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Summary 

Aeromonas species are Gram-negative facultative anaerobic bacteria which are 

widespread in fresh water and salt water. Aeromonas caviae and Aeromonas 

hydrophila are two kinds of mesophilic aeromonads which belong to genus 

Aeromonas and are emerging as major pathogens in humans. Flagella are important 

pathogenic factors of bacteria and there are two kinds of flagella discovered in A. 

caviae and A. hydrophila which are polar flagella and lateral flagella (Rabaan et al. 

2001; Tabei et al. 2009; Canals et al. 2006a).  

 

The flagella of Aeromonas are glycosylated and investigation of glycosylation in 

flagellin biosynthesis is valuable for the understanding of pathogenicity of Aeromonas 

species. The aim of this project is to investigate the glycosylation during flagellin 

biosynthesis in A. caviae. It has been discovered that the flagella of A. caviae are 

glycosylated 6 to 8 times by Pse5Ac7Ac which is under the control of Maf1 which is 

known as flagellin glycosyl-transferase (Parker et al. 2012). Theoretically, Maf1 of A. 

caviae Sch3N has the ability to transfer activated pseudaminic acid (CMP-Pse5Ac7Ac) 

to the hydroxyl group of serine and threonine residues in the central immunogenic 

D2/D3 domain of flagellin of A. caviae Sch3N (Parker et al. 2012; Tabei et al. 2009). 

The details of how Maf1 interacts with flagellin will be explored in this project. 

 

CMP-Pse5Ac7Ac which is the substrate for glycosylation is generated from 

UDP-GlcNAc. The biosynthesis of CMP-Pse5Ac7Ac is under the control of flm locus 

including flmA, flmB, neuA, neuB, flmD. The pseudaminic acid biosynthetic pathway 

has been confirmed in Campylobacter jejuni and related enzymes are homologous 

proteins of A. caviae (Schoenhofen et al. 2006). The proteins encoded by the flm 

genes will be applied in this project to investigate the biosynthesis of 

CMP-Pse5Ac7Ac. In addition, there is evidence that the LPS O-antigen incorporates 

with Pse5Ac7Ac. The substrate of O-antigen glycosylation is also CMP-Pse5Ac7Ac 

(Tomás 2012). The connections between glycosylation in LPS O-antigen biosynthesis 

and flagellin biosynthesis will be investigated in this project. 
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Chapter 1 Introduction 

1.1 Aeromonas species 

Aeromonas species are Gram-negative facultative anaerobic bacteria which are 

widespread in fresh and salt water. The genus Aeromonas belong to the family of 

Aeromonadaceae. Furthermore，this family also includes the genera Oceanimonas 

and Tolumonas (Martin-Carnahan and Joseph 2005). 

 

The understanding of members of the genus Aeromonas has been developing for 

many decades. In 1980, there were only four Aeromonas species known (Aeromonas 

hydrophila, Aeromonas punctata, Aeromonas salmonicida, and Aeromonas sobria). 

As new species have been described, there are now 24 species of Aeromonas that 

are accepted nowadays (Janda and Abbott 2010). At the very beginning, the genus 

Aeromonas were considered as pathogens causing systemic illnesses in 

poikilothermic animals, but it is acknowledged today that the genus Aeromonas is not 

only responsible for diseases in cold-blooded species but also responsible for various 

infectious complications in both the immunocompetent and immunocompromised 

person (Janda and Abbott 2010). It has been discovered that the genus Aeromonas 

can cause primary and secondary septicemia in immunocompromised persons, 

serious wound infections in healthy individuals and other diseases including peritonitis, 

meningitis, infections of the joints, bones and eyes and even gastroenteritis (Janda 

and Abbott 1998). 

 

Generally the genus Aeromonas was divided into two principal subgroups based 

on optimal growth temperature and motility: the mesophilic and motile species 

including A. hydrophila, A. caviae, and A. sobria as well as psychrophilic and immotile 

species such as A. salmonicida (Krieg and Holt 1984). The mesophilic aeromonads 

are emerging as major pathogens in humans. Approximately 85% of the 

aeromonad-related diseases are caused by three mesophilic aeromonads: A. 

hydrophila, A. caviae, and A. sobria (Janda 1991).  

 

There are many pathogenic factors of Aeromonas including surface 

polysaccharides such as capsule, lipopolysaccharide (LPS), iron-binding systems, 

exotoxins, S-layers, secretion systems, extracellular enzymes, fimbriae and flagella 

(Tomás 2012). Furthermore, there are some proteins in Aeromonas species that are 
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glycosylated and glycosylation plays an important role in the survival of both 

eukaryotes and prokaryotes. 

1.1.1 Flagella and flagellins 

The prokaryote flagellum is made up of an external part which includes the 

filament and the hook, a basal body which is the internal part embedded in the cell 

membrane (Tomás 2012) (Figure 1B). The flagellar filament is formed by flagellins 

which vary from species to species and filament cap is formed at the end of filament. 

The assembly of the flagellum starts from the basal body, followed by the 

hook-associated proteins and the filament (Rabaan et al. 2001). 

 

In prokaryotic organisms, flagella are sophisticated structures that exist on the 

bacterial surface. Flagella allow bacteria to move around and approach optimal 

environment or avoid harmful factors. When contacting with the host cell, the flagella 

also play a significant role in adhesion and biofilm formation on the host cell surface. 

Hence the flagellum is recognized as important bacterial virulence factor in 

pathogenic bacteria. Such as in A. hydrophila, polar flagella are expressed for 

swimming and lateral flagella are expressed for adhesion (Gavín et al. 2002) (Figure 

1A).  

 

A. caviae and A. hydrophila are two species of mesophilic aeromonads which 

have been widely studied. It has been confirmed that there are two kinds of flagella 

discovered in Aeromonas species (Thornley et al. 1997; Shimada et al. 1985; Gavín 

et al. 2002). The flagella filament is composed of flagellin proteins. There are two 

polar flagellins (FlaA and FlaB) and two lateral flagellins (LafA1 and LafA2) expressed 

in A. caviae as well as in A. hydrophila there are two polar flagellum flagellins (FlaA 

and FlaB) and one specific lateral flagellum flagellin (LafA) expressed (Rabaan et al. 

2001; Tabei et al. 2009; Canals et al. 2006a).  

 

The structure of flagella filament from Salmonella typhimurium has been 

described and the structure of the flagellin is similar in all bacteria. Starting with the 

N-terminal chain there are four domains including D0, D1, D2 and D3, the C-terminal 

chain is back to D0 to form a coil. The D0 and D1 are basically buried inside of the 

structure of filament while the central D2 and D3 are exposed at surface. D2 and D3 

are considered to be recognized by glycosyltransferase in bacteria such as A. caviae, 

although they are not glycosylated in Salmonella (Tabei et al. 2009; Yonekura et al. 
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2003). These findings suggest that the D2 and D3 are where the flagellar 

glycosylation occurred. Recent study about A. caviae indicated that D2 and D3 can be 

recognized by Maf1 and a C-terminal chaperone-binding domain (CBD) can directly 

interact with FlaJ which is a flagellin-specific chaperone (Parker et al. 2014). 
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(A) 

 

(B) 

 

Figure 1.1 The expression of the flagella systems in A. hydrophila and 

Structure of flagellum from bacteria. 

(A) Polar flagella system is expressed when the bacteria are living in liquid conditions. 

Lateral flagella system is expressd when the bacteria are contacting the host cell.  

 

(B) A single flagellum consists of the filament, the hook and a basal body. (OM = 

Outer membrane PG = peptidoglycan layer CM = cytoplasmic membrane) 
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1.2 Glycosylation in eukaryotes and prokaryotes 

Glycosyl acceptor molecules such as immature proteins attached to a 

carbohydrate at a hydroxyl or other functional group is known as glycosylation. 

Protein glycosylation is an extensive post-translational modification that exists in 

eukaryotes and prokaryotes. 

 

Based on the studies about glycosylation so far, glycosylation can be classified 

into two pathways: N-glycosylation in which carbohydrates are covalently attached to 

the amide asparagine residues of proteins as well as O-glycosylation in which 

carbohydrates are covalently attached to serine or threonine residues instead of 

asparagine residues (Iwashkiw et al. 2013). 

 

It is acknowledged that both N-glycosylation and O-glycosylation have been 

identified in eukaryotes and prokaryotes (Iwashkiw et al. 2013). In eukaryotes, 

N-glycosylation of proteins is the most common post-translational modification (Dwek 

1996; Varki 1993). The understanding of N-linked glycosylation and O-linked 

glycosylation in prokaryotes is developing with time. In prokaryotic organisms, both 

N-linked glycosylation and O-linked glycosylation pathways have been established 

and each pathway has been widely investigated in Campylobacter jejuni. 

 

In C. jejuni, the formation of a heptasaccharide is required for N-linked 

glycosylation while O-linked glycosylation is involved in flagellum assembly (Kalynych 

et al. 2014). The glycosylation in prokaryotes will be extensively discussed here, 

especially related to flagellin glycosylation and LPS O-antigen glycosylation. 

 

1.2.1 N-linked glycosylation and O-linked 

glycosylation in prokaryotes 

Campylobacter species are Gram-negative bacilli which are responsible for most 

cases of bacterial gastroenteritis worldwide (Allos and Acheson 2001). A well-studied 

N-glycosylation pathway and O-linked flagellar glycosylation pathway have been 

established in C. jejuni. Therefore, it makes C. jejuni a good model for the 

investigation of prokaryotic glycosylation (Szymanski and Wren 2005).  
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In C. jejuni, biosynthesis of a branched heptasaccharide is involved in the 

N-linked glycosylation process which is under the control of pgl (protein glycosylation 

locus) genes. PglA, PglB, PglC, PglD, PglE, PglF, PglH, PglI and PglJ are all encoded 

by the pgl locus. Initially, UDP-N-acetyl glucosamine (GlcNAc) is sequentially 

modified by PglF, PglE and PglD and results in UDP-bacillosamine, and then it is 

attached to a lipid carrier by PglC and result in UPP-bacillosamine. Eventually, 

glucose is added by branching enzyme PglI and five N-acetylgalactosamine (GalNAc) 

moieties are linked by PglA, PglJ and PglH to form the branched heptasaccharide 

(Merino and Tomas 2014). After the heptasaccharide is produced, it is transferred to 

the periplasm by PglK which is a flippase and the heptasaccharide is coupled to the 

asparagine residue of the acceptor polypeptide by PglB. It is remarkable that, PglB of 

C. jejuni shares a similar role to STT3 in eukaryotes which bonds glycan to the 

acceptor in N-linked glycosylation (Linton et al. 2005b) (Figure 2). 

 

Furthermore, in C. jejuni there is a specific O-linked flagellar glycosylation system 

and a series of nucleotide-activated sugars including activated pseudaminic acid is 

added to the surface-exposed domains of flagellin monomers separately via an 

oligosaccharyltransferase.  

 

There is evidence that both polar and lateral flagella are glycosylated in 

prokaryotes (Merino and Tomas 2014). In C. jejuni, flagellin is glycosylated up to 19 

times before the protein is completed while the flagellin from Aeromonas is 

glycosylated 6 or 7 times (Thibault et al. 2001; Tabei et al. 2009; Wilhelms et al. 2012). 

As far as we know, the particular purposes and functions of flagellar glycosylation still 

remains unknown but Josenhans and the colleagues confirmed that un-glycosylated 

flagellin cannot be exported from cytoplasm via the flagellar type III secretion system 

(T3SS) which indicated that glycosylation could be essential for the assembly of 

flagellins (Josenhans et al. 2002).  
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Figure 1.2. Biosynthetic pathway of branched heptasaccharide in C. 

jejuni. 

UDP-N-acetyl glucosamine (GlcNAc) is modified by PglF, PglE and PglD and 

result in UDP-bacillosamine, and then it is tranfered to a lipid carrier (UPP) by PglC 

and result in UPP-bacillosamine. Eventually, glucose is added by branching enzyme 

PglI and five N-acetylgalactosamine (GalNAc) residues are all added by PglA, PglJ 

and PglH to form the branched heptasaccharide (Linton et al. 2005a). 

 

1.3 Aeromonas genetic loci of glycosylation  

In order to investigate the glycosylation in polar flagellar biosynthesis and other 

mechanisms, it is necessary to look into the relevant genetic loci including 

glycosylation genes and flagellum structural genes. The study of these genes has not 

been completely finished. 

 

Based on the previous research, flaA, flaB, flaG, flaH and flaJ (fla locus) and flmA, 

flmB, flmD neuA, neuB (flm locus) were all identified in A. caviae Sch3N and A. 

hydrophila AH-3 (Tabei et al. 2009) (Figure 1.3). Such as flm genes in A. caviae 
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including flmA, flmB, neuA, neuB, flmD and polar flagella filament genes including flaA, 

flaB, flaG, flaH and flaJ are all interesting targets of this project (Tabei et al. 2009; 

Rabaan et al. 2001). A deep investigation of the above genes can be very valuable for 

the understanding of the mechanisms of flagella system and relevant pathogenicity of 

Aeromonas species.  

 

The fla locus of A. caviae Sch3N is linked to the biosynthesis of polar flagella 

filament. This locus includes flaA, flaB, flaG, flaH and flaJ which have been listed in 

genetic order (Rabaan et al. 2001). 

 

The flaA and flaB genes of A. caviae Sch3N encode two flagellin subunits. A 

strain that lacks flaA and flaB shows no motility and further study proved that 

production of flagellins in this strain is absolutely terminated (Rabaan et al. 2001). 

Motility and adherence drop to about 50% in the strain with single mutation in flaA or 

flaB in which flagella are still expressed. This finding indicates that FlaA and FlaB 

compose flagellin with a 1:1 ratio (Rabaan et al. 2001). 

 

FlaG encoded by flaG has been shown not to be essential for polar flagellar 

biosynthesis and export. Mutation in flaG result in decreased of cell adherence while 

the motility is not affected. The mutant appears to make an elongated filament 

(Rabaan et al. 2001). 

 

FlaH encoded by flaH has been considered as a homologue of hook-associated 

proteins (HAPs) which is usually acts as flagellum cap. The function of these proteins 

is to prevent the decomposition of unpolymerized flagellin via modification of the 

terminal of flagellar filament (Parker et al. 2014). Mutation in flaH results in entire loss 

of motility and flagella and there is no production of flagellins detected (Rabaan et al. 

2001). Besides, a study shows that flaH mutant of A. caviae Sch3N can not produce 

any fully functional filament while the flagellins that synthesized in cytoplasm can still 

be exported to the outside of cell membrane (Yonekura et al. 2000). In addition, the 

glycosylation of flagellin is still functional in this mutant which indicates that the 

glycosylation of flagellin is irrelevant to the modification of filament (Parker et al. 

2014). 

 

The protein encoded by flaJ which is downstream of flaH is considered as a 
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homologue of FlaJ of Vibrio parahaemolyticus. This protein has been regarded as a 

chaperone protein that manipulates the flagellin export (Rabaan et al. 2001). Mutation 

in flaJ also results in loss of motility and flagella which is the same as mutation in flaH 

(Rabaan et al. 2001). FlaJ stabilizes the flagellin in an unfolded form which means this 

chaperone protein prevents unfolded flagellin from polymerization in the cytoplasm via 

binding to the C-terminal interactive region (Auvray et al. 2001). 

 

Recently, a flm locus of A. caviae Sch3N was identified. This locus which includes 

flm genes is consists of flmA, flmB, neuA, flmD, and neuB. The genes are arranged as 

flmA-flmB-neuA-flmD-neuB. Following the flm locus, there are lsg and lst which 

encode the LPS O-antigen flippase and transferase (Tabei et al. 2009). 

 

In A. caviae Sch3N, the flm locus is involved in both flagellin glycosylation and 

lipopolysaccharide (LPS) O-antigen (O-Ag) biosynthesis, the mutants without these 

genes lost motility, flagella, and their LPS O-antigen (Gryllos et al. 2001). The 

proposed protein encoded by flmA is the homologue of PseB (Cj1293) of C. jejuni and 

the orthologue of FlaA1 of H. pylori (Goon et al. 2003; Creuzenet et al. 2000). FlmA is 

proposed to be essential for the Pse5Ac7Ac biosynthetic pathway (Leclerc et al. 1998; 

Tabei et al. 2009) 

 

The flmB gene is involved in the assembly of flagellar filament which is the same 

role as flmA (Leclerc et al. 1998). PseC (Cj1294) of C. jejuni is the homologue of FlmB 

of A. caviae Sch3N and this protein is working as pyridoxal-dependent 

amino-transferase in general protein glycosylation system (Szymanski et al. 1999) 

 

The neuA of A. caviae Sch3N encodes a protein that shares similar amino acid 

sequence to CMP-NeuNAc synthetases (NeuA) of H. pylori and these enzymes can 

synthesis CMP-NeuNAc from N-acetylneuraminic acid (NeuNAc) and CTP (Gryllos et 

al. 2001). PseF (Cj1311) of C. jejuni has been identified as the homologue of NeuA of 

A. caviae Sch3N. In C. jejuni, PseF is CMP-sugar synthetase in the biosynthesis of 

CMP-Pse5Ac7Ac which makes NeuA of A. caviae Sch3N the crucial enzyme related 

to CMP-Pse5Ac7Ac in A. caviae Sch3N (Schirm et al. 2003).  

 

FlmD encoded by flmD is also involved in assembly of flagellar filament (Gryllos 

et al. 2001). This protein is a chimera that includes a component that has the same 
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activity as PseH (Cj1313) of C. jejuni and FlmD is considered as the homologue of 

PseG (Cj1312) and PseH (Cj1313) of C. jejuni (Tabei et al. 2009). 

 

PseI (Cj1317) of C. jejuni is the homologue of NeuB of A. caviae Sch3N and this 

kind of protein is regarded as sugar synthetase in the biosynthesis of pseudaminic 

acid (Pse5Ac7Ac) (Thibault et al. 2001; McNally et al. 2006). From previous work, one 

of three neuB-like genes discovered in C. jejuni was shown to be required for motility 

and production of flagellins (Linton et al. 2000). 

 

Based on experimental results, mutants lacking each flm gene did not present 

functional LPS O-antigen and flagella which lack the Pse5Ac7Ac in glycosylation. 

Therefore, it can be concluded that flm locus of A. caviae Sch3N is involved in 

Pse5Ac7Ac biosynthesis (Tabei et al. 2009) 

 

The fla locus and flm locus are all identified in A. caviae Sch3N and A. hydrophila 

AH-3 as well as some maf-like genes are also discovered in these strains. However, 

the glycosylation of polar flagellum in A. caviae is different from glycosylation of polar 

flagellum in A. hydrophila.  

 

Based on the recent studies, there are some other genes also involved in flagellin 

glycosylation in A. hydrophila. An enzyme able to link sugars to a lipid carrier in A. 

hydrophila was identified. WecX which is encoded by wecX is required for the 

heptasaccharide glycosylation of the polar flagellin and this enzyme is not involved in 

the modification of O34-antigen LPS. Additionally, UDP-GalNAc formation is under 

the control of an enzyme named Gne which is encoded by gne and UDP-GalNAc is 

essential for the biosynthesis of heptasaccharide (Merino et al. 2014). 
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Figure 1.3. Genetic organization of the A. caviae Sch3N and A. hydrophila 

AH-3 flagellin and flagellar glycosylation loci.  

This diagram shows the flm, fla and maf-like genes identified in A. caviae Sch3N 

and A. hydrophila AH-3 (Tabei et al. 2009; Rabaan et al. 2001; Canals et al. 2006a; 

Canals et al. 2007; Parker et al. 2012). 

 

1.4 Putative flagellin glycosyl transferase 

The investigation of flagellin glycosyl transferase has not been finished. There are 

many homologues encoded by maf family in various bacteria species. In most cases, 

the maf-like genes are essential for flagellar biosynthesis (Karlyshev et al. 2002). 

 

In C. jejuni, seven putative maf genes have been discovered. The genes 

including maf1 (Cj1318), maf2 (Cj1333), maf3 (Cj1334), maf4 (Cj1335/6), maf5 

(Cj1337), maf6 (Cj1341) and maf7 (Cj1342)  have been revealed and phase 

variation was detected in flagellar biosynthesis, but the exact functions of the proteins 

encoded by these genes still remains unknown (Karlyshev et al. 2002). However, 

based on the experiment result, maf5 is considered involved in the formation of the 

flagellum and it is hypothetical that all of these genes are involved in flagellar 

biosynthesis and phase variation (Karlyshev et al. 2002). 

 

Some maf-like genes have been identified in A. hydrophila AH-3. The maf-1 gene 

of A. hydrophila AH-3 has been proved to be related to glycosylation of polar flagellum 

filament (Canals et al. 2006b). In addition, maf-5 gene of A. hydrophila AH-3 is 
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confirmed to be only essential for lateral flagellar biosynthesis and there is evidence 

that it is not required for polar flagellar biosynthesis (Canals et al. 2006a). Additionally, 

maf-2 of A. hydrophila AH-3 is identified and it plays a role in both the glycosylation of 

polar flagella and lateral flagella (Canals et al. 2007) (Figure 1.3).  

 

In A. caviae Sch3N, the maf1 gene named by Parker et al (2012) shared 38% 

similarity to maf-1 of A. hydrophila AH-3 is considered related to polar flagella 

glycosylation. The Maf1 encoded by maf1 in A. caviae Sch3N is considered as 

transferase in the polar flagellar biosynthesis. Based on the experimental results, it is 

essential for polar flagella-mediated motility and it has been confirmed that the 

overexpression of maf1 in cell will result in the generation of overexpressed 

glycosylated flagellins which leads to the blocking of flagellum synthesis and then it 

will cause low level of cell motility. This phenomenon indicates that the expression of 

maf1 in A. caviae Sch3N is precisely controlled and a certain amount of Maf1 is 

pivotal for the optimal cell motility (Parker et al. 2012). 

 

From the previous studies, there is evidence that FlaA and FlaB of A. caviae 

Sch3N are all modified by Pse5Ac7Ac in the flagellar biosynthesis (Tabei et al. 2009). 

It has been confirmed that pseudaminic acid is irrelevant to the interaction between 

Maf1 and flagellins which indicates that Maf1 can directly interact with flagellins 

(Parker et al. 2014). The experiments confirmed that the Maf1 is not involved in 

Pse5Ac7Ac and LPS biosynthesis and it is only required for flagellin glycosylation. 

Therefore, the Maf1 is deemed as a putative flagellin pseudaminyl transferase (Parker 

et al. 2012). Theoretically, Maf1 of A. caviae Sch3N has the ability to transfer 

activated pseudaminic acid (CMP-Pse5Ac7Ac) to the hydroxyl group of serine and 

threonine residues in the central immunogenic D2/D3 domain of flagellin of A. caviae 

Sch3N (Parker et al. 2012; Tabei et al. 2009). 

 

1.5 Aeromonas flagellin glycosylation system 

1.5.1 Aeromonas polar-flagella and lateral-flagella 

From the previous investigations, it has been revealed that polar flagella systems 

and lateral flagella systems of the Aeromonas species are all correlative in adherence 

and biofilm formation in both inorganic environments and organic environments such 

as host cell surface (Kirov et al. 2004). It has been proved that lateral flagella system 
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of A. caviae and lateral flagella system of A. hydrophila are essential for swarming 

motility in solid environment (Kirov et al. 2004; Gavín et al. 2002). Furthermore, polar 

flagella system is functional when bacteria contacting with liquid environment 

including water or body fluid (Gavín et al. 2002; Rabaan et al. 2001) (Figure 1A). 

 

1.5.2 Flagellin glycosylation system in A. caviae Sch3N 

A. caviae which is a typical pathogenic mesophilic species of Aeromonas is 

drawing the attention. In this project, A. caviae Sch3N will be researched widely as the 

model organism. Pseudaminic acid (Pse5Ac7Ac) is a nine carbon sugar similar to 

sialic acid. The biosynthetic pathway of Pse5Ac7Ac in A. caviae Sch3N is based on 

the predicted functions of proteins encoded by flm genes which are the homologues 

of enzymes of C. jejuni and H. pylori (McNally et al. 2006; Schoenhofen et al. 2006). 

With the help of PseF, PseG, PseH, and PseI from H. pylori as well as PseG and 

PseH from C. jejuni which are overexpressed in Escherichia coli and purified, the 

pseudaminic acid biosynthetic pathway was reproduced (Schoenhofen et al. 2006). 

 

PseB which is a dehydratase initiates the biosynthesis of pseudaminic acid by 

catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to 

UDP-2-acetamido-2,6-dideoxy-b-L-arabino-hexos-4-ulose. Subsequently, the product 

is modified by PseC which is aminotransferase and 

UDP-4-amino-4,6-dideoxy-b-L-AltNAc is generated. After processing by PseH which 

is an acetyltransferase, the UDP of 

UDP-2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose is removed by PseG which is 

a glycosyltransferase and results in 2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose. 

Eventually, this monosaccharide is converted to pseudaminic acid by PseI which is a 

sugar synthetase (Schoenhofen et al. 2006; Schirm et al. 2003). PseF acts as a 

CMP-sugar synthetase in the biosynthesis of CMP-Pse5Ac7Ac (Schirm et al. 2003) 

(Figure 1.4). Activated pseudaminic acid (CMP-Pse5Ac7Ac) is ready for the 

glycosylation and it can be transferred onto flagellin by flagellin glycosyl transferase. 

 

In A. caviae Sch3N, flagellins of polar flagella are glycosylated 6 to 8 times by 

CMP-Pse5Ac7Ac which is under the control of Maf1 which is known as flagellin 

glycosyl transferase (Parker et al. 2012). In a recent study about A. caviae Sch3N, the 

interaction between FlaJ and Maf1 has been basically explained. After flagellins 

(FlaA/B) were glycosylated by activated pseudaminic acid (CMP-Pse) in a Maf1 
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dependent manner, the chaperone-binding domain (CBD) of the glycosylated flagellin 

will be recognized and bound by the flagellin-specific chaperone FlaJ (Parker et al. 

2014). Additionally，experimental results show that the affinity between FlaJ and 

glycosylated flagellin is higher than the affinity between FlaJ and un-glycosylated 

flagellin. This result is significant for the export of glycosylated flagellin (Parker et al. 

2014). Besides, it has been discovered that flagellin glycosylation is irrelevant to FlaJ 

and CBD of flagellin which are crucial for flagellin export (Parker et al. 2014). 

 

In conclusion, glycosylation and assembly of flagellins of polar flagella in A. 

caviae Sch3N can be described like this: The original flagellin synthesized from FlaA 

and FlaB has a central D2/D3 domain which can be recognized by Maf1 and a 

C-terminal chaperone-binding domain (CBD) which can directly interact with FlaJ. 

First of all, Maf1 is attached to the central D2/D3 domain of original flagellin with 

CMP-Pse5Ac7Ac and then the original flagellin is glycosylated by Pse5Ac7Ac. After 

that, Maf1 is released from glycosylated flagellin for next circulation. Secondly, as it 

was mentioned before, FlaJ is bound to the C-terminal chaperone-binding domain 

(CBD) of flagellin (FlaA /FlaB+Pse) and this complex is transported to the basal body 

of flagellum. Finally, the glycosylated flagellin is discharged from intracellular 

environment via T3SS. The exported flagellin will be polymerized by FlaH at the distal 

tip and the complete flagellar filament will be produced. Glycans can attach to the 

exposed central D2/D3 domain after the flagellin is folded (Parker et al. 2012; Parker 

et al. 2014) (Figure 1.5). Additionally, Parker et al found out that un-glycosylated 

flagellin is exported via T3SS too. This finding suggests that un-glycosylated flagellin 

can be recognized by the export apparatus of flagellar T3SS and the glycosylation of 

pseudaminic acid has no influence on the export of flagellin (Parker et al. 2014). 

However, the system appears to have a higher affinity for the glycosylated flagellin. 

 

However, there are some evidences about the glycosylation of lateral flagellum in 

A. caviae Sch3N. The glycosyl groups of the lateral flagellum was detected by 

periodate oxidation and hydrazine biotinylation in a previous study, but the 

investigation in this field is still insufficient (Gavín et al. 2002). 
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Figure 1.4. The proposed CMP-Pse5Ac7Ac biosynthetic pathway in C. 

jejuni and A. caviae. 

This diagram shows CMP-Pse5Ac7Ac is synthesized from 

UDP-N-acetylglucosamine via PseB (Cj1293), PseC (Cj1294), PseH (Cj1313), PseG 

(Cj1312), PseI (Cj1317) and PseF (Cj1311) or FlmA, FlmB, FlmD, NeuB and NeuA 

(Schoenhofen et al. 2006). 

1.5.3 Flagellin glycosylation system in A. hydrophila 

AH-3  

Recently, the glycans involved in glycosylations of flagellins of polar flagella 

(FlaA/FlaB) and flagellins of lateral flagella (LafA) have been revealed in A. hydrophila 

AH-3. The flagellins of polar flagella are glycosylated 6 times and initially glycosylated 

by a single monosaccharide which is derivative of pseudaminic acid. The flagellins of 

lateral flagella are most likely glycosylated by another phosphorylated derivative of 

pseudaminic acid (Wilhelms et al. 2012). 
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In a recent study, flagellins of polar flagellum of A. hydrophila AH-3 were 

discovered to be O-linked glycosylated with a heterogeneous glycan. A remarkable 

finding which is a lipid carrier is involved in flagellin glycosylation has not been 

reported before. The proposed polar flagellum glycosylation in A. hydrophila AH-3 is 

described: WecX links CMP-Pse-like to undecaprenylphosphate (Und-P) and then 

two hexoses are added. After that, three N-acetylhexosamines or derivates of 

N-acetylhexosamine are added and an unknown glycan of 102 Da is added at last. 

Finally, this heptasaccharide is attached to the threonine/serine amino acid residue of 

the polar flagellin by a putative OT (Merino et al. 2014). 

 

The lateral flagella of A. hydrophila are O-linked glycosylated at least three times 

with a derivative of pseudaminic acid and there is evidence that this derivative is 

phosphorylated. It has been confirmed that mutation in flmA (pseB) or neuA (pseF) 

leads to the absence of both flagella which indicates that the biosynthesis of 

pseudaminic acid is essential for the productions of polar flagella and lateral flagella 

(Wilhelms et al. 2012). 

 

1.6 Connection between glycosylation in flagellin 

biosynthesis and LPS O-antigen biosynthesis  

Besides the flagellar systems, lipopolysaccharide (LPS) O-antigen which is an 

important pathogenic factor is also investigated in this project. 

 

LPS molecule which embedded in the outer leaflet of the outer membrane of 

many Gram-negative bacteria is an important part of bacterial cell envelope and this 

molecule also play a significant role in innate immune responses. LPS is consists of a 

lipid portion, a core oligosaccharide (OS) and an O-specific polysaccharide which is 

known as the O-antigen (Nikaido 1996; Whitfield and Valvano 1993). The 

surface-exposed LPS O-antigen which is required for the subsistence of bacteria 

prevents the cell from elimination by immune system (Tomás 2012). An 

understanding of the molecular mechanisms involved in production and modification 

of O-antigen can be very helpful for the development of new drugs and vaccines. 
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The surface-exposed O-antigen consists of repeating sequences of three to six 

sugar residues and the O-antigen is irreplaceable for the survival of bacteria because 

it protects bacteria from immune responses. The O-antigen need to be glycosylated 

before it is added to the LPS. The substrate of O-antigen glycosylation is 

CMP-Pse5Ac7Ac which is activated pseudaminic acid (Tomás 2012). In cytoplasm, 

Pse5Ac7Ac needs to be bound to CMP which is under the control of CMP-sugar 

synthetases including PseF (Cj1311) of C. jejuni and NeuA of A. caviae Sch3N to 

form CMP-Pse5Ac7Ac. Additionally, in A. caviae Sch3N, the CMP-Pse5Ac7Ac is the 

substrate of Lst and Lsg which were involved in LPS O-antigen formation (Tabei et al. 

2009). In A. caviae Sch3N, lsg and lst are located at the downstream of flm locus 

(Tabei et al. 2009). CMP-Pse5Ac7Ac is transfered onto a sugar-antigen carrier lipid 

(ACL) by Lst which is transferase and then the Pse5Ac7Ac-sugar-ACL complex is 

transported to the outer membrane by Lsg which is LPS-specific transporter 

(Kalynych et al. 2014). Eventually, Pse5Ac7Ac-sugar-ACL complex passes the 

cytoplasmic membrane with the help of Lsg and it is added to the inner-core of 

oligosaccharide for the purpose of generation of full functional LPS (Tabei et al. 2009) 

(Figure 1.4). 

 

Based on the papers published before, the glycosylations in LPS O-antigen 

biosynthesis and flagellin biosynthesis are cross correlated. In A. caviae Sch3N, the 

flagellin is O-glycosylated with Pse5Ac7Ac while LPS is glycosylated with the same 

sugar (Tabei et al. 2009; Parker et al. 2012). Based on the two mechanisms 

summarized above, it is clear that Pse5Ac7Ac is acts as a pivotal factor which 

connects the two mechanisms with glycosylation. Because of that, the investigation of 

the proteins related to Pse5Ac7Ac becomes very valuable. NeuA which directly 

interacts with Pse5Ac7Ac is a crucial target has been applied in this project. 
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Figure 1.5. The assumed flagellin glycosylation pathway and O-antigen 

formation in A. caviae Sch3N. 

This diagram shows NeuA and Maf1 are all involved in the proposed pathway of 

flagellin glycosylation and CMP-Pse5Ac7Ac is the key substrate connects the two 

mechanisms in A. caviae Sch3N (Tabei et al. 2009; Parker et al. 2012). 

 

1.7 Project aims and design 

The aim of this project is to investigate proteins associated with flagellar 

glycosylation in Aeromonas caviae. Maf1 the motility-associated factor is involved in 

polar flagellar biosynthesis and it is thought to be the glycosyl-transferase that directly 

transfer of pseudaminic acid onto the polar flagellin proteins in A. caviae Sch3N 

(Tabei et al. 2009; Parker et al. 2012). Hence the detail of how the Maf1 interacts with 

flagellin and which protein domains or amino residues that are directly related to these 

interactions are all interesting targets of this project. Furthermore, to prove that Maf1 

is indeed the glycosyl-transferase the substrate for the reaction need to be isolated or 

created, namely flagellin and the activated form of pseudaminic acid 

(CMP-Pse5Ac7Ac). Therefore, in order to create CMP-Pse5Ac7Ac, the Flm proteins 

of the pseudaminic biosynthesis pathway will be overexpressed and purified. Hence 

the biosynthesis of Pse5Ac7Ac and CMP- Pse5Ac7Ac can be looked into via these 

reactions. Flagellin proteins, are usually insoluble, previous work has shown that the 
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C-terminal chaperone binding domain of the A. caviae flagellin FlaA is not involved in 

the glycosylation process. Attempts will be made to create deletion derivatives of 

flagellin that are still glycosylated and are more soluble to provide more suitable 

substrate for future glycosylation assays. 
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Chapter 2 Methods and Materials 

2.1 Media 

All media are autoclaved to sterilize before use. 

2.1.1 Luria Bertani broth (LB broth) 

1% tryptone (Oxoid) 

0.5% yeast extract (Oxoid) 

1% NaCl (Melford) 

In dH2O 

 

2.1.2 Luria Bertani agar (LB agar) 

1% tryptone (Oxoid) 

0.5% yeast extract (Oxoid) 

1% NaCl (Melford) 

1.5% Bacteriological Agar 

In dH2O           

 

2.1.3 Brain heart infusion broth (BHIB) 

3.7% Brain Heart Infusion powder (Oxoid) 

In dH2O     

 

2.1.4 Tryptone soya agar (TSA) 

3.7% Tryptone Soya Agar powder (Oxoid) 



35 

 

In dH2O 

 

2.1.5 Motility agar 

0.5% tryptone (Oxoid) 

0.5% NaCl (Melford) 

0.25% agar (Oxoid) 

In dH2O 

 

2.1.6 X-gal agar 

1% Typtone 

0.5% Yeast Extract 

1% NaCl 

1.5% Agar  

In dH2O 

 

400μl of 2mg/ml X-gal (5-bromo-4-chloro-3-indolyl β-D-galactopyranoside) in 200ml  

200μl of 1M IPTG (isopropyl β-D-1-thiogalactopyranoside) in 200ml  

2.1.7 Blood agar 

horse blood agar plates (Oxoid) 

1.5% Proteose peptone 

0.25% Liver digest 

0.5% Yeast extract 

0.5% Sodium chloride 

1.2% Agar  
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2.2 Bacterial strains used in the study 

Table 2.1 Bacterial strains used in this study 

Name of strains Properties Reference 

Aeromonas caviae strains 

 

Sch3N 

 

Wildtype, NalR 

 

 

(Gryllos et al. 2001) 

Sch3N neuA::Km KmR and NalR，neuA knockout This study 

Sch3N flmA::Km KmR and NalR，flmA knockout This study 

Sch3N 

flaA::Km::flaB 

KmR and NalR ， flaA and flaB 

knockout 

This study 

Escherichia coli strains 

DH5α competent strain used in plasmid 

transformation 

Invitrogen Life 

TechnologiesTM 

S17-1 λpir SmR, Km::Tn7 (Tc::Mu) λpir, donor 

plasmid in conjugation 

(Miller 1972) 

BL21(DE3) T7 expression strain, used to 

express target genes 

Novagen 

NEB Versatile non-T7 expression strain, 

Protease deficient 

New England Biolabs 

(NEB) 

A. caviae Sch3N strains were incubated at 37℃ on LB agar and TSA or in LB 

broth and BHIB. Appropriate antibiotics were added when required and there is no 

antibiotics present in swarming agar. E. coli strains were grown at 37℃ on LB agar or 

in LB broth, in which antibiotics were added when required.  
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2.3. Plasmids used in the study 

    Table 2.2 Plasmids used in this study.  

Name of plasmids Characteristics Reference 

pBBR1MCS Broad-host-range plasmid, CmR (Kovach et al. 1994) 

pBBR1MCS-5 Broad-host-range plasmid, GmR (Michael E. Kovach a 

and a 1995) 

pKNG101 RK6 derived suicide plasmid, SmR   (Kaniga et al. 1991) 

pET28a Containing T7 promoter, N-terminal His 

tag, used for protein expression, KmR 

Novagen 

pMAL-c5x designed to produce maltose-binding 

protein (MBP) fusions, AmpR 

New England Biolabs 

(NEB) 

 

2.4. Antibiotics used in the study 

 Table 2.3 Antibiotics used in this study 

Antibiotics Working concentration Concentration made 

Kanamycin (Km) 50μg/ml 50mg/ml (dH2O) 

Streptomycin (Sm) 50μg/ml 50mg/ml (dH2O) 

Gentamicin (Gm) 25μg/ml 50mg/ml (DMSO) 

Chloramphenicol (Cm) 50μg/ml 50mg/ml (Ethanol) 

Ampcilin (Amp) 100 μg/ml 100 mg/ml (dH2O) 

Nalidixic acid (Nal) 30 μg/ml 30 mg/ml (dH2O) 
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2.5 – Growth conditions  

2.5.1 – Standard growth conditions 

The certain bacterial strain was incubated in 10 ml of the required growth media 

with appropriate antibiotics in a 25 ml sterile universal tube overnight with shaking. 

The optimal temperature for both E. coli and A. caviae cultures is 37⁰C.  

2.5.2 – Glycerol stock 

Glycerol stock was made by pipetting 500ul of the overnight culture of the 

selected strain which was prepared before into a 1.5 ml microcentrifuge tube 

containing 500ul of 50% glycerol. The stock was stored at -80⁰C. 

2.5.3 – Swimming motility assays 

Swimming motility assays were carried out by setting up an overnight culture of 

the selected strain. Motility agar was prepared following 2.15 motility agar protocol. 

The motility agar was prepared before using. The assays were carried out on motility 

agar plates. 1 ml of the overnight culture was centrifuged (13,000xg) in a 1.5 ml 

microcentrifuge tube (Sigma) for 1 minute and the supernatant was discarded. About 

10μl of the pellet was directly injected into the center of the motility agar by pipette. 

Swimming motility plates were incubated overnight at room temperature and 

swimming motility was analysed by measuring the radius of any motility halos appear. 

 

2.6 Chromosomal DNA extraction 

Bacteria growth was gained from overnight culture in 10ml LB broth with 

appropriate antibiotics. The culture was centrifuged at 1,600xg for 15 minutes at room 

temperature. The supernatant was discarded and the cell pellet was resuspended in 

500μl of lysozyme. The sample was incubated in water bath at 37℃ for 60 minutes. 

Then 50μl of 10%SDS was added and mixed with the sample and the sample was 

vortexed until it was viscous or creamy. After that, the sample was incubated in water 

bath for 15 minutes at 37℃.Then the sample was vortexed again until viscosity was 

decreased.  
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After that, 300ul phenol/chloroform was added and the sample was centrifuged at 

1600xg for 10 min. aqueous layer (top) was transferred into a fresh Eppendorf tube 

and 200μl dH2o and 300μl phenol/chloroform were mixed with the aqueous layer. This 

procedure was repeated twice with phenol-chloroform and dH2o. A 1/10 volume of 3M 

sodium acetate and 1 volume of ice-cold isopropanol were added and mixed by 

inversion. Then the sample was left on ice for 10-20 minutes and centrifuged at 

1,600xg for 15 minutes. The supernatant was discarded and the sample was mixed 

with 0.5ml of 70% ethanol and centrifuged at 13,000xg for 1 minute and the 

supernatant was discarded. This procedure was repeated once with 0.5ml of 70% 

ethanol. The DNA pellet was left to dry for at least 2 hours and resuspend in 50μl of 

dH2O.  

 

2.7 Polymerase chain reaction (PCR)  

Polymerase chain reaction (PCR) was applied in 50μl mix containing reagents of 

PCR in thin-walled PCR tubes using an Invitrogen T100TM Thermal Cycler (PCR 

machine). The PCR reaction mixtures used in this project were listed as follows: 

 

2.7.1 Normal PCR and SOE PCR condition 

10X Pfx Amplification Buffer (invitrogen)                                  5μl 

2mM dNTPs                                                    5μl 

50mM MgCl2                                                   2μl 

Pr imers                                               1μ l  +1μ l 

Polymerase (Platinum Pfx)                                              0.5μl 

Template DNA                                               1μl 

dH2O was added up to 50μl of total volume 

2.7.2 Colony PCR screen condition 

5X GoTaq Buffer (PROMEGA)                                   10μl 

2mM dNTPs                                               5μ l 
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50mM MgSO 4                                              2μ l 

D M S O                                                 2 μ l 

Pr im e r s                                             1μ l  + 1μ l  

Polymerase (GoTaq DNA Polymerase)                                     .5μl 

dH2O was added up to 50μl of total volume. 

Bacterial colonies were taken out by clean tips as templete DNA and these colonies 

were transferred into each tube separately. 

 

2.7.3 PCR cycles 

PCR conditions for Normal PCR (Pfx), SOE PCR (Pfx) and Colony PCR (Taq) are 

listed in table 2.4. Annealing temperature was adjusted according to different primers 

and Extension time was determined according to the length of the PCR fragment 

following the manufacturer’s instructions. 

 

Table 2.4 PCR conditions for different polymerase.  

Name of step Taq polymerase Pfx polymerase 

Heated lid 105℃ 105℃    

Denaturing 1 cycle 95℃     3min 94℃     3min 

Denaturing 30 cycles 95℃    40sec 94℃    40sec 

Annealing 30 cycles 55℃    30sec 56℃    30sec 

Extension 30 cycles 72℃ 68℃ 

Final extension 1 cycle 72℃     2min 68℃     2min 

Infinite Hold  4℃ 5℃ 

 

2.7.4 – DNA sequencing 

DNA was sent to be sequenced by the Genomic Medicine Service at the Medical 

School of Sheffield University. FinchTV, SnapGene and BLAST (online resource) 
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were applied for sequencing and checking DNA products.  

2.8 Isothermal Assembly (ISA) 

The ISA was designed to join several DNA fragments into one plasmid in a single 

reaction and each fragment applied in ISA contained an approximately 40bp adapter 

sequence overlapping each other. The concentrations of DNA fragments were 

measured by using nanodrop. Then an appropriate amount of each DNA fragment 

was added into an Eppendorf tube and all DNA fragments were mixed with ISA Buffer 

and three enzymes including T5 exonuclease, Phusion polymerase and Taq ligase. 

After incubation for 1 hour at 50°C, the mixture was transformed into E. coli DH5α and 

cells were spread on agar containing the appropriate antibiotic to recover bacteria 

containing the plasmid. 

2.8.1 5X ISA Buffer (1ml) 

1M Tris-HCl pH 7.5                                                500μl 

2M MgCl2·6H2O                                                   25μl 

100mM dATP                                                      10μl 

100mM dTTP                                                      10μl 

100mM dCTP                                                     10μl 

100mM dGTP                                                     10μl 

1M DTT                                                          50μl 

PEG-8000                                                      0.25μl 

100mM NAD                                                      50μl 

dH2O                                                            335μl 

 

2.8.2 ISA reaction (5 tubes) 

5X ISA Buffer                                                      20μl 

Diluted T5 exonuclease (10 units)                                    0.5μl 

Phusion Polymerase (1 unit)                                     1.25μl 
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Taq Ligase (80 units)                                        10μl 

dH2O                                                           43.3μl 

The reagent was aliquot into 5x 15μl in each reaction 

 

2.9 Agarose gel electrophoresis 

2.9.1 Preparation of 1X TAE (pH 8.0) 

40 mM Tris (Fisher) 

1.142% Acetic acid (Melford) 

1 mM EDTA (Melford) 

2.9.2 Preparation and electrophoresis of agarose gels 

100ml 1X TAE Buffer was mixed with 1g of agarose powder to make 1% agarose 

gel and the mixture was heated in a microwave for 3-5 minutes until the agarose 

powder was dissolved. Then the liquid agarose gel was poured into a gel tray which 

was sealed at both ends with rubber caps and a comb was placed in the agarose gel 

to make wells. The agarose gel was left to solidify for 15-25 minutes. After the gel was 

solid, the tray was put into a gel tank filled up with 1X TAE buffer. The DNA samples 

with loading dye (5:2) and corresponding DNA ladder (Appendix 1) were loaded into 

the gel wells. The agarose gel was run at 100V for 60 minutes and then stained with 

ethidium bromide (0.5μg/ml) for 15 minutes. After that, the gel photo was taken on an 

ultraviolet trans-illuminator. 

 

2.9.3 Gel extraction using QIAgen agarose gel extraction 

kit 

The DNA fragment was excised from the ethidium bromide stained agarose gel 

with a specific tip under ultraviolet light. The gel slice was weighed in a colourless 

tube. 3 volumes of Buffer QG to 1 volume of the agarose gel (100mg~100μl) was 

added and the mixture was incubated at 50°C for 10 minutes and mixed by inverting 

for several times until the gel slice was completely dissolved. The colour of the 
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mixture should be yellow. If the colour of mixture was orange or violet, 10μl of 3M 

sodium acetate (pH 5.0) was added. Then 1 volume of isopropanol to the mixture was 

added and mixed. To bind DNA, the sample was applied to the QIAquick column and 

centrifuged for 1min at 13000xg and the flow-through was discarded. To wash the 

DNA, 750μl of Buffer PE wash buffer was added and the sample was centrifuged for 1 

min at 13,000xg and the flow-through was discarded too. Then the sample was 

centrifuged again for 1min at 13,000xg to remove residual wash buffer. To elute the 

DNA fragment, 30μl of Elution Buffer was added to the centre of the spin column and 

the desired DNA fragment was obtained after centrifugation for 1 min at 13000xg. 

Buffer QG, PE wash buffer and Elution Buffer were provided by QIAgen agarose gel 

extraction kit. 

 

2.10 Restriction enzyme digestion 

The digestion was set up with the required restriction enzyme and corresponding 

buffer. All reagents were mixed together following the reaction conditions in 2.10.1. 

The mixture was incubated at 37℃ for 3-4 hours. After the incubation, the sample was 

purified following the PCR purification protocol in 2.11. 

 

2.10.1 Reaction conditions: 

DNA samples                                             5μl-16μl  

Restriction enzyme (10u/μl)                                           1μl 

10X Buffer                                                      2μl 

dH2O was added up to 20μl of total volume. 

2.11 PCR purification using the QIAgen PCR 

purification kit 

The PCR product was transferred into an Eppendorf tube and mixed with 500μl of 

Buffer PB. The mixture was then transferred into a QIAquick spin column which was 

placed in a provided 2ml collection tube and the tube was centrifuged at 13,000xg for 

1 minute. The flow-through was discarded and the column was placed back into the 

same collection tube. To wash the sample, 600μl of Buffer PE was added to the 
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column followed by centrifugation at 13,000xg for 1 minute. The flow-through was 

discarded and the column was placed back again. Then the collection tube was 

centrifuged at 13,000xg for 1 minute again to remove residual wash buffer and the 

column was transferred into a new Eppendorf tube. To elute the sample, 20-50μl of 

Buffer EB was added to the centre of the column membrane and the Eppendorf tube 

was centrifuged at 13,000xg for 1 minute. Buffer PB, Buffer PE and Buffer EB were 

provided by QIAgen PCR purification kit. 

2.12 Mini-preparation of plasmid DNA (using QIAgen 

plasmid extraction kit) 

The cells were cultured in 10ml LB broth with appropriate antibiotics at the 37℃ 

with shaking for 12 hours before plasmid extraction. To harvest the cells, the sample 

was centrifuged at 1,600xg for 15 minutes at room temperature to pellet the cells. The 

supernatant was discarded and the cell pellet was resuspended in 250μl of Solution 

1/RNase A solution. The sample was then transferred into an Eppendorf tube and 

250μl of Solution 2 was added and mixed by gently inversion and rotation. Then the 

sample was incubated for 2 minutes at room temperature. After that, 350μl of Solution 

3 was added and immediately mixed with the sample by inversion. 

 

The sample was centrifuged at 13,000xg for 10 minutes at room temperature and 

the supernatant was transferred to the QIAprep spin column. The sample was then 

centrifuged at 13,000xg for 1 minute and the flow-through was discarded. A volume of 

500μl of Buffer PB was added followed by centrifugation at 13,000xg for 1 minute and 

the flow-through was discarded. A volume of 600μl of Buffer PE was added followed 

by centrifugation at 13,000xg for 1 minute and the flow-through was discarded. The 

sample was centrifuged at 13,000xg again for 1 minute to remove residual wash 

buffer. The QIAprep spin column was placed into a new Eppendorf tube, to elute the 

sample, 50μl of Buffer EB was added to the centre of the column membrane and the 

Eppendorf tube was centrifuged at 13,000xg for 1 minute. Solution 1/RNase A 

solution, Solution 2, Solution 3, Buffer PB, Buffer PE and Buffer EB were provided by 

QIAgen plasmid extraction kit. 

 

2.13 Ligation 

Ligation reaction was set up with T4 DNA ligase (50 units) (Promega) and Ligase 
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Buffer. Purified linear plasmids (30-50μg/μl) and purified PCR fragments (80-100μg/μl) 

with corresponding restriction sites on both terminals were added to be ligated. The 

ligation reaction conditions are shown in the table below. All samples and controls 

were incubated for 12 hours at 15℃. 

 

Table 2.5 Ligation reaction conditions. 

Name of reagant Ligation 

Reaction 

+Ligase Control -Ligase Control 

Linear Plasmid (30-50μg/μl) 2μl 2μl 2μl 

Target DNA fragment 

(80-100μg/μl) 

6μl 0μl 0μl 

Ligase Buffer 1.5μl 1.5μl 1.5μl 

Ligase (10-20μg/μl) 1μl 1μl 0μl 

dH2O Added up to 15ul of total volume 

 

2.14 Preparation of competent cells 

E. coli (DH5α, BL21 and S17-1 λpir) were cultured overnight in 10ml LB broth 

with appropriate antibiotics at 37℃. 1ml of bacterial cells in LB broth was transferred 

into 100ml of sterile LB broth to make a 1:100 dilution. Then the culture was shaken at 

37℃ for 2-4 hours until the OD600nm of the culture reached 0.3 (approx. 4-7 x 107 

cfu/ml). Then the culture was collected into two 50ml universal tubes and kept on ice 

for 15 minutes followed by centrifugation at 1,600xg for 20 minutes at 4℃. Then the 

cell pellets were resuspended in 33ml (1/3 of the original volume) of RF1 solution and 

the cells were incubated on ice for 15 minutes followed by centrifugation at 1,600xg 

for 20 minutes at 4℃. The cell pellet was then resuspended in 8ml (1/12.5 of the 

original volume) of RF2 solution and the cells were incubated on ice for 15 minutes. 

After that, the cells were aliquoted into chilled sterile Eppendorf tubes (200μl) and 

stored at -80℃. 

 

RF1 solution                                RF2 solution 

100mM KCl                                 10mM MOPS buffer pH 6.8 
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50mM MnCl2                                10mM KCl 

30mM Potassium acetate                     75mM CaCl2·2H2O 

10mM CaCl2·2H2O                           15% glycerol (w/v) 

 

 

2.15 Transformation 

A volume of 100μl of competent cells was added into a sterile Eppendorf tube 

and 5-20ul of plasmid DNA was added to the Eppendorf tube and the cells were 

mixed with plasmid DNA. The Eppendorf tube was left on ice for 30 minutes. Then the 

cells were heat shocked in a 42℃ water bath for 90 seconds. After that, 1ml of LB 

broth was added into the Eppendorf tube and the sample was incubated at 37℃ for 1 

hour. The cell culture (150μl) was then spread on LB agar plates with appropriate 

antibiotics. The cells were incubated overnight at 37℃. 

 

2.16 Bacterial conjugation 

Bacterial strains were cultured overnight in 10ml LB broth with appropriate 

antibiotics at 37℃ with shaking. The cell cultures were centrifuged at 1,600xg for 15 

minutes to collect the cells. The supernatants were discarded and the pellets were 

resuspended in 5ml of steriled PBS Buffer. To wash the cells, the suspensions were 

centrifuged at 1,600xg for 15 minutes and the supernatants were discarded. The cell 

pellet of conjugal bacterial strain (donor) was resuspended in 1ml of sterile PBS Buffer. 

0.5ml of the suspension of the conjugal bacterial strain (donor) was mixed with the 

pellet of the conjugal bacterial strain (recipient). 200μl of the mixed strains were plated 

onto blood agar plate. The plate was incubated at 37°C for 8 hours. Then the cells 

were scraped off the blood agar with 1ml of PBS Buffer. Serial dilutions (10-3 and 10-4) 

were made and 200ul of each strain was spread onto LB agar plates with appropriate 

antibiotics. The plates were incubated overnight at 37°C to select colonies with the 

desired resistance. 

 

Phosphate Buffered Saline (PBS) Buffer 

1 tablet of PBS (SIGMA™) in 200ml dH2O 
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200ml of PBS containing: 

10mM Phosphate buffer 

2.7mM KCl 

137mM NaCl 

 

2.17 Lipopolysaccharide (LPS) extraction 

Bacterial cells were obtained from overnight LB broth culture grown at 37°C. 3ml 

of the culture was washed once in PBS Buffer and then centrifuged at 10,000xg for 3 

minutes. The supernatant was discarded. The pellet was mixed with 1ml of PBS 

Buffer and vortexed. After that, the suspension was centrifuged at 13,000xg for 1 

minute and the PBS solution was discarded. The pellet was resuspended in PBS 

Buffer until the A600 of suspension reached 1.0. The bacterial suspension was then 

centrifuged at 10,000xg for 3 minutes and resuspended in 200µl dH2O. 200µl of 90% 

(w/v) phenol solution was added into the bacteria suspension and the mixture was 

vortexed and incubated for 10 minutes at 37°C. The mixture was kept on ice for 2 

minutes followed by centrifugation at 2,300xg for 5 minutes. The upper liquid phase 

was collected and mixed with 1 volume of Lysis buffer and boiled for 5 minutes. The 

extracts were stored at -20°C. The sample was usually loaded in an SDS-PA gel and 

stained following the silver stain protocol (section 2.18). 

 

2.18 Silver stain (Silver stain kit) 

The SDS-PAGE gel was washed twice for 5 min with ultrapure water and fixed 

twice for 15 min in 30% ethanol and 10% acetic acid solution. Then the gel was 

washed twice for 5mins in10% ethanol and washed twice with ultrapure water for 5 

min. After that, the gel was sensitized in Sensitizer Working solution for 1 min and 

washed twice with ultrapure water for 1 min. Then the gel was stained in Stain 

Working solution for 30 min. Then the gel was washed twice with ultrapure water for 

20 sec and developed in Developer Working solution for 2-3 min until the bands were 

observed. Then the gel was stopped with 5% acetic acid for 10 min. Sensitizer 

Working solution, Stain Working solution and Developer Working solution were 

provided by Silver Stain kit. 
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2.19 Protein overexpression  

The E. coli protein expression strain (BL21(DE3)) containing the plasmid of 

interest was incubated overnight at 37°C with shaking in 10ml LB broth with 

appropriate antibiotics. 5ml of the overnight culture was transferred into 500ml of LB 

broth with appropriate antibiotics on second day. The culture was incubated at 37°C 

for 2 - 4 hours until the OD600 reached 0.6-1.0 and 500µl of 1M IPTG was added to 

induce the protein expression. After overnight incubation at 37°C with shaking, the 

cells were harvested by centrifugation at 5,000xg for 15 min at 4°C. The supernatant 

was discarded and the pellet was resuspended in 25ml Binding Buffer or Column 

Buffer and stored at -20°C. Then the sample was sonicated 5 - 6 times using Jencons 

Vibracell at 20 kHz (20% amplitude) for 30 seconds with 1 min intervals on ice. The 

sonicated sample was then centrifuged at 12,000xg for 15 minutes at 4°C to separate 

soluble and insoluble proteins. The supernatant which contained soluble proteins was 

stored in a new universal tube at -20°C and the centrifuge tube which contained the 

pellet was also stored at -20°C. 

 

2.19.1 Binding Buffer preparation 

Binding Buffer (50ml) 

25mM Tris-Cl pH 7.4                      1.25 ml of 1M Tris-Cl stock solution 

10mM Imidazole pH7.4                  0.25ml of 2M imidazole stock solution 

400mM NaCl   pH7.0                    4ml of 5M NaCl stock solution   

 

2.20 Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) 

2.20.1 Preparation and electrophoresis of polyacrylamide 

gel 

Polyacrylamide gel consisted of resolving gel and stacking gel. The resolving gel 

was prepared firstly and poured into the electrophoresis device. It takes about 5 
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minutes to become solid. Then the stacking gel was prepared and poured into the 

electrophoresis device and a comb was inserted into the gel to make wells. The 

stacking gel takes about 5 min to become solid. The components of these gels are 

listed in the Table 2.7 

 

The protein samples were prepared by boiling with an equal volume of Laemmli 

Buffer at 100°C for 5-10 minutes. To each well of SDS-PA gel, 20µl of the sample was 

loaded and corresponding protein ladder is shown in Appendix 1. The gel was run at 

160V for 90-120 minutes in 1X SDS Running Buffer. After that, the gel was stained 

with Coomassie Blue Stain Solution for 12 hours and then destained with Destain 

Solution until the bands were clear. 

 

Table 2.6 SDS-PAGE Resolving Gel components (Pour first).  

%Gel Acrylamide 

(30% w/v) 

Tris (1.5M 

pH 8.8) 

H2O TEMED  APS 

(10% 

w/v) 

SDS 

(10% 

w/v) 

5 1.65ml 2.5ml 5.65ml 7µl  200µl 100µl 

10 3.3ml 2.5ml 4.0ml 7µl  200µl 100µl 

12 4.0ml 2.5ml 3.3ml 7µl  200µl 100µl 

14 4.66ml 2.5ml 2.64ml 7µl  200µl 100µl 

15 5.0ml 2.5ml 2.3ml 7µl  200µl 100µl 

 

Table 2.7 SDS-PAGE Stacking Gel components (Pour last).  

Acrylamide 

(30% w/v) 

Stacking buffer H2O TEMED APS (10% 

w/v) 

0.68ml 1.25ml 3ml 5µl 50µl 

 

The percentage of resolving gel used was dependent upon the expected size of 

the protein sample. 12% of resolving gel was used in this project to check the 

products of protein overexpression and protein purification. 
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2.20.2 Buffer preparation 

Tris (1.5M pH 8.8)                          45.43g in 250ml of dH2O 

 

Laemmli Buffer 

62.5mM Tris (pH 6.8) 

2% (w/v) SDS 

5% (v/v) β-Mercaptoethanol 

10% (v/v) Glycerol 

0.02% (w/v) Bromophenol Blue 

 

10X SDS Running Buffer (pH 8.3)                     Amount for 1 litre dH2O 

250mM Tr is-Base                                       30.2g  

1.92M Glyc ine                                          144g   

1% (w/v) SDS                                            10g  

 

Coomassie Blue Stain Solution (1L) 

500ml Methanol 

2.5g Coomassie Blue 

100ml Acetic acid 

dH2O added up to 1L 

 

Destain Solution (1L) 

400ml Methanol 

100ml Acetic acid 

dH2O added up to 1L 
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2.21 Histidine-tagged protein purification protocol  

2.21.1 Column preparation 

The HisTrapTM HP Column was washed with 5ml distilled H2O and equilibrated 

with 10ml binding buffer. 

 

2.21.2 Purification protocol 

The supernatant which contained soluble proteins (Load) was taken out from the 

-20°C freezer and the sample was prepared by filtration through a 0.45μm filter to 

remove any debris and the flow-through (FT) was collected. Then the protein sample 

was applied to the HisTrapTM HP Column using a flow rate of 1-3 ml/min and the 

flow-through (Wash) was collected. The proteins with His-tag were all bound to the 

nickel ions in the column. The column was washed with 10ml binding buffer. The 

proteins with His-tag were then eluted with 5ml Binding Buffer with increasing 

imidazole concentration (50mM to 500mM) in 1ml fractions. All fractions were 

checked by SDS-PAGE including the sample Load, sample FT and sample Wash. 

From each sample, 20ul was taken and mixed with 20ul of Laemmli buffer. Then all 

the mixtures were boiled for 10 minutes and checked by SDS-PAGE. 
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Table 2.8 Binding Buffer with increasing concentration of imidazolea.  

Imidazole 

concentration 

2M imidazoleb 

(ml) 

1M Tris-Cl (ml) 5M NaCl (ml) dH2O (ml) 

50mM 0.5 0.5 1.6 17.4 

100mM 1 0.5 1.6 16.9 

150mM 1.5 0.5 1.6 16.4 

200mM 2 0.5 1.6 15.9 

250mM 2.5 0.5 1.6 15.4 

300mM 3 0.5 1.6 14.9 

400mM 4 0.5 1.6 13.9 

500mM 5 0.5 1.6 12.9 

(a) Binding Buffer was prepared according to protocol 2.19.1. 

(b) 2M Imidazole stock was prepared by dissolving 6.8g imidazole in 50ml 

dH2O and adjusted to pH 6.8. 

2.22 MBP-tag protein purification protocol 

2.22.1 Column preparation 

The MBPTrapTM HP Column was washed with 5ml distilled H2O and equilibrated 

with 10ml column cuffer. 

 

2.22.2. Purification protocol  

The supernatant which contained soluble proteins (Load) was taken out from the 

-20°C freezer and the sample was prepared by filtration through a 0.45μm filter to 

remove any debris and the flow-through (FT) was collected. Then the protein sample 

was applied to the MBPTrapTM HP Column using a flow rate of 1-3 ml/min and the 

flow-through (Wash) was collected. The proteins with MBP-tag were all bound to the 

beads in the column. The column was washed with 10ml binding buffer. The proteins 
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with His-tag were then eluted with 5ml column binding buffer with increasing maltose 

concentration (20mM to 300mM) in 1ml fractions. All fractions were checked by 

SDS-PAGE including the sample Load, sample FT and sample Wash. From each 

sample, 20ul was taken and mixed with 20ul of Laemmli buffer. Then all the mixtures 

were boiled for 10 minutes and checked by SDS-PAGE. 

 

2.22.1 Column Binding Buffer preparation  

Column buffer:                                          Amount per litre dH2O              

20 mM Tris-HCl                                     20 ml 1 M Tris-HCl (pH 7.4) 

200 mM NaCl                                                     11.7 g NaCl 

1 mM EDTA                                                2.0 ml 0.5 M EDTA 

 

2.23 Western Blotting 

After SDS-PAGE, one of the two gels was applied to be analysed by Western 

Blot.  

 

The gel was placed in a western blotting cassette (BIO-RAD™) along with a 

nitrocellulose membrane (Whatman™ 0.45μm pore size) for proteins to be transferred 

onto and 3 filter papers of similar shape with the gel. The blotting cassette was 

assembled and placed in a tank filled up with 1X Transfer Buffer and run at 10V 

overnight. The blotting cassette was set up to direct the proteins passed from the gel 

towards the membrane. Then the membrane was collected and soaked in 20ml of 5% 

(w/v) skimmed milk solution (Marvel™) for 1hour to block all non-specific binding sites. 

Then the membrane was washed in 20ml PBS Buffer for 10 min. After that, the 

membrane was soaked in 20ml of 5% (w/v) skimmed milk solution in which 1-5μl 

(1:2000) of primary antibody was added for 1 hour. Then the membrane was washed 

3 times in 10ml of PBS solution for 5 minutes. To bonded by the secondary antibody, 

the membrane was soaked in 20ml of 5% (w/v) skimmed milk solution in which 1-5μl 

(1:4000) of secondary antibody was added for 1 hour. Then the membrane was 

washed 3 times in 10ml of PBS Buffer for 5 minutes again. 
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To develop the membrane, Pierce™ ECL Western Blotting Substrate (Thermo 

Scientific™) was applied. 1ml of Detection Reagent 1 (Peroxide Solution) was mixed 

with 1ml of Detection Reagent 2 (Luminol Enhancer Solution) before using and the 

mixture was poured on the membrane. The western blot photo was taken using 

Chemidoc™ XRS+ System (Bio-Rad™). 

2.23.1 Buffer preparation 

10X Transfer Buffer (1L) (pH 9.0) 

Glycine                                                          144g 

Tris-Base                                                        30.2g 

dH2O added up to 1L 
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Chapter 3 Investigation of glycosylation in 

flagellin biosynthesis 

3.1 Introduction 

The flagellum consists of a basal body, the hook-associated proteins and the 

filament and they are essential for bacterial motility. The flagella filament is composed 

of a polymer of flagellin proteins. There are two polar flagellins (FlaA and FlaB) and 

two lateral flagellins (LafA1 and LafA2) expressed in A. caviae. In A. caviae Sch3N, 

flagellins of the polar flagella are glycosylated 6 to 8 times by Pse5Ac7Ac using the 

enzyme Maf1 which is known to be a flagellin glycosyl transferase (Parker et al. 

2012).  

 

The structure of flagella filament from Salmonella typhimurium has been 

described and the structure of the flagellin is similar in all bacteria. Starting from the 

N-terminus there are four domains including D0, D1, D2 and D3. The C-terminal chain 

folds back to D0 to form a coiled coil (Figure 3.1). The D0 and D1 are basically buried 

inside of the structure of the filament while the central D2 and D3 domains are 

exposed at the surface when the filament is polymerised. The D2 and D3 domains are 

considered to be recognized by glycosyltransferase in bacteria such as A. caviae, 

although they are not glycosylated in Salmonella (Tabei et al. 2009; Yonekura et al. 

2003). These findings suggest that the D2 and D3 are where the flagellar 

glycosylation occurs. A recent study in A. caviae suggests that Maf directly binds the 

flagellin and is responsible for glycosylation, it does this in a chaperone independent 

manner, as deletion of the chaperone or removal of the chaperone binding domain on 

the flagellin still results in glycosylated flagellin. Although the flagellin is not secreted. 

 

The fla locus of A. caviae Sch3N is linked to the biosynthesis of polar flagella 

filament. This locus includes the genes flaA, flaB, flaG, flaH and flaJ which have been 

listed in genetic order (Rabaan et al. 2001). The flaA and flaB genes of A. caviae 

Sch3N encode two flagellin subunits. Strains that lack flaA and flaB show no motility 

and further study proved that production of polar flagellins in this strain is absolutely 

terminated (Rabaan et al. 2001). Motility and adherence drop to about 50% in the 

strain with single mutation in either flaA or flaB in which flagella are still expressed. 

This finding indicates that flaA and flaB compose flagellin with a 1:1 ratio (Rabaan et 

al. 2001). 
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In conclusion, glycosylation and assembly of flagellins of polar flagella in A. 

caviae Sch3N can be described like this: The original flagellin synthesized from FlaA 

and FlaB has a central D2/D3 domain that is glycosylated by Maf and a C-terminal 

chaperone-binding domain (CBD) which can directly interact with the chaperone FlaJ. 

It is not known where Maf binds the flagellin, but it does not appear to be the CBD as 

the removal of the CBD still results in a glycosylated flagellin. However, Maf 

glycosylates the central D2/D3 domain of the flagellin with Pse5Ac7Ac using the 

activated form of CMP-Pse5Ac7Ac as a substrate (Tabei et al. 2009; Yonekura et al. 

2003). 

 

Maf1 is thought to be bound to the central D2/D3 domain of the flagellin and uses 

CMP-Pse5Ac7Ac to glycosylate the flagellin with Pse5Ac7Ac. After that, Maf1 is 

released from the glycosylated flagellin for the next circulation (Parker et al. 2012). 

Secondly, as it was mentioned before, FlaJ is bound to the C-terminal 

chaperone-binding domain (CBD) of glycosylated flagellin (FlaA /FlaB+Pse) and this 

complex is transported to the basal body of flagellum. Finally, the glycosylated 

flagellin is discharged from intracellular environment via flagellar specific T3SS. The 

exported flagellin will be polymerized by FlaH the cap protein at the distal tip and the 

complete flagellar filament will be produced. Glycans can attach to the surface of the 

filament after flagellin is folded (Parker et al. 2012; Parker et al. 2014) (Figure 3.1). 

 

Therefore, in this chapter we wished to determine, how much of the C-terminal 

domain of the flagellin could we remove before glycosylation stopped, this would allow 

further mapping of the flagellin for glycosylation purposes. 
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Figure 3.1 Cartoon of the structure of the flagellin subunit. 

The flagellin subunit is composed of several domains, the D0 domain is 

composed of two alpha helices at both the N and C-terminal end of the polypeptide, 

as is the D1 domain. These two domains are internalized in the polymerized filament. 

The D2 and D3 domains make up the surface exposed areas of the filament and are 

the ones that are glycosylated. 

 

3.2 Construction of A. caviae flaA-flaB mutant 

In order to investigate the properties of a series of flagellin deletion constructs in A. 

caviae from the plasmid pBBR1-MCS (Cm
R
), an Aeromonas caviae flagellin negative 

background strain needed to be created. The previous one described by Rabaan 2001 

had insertions in both FlaA and FlaB, carrying chloramphenicol resistance and kanamycin 

resistance respectively. Therefore, it was decided to create an insertional deletion mutant 

strain in which part of both flaA and flaB were deleted and replaced with the selectable 

kanamycin resistance marker. 

 

In order to create this mutant, 2 DNA fragments including flaA1 and flaB2 were 

designed and obtained by PCR first and these DNA fragments represented the 5’ portion 

of flaA and 3’ portion of flaB respectively as shown in Figure 3.3. A kanamycin resistance 

cassette which is a PCR amplified Tn5-derived kanamycin resistance cartridge (nptII)) 

was also isolated. Subsequently the mobilizable suicide plasmid carrying streptomycin 
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resistance pKNG101 was digested using the restriction enzyme BamHI (Figure 3.2). All 

DNA fragments were substrates for isothermal assembly. 

 

The DNA fragments and plasmid used in Isothermal Assembly are listed in Table 3.1. 

The concentrations of all DNA samples were measured using nanodrop to ensure they 

were equimolar. After that, ISA was applied and the reaction mix was transformed into E. 

coli CC118λpir to be selected (Sm
R
 and Km

R
). Resistant colonies were isolated and the 

possible recombinant vectors were analysed by PCR screening using primers including 

flaAISAF1 and flaBISAR2 (section 2.7.4) (Figure 3.4). Then the selected 

pKNG101::flaA::Km::flaB (Figure 3.2) was confirmed by DNA sequencing and 

retransformed into E. coli S17-1 λpir for the conjugation with A. caviae Sch3N (Nal
R
). The 

strains obtained from conjugation were resistant to nalidixic acid and kanamycin and were 

replica plated on two TSA plates. They were tested to see if they were oxidase positive 

(Aeromonas) versus negative (E. coli) One TSA plate contained Nal and Km, the other 

plate contained Km and Sm. Strains that were Km resistant but Sm sensitive, were 

thought to have undergone allelic exchange through a double homologous recombination 

event. Those were subsequently checked by a diagnostic PCR using primers including 

flaAISAF1 and flaBISAR2 to confirm the result (Figure 3.5). This resulted in the flaA-flaB 

mutant strain A. caviae Sch3N flaA::Km::flaB. 

 

The size of PCR product using flaAISAF1 and flaBISAR2 as primers and A. caviae 

Sch3N (WT) genomic DNA as template is about 2500 bp. The size of PCR product 

using flaAISAF1 and flaBISAR2 as primers and A. caviae flaA::Km::flaB genomic DNA 

as template is about 2600 bp. There is a restriction cutting site which can be 

recongnized by HindIII between flaA gene and flaB gene in A. caviae Sch3N and this 

restriction cutting site is removed in A. caviae flaA::Km::flaB. In order to tell the 

difference between the above two PCR products, both of the PCR products were 

digested by HindIII. It can be observed that the PCR product (2500 bp) using A. 

caviae Sch3N (WT) genomic DNA as template was digested while the PCR product 

(2600 bp) using A. caviae flaA::Km::flaB genomic DNA as template was not digested. 

This result indicates that the flaA and flaB genes in A. caviae flaA::Km::flaB were 

knocked out by kanamycin resistance cassette insertion (Figure 3.5B). 
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Table 3.1 DNA fragments and plasmid used in ISA and primers of flaA1 and 

flaB2. Complementary termini of 40bp sequence homology were added to the 

original Km cassette, flaA1 and flaB2 genes. 

Names Sizes 

(bp) 

Primers 

flaA1 676 bp flaAISAF1: 5’ CCCCCCCCCTGCAGGTCGACGGATCTCAATACCAACGTTTCATCGC 

flaAISAR1: 5’ TCAAACATGAGAACCAAGGAGAATACTCTGAGTGCTAATACTGATCC 

flaB2 510 bp flaBAISAF2:5’ GTTTTAGTACCTAGCCAAGGTGTGCTTAGCTTGTCTCAAGCCGGAG 

flaBISAR2: 5’ GCTGCTCCTCATATCAATGATGTTGACGTTAAGGCCCGCTTAACCCAGCAGCTGCAG 

Km cassette 1492bp Kmfor: 5’ TTCTCCTTGGTTCTCATGTTTGACAGCTT 

Kmrev: 5’ GCACACCTTGGCTAGGTACTAAAACAATTC 

pKNG101 6986bp N/A 

pKNG101::flaA:

:Km::flaB 

9585bp N/A 
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(A) 

 

(B)  
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Figure 3.2 Isothermal assembly (ISA) method for construction of 

pKNG101::flaA::Km::flaB and construction of A. caviae flaA::Km::flaB 

(A) This plasmid was constructed using Isothermal assembly of the 676bp 5’ flaA1 

fragment the 1492bp KmR cassette, and the 510bp 3’ flaB2 fragment assembled into 

BamHI digested pKNG101. The PCR fragments flaA1 and flaB2 were generated with 

primers that had overhangs with the pKNG101 and kanamycin cassette (flaA1) and 

the kanamycin cassette and pKNG101 (flaB2) respectively. The four DNA fragments 

flaA1, KmR, flaB2 and pKNG101 were mixed together at equimolar concentrations 

and assembled together using ISA. 

 

(B) A diagrammatic representation of allelic exchange between the suicide vector 

construct pKNG101::flaA::Km::flaB and the flaA and flaB genes on the chromosome 

of A. caviae Sch3N following transfer of suicide plasmid from E. coli CC118λpir into 

the Aeromonas cells. Potential double crossover mutants were selected by replica 

plating. Each colony was patched on to two LB agar plates, one with kanamycin and 

nalidixic acid and the other one with kanamycin and streptomycin. Those that were 

streptomycin sensitive were taken for further investigation. The features of the 

plasmid vector are shown by arrows, the flaA gene is shown by a blue arrow, the flaB 

gene is shown by a green arrow and the Km cassette is shown by a grey arrow. The 

figure was created using SnapGene®software. 
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  1     2     3 

 

Figure 3.3 Analysis of PCR products following amplification of flaA gene 

fragment and flaB gene fragment using A. caviae Sch3N genomic DNA as 

template. 

PCR was carried out using Q5 DNA polymerase and A. caviae Sch3N genomic 

DNA. 5 ul of the PCR products were observed following electrophoresis in a 1% 

agarose gel. Primers used to amplify these products are shown in Table 3.1. Lane 1, 

2-Log linear DNA ladder (Appendix 1); lane 2, flaA1 gene fragment (676bp); lane 3, 

flaB2 gene fragment (510bp). 
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  1      2 

   

Figure 3.4 Analysis of mini-preparation of the pKNG101::flaA::Km::flaB 

plasmid. 

Plasmid DNA product was carried out using mini-preparation of plasmid DNA 

following section 2.12 protocol. 5 ul of the plasmid DNA products were observed 

following electrophoresis in a 1% agarose gel. Lane 1, supercoiled DNA ladder 

(Appendix 1); lane 2, pKNG101::flaA::Km::flaB (9585bp). 
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(A)                    (B)      

1     2            1     2   3     4 

            

Figure 3.5 Analysis of PCR products following amplification of a DNA 

fragment containing the flaA and flaB genes using A. caviae Sch3N (WT) 

and A. caviae flaA::Km::flaB genomic DNA as template. 

PCR was carried out using Q5 DNA polymerase and A. caviae Sch3N genomic 

DNA and A. caviae Sch3N flaA::Km::flaB genomic DNA. 5 ul of the PCR products 

were observed following electrophoresis in a 1% agarose gel. Primers used to amplify 

these products were shown in Table 3.1.  

 

(A) Lane 1, 2-Log linear DNA ladder; lane 2, PCR product containing flaA1 gene and 

flaB2 gene from A. caviae Sch3N (WT) (~2500bp) using flaAISAF1 and flaBISAR2 as 

primers; 

 

(B) Lane 1, 2-Log linear DNA ladder; lane 2, PCR product containing flaA1 gene and 

flaB2 gene from A. caviae flaA::Km::flaB (~2600bp) using flaAISAF1 and flaBISAR2 

as primers; lane 3, PCR product containing flaA1 gene and flaB2 gene from A. caviae 

flaA::Km::flaB after restriction enzyme digestion with HindIII; lane 4, flaA1 gene and 

flaB2 gene from A. caviae Sch3N (WT) after restriction enzyme digestion with HindIII. 
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3.3 Construction of a series of flaA gene mutants 

In order to express various flagellin deletion derivatives in the A. caviae flaA-flaB 

mutant, primers were designed to result in a sequentially smaller flagellin encoding 

PCR fragment reducing from the 3’ end. The PCR’s all used the same forward primer, 

but different reverse primers that incorporated a new stop codon that would stop 

translation of the flagellin in each of the constructs. Giving rise to a series of flagellin 

that were sequentially 6 amino acids smaller than the previous construct. Both sets of 

primers incorporated with HindIII cutting site to help with cloning. 

 

Construction of pBBR1-MCS containing flaA gene deletion constructs was 

required in this project. A series of flaA gene fragments were cloned into pBBR-1MCS 

via restriction enzyme digestion and ligation. There are 17 primers designed in this 

project (Appendix 1) and 16 kinds of flaA gene fragments that were amplified via PCR 

(Figure 3.6). After digestion with HindIII and ligation, 32 kinds of pBBR1-MCS flaA 

gene insertion were created (Table 3.2). The flaA gene fragments were cloned into 

pBBR1-MCS in both orientations due to digestion of the plasmid with a single enzyme 

and both sets of constructs would be tested in the subsequent experiments. 

 

The flaA gene and flaA gene deletions which have the same orientation as the 

plasmid lacZα gene were labeled with ”-” and the flaA gene and flaA gene deletions 

which have the opposite orientation as lacZα gene were labeled with ”+”. There is a 

lac promoter at the upstream region of the multiple cloning site (MCS) which possibly 

regulates the expression of flaA gene and flaA gene deletions inserted in the 

“-“ orientation. 

 

The constructs reduced the A. caviae FlaA flagellin from its wild-type length of 

306 amino acids in construct FlaA0 to 220 amino acids in length in construct FlaA15 

(Figure 3.6 and Table 3.3). 
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(A)                                       (B) 

  1   2   3    4    5   6   7    8        1   2  3  4   5   6  7  8   9 

          

Figure 3.6 Analysis of PCR products following amplification of flaA gene 

fragment using pBBR1-MCS-flaA series plasmids (minus orientation) as 

template.  

PCR was carried out using Q5 DNA polymerase and pBBR1-MCS-flaA series 

plasmids (minus orientation). 5 ul of the PCR products were observed following 

electrophoresis in a 1% agarose gel. Primers used to amplify these products are M13 

forward primer and M13 reverse primer.  

 

(A) Lane 1, 2-Log linear DNA ladder; lane 2, flaA1- gene fragment (1187bp); lane 3, 

flaA2- gene fragment (1169bp); lane 4, flaA3- gene fragment (1151bp); lane 5, flaA4- 

gene fragment (1133bp); lane 6, flaA5- gene fragment (1115bp); lane 7, flaA6- gene 

fragment (1097bp); lane 8, flaA7- gene fragment (1079bp). lane 9, flaA8- gene 

fragment (1061bp). 

 

(B) Lane1, 2-Log linear DNA ladder; lane 2, flaA9- gene fragment (1043bp); lane 3, 

flaA10- gene fragment (1025bp); lane 4, flaA11- gene fragment (1007bp); lane 5, 

flaA12- gene fragment (989bp); lane 6, flaA13- gene fragment (971bp); lane 7, flaA14- 

gene fragment (953bp); lane 8, flaA15- gene fragment (935bp). 
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Table 3.2 pBBR1-MCS derivatives containing flaA fragments. 

flaA gene fragment Opposite to lacZα gene 

orientation 

Same as lacZα gene 

orientation 

flaA pBBR1-MCS-flaA0+ pBBR1-MCS-flaA0- 

flaA1 pBBR1-MCS-flaA1+ pBBR1-MCS-flaA1- 

flaA2 pBBR1-MCS-flaA2+ pBBR1-MCS-flaA2- 

flaA3 pBBR1-MCS-flaA3+ pBBR1-MCS-flaA3- 

flaA4 pBBR1-MCS-flaA4+ pBBR1-MCS-flaA4- 

flaA5 pBBR1-MCS-flaA5+ pBBR1-MCS-flaA5- 

flaA6 pBBR1-MCS-flaA6+ pBBR1-MCS-flaA6- 

flaA7 pBBR1-MCS-flaA7+ pBBR1-MCS-flaA7- 

flaA8 pBBR1-MCS-flaA8+ pBBR1-MCS-flaA8- 

flaA9 pBBR1-MCS-flaA9+ pBBR1-MCS-flaA9- 

flaA10 pBBR1-MCS-flaA10+ pBBR1-MCS-flaA10- 

flaA11 pBBR1-MCS-flaA11+ pBBR1-MCS-flaA11- 

flaA12 pBBR1-MCS-flaA12+ pBBR1-MCS-flaA12- 

flaA13 pBBR1-MCS-flaA13+ pBBR1-MCS-flaA13- 

flaA14 pBBR1-MCS-flaA14+ pBBR1-MCS-flaA14- 

flaA15 pBBR1-MCS-flaA15+ pBBR1-MCS-flaA15- 
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Figure 3.7 The amino acid number of each expressed FlaA deletion 

derivative from pBBR1-MCS-flaA series plasmids 

Starting with the N-terminal chain there are four domains including D0, D1, D2 

and D3, the C-terminal chain is back to D0 to form a coiled coil. FlaA and FlaA 

deletions are listed in order of decreasing size and the amino acid number of each 

FlaA and FlaA deletions are described too. The deletions sequentially remove the 

CD0 and CD1 domain components from the C-terminal end of the flagellin. 

 

 

 

 

 

 

 

 

 

 

 

 



69 

 

Table 3.3 The pBBR1-MCS-flaA series plasmids and components amino acid 

number of each expressed FlaA deletion. 

Name of plasmid Name of expressed protein  Number of amino 

acids 

pBBR1-MCS-flaA 0- FlaA 306 

pBBR1-MCS-flaA1- FlaA1- 304 

pBBR1-MCS-flaA2- FlaA2- 298 

pBBR1-MCS-flaA3- FlaA3- 292 

pBBR1-MCS-flaA4- FlaA4- 286 

pBBR1-MCS-flaA5- FlaA5- 280 

pBBR1-MCS-flaA6- FlaA6- 274 

pBBR1-MCS-flaA7- FlaA7- 268 

pBBR1-MCS-flaA8- FlaA8- 262 

pBBR1-MCS-flaA9- FlaA9- 256 

pBBR1-MCS-flaA10- FlaA10- 250 

pBBR1-MCS-flaA11- FlaA11- 244 

pBBR1-MCS-flaA12- FlaA12- 238 

pBBR1-MCS-flaA13- FlaA13- 232 

pBBR1-MCS-flaA14- FlaA14- 226 

pBBR1-MCS-flaA15- FlaA15- 220 

 

3.4 Swimming motility assay of A. caviae flaA-flaB 

mutant and complemented strains. 

Mutation of the fla locus genes have been shown to affect motility (Rabaan et al. 

2001). In order to determine the influence of the flaA constructs on swimming motility 

of A. caviae Sch3N, swimming motility assays were carried out with the A. caviae 

Sch3N wild-type (WT), the A. caviae flaA-flaB mutant and the mutant complemented 

with pBBR1-MCS-flaA series plasmids. 
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The A. caviae flaA-flaB mutant (pBBR1-MCS-flaA0-) strain was created via 

conjugation of the A. caviae flaA-flaB mutant and S17-1 λpir (pBBR1-MCS-flaA0-). 

The A. caviae flaA-flaB mutant (pBBR1-MCS-flaA0+) was created via conjugation of A. 

caviae flaA-flaB mutant and S17-1 λpir (pBBR1-MCS-flaA0+). The plasmids 

pBBR1-MCS-flaA0+ and pBBR1-MCS-flaA0- were transfered into the A. caviae 

flaA-flaB mutant to see if these plasmids can compensate the swimming ability of A. 

caviae flaA-flaB mutant and to determine if the presentation of the gene in the plasmid 

had any effect on the complementation assay. 

 

When tested for the ability to swim though semi-solid motility agar as expected 

the A. caviae flaA-flaB mutant strain was found to be non-motile compared to 

wild-type (WT) (Figure 3.8 and Figure 3.9). A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA0+) strain was found to be non-motile which means the motility 

deficiency of A. caviae flaA-flaB mutant was not compensated. The A. caviae flaA-flaB 

mutant (pBBR1-MCS-flaA0-) was found to be motile which means the motility 

deficiency of the A. caviae flaA-flaB mutant was compensated (Figure 3.8 and Figure 

3.9). Six motility plates were set up and three repeats were carried out (18 plates in 

total). Plasmids containing flaA1+~flaA15+ and flaA1-~flaA15- did not show the ability 

to compensate the motility deficiency of A. caviae flaA-flaB mutant (Data not shown). 
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(A)                                           (B) 

             

(C)                                           (D) 

          

(E)                                           (F) 
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Figure 3.8 Swimming motility assay of A. caviae Sch3N (WT), A. caviae 

flaA-flaB mutant and complemented strains 

Strains were incubated at room temperature for 16 hours. Motility was assessed by 

the production of a halo caused by bacterial migration.Strains of A. caviae Sch3N 

tested for motility on 0.25% motility agar. 

(A) shows A. caviae flaA-flaB mutant is non-motile on swimming motility agar. 

 

(B) shows A. caviae flaA-flaB mutant (pBBR1-MCS-flaA0-) is motile on swimming 

motility agar. 

 

(C) shows A. caviae flaA-flaB mutant (pBBR1-MCS-flaA0+) is non-motile on 

swimming motility agar. 

 

(D) shows A. caviae flaA-flaB mutant (pBBR1-MCS-flaA1-) is non-motile on swimming 

motility agar.  

 

(E) shows A. caviae flaA-flaB mutant (pBBR1-MCS-flaA1+) is non-motile on 

swimming motility agar.  

 

(F) shows A. caviae Sch3N (WT) is motile on swimming motility agar. 
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Figure 3.9 Quantification of the swimming assays of A. caviae Sch3N (WT) 

and mutant strains.  

The swimming diameter of each strain was measured on the swimming agar after 

overnight incubation at 37°C. The swimming diameters were significantly lower in the 

flaA-flaB mutant when compared to the A. caviae Sch3N wild type (p<0.001). The 

swimming diameters of A. caviae flaA-flaB mutant (pBBR1-MCS-flaA0+) was 

considerably greater than the untransformed mutant, thereby demonstrating 

complementation. A. caviae flaA-flaB mutant (pBBR1-MCS-flaA1-) and A. caviae 

flaA-flaB mutant (pBBR1-MCS-flaA1+) were significantly decreased when compared 

to the A. caviae Sch3N wild type (p<0.001). The swimming diameters were measured 

3 times for each strain. The error bars showed Standard Error of the Mean (SEM). 

The significance was determined using Student’s t-test. 
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3.5 Western blotting of FlaA deletion derivatives in 

complemented strains 

In order to determine how much of the C-terminal section of the flagellin is 

required for glycosylation and to begin to determine where Maf1 binds flagellin 

western blot analysis was performed to see if the deletion constructs were still able to 

be glycosylated. 

 

In order to test the functions of FlaA deletion derivatives in glycosylation in the A. 

caviae Sch3N, protein expressions of the flaA gene deletions were attempted. 

Plasmids containing modified flaA genes have been constructed and transferred into 

A. caviae flaA-flaB mutant. The construct pBBR1-MCS-flaA0- has been shown to be 

able to to compensate the motility deficiency of A. caviae flaA-flaB mutant and this 

finding suggests the plasmids containing flaA0-~flaA15- are functional in the A. caviae 

flaA-flaB mutant and these conjugated strains are all capable of expressing FlaA. 

Based on that, all these 16 plasmids were selected to be conjugated with A. caviae 

flaA-flaB mutant and tested by Western blotting. Each conjugated strain will express a 

particular modified FlaA protein which is missing a small part of amino acid sequence 

at its C-terminal. There are 2 antibodies applied in this experiment, anti-polar flagellin 

antibody is designed to recognize glycosylated FlaA and anti-FlaA antibody is 

designed to recognize total FlaA, glycosylated or unglycosylated. 

 

The wild-type, mutant and complemented mutant strains were grown in broth 

overnight at 37°C, the OD of each culture was normalised and the load sample 

harvested by centrifugation. The pellet was boiled in SDS-PAGE sample buffer and 

then the proteins were separated by 12% SDS-PAGE and blotted onto nitrocellulose 

membrane. The membrane was then probed with the rabbit anti-polar flagellin 

antibody that only recognises the glycosylated version of the Aeromonas polar 

flagellin. The polar flagellins are present in the wild-type sample but absent in the 

mutant as expected (Figure 3.10). The glycosylated flagellin is detected in the mutant 

expressing FlaA0- at the same size as the wild type (Figure 3.10). The FlaA deletion 

derivatives expressed by pBBR1-MCS-flaA1- to pBBR1-MCS-flaA15- were partially 

detected by anti-polar flagellin antibody. There were only 5 samples including FlaA15, 

FlaA13, FlaA11, FlaA9 and FlaA 7 detected (Figure 3.10). The FlaA deletion 

derivatives expressed by pBBR1-MCS-flaA10-~ pBBR1-MCS-flaA15- were probed 

with the Anti-FlaA antibody to confirm the expressions of these proteins and part of 

these proteins were detected by Anti-FlaA antibody (Figure 3.11).  
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The cultures of A. caviae flaA-flaB mutant (pBBR1-MCS-flaA8-) and A. caviae 

flaA-flaB mutant (pBBR1-MCS-flaA9-) were sonicated and separated into insoluble 

fraction and soluble fraction to determine the solubility of FlaA8- expressed by 

pBBR1-flaA8- and FlaA9- expressed by pBBR1-MCS-flaA9- (Figure 3.12). 
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(A) 

   1    2    3     4     5     6    7    8    9   10   11   12 

 

(B) 

   1     2    3    4     5     6    7     8       9 

 

Figure 3.10 Analysis of FlaA and FlaA deletion derivatives from A. caviae 

strains. 

All strains were grown in BHIB at 37°C for overnight. 20 µl of total proteins from 

each strain were electrophoresed in a 12% SDS polyacrylamide gel. The gel was 

applied to be analysed by Western Blot following section 2.22 protocol and flagellins 

(~35Da) from A. caviae strains were selected via rabbit anti-polar flagellin antibody 

and anti-rabbit HRP. The flagellin FlaA in the mutant background was observed to be 

sequentially smaller in size from FlaA1 to FlaA9 after which the glycosylated Flagellin 

is not detected. 

(A) lane 1, A. caviae Sch3N wild-type (WT); lane 2, A. caviae flaA-flaB mutant; lane 3, 

A. caviae flaA-flaB mutant (pBBR1-MCS-flaA0-); lane 4, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA1-); lane 5, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA2-); lane 6, 

A. caviae flaA-flaB mutant (pBBR1-MCS-flaA3-); lane 7, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA4-); lane 8, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA5-); lane 9, 

A. caviae flaA-flaB mutant (pBBR1-MCS-flaA6-); lane 10, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA7-); lane 11, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA8-); lane 

12, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA9-) 

 

(B) lane 1, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA8-); lane 2, A. caviae flaA-flaB 

mutant (pBBR1-MCS-flaA9-); lane 3, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA10-); lane 4, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA11-); lane 

5, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA12-); lane 6, A. caviae flaA-flaB 
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mutant (pBBR1-MCS-flaA13-); lane 7, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA14-); lane 8, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA15-); lane 

9, A. caviae Sch3N wild-type (WT). 

 

1      2     3    4      5    6     7     8       9    10   11 

 

Figure 3.11 Analysis of FlaA and FlaA deletion derivatives from A. caviae 

strains. 

All strains were grown in BHIB at 37°C for overnight. 20 ul of total proteins from 

each strain were electrophoresed in a 12% SDS polyacrylamide gel. The gel was 

applied to be analysed by Western Blot following section 2.22 protocol and flagellins 

(~35Da) from A. caviae strains were selected via rat anti-FlaA antibody and 

anti-mouse HRP. The flagellin FlaA in the mutant background to be observed to 

sequentially get large in size from FlaA15 to FlaA7. Lane 1, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA15-); lane 2, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA14-); 

Lane 3, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA13-); Lane 4, A. caviae flaA-flaB 

mutant (pBBR1-MCS -flaA12-); lane 5, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA11-); lane 6, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA10-); lane 

7, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA9-); lane 8, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA8-); lane 9, A. caviae flaA-flaB mutant (pBBR1-MCS-flaA7-); lane 

10, A. caviae flaA-flaB mutant; lane 11, A. caviae Sch3N wild-type (WT). 
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       1       2       3       4 

 

Figure 3.12 Analysis of FlaA deletion derivatives from A. caviae strains. 

FlaA8- and FlaA9- were expressed from pBBR1-MCS-flaA8- and 

pBBR1-MCS-flaA9- in A. caviae flaA-flaB mutant background. Cells were grown in LB 

broth at 37°C with 1mM IPTG addition for 3 hours. Cells were disrupted by sonication 

and separated into soluble and insoluble fractions (supernatant and pellet) by 

centrifugation. 20 ul of total proteins from each strain were electrophoresed in a 12% 

SDS polyacrylamide gel. The gel was applied to be analysed by Western Blot 

following section 2.22 protocol and flagellins (~35Da) from A. caviae strains were 

selected via rabbit anti-polar flagellin antibody and anti-rabbit HRP. Lane 1, A. caviae 

flaA-flaB mutant (pBBR1-MCS-flaA8-) (insoluble fraction); Lane 2, A. caviae flaA-flaB 

mutant (pBBR1-MCS-flaA9-) (insoluble fraction); Lane 3, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA8-) (soluble fraction); Lane 4, A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA9-) (soluble fraction). 

 

3.6 Discussion 

The fla locus of A. caviae Sch3N is linked to the biosynthesis of polar flagella 

filament. This locus includes flaA, flaB, flaG, flaH and flaJ which have been listed in 

genetic order (Rabaan et al. 2001). 

 

The flaA and flaB of A. caviae Sch3N encode two flagellin subunits. Strain that 

lacks flaA and flaB shows no motility and further study proved that production of 

flagellins in this strain is absolutely terminated (Rabaan et al. 2001). Motility and 

adherence drop to about 50% in the strain with single mutation in flaA or flaB in which 

flagella are still expressed. This finding indicates that flaA-flaB compose flagellin with 

a 1:1 ratio (Rabaan et al. 2001). 

 

In this project, A. caviae flaA-flaB mutant was constructed. This mutant shows no 

motility therefore, it agrees with the findings of Rabaan et al (2001) and it is suitable 
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for the investigation of flaA. 

 

Expression of the complete flaA gene (flaA0) in the minus orientation resulted in 

complementation, whereas in the plus orientation it did not, this suggests expression 

of the flagellin is better or greater in the minus orientation. The possible reason for this 

result is the regulation of lac promoter. 

 

Based on the result from this project, pBBR1-MCS-flaA0- can partially restore the 

swimming ability of A. caviae flaA-laB mutant and pBBR1-MCS-flaA0+ can not restore 

the swimming ability of A. caviae flaA-flaB mutant. Besides, pBBR1-MCS-flaA1+~ 

pBBR1-MCS-flaA15+ are all failure to restore the swimming ability of A. caviae 

flaA-flaB mutant and the same result was observed from 

pBBR1-MCS-flaA1-~pBBR1MCS-flaA15-. This finding indicates that 

pBBR1-MCS-flaA0+~pBBR1MCS-flaA15+ are not functional in the conjugated strains 

and pBBR1-MCS-flaA0-~pBBR1-MCS-flaA15- are all functional and producing FlaA 

or modified FlaA in the conjugated strains. The failure to restore the swimming ability 

for pBBR1-MCS-flaA1-~pBBR1-MCS-flaA15- is probably caused by the deletion of 

chaperone binding domain of FlaA (parker 2014). The deletion of chaperone binding 

domain of FlaA leads to the failure of binding of FlaJ and result in the failure of export 

of flagellin. 

 

For the next step, the strains including A. caviae flaA-flaB mutant 

(pBBR1-MCS-flaA1-) to A. caviae flaA-flaB mutant (pBBR1-MCS-flaA15-) are all 

selected for Western Blotting of flagellin detection. According to the Western Blotting 

results, the FlaA deletion expressed by pBBR1-MCS-flaA8- was glycosylated and 

FlaA deletion expressed by pBBR1-MCS-flaA10- was unglycosylated.  

 

The N and C-terminal D0 and D1 domains of bacterial flagellins are usually 

essential for the chaperone binding, export and polymerization and these domains are 

usually conserved(Auvray et al. 2001). It has been proved that the FlaA without the 

C-terminal chaperone-binding domain (CBD amino acids 261–306) still can be 

glycosylated but it is unable to bind FlaJ in A. caviae which means the chaperone 

binding domain of FlaA is not required for glycosylation of flagellin (Parker et al. 2014). 

In this experiment, the amino acids 220–306 from C-terminal chaperone-binding 

domain were sequentially deleted to determine the function of these amino acids. 

Based on the result of Western Blotting in section 3.15, it has been confirmed that 
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FlaA which lacks the CBD amino acids 220-250 can not be glycosylated and FlaA 

which lacks the CBD amino acids 256-306 can be glycosylated. This result suggested 

that the Site of Maf bind is required is around amino acids 256-250. Further 

experiment will be applied to determine if Maf1 can bind these FlaA deletion 

derivatives. Wether the FlaA deletion derivatives which lack the CBD amino acids 

256-306 can bind the Maf1 will be investigated in the future. 

 

With the help of Anti-FlaA antibody, FlaA deletions expressed by 

pBBR1-MCS-flaA7- to pBBR1-MCS-flaA15- have been partially detected and this 

finding confirmed that the flagellins after deletion of CBD amino acids 220-250 were 

still expressed but unglycosylated. However, FlaA14-, FlaA12- and FlaA10- were not 

detected by anti-FlaA antibody and the reason for that may be the samples were not 

prepared properly or the plasmids did not express well. It can be observed form figure 

3.11 that the bands are getting shallow from FlaA to FlaA15- which indicates that the 

abilities of binding anti-FlaA antibody of FlaA deletion derivatives are reducing. The 

explanation for this result may be the loss of C-terminal amino acids. 

 

In order to reconstruct the glycosylation of FlaA in vitro, a source of soluble FlaA 

deletion derivative which still can be glycosylated is required. The FlaA8- expressed 

by pBBR1-MCS-flaA8- and FlaA9- expressed by pBBR1-MCS-flaA9- have been 

tested and the result indicates that the FlaA8- and FlaA9- were both detected in the 

soluble fractions. This finding suggests that FlaA8- and FlaA9- are soluble and 

glycosylated which are suitable for the further experiments. 

 

3.7 Conclusion 

However, expression of FlaA0- only resulted in partial (50%) recovery of motility 

in the mutant strain, this is in agreement with Rabaan et al 2001 that created better 

single mutant in both flaA gene and flaB gene instead of double mutant in flaA gene 

and flaB gene. This suggests that both flagellins are required for optimal flagella 

filament function. Or that the expression leads of the flagellins are not optimal. 

However, on comparation with the normal western blot the flagellin levels of the flaA0- 

expressing strain do not look great selected compared to the wild type (Figure 3.7). 

 

The plasmids including pBBR1-MCS-flaA0+~pBBR1-MCS-flaA15+ and 
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pBBR1-MCS-flaA0-~pBBR1-MCS-flaA15- are all functional and producing FlaA or 

modified FlaA in the conjugated strains. pBBR1-MCS-flaA0- can produce fully 

functional FlaA and partialy restore the swimming ability of A. caviae flaA-flaB mutant. 

pBBR1-MCS-flaA0+ can not restore the swimming ability of A. caviae flaA-flaB mutant 

(Figure 3.8). The rest of all plasmids with flaA gene deletion can not restore the 

swimming ability of A. caviae flaA-flaB mutant. This result indicates that complete 

FlaA encoded by pBBR1-MCS-flaA0- is essential for the flagella assembly and 

deletion in flaA gene will result in absence of functional flagella.  

 

Deletion strains including A. caviae flaA-laB mutant (pBBR1-MCS-flaA1-) ~A. 

caviae flaA-flaB mutant (pBBR1-MCS-flaA15-) are non-motile. This result is probably 

caused by not bound correctly by FlaJ (CBD removed) (Parker et al. 2012). Western 

Blotting of these FlaA deletions shows that FlaA0- to FlaA9- were all glycosylated and 

FlaA10- to FlaA15- were all unglycosylated (Figure 3.10 and Figure 3.11). This result 

suggested that the Site of Maf bind is required is around amino acids 256-250. The 

flagellins after deletion of CBD amino acids 220-250 were still expressed but 

unglycosylated and FlaA10- to FlaA15 did not decomposed. The FlaA8- expressed by 

pBBR1-MCS-flaA8- and FlaA9- expressed by pBBR1-MCS-flaA9- have been tested 

and the result indicates that the FlaA8- and FlaA9- were both detected in the soluble 

fractions (Figure 3.12). This finding suggests that FlaA8- and FlaA9- are soluble and 

glycosylated which are suitable for the further experiments. 
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Chapter 4 Investigation of pseudaminic acid 

biosynthesis in Aeromonas caviae 

4.1 Introduction 

Recently, a flm locus of A. caviae Sch3N was identified. This locus which includes 

flm genes consists of flmA(PseB), flmB(PseC), neuA(PseF), flmD(PseG/H), and 

neuB(PseI). Following the flm locus, there are lsg and lst which encode the LPS 

O-antigen flippase and transferase respectively (Tabei et al. 2009). In A. caviae 

Sch3N, the flm locus is involved in both flagellin glycosylation and lipopolysaccharide 

(LPS) O-antigen(O-Ag) biosynthesis, the mutants without these genes lost motility, 

flagella, and their LPS O-antigen (Gryllos et al. 2001). 

 

Based on the papers published before, LPS O-antigen biosynthesis and flagellin 

glycosylation can be cross correlated. In A. caviae Sch3N, the flagellin is 

O-glycosylated with Pse5Ac7Ac while the LPS contains the same sugar (Tabei et al. 

2009; Parker et al. 2012). Based on the two mechanisms summarized above, it is 

clear that Pse5Ac7Ac acts as a pivotal factor which connects the two mechanisms 

with glycosylation. Because of that, the investigation of the proteins involved in 

Pse5Ac7Ac biosynthetic pathway becomes very valuable. NeuA which directly 

interacts with Pse5Ac7Ac is a crucial target that has been applied in this project. 

 

LPS is consists of a lipid portion, a core oligosaccharide (OS) and an O-specific 

polysaccharide which is known as the O-antigen (Nikaido 1996; Whitfield and Valvano 

1993). The surface-exposed LPS O-antigen which is required for virulence in many 

pathogenic bacteria prevents the cell from elimination by immune system (Tomás 

2012). 

 

The genes and proteins for the synthesis of Pse5Ac7Ac have been studied in the 

pathogen C. jejuni and H. pylori and the biosynthetic pathway has been elucidated 

and in order to investigate the Pse5Ac7Ac glycosylation of the Aeromas flagellin 

further, a source of CMP-Pse5Ac7Ac was needed. Therefore, attempts to reconstruct 

the biosynthetic pathway were undertaken. 
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4.2 Construction of A. caviae flmA mutant and A. 

caviae neuA mutant 

NeuA of A. caviae which is CMP-sugar synthetase is an important target of this 

project and the function of this protein has been investigated via the homologous 

proteins in other bacteria. In order to determine the role of neuA in A. caviae, a mutant 

strain that lacks neuA was constructed in this project. As the previous mutant made in 

the lab was shown to be polar and effect the expression of downstream genes. 

 

Furthermore, we wished to see the effect of an N-terminal His-tag on the function 

of the enzyme in A. caviae. As a previous attempt to over-express the NeuA protein in 

E. coli had resulted in an insoluble protein. Therefore, an alternative approach to 

express His-containing NeuA in A. caviae was considered. 

 

In order to create this mutant, 2 DNA fragments, neuA1 and neuA2, were 

designed and obtained by PCR first and these DNA fragments represented the 5’ and 

3’ portions of neuA respectively (Figure 4.2A). Then the Km cassette which is a PCR 

amplified Tn5-derived kanamycin resistance cartridge (nptII)) and pKNG101 digested 

with BamHI were prepared. The DNA fragments and plasmid used in ISA are listed in 

Table 4.1. The concentrations of all DNA samples were measured using nanodrop. 

After that, ISA was applied and the reaction mix was transformed into E. coli 

CC118λpir to be selected (SmR and KmR). Resistant colonies were isolated and the 

possible recombinant vectors were analysed by PCR screening (section 2.7.4). Then 

the selected pKNG101::neuA::Km construct (Figure 4.3) was confirmed by DNA 

sequencing and retransformed into E. coli S17-1 λpir for the conjugation with A. 

caviae Sch3N (NalR) (Figure 4.3). The strains obtained from conjugation were grown 

on two TSA plates. One TSA plate contains kanamycin and nalidixic acid, the other 

plate contains kanamycin and streptomycin. Strains that were kanamycin resistant but 

streptomycin sensitive, were thought to have undergone allelic exchange through a 

double homologous recombination event. Those strains were subsequently checked 

by a diagnostic PCR to confirm the result (Figure 4.4). This resulted in the neuA 

mutant strain A. caviae Sch3N neuA::Km. 

 

The function of flmA was also been looked into. The strain A. caviae Sch3N 

flmA::Km was constructed in this project via a similar way. 2 DNA fragments, flmA1 

and flmA2, were designed and obtained by PCR and these DNA fragments 
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represented the 5’ and 3’ portions of flmA respectively (Figure 4.1). Then the strain A. 

caviae Sch3N flmA::Km was created in a similar way as above strain A. caviae Sch3N 

neuA::Km.  

 

Table 4.1 DNA fragments and plasmid used in ISA and primers of neuA1 and 

neuA2. Complementary termini of 40bp sequence homology were added to 

the original Km cassette, neuA1 and neuA2 genes. 

Names Sizes 

(bp) 

Primers 

neuA1 345+40bp NeuAISAF1: 5’CCCCTGCAGGTCGACGGATCAATATTGCCATCATCCCTGC 

NeuAISAR1: 5’ACATGAGGACCAAGGAGAATATCATCAGGCTCAACAAAAGGT 

neuA2 328+40bp NeuAISAF1:5’AGTACCTAGCCAAGGTGTGCTGCCAGGGATTAGAATTGTTAACGT 

NeuAISAR2: 5’ACTTATGGTACCCGGGGATCGCGTAAATAGCTTCTCAGCAC 

flmA1 539bp FlmA-ISA1-F:5’ CCCCCCCCCTGCAGGTCGACGGATCATTAATCACAGGTGGTACGGG 

FlmA-ISA1-R:5’ GTCAAACATGAGAACCAAGGAGAATCCATAGCGAACTACACTGAATC 

flmA2 553bp FlmA-ISA2-F:5’ GTTTTAGTACCTAGCCAAGGTGTGCAATGTAATGGGGTCTCGGG 

FlmA-ISA2-R:5’ CTTCTACTTATGGTACCCGGGGATTCACACTTCAAAGTTGGCATCT 

Km cassette 1452+40bp Kmfor: 5’ TTCTCCTTGGTTCTCATGTTTGACAGCTT 

Kmrev: 5’ GCACACCTTGGCTAGGTACTAAAACAATTC 

pKNG101 6986bp N/A 

pKNG101::neuA::Km 9115bp N/A 

pKNG101::flmA::Km 9434bp N/A 
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(A) 

  

(B)  
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(C) 

 

(D) 
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Figure 4.1 Isothermal assembly (ISA) method for constructions of 

pKNG101::neuA::Km and pKNG101::flmA::Km and constructions of A. 

caviae neuA::Km and of A. caviae flmA::Km. 

. 

(A) This plasmid was constructed using Isothermal assembly of the 385bp 5’ neuA 

fragment the 1452+40bp Km cassette, and the 368bp 3’ neuA fragment assemble into 

BamHI digested pKNG101. Arrows show the direction of selected open reading 

frames and the sites of primers are induced. The PCR fragments neuA1 and neuA2 

were generated with primers that had overhangs with the pKNG101 and kanamycin 

cassette (neuA1) and the kanamycin cassette and pKNG101 (neuA2) respectively. 

The four DNA fragments neuA1, Km, neuA2 and pKNG101 were mixed together at 

equimolar concentrations and assembled together using ISA. 

 

(B) A diagrammatic representation of allelic exchange between the suicide vector 

construct pKNG101::neuA::Km and the neuA gene on the chromosome of A. caviae 

Sch3N following conjugation of suicide plasmid from E. coli S17-1-λpir into the 

Aeromonas cells. Potential double crossover mutants were selected by replica plating. 

Each colony was patched on to two LB agar plates, one with kanamycin and nalidixic 

acid and the other one with kanamycin and streptomycin. Those that were 

streptomycin sensitive were taken for further investigation. The features of the 

plasmid vector were shown in arrows. The neuA gene was shown in purple arrow and 

the KmR cassette was shown in grey arrow. The figure was created using 

SnapGene®software 

 

(C)This plasmid was constructed using Isothermal assembly of the 539bp 5’ flmA 

fragment, the 1452+40bp Km cassette, and the 553bp 3’ flmA fragment to be 

assembled into BamHI digested pKNG101. Arrows show the direction of selected 

open reading frames and the sites of primers are induced. The PCR fragments flmA1 

and flmA2 were generated with primers that had overhangs with the pKNG101 and 

Km cassette (flmA1) and the Km cassette and pKNG101 (flmA2) respectively. The 

four DNA fragments flmA1, Km cassette, flmA2 and pKNG101 were mixed together at 

equimolar concentrations and assembled together using ISA. 

 

(D) A diagrammatic representation of allelic exchange between the suicide vector 

construct pKNG101::flmA::Km and the flmA gene on the chromosome of A. caviae 

Sch3N following conjugation of suicide plasmid from E. coli S17-1-λpir into the 
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Aeromonas cells. Potential double crossover mutants were selected by replica plating. 

Each colony was patched on to two LB agar plates, one with kanamycin and nalidixic 

acid and the other one with kanamycin and streptomycin. Those that were 

streptomycin sensitive were taken for further investigation. The features of the 

plasmid vector were shown in arrows. The flmA gene was shown in purple arrow and 

the KmR cassette was shown in grey arrow. The figure was created using 

SnapGene®software. 

 

(A)                           (B)   

      1     2     3            1     2     3 

       

Figure 4.2 Analysis of PCR products following amplification of (A) neuA 

gene fragment 1 and neuA gene fragment 2, (B) flmA gene fragment 1 

and flmA gene fragment 2 using A. caviae Sch3N genomic DNA as 

template. 

PCR was carried out using Pfx DNA polymerase and A. caviae Sch3N genomic 

DNA. 5 ul of the PCR products were observed following electrophoresis in a 1% 

agarose gel. Primers used to amplify these products are shown in Table 3.1. (A) 

Lane1, Q-step4 linear DNA ladder; lane 2, neuA gene fragment 1 (~380bp); lane 3, 

neuA gene fragment 2 (~360bp); (B) Lane1, Q-step4 linear DNA ladder; lane 2, flmA 

gene fragment 1 (539bp); lane 3, flmA gene fragment 2 (553bp). 
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(A)                   (B) 

     1        2            1        2 

       

Figure 4.3 Analysis of mini-preparation of the pKNG101::neuA::Km and 

pKNG101::flmA::Km plasmids. 

Plasmid DNA product was purified using the mini-preparation protocol (section 

2.12). 5 ul of the plasmid DNA products were observed following electrophoresis in a 

1% agarose gel. (A) Lane1, supercoiled DNA ladder; lane 2, pKNG101::neuA::Km; (B) 

Lane1, supercoiled DNA ladder; lane 2, pKNG101::flmA::Km. 
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(A)                     (B) 

    1     2    3          1    2 

         

Figure 4.4 Analysis of (A) neuA gene from A. caviae Sch3N (WT) and A. 

caviae neuA::Km strain, (B) flmA gene from A.caviae flmA::Km strain. 

PCR was carried out using Taq DNA polymerase and A. caviae Sch3N (WT) 

genomic DNA and A. caviae Sch3N neuA::Km genomic DNA. 5 ul of the PCR 

products were observed following electrophoresis in a 1% agarose gel. Primers used 

to amplify these products are shown in Table 3.1. (A) Lane1, 2-Log linear DNA ladder; 

lane 2, neuA gene from A. caviae neuA::Km strain (~2000bp); lane 3, neuA gene from 

A. caviae Sch3N (WT) (~700bp); (B) Lane1, 2-Log linear DNA ladder; lane 2, flmA 

gene from A. caviae flmA::Km strain (~2500bp) . 

4.3 Swimming motility assay of A. caviae neuA mutant 

and A. caviae flmA mutant 

Mutation of the flm locus genes have been shown to affect motility and the LPS of 

A. caviae (Gryllos et al. 2001). In order to determine the influence of neuA on 

swimming motility of A. caviae Sch3N, swimming motility assays were carried out with 

the A. caviae Sch3N wild-type (WT), the A. caviae neuA mutant and the previously 

constructed complementary strains A. caviae neuA mutant (pBBR1-MCS-neuA) and 

A. caviae neuA mutant (pBBR1-MCS-neuA-His). The plasmid pBBR1-MCS-neuA-His 

indicates that the neuA gene was attached with a polyhistidine-tag at the N-terminal. A. 

caviae neuA mutant (pBBR1-MCS-neuA) was created via conjugation of A. caviae 

neuA mutant and S17-1 λpir (pBBR1-MCS-neuA). A. caviae neuA mutant 

(pBBR1-MCS-neuA-His) was created via conjugation of A. caviae neuA mutant and 
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S17-1 λpir (pBBR1-MCS-neuA-His). The plasmids including pBBR1-MCS-neuA and 

pBBR1-MCS-neuA-His were provided by former researcher and they were 

conjugated with the A. caviae neuA mutant to see if these plasmids can compensate 

the swimming ability of A. caviae neuA mutant. Four motility plates were set up and 

three repeats were carried out (12 plates in total).  

 

The A. caviae neuA strain was found to be non-motile compared to wild-type 

(WT). A. caviae neuA mutant (pBBR1-MCS-neuA) strain was found to be motile which 

means the motility deficiency of A. caviae neuA mutant was compensated. The A. 

caviae neuA mutant (pBBR1-MCS-neuA-His) was found to be motile which means the 

motility deficiency of A. caviae neuA mutant was compensated (Figure 4.5). 

Furthermore, the addition of the N-terminal His-tag to NeuA did not affect the 

functionality of the enzyme. 

 

In order to determine the influence of flmA on swimming motility of A. caviae 

Sch3N, swimming motility assays were carried out with the A. caviae Sch3N wild-type 

(WT), the A. caviae flmA mutant. The A. caviae flmA mutant strain was found to be 

non-motile compared to wild-type (WT) (Figure 4.5 and Figure 4.6).  
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(A)                                    (B) 

      

(C)                                (D) 

          

(E)                             
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Figure 4.5 Swimming motility assay of A. caviae Sch3N (WT), A. caviae 

flmA mutant, A. caviae neuA mutant and complemented strains.  

Strains were incubated at room temperature for 16 hours. Motility was assessed 

by the production of a halo caused by bacterial migration. Strains of A. caviae Sch3N 

tested for motility on 0.25% motility agar.  

 

(A) Shows A. caviae neuA::Km is non-motile on swimming motility agar. Figure  

 

(B) Shows A. caviae neuA::Km (pBBR-neuA) is motile on swimming motility agar.  

 

(C) Shows A. caviae neuA::Km (pBBR-neuA-His) is motile on swimming motility agar.  

 

(D) Shows A. caviae Sch3N (WT) is motile on swimming motility agar.  

 

(E) Shows A. caviae flmA::Km is non-motile on swimming motility agar. 
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Figure 4.6 Quantification of the swimming assays of A. caviae Sch3N (WT) 

and mutant strains.  

The swimming diameter of each strain was measured on the swimming agar after 

overnight incubation at 37°C. The swimming diameters were significantly lower in the 

neuA mutant when compared to the A. caviae Sch3N wild type (p<0.001), while there 

was no significant difference of swimming diameter among the A. caviae neuA::Km 

(pBBR1-MCS-neuA) strain, A. caviae neuA::Km (pBBR1-MCS-neuA-His) strain and A. 

caviae Sch3N wild type strain (p>0.05). The swimming diameters of A. caviae flmA 

mutant was significantly decreased when compared to the A. caviae Sch3N wild type 

(p<0.001). The swimming diameters were measured 3 times for each strain. The error 

bars showed Standard Error of the Mean (SEM). The significance was determined 

using Student’s t-test. 
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4.4 LPS analysis and flagellin analysis of A. caviae 

Sch3N neuA::Km 

As previously shown, mutation of the flm locus affects the LPS of A. caviae (Tabei 

et al. 2009; Gryllos et al. 2001). LPS of the wild-type, mutant strain A. caviae Sch3N 

neuA::Km and complemented strains were investigated. In order to determine the role 

of neuA in LPS biosynthesis of A. caviae Sch3N, LPS extraction was applied in this 

project. The products of LPS extraction of A. caviae Sch3N wild-type (WT), A. caviae 

neuA mutant (pBBR1-MCS-neuA), A. caviae neuA mutant (pBBR1-MCS-neuA-His) 

and A. caviae neuA mutant were loaded and subjected to SDS-PAGE. The gel was 

then silver stained (Figure 4.7). The wild-type strain and the complemented strains 

possess both the A and B bands as previously described by Gryllos et al (2001) and 

Tabei et al (2009). Band B that represents the core plus O-antigen is missing from the 

A. caviae neuA mutant strain. 

 

To confirm the lack of motility phenotype observed for the mutant strain, the 

strains were probed for the production of flagellin protein, the whole-cell proteins of 

these mutants and wild-type were separated by SDS-PAGE. Then western blot was 

applied with rabbit anti-polar flagellin antibody and anti-rabbit HRP conjugate antibody. 

Figure 4.8 of Western bolt showed polar flagellins were absent in A. caviae neuA 

mutant and polar flagellin was present in the A. caviae Sch3N wild-type (WT), A. 

caviae neuA mutant (pBBR1-MCS-neuA) and A. caviae neuA mutant 

(pBBR1-MCS-neuA-His) strains (Figure 4.7). 
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Figure 4.7 Analysis of LPS extracted from WT and neuA mutant A. caviae 

strains. 

LPS was extracted from A. caviae Sch3N wild-type (WT), A. caviae neuA mutant, 

A. caviae neuA mutant (pBBR1-MCS-neuA) and A. caviae neuA mutant 

(pBBR1-MCS-neuA-His) and analysed by SDS-PAGE (12%) and silver stained 

according to section 2.17 and 2.18 protocols. Cells were grown in BHIB at 37°C for 

overnight. Lane 1, LPS from A. caviae Sch3N wild-type (WT); Lane 2, LPS from A. 

caviae neuA mutant; Lane 3, LPS from A. caviae neuA mutant (pBBR1-MCS-neuA); 

lane 4, LPS from A. caviae neuA mutant (pBBR1-MCS-neuA-His). 
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Figure 4.8 Analysis of flagellins from WT and neuA mutant A. caviae 

strains. 

Whole-cell protein prepared from A. caviae Sch3N wild-type (WT), A. caviae 

neuA mutant, A. caviae neuA mutant (pBBR1-MCS-neuA) and A. caviae neuA mutant 

(pBBR1-MCS-neuA-His). All strains were grown in BHIB at 37°C for overnight. 20 ul of 

total proteins from each strain were electrophoresed in a 12% SDS polyacrylamide 

gel and then blotted onto nitrocellulose membrane. The gel was applied to be 

analysed by Western Blot following section 2.22 protocol and polar flagellins (~35Da) 

from A. caviae strains were selected via rabbit anti-polar flagellin antibody and 

anti-rabbit HRP. Lane 1, Prestained protein ladder (sizes shown in kDa); Lane 2 polar 

flagellins from A. caviae Sch3N wild-type (WT); Lane 3, polar flagellins from A. caviae 

neuA mutant; Lane 4, polar flagellins from A. caviae neuA mutant 

(pBBR1-MCS-neuA); Lane 5, polar flagellins from A. caviae neuA mutant 

(pBBR1-MCS-neuA-His). 

 

4.5 Protein overexpression of flm genes 

Part of this project was to try and biochemically reconstitute the flagellin 

glycosylation process using pure A. caviae flagellin, the glycosyltransferase Maf1 and 

CMP-Pse5Ac7Ac. Therefore, a source of CMP-Pse5Ac7Ac is required. Previous 

workers have shown that this is possible using the equivalent Pse/Flm enzymes of H. 

pylori (Schoenhofen et al. 2006). 

 

In order to investigate pseudaminic acid biosynthetic pathway in A. caviae Sch3N, 

protein expression of the flm genes was attempted. Plasmids containing part modified 

flm genes were constructed in our laboratory and each flm gene when expressed 
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would produce a protein with N-terminal His6-tag. Due to solubility problems with 

FlmD proteins, flmD was cloned into pMAL-c5X in order to produce a protein with 

N-terminal MBP-tag. Both of the pET-28a-flmD which was constructed before and 

pMAL-c5X were digested with NdeI and BamHI then the products of two digestions 

were mixed together and ligated with ligase. After ligation, ampicillin resistant colonies 

were screened by colony PCR screen using pMAL screening primers with Taq DNA 

polymerase. Selected pMAL-c5X-flmD plasmid vector was then sequenced using 

pMAL screening primers to ensure the in-frame insertion, the orientation of the inserts 

and no mutation in the inserts. After examination with sequencing and BLAST search, 

pMAL-c5X-flmD plasmid was then transformed into E. coli (NEB Express) for the 

over-expression of the MBP-fused FlmD protein. 

 

The primers used to amplify flmA, flmB, neuA and neuB introduced an Nde1 

restriction site and a HindIII restriction site and a stop codon at either end of each 

gene allowing in-frame cloning into the pET-28a vector to ensure an N-terminal 

His-tag. The PCR products of the flm genes were then digested by Ndel and HindIII 

and ligated with the pET-28a plasmids digested by the same pair of restriction 

enzymes. The ligations were transformed into E. coli DH5α competent cells and 

kanamycin resistant colonies were screened by colony PCR using T7 promoter and 

T7 terminator primers. Plasmids were extracted from E. coli and all plasmids were 

then transformed into E. coli overexpression strains (BL21 DE3) to overexpress the 

histidine-tagged proteins. The solubility of each protein was double checked with 

SDS-PAGE. 
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(A)                         (B) 

1   2   3   4   5          1        2 

       

 

Figure 4.9 Analysis of PCR products following amplification of flm locus 

gene fragments using pET-28a-flmA-His, pET-28a-flmB-His, 

pMAL-c5X-flmD, pET-28a-neuB-His and pET-28a-neuA-His as template. 

PCR was carried out using Q5 DNA polymerase and pET-28a-flmA-His, 

pET-28a-flmB-His, pMAL-c5X-flmD, pET-28a-neuB-His and pET-28a-neuA-His. 5 ul 

of the PCR products were observed following electrophoresis in a 1% agarose gel. 

Primers used to amplify these products are T7 forward primer and T7 reverse primer 

and pMAL sequence forward primer and pMAL sequence reverse primer. (A) Lane1, 

2-Log linear DNA ladder; lane 2, flmA gene fragment (1299bp); lane 3, flmB gene 

fragment (1450bp); lane 4, flmD gene fragment (1718bp); lane 5, neuA gene fragment 

(973bp); (B) Lane1, 2-Log linear DNA ladder; lane 2, neuB gene fragment (1345bp). 
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Table 4.2 Plasmids with flm gene insertions applied in this project and 

expected expressed Proteins (Tabei et al. 2009). 

Name of plasmids Protein expressed  Protein size (kDa) 

pBBR1-MCS-neuA-His His-NeuA 27.8 

pET-28-flmA-His His-FlmA 40 

pET-28-flmB-His His-FlmB 45 

pMAL-c5X-flmD MBP-FlmD 98.8 

pET-28-neuB-His His-NeuB 40.6 

pET-28-neuA-His His-NeuA 27.8 

 

Firstly, each plasmid was collected from E. coli DH5α by mini-preparation and 

they were retransformed into E. coli BL21 (DE3). Each strain was grown in LB broth 

with appropriate antibiotics for 2 hours and then the culture was split in two and 1mM 

IPTG was added to one culture (+IPTG) and one culture without IPTG (-IPTG) (figure 

4.10, figure 4.11 and figure 4.12). After that, each strain was grown in LB broth 

following section 2.19 protein overexpression protocol and the supernatant and pellet 

of each protein was checked by SDS-PAGE to make sure that all the proteins were 

soluble (figure 4.10, figure 4.11 and figure 4.12). The overexpressed protein in the 

supernatant and pellet were collected. It has been confirmed that all proteins obtained 

from protein purification were soluble. Based on the results of SDS-PAGE, FlmA, 

FlmB, NeuA and NeuB have been prepared successfully. Each protein was isolated 

and purified by application to a His-trap column to which a gradient of imidazole was 

applied. 

 

 FlmA which is about 40kDa was purified and most of the protein was eluted in 

EB with 150mM of imidazole and 200mM of imidazole (figure 4.13). FlmB which is 

approximately 45kDa was purified and most of the protein was eluted in EB with 

100mM imidazole, 150mM imidazole and 200mM imidazole (figure 4.14). NeuA which 

is about 27.8kDa was purified and most of the protein was eluted in EB with 150mM 

imidazole and 200mM imidazole (figure 4.15). NeuB which is about 40.6kDa was 

purified and most of the protein was eluted in Elution Buffer with 150mM of imidazole 

and 200mM of imidazole (Figure 4.16). The protein overexpression of FlmD was 

carried out by MBP-tag protein purification protocol via 2.22 and purified FlmD was 

eluted into 50mM maltose buffer (Figure 4.17). All 6 enzymes are shown in Figure 

4.18. 
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Figure 4.10 Analysis of protein overexpression and solubility of 

His-tagged FlmA and His-tagged NeuB.  

His-tagged FlmA and NeuB were expressed from pET-28a-flmA-His and 

pET-28a-neuB-His in E. coli strain BL21 (DE3). Cells were grown in LB broth at 37°C 

with or without 1mM IPTG addition for 3 hours. Cells were disrupted by sonication and 

separated into soluble and insoluble fractions (supernatant and pellet) by 

centrifugation.    

 

10 μl of the protein samples were electrophoresed in a 12% SDS polyacrylamide 

gel. Lane 1, Prestained protein ladder (sizes shown in kDa) (Appendix 1); Lane 2, 

total protein from induced cells with pET-28a-flmA-His in supernatant (soluble 

fraction); Lane 3, total protein from induced cells with pET-28a-flmA-His in pellet 

(insoluble fraction); Lane 4, total protein from induced cells with pET-28a-flmA-His; 

Lane 5, total protein from uninduced cells with pET-28a-flmA-His. Lane 6, total protein 

from induced cells with pET-28a-neuB-His in supernatant (soluble fraction); Lane 7, 

total protein from induced cells with pET-28a-neuB-His in pellet (insoluble fraction); 

Lane 8, total protein from induced cells with pET-28a-neuB-His; Lane 9, total protein 

from uninduced cells with pET-28a-neuB-His. The difference between lane 4 and 5 is 

caused by the addition of IPTG. Induced cells expressed more His-tagged FlmA than 

uninduced cells. The difference between lane 8 and 9 is caused by the addition of 

IPTG. Induced cells expressed more His-tagged NeuB than uninduced cells. 
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Figure 4.11 Analysis of protein overexpression and solubility of 

His-tagged FlmB.  

His-tagged FlmB were expressed from pET-28a-flmB-His and in E. coli strain 

BL21 (DE3). Cells were grown in LB broth at 37°C with or without 1mM IPTG addition 

for 3 hours. Cells were disrupted by sonication and separated into soluble and 

insoluble fractions (supernatant and pellet) by centrifugation. 10 μl of the protein 

samples were electrophoresed in a 12% SDS polyacrylamide gel. Lane 1, Prestained 

protein ladder (sizes shown in kDa); Lane 2, total protein from induced cells with 

pET-28a-flmB-His in supernatant (soluble fraction); Lane 3, total protein from induced 

cells with pET-28a-flmB-His in pellet (insoluble fraction); Lane 4, total protein from 

induced cells with pET-28a-flmB-His; Lane 5, total protein from uninduced cells with 

pET-28a-flmB-His. The difference between lane 4 and 5 is caused by the addition of 

IPTG. Induced cells expressed more His-tagged FlmB than uninduced cells. 
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Figure 4.12 Analysis of protein overexpression and solubility of 

His-tagged NeuA and NeuA.  

His-tagged NeuA and NeuA were expressed from pET-28a-neuA-His and 

pBBR1-MCS-neuA-His in E. coli strain BL21 (DE3). Cells were grown in LB broth at 

37°C with or without 1mM IPTG addition for 3 hours. Cells were disrupted by 

sonication and separated into soluble and insoluble fractions (supernatant and pellet) 

by centrifugation. 10 μl of the protein samples were electrophoresed in a 12% SDS 

polyacrylamide gel. Lane 1, Prestained protein ladder (sizes shown in kDa); Lane 2, 

total protein from induced cells with pET-28a-neuA-His in supernatant (soluble 

fraction); Lane 3, total protein from induced cells with pET-28a-neuA-His in pellet 

(insoluble fraction); Lane 4, total protein from induced cells with pET-28a-neuA-His; 

Lane 5, total protein from uninduced cells with pET-28a-neuA-His. Lane 6, total 

protein from induced cells with pBBR1-MCS-neuA-His in supernatant (soluble 

fraction); Lane 7, total protein from induced cells with pBBR1-MCS-neuA-His in pellet 

(insoluble fraction); Lane 8, total protein from induced cells with 

pBBR1-MCS-neuA-His; Lane 9, total protein from uninduced cells with 

pBBR1-MCS-neuA-His. The difference between lane 4 and 5 is caused by the 

addition of IPTG. Induced cells expressed more His-tagged NeuA than uninduced 

cells. The difference between lane 8 and 9 is caused by the addition of IPTG. Induced 

cells expressed more NeuA than uninduced cells. 
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Figure 4.13 Analysis of protein purification of the His6-tagged FlmA. 

12% SDS-PAGE gel showing the purification of His-FlmA protein. His-tagged 

FlmA was expressed from pET-28a-flmA-His in E. coli strain BL21 (DE3). Cells were 

grown in LB broth at 37°C with 1mM IPTG addition for 3 hours. The soluble 

supernatant was applied to a HisTrapTM HP Column. Unbound proteins were washed 

off in elution buffer (flow-though and wash). His-tagged FlmA (40kDa) was eluted in 

increasing concentrations of imidazole (50mM-500mM) elution buffer (EB). 10 μl of 

the protein samples were electrophoresed in a 12% SDS polyacrylamide gel. Lane 1, 

Prestained protein ladder (sizes shown in kDa); Lane 2, total protein from induced 

cells with pET-28a-flmA-His in supernatant (soluble fraction); Lane 3, total protein 

from induced cells with pET-28a-flmA-His in flow-though; Lane 4, total protein from 

induced cells with pET-28a-flmA-His after filtration; Lanes 5-12, protein from induced 

cells containing pET-28a-flmA-His eluted in 50,100, 150, 200, 250, 300, 400 and 500 

mM of imidazole elution buffer, respectively. 
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Figure 4.14 Analysis of protein purification of the His6-tagged FlmB. 

His-tagged FlmB was expressed from pET28a-flmB-His in E. coli strain BL21 

(DE3). Cells were grown in LB broth at 37°C with 1mM IPTG addition for 3 hours. The 

soluble supernatant was applied to a HisTrapTM HP Column. Unbound proteins were 

washed off in elution buffer (flow-though and wash). His-tagged FlmB (45kDa) was 

eluted in increasing concentrations of imidazole (50mM-500mM) elution buffer (EB). 

10 μl of the protein samples were electrophoresed in a 12% SDS polyacrylamide gel. 

Lane 1, Prestained protein ladder (sizes shown in kDa); Lane 2, total protein from 

induced cells with pET28a-flmB-His in supernatant (soluble fraction); Lane 3, total 

protein from induced cells with pET28a-flmB-His in flow-though; Lane 4, total protein 

from induced cells with pET28a-flmB-His after filtration; Lanes 5-12, protein from 

induced cells containing pET-28a-flmB-His eluted in 50,100, 150, 200, 250, 300, 400 

and 500 mM of imidazole elution buffer, respectively. 
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Figure 4.15 Analysis of protein purification of the His6-tagged NeuA. 

His-tagged NeuA was expressed from pET-28a-neuA-His in E. coli strain BL21 

(DE3). Cells were grown in LB broth at 37°C with 1mM IPTG addition for 3 hours. The 

soluble supernatant was applied to a HisTrapTM HP Column. Unbound proteins were 

washed off in elution buffer (flow-though and wash). His-tagged NeuA (27.8kDa) was 

eluted in increasing concentrations of imidazole (50mM-500mM) elution buffer (EB). 

10 μl of the protein samples were electrophoresed in a 12% SDS polyacrylamide gel. 

Lane 1, Prestained protein ladder (sizes shown in kDa); Lane 2, total protein from 

induced cells with pET-28a-neuA-His in supernatant (soluble fraction); Lane 3, total 

protein from induced cells with pET-28a-neuA-His in flow-through; Lane 4, total 

protein from induced cells with pET-28a-neuA-His after filtration; Lanes 5-12, protein 

from induced cells containing pET-28a-neuA-His eluted in 50,100, 150, 200, 250, 300, 

400 and 500 mM of imidazole elution buffer, respectively. 
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Figure 4.16 Analysis of protein purification of the His6-tagged NeuB. 

His-tagged NeuB was expressed from pET-28a-neuB-His in E. coli strain BL21 

(DE3). Cells were grown in LB broth at 37°C with 1mM IPTG addition for 3 hours. The 

soluble supernatant was applied to a HisTrapTM HP Column. Unbound proteins were 

washed off in elution buffer (flow-though and wash). His-tagged NeuB (40.6kDa) was 

eluted in increasing concentrations of imidazole (50mM-500mM) elution buffer (EB). 

10 μl of the protein samples were electrophoresed in a 12% SDS polyacrylamide gel. 

Lane 1, Prestained protein ladder (sizes shown in kDa); Lane 2, total protein from 

induced cells with pET-28a-neuB-His in supernatant (soluble fraction); Lane 3, total 

protein from induced cells with pET-28a-neuB-His in flow-though; Lane 4, total protein 

from induced cells with pET-28a-neuB-His after filtration; Lanes 5-12, protein from 

induced cells containing pET-28a-neuB-His eluted in 50,100, 150, 200, 250, 300, 400 

and 500 mM of imidazole elution buffer, respectively. 
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Figure 4.17 Analysis of protein purification of the MBP-tagged FlmD. 

MBP-tagged FlmD was expressed from pMAL-c5X-flmD in E. coli strain ER2523 

(NEB Express). Cells were grown in LB broth at 37°C with 1mM IPTG addition for 3 

hours. The soluble supernatant was applied to a MBPTrapTM HP Column. Unbound 

proteins were washed off in elution buffer (flow-though and wash). MBP-tagged FlmD 

(100kDa) was eluted in increasing concentrations of maltose (20mM-300mM) column 

buffer (CB). 10 μl of the protein samples were electrophoresed in a 12% SDS 

polyacrylamide gel. Lane 1, Prestained protein ladder (sizes shown in kDa); Lane 2, 

total protein from induced cells with pMAL-c5x-flmD in supernatant (soluble fraction); 

Lane 3, total protein from induced cells with pMAL-c5x-flmD in flow-through; Lane 4, 

total protein from induced cells with pMAL-c5x-flmD after filtration; Lanes 5-12, protein 

from induced cells containing pMAL-c5X-flmD eluted in 20, 50, 100, 150, 200, 250 

and 300 mM of column buffer, respectively. 
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   1     2       3      4     5       6 

 

Figure 4.18 Analysis of protein overexpression of purified FlmA, FlmB 

FlmD, NeuB and NeuA. 

The proteins including His-tagged FlmA, His-tagged FlmB, His-tagged NeuB and 

His-tagged NeuA were expressed from pET-28a-flmA-His, pET-28a-flmB-His, 

pET-28a-neuA-His and pET-28a-neuB-His in E. coli strain BL21 (DE3). MBP-tagged 

FlmD was expressed from pMAL-c5X-flmD in E. coli (NEB Express). The proteins 

were then purified either using His-trap or MBP-trap column.  

 

Cells were grown in LB broth at 37°C with or without 1mM IPTG addition for 3 

hours. 10 μl of the protein samples were electrophoresed in a 12% SDS 

polyacrylamide gel. Lane 1, Prestained protein ladder (sizes shown in kDa); Lane 2, 

purified FlmA from induced cells with pET-28a-flmA-His in supernatant (soluble 

fraction); Lane 3, purified FlmB from induced cells with pET-28a-flmB-His in 

supernatant (soluble fraction); Lane 4, purified FlmD protein from induced cells with 

pMAL-c5X-flmD in supernatant (soluble fraction); Lane 5, purified NeuB from induced 

cells with pET-28a-neuB-His in supernatant (soluble fraction). Lane 6, purified NeuA 

from induced cells with pET-28a-neuA-His in supernatant (soluble fraction). 

 

4.6 CMP-Pse5Ac7Ac biosynthetic reactions 

This project aimed to produce CMP-Pse from the starting substrate UDP-GlcNAc. 

Previous workers have reconstituted the CMP-Pse5Ac7Ac biosynthesis pathway from 

H. pylori (Schoenhofen et al. 2006). The starting substrate was shown to be 

UDP-GlcNAc. We wished to do the same for the A. caviae pathway to allow us to 
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access CMP-Pse5Ac7Ac the final product of the pathway. In collaboration with a 

fellow PhD student Joe Ferner the enzymatic activity of FlmA (PseB) was investigated 

by NMR. FlmA is thought to have 

UDP-N-acetylglucosamine 5-inverting 4, 6-dehydratase activity. Previous workers 

have shown the activity of this enzyme can be followed by NMR (McNally et al. 2008). 

 

In this project, one of the aims was to reconstitute the CMP-Pse5Ac7Ac 

biosynthesis pathway and generate CMP-Pse5Ac7Ac from UDP-GlcNAc, L-Glu, 

Acetyl-CoA and PEP via enzymes encoded by flm locus from A. caviae. The reactions 

occurred in NMR tube and whole reaction process is monitored by Nuclear magnetic 

resonance spectroscopy (NMR). 

 

However, the NMR trace for UDP-GlcNAc did not change (Figure 4.19). There is 

no reaction detected after 4 hours, therefore the FlmA enzyme appeared to be 

inactive. The enzyme was soluble when purified, therefore circular dichroism was 

performed to see if it had folded correctly (Figure 4.20). The change in signal between 

200-230nm depicts alpha helix formation, suggesting the protein is folded. 
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Figure 4.19 data of NMR spectrum of UDP-GlcNAc in 10% D2O phosphate 

buffer. 

The figure shows 1H NMR spectrum of UDP-GlcNAc in 10% D2O phosphate 

buffer.  The first enzyme in the biosynthesis pathway is FlmA (PseB). However when 

purified FlmA was incubated with UDP-GlcNAc and the reaction followed for 4 hours 

using 1 ml NMR reaction mix as previously described, there was no change in the 

UDP-GlcNAc spectra (McNally et al. 2008).  
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Figure 4.20 CD spectra of FlmA 

The data of CD spectra of FlmA shows that FlmA has negative peaks at 220nm 

and 210nm and a positive one at 196nm. The characteristicsof these CD signals are 

corresponded to alpha helix which is secondary structure of protein. 

 

Based on the result of NMR reaction of UDP-GlcNAc and FlmA, there is no 

product detected after overnight reaction. This result suggests that the FlmA is 

inactive and further NMR reactions are all held due to the lack of 

UDP-2-acetamido-2,6-dideoxy-b-L-arabinohexos-4-ulose.  

 

Emily Flack (University of York) and her co-worker were investigating a similar 

CMP-Pse5Ac7Ac biosynthetic pathway in Helicobacter pylori (Table 4.3). The 

pseudaminic acid can be generated from UDP-GlcNAc via purified PseB, PseC, PseH, 

PseG and PseI of H. pylori. PseB from H. pylori is homologue of FlmA from A. caviae 

and UDP-2-acetamido-2,6-dideoxy-b-L-arabinohexos-4-ulose has been proved to be 

generated from UDP-GlcNAc via PseB (Schoenhofen et al. 2006). All 5 enzymes 

were taken to York University for further testing. The activity of each enzyme has been 

tested via a series of reactions and followed by LC-MS. The reactions involved in the 

CMP-Pse5Ac7Ac biosynthetic pathway are shown in Figure 4.21. FlmA (PseB) which 

is a dehydratase initiates the biosynthesis of pseudaminic acid via catalyzing the 

conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) (607.35 g/mol) to 
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UDP-2-acetamido-2,6-dideoxy-b-L-arabino-hexos-4-ulose (589.34 g/mol). FlmB 

(PseC) which is aminotransferase catalyzes 

UDP-2-acetamido-2,6-dideoxy-b-L-arabino-hexos-4-ulose and L-glutamine and result 

in UDP-4-amino-4,6-dideoxy-b-L-AltNAc (590.372 g/mol) and a-ketoglutarate. After 

processing by FlmD (PseH/PseG) which is acetyltransferase and nucleotidase, the 

UDP-4-amino-4,6-dideoxy-b-L-AltNAc was catalyzed to 

2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose (246.26 g/mol). The acetyl group 

was induced and UDP group was removed in this process. NeuB (PseI) which is 

pseudaminic acid synthetase catalyzes PEP and 

2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose and result in pseudaminic acid 

(334.32g/mol)and phosphate  (Schoenhofen et al. 2006; Schirm et al. 2003). NeuA 

(PseF) is acts as CMP-sugar synthetase and catalyzes pseudaminic acid and CTP 

and result in CMP-Pse5Ac7Ac (639.50 g/mol) and pyrophosphate(Schirm et al. 2003). 

 

Table 4.3 Enzymes from A. caviae and corresponding homologues from H. 

pylori. 

Enzyme in A. caviae  Homologues in H. pylori  

FlmA PseB 

FlmB PseC 

FlmD PseH/PseG 

NeuB PseI 

NeuA PseF 
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Figure 4.21 The proposed CMP-Pse5Ac7Ac biosynthetic pathway in A. 

caviae. 

This diagram shows CMP-Pse5Ac7Ac is synthesized from 

UDP-N-acetylglucosamine via FlmA, FlmB, FlmD, NeuB and NeuA (Schoenhofen et 

al. 2006). FlmA (PseB) initiates the biosynthesis of pseudaminic acid via catalyzes 

UDP-N-acetylglucosamine (UDP-GlcNAc) to 

UDP-2-acetamido-2,6-dideoxy-b-L-arabino-hexos-4-ulose. Subsequently, the product 

modified by FlmB (PseC) and UDP-4-amino-4,6-dideoxy-b-L-AltNAc is generated. 

After processed by FlmD (PseH/PseG), 

2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose is generated. Eventually, 

2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose is catalyzed by NeuB (PseI) and 

results in pseudaminic acid (Schoenhofen et al. 2006; Schirm et al. 2003). The 

pseudaminic acid is activated by NeuA (PseF) and results in CMP-Pse5Ac7Ac 

(Schirm et al. 2003) 
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(D) 

 

                     

Figure 4.22 LCMS data of reactions of PseB and PseC from H. pylori and 

FlmA and FlmB from A. caviae. 

Peak 606 m/z indicates UDP-GlcNAc and peak 589 m/z indicates 

UDP-4-amino-4,6-dideoxy-b-L-AltNAc. All data was collected after 4 hours of 

reaction. 

 

(A) The reaction mixture with PseC from H. pylori, showing no conversion to product. 

  

(B) The reaction mixture with FlmA from A. caviae and PseC from H. pylori after 4 

hours reacting, showing no conversion to product. 

 

(C) The reaction mixture with FlmA from A. caviae and PseC from H. pylori after 

leaving overnight (more FlmA from A. caviae had been added after 6 hours), showing 

no conversion to product.  

 

(D) The reaction mixture with PseB from H. pylori and FlmB from A. caviae after 

leaving overnight, showing some conversion to 

product (UDP-4-amino-4,6-dideoxy-b-L-AltNAc). 
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Figure 4.23 LC-MS data of reactions of PseB, FlmB, FlmD and NeuB 

Peak 244 m/z indicates 2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose; peak 

333 m/z indicates pseudaminic acid; peak 606 m/z indicates UDP-GlcNAc and peak 

589 m/z indicates UDP-4-amino-4,6-dideoxy-b-L-AltNAc. All data was collected after 

4 hours of reaction. 

 

(A) The reaction mixture with PseB from H. pylori and FlmB from A. caviae after 

leaving overnight. There is no loss of the FlmB product 

(UDP-4-amino-4,6-dideoxy-b-L-AltNAc) without FlmD. 

 

(B) The reaction mixture with PseB from H. pylori and FlmB and FlmD from A. caviae 

after leaving overnight showing complete loss of the FlmB product and some residual 

UDP-GlcNAc. 

 

(C) The reaction mixture with PseB from H. pylori and FlmB, FlmD and NeuB from A. 

caviae, showing formation of pseudaminic acid. 
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Figure 4.24 LC-MS data of reaction of NeuA from A. caviae 

Peak 333 m/z indicates pseudaminic acid, peak 638 m/z indicates 

CMP-pseudaminic acid and peak 481 m/z indicates CTP. Reaction conditions: 5 mM 

Pse5Ac7Ac, 1.5 mM CTP, 10 mM MgCl2, 50 mM NaCl, 25 mM sodium phosphate, pH 

7.4, 360 µgmL-1 NeuA.The enzyme control was not included. 

(A) Initially reactions were performed at 5 mM Pse5Ac7Ac (4 hours), showing 

formation of CMP-pseudaminic acid. 

 

(B) Initially reactions were performed at 5 mM Pse5Ac7Ac (4+6.5 hours, at 25 °C), 

showing formation of CMP-pseudaminic acid. 

 

(C) Reaction mix without Pse5Ac7Ac (control group), showing no formation of 

CMP-pseudaminic acid. 

 

(D) Initially reactions were performed at 0.5 mM Pse5Ac7Ac (4+2.5 hours, at 25 °C), 

showing no formation of CMP-pseudaminic acid. 

4.7 Discussion 

NeuA which is encoded by the neuA gene is the CMP-sugar synthetase in A. 

caviae Sch3N. The function of neuA was to be investigated in this project. Firstly, a 

mutant strain A. caviae Sch3N neuA::Km was constructed via PCR, ISA, conjugation 

and allelic exchange. This strain is a neuA insertional knockout and is kanamycin 

resistant. Swimming ability of this strain has been confirmed to be abolished which 

means neuA is essential for the biosynthesis of the functional polar flagella (Figure 

4.5A). Then, two complementing strains which are A. caviae neuA mutant 

(pBBR1-MCS-neuA) and A. caviae neuA mutant (pBBR1-MCS-neuA-His) were 

constructed via conjugation of these plasmids into the mutant strain. The strain A. 

caviae neuA mutant (pBBR1-MCS-neuA) contains pBBR1-MCS-neuA which was able 

to compensate the swimming ability of A. caviae neuA mutant (Figure 4.5B). The 

strain A. caviae neuA mutant (pBBR1-MCS-neuA-His) contains 

pBBR1-MCS-neuA-His which was able to complement the swimming ability of A. 

caviae neuA mutant (Figure 4.5C). This finding indicates that His-NeuA which is 

encoded by pBBR1-MCS-neuA-His has the same ability of NeuA and that the addition 

of an N-terminal His-tag to this protein does not affect its activity. The previous 

reported neuA mutant had a polar effect on downstream genes including flmD and 
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neuB, as the introduction of pBBR1-MCS-neuA or pBBR1-MCS-neuA-His into this 

strain did not rescue the phenotype of the mutant (Tabei et al. 2009). These results 

suggest we would be able to purify an active His-tagged NeuA enzyme from A. caviae 

if the pET-28a-neuA-His overexpression did not work and resulted in soluble protein. 

However, we are able to recover soluble His-tag NeuA from E. coli, this enzyme was 

subsequently shown to be active (Figure 4.18). 

 

Secondly, the LPS of A. caviae neuA mutant was analyzed. The result from LPS 

extraction confirmed that the LPS from this mutant lacked O-specific polysaccharides 

which contains pseudaminic acid (Tabei et al. 2009) (Figure 4.7). According to Figure 

4.7, only the core oligosaccharide (OS) was detected and O-specific polysaccharides 

were absent in A. caviae neuA mutant. The LPS of A. caviae neuA mutant 

(pBBR1-MCS-neuA) and A. caviae neuA mutant (pBBR1-MCS-neuA-His) were as 

same as the LPS of A. caviae Sch3N wild type which means the LPS biosynthesis in 

these stains were restored. This finding indicates that neuA is essential for the 

biosynthesis of functional LPS and it is related to O-specific polysaccharide as 

previously Tabei et al 2009 showed Pse5Ac7Aac to be present in the LPS of the 

strain. Based on the result of western blot of polar flagellin of these strains, the 

biosynthesis of functional flagellin was abolished in A. caviae neuA mutant (Figure 

4.8). This finding is match to the result of swimming ability assay and the previously 

reported findings of Tabei et al (2009). 

 

Based on the information above, the results of swimming ability assay, western 

blot and LPS extraction are all in accordance with the hypothesis. The NeuA-His has 

been expressed in A. caviae and produces an active enzyme. Which make it is 

possible to generate CMP-Pse5Ac7Ac via NeuA-His and Pse5Ac7Ac. 

 

The A. caviae flmA mutant strain was found to be non-motile compared to 

wild-type (WT) (figure 4.5E). Swimming ability of this strain has been confirmed to be 

abolished which means flmA is essential for the biosynthesis of the functional polar 

flagella (Figure 4.5E). 

 

The flm locus which is involved in pseudaminic acid biosynthesis is an important 

target of this study. With the help of the proteins encoded by the flm genes, it is 

possible to reconstruct the pseudaminic acid biosynthetic pathway and generate 

Pse5Ac7Ac and CMP-Pse5Ac7Ac. The plasmids which contain the flm genes some 
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of which have been constructed by former researchers, but whether the proteins 

encoded by these plasmids are soluble were still needed to be confirmed. Based on 

the progress of experiment, all of the plasmids with flm gene insertion were extracted 

via mini-preparation successfully. The overexpression and purification of each protein 

have been has been shown. Based on the figure 4.13, figure 4.14, figure 4.15, figure 

4.16 and figure 4.17, it is obvious that the bands of FlmA, FlmB, FlmD, NeuA and 

NeuB were thick and high amount of nearly pure protein is visible on SDS-PAGE gels. 

Based on the results of protein purification, a protein of about 40kDa was purified 

according to Figure 4.13 and the presumed protein is FlmA. A protein which is about 

45kDa was purified according to Figure 4.14 and the presumed protein is FlmB. A 

protein of about 100kDa was purified according to Figure 4.17 and the presumed 

protein is FlmD. A protein of about 28kDa was purified according to Figure 4.15 and 

the presumed protein is NeuA. A protein of about 41kDa was purified according to 

Figure 4.16 and the presumed protein is NeuB.  

 

With the help of these 5 enzymes, generation of CMP- Pse5Ac7Ac was 

attempted. His-FlmA did not catalyzed UDP-GlcNAc to 

UDP-2-acetamido-2,6-dideoxy-b-L-arabinohexos-4-ulose. The purified FlmA was 

confirmed to be soluble and well folded. The reason why it is inactivated could be the 

His-tag affected the function of FlmA. Previous research has been proved that FlaA1 

from H. pylori can complement A. caviae flmA mutant(Tabei et al. 2009). 

 

It has been revealed that FlaA1 oligomers that are consistent with the hexameric 

structure derived from crystallographic analysis, this finding suggests that the FlaA1 

enzyme exists as a hexamer in solution(Noboru Ishiyama et al. 2006). Based on that 

result, the reason why FlmA is inactivated could also be the FlmA protomers did not 

combined properly to form a hexamer. The A. caviae flmA mutant strain is suitable for 

conjugation with plasmid expressing FlmA protein. The pBBR1-MCS-flmA will be 

constructed in the further experiment to investigate the function of flmA gene. 

 

His-FlmB, His-FlmD His-NeuA, and His-NeuB were all tested to be soluble. 

Based on the results of enzymatic reactions of His-FlmB, MBP-FlmD His-NeuA, and 

His-NeuB, all of these enzymes are functional and CMP-Pse5Ac7Ac has been 

successfully generated from 

UDP-2-acetamido-2,6-dideoxy-b-L-arabinohexos-4-ulose via these enzymes.  
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FlmB (PseC) which is aminotransferase catalyzes 

UDP-2-acetamido-2,6-dideoxy-b-L-arabino-hexos-4-ulose and L-glutamine and result 

in UDP-4-amino-4,6-dideoxy-b-L-AltNAc (590.372 g/mol) and a-ketoglutarate. 

His-FlmB has been proved to be functional and this finding indicates that His-tag did 

not affect the function of FlmB. After processed by FlmD (PseH/PseG) which is 

acetyltransferase and nucleotidase, the UDP-4-amino-4,6-dideoxy-b-L-AltNAc was 

catalyzed to 2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose (246.26 g/mol). The 

acetyl group was induced and UDP group was removed in this process. MBP-FlmD 

has been proved to be functional and this finding indicates that MBP-tag did not affect 

the function of FlmD. Besides, FlmD has the same ability of PseH and PseG from H. 

pylori or Cj1312 and Cj1313 from C. jejuni (Liu and Tanner 2006; McNally et al. 2006). 

NeuB (PseI) which is pseudaminic acid synthetase catalyzes PEP and 

2,4-diacetamido-2,4,6-trideoxy-b-L-altropyranose and result in pseudaminic 

acid(334.32g/mol) and phosphate  (Schoenhofen et al. 2006; Schirm et al. 2003). 

His-NeuB has been proved to be functional and this finding indicates that His-tag did 

not affect the function of NeuB. NeuA (PseF) is acts as CMP-sugar synthetase and 

catalyzes pseudaminic acid and CTP and result in CMP-Pse5Ac7Ac and 

pyrophosphate(Schirm et al. 2003). His-NeuA has been proved to be functional which 

is capable to produce CMP-Pse5Ac7Ac from Pse5Ac7Ac. This finding indicates that 

His-NeuA has the same function as NeuA and His-tag did not affect the function of 

NeuA. Furthermore, CMP- Pse5Ac7Ac has been generated successfully and it can be 

applied to glycosylate FlaA with the help of Maf1.  

 

4.8 Conclusion 

FlmA, FlmB, FlmD, NeuA and NeuB were all successfully expressed from 

plasmids. Based on the result of SDS-PAGE, 5 proteins were all purified and proved 

to be soluble, but His-FlmA proved to be well folded but inactivated (Figure 4.18 and 

Figure 4.19). 

 

It has been confirmed that pseudaminic acid can be generated from UDP-GlcNAc 

via PseB from H. pylori, FlmB, FlmD and NeuB from A. caviae. His-FlmB has been 

proved to be functional and this finding indicates that His-tag did not affect the 

function of FlmB. MBP-FlmD has been proved to be functional and this finding 

indicates that MBP-tag did not affect the function of FlmD. Besides, FlmD has the 

same ability of PseH and PseG from H. pylori or Cj1312 and Cj1313 from C. jejuni. 

His-NeuB has been proved to be functional and this finding indicates that His-tag did 
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not affect the function of NeuB. CMP-Pse5Ac7Ac has been successfully generated 

from Pse5Ac7Ac which was catalyzed by His-NeuA. His-NeuA has the same function 

as NeuA and His-tag did not affect the function of NeuA (Figure 4.22, Figure 4.23 and 

Figure 4.24). 

 

The biosynthesis of functional flagellin was abolished in A. caviae neuA mutant 

and this strain did not have polar effect. The palsmids including 

pBBR1-MCS-neuA-His and pBBR1-MCS-neuA can both complement A. caviae neuA 

mutant. His-NeuA which is encoded by pBBR1-MCS-neuA-His has the same ability of 

NeuA and that the addition of an N-terminal His-tag to this protein does not affect its 

activity (Figure4.5 and Figure 4.6). 

 

The A. caviae flmA mutant strain was found to be non-motile compared to 

wild-type (WT) (Figure 4.5E). Swimming ability of this strain has been confirmed to be 

abolished which means flmA is essential for the biosynthesis of the functional polar 

flagella (Figure 4.5E). 

 

LPS from A. caviae neuA mutant lacked O-specific polysaccharides which 

contain pseudaminic acid and the plasmids including pBBR1-MCS-neuA-His and 

pBBR1-MCS-neuA can restore this defect in A. caviae neuA mutant (Figure 4.7). This 

finding suggests that neuA is essential for the biosynthesis of functional LPS and it is 

related to O-specific polysaccharide. This result is corresponding to the result that 

his-NeuA encoded by pBBR1-MCS-neuA-His has the same ability as NeuA encoded 

by pBBR1-MCS-neuA. Based on the result of western blot of polar flagellin of these 

strains, the biosynthesis of functional flagellin was abolished in A. caviae neuA mutant 

(Figure 4.8). This finding is match to the result of swimming ability assay and the 

previously reported findings of Tabei et al (2009). 
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Chapter 5 Conclusions 

 

The aim of this project was to investigate proteins associated with flagellar 

glycosylation in Aeromonas caviae. 

 

Maf1 the motility-associated factor is involved in polar flagellar biosynthesis and it 

is thought to be the glycosyl-transferase that directly transfer of pseudaminic acid onto 

the polar flagellin proteins in A. caviae Sch3N (Tabei et al. 2009; Parker et al. 2012). 

The Maf1 protein is deemed as a putative flagellin pseudaminyl-transferase (Parker et 

al. 2012). Theoretically, Maf1 of A. caviae Sch3N has the ability to transfer activated 

pseudaminic acid (CMP-Pse5Ac7Ac) to the hydroxyl group of serine and threonine 

residues in the central immunogenic D2/D3 domain of flagellin of A. caviae Sch3N 

(Parker et al. 2012; Tabei et al. 2009). Flagellin proteins, are usually insoluble, 

previous work has shown that the C-terminal chaperone binding domain of the A. 

caviae flagellin FlaA is not involved in the glycosylation process (Parker et al. 

2014)(Parker et al 2014). Identification of the site where Maf1 binds is crucial for the 

investigation of glycosylation of flagellin. Attempts have been made to create deletion 

derivatives of flagellin that are still glycosylated and are more soluble to provide more 

suitable substrate for future glycosylation assays. 

 

The plasmids including pBBR1-MCS-flaA0+~pBBR1-MCS-flaA15+ and 

pBBR1-MCS-flaA0-~pBBR1-MCS-flaA15- are all functional and producing FlaA or 

FlaA deletion derivatives in the conjugated strains. pBBR1-MCS-flaA0- can produce 

fully functional FlaA and partially restore the swimming ability of A. caviae flaA-flaB 

mutant. The pBBR1-MCS-flaA0+ can not restore the swimming ability of A. caviae 

flaA-flaB mutant. The rest of all plasmids with flaA gene deletion can not restore the 

swimming ability of A. caviae flaA-flaB mutant. This result indicates that complete 

FlaA encoded by pBBR1-MCS-flaA0- is essential for the flagella assembly and 

deletion in flaA gene will result in absence of functional flagella. Expression of the 

complete flaA gene (flaA0-) in the minus orientation with the lacZ promoter resulted in 

complementation, whereas in the plus orientation it did not, this suggests expression 

of the flagellin is better or greater in the minus orientation. The possible reason for this 

result is better expression from the lac promoter. 

 

However, expression of FlaA0- only resulted in partial (50%) recovery of motility 
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in the mutant strain, this is in agreement with the result from Rabaan et al (2001). This 

suggests that both flagellins are required for optimal flagella filament function, even 

though both flaA and flaB are almost identical to each other (Rabaan et al. 2001). Or 

that the expression leads of the flagellins are not optimal. However, on comparation 

with the normal western blot the flagellin levels of the flaA0- expressing strain do not 

look to be expressed to the high levels when compared to the wild type (Figure 3.8B). 

 

Deletion strains including A. caviae flaA-flaB mutant (pBBR1-MCS-flaA1-) to A. 

caviae flaA-flaB mutant (pBBR1-MCS-flaA15-) are non-motile. This result is probably 

caused by not being bound correctly by FlaJ (CBD removed) (Parker et al. 2012). 

 

Western Blotting of these FlaA deletion derivatives shows that FlaA0- to FlaA9- 

were all glycosylated and FlaA10- to FlaA15- were all unglycosylated. This result 

suggested that the site of Maf1 bind is required is around amino acids 256-250. The 

flagellins after deletion of CBD amino acids 220-250 were still expressed but 

unglycosylated and FlaA10- to FlaA15 did not decompose. However, the abilities of 

binding anti-FlaA antibody of FlaA deletion derivatives are reducing. The explanation 

for this result may be the loss of C-terminal amino acids. Further experiment will be 

applied to determine if Maf1 can bind these FlaA deletion derivatives. Whether the 

FlaA deletion derivatives which lack the CBD amino acids 256-306 can bind the Maf1 

will be investigated in the future. 

 

In order to reconstruct the glycosylation of FlaA in vitro, a source of soluble FlaA 

deletion derivative which still can be glycosylated is required. Based on the results, 

the FlaA8- expressed by pBBR1-MCS-flaA8- and FlaA9- expressed by 

pBBR1-MCS-flaA9- have been tested and the result indicates that the FlaA8- and 

FlaA9- were both detected in the soluble fractions (Figure 3.12). This finding suggests 

that FlaA8- and FlaA9- are soluble and glycosylated which are suitable for the further 

experiments. 

 

Furthermore, to prove that Maf-1 is indeed the glycosyl-transferase the substrate 

for the reaction need to be isolated or created, namely CMP-Pse5Ac7Ac which is the 

activated form of pseudaminic acid. Therefore, in order to create CMP-Pse5Ac7Ac, 

the Flm proteins from the pseudaminic biosynthesis pathway have been 

overexpressed and purified. Hence the biosynthesis of Pse5Ac7Ac and CMP- 

Pse5Ac7Ac can be looked into via these reactions. According to the results of 
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SDS-PAGE of Flm proteins, FlmA, FlmB, FlmD, NeuA and NeuB were all successfully 

expressed from plasmids and all of the proteins were purified and proved to be 

soluble. Unfortunately, initially reaction was performed with UDP-GlcNAc and FlmA 

which turned out to be inactivated. The CD spectra was applied to examine the 

structure of FlmA and the result indicates that FlmA is well folded. In the meanwhile, 

swimming ability assay of A. caviae flmA::Km suggests that the swimming ability of 

this strain has been confirmed to be abolished which means flmA is essential for the 

biosynthesis of the functional polar flagella (Figure 4.5E). 

 

Based on the data of LC-MS, it has been confirmed that FlmB, FlmD, NeuB and 

NeuA are all activated and CMP-Pse5Ac7Ac has been successfully generated from 

UDP-2-acetamido-2,6-dideoxy-b-L-arabinohexos-4-ulose. His-FlmB has been proved 

to be functional and this finding indicates that His-tag did not affect the function of 

FlmB. MBP-FlmD has been proved to be functional and this finding indicates that 

MBP-tag did not affect the function of FlmD. Besides, FlmD has the same ability of 

PseH and PseG from H. pylori or Cj1312 and Cj1313 from C. jejuni. His-NeuB has 

been proved to be functional and this finding indicates that His-tag did not affect the 

function of NeuB. CMP-Pse5Ac7Ac has been successfully generated from 

Pse5Ac7Ac which was catalyzed by His-NeuA. His-NeuA has the same function as 

NeuA and His-tag did not affect the function of NeuA. 

 

It has been proved to be feasible to prepare CMP-Pse5Ac7Ac via Flm protein and 

substrates including UDP-GlcNAc. The unglycosylated FlaA deletion can be produced 

from pBBR1-MCS containing flaA gene deletion (pBBR1-MCS-flaA9-). Maf1 has been 

investigated and prepared by former researchers. With the help of above substrates 

and enzyme, it is possible to reconstruct the FlaA glycosylation in vitro via Maf1, 

CMP-Pse5Ac7Ac and unglycosylated FlaA deletion.  

 

The connections between glycosylation in flagellin biosynthesis and LPS 

O-antigen biosynthesis were summarized. The biosynthesis of functional flagellin was 

abolished in A. caviae neuA mutant and this strain did not have polar effect. The 

palsmids including pBBR1-MCS-neuA-His and pBBR1-MCS-neuA can both 

complement A. caviae neuA mutant. His-NeuA which is encoded by 

pBBR1-MCS-neuA-His has the same ability of NeuA and that the addition of an 

N-terminal His-tag to this protein does not affect its activity. LPS from A. caviae neuA 

mutant lacked O-specific polysaccharides which contain pseudaminic acid and the 

plasmids including pBBR1-MCS-neuA-His and pBBR1-MCS-neuA can restore this 
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defect in A. caviae neuA mutant. This finding suggests that neuA is essential for the 

biosynthesis of functional LPS and it is related to O-specific polysaccharide. This 

result is corresponding to the result that His-NeuA encoded by pBBR1-MCS-neuA-His 

has the same ability as NeuA encoded by pBBR1-MCS-neuA. 
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Appendix 1  

2-Log linear DNA ladder: 

 

Supercoiled ladder: 
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Prestained protein ladder: 

 

Primers used in the project 

 

flmA-forward: GCGCATATGCTGAATAATAAAACAGTATTAATCAC 

flmA-reverse: GCGGGATCCTCACACTTCAAAGTTGGCAT 

 

flmD-forward: GCGCATATGAAGTTTTTTATTCGCACC 

flmD-reverse: GCGAGGCTTTTATTTTGTCCATAATGG 

 

flaA-forward: GCGCAAGCTTGTTAAATTTTAATAGCTTAGGAGAAAAATCAT 

flaA0-reverse: GCGAAGCTTGAACCTTAGTTCTGCAGCAG 

flaA1-reverse: GCGAAGCTTCAGCAGGGACTACGCAGACTG 

flaA2-reverse: GCGAAGCTTCTGCGGACGCTAATTGGCCTG 

flaA3-reverse: GCGAAGCTTCTGGGCCAGTCAGCTGGAAGC 

flaA4-reverse: GCGAAGCTTAGCGGCCTGTTACAGGATATT  

flaA5-reverse: GCGAAGCTTATTCTGCTTTCACATATTGGC 

flaA6-reverse: GCGAAGCTTGGCGGTCTCTCATGCAAAATC 

flaA7-reverse: GCGAAGCTTATCTGCATCTTAGATACGAGA 
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flaA8-reverse: GCGAAGCTTAGAACGGGCTTAGCTTACGTT 

flaA9-reverse: GCGAAGCTTGTTTTCCGATTAATTGGCCTG  

flaA10-reverse: GCGAAGCTTCTGGTTGCGTTAGGTGGAATC 

flaA11-reverse: CGCAAGCTTATCCAGACGTTACTGCACCGC 

flaA12-reverse: CGCAAGCTTCGCACCCAGTTATGCTCGCTT 

flaA13-reverse: CGCAAGCTTCTTGCTATCTTAGACTTCCAA 

flaA14-reverse: CGCAAGCTTCAACATAGCTTAAGCAGCAGC 

flaA15-reverse: GCGAAGCTTAAGGCCCAATTAGTTTTGGCT 
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Appendix 2 

Sequence of flm genes and flaA gene 

flmA: 

TCACACTTCAAAGTTGGCATCTACATGAGTTTTTATCAATTCCCGCAGAGACTCCA

CGGTCTCCCACTCAGTGTTAGTACCTGAGTTATATTTGAAACCAAACGGTACTTTT

ACGGCACTATGATGCTTAATATAGTCTTCTTCTGTATGATTGAATGACACAGAAGG

TAAAATTGCGTAATAGCGGCCCAAATCAATTGTGTTCAATGAATCGGTATCTGTAA

TCATCTCTTCATGCAGCTTTTCTCCTGGACGAATACCAACTACCTTCGTCTTGCAT

TCAGGAGATATTGCTGTTGCTATATCTAAAATACGATATGATGGGATTTTTGGCACA

AAAATCTCACCACCGAGATGATGCTCCAGAGCATACATCACCATATTAACACCATC

CTGCAGTGAAATATTAAAACGTGTCATTTCTTCATGGGTGATCGGCAACACACCC

TCAGCACGTTTTTTCAAGAAAAATGGTATTACAGAACCCCGAGACCCCATTACATT

TCCATAGCGAACTACACTGAATCTTATATTTCGCGAACCTTTGATATTATTTGCTGC

TGTAAACAACTTGTCAGAGGTCAGCTTTGTCGCTCCATAAAGATTGATCGGCGCA

CAAGCTTTATCTGTTGACAACGCTACAACTTCTTTTACTCCACACTGCAAAGCAG

CGTGGATAACATTTTCAGCACCATCGACGTTAGTGCGAATGCACTCTGTCGGATT

ATACTCGGCTGTATCTACTTGTTTAATAGCAGCAGCATGAATAATGACATCGATTCC

TTCGCACGCTTGAACCATTCGATTACGATCACGTACATCACCAATGAAAAAGCGC

AGTTGTGGATAATCTTTTTGCGGATAATTTAAACGTAATTCAGATTGCTTTAGTTCA

TCTCGAGAAAAAATGACAATGCGCTTAACTTGGGGGTAGCGCTCAAGGATAGTTT

TTATAAATTGTTTACCAAATGATCCCGTACCACCTGTGATTAATACTGTTTTATTATT

CAGCAT 

 

flmB: 

TTATTTCCCTTCCAATATCTCAGACAATACGCATACTACTTTATCTTGCTGCTCTTC

TGTCATGCCGTGGAACATCGGCAAAGAAATAGCTTCACGATAATATTGCTCTGCC

TCAGGAAAATCACCAGATTTGAATCCCATATCTTCGTAATAAGGCTGTGTATGTAC

AGGTATGTAATGAACATTCACCCCGATACCATTTTCACGTAACGCTTCAAAAACCT

CTCGGTGCGTTAATGAAATATTATTAAGCTGAAGTCGTATAACGTAAAGATGCAAT

CCGGAATGGGTATTTTCTAACTGGAATGGTAAGACTATCGGTAACCGCTTCAAAA

GTCTGTTATAACGGTCAGCCAAGCGATGACGAGCAGCGATAAATTCATCAAGGC

GTTGTATTTGGGTGATCCCTAATGCAGCTTGTAACTCGGTCATTCGGTAGTTAAAG

CCCAAGTCAATCTGTTGATAATACCAACCACCATGACTTTCGCCTTTCATCTGCTC

GATATCACGGGTGATACCATGGCTACGTAACAAGGCCATTTTATCAGCTAAATCTT

TTTGGTTAGTTACCACTGCGCCACCTTCAGCAGTAGTGATAATTTTAACCGGATG

GAAACTAAATACCGTAATGTCGCTGTATCGACAATTGCCAATGGGTTCGTTTAAAT
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AACTACCGCCGATAGCATGTGATGCATCCTCGATAACTTTAAAGCCATATTCAGTT

GCCAGACGGGAAATCGCTTCCATGTCACAAGGTTGGCCACATAAATGAACAGGA

ACGACTATCTTGGGTAAGGTACCGTTGGCATTAGCTGCAATTAGCTTTTTCTCCAA

TTGCTTCGGACACAGATTATATGTATCTGGATCTATATGTACAAAATCGACTTTGGC

GCCACAATACAAACCGCAATTTGCTGATGCAACAAAAGTAACTGGGCTTGTCCAT

AAAAAATCGCCAGGACCAAGACCCAAAGCCAAACAGGCAATGTGTAGTGCCGAA

GTAGCACTATTTACAGCCAACGCATACGCTGCGCCAGTATGGGTTGTTAAATATTT

TTCAAATTCAGGGACTTTTGGTCCCTGAGTTAGAAAATCAGATTGTAACACCGCA

ACCACGCCATCAATATCTTGCTGGGTGATCTCTTGTTTACCGTATGGAATCAC 

 

flmD: 

TTATTTTGTCCATAATGGTTCTCTTATAAATTTATCTGGCGCTACCTGCTGGTAGCC

AGCGTTAGAAAAAAGGCGCTGCGATGCTATATTTTCGGTCAGTACTGTGGCATGA

ATCCTGATTTTTGGTAGGCATCTATCAAGTAATTTCAAACCTGTTAATCCAATACCC

TGACCATGCTTATTAGGAGCAACAAAAATTGAGATAAGGTAATTGTCAGTACCTAG

TTCATCTAGTCTAACTGCACCACAGGGTTCGCTACTTTCAGCATTAATTATCAAAA

AGAAATAATCTTGCTGGCACTGTATTTTTTTTTCCATCCAGCTTTTGTGCTCTACC

CAACTAGGGGGATTGGGATTAAGCGCATAACGTCTGGTTATTGGATCAGATTGCC

ACTGATAAATCAGTAGAGTATCATCGATTGATACCGGCCTTAGCCTAAATCCTGATA

TTTCTGTATTAGCCATAATAGTATTAATGACTCGTTGCACCCCCTTGCCATCACACA

ACTCGAGATTATTATCTACGTATTCTTTATAATTATTCAACAAGTCATGCAGTGCAG

GGATTAATCTACTTTCAATATCAGACTGTTGTACTAATAAAGCAGCTTGATGTGCCA

ACAATGCTTGGCAAATGGCCTGTTGGTTTTCTGCTATCGGAATTACTATATTTGGT

AATCCCAGACAGGCTCGCTCCCAAGTGGTTGTCCCTGGAGCACCGATGGCCAG

ATCGTGCTCGCTCATCAAGGTTGCCATATCTTGTATAAAATCATGATGAACAACATT

AACACGATCATCACACCACGTTTTCACTGCTTGATAGTGTGGTGCTCGAGGGCTT

AACAGCACGGTAAATACAGCATTAAACTCACTTAACGCCTTAAGTACTCTTAGCGT

CACATTTGGCTCATCAATACCACCAAAGGAGAGTAAAATCCTAGGCTGACGACTG

GCAGGGGCTCGTAGTATCCCCTGATTTCTTATTTTTCCAAATTGTGAAGACAGCA

AGGCGTATGCAACTCCACTTAATACTACAGGCTGCTTGTCTGATATATTAAAACAC

TCAAAATAGGCCTCCGGAGTGCGGTCAAGCGTTTGATCCAGAATCAAATCAGCAT

CATGGGGGCGCACCAGATCATCGATAGACAAAACTTTACAATTTAACGACAGCCT

TATTTCCCGTTCCCACTGAGCATTAATTCCATAATGATCAACTATCAGCCAGTCAG

CGTATACCACACTTTCTAAAACATCTGCAGCGTCTTGTTGCCATGGCACTTGCAA

CCAAGAAGAATAATCAGCCCCATGCTCAGGTCTGATAACAGTTGTCAGAGATGGC

AAGGCAAGCAGATTATGGTTACGCGCAGCAATCAAATCGAGCAAATCACCATCTT

GCGGTCTACAAATAAATGTTACCTGATGACCTGCCGATTTTAAGCCATCGGCTAG

CATTAGGCAGCGCATTACATGGCCGGAACCTATCCAACGTGATGCATCGGTGCG

AATAAAAAACTTCAT 
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neuB: 

TTAAATAAATTCAAATGATAACGGAGTTCCGCGTTTAATATCAACTATAGCCGTTTT

GCCAAGGACTTGCTCTAAATACTTCGGAGCCAAACCAAATCCGGGCCTAATGCTA

CGCACATTATCATTACTTAATACATCCCCAGCTTTAATGTCTCGTATCACATATAGA

GAACGCCGAAATTTGACATTTCCTTTTTCGGCTTCAGTACGCGTATAATTTACGCT

GCCTAATGCTGACCAAGCAGTTTTAGCATCTTTACATAACGCAGCAAGCTCATGA

GGTTCGAGCGAGAAGCTATCATCAGCGCCCCCGCCATTTCTATCCATGGTGACAT

GCTTTTCGATTAAACAAGCCCCCAAGGCTACCGCGGCCACAGCGGTGGCATTAT

CGATAGTGTGATCAGACAAGCCAGATAGCACACCAAAACGCTCAGCCATATCGG

CAATGGTCCGCAGATTGTATTGATCCGCCGGCGCAGGATAACCGCTGACACAGT

GCAACACGACCAACTCTTGGCAACCATTGGACTGGGCAGTAGCAATCGCTTCGG

CAATCTCTTCCGCATTGGCCATGCCGGTAGACATGATCATTGGCTTACCTGTTTG

CGCCACACGTTTTATCAATGGCAAATCTATCAACTCAAAAGACGCTATCTTGTAGG

CTGGTGCGTCAAGATCTTCCAACAAATCAACAGCAGTAAAGTCAAAAGGAGAAC

TGAAGATGGTGATCCCCAACTCTTTGGCTTTCTCAAACAACGGTTGGTGCCACT

CCCATGGCATTTGGGCCTCTTTGTAAAGTTGGTACAAATTTTTACCATCCCATAGC

CCACCGTGAATTTGAAATTCCTCACTATCACATTCAAAAGTAATAGTGTCTGCGGT

ATATGTTTGAAGTTTTATTGCATCTGCGCCCGCTTTTTTTGCCTCTTCCATGATCG

CAAAAGCACGATTGATATCACCATTGTGGTTAGCGGAGAGTTCCGCAATAATATAT

GGTGGATAGTCAGGGCCAATCTTGCGGCCATTGATGGTAATAAACGGCTTGATTA

TTTTGTCCAT 

 

neuA: 

TTACCTTAGCGTAAATAGCTTCTCAGCACGCAGCCAATCATCCTGAGTATCAATAT

CTTGCACCCTGTGGCTGGGTAATAGAACTACCTGTGTATGCACGGCAAATATAGG

TAATTTATTAAGCCAAGCATTAGCCTTTCCCCAATAAAATTGCCCCGCATCATGGTA

GGCTTCCTCCAGATCTTGGGAACGAGTTAGTTGATACTCGGGATGAAACATACTC

ACCCAACCTGACTCATCAAGCTTGATAGCGCGTTGAATCGGAAACGAAAAGCGA

GTAGCACTGAAAACAAATTGGCATTCCTTGTTGAACGTTAACAATTCTAATCCCTG

GCATAAATCATCAGGCTCAACAAAAGGTGCTGTTGCATAGAGGCAGCATACGTTT

TCCGGCACTTGCCCTTGCTGATTTATCAACCAATTAATGGCATGGCTTATCACCTC

ACCAGTAGTGGCATAATCGTTAGCAATCTCTGCCGGGCGAGTAAATGGCACTTCA

GCACCATATTCGAGTGCAACAGCAGCAATTTCAGCATCATCGGTTGAAACAATTAT

ACGTTCAAAACAACCAGCCTTCTTAGCAGCTAAGATGGACCATGCGATCATGGG

CTTGCTATGAAATGGTTTGATATTTTTCCTAGGAATACGCTTACTGCCACCACGGG

CAGGGATGATGGCAATATTCAT 
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flaA: 

ATGAGTCTGTATATCAATACCAACGTTTCATCGCTCAACGCTCAGCGTAACATGAT

GAACAGCACCAAATCCCTGGATACCTCCTACACCCGTCTGGCCTCCGGCCTGCG

CATCAACAGCGCCAAGGACGATGCGGCAGGTCTGCAGATTTCCAACCGTCTGA

CCTCTCAGATCAACGGTCTGGACCAGGGCAACCGCAACGCCAACGACGGCATC

TCCCTTGCTCAGACTGCTGAAGGGGCGATGGATGAAGTGACCGGTATGCTGCAA

CGCATGCGTACCCTGGCTCAACAATCCGCCAACGGTTCCAACTCCGCCAAGGAT

CGTGAAGCCCTGCAAAAAGAAGTGGATCAGCTGGGTGCCGAGATCAACCGTATC

TCCACTGCAACCACCTTTGCAGGGACCAAGCTGCTTGATGGTTCATTTAGCGGT

ACTTTCCAAGTAGGTGCTGATGCCAACCAAACAATCGGGTTTAGTTTGGCGCAAA

CAGGGGGGTTTAGTATCTCTGGGATCGCAAAAGCTGCAGGAACTACGATTGATAT

TGTGTCTGGTCCAGCAGGGAGTGTAACAACAGCGACCGGTATCTCCCTTATTTTC

ACTGGCGGCAGTGCAGGTGGGATCAGTATTAGCACTCAGAGTAAGGCCCAAGC

CGTTTTGGCTGCTGCTGATGCTATGTTGGAAGTCGTAGATAGCAAGCGAGCAGA

ACTGGGTGCGGTGCAGAACCGTCTGGATTCCACCATTCGCAACCAGGCCAATAT

CTCGGAAAACGTAAGCGCAGCCCGTTCTCGTATCCGCGATGCAGATTTTGCAAC

CGAGACCGCCAATATGACCAAGCAGAATATCCTGCAACAGGCCGCTTCCAGCAT

CCTGGCCCAGGCCAATCAGCGTCCGCAGTCTGCGCTCTCCCTGCTGCAGAACT

AA 

 

 

 

 

 

 


