of the aligning process. State N, J, C, as N terminus, joining and C terminus, 

present the flank of core alignment. State B and E represent the beginning and ending of 

the core homologous region. Each match state is connected to an insertion state and a 

deletion state which could result in skipping in any number of match states. 

One of the most crucial applications of HMMs is to search for matching sequences in a database or, 

conversely, matching a query sequence with one of the models in the HMM database. Hmmsearch 

and hmmscan are the tools designed for such purposes in the HMMer toolbox. To achieve database 

searching a searching engine is required. Essentially, matching model and sequence is to calculate 

their similarity. For HMMs, forward algorithm and Viterbi algorithm are two fundamental methods 

that can achieve such purpose. Forward algorithm is used to calculate the probability of achieving a 

certain hidden state given the observed sequence, while the Viterbi algorithm is used to calculate 

the most likely sequence of hidden state given the sequence of an observed state. Therefore, every 

possible hidden state in the same step would be considered when calculating the next step in the 

forward algorithm but only the optimum of these states is calculated in Viterbi. As a result, the 

Viterbi algorithm is less computationally expensive as the heuristic strategy is applied. In HMMer, 

searching with Viterbi algorithm is 3- to 9-fold faster than forward algorithm so that it is more 

preferable (Eddy, 2011) 
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Figure 3.6 HMMer 3 HMM for comparing sequences 
The figure was acquired from Eddy (2011). State S and T stand for the start and termination 

of the aligning process. State N, J and C are flank states standing for N terminus, joining and 

C terminus. State B and E stand for the beginning and end of homologous region. State M 

in the core process stands for matches in the alignment. Compared to the structure shown 

in Figure 3.5, deletion states and insertion states are removed forming ungapped alignment 

segments.  

Whether implementing the forward or Viterbi algorithm in searching, the goal is to calculate the 

likelihood of the hidden sequence given the query sequence as observed. However, searching using 

ordinary methods are far more slower than BLAST, which makes it inappropriate to apply to 

database searching (Eddy, 2011). To extend the application of HMM, Eddy group developed a fast 

model-based searching method to allow searching with HMM to reach a comparable speed with 

BLAST. Another model is built on part of the HMM to guide the searching (Figure 3.6). In this model, 

the insertion and deletion states in the profile HMM are not considered, and only the match states 

are considered, which means it is the matched sequences without gaps that the program is 

searching for. The matching starts at state B, which can then transit to any match state. The model 

allows the matching to start at any point of the model and correspondingly any point of the query 

sequence. After the first match is found, the following sequence is then automatically compared to 

the following matching state until the similarity score of the match drops below a certain point, 

which is decided by the transition probabilities from state E to state J and C. Certain thresholds can 

be set so that short matched sequences that do not score highly enough are excluded. Generally, 

long matched sequences with high matching scores can continue with a few low score matches, 

which makes searching less sensitive towards discrete point mutations. As only a part of the HMM 

is involved in searching and it is effectively simplified, the computational power requirement is 
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highly reduced. Parallel versions of the method are also available for quick database searching with 

high performance computers. 

Similar to BLAST, HMMer reports the matched sequences along with two statistical scores, the E-

value and the bit score. The E-value, as mentioned previously, is the expected possibility of having 

a sequence with equal or better similarity by chance. It can be calculated as: 

𝐸 = 𝐾𝑚𝑛𝑒−𝜆𝑆 

where n, m are the length of query sequence and of the sequences in the database, which also 

define the searching space, while K and λ are the scales of the size of the searching space and 

scoring system of the segments, and S is the similarity score set in the algorithm for discarding 

fragments with similarity below the score (Madden, 2013). The E-value relates to the length of the 

query sequence which is reflected by n, the size of the database which is reflected by m and the 

similarity score S which is affected by many factors of the scoring system. The lower the E-value, the 

less likely that the match occurs by chance, which equally means the more significant the match is 

statistically. 

Compared to the E-value, bit scores only relate to the similarity score and the scoring system but 

not the length of the query and the size of the database. This is given by the formula: 

𝑆′ =
𝜆𝑆 − ln𝐾

ln 2
 

the bit score S’ can be considered a normalised version of S, which is the raw score generated 

directly by the scoring system as K and λ are derived from the scoring system. Such normalisation 

allows bit scores from different alignment to be compared.  

 

3.8.3 RAxML 

Randomised axelerated maximum likelihood (RAxML) (the version used in this project is 8.2.11) is 

one of the most widely used sequence-based phylogenetic tree building software. Like a lot of other 

tools, RAxML builds phylogenetic trees by maximising likelihood proposed by Felsenstein (1981). In 
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general, such likelihood is the product of prior probability derived from residue or base distribution, 

the probability of change of branches and the length of the branches. The computational complicity 

increases with the number of branches, therefore, calculating likelihood for trees involving 10,000 

taxa would be time consuming. To maximise the likelihood of a tree, tree rearrangement would be 

conducted many times searching the potential solutions. As it is impossible to test all possible 

topology for trees of usual size, parsimony methods are used. A general strategy is that first 

generating a tree with simple algorithms which often do not encounter likelihood calculation, then 

rearranging a small part of the tree to reach local maximum in likelihood with hill climbing methods 

and then repeating the maximising process on other parts without changing the maximised 

branches. Random rearranging is used for generating proposals in hill climbing for maximum 

likelihood. In this way, since only a few branches are rearranged every step, likelihood calculation 

can be largely simplified as only the likelihood of changed branches need recalculation. To enable 

multi-thread computing on high performance computers (HPCs), specialised versions of RAxML are 

made available. The actual distribution used in this project is RAxML-PTHREADS-SSE3, a multi-thread 

vectorised computing version. 

When calculating probability for change for likelihood, certain substitution models are required to 

obtain the substitution rate. In RAxML, multiple models are available, of which the GTRCAT is the 

fastest for large tree calculation. However, according to the manual provided by the developers, 

GTRCAT is not recommended when taxa is less than 50 and GTRGamma should be used in this case. 

GTRGamma is a general time reversible model based on Gamma distribution mutation rate. 

Automatic model selection is also available. In this case, the program selects the model which yields 

the highest likelihood. However, as tree topology is much more important than branch length in this 

project, a slight change in likelihood caused be model selection is acceptable. 

After tree with maximum likelihood is acquired, bootstrapping can be used to evaluate how well the 

data supports the result. In this process, pseudo-sequences are created according to the input 

alignment and added to the sequence poll which will be resampled to generate a new sequence 

collection. Such collection will then be used to build the tree with maximum likelihood using the 

protocol described above. The resampling process will be repeated many times and the more the 

same tree is acquired, the better the tree is supported by the data. However, this bootstrapping is 

highly computationally expensive, although it has been significantly accelerated in RAxML.  
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3.8.4 TreeFix 

TreeFix (used version 1.0.2) is one of the best reconciliation tools. Two series of TreeFix, TreeFix and 

TreeFix-DTL, are available for eukaryotic and prokaryotic genomes respectively. It requires a rooted 

species tree, a map of gene and species, a preliminary gene tree (preferably the ML tree) and the 

corresponding alignment as input to generate a reconciled gene tree. TreeFix reconcile species trees 

and gene trees by minimising reconciliation cost within the tree topology space where the likelihood 

is statistically equivalent. It assumes that minimum reconciliation cost can be reached in that tree 

space, but when the assumption is not applicable, ML trees with high reconciliation cost will be 

returned. 

TreeFix calculates likelihood using RAxML package. It is recommended that the same substitution 

model should be used for both building ML trees as input and the reconciliation process. The model 

selected in this project is GTRGamma. To estimate the significance between different tree 

topologies, TreeFix conducts statistical tests on likelihood change between these trees, with the null 

hypothesis being all trees are equally supported by the alignments. TreeFix calculates reconciliation 

cost as the minimum evolutionary events, loss and duplications, required to solve the incongruence 

between the species tree and the gene tree. 

Bootstrapping analysis is also available on TreeFix. However, TreeFix only resample gene trees with 

same topology as the input tree and corrected branch length as bootstrapping from ML gene tree 

construction would be too computationally expensive.   
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4 Model validation and performance 

 

In this chapter, details of validations of HMMs and preservation calculations are described. After 

examining model performance, criteria and standards decided by the behaviours or performance 

of the models will be described and justified.  

During the model construction process, 16,749 Ensembl protein families were involved, of which 

15,620 had phylogenetic trees built, while the rest of the families contained fewer than three 

members from the selected genomes. These protein families derived 19,408 subfamilies where 342 

original subfamilies were merged into others subfamilies in the final set. Equal number of HMMs 

were built on these subfamilies. Site preservation was calculated on these subfamilies, however, 

only 18,594 of them had at least one member annotated by Swiss-Prot. The performance of the 

HMMs was evaluated using gene sets from rat, rhesus and sheep, while the performance of 

preservation was investigated using PANTHER-PSEP results and Swiss-Prot site annotation.  

 

4.1 HMM validation 

The HMMs built in this project were used for two purposes: identifying the subfamilies to which 

query sequences belong, and identifying sequences with large area mutations including protein 

fragments. Amid these two purposes, the former can only be achieved by HMMs while the latter 

was aided by preservation calculated in other steps. Therefore, it is more important that the HMMs 

can correctly assign sequences to the subfamilies, while larger error on predicting protein defects 

is acceptable. 

Subfamily collections of rat and rhesus were used to validate model performance on assigning 

sequences. These two genomes are included by the original PANTHER subfamilies but were not 

used for training the HMMs. Models built on subfamilies with no members from the corresponding 

genome were not involved in the validation as they will always assign proteins to subfamilies 

different from PANTHER. The rest of the models were used to find the best matched proteins on 

these genomes. Recovering members in this process would mean being successful in assigning the 

correct subfamilies. As a result, 16,258 of 17,634 models successfully recovered their member in 
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rat making up a correct rate of 92.2%. The numbers for rhesus were 15,385, 16,694 and 92.2%. We 

speculated that the main error came from subfamilies of the same families which are inherently 

highly similar. Therefore, we further investigated model accuracy on assigning proteins to correct 

families. The number of models correctly assigning families was 17,634 in rat and 16,385 for rhesus, 

making up 98.7% and 98.1% respectively. These numbers confirmed our speculation. Based upon 

these numbers and the numbers for subfamily assigning, we believe that our models are able to 

assign proteins to correct homologue groups. 

In the prediction process, homologous sequences not included by the subfamily were used as 

negative controls. However, not all subfamilies have homologous sequences available from the 

selected genomes and 1,126 subfamilies fell into this situation. For these subfamilies, predictions 

were made solely based on site preservation. The predictions made by models would be largely 

affected by the scores of corresponding negative controls. To investigate the difference between 

scores of positive and negative controls, a t-test was performed on these two sets of scores for 

every subfamily with negative controls. In the 18,282 models with negative controls, 1,186 were 

not applicable for t-test since only one negative control yield a score; 1,836 have a two-tail P-value 

larger than 0.05 and the number increases to 2,531 for a P-value of 0.01. Therefore, we believe 

15,260 (83.5%) models should provide good predictions at a significance level of 0.05. However, we 

brought all models to the next validating step. For the models without negative controls, positive 

predictions would be reported and passed to the next step. 

In the validation of predicting protein intactness, a procedure similar to subfamily assigning 

validation was applied. Models of subfamilies not having members from the related genome were 

firstly removed and then the best matching sequences were used for validation. However, in this 

case, we used not only proteins from rat and rhesus, but also proteins from sheep which is not 

included by PANTHER subfamilies. Therefore, all models were used for sheep proteins. We 

expected most of the proteins to return positive results. Eventually, the models returned 1,682 

(9.6%) negative predictions out of 17,606 reported predictions for rat proteins and the number for 

rhesus were 1,630 (9.8%) and 16,706. For sheep proteins, which have not been included by 

PANTHER, from the 19,373 reported models 2,673 (13.8%) of them reported negative results. To 

investigate the cause of significant higher negative rate on sheep proteins, we examined prediction 

results on rat and rhesus proteins using all models. It showed dramatic increase on both rat and 

rhesus, being 15.5% (2,989 out of 19,312) and 19.5% (3,759 out of 19,309) respectively. This result 
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showed that most of the models of subfamilies not involving the species yielded negative 

predictions. 1,307 negative predictions for rat came from 1,706 unrelated subfamilies and the 

numbers for rhesus were 2,129 from 2,603 subfamilies. As homologous sequences not in the 

subfamily were used as negative controls, when homologous sequences are identified by models 

of subfamilies of the same protein family, negative predictions will be made. Therefore, high 

negative rate caused by unrelated subfamilies can be considered as evidence showing that models 

work as expected. On the other hand, when unrelated subfamilies were removed, a significant 

proportion (about 10%) of proteins were predicted defected. It is highly likely that protein 

fragments are stored as a protein in these data set and they should be diagnosed as defected, but 

we were expecting a lower proportion. Since we used models to find the best matching sequences, 

only protein fragments not having whole protein homologs should be reported as defected. 

Therefore, we were only expecting a small percentage of negative prediction.  

To address the cause of unexpectedly high rate of negative prediction, we further investigated the 

performance of classification by nearest centroid in the predicting process. Along with the 

predictions, the FMI was reported suggesting the quality of the predictions. A FMI close to 1 means 

perfect classification on training set while a FMI close to 0 stands for the opposite. One of the main 

causes of low FMI is indistinct separation of scores of positive and negative control. Therefore, the 

list of models with P-value higher than 0.05 in t-test was compared with the list of models with a 

FMI lower than 0.7. The FMI threshold of 0.7 was selected since it is the FMI obtained when all the 

samples are considered intact or defect and the number of positive and negative controls are equal. 

This comparison showed that 1,548 out of 1,836 models that failed t-test at a level of 0.05 have a 

FMI lower than 0.7. In total, there are 6,144 models with FMI lower than 0.7 reported on prediction 

for sheep proteins, accounting for 31.7% of the total models reported. After removing models with 

low FMI, only 515 models and 592 models, accounting for 2.9% and 3.5% of models of related 

subfamilies, reported negative for rat and rhesus proteins respectively. For sheep proteins which 

examined by all models, 909 (4.7%) models reported negative. It is important to note that when a 

model returns negative prediction, it does not necessarily mean the protein identified by this model 

is defected, although it could be the case. Instead, it actually means the protein carrying the 

function represented by the subfamily is defected in the corresponding species. The protein 

identified by the model could be identified by another model which reports a positive result and 

the subfamily whose model returns a negative result may not be needed by the species. Therefore, 
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for rat and rhesus, as only related subfamilies were accounted, negative predictions means the 

proteomes only contain fragmented proteins, probably caused by splicing effects but this could also 

be the result of incorrect gene or coding region boundary, or bad models caused by incorrect 

alignment or improper homolog collection. The negative results also means unrelated subfamilies 

for sheep proteins and also for CHO proteins in later sections. The prediction from models with low 

FMI were carried on to preservation analysis. Since the main function of HMMs is assigning 

subfamilies, the intactness prediction works as a filter at this stage. Therefore, only confident 

negative predictions would be cut off when CHO proteins were examined. 

 

4.2 Preservation analysis 

The preservation model is built for identifying functionally important sites. It can complement HMM 

predictions with local conservation information to generate more accurate results. Although 

summarising site preservation on whole sequence could achieve functional estimation like HMMs, 

in this project, site preservation was centred on the functional effect of single site. As the 

preservation analysis in this project is largely motivated by PANTHER-PSEP, we compare our 

preservation level with the molecular age calculated by PANTHER-PSEP for validation. Then we 

investigated preservation distribution on annotated sites whose information was obtained from 

Swiss-prot. The preservation effect on prediction was also discussed in this section. 

In order to compare molecular age with our preservation level, the precomputed molecular age 

results were retrieved from PANTHER ftp site. PANTHER-PSEP automatically recognises the 

member most similar to the query sequence within its database and starts calculating molecular 

age from that member. However, in this stage, our approach requires a specified starting species 

from the selected species collection. Human was selected for this validation process since 

PANTHER-PSEP was built for recognising disease-causing site variant and human proteins are most 

well-annotated. However, when CHO proteins were applied to the model, mouse proteins were 

used as the starting point for preservation calculation. Our preservation level was presented with 

a tier number and a species number and the preservation increases with firstly tier number then 

with species number. The average molecular age of sites with same preservation level was used for 

the comparison. The result is shown in Figure 4.1. Note that since there was only one site preserved 

on two tiers with nine species, it was not shown in the Figure 4.1 due to lack of statistical 
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significance. The Figure 4.1 shows a trend of increase of molecular age with preservation level. 

However, for the levels of the beginning (especially first two levels) of every tiers, the molecular 

age increases unexpectedly. This could be the result of gene trees that are significantly different 

from the species tree or a more distant homolog not included by the selected species in this project. 

PANTHER includes much more species than that in this project, resulting in much longer linages. 

PANTHER-PSEP use reconstruction probability to build links between distant homologs, which 

means even when a variant is not observed in all internal notes, as long as it is observed at both 

ends of the linage it could be considered as preserved throughout the entire linage. Apart from 

these, the molecular age seems to correlate well with our preservation levels, though not linear. 

When we inspect the PANTHER-PSEP results, we found that although molecular age is used, the 

outcome ages are highly discrete and could actually be fitted in a level system. Overall, only 22 

different ages are assigned to sites of human proteins (supplement 1). Therefore, although we used 

a different calculating protocol, the level system we used performs more similar to the molecular 

age from PANTHER-PSEP than we expected. 

 

 

Figure 4.1 Average of molecular age on preservation levels. 
The molecular age is shown in the Y axis while the preservation level is shown in the X axis. 

The average molecular age for sites of the preservation level is presented. A trend of 

increase of molecular age with preservation level is presented, showing correlation 

between two metrics. However, for the levels of the beginning (especially first two levels) 

of every tiers, the molecular age increases unexpectedly. 
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Table 4.1 The numbers of sites with different marks with different preservation level. 
The sum of sites annotated by different market are shown at the bottom with the two-tail 

p-values calculated in t-test with the numbers in the second column as reference. The p-

values are all smaller than 0.01, showing significant difference in distribution against the 

general distribution.    

Preserv
ation 

total act_site 
np_bin

d 
ca_bind binding metal zn_fing 

dna_bi
nd 

mutage
n 

variant 

1.1 256520 11 328 210 19 31 10886 1330 187 2905 

1.2 464289 42 558 74 93 96 36381 524 214 2531 

1.3 196628 4 120 44 31 19 7097 299 95 1015 

1.4 317858 10 167 56 17 14 12569 417 242 2041 

2.3 84169 0 35 19 7 3 848 115 69 660 

2.4 107730 2 34 68 3 2 892 200 95 398 

2.5 165218 5 62 29 18 9 1330 503 142 797 

2.6 126027 11 80 43 12 20 1538 103 115 760 

2.7 81565 7 63 45 13 10 1201 85 69 416 

2.8 34622 3 68 8 15 4 186 24 29 210 

3.4 110580 13 209 53 21 39 917 211 127 565 

3.5 345252 22 507 95 47 78 3149 1341 275 2751 

3.6 830599 14 705 346 38 49 6215 2242 507 1933 

3.7 149938
0 

69 1349 304 131 136 13580 3440 1343 4354 

3.8 231268
2 

195 2641 691 405 352 20404 4285 2340 7635 

3.9 308951
7 

521 5796 1415 913 1088 30690 10786 4412 16069 

3.10 213803
1 

746 7192 1040 1536 1464 31297 10502 5555 22982 

3.11 306 0 0 0 0 0 0 0 0 0 

sum 121609
73 

1675 19914 4540 3319 3414 179180 36407 15816 68022 

t-test 
pvalue 

 
0.4182

% 
0.4232

% 
0.419% 0.4186

% 
0.4187

% 
0.4703

% 
0.4279

% 
0.4221

% 
0.4369

% 

 

 

The preservation results were then aligned with Swiss-prot site annotations. As we wanted to 

investigate the preservation of functionally important sites, function related annotations were 

mainly involved. Sites annotated with marks of ‘ACT_SITE’, ‘NP_BIND’, ‘CA_BIND’, ‘BINDING’, 

‘METAL’ AND ‘ZN_FING’ were selected as focus groups, of which ‘ACT_SITE’ and ‘NP_BIND’ standing 

for active sites and nucleotide, such as ATP and cAMP, binding sites respectively, were excepted to 

be most conserved. Apart from these function related sites, sites annotated with marks of 

‘MUTAGEN’ and ‘VARIANT’ were also used as they were considered less conserved. Distribution of 

overall site preservation was used as base-line to highlight change in preservation. The numbers of 
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sites with different marks with different preservation level are shown in Table 4.1. The p-values of 

two-tails t-test against overall preservation level distribution was shown in the last raw, all showing 

significant difference from the base-line distribution.  

 

Further proportional distribution comparison with the base-line distribution is shown in Figure 4.2, 

active sites and nucleotide binding sites are mostly of high level of preservation which is consistent 

with our expectation. Surprisingly, general binding sites and metal binding sites also expressed high 

preservation throughout different species. Note that in Swiss-prot annotation, general binding sites 

stand for protein binding with ligands, substrates, products and cofactors. Although when binding 

with metal particles, related sites will be annotated as metal binding, some of these sites are also 

annotated as general binding sites. Therefore, as different species may react very differently to the 

same substances, especially when the immune system is involved, we expected general binding to 

be less preserved than some specific bindings such as calcium binding (marked ‘CA_BIND’) and 

nucleotide binding. However, the results show that the general binding sites show more 

preservation than the calcium and nucleotide binds. On the other hand, zin finger regions show the 

highest specificity where most of them are not shared by distant species. Mutagen and variant stand 

for site variants created on branch and detected in nature respectively. They are mostly disease 

related but we noticed some of these sites were further annotated as neutral. Therefore, we 

expected them to be close to the general distribution. However, they show significant bias of high 

preservation. Since these two marks contain various sites with or without functional effects, the 

cause of high preservation remains unknown.   
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h 

Figure 4.2 Preservation distributions on different annotated sites. 
Preservation levels are marked at the X axis and percentage of total number of sites related 

to the annotation marker is shown on the Y axis. The annotated sites shown in all the graphs 

are a: active sites, b: nucleotide phosphate binding sites, c: general binding regions, d: 

metal binding sites, e: DNA binding regions, f: Calcium binding sites, g: zing fingers and h: 

sites had been artificially mutated in experiments. All types of annotated sites presented a 

preservation level above the general preservation profile except the region related to zing 

fingers. 
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The preservation distribution above also indicated that the increase of preservation often 

presents as increase of number of sites with the highest preservation level (ie 3.9 and 3.10). 

Therefore, we further used the proportion of these sites, referred as sequential preservation 

in later sections, for function intactness prediction in sequence level. The proportion of sites 

with these preservation levels were first calculated from alignments with human or mouse as 

the last note of the linage. There was a significant proportion of subfamilies not containing 

any site of such high preservation level. The number of these subfamily were 6,453 calculated 

from human and 6,512 from mouse. This was mainly caused by the definition of these 

subfamilies. One of the drawbacks of using only high preservation sites is that it can only be 

applied to subfamilies with long history. However, there were also subfamilies containing only 

sites with high preservation. Then the rat proteins and rhesus proteins were added to these 

alignments in order to count the number of high preservation sites that remain preserved in 

these two species (supplement 2 and 3). In this process, they used the preservation calculated 

from close related species, which was mouse for rat and human for rhesus. Excluding 

subfamilies without site of high preservation, 385 subfamilies detected mutations in over 50% 

of these sites in rat proteins and the number for rhesus is 649. After overlapping with the 

negative predictions generated by HMMs, the number became 204 and 197 respectively. 

Note that within these overlapping results, a big portion of subfamilies (144 for rat and 124 

for rhesus) were overlapped by negative results with FMIs higher than 0.7. The details of 

preservation and alignment of these results can be found on supplement 2 and 3. Relatively 

loss alignment confirmed these predictions. Therefore, we considered the function to be 

defected when the related subfamily reported negative results agreed by both high 

preservation sites and high quality HMMs. Also when the subfamily HMM failed to find 

matches, the function it carries would be considered defected. As high preservation sites 

provide more confident results with lower coverage, we extended the coverage by using sites 

with the two highest preservation levels from among the subfamily instead of the highest of 

all training data. This allows automatic adjustment of local high preservation standard while 

recovering the same results for subfamilies reported by using only preservation level 3.9 and 

3.10. However, to maintain prediction confidence, only sites with preservation in at least 4 

species across all 3 tiers would be considered as sites with high preservation. Functions 
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related to subfamilies reporting negative predictions by HMM or mutations on more than 25% 

of sites with high preservation of local standard were considered altered. These criteria for 

predicting defected and altered functions with subfamilies were applied to rat and rhesus 

protein with and without unrelated subfamilies. The result is shown in the Table 4.2. A 

substantial portion of subfamilies returned altered results with or without unrelated 

subfamilies indicating the models are very sensitive toward species-specific features and 

unrelated subfamilies are highly likely to return altered or defected predictions. 

 

Table 4.2 Functional prediction results for rat and rhesus. 
Number of subfamily with non-conserved predictions are shown in the table. The 

following numbers are the results obtained after subfamilies not related to the 

species were removed. Significant dropping of number after the removal suggested 

irrelevant subfamily to be one of the main sources of negative predictions. 

subfamily Rat  Rhesus 

Defected 203 327 

Altered 3105 4249 

Defected(filtered) 142 121 

Altered(filtered) 1911 2357 

 

 

Apart from making prediction for defected or altered functions, preservation can be used to 

compare conservation between homologs or function pathways. For example, as mentioned 

above, some subfamilies contain only high preservation sites but not all these subfamilies 

yield the same results when the preservation was calculated from different species. High 

preservation means the same variant is shared by most, if not all, the species selected as 

training set in this project. Therefore, most of the results were identical regardless of the 

starting species. Thus, different high preservation site number in a highly conserved subfamily 

mean the starting species expressed species-specific features in some sites of the conserved 

protein. For example, a subfamily (PTHR11639:SF90) (supplement 1) containing regulation 

protein S100A10. Although the regulation function of this subfamily remains unclear, it had 

been found to be highly conserved within mammals. However, the mouse homolog of this 

subfamily contain eight sites (14th, 18th, 24th, 25th, 37th, 73th, 76th and 90th) different from at 

least 9 (out of 10) other mammals involved in the training process. Most of these sites have 

not been annotated except the 37th residue which would go through PTM process and form 

covalent linkage with another protein SUMO2. Another example would be another subfamily 
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(PTHR21141SF55) of 60S acidic ribosomal proteins. The mouse homolog in this subfamily 

contains three variant sites compared to other homologs but none of them have been 

annotated yet. Sites of such kinds could be the result of genetic draft without any functional 

effects but also could be the genetic signature of the species. Interesting species features may 

be found on highly conserved proteins and these proteins are mostly related to core biological 

processes that could affect many downstream processes. However, being highly conserved in 

evolution means most modifications introduced by random mutations had been wiped out 

by natural selection due to the significant negative effects they caused. The current cell 

engineering strategies tend to minimise unnecessary effects on cell biology. Since these 

proteins are more likely to affect multiple processes, they are rarely the engineering target. 

However, since radical changes had been induced to CHO in the process of immortalisation 

and adaptation of different environments, mutations rejected by previous evolution might 

now be beneficial. Comparing CHO homologs of these proteins with our models could suggest 

potential advantageous mutations which are the engineering target. 

After sequential preservation was obtained, we mapped the subfamilies along with their 

preservation onto GO using enrichment analysis tool available on PANTHER website. The 

sequential preservation was calculated from human. The PANTHER GO-slim of biological 

process is used and only results with a p-value lower than 0.05 were reported. The result table 

(Table 4.3) is presented in hierarchical order derived from GO structure. It shows significant 

positive enrichments on core processes, especially metabolic processes, shared by many 

species. While also negative enrichments on processes with species specificity such as 

response to stimulus, immune response and regulation is presented, which confirm our 

preservation calculation in processes levels.  
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Table 4.3 Part of result of enrichment analysis from PANTHER website. 
The GO terms are presented in hierarchical order and the most distinct terms (lowest 

P-value) are shown in this table. 

PANTHER GO-Slim Biological Process No. of 

subfamily 

Enrichmen

t (+/-) 

P value 

sensory perception of chemical stimulus (GO:0007606) 70 -  0.00E00 

  sensory perception (GO:0007600) 80 -  3.02E-14 

    neurological system process (GO:0050877) 111 -  1.04E-11 

      system process (GO:0003008) 115 -  2.22E-11 

        single-multicellular organism process 

(GO:0044707) 
146 -  7.16E-09 

          multicellular organismal process (GO:0032501) 147 -  6.65E-09 

cell surface receptor signaling pathway (GO:0007166)  125 -  4.98E-13 

  signal transduction (GO:0007165) 215 -  1.38E-06 

    cell communication (GO:0007154) 248 -  3.69E-05 

response to stimulus (GO:0050896)  294 -  1.31E-10 

metabolic process (GO:0008152) 649 +  1.78E-04 

  nucleobase-containing compound metabolic process 

(GO:0006139) 
230 +  2.49E-03 

    primary metabolic process (GO:0044238) 530 +  6.92E-05 

immune response (GO:0006955) 27 -  5.18E-07 

cell adhesion (GO:0007155) 25 -  3.59E-02 

  biological adhesion (GO:0022610) 25 -  3.59E-02 

cellular amino acid metabolic process (GO:0006520)  65 +  1.87E-04 

regulation of biological process (GO:0050789)  347 -  2.36E-09 

  biological regulation (GO:0065007) 385 -  1.33E-07 

lipid metabolic process (GO:0006629)  98 +  1.22E-02 

phosphate-containing compound metabolic process 

(GO:0006796)  

117 +  1.07E-04 

 

 

 

4.3 Summary 

The HMM and preservation models were verified using well sequenced and annotated 

genomes. The HMM models demonstrated high accuracy in assigning query proteins to 

subfamilies but comparatively lower confidence in predicting intactness. The preservation 

http://pantherdb.org/tools/distributions.jsp?sortOrder=1&sortType=overUnder
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http://pantherdb.org/panther/category.do?categoryAcc=GO:0006139
http://pantherdb.org/panther/category.do?categoryAcc=GO:0006139
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0006139&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0044238
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0044238&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0006955
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0006955&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0007155
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0007155&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0022610
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0022610&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0006520
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0006520&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0050789
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0050789&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0065007
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0065007&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0006629
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0006629&mw=1
http://pantherdb.org/panther/category.do?categoryAcc=GO:0006796
http://pantherdb.org/panther/category.do?categoryAcc=GO:0006796
http://pantherdb.org/tools/gxIdsList.do?acc=GO:0006796&mw=1


64 
 

models generate similar result with PANTHER-PSEP. By examining the preservation level of 

critical function sites, we addressed the preservation levels highly correlated to these sites 

and used them to calculate sequential preservation which was then used to assist predictions. 

However, both HMM and preservation suffer restriction of conservation where both their 

accuracy and coverage reduce alone with conservation. Although the sequential preservation 

could only be applied to the relatively conserved subfamilies, it could capture species-specific 

features ranging from intra-sequence level to cellular function level. 
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5 Model Predictions on CHO Related Data 

In this project, we involved all three CHO related genomes available online: a CHO-K1 genome, 

CHO-K1GS genome and a Chinese hamster genomes. An overview of the prediction is first 

presented reporting the number of different predictions in different genomes. Then 100 

subfamilies reported homologs with normal function in CHO-K1 and 100 subfamilies reported 

defected CHO-K1 homologs were verified with BLAST. In the verification process, we blast 

mouse homologs used to train the model against the CHO-K1 genome for the best reciprocal 

hits.  

5.1 Prediction Overview 

Although the three CHO related genomes were annotated by different pipelines (CHO-K1 and 

Chinese hamster annotated by NCBI RefSeq and CHO-K1GS by Horizon Eagle), they were 

referred by each other during the annotating process. We first conducted analysis on 

subfamilies using models to identify best matching protein sequences. By applying the 

protocols and criteria described in the previous chapters, we identified a significant portion 

of altered function in proteins from all three genomes (Table 5.1). Only numbers are discussed 

at this point and more details of these proteins regarding their functions and biological effects 

will be discussed later in this chapter (on session 5.4). The number of subfamilies failed to find 

significant matches are also reported in the table. Unexpectedly, the latest CHO-K1GS 

proteins yield least defected or altered results, although more subfamilies reported altered 

or defected prediction in CHO-K1 than Chinese hamster as expected. This could be caused by 

the quality control of annotating pipeline which could remove sequences less similar to 

known sequences keeping only the comparatively conserved sequences. Note that on the 

Ensembl website, another annotation generated by Ensembl on Chinese hamster genome 

(probably CHO-K1 genome as they used the CriGri_1.0 assembly with was first published with 

the CHO-K1 genome) other than CHO-K1GS is published, containing only 19,617 coding genes 

which is significantly different from the RefSeq annotation containing 27,752 genes. The 

newer Ensembl annotation was not used in this project as the RefSeq annotation was applied. 

Such inconsistency between the annotations is likely to be the result of insufficient re-

sequencing data for CHO. Therefore, significant improvements could be made on annotation 

when more data is available. 
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Table 5.1 Number of subfamily returned negative result on CHO related genomes. 

Subfamily CHO-K1 CHO-K1GS Chinese Hamster 

Defect 142 66 160 

Alter  3695 2985 3374 

No match 59 68 96 

Total 3896 3119 3630 

 

According to the validation on rat and rhesus proteins, unrelated subfamilies could contribute 

to a significant part of the altered and defected predictions. Therefore, we attempted to 

identify the unrelated subfamilies by using protein sequences to find the best matching 

subfamilies. Subfamilies whose best matching proteins matched better to another subfamily 

would be considered unrelated. An overview result of identifying best matching subfamilies 

is shown in Table 5.2. Accordingly, proteins matched with subfamilies returned altered or 

defected in the result above were deemed altered or defected correspondingly. Clearly, all 

the altered and defected proteins were converged to a smaller number of subfamilies. It is 

important to note that the predicted defect or altered proteins are not necessarily defected 

or altered since, they may belong to subfamilies not covered by this project. The validation 

result showed our subfamily set should be covering about 17,000 related subfamily for rodent 

and primate species. Given a total gene number projection of 24,000 to 30,000 for these 

species, the subfamily coverage could be arguably low. However, given both the subfamily 

model and the protein recognising each other as best match and the subfamily model 

reporting negative prediction, there should be a good chance that the protein is significantly 

damaged by the mutations.  

 

Table 5.2 Functional prediction of proteins on CHO related genomes. 
Numbers of protein with different prediction are shown followed by the number of 

subfamilies which the proteins with negative prediction belong to. 

 CHO-K1 CHO-K1GS Chinese Hamster 

Defect protein 121 49 65 

Altered protein 4361 2926 3786 

Intact protein 26788 24975 25566 

Subfamilies with 

defect protein 
81 41 35 

Subfamilies with 
altered protein 

2404 1682 2119 
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5.2 Verification with BLAST 

 

To further examine the quality of predictions generated by our models, we verified some of 

our results with BLAST. Clearly, our models perform differently compared to BLAST in many 

aspects such as scoring method, aligning algorithm and sensitivity. However, the main 

difference should not affect their agreement on extreme samples, which are either highly 

conserved homologs or completely different sequence pairs. Therefore, we randomly 

selected (using random number generated by the computer) 100 subfamilies reported intact 

and 100 subfamilies reported defected for this verification. These predictions were made by 

using subfamily models to find the best matches on CHO proteins. Thus, we selected a 

member of the subfamily to BLAST against all CHO proteins to obtain the best hit on CHO. 

Since mouse is genetically close to CHO and well annotated as a model organism, mouse 

homologs in the selected subfamilies were used to BLAST against the proteins derided from 

the CHO-K1 genome. We considered the percentage of identical site and the percentage of 

matching region the significant metrics on comparing the BLAST result of two sets of 

sequences (supplement 4 and 5). Default settings of blastp was used for this verification. As 

expected, the sequences of intact prediction significantly exceeded those of other groups on 

both percentage of identical site and matching region. On average, the intact group achieved 

an identical percentage of 89% while covering 92% of the best matching CHO protein. On the 

other hand, the number of defect group were 59% and 55%.  

The difference between scores generated by BLAST and our models were compared in detail 

in Figure 5.1 and Figure 5.2. In these graphs, samples were plotted by their score generated 

by both BLAST and the preservation models. Although our method includes HMM models and 

preservation models, sequential preservation was used to represent scores generated by our 

models since the thresholds for HMM scores were determined accordingly by machine 

learning algorithms, while threshold for preservation score was set at 0.75. Meanwhile, the 

similarity score generated by BLAST can also be presented by two parameters: identity and 

coverage. Both of these parameters are scaled between 0 and 1. Low score on either 

parameter would lead to negative predictions from our models. Therefore, the lower value 

of the two parameter was used to represent BLAST similarity in the comparison.   
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Figure 5.1 shows the comparison on predicted intact proteins. 0.75 was used as a threshold 

for sequential preservation so that all proteins in the intact group have preservation scores 

higher than 0.75. In most cases, BLAST generated high scores agreeing with our models. 

However, if a same threshold of 0.75 was applied to predict intact proteins, 7 out of the 100 

randomly selected samples would be predicted altered or defected. On the other hand, Figure 

5.2 shows the scores of samples of predicted defeated proteins. If the sample threshold was 

applied on BLAST scores, 25 of them would be predicted differently. These samples showed 

BLAST agrees 93% of the positive prediction and 75% of the negative predictions making up 

an overall agreement of 84%. 

 

 
Figure 5.1 Comparison of BLAST similarity and preservation score of predicted 
intact proteins. 
The lowest blast similarity is set to be the lower value of identity and coverage 

generated by BLAST. Most samples are concentrated on the top right corner showing 

that the two methods agree with each other in most cases. 
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Figure 5.2 Comparison of BLAST similarity and preservation score of predicted 
defected proteins. 
The lowest blast similarity is set to be the lower value of identity and coverage 

generated by BLAST. Samples are scattered horizontally showing that the correlation 

of scores generated by these two methods is not strong in this group. However, when 

threshold (0.75) is applied, 75% of the predictions are agreed by both methods. 

 

 

Samples getting different results from BLAST and our models were investigated in detail. 

Although significant difference is presented between predicted defected CHO proteins and 

their mouse homologs, some mouse sequences were matched to CHO sequences in the 

defected group with identity and coverage both higher than 90%. Meanwhile the identity and 

coverage generated from BLAST could be very low for some of the sequences in the intact 

group. By checking the alignments and site preservation of subfamilies yielding negative 

prediction on high similarity alignment issued by BLAST, the cause of such disagreement was 

that the highly similar fragmented proteins were found on both mouse and CHO protein 

selection. Due to splicing, shorter versions of protein may be annotated as an individual 

protein and could be used as a representative of the subfamily for BLAST verification as we 

randomly select mouse homolog from the subfamily. All the HMMs built in this project were 

designed to model full length of the protein and that was also used in proportion calculation 
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for high preservation sites. Containing only the fragmented version could suggest loss of 

sequence parts or incorrect gene boundary in annotation. On the other hand, positive 

predictions could result in low identity and coverage in BLAST due to incorrect alignments 

created by BLAST. In most of these cases, the sequences of the subfamily contain two or more 

similar regions. BLAST mismatched these regions when attending local optimum, which lead 

to short alignments in the final result. In our models, alignments were created by MAFFT 

which is more accurate in making alignments than BLAST. 

 

 

5.3 Expression and Prediction Correlation  

 

Unlike human proteins, considering disease-related variants to be deleterious may not be 

applicable to CHO. However, we hypothesised that variants affecting protein function, even 

only changing the efficacy, in highly expressed genes would bring significant deleterious effect 

to the cell which would then lead to extinction of cells carrying these variants. As a result, 

highly expressed genes are more conserved, or in other words deleterious mutation proof. 

Based on such hypothesis, we investigated the relation between expression and sequential 

preservation. CHO expression data were obtained from NCBI GEO. Two sets of expression 

data based on RNA-Seq from van Wijk et al. (2017) and Lee et al. (2016) respectively were 

selected. In their results, the abundance of expression is presented as Fragments Per Kilobase 

of transcript per Million mapped reads, also known as FPKM value, and the gene ids are 

presented with gene names. To map subfamilies onto gene names, we used gene names from 

mouse homologs within the subfamily. When multiple mouse homolog were available within 

one subfamily, the gene name used by most was used to represent the subfamily. Gene 

names from human homologs were applied when mouse homologs were not available. Two 

replicas are reported for every sample in their data and we first average the FPKM values of 

the replicas as the abundance of the gene expression for the corresponding sample, then the 

maximum abundance was used to map with the sequential preservation. In our hypothesis, 

deleterious effects come from the cost of synthesising biomass required to fulfil sufficient 

protein efficacy. Such cost is high when synthesising large amounts of biomass regardless of 



71 
 

the growing phase the cells are experiencing. Therefore, we did not select data on specific 

phase but adopted maximum expression measured in these researches.  

After the connection between FPKM value and sequential preservation via gene names, the 

genes were divided into five groups according to their maximum expression abundance. 

Genes with no expression detected in the involved researches were assigned to the same 

group which was excluded from the preservation distribution analysis. No expression 

detected in these researches indicates that these genes are likely expressed in a very low level 

which may largely increase in certain situations. Although a large proportion of genes fall into 

this category, as no evidence suggests the maximum expression of these genes, our 

hypothesis is not applicable to them leading to their removal from the related analysis. The 

rest of the genes with non-zero FPKM value were assigned to four groups whose range of 

FPKM value containing are shown in Table 5.3. Then the preservation distribution was plotted 

against the number of genes. The overall preservation distribution of all genes was used as a 

reference distribution which was then imported to the t-test with the distribution of different 

groups to evaluate the significance of being different. The significance level was set on two-

tail p-value. The sequential preservation profiles of gene of different expression level are 

shown in Table 5.3. It can be observed that the number of genes significantly decrease with 

expression level and 65.5% of the genes involved express in the lowest level (<50 FPKM). On 

the other hand, apart from genes not covered by preservation models, gene numbers 

increase with the level of preservation and 64.8% of these genes have preservation score 

higher than 0.9. Genes of different expression level present similar trend but t-test show that 

preservation profile of every expression level is significantly different (in a level of 0.01) with 

the general profile.  

The mean and variance of preservation in every expression level were investigated in Figure 

2.1Figure 5.3. This shows that the mean preservation increases with the level of expression 

in the groups where FPKM value are lower than 5000, and a subtle decrease is observed in 

the last group. Meanwhile, the variance decreases with the increase of mean preservation. 

Such a result is consistent with our hypothesis showing a high preservation on genes with 

high expression. However, it needs to be clarified that such a result only provides statistic 

support for our hypothesis so it could be wrong for some individual genes. Therefore, it can 

only be considered as a general trend in the genome level. 
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Table 5.3 Sequential preservation profile of genes of different expression levels. 
The expression levels are defined according to the FPKM value. The first level was 

defined as less than 50 and the following levels were defined with the increase of 

magnitude until the FPKM value reaches 5000. Total number of gene with sequential 

preservation level are presented to provide general preservation profile. T-test was 

performed for preservation profile of every expression level against the general 

profile and the results, including two-tail p-value, mean and variance, obtained are 

shown at the bottom. 

Preservation Overall gene [0-50) [50-500) [500-5000) >=5000 

0.0 2541 1864 472 190 15 
0.0-0.1 3 2 1 0 0 
0.1-0.2 8 7 0 1 0 
0.2-0.3 23 17 6 0 0 
0.3-0.4 54 38 11 4 1 
0.4-0.5 108 77 22 9 0 
0.5-0.6 177 140 28 6 3 
0.6-0.7 246 184 45 16 1 
0.7-0.8 404 298 68 36 2 
0.8-0.9 764 544 143 73 4 

>0.9 7956 4875 1707 1284 90 
total 12284 8046 2503 1619 116 

P-value  1.324E-07 0.00521197 3.7348E-34 0.0040362 
mean 0.73 0.70 0.76 0.84 0.83 

variance 0.153 0.163 0.145 0.101 0.113 
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Figure 5.3 The mean and variance of sequential preservation in different expression 
levels divided by FPKM value. 
Genes are classified by their expression levels according the FPKM values, and the 

corresponding means are presented with variance as error bars. Overall increase of 

mean preservation with expression level can be observed. 

 

 

5.4 Comparison of Predictions of Different CHO Related Genomes 

 

To identify the projection of subfamily prediction in the multi-gene function level, we 

compared prediction results of three CHO related genomes and mapped them onto GO using 

analysis tools available on the PANTHER website.  

To identify the character of the three CHO related genomes, the number of subfamily issuing 

abnormal predictions were compared. As mentioned previously, the CHO-K1 protein set is 

closed to the Chinese hamster in terms of number of different type of predictions. In this 

comparison (Table 5.4), the same features were observed. The number of subfamily making 

abnormal prediction for each genome is shown in the diagonal line. The number of shared 

subfamily are reported on the upper right corner. It shows that most of the abnormal 

predictions shared by more than one genome and, similar to the previous result, CHO-K1 and 

Chinese hamster shared most of such predictions. Apart from the potential cause of 

annotation pipeline difference which is mentioned previously, it could also be evidence of 

CHO-K1GS having been significantly evolved during screening and the culture process so that 
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the genetic distance between CHO-K1GS and CHO-K1 is actually larger than that between 

CHO-K1 and the Chinese Hamster sequenced. We further found that most subfamilies with 

abnormal predictions shared by CHO-K1GS and either of the other two genomes are actually 

shared by all three CHO related genomes. The number of such subfamily was 2,285. With the 

doubt that these subfamilies may issue abnormal predictions due to model overfitting, we 

compared them with subfamilies reported abnormality for rat and rhesus protein in validation. 

As a result, 1,427 subfamilies were reporting abnormal results for all five genomes.  

 

Table 5.4 Number of common subfamily reporting abnormal result 

 Chinese hamster CHO-K1 CHO-K1GS 

Chinese hamster 3,534 2,834 2,362 

CHO-K1  3,837 2,429 

CHO-K1GS   3,051 

 

The behaviour of these subfamilies could be due to improper selection of homologs or 

inherently low conservation within the family. To identify how these subfamilies would affect 

our later functional analysis with GO, they were mapped onto GO to identify terms these 

subfamilies cluster to. Since a different version (version 13.0) of PANTHER subfamily 

annotation was used by the online tool, direct mapping with subfamily ids would lead to 

substantial loss of mapped ids. The subfamilies were represented by gene names as they were 

mapped with the expression abundance. The list of representative gene names was uploaded 

to the website and overrepresentation test was performed with a list of gene names 

representing all subfamilies as reference using binomial model without Bonferroni correction. 

The PANTHER GO-slim for biological process was selected for the analysis. Such setting was 

carried on for all GO mapping of overrepresentation tests. The ten GO terms with lowest p-

value are presented in Table 5.5 as examples of the result (more results available in 

supplement 7). With GO terms in the first column, the numbers of related protein in the 

reference are shown in the second column. Then the number of protein related in query sets 

and the expected number in the query set calculated by binomial model are presented. The 

Table 5.5 was sorted by p-values in the last column. In general, the representative genes 

converged into GO terms of multi-cellular functions or even higher level functions such as 

sensory perception. The only term shown mainly related to single cell function was G-protein 

coupled receptor signalling pathway. However, GO terms with highest statistical significance 
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often relate to a large amount of genes which makes it difficult to extract the details. However, 

these subfamilies being less related to terms of single cell biological process would be 

beneficial for analyses related to CHO cells.  

 

Table 5.5 GO mapping for common altered functions 

PANTHER GO-Slim 

Biological Process 

Total 

proteins 

Query 

proteins 

Expected 

number 

over/under-

represent 

fold 

Enrichment 
P-value 

sensory perception 823 108 48.62 + 2.22 2.87E-14 

sensory perception of 
chemical stimulus 

684 92 40.41 + 2.28 7.05E-13 

sensory perception of 
smell 

638 86 37.69 + 2.28 3.70E-12 

neurological system 
process 

1316 131 77.75 + 1.68 5.67E-09 

system process 1408 136 83.18 + 1.63 1.69E-08 

G-protein coupled 
receptor signaling 

pathway 
793 86 46.85 + 1.84 9.13E-08 

biological regulation 3424 263 202.28 + 1.3 2.90E-06 

single-multicellular 
organism process 

1979 165 116.92 + 1.41 4.76E-06 

multicellular organismal 
process 

1994 166 117.8 + 1.41 4.82E-06 

cellular process 8073 549 476.94 + 1.15 7.54E-06 

 

The functions predicted to be altered in all CHO related genomes excluding those in rat and 

rhesus were then mapped onto the same GO slim (Table 5.8). 862 subfamilies fell into this 

category and were mapped onto GO. Compared to the mapping with common altered 

functions in rat and rhesus included (Table 5.6), terms describing cellular processes, such as 

receptor signalling pathways, were more statistically significant. However, comparing terms 

associated with altered function specific in CHO related genomes (Table 5.8) and those shared 

by rat and rhesus (Table 5.7), 5 general terms are shared by their top list, which could be 

caused by the bias on large numbers in statistical tests. We also found that, by removing 

subfamilies predicting altered in rat and rhesus, specific GO terms with the number of gene 

manageable for manual inspection moved up on the list sorted by p-value. This suggests genes 

contained by these subfamilies are only related to general terms due to the lack of detailed 

knowledge. This highlighted the fact that the annotation level of individual genes could be the 

main restriction of making use of our model prediction, given the predictions were accurate. 
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Table 5.6 GO mapping of altered function shared by CHO related genomes 

PANTHER GO-Slim 

Biological Process 

Total 

proteins 

Query 

proteins 

Expected 

number 

over/under-

represent 

fold 

Enrichment 
P-value 

sensory perception of 
chemical stimulus 

684 158 58.26 + 2.71 1.32E-28 

sensory perception 823 175 70.09 + 2.5 1.32E-27 

sensory perception of smell 638 139 54.34 + 2.56 6.08E-23 

G-protein coupled receptor 
signalling pathway 

793 154 67.54 + 2.28 1.25E-20 

neurological system process 1316 202 112.08 + 1.8 9.08E-16 

biological regulation 3424 418 291.62 + 1.43 3.58E-15 

system process 1408 207 119.92 + 1.73 2.58E-14 

response to stimulus 3097 376 263.77 + 1.43 3.50E-13 

regulation of biological 
process 

2898 356 246.82 + 1.44 4.21E-13 

single-multicellular 
organism process 

1979 259 168.55 + 1.54 3.31E-12 

 
 
Table 5.7 GO mapping of altered function shared by CHO related genomes, rat and rhesus 

PANTHER GO-Slim 

Biological Process 

Total 

proteins 

Query 

proteins 

Expected 

number 

over/under-

represent 

fold 

Enrichment 
P-value 

sensory perception 823 108 48.62 + 2.22 2.87E-14 

sensory perception of 

chemical stimulus 
684 92 40.41 + 2.28 7.05E-13 

sensory perception of smell 638 86 37.69 + 2.28 3.70E-12 

neurological system process 1316 131 77.75 + 1.68 5.67E-09 

system process 1408 136 83.18 + 1.63 1.69E-08 

G-protein coupled receptor 

signalling pathway 
793 86 46.85 + 1.84 9.13E-08 

biological regulation 3424 263 202.28 + 1.3 2.90E-06 

single-multicellular 

organism process 
1979 165 116.92 + 1.41 4.76E-06 

multicellular organismal 

process 
1994 166 117.8 + 1.41 4.82E-06 

cellular process 8073 549 476.94 + 1.15 7.54E-06 
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Table 5.8 GO mapping for altered proteins common in CHO related genomes but normal in 
rat and rhesus 

PANTHER GO-Slim 

Biological Process 

Total 

proteins 

Query 

proteins 

Expected 

number 

over/under-

represent 

fold 

Enrichment 
P-value 

sensory perception of 
chemical stimulus 

684 66 18.47 + 3.57 8.67E-19 

G-protein coupled receptor 
signalling pathway 

793 68 21.41 + 3.18 9.03E-17 

sensory perception 823 67 22.22 + 3.02 1.87E-15 

response to stimulus 3097 153 83.62 + 1.83 1.60E-14 

sensory perception of smell 638 53 17.23 + 3.08 9.91E-13 

biological regulation 3424 156 92.45 + 1.69 6.14E-12 

regulation of biological 
process 

2898 134 78.24 + 1.71 1.42E-10 

multi-multicellular organism 
process 

26 11 0.7 + 15.67 2.44E-10 

mammary gland 
development 

26 11 0.7 + 15.67 2.44E-10 

cell surface receptor 
signalling pathway 

1448 81 39.1 + 2.07 4.54E-10 

 

To investigate the difference between CHO and Chinese hamster, functions predicted altered 

in CHO-K1 and CHO-K1GS but normal for Chinese hamster were analysed (Table 5.9). Only 

124 subfamilies belong to this category and all the GO terms with a p-value lower than 0.05 

were presented in Table 5.9. Unlike the previous mapping result, these subfamilies were more 

related to specific functions while showing negative enrichment on high level general 

functions such as biological regulation and sensory perception. Although the number of 

subfamilies were low and not many terms enriched significantly, interesting terms, such as 

protein folding, fatty acid metabolic process and lipid metabolic processes, are presented.  

 

 

 

Table 5.9 GO mapping of altered functions common in CHO-K1 and CHO-K1GS but normal 
in Chinese hamster 

PANTHER GO-Slim 

Biological Process 

Total 

proteins 

Query 

proteins 

Expected 

number 

over/under-

represent 

fold 

Enrichment 
P-value 

disaccharide metabolic 
process 

2 1 0.01 + 88.23 1.13E-02 

fatty acid beta-oxidation 21 2 0.12 + 16.81 6.49E-03 

protein folding 83 3 0.47 + 6.38 1.20E-02 
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fatty acid metabolic 
process 

168 5 0.95 + 5.25 2.80E-03 

lipid metabolic process 407 6 2.31 + 2.6 2.87E-02 

cell adhesion 350 5 1.98 + 2.52 4.95E-02 

biological adhesion 350 5 1.98 + 2.52 4.95E-02 

biological regulation 3424 12 19.4 - 0.62 3.59E-02 

response to stimulus 3097 10 17.55 - 0.57 2.67E-02 

nucleobase-containing 
compound metabolic 

process 
2549 7 14.45 - 0.48 1.79E-02 

sensory perception 823 1 4.66 - 0.21 4.99E-02 

RNA metabolic process 1417 1 8.03 - 0.12 2.29E-03 

 

The difference between CHO-K1 and CHO-K1GS was compared by inspecting altered function 

in either genome but not in the Chinese hamster genome (Table 5.10 and Table 5.11). When 

comparing these two CHO genomes, we assumed CHO-K1GS a descendent of CHO-K1 

although in comparison of the two cell lines the inheritance direction only affects the 

hypotheses and interpretation of the result but not the result itself. Under such assumption, 

CHO-K1GS appeared to be more adapted to the suspension culture environment since more 

adhesion related functions are altered in CHO-K1GS while alteration in CHO-K1 still lingering 

on general terms (this could be the annotation problem however).  

 

Table 5.10 GO mapping for proteins altered in CHO-K1 but normal in Chinese hamster 

PANTHER GO-Slim 

Biological Process 

Total 

proteins 

Query 

proteins 

Expected 

number 

over/under-

represent 

fold 

Enrichment 
P-value 

sensory perception of 
smell 

638 2 24.63 - 0.08 4.60E-09 

sensory perception of 
chemical stimulus 

684 3 26.4 - 0.11 7.95E-09 

sensory perception 823 7 31.77 - 0.22 8.42E-08 

G-protein coupled 
receptor signalling 

pathway 
793 7 30.61 - 0.23 2.17E-07 

mesoderm development 262 24 10.11 + 2.37 1.24E-04 

response to stimulus 3097 87 119.55 - 0.73 4.37E-04 

developmental process 1476 80 56.98 + 1.4 1.51E-03 

neurological system 
process 

1316 32 50.8 - 0.63 2.43E-03 

cell surface receptor 
signalling pathway 

1448 37 55.89 - 0.66 3.56E-03 

blood circulation 19 4 0.73 + 5.45 6.72E-03 
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Table 5.11 GO mapping for proteins altered in CHO-K1GS but normal in Chinese hamster 

PANTHER GO-Slim 

Biological Process 

Total 

proteins 

Query 

proteins 

Expected 

number 

over/under-

represent 

fold 

Enrichment 
P-value 

cell adhesion 350 18 5.91 + 3.04 3.78E-05 

biological adhesion 350 18 5.91 + 3.04 3.78E-05 

heart development 20 4 0.34 + 11.84 4.09E-04 

metabolic process 5470 67 92.41 - 0.72 7.68E-04 

response to stimulus 3097 32 52.32 - 0.61 7.71E-04 

cell-cell signalling 571 21 9.65 + 2.18 8.43E-04 

muscle organ 
development 

27 4 0.46 + 8.77 1.24E-03 

neurological system 
process 

1316 10 22.23 - 0.45 2.38E-03 

G-protein coupled 
receptor signalling 

pathway 
793 4 13.4 - 0.3 2.42E-03 

sensory perception of 
chemical stimulus 

684 3 11.56 - 0.26 2.85E-03 

 

 

 

5.5 Summary 

In this chapter, protein sequences of three CHO related genomes were analysed by our 

pipeline. The predictions were verified against a widely used tool BLAST and our pipeline 

showed better accuracy in results disagreed by BLAST. Although only part of normal and 

defected predictions were verified, it suggests a high precision of these two types of 

predictions. We then related the gene preservation with expression which showed significant 

correlation as expected. However, when comparing predictions between three CHO related 

genomes, unexpected similarity between CHO-K1 and Chinese hamsters suggest the genetic 

distance between CHO-K1 and CHO-K1GS is further than that to Chinese hamster, but the 

difference of annotations toward the same assembly from different source was also 

concerning. The model predictions were intensively mapped on GO. Although most of the 

terms suggested by statistical significance were related to many genes, interesting terms with 

manually manageable number of genes were suggested which may motivate further research 

in greater detail in the future. 
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6 Case Studies and Hypotheses 

Several cases were selected to be inspected in greater detail in this chapter. Firstly, the 

mutation on TP53, a marker gene for cancer cell lines. Secondly, some unexpected alterations 

on proteins related to glycolysis identified in the results described in chapter 5. After that, 

some pathways had been extensively studied on CHO or other cancer cell lines were studied 

in detail. As only general terms with large number of genes presented in the GO mapping 

reported in chapter 5, the mapped genes are mostly scattered and not well annotated. We 

could not choose cases from those results. 

  

6.1 Mutations on TP53 

TP53 is a well-known cancer suppressor whose mutation is observed in all types of cancer. It 

is possible that CHO cell lines share such feature. Therefore, we investigated prediction of 

TP53 in all three CHO related genomes. Unexpectedly, both our HMM and preservation model 

predicted TP53 being normal in CHO-K1 and CHO-K1GS, but altered in Chinese hamster. The 

matched sequence id and sequential preservation are shown in Table 6.1. We then BLAST the 

mouse version of TP53 against Chinese hamster related RefSeq data. The BLAST result (Table 

6.2) confirmed our predictions. The TP53 homolog in CHO-K1 scores higher in not only bit 

score, but also in query cover and percentage of identity than the homolog in Chinese hamster. 

Our sequential preservation analysis showed that 10% of sites with preservation level higher 

than 3.8 mutated from their preserved residues in CHO-K1 and CHO-K1GS, while the 

proportion for Chinese hamster homolog is 48% (supplement 8 and 9). Such unexpected 

mutation on Chinese hamster homolog could be caused by incorrect assembly or annotation. 

Details of homologs from CHO-K1 and CHO-K1GS were further inspected. Our annotated 

preservation maps of all sites of the matched sequence (supplement 10 and 11) addressed 

multiple high preservation sites responsible for DNA binding mutated from the most 

preserved residues in both CHO-K1 and CHO-K1GS, suggesting alteration in protein function. 

As we used a fairly arbitrary threshold of 0.75 on prediction using sequential preservation, 

this result indicated that this threshold used could be too conserved to miss the true negatives. 
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Table 6.1 TP53 preservation in CHO related genomes 

 Chinese hamster CHO-K1 CHO-K1GS 

Sequence id XP_007606822 NP_001230905 ENSCGRP00001011268 

Sequential 
preservation 

0.52 0.90 0.90 

 

Table 6.2 BLAST result of TP53 in CHO genome from NCBI 

Description 
Max 

score  

Total 
score 

Query 
cover  

E 
value  

Ident Accession 

cellular tumor 
antigen p53  

603 603 100% 0.0 76% NP_001230905.1 

PREDICTED: tumor 
protein 63 isoform 

X3  
270 270 72% 3e-86 49% XP_003495647.1 

PREDICTED: tumor 
protein p73 isoform 

X4  
271 271 85% 2e-85 44% XP_007606822.2 

PREDICTED: tumor 
protein 63 isoform 

X2  
268 268 72% 2e-85 49% XP_007640645.1 

PREDICTED: tumor 
protein p73 isoform 

X2  
270 270 85% 2e-84 44% XP_007606823.2 

PREDICTED: tumor 
protein p73 isoform 

X1  
269 269 66% 4e-84 50% XP_016818894.1 

PREDICTED: tumor 
protein p73 isoform 

X3  
269 269 85% 5e-84 44% XP_007606821.2 

PREDICTED: tumor 
protein 63 isoform 

X1  
268 268 72% 2e-83 49% XP_003495644.1 

 

 

6.2 Glycolytic Process 

 

Glycolytic process is the core metabolic process providing energy for cell activities and 

precursors for amino acid synthesis. It is conserved across species in different kingdoms and 

therefore CHO-K1 was not expected to be an exception. However, the subfamilies reporting 

abnormal result in all validating and query genomes contained 6 (out of 26 were modelled) 

gene involved in the glycolysis. Although all of these results were believed to be false and the 

corresponding subfamilies were excluded by later analyses, we examined these 6 false 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&OLD_VIEW=false&DISPLAY_SORT=4&HSP_SORT=0
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&OLD_VIEW=false&DISPLAY_SORT=4&HSP_SORT=0
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&OLD_VIEW=false&DISPLAY_SORT=0&HSP_SORT=0
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&OLD_VIEW=false&DISPLAY_SORT=0&HSP_SORT=0
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=7PSHAA1D01R&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid10029%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=7PSHB2DM01R&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&WORD_SIZE=6&DISPLAY_SORT=3&HSP_SORT=3
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negative results for cause of false prediction. We found that all 6 negative results were issued 

by HMMs. The corresponding sequential preservation calculated on CHO-K1 proteins and FMI 

for HMMs were shown in the Table 6.3. As a threshold of 0.75 was applied to sequential 

preservation for prediction, all of these genes were predicted normal by the preservation 

model. However, only a spliced version of ENO1 was found on CHO-K1 proteins, resulting in 

a lower preservation ratio. Moreover, FMI of most corresponding HMM are lower than 0.7. 

Only HMM with FMI higher than 0.7 could issue defected predictions, however, any HMM 

could issue prediction of altered. According to the model performance on these 6 genes, 

sequential preservation appeared to be a more reliable metric for making predictions and 

HMMs predictions must be considered with its quality metrics to avoid false results. 

 

Table 6.3 Details of prediction results for 6 glycolysis related genes 

Gene name Subfamily id 
Sequential 

preservation 
FMI 

HK1 PTHR19443SF36 0.94 0.62 

PGK2 PTHR11406SF21 0.97 0.79 

PGK1 PTHR11406SF20 0.99 0.63 

PFKFB2 PTHR10606SF59 0.94 0.65 

ENO1 PTHR11902SF26 0.77 0.61 

LDHA PTHR43128SF4 0.99 0.54 

 

Other results presented previously are worth mentioning as another energy related core 

process of fatty acid beta-oxidation appeared in mapping altered functions shared by two 

CHO-K1 genomes but not Chinese hamster. The reason this term appeared is the subfamily 

containing ACAA1 homologs issued abnormal prediction. This protein was not preserved 

enough for sequential preservation calculation and the HMM responsible has a FMI value of 

only 0.62. Therefore, this prediction is likely to be false and more importantly, the both forms 

in mouse ACAA1A and ACAA1B which were modelled by other subfamilies were predicted 

normal, indicating this process is not affected by mutations. 

 

6.3 Apoptosis 

 

Apoptosis is a process with many tumour related genes such as BCL2 and BAK. It has been 

extensively studied in CHO cell for prolonging cell life span and improving productivity. Lewis 
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et al. (2013) identified 101 anti- and pro-apoptosis proteins making up to 82 genes after 

merging the variant of the same gene. 39 of them were modelled and had their names 

mapped with the subfamilies in this project while others may be named differently or missed 

by the homolog collection. Consistent with Lewis et al. (2013), most of these genes were 

predicted normal by our models and only 4 had found to be altered in related CHO cell (Table 

6.4). Of these 4 genes, only CIDEC were predicted to be altered in both CHO-K1 and CHO-K1GS 

while others, DFFA, NFKB1 and ATM were only predicted altered in CHO-K1. They also 

reported another 4 genes: CASP10, IL3RA, IL3 and IL1A to be missing in CHO related genomes. 

Our models agreed with most of these results except IL1A which was found in all three CHO 

related genomes with high confidence. 

 

Table 6.4 Predictions on apoptosis related genes 

 

 

We further mapped the related predictions onto KEGG apoptosis pathway (Figure 6.1). All of 

the proteins in the pathway were predicted normal (marked with blue in the figure). However, 

detailed inspection on alignment of BCL2 from CHO-K1 and CHO-K1GS shows significant 

difference. BCL2 is strongly related to breast cancer so that it is used as one of the markers in 

diagnosis and treatment for related cancers. BCL2 was found to be overexpressed in most 

breast cancer cells. While BCL2 in CHO-K1GS is highly conserved to the BCL2 isoform alpha in 

mouse and human, the CHO-K1 version of BCL2 was found to be more close to the isoform 

beta which is about 35 residues shorter. However, the 3’ end sequence of BCL2 in CHO-K1 is 

not similar to that of isoform beta in mouse and human. Both homologs from CHO-K1 and 

CHO-K1GS are highly preserved on annotated function sites. For now, no evidence has 

suggested difference in function of the different isoforms. Another protein that attracted our 

attention was CASP9. Its homolog in CHO-K1 was found to be high conserved with that in 

Category  Normal  Altered or defected 

Anti-apoptosis TRAF2, OPTN, MYD88, CFLAR, BIRC7, 
BIRC3, AKT2, RIPK1, AKT1, XIAP, AKT3, 
IRAK1, IRAK2, IRAK3, PRKX, IRAK4, BCL2 

DFFA, NFKB1, CIDEC 

Pro-apoptosis CASP6, CASP7, AIFM1, CASP3, BID, CHP1, 
TRADD, CASP9, CIB1, BAX, FADD, CASP8, 
CHP2, DFFB 

ATM 

Receptor  NTRK1, IL1R1  

Ligand IL1B, NGF  
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mouse. However, the CASP9 in CHO-K1GS was significantly less conserved and only 75% of its 

high preservation sites remain preserved. More importantly, one of its two active site 

annotated was found to be mutated suggesting significant alteration in protein function. 

However, such mutation could be the result of screening for high viability. 

 

 

 

 
Figure 6.1 KEGG pathway of apoptosis. 
All proteins included by the pathway were predicted normal in CHO related genomes. 

 

 

 

 

6.4 DNA repairing 

DNA repairing is also an essential process for maintaining genetic information within the cell. 

Defects or alterations in the process could lead to increase of the mutation rate and genetic 

instability. Therefore, cancer cell lines, which feature high mutation rate and chromosome 

instability, may adopt mutations on the related genes. However, as production cell lines, 

adopting these mutations could affect the stability of transfected sequences which reduce 

the productivity. As the related GO terms contain many repetition of annotations from 

various contributors, we adopted a gene selection commonly used in array analyses from 

QIAGEN website. It contains a total of 84 related genes categorised into five classes: Base 

Excision Repair (BER), Base Excision Repair (NER), Mismatch repair, Double-strand break 

repair and others. One of the genes involved, POLD3, was not modelled in this project. Our 

models predicted most of these genes to be normal in both CHO-K1 and CHO-K1GS, except 

Xpa, Xrcc5, Atm and Mgmt (Error! Not a valid bookmark self-reference.), of which Mgmt was 

actually predicted normal in CHO-K1GS and Chinese hamster but altered in CHO-K1. It shows 



85 
 

that mismatch repair and BER are perfectly conserved and only a few genes in NER and 

double-strand break repair presented evidence of significant alterations in at least one CHO 

cell line. 

 
Table 6.5 Predictions on DNA repair related genes 

 

 

Category  Normal  Altered or defected 

Base Excision Repair  Apex1, Apex2, Ccno, Lig3, 
Mpg, Mutyh, Neil1, Neil2, 
Neil3, Nthl1, Ogg1, Parp1, 
Parp2, Parp3, Polb, Smug1, 
Ung, Tdg, Xrcc1 

 

Nucleotide Excision Repair Atxn3, Brip1, Ccnh, Cdk7, 
Ddb1, Ddb2, Ercc1, Ercc2, 
Ercc3, Ercc4, Ercc5, Ercc6, 
Ercc8, Lig1, Mms19, Pnkp, 
Poll, Rad23a, Rad23b, Rpa1, 
Rpa3, Slk, Xab2, Xpc 

Xpa 

Mismatch Repair Mlh1, Mlh3, Msh2, Msh3, 
Msh4, Msh5, Msh6, Pms1, 
Pms2, Trex1 

 

Double-Strand Break Repair Brca1, Brca2, Dmc1, Fen1, 
Lig4, Mre11a, Prkdc, Rad21, 
Rad50, Rad51, Rad51c, 
Rad51b, Rad51d, Rad52, 
Rad54l, Xrcc2, Xrcc3, Xrcc4, 
Xrcc6 

Xrcc5 

Other Genes Related to DNA 
Repair 

Atr, Exo1, Rad18, Rfc1, 
Top3a, Top3b, Xrcc6bp1 

Atm, Mgmt 
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Figure 6.2 KEGG pathway of mismatch repair. 
Related proteins were all predicted normal in this pathway in CHO related genomes. 

 

Since pathways of the four different DNA repairing mechanisms were available on KEGG 

pathway, we further examined the details of these pathways. Most genes are shared by the 

array selection and pathway. Mapping of the mismatch repair pathway and the array both 

show perfectly normal in all genes despite the gene involved was quite different (Figure 6.2). 

In the NER pathway (Figure 6.3), TTDA was not covered by our models and, consistent with 

predictions on array selection, only XPA was considered altered. Such alteration was only 

observed in CHO-K1 and unexpectedly Chinese hamster while the CHO-K1GS homolog was 

highly conserved with the mouse homolog.  
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Figure 6.3 KEGG pathway of NER. 
The protein in the red box, TTDA, was not covered by the models. The protein in the 

white box, XPA, was predicted altered or defected in at least one CHO related 

genomes. 

 

No significant alteration was observed in the other pathways. In the long patch BER pathway 

(Figure 6.4), gene Mug was predicted to be altered in all three genomes by HMMs with high 

FMI. The corresponding alignment showed no full length protein found on these genomes, 

although the fragmented proteins were highly similar to the related part of sequences from 

other species, suggesting they could be active spliced proteins of the gene. The only two genes 

reported not normal in double-strand break repair were SYCP3 and BLM (Figure 6.5). However, 



88 
 

the subfamily related to SYCP3 contain only human sequences and thus was not reliable. On 

the other hand, CHO-K1 homolog of BLM was predicted to be altered as it is significantly 

shorter than homologs even in CHO-K1GS and Chinese Hamster which were predicted to be 

normal.  

 

 

Figure 6.4 KEGG pathway of BER. 
The pathway includes short patch and long patch BER and BER complex. Only one 

related protein, Mug in the white box, was predicted abnormal in at least one of CHO 

related genomes. 
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Figure 6.5 KEGG pathway of double-strand break repair. 
Two mechanisms, homologous recombination and non-homologous end-joining, are 

included by the pathway. One protein, DSS1 in the red box, was not included by the 

models. Two proteins related to homologous recombination pathway, SYCP3 and 

BLM in white boxes, were predicted abnormal in at least one of the CHO related 

genomes. 

 

Although only a few genes appeared to be affected by mutations, their homologs in CHO-

K1GS are constantly more close to their wildtype compared to CHO-K1. This indicates CHO-

K1GS could be a more stable cell line for production. 

 

6.5 Protein Glycosylation 

 

In simple words, glycosylation is a co-translational PTM that adds specific oligosaccharides to 

proteins. It can be so widely observed in nature that, according to Apweiler (1999), half of the 

proteins known are glycosylated. For mAbs, one of the main biopharmaceutical products 
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manufactured using CHO, glycosylation is crucial for their efficacy: on Fab, glycosylation can 

affect the affinity to target antigen while on Fc, glycosylation affects the efficiency of binding 

the cell receptor and triggering downstream immune activities, such as antibody-dependant 

cellular cytotoxicity (ADCC) and complement-dependant cytotoxicity (CDC) (Jefferis, 2005a). 

Moreover, improper glycosylation can trigger an immune reaction against mAbs themselves. 

However, the glycosylation profile is highly species-specific and acts as a marker that 

distinguishes self-bodies from foreign bodies. Therefore, manufacturing mAbs requires the 

host cell to be able to glycosylate proteins in a human-compatible manner. Although CHO 

cells are popular as a manufacturing platform, as rodent origin cell lines, further genetic 

modifications are still required to improve product efficacy.  

 

 

Figure 6.6 Species specific N-glycosylation on Asn. 
Different glycosylation of Asn in human, CHO and mouse is compared. (Beck et al., 

2008; Jefferis, 2005a) 

 

In mAb IgG, glycosylation can occur at both ends of the residue but the N-glycosylation on the 

asparagine (Asn) residue is most studied. The Fc region is glycosylated at Asn-297 while 

multiple sites in the Fab region can be glycosylated, resulting in higher heterogeneity of the 

IgG glycoform (Jefferis, 2005b). The pathway responsible is shown in Figure 6.7 (Johnson et 

al., 2014). CHO is able to glycosylate Asn-297 in a slightly different way from humans and mice, 

as shown in Figure 6.6 (Jefferis 2005 and Beck et al. 2008). Although they all share the same 

core structure, a series of genetic engineering had been conducted on CHO. CHO originally 
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does not produce bisecting GlcNAc as human, and does not normally express ST6Gal activity 

to link sialic acid to galactose (Xu et al., 2011; Beck et al., 2008). This fact was confirmed by 

our models that the protein responsible for these processes, MGAT3 and ST6GAL1, were 

detected defeated in Chinese hamster genome. In order to improve the ADCC of product 

mAbs, GnTIII (MGAT3) was transfected into CHO to produce the bisecting GlcNAc branch 

(Umaña et al., 1999), while FUT8, which is responsible for adding fucose to the 

oligosaccharide, was knocked out for higher efficacy (Yamane-Ohnuki et al., 2004). Our 

models showed that although being predicted defect in Chinese hamster, MGAT3 and 

ST6GAL1 were predicted normal in CHO-K1 and CHO-K1GS, while another protein responsible 

for ST6GAL activity, ST6GAL1 was found normal in all three CHO related genomes. However, 

in the CHO-K1 genomes we examined, FUT8 was not knocked out and remained normal. 

Another critical gene in the pathway, MGAT1 was reported to be altered by our models, but 

further inspection showed that it is a prediction issued by HMM with low FMI and our 

preservation model considered it normal. Therefore, it was marked normal as other proteins 

involved in the pathway. 

 

 

Figure 6.7 N-glycosylation pathway 
The pathway is adapted from Johnson et al (2014). All the related proteins were 

predicted normal in CHO related genomes. 
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Figure 6.8 KEGG pathway of glycosylation. 
Three proteins, ALG7, SIAT1 and SIAT2 marked by red boxes, were not covered by the models. 

Another three proteins, ALG13, ALG14 and MGAT5 in white boxes, were predicted altered or 

defected in at least one of CHO related genomes. 

 

 

A pathway containing former synthesis reaction was found in KEGG pathway showing more 

glycosylation related proteins (Figure 6.8). However, not all the proteins involved were 

covered by our models possibly due to lack of annotation. Proteins marked with red (ALG7, 

SIAT1 and SIAT2) were not covered by our models and thus no prediction was made on them. 

Proteins marked with blue were predicted normal in CHO-K1 and CHO-K1GS while those 

marked with white were predicted not normal in at least one of the CHO genomes. Xu et al. 

(2011) reported lack of ALG13 homolog in the CHO-K1 genome. However, our models 

predicted ALG13 to be normal in CHO-K1 but altered or defeated in CHO-K1GS and Chinese 
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hamster. Meanwhile, a similar protein ALG14 was found normal in both CHO-K1GS and 

Chinese hamster but predicted altered in CHO-K1. Other proteins involved were mostly found 

normal in this project except MGAT5 which was predicted altered in all three genomes. Our 

results were consistent with most of the public results and engineering outcome, suggesting 

that both CHO cell lines are able to produce human-compatible proteins. 
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7 Conclusion  
 

7.1 Result summary 

In this project, we constructed a tool for predicting protein function alteration based on 

phylogenetic preservation. The tool works on a two steps system: 1) identify best available 

protein sequences in the genome using HMMs which would issue a primary prediction of the 

function alteration on the protein; 2) then calculate the site preservation on every site of the 

matched sequence which would become the base of sequential preservation for final 

prediction. Validation by step showed that HMMs were capable of finding the correct best 

available sequence and assigning sequences to the correct subfamilies in high precision. 

However, the HMMs’ prediction of function impact based on sequence variants was not 

reliable on its own. In comparison, the preservation model was better in making such 

predictions. The validation shows our preservation model could produce results strongly 

correlating to the molecular age calculated by PANTHER-PSEP and the annotated function 

sites from uniprot. Moreover, in the validation with BLAST on selected CHO-K1 sequences, 

the normal and defected predictions made by our tool were mostly agreed by BLAST in terms 

of percentage of identity and alignment coverage. In comparison with gene expression data, 

our sequential preservation showed significant correlation with the maximum expression 

level. However, further comparison on predictions for different genomes showed that a small 

proportion of subfamily models are constantly making unreliable negative predictions. After 

removing these unreliable results, we still could not retrieve hypotheses specific enough to 

motivate further research on cell line development. The main reason was the biological 

processes that the hypotheses were built on were too general and involved too many genes 

so that could not provide clear directions for further research. In the case studies, we 

identified major source of false predictions of altered function being HMMs with low FMI, 

which stands for low accuracy in classifying proteins functions to be normal or not. Further 

investigation on pathways related to protein production showed that CHO-K1GS appear to be 

a better production cell line than CHO-K1, although the number of protein predicted to be 

different in function was not high between the two genomes.  
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7.2 Achievements and limitations 

We identified HMM for search homologous sequence and preservation model for potential 

function altering site from the related research. They both demonstrated good performance 

for the purpose assigned. However, an arbitrary threshold used for making prediction was not 

well supported and therefore resulted in questionable predictions in later analyses. 

Supportive evidence and assumptions are required for the better threshold to be made. A 

metrics FMI made for evaluating classification capacity of HMMs was only used for predictions 

of defected function but not altered function which lead to many false predictions. Involving 

the FMI in all HMM prediction should significantly improve the accuracy. However, it would 

lead to significant shrink in coverage as subfamilies close to each other would result in low 

FMI on each other in our pipelines. As a matter of fact, coverage has been a significant 

limitation for our tool. Firstly, both HMM and preservation model require good quality of 

homologous sequence collection. To achieve good performance, HMMs required clear 

grouping on the homologous sequence collection while preservation required involvement of 

many related species. Secondly, the main source of sequence collection, the PANTHER 

subfamilies, merely covered less than 10,000 families making up more than 19,000 

subfamilies in this project. Compared to the gene counts of more than 24,000 in annotations 

of mammalian genomes, such a number was insufficient. By the time this thesis was written, 

the number of family and subfamily included by PANTHER had been significantly improved. 

However, before proper investigation of the quality of new PANTHER subfamilies, it was not 

certain that they could improve the effective coverage of our models. The preservation model 

appeared to be promising in making predictions and identifying critical site mutations in the 

sequence given that most of the sites are conserved with the wildtype sequence. However, 

by definition of the PANTHER subfamily, it is normal that the preservation of some subfamilies 

is low. These subfamilies will never be covered by the preservation model unless we change 

the method of calculation. An option is to involve sequences within the same linage outside 

the subfamily. However, it would then conflict with the main objective of HMMs, which was 

identifying sequence between subfamilies.  

Although validation results showed our models were capable of making accurate predictions, 

we failed to extract practical hypotheses from the prediction. One of the causes for that is GO 

mapping and enrichment calculation. In this project, we used the most significantly enriched 
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GO terms for making hypotheses. However, the statistical significance always favours large 

number so that specific terms with lower number of related gene will rarely be ranked on top. 

In addition, as the enrichment was calculated against all the genes involved, the calculation 

for each GO term was independent. However, when comparing GO terms with such 

enrichment, as GO terms were designed to be overlapping with each other, the assumption 

of independent does not apply. Therefore, we suggest that using statistical significance as a 

filter to highlight enriched GO terms is effective, but further sorting GO terms with the 

significance may not reveal the true order of enrichment significance. Once a significant 

enriched GO term is identified, its daughter term should be investigated under the condition 

that their parents are enriched to some extent. However, if one uses a GO-slim with terms 

independent to each other, such sorting should be preferable. Another cause of failure in 

generating useful hypotheses was insufficient prediction accuracy which could be improved 

by the approaches mentioned in previous paragraphs. It is worth mentioning that inaccurate 

genome annotations could also be the cause. Some of the unexpected results raised our 

doubts toward the annotations. However, we do not have sufficient evidence showing the 

annotations are problematic, although improvement on the annotation is absolutely required 

for better outcome.   

 

7.3 Future works  

To accomplish our final goal to accurately predict function impact of variants in CHO proteins, 

further works could be focused on several aspects: 

 Further integration of HMM predictions and preservation using machine learning 

techniques. Using proper machine learning technique could assign optimised weights 

to the HMM result and preservation result for better integrative results. More 

features or metrics, such as expression level, can be added to the integration for better 

predictions. 

 Improving subfamily collection and annotation. In this project, we extended PANTHER 

subfamily using in silico approaches. However, for higher quality subfamily collection, 

human review and curation could be required. 
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 Customising production related GO slim on CHO. Creating GO slim on specified on CHO 

cell engineering could highlight terms related to protein production and allow useful 

hypotheses to be made given accurate function predictions. 

 Relating CHO phenotype information with sequence variant data. Achieving accurate 

function prediction relies on strong connection between phenotype and genotype. 

Therefore, coupling these two sets of data is highly necessary for further improvement 

of this project. Currently, data of CHO phenotype were rarely extracted with its gene 

profile but more with the parameters of culture environments. 

 Sequencing different CHO cell line for a better consensus CHO genome assembly and 

annotation. The quality of gene annotation for protein sequences is always a 

determinative factor for accurate prediction. Improvements of the CHO genome 

annotation has been constantly made by related institutes such as EBI and NCBI. 

However, we suggest greater improvement is acquired. 
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