
A Computational View
on Natural Evolution

On the Rigorous Analysis of the Speed of Adaptation

Jorge Pérez Heredia

Department of Computer Science
University of Sheffield

This dissertation is submitted for the degree of
Doctor of Philosophy

January 2018

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are my own original work and have not been submitted in
whole or in part for consideration for any other degree or qualification in this, or any other
university. Some pieces of this thesis are based on articles that have been published elsewhere
as specified in Section 1.1.

Jorge Pérez Heredia
January 2018

Acknowledgements

I would like to express my deep gratitude and appreciation to my supervisor Dr. Dirk Sudholt,
I could not think of a better mentor. I would like to thank you for all your support, advice and
for allowing me to grow as a research scientist. I am also greatly thankful to Tiago Paixão
and Barbora Trubenová for being the “biology” side of my PhD, many thanks for all the
fruitful discussions, insights and for hosting us at the Institute of Science and Technology
(IST) several times. I would also like to specially thank Pietro Oliveto for his role as my
second supervisor and coauthor in several papers.

For introducing me to interdisciplinary work and for the financial support to attend many
research events, I would like to deeply thank all the Speed of Adaptation in Population
Genetics and Evolutionary Computation (SAGE) project members and collaborators: Per
Kristian Lehre, Tiago Paixão, Tobias Friedrich, Dirk Sudholt, Duc Cuong Dang, Golnaz
Badkobeh, Andrew Sutton, Barbora Trubenová, Dogan Corus, Martin Krejca and Timo
Kötzing. I specially thank Tobias Friedrich, Timo Kötzing and Martin Krejca for hosting me
at the Hasso-Plattner-Institut (HPI).

I would also like to thank my PhD buddies from the Algorithms group: Alasdair War-
wicker, Edgar Covantes Osuna and Donya Yazdani. I thank as well all the members of the
department that contributed to a enjoyable working atmosphere, specially to José Miguel
Rojas Siles, Ricardo Marxer, Abdullah Alsharif, Mathew Hall (Popeyes), Adam Poulston,
Georg Struth, Victor Gomes, David Paterson and Thomas White.

I also gratefully acknowledge the Department of Computer Science of the University of
Sheffield for the financial support and for giving me the opportunity to start my PhD.

Last but not least, my partner Laura and my family also deserve my deep gratitude for
their endless support and patience during my PhD at Sheffield.

http://www.project-sage.eu/index.aspx

Abstract

Inspired by Darwin’s ideas, Turing (1948) proposed an evolutionary search as an automated
problem solving approach. Mimicking natural evolution, evolutionary algorithms evolve
a set of solutions through the repeated application of the evolutionary operators (mutation,
recombination and selection). Evolutionary algorithms belong to the family of black box
algorithms which are general purpose optimisation tools. They are typically used when no
good specific algorithm is known for the problem at hand and they have been reported to be
surprisingly effective (Eiben and Smith, 2015; Sarker et al., 2002).

Interestingly, although evolutionary algorithms are heavily inspired by natural evolution,
their study has deviated from the study of evolution by the population genetics community.
We believe that this is a missed opportunity and that both fields can benefit from an interdis-
ciplinary collaboration. The question of how long it takes for a natural population to evolve
complex adaptations has fascinated researchers for decades. We will argue that this is an
equivalent research question to the runtime analysis of algorithms.

By making use of the methods and techniques used in both fields, we will derive plenty
of meaningful results for both communities, proving that this interdisciplinary approach is
effective and relevant. We will apply the tools used in the theoretical analysis of evolutionary
algorithms to quantify the complexity of adaptive walks on many landscapes, illustrating
how the structure of the fitness landscape and the parameter conditions can impose limits to
adaptation. Furthermore, as geneticists use diffusion theory to track the change in the allele
frequencies of a population, we will develop a brand new model to analyse the dynamics of
evolutionary algorithms. Our model, based on stochastic differential equations, will allow to
describe not only the expected behaviour, but also to measure how much the process might
deviate from that expectation.

Table of contents

Nomenclature xiii

I Introduction and Background 1

1 Introduction 3
1.1 Underlying Publications . 7

2 Evolutionary Algorithms 9
2.1 Fitness Functions . 12
2.2 Trajectory-Based Algorithms . 15

2.2.1 Mutation Operator . 16
2.2.2 Selection Operator . 19
2.2.3 Popular Trajectory-Based Heuristics 20

2.3 Runtime Analysis of Evolutionary Algorithms 24
2.3.1 Markov Chains . 27
2.3.2 Gambler’s Ruin Problem . 29
2.3.3 The Coupon Collector Problem 31
2.3.4 Drift Analysis . 32

2.4 Fixed Budget . 39

3 Population Genetics 43
3.1 Selection, Mutation and Genetic Drift . 44

3.1.1 Selection . 45
3.1.2 Mutation . 49
3.1.3 Genetic Drift . 51

3.2 Diffusion Theory . 51
3.2.1 Mutation, Selection and Genetic Drift under Diffusion Theory . . . 55
3.2.2 Probability of Fixation . 57
3.2.3 The Strong Selection Weak Mutation Regime 59

x Table of contents

II Runtime Analysis of a Natural Evolutionary Regime 63

4 Runtime Analysis and the Speed of Adaption 65
4.1 SSWM as a Trajectory-Based Algorithm 69
4.2 Understanding the Fixation Probability . 71
4.3 Conclusions . 78

5 Speed of Adaptation in Additive Landscapes 79
5.1 Simple Hill Climbing Tasks . 80
5.2 Fitness Ridges . 88
5.3 Adaptation in a General Class of Landscapes 90
5.4 Detecting the Steepest Slope . 92
5.5 Conclusions . 97

6 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys 99
6.1 Long Paths . 103
6.2 Crossing Simple Valleys . 105

6.2.1 Analysis for the (1+1) EA . 105
6.2.2 A General Framework for Local Search Algorithms 106
6.2.3 Application to SSWM . 112
6.2.4 Application to the Metropolis algorithm 116

6.3 Crossing Concatenated Valleys . 117
6.3.1 Application for SSWM and the Metropolis algorithm 123

6.4 Global Mutations Speed-up Sharp Cliff Optimisation 125
6.5 Conclusions . 132
Appendix 6.A Omitted Proofs from Subsection 6.2.2 133
Appendix 6.B Omitted Proofs from Subsection 6.2.4 134
Appendix 6.C Omitted Proofs from Section 6.4 137

7 When is it Beneficial to Reject Improvements? 141
7.1 A Common Stationary distribution . 143
7.2 A 3 State Model . 144

7.2.1 Experiments . 148
7.3 A 5 State Model . 149

7.3.1 An Example Where SSWM Outperforms the Metropolis algorithm . 153
7.3.2 Experiments . 157

7.4 When is it Beneficial to Exploit? . 159
7.4.1 Analysis for the 3 State Model . 160

Table of contents xi

7.4.2 Analysis for the 5 State Model . 160
7.4.3 Experiments . 164

7.5 Conclusions . 165

III An Application of Stochastic Differential Equations to Evolu-
tionary Algorithms 169

8 Modelling Evolutionary Algorithms with Stochastic Differential Equations 171
8.1 Stochastic Differential Equations . 173
8.2 The Diffusion Approximation . 175

8.2.1 Are Evolutionary Algorithms Diffusive Processes? 177
8.3 Drift Theorems for Fixed Budget Analysis 178

8.3.1 Additive Drift . 178
8.3.2 Multiplicative Drift . 179
8.3.3 Non-elitist Multiplicative Drift . 181

8.4 Applications . 183
8.4.1 Elitist Algorithms on LEADINGONES 183
8.4.2 Elitist Algorithms on ONEMAX 186
8.4.3 Non-Elitist Algorithms on ONEMAX 189

8.5 Validation of the Diffusion Approximation 191
8.5.1 Comparison with the Literature 191
8.5.2 Stationary Distribution . 192
8.5.3 Reconciling Fixed Budget with Runtime Analysis 193
8.5.4 Simulations . 197
8.5.5 Experimental Error . 199

8.6 Conclusions . 200

IV Conclusions and Outlook 203

9 Conclusions 205

References 209

Appendix A Probability Theory 221

Appendix B Diffusion Theory 223
B.1 Kolmogorov Forward Equation . 223
B.2 Kolmogorov Backward Equation . 224

Nomenclature

Mathematical Symbols

α Reciprocal of the temperature T for the Metropolis Algorithm, α = 1/T

β Scaling parameter of the SSWM algorithm

∆ f Fitness difference between two bitstrings x and y, ∆ f = f (y)− f (x)

E [X] Expectation of the random variable X

H(x,y) Hamming distance between the bitstrings x and y, where x,y ∈ {0,1}n

λ Number of offspring created in one generation

ln(x) Natural logarithm of x

Prob(A) Probability of the event A

f Mean population fitness, see Definition 3.2

mut(x,y) Probability of mutation sampling state y from state x

N The set of the natural numbers, N= 1,2,3, . . .

|x|1 Number of bits with value 1 in x ∈ {0,1}n

pacc(∆ f) Probability of accepting a fitness change of ∆ f

pfix(∆ f) Acceptance probability of the SSWM algorithm, also known as the fixa-
tion probability

π(x) Probability of sampling state x at equilibrium

R The set of the real numbers

R+ The set of the positive real numbers

xiv Nomenclature

pt
x→y Transition probability of state x to state y in t iterations

px→y Transition probability of state x to state y in one iteration

Var [X] Variance of the random variable X

|x|0 Number of bits with value 0 in x ∈ {0,1}n

{0,1}k String of k elements from the set {0,1}, i.e., a bitstring

{Xt}t≥0 An infinite time sequence of random variables X0,X1, . . .

e Euler’s number e = exp(1) = 2.7182 . . .

f (x) Fitness of the solution x, f : {0,1}n→ R

f = Ω(g) Function f grows at least at fast as function g, see Definition 2.8

f = O(g) Function f grows at most at fast as function g, see Definition 2.8

f ∗i Marginal fitness, see Definition 3.2

fi j Genotypic fitness, see Definition 3.2

N Population size of the SSWM algorithm

n Problem size, number of bits of a solution.

Acronyms / Abbreviations

BILS Best-Improvement Local Search

EA Evolutionary Algorithm

EC Evolutionary Computing

FILS First-Improvement Local Search

GR Gambler’s Ruin

H-W Hardy Weinberg

MA Metropolis Algorithm

MAPE Mean Absolute Percentage Error

PG Population Genetics

Nomenclature xv

RLS Randomised Local Search

RMSE Root Mean Squared Error

RW Random Walk

SBM Standard Bit Mutations

SDE Stochastic Differential Equation

SSWM Strong Selection Weak Mutation

Part I

Introduction and Background

Chapter 1

Introduction

Evolution has fascinated philosophers and scientists for more than 2000 years. The concept
of inheritance of acquired characteristics, one of the first attempts to describe evolution, can
be traced back to ancient Greek philosophers like Hippocrates (circa 400 BCE) or Aristotle
(circa 300 BCE). This hypothesis states that an individual can transfer the physiological
changes acquired during its lifetime to its offspring. However, it is fair to consider that the
scientific study of evolution started in the early 1800s with Lamarck (1809). In his book
Philosophie Zoologique, he coherently formulated for the first time the already known theory
of inheritance of acquired characteristics.

Roughly fifty years later, Darwin (1859) and Wallace (1855) independently proved
wrong Lamarck’s proposed evolutionary mechanism. Although Darwin accepted Lamarckian
inheritance, he claimed that mutations were random and the environmental factors played a
role only on selection. On the other hand, Lamarck described evolution as a process directed
by mutations which were caused by environmental factors.

After reading the work on population growth of the economist Malthus (1798), Darwin
realised that while natural resources are limited, species are reproducing exponentially.
Hence, individuals are in competition for resources and if the variations present in living
organisms are hereditary, nature will be selecting the fitter individuals.

Through the repeated accumulation of beneficial small variations, evolution has managed
to create highly adapted organisms that can survive under extreme conditions. Although it
is well established that evolution does not progress towards a goal (see e.g. Barton et al.,
2007), it shows similarities with one of the most important topics in Science and Technology:
problem optimisation.

Problem optimisation is the search for the best choice, according to some criterion, among
a collection of potential choices. It is a problem that appears in everyday life, but more
importantly it arises in almost every scientific field: physical systems follow the principle of

4 Introduction

minimal action, engineers design motors that use as little fuel as possible, or banks aim to
minimise investment risks while maximising the profit.

The human interest for optimisation also started with the ancient Greeks. They focused
mainly on geometrical problems, as for example Euclid (circa 300 BCE) computed the
minimal distance between a point and a line. Nevertheless, we have to wait until the late
Middle-Age for a breakthrough in the field of optimisation. The foundations were set
by Fermat (1636) showing that the derivative of a function vanishes at extreme points,
along with Newton (1660s) and Leibniz (1670s) independently developing the calculus of
variations. However, Fermat’s method based in the analytic solution of the problem through
the derivative, is (in general) only useful for didactic purposes. Real world problems might
be described by a non-differentiable function, or we might not even know the function behind
our optimisation task.

To circumvent this obstacle, scientists came up with numerical methods. Euler (1744)
properly turned the calculus of variations into a research field and developed the famous
method that carries his name. Half century later, the field had an extraordinary improvement
with Gauss (1795) and Legendre (1806) independently presenting the least square method
and Cauchy (1847) developing the gradient method. The key idea behind numerical methods
is that a candidate solution is updated through the repeated application of a deterministic rule.
These methods have proven to be highly successful optimising convex functions. However,
since these algorithms typically use information of the function’s slope in their update rule,
they get stuck in extreme points and are not able to escape local optima.

In general, each problem has an inherent difficulty, some of them belong to the so-called
NP complexity class. Although not proven, it is widely accepted that the time needed to find
a solution for NP problems grows super polynomially with the size of the problem. With
all hope lost to efficiently solve these problems, Barnard and Simon (1947) introduced the
concept of a heuristic. Heuristics are strategies for problem solving which can efficiently
find sufficiently good solutions, but they are not guaranteed to be optimal.

Following the heuristic approach and inspired by Darwin’s ideas, Turing (1948) proposed
an evolutionary search as an automated problem solving approach. Mimicking natural
evolution, evolutionary algorithms (EAs) through the repeated application of variation
operators (mutation, recombination and selection) evolve a set (population) of solutions
(individuals). The strength of these algorithms relies on the stochasticity of the operators,
which when well designed, will lead to an artificial evolution towards an optimal solution.

During the second half of the 20th century, this idea matured enough to become the
research field today known as Evolutionary Computing (EC). In this period of time researchers
developed a plethora of new methods which we can classify within four main branches:

5

• Evolutionary Programming (EP) by Fogel et al. (1965).

• Genetic Algorithms (GAs) by Holland (1973).

• Evolutionary Strategies (ES) by Rechenberg (1973) and Schwefel (1993).

• Genetic Programming (GP) by Koza (1992).

Evolutionary algorithms are general-purpose randomised heuristics that have been re-
ported successful in countless occasions (Eiben and Smith, 2015; Sarker et al., 2002). No
particular problem-knowledge is required for their application and yet they can be surpris-
ingly effective, including some real-world problems (Luque and Alba, 2011). However,
despite their versatility and efficiency to deliver satisfactory solutions, there is a lack in the
theoretical understanding of these optimisers. The field does not posses a general mathe-
matical theory from where arguments and hypothesis can be postulated to later be tested by
experiments. As the reader will appreciate during this thesis, obtaining such general theory
is an extremely hard task. In addition to the astronomically big number of algorithms and
problems to consider, the stochastic nature of EAs makes their theoretical analysis highly
involved. Nevertheless, in a short period of time, researchers have managed to develop a
collection of powerful methods for the theoretical study of randomised search heuristics.

Interestingly, although evolutionary algorithms are inspired by natural evolution, the two
research fields have deviated from each other. This is a missed opportunity, both fields can
benefit from a interdisciplinary collaboration. Actually, we can find equivalent research
questions: the time it takes for a natural population to reach a fitness peak is an important
question for the study of natural evolution. Whereas in computer science, one of the most
important questions, is the time needed for an algorithm to finish its execution.

Since the 1990’s there has been a significant effort to establish the missed communication
between biology and EC. Mühlenbein and Schlierkamp-Voosen (1993) got inspiration from
human breeders to present the Breeder Genetic Algorithm (BGA) which they modelled using
methods from quantitative genetics. Muhlenbein and Mahnig (2002) also established the
validity of Wright’s equation (see Equation (3.7)) for the Univariate Marginal Distribution
Algorithm (UMDA) on a specific problem. Additionally, Mühlenbein (2009) studied a
distributed evolutionary algorithm to back up what he called Darwin’s continent-island cycle
conjecture. In addition to Mühlenbein’s work, recently there has been a renewed interest in
applying computer science methods to problems in evolutionary biology with contributions
from unlikely fields such as game theory (Chastain et al., 2014), machine learning (Valiant,
2009), Markov chain theory (Chatterjee et al., 2014) or the formal Darwinism project (Grafen,
2014).

6 Introduction

However PG and EC are still far from being described by a unified theory. Noticing this
research gap, a group of biologists and computer scientists formed the Speed of Adaptation
in Population Genetics and Evolutionary Computation (SAGE) project, which was funded by
the European Union Seventh Framework Programme (FP7/2007-2013). Among many other
research achievements, the members of the project developed a unifying framework, which
represents a serious attempt towards reconciling both communities (Paixão et al., 2015). With
the same aim and as part of the SAGE project, this PhD thesis focuses on bridging Population
Genetics (PG) and Evolutionary Computation. Our work has substantially contributed to
breaking down the walls between both communities, exploiting the unexplored intersection
between both fields. We will make use of the methods and techniques used in PG and EC to
derive plenty of meaningful results for both communities, showing that this interdisciplinary
approach is effective and relevant. Proof of this is that our work has been published in high
rated conferences and top journals of both fields (see Section 1.1).

Firstly, we will apply the tools used in the theory of evolutionary algorithms to quantify
the complexity of adaptive walks on many landscapes, illustrating how the structure of the
fitness landscape and the parameter conditions can impose limits to adaptation. Secondly, EC
will also be highly benefited from this synergetic relationship. Although the theoretical study
of non-elitist algorithms is still in its early days, it is a well studied characteristic of natural
evolution. As geneticists use diffusion theory to track the change in the allele frequencies of a
population, we will develop a new model to analyse the dynamics of evolutionary algorithms.
Our model, based on stochastic differential equations (SDEs), will allow to describe not only
the expected behaviour, but also to measure how much the process might deviate from that
expectation. This approach will yield the first fixed budget result for non-elitist algorithms.

After introducing the reader to the fields of Evolutionary Algorithms (Chapter 2) and
Population Genetics (Chapter 3), we will analyse from a computational view, one of the
most studied evolutionary regimes: the Strong Selection Weak Mutation (SSWM) regime.
In Chapter 4 we will cast this process as an evolutionary algorithm, this will allow us to
apply the runtime analysis techniques for randomised search heuristics (see Section 2.3).
The analysis will yield interesting insights on the efficiency of this regime when adapting on
different fitness landscapes. We will also investigate the parameters’ values that makes this
regime a good hill-climber (Chapter 5) or valley-crosser (Chapter 6).

Furthermore, we will compare the algorithmic version of this regime against some well-
known evolutionary algorithms. Our results will allow us to answer questions of general
significance: How to decide in advance which algorithm is preferable for valley crossing?
(Chapter 6) Or when is it useful to reject improvements? (Chapter 7).

http://www.project-sage.eu/index.aspx

1.1 Underlying Publications 7

Finally in Chapter 8, we will consider the other missing direction of communication:
applying the mathematical techniques used in the analysis of natural evolution to evolutionary
computing. Particularly, we introduce the use of stochastic differential equations as a
modelling technique for evolutionary algorithms. Building on top of the so-called diffusion
approximation we formulate a hypothesis that we will use as a model for the dynamics of
EAs. For some scenarios, we will be able to solve this equation analytically, and produce
equivalent statements of two well-known drift theorems: additive and multiplicative drifts
(see Subsection 2.3.4). The key idea in drift analysis is to focus on the expected progress of
the stochastic process of interest (i.e., the drift). Typically, one tries to find easier expressions
for the drift of the studied algorithm. This alternative drift has to be always slower (or
faster) than the real drift. Then, we can derive pessimistic (or optimistic) estimations for the
real runtime. Furthermore, we present a new more general multiplicative drift theorem for
non-elitist algorithms. Finally, we perform a thorough validation of our hypothesis where we
contrast our findings against the literature and experiments.

1.1 Underlying Publications

The contents of this thesis are based on the following publications. Authors’ names are sorted
alphabetically (except [2]).

Chapters 4 and 5 are based on the following papers:

1. Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017). Towards a
runtime comparison of natural and artificial evolution. Algorithmica, 78(2):681–713.

2. Pérez Heredia, J., Trubenová, B., Sudholt, D., and Paixão, T. (2017). Selection limits
to adaptive walks on correlated landscapes. Genetics, 205(2):803–825, 2017.

A preliminary version was published in:

Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2015). First steps
towards a runtime comparison of natural and artificial evolution. Proceedings of
the Genetic and Evolutionary Computation Conference 2015 (GECCO ’15), pages
1455–1462. ACM.

Chapter 6 is based on the following paper:

3. Oliveto, P. S., Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017).
How to Escape Local Optima in Black Box Optimisation: When Non-Elitism Outper-
forms Elitism. In Algorithmica. To appear.

8 Introduction

A preliminary version was published in:

Oliveto, P. S., Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2016)
When non-elitism outperforms elitism for crossing fitness valleys. Proceedings of
the Genetic and Evolutionary Computation Conference 2016 (GECCO ’16), pages
1163–1170. ACM.

Chapter 7 is based on the following paper:

4. Nallaperuma, S., Oliveto, P. S., Pérez Heredia, J., and Sudholt, D. (2017). On the
Analysis of Trajectory-Based Search Algorithms: When is it Beneficial to Reject
Improvements or to Exploit? Submitted to Algorithmica.

A preliminary version was published in:

Nallaperuma, S., Oliveto, P. S., Pérez Heredia, J., and Sudholt, D. (2017). When is
it beneficial to reject improvements?. Proceedings of the Genetic and Evolutionary
Computation Conference 2017 (GECCO ’17), pages 1455–1462. ACM.

Chapter 8 is based on the following paper:

5. Pérez Heredia, J. (2017). Modelling Evolutionary Algorithms with Stochastic Differ-
ential Equations. In Evolutionary Computation. To appear.

A preliminary version was published in:

Paixão, T. and Pérez Heredia, J. (2017). An application of stochastic differential equa-
tions to evolutionary algorithms. Proceedings of the 14th ACM/SIGEVO Conference
on Foundations of Genetic Algorithms, FOGA ’17, pages 3–11. ACM.

Chapter 2

Evolutionary Algorithms

Evolutionary algorithms are randomised search heuristics inspired by natural evolution.
These algorithms simulate a population of individuals that through the repeated application of
the evolutionary operators can evolve and adapt to the environment. The main goal of these
heuristics is problem optimisation, i.e., given an objective function, known as fitness function,
the algorithm’s population will try to improve its fitness iteration by iteration. However, we
can find other motivations for the study of evolutionary algorithms, for example Holland
(1975) proposed EAs as a means to study adaptation.

EAs belong to the family of black box algorithms, they are general-purpose heuristics
typically used when no good problem specific algorithm is known. Moreover, they are easy
to implement and have been reported successful for many optimisation tasks where many
exact techniques fail (Eiben and Smith, 2015), including real-world problems (Luque and
Alba, 2011; Neumann and Witt, 2010). In order to improve the objective function’s value,
EAs rely on the repeated application of some stochastic operators. If these operators are well
designed for the problem at hand, the population’s mean fitness will increase, depicting an
artificial evolutionary process (Eiben and Smith, 2015).

In this thesis, we will consider the maximisation of pseudo-Boolean functions f :
{0,1}n → R. This is the class of functions that assigns a real number to each point of
the Boolean hyper-cube. Although we only consider maximisation, it is straightforward to
notice that minimisation problems can be obtained just by multiplying the fitness function
by −1. The search or genotype space {0,1}n, together with the real and permutation space
constitute the three most used search space representations (Jansen, 2013). We will not con-
sider the real and permutation spaces in this thesis, however it is possible to construct both
of them from the Boolean hyper-cube (with limited precision for the real space). Moreover,
we can also establish a mapping between representing solutions as bit-strings and the DNA
encoding present in living organisms (Paixão et al., 2015).

10 Evolutionary Algorithms

Although the behaviour of an EA varies with the choice of the evolutionary operators,
we can observe the following standard underlying scheme. First, the algorithm initialises
a population which is a multiset of candidate solutions (also known as individuals, search
points or genotypes). Then, in each iteration until a termination criterion is met, two main
phases are repeated: variation and selection. The variation phase refers to how new solutions
are produced and is composed itself of another two phases: recombination and mutation.
Finally, the selection phase decides which individuals survive to the next iteration.

Algorithm 2.1: Standard Evolutionary Algorithm

1 Initialise µ individuals
2 repeat
3 Select a multiset of parents from the current population
4 Create λ new individuals by recombining the selected population
5 Apply mutation to the offspring population
6 From the union of the parent and offspring populations select µ individuals

7 until termination condition;

Each of the steps outlined in the above pseudo-code can be altered or adapted at the
pleasure of the programmer. However, it is important to keep in mind that variations of
these operators typically yield a different algorithmic behaviour. In some scenarios even the
slightest change can yield a huge performance drop (Jansen, 2007).

Initialisation

A smart initialisation mechanism can significantly improve the performance of the algorithm
by starting in the correct area of the search space (see e.g. Friedrich et al., 2017). However,
as we mentioned earlier, EAs are usually applied when no much a priori problem knowledge
is known, hence initialisation is typically kept simple. Actually one of the most used
mechanisms is uniform initialisation, i.e., selecting bit-strings uniformly at random.

Selection

There are many choices both for the parent and survival selection (code-lines 3 and 6 in
Algorithm 2.1). For example, uniform selection is the simple case where individuals are
selected uniformly at random. However, the original purpose of selection is to mimic the
principle of survival of the fittest, hence it is reasonable that individuals with higher fitness
have a higher probability of being selected, both for mating and for surviving to the next
generation. Following this principle, we can find popular selection mechanisms such as:

11

fitness-proportional selection where the selecting probability is proportional to the fitness,
or the extreme cut selection where a set of individuals with high fitness is deterministically
chosen. In all the above cases, selection acts at the phenotype level, therefore it is independent
on the search space representation.

It is not completely clear when one selection mechanism is preferred over another for
a given problem. We will shed some light on this question by introducing in more detail
some popular selection mechanisms (Subsection 2.2.2), and studying their influence when
optimising different fitness landscapes (Parts II and III). We will find examples when non-
elitism outperforms elitism and we will investigate the usefulness of rejecting improvements.

Recombination

The recombination or crossover operator is a variation operator. Unlike selection, this
operator typically acts over the genotype space and hence is dependent on its representation.
Again, we find a large variety of crossover mechanisms, some of them highly artificial,
however one of the most used choices is the natural extension of sex in biological populations,
the uniform crossover. Uniform crossover, as many recombination mechanisms, takes two
individuals as input (binary operator C : {0,1}n,{0,1}n → {0,1}n) and copies each bit
randomly (and independently) from one of the parents.

The main motivation for the use of recombination is simple: when two parents possess
different beneficial properties, we would like that the offspring inherits both. However,
the same rationale works for detrimental properties. In the case of the continuous domain
(which we do not cover in this thesis) crossover acts as a repairing mechanism (Beyer, 2001).
However, for the Boolean hypercube representation, the research question is not settled.
Nevertheless, crossover has been proved to be useful in EC for some scenarios (see Dang
et al., 2017; Jansen and Wegener, 2002). Interestingly, we can find the same issues raised in
Biology where the role of sex remains an open question (Barton and Charlesworth, 1998).

Mutation

Mutation is a variation operator that only uses one individual as input M : {0,1}n→{0,1}n

(unary operator). Typically, mutation uses only the genotypic information of the parent
to produce a slightly different genotype. This implies that, as recombination, it will be
dependent on the search space representation. In Subsection 2.2.1, we will study two of the
most used mutation operators for the Boolean hyper-cube: standard bit mutations (SBM)
and k-bit mutations. The former flips each bit independently with some probability (typically
1/n), and the latter flips k-bits (typically k = 1) chosen uniformly at random.

12 Evolutionary Algorithms

Termination Criterion

Finally, we have to decide a termination criterion. We find two popular termination criteria
namely fixed and adaptive. The former, as the name suggests, will let the algorithm run
for a predetermined amount of time. On the other hand, an adaptive criterion will take into
account information of the current status of the simulation and stop when some predetermined
condition is met. Typical choices for adaptive termination criteria are when some satisfying
fitness value is reached or when there is a lack of improvement.

However, in the theoretical study of EAs we disregard any stopping criteria and let the
algorithm run forever. As we will explain in Section 2.3 we are interested in the first point in
time when the algorithm reaches a specific fitness values (typically the optimum).

2.1 Fitness Functions

As mentioned in the previous section, pseudo-Boolean fitness functions map the Boolean
hyper-cube into the real numbers f : {0,1}n→ R. Then, it is highly relevant to study the
structure of the hyper-cube. Figure 2.1 shows the 2-dimensional projection of the hyper-cube,
where the position of each bit-string is determined by: the number of 1-bits (vertical position)
and the number of 1-bits until the first appearance of a 0-bit (horizontal position).

0 · · ·0

10 · · ·0 0 · · ·01

1 · · ·10 · · ·0 0 · · ·01 · · ·1

1 · · ·10 01 · · ·1

1 · · ·1

Fig. 2.1 Projection of the Boolean hyper-cube in two dimensions.

To study pseudo-Boolean functions, it seems natural to establish some metric for their
search space. The most natural metric for the Boolean hyper-cube is the Hamming distance,
which simply counts the number of mismatched bits between two bit-strings. If the number of
different bits between two search points is just one, we will call them Hamming neighbours.

Definition 2.1 (Hamming distance). Given two bit-strings x,y ∈ {0,1}n, the Hamming
distance between them is given by H(x,y) := ∑

n
i=1 |xi−yi|, if H(x,y) = 1 we say that x and y

are Hamming neighbours.

2.1 Fitness Functions 13

Once a metric is defined, we can introduce the concept of local optima. We will denote
by local optima those bit-strings without Hamming neighbours of higher fitness. And the
global optimum will be the search point with the highest fitness, which also corresponds to
the local optimum with highest fitness.

Definition 2.2 (Local and global optima). Given a function f : {0,1}n→ R, the set Y of
local optima is given by Y := {y | x,y ∈ {0,1}n, H(x,y) = 1, f (y)≥ f (x)}. And the global
optima xopt are defined as xopt := argmax{ f (y) | y ∈ {0,1}n}.

To describe the features of fitness functions we can use a metaphor with natural landscapes.
A fitness landscape can be obtained by imagining that each search point is as high as its fitness.
Then we can identify many similar features as in natural landscapes. The neighbourhood
of fitness optima can resemble a hill (Figure 2.2, upper left); also we can observe fitness
valleys – those regions surrounded by search points of higher fitness (Figure 2.2, upper right).
Moreover, we can talk of the basin of attraction of an optimum as the regions of the search
space where the fitness points towards such optimum (red zones in Figure 2.2). When a basin
of attraction has a longitudinal shape depicting a path we talk about fitness ridges. Here,
neighbouring points outside the path have lower fitness (Figure 2.2, bottom left). Finally, we
can also find regions of constant fitness representing plateaus (Figure 2.2, bottom right).

1n/20n/2

1n/403n/4
0n 0n

03n/411n/4

0n/21n/2fmin

fmax

fit
ne

ss

1n/20n/2

1n/403n/4
0n 0n

03n/411n/4

0n/21n/2fmin

fmax

fit
ne

ss

1n/20n/2

1n/403n/4
0n 0n

03n/411n/4

0n/21n/2fmin

fmax

fit
ne

ss

1n/20n/2

1n/403n/4
0n 0n

03n/411n/4

0n/21n/2fmin

fmax

fit
ne

ss

Fig. 2.2 Graphical representations of a fitness hill (upper left), a fitness valley (upper right), a
fitness ridge (bottom left) and a fitness plateau (upper right). The horizontal plane corresponds
with the Boolean hyper-cube from Figure 2.1. This figure constitutes an artistic representation, no
mathematical projection was used to cast the Boolean hypercube into the horizontal plane.

14 Evolutionary Algorithms

Due to the high technical challenge to rigorously analyse randomised algorithms, re-
searches usually use toy problems. These benchmark problems usually represent one or more
landscape features which are believed to be building blocks for more complex functions.
This way, we can derive initial analysis tools that can pave the way for further studies on
more complex functions (Oliveto and Yao, 2011).

Another typical approach to theoretically study an algorithm is to design fitness land-
scapes where the algorithm behaves differently. Understanding on which situations an
algorithm fails or succeeds is an important question which helps designing EAs (Corus
et al., 2017). This way we learn about problem characteristics that lead to a good or bad
performance for the considered algorithm. Furthermore, optimisation practitioners can highly
benefit from this kind of theoretical results since they discard or suggest the application of a
certain algorithm for the problem at hand.

In Parts II and III we will define and analyse many problems, but for now, we only intro-
duce the two most theoretically studied toy problems: ONEMAX and LEADINGONES. The
GENERALISEDONEMAX problem simply counts the number of mismatched bits between a
given target solution and the current solution. Using the landscape metaphor, it represents
an easy hill climbing task since each bit-position’s fitness contains information about the
direction towards the optimum.

Definition 2.3 (GENERALISEDONEMAX). Let x,xopt ∈ {0,1}n, then

GENERALISEDONEMAX(xopt,x) = n−H(xopt,x).

Is it important to note that since the studied algorithms are unbiased (i.e., they do
not favour flipping 0-bits into 1-bits or vice versa), the choice of the target solution xopt

does not affect the optimisation process. Hence, we can highly simplify the theoretical
analysis by predefining our target. The typical choice for the target solution is the all ones
bitstring, this way we can introduce a function that simply counts the number of ones:
ONEMAX(x) = GENERALISEDONEMAX(1n,x).

Definition 2.4 (ONEMAX). Let x ∈ {0,1}n, then

ONEMAX(x) =
n

∑
i=1

xi.

2.2 Trajectory-Based Algorithms 15

0

0

n

n

O
N

E
M

A
X

H(x,0n) 0n

0n/21n/2

1n

1n/20n/2

0
1

· · ·
n/2−1

n/2
n/2+1

· · ·
n−1

n

Fig. 2.3 Phenotype (left) and genotype (right) representation of the ONEMAX problem
The layout for the genotype representation corresponds with the Boolean hypercube from
Figure 2.1.

LEADINGONES is a function that counts the number of 1-bits at the beginning of the
bitstring, i.e., until the appearance of the first 0-bit. Using again the landscape metaphor, this
problem represents a fitness ridge since bit matches with the optimum do not always increase
the fitness and losing one bit-match can yield a huge fitness loss. As in the previous case, the
choice of the all ones bitstring as target solution does not affect the optimisation process.

Definition 2.5 (LEADINGONES). Let x ∈ {0,1}n, then

LEADINGONES(x) =
n

∑
i=1

i

∏
j=1

x j.

2.2 Trajectory-Based Algorithms

Trajectory-based algorithms are search heuristics that evolve a single lineage rather than
using a population. Alternatively, they can be seen as the extreme case of a standard EA
with a population of size 1 (i.e. µ = 1 in Algorithm 2.1). Trajectory-based algorithms obtain
their name from the fact that they produce a sequence of solutions that corresponds with one
trajectory in the search space.

Although they might seem simple, their theoretical study is highly relevant. Since their
analysis is, in general, easier than analysing population-based algorithms, it is a good starting
point that can pave the way for the analysis of more elaborated heuristics. Moreover, it can
also yield insight on the usefulness of new analysis methods (Droste et al., 2002).

16 Evolutionary Algorithms

Within this family of heuristics we can find well-known algorithms such as: randomised
local search (RLS), the Metropolis algorithm (MA), and simple EAs such as the (1+1) EA
or the (1,λ) EA. In general, we can cast any trajectory-based algorithms with the following
pseudo-code.

Algorithm 2.2: Trajectory-Based Algorithm

1 Initialise x ∈ {0,1}n

2 repeat
3 y← MUTATE(x)
4 x← SELECT(x,y)

5 until stop;

As it can be observed in the above pseudo-code, the two crucial operators for trajectory-
based algorithms are mutation and selection. Hence, we proceed to study these two mecha-
nism in more detail.

2.2.1 Mutation Operator

As outlined in the previous section, there are many mutation mechanisms. However, we will
consider the two most used mutation operators for trajectory-based algorithms:

• Local mutations (a.k.a. 1-bit mutations): Flip one uniform randomly chosen bit
from the parent genotype.

• Global mutations (a.k.a. bit-wise or standard bit mutations): Flip uniformly at
random each bit of the parent genotype with probability 1/n.

For a better understanding, we graphically represent these two mutation operators for the
3-dimensional Boolean hyper-cube (Figure 2.4). We can observe how, local mutations can
only produce search points that differ exactly in one bit with respect to the parent genotype
(Hamming neighbours). Whereas global mutations provides a non-zero probability of moving
to any point from the search space. However, we can observe that this probability decreases
with the number of mismatched bits between the parent and the child genotype.

2.2 Trajectory-Based Algorithms 17

000

010100 001

101110 011

111

1/3 1/3

1/3

000

010100 001

101110 011

111

0.2960.148

0.074 0.074

0.148 0.148
0.037

0.074

Fig. 2.4 Local (left) and global (right) mutation probabilities from the state 010 on the
Boolean hyper-cube of dimension 3.

Properties of Standard Bit Mutations

The theoretical study of local mutations is fairly easy, however studying global mutations is
more involved. In this subsection we present some useful properties of SBM mutations. An
interesting feature of this mutation operator is that it can create any search point. We will see
in Section 2.3 that this property is very important since it guarantees that the algorithm will
converge in finite time, no matter the fitness function.

It is important however, to notice how the probability of creating each search point is
distributed. In Figure 2.4 we can observe that, different points with the same Hamming dis-
tance from the parent genotype (bit-string 010) have the same probability of being generated.
This is expected since, in order to create a search point that differs in k bits from the parent,
it is necessary to flip those k bits (probability 1/nk) and not flip the remaining n− k bits
(probability (1−1/n)n−k).

Definition 2.6 (Global Mutations). Given two bit-strings x,y ∈ {0,1}n with H(x,y) = k. The
probability of global mutations sampling y from x, namely mut(x,y), is given by

mut(x,y) =
(

1
n

)k

·
(

1− 1
n

)n−k

.

18 Evolutionary Algorithms

It is straightforward to notice that this probability is shared by all the search points which
are at a Hamming distance k of x. Since there are

(n
k

)
bit-strings at a distance k from x, we

can compute the probability of creating any such search point as
(n

k

)
·mut(x,y). As sanity

check, one can take the sum over all the possible values of k, to verify that no events were
excluded ∑

n
k=0
(n

k

)
·mut(x,y) = 1. Finally, the following graph shows how the probability of

global mutations creating a search point at Hamming distance of k from the parent genotype,
exponentially decreases with such distance k.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

k

m
ut
(x
,x
±

k)

Fig. 2.5 Probability of SBMs creating a search point at a Hamming distance of k from the
parent genotype x. Problem size n = 10.

As it will become obvious along this thesis, it is technically hard to maintain exact
mathematical expressions when analysing global mutations. Instead, we will be using bounds
as those derived in the following lemma.

Lemma 2.1. [Lemma 3 in Paixão et al. (2017)] For any positive integer k > 0 and 0≤ x≤ n,
let mut(x,x± k) be the probability that a global mutation of a search point with x ones
creates an offspring with x± k ones. Then,

mut(x,x+ k)≤
(

n− x
n

)k(
1− 1

n

)n−k

· 1.14
k!

mut(x,x− k)≤
(x

n

)k
(

1− 1
n

)n−k

· 1.14
k!

mut(x,x− k)≤ mut(x,x−1)
k!

≤ 1
k!
.

2.2 Trajectory-Based Algorithms 19

2.2.2 Selection Operator

As depicted in Algorithm 2.2, selection is the other main evolutionary operator for trajectory-
based algorithms. In this thesis, we mainly study selection operators that can be specified by
an acceptance probability pacc. Here, a probability distribution decides if the new genotype
produced by mutation is accepted or rejected; pacc :R→ [0,1]. Furthermore, we will consider
algorithms where this acceptance probability depends on the fitness difference between the
parent and offspring ∆ f = fchild− fparent.

Algorithm 2.3: Trajectory-Based Algorithm

1 Initialise x ∈ {0,1}n

2 repeat
3 y← MUTATE(x)
4 ∆ f ← f (y)− f (x)
5 Choose r ∈ [0,1] uniformly at random
6 if r ≤ pacc(∆ f) then
7 x← y

8 until stop;

Within this class of algorithms, we can recover well-known heuristics depending on the
acceptance probability. On one extreme, we find the absence of selection from a Random
Walk (RW) process, which will always accept the new candidate move no matter its fitness.

pRW
acc (∆ f) = 1 ∀ ∆ f . (2.1)

On the other side of the spectrum, we find elitist algorithms such as Randomised Local
Search or the (1+1) EA. Here, the acceptance probability is the step function with threshold
∆ f = 0. Therefore, if mutation produces a point of lower fitness than the parent, it will be
rejected. However, if the new search point is at least as good as the parent it will be accepted.
These heuristics are typically referred to as randomised hill climbers.

pRLS
acc (∆ f) = pEA

acc(∆ f) =

1 if ∆ f ≥ 0

0 if ∆ f < 0.
(2.2)

All the other trajectory-based algorithms that can be described by an acceptance probability,
will be in between these two limit cases. For example, if worsening moves are allowed with
an exponentially decreasing probability but elitism is kept for improving moves, we find the

20 Evolutionary Algorithms

so-called Metropolis algorithm (Metropolis et al., 1953).

pMA
acc (∆ f ,α ∈ R+) =

1 if ∆ f ≥ 0

eα∆ f if ∆ f < 0.
(2.3)

∆ f
−1−2−3

1

0

pacc

1 2 3

MA

RLSRW

Fig. 2.6 Acceptance probability for RW (green dashed line), RLS and (1+1) EA (blue solid
line) and the Metropolis algorithm (red dotted line). The horizontal axis represents the fitness
difference between the child and the parent genotype ∆ f = fchild− fparent.

2.2.3 Popular Trajectory-Based Heuristics

This subsection contains a compilation of the algorithms that we will be studying in this
thesis. First, if we choose local mutations and the acceptance probability from Equation (2.1),
Algorithm 2.3 becomes the well-known random walk.

Algorithm 2.4: Random Walk

1 Initialise x ∈ {0,1}n

2 repeat
3 x← flip a uniform randomly chosen bit from x
4 until stop;

Keeping local mutations but using the acceptance probability from Equation (2.2) leads
to the RLS algorithm.

2.2 Trajectory-Based Algorithms 21

Algorithm 2.5: Randomised Local Search

1 Initialise x ∈ {0,1}n

2 repeat
3 y← flip a uniform randomly chosen bit from x
4 if f (y)≥ f (x) then
5 x← y

6 until stop;

Since RLS only produces Hamming neighbours and rejects those points of lower fitness,
it gets stuck in local optima. One strategy to overcome this obstacle, while maintaining
elitism, is to change the mutation operator to global mutations (Definition 2.6). In this case,
we recover the most theoretically studied evolutionary algorithm, the (1+1) EA.

Algorithm 2.6: (1+1) EA

1 Initialise x ∈ {0,1}n

2 repeat
3 y← flip each bit of x uniform at random with probability 1/n
4 if f (y)≥ f (x) then
5 x← y

6 until stop;

Another famous nature-inspired heuristic is the Metropolis algorithm (Metropolis et al.,
1953). It is inspired by the so-called Boltzmann distribution which classical physical systems
follow at thermal equilibrium. Here, the probability of finding a particle in a state of energy
E is proportional to e−E/(kBT), where T is the temperature and kB is Boltzmann’s constant.
From an algorithmic perspective, the energy relates to the fitness and the temperature is just
a parameter (typically its reciprocal is used; α = 1/T).

22 Evolutionary Algorithms

Algorithm 2.7: Metropolis Algorithm

1 Initialise x ∈ {0,1}n

2 Choose a temperature TEMP > 0
3 α ← 1/TEMP

4 repeat
5 y← flip a uniform randomly chosen bit from x
6 ∆ f ← f (y)− f (x)
7 Choose r ∈ [0,1] uniformly at random
8 if r ≤ pMA

acc (∆ f ,α) then
9 x← y

10 until stop;

Another popular non-elitist trajectory-based algorithm is the (1,λ) RLS. This optimiser
produces λ children by local mutations and selects the best one for survival (ties broken
uniformly at random). Despite the selection mechanism being elitist, the (1,λ) RLS is not an
elitist algorithm. Because the parent genotype was left out the fitness comparison, when the
λ children have a lower fitness than the current solution, the algorithm will accept a move
towards a worse fitness point (even if ∆ f =−∞).

Algorithm 2.8: (1,λ) RLS

1 Initialise x ∈ {0,1}n

2 Choose a population size λ ≥ 1
3 repeat
4 for i = 1 to λ do
5 yi← flip a uniform randomly chosen bit from x

6 x← uniform randomly chosen from argmax(f (y1), f (y2), . . . , f (yλ))

7 until stop;

Finally, we will also consider the popular First-Improvement Local Search (FILS) and
Best-Improvement Local Search (BILS) algorithms (see e.g. Wei and Dinneen, 2014). These
two optimisers, like any Algorithm 2.2 with local mutations, can only explore the Hamming
neighbourhood in one iteration. Whilst FILS will keep producing Hamming neighbours until
it finds an improvement, BILS computes the set of all neighbours and chooses one of those
with the highest fitness. Both algorithms stop when there is no improving neighbour.

2.2 Trajectory-Based Algorithms 23

Algorithm 2.9: FILS (Adapted from Algorithm 4 in Wei and Dinneen, 2014)

1 Initialise x ∈ {0,1}n

2 i← 0
3 repeat
4 Generate a random permutation Per of length n
5 for i = 1 to n do
6 y← flip the Per[i]-th bit of x
7 if f (y)> f (x) then
8 x← y
9 go to line 4

10 stop

11 until stop;

Algorithm 2.10: BILS (Adapted from Algorithm 3 in Wei and Dinneen, 2014)

1 Initialise x ∈ {0,1}n;
2 repeat
3 BestNeighbourSet = /0
4 for i = 1 to n do
5 y← flip the i-th bit of x
6 if f (y)> f (x) then
7 BestNeighbourSet← BestNeighbourSet ∪ y

8 if BestNeighbourSet = /0 then
9 stop

10 x is uniform randomly chosen from argmax(BestNeighbourSet)

11 until stop;

24 Evolutionary Algorithms

2.3 Runtime Analysis of Evolutionary Algorithms

Although the study of evolutionary algorithms is mainly experimental, we can trace back
theoretical analyses to the seventies. The first theoretical attempts were aiming to explain the
behaviour of EAs rather than analysing its performance. The most known of these approaches
was the Schema theory by Holland (1975). Later, Markov Chain theory became the preferred
tool (He and Yao, 2003; Vose, 1995). We can find further modelling attempts via fixed point
analysis of Markov Chains by Vose (1995), and Wright and Rowe (2001) with a similar
approach based on dynamical systems. But more importantly, the use of Markov Chains
opened the doors to a new analysing perspective, performance.

The analysis of deterministic algorithms is mainly composed of two research questions:
correctness and runtime (see e.g. Cormen et al., 2001). In other words, when a new algorithm
is presented, we would like to be guaranteed that the algorithm will always deliver the correct
answer, no matter the input. Secondly, we would like to know how much time the algorithm
needs to achieve that answer. In the case of optimisation algorithms, analysing the correctness
of the algorithm becomes analysing the convergence to the optimum. However, EAs are
randomised algorithms and therefore, they are not suitable to be analysed with the classical
notions of deterministic convergence. The question here is to prove that an EA finds the
optimum of a specific function in finite time with probability one.

Fortunately, by using Markov Chains, Rudolph (1998) defined general conditions that
made this question trivial thenceforth. This achievement allowed to move all the research
effort towards runtime analysis. The key idea is that, if a randomised algorithm is described
by an ergodic Markov Chain, i.e., all states are accessible at any time. Then, there is a
non-zero probability Pr

(
x,xopt

)
of transiting to the optimum state xopt from any other state x.

Since the number of trials needed for such an event to occur follows a geometric distribution,
the expected waiting time will be 1/Pr

(
x,xopt

)
(see lemma A.3 in the Appendix A). The

following theorem (adapted from Droste et al., 2002) presents a case study using this idea.

Theorem 2.1. The expected time of the (1+1) EA to find the optimum of any pseudo-Boolean
function is at most nn iterations.

Proof. Simply recalling that the (1+1) EA (Algorithm 2.6) uses global mutations (see
definition 2.6) we can observe that: from any solution x, the (1+1) EA will produce the
optimal solution xopt with probability

mut
(
x,xopt

)
=

(
1
n

)k

·
(

1− 1
n

)n−k

≥
(

1
n

)n

.

2.3 Runtime Analysis of Evolutionary Algorithms 25

Where we have pessimistically assumed that the Hamming distance k between x and xopt is
the problem size n. Since the (1+1) EA will always accept a fitness improving move, the
probability of moving to the optimum Pr

(
x,xopt

)
= mut

(
x,xopt

)
. Finally, we notice that the

number of trials needed for such event to occur follows a geometric distribution, which leads
an expected time of 1/mut

(
x,xopt

)
≤ nn.

With the convergence question settled, researches focused on building methods for the
runtime analysis of randomised search heuristics. Here, the research question is to derive a
mathematical expression for the time T needed for an algorithm to finish its execution.

Definition 2.7 (Optimisation Time). Let {Xt}t≥0 be a stochastic process on the state space
Ω = {0,1}n and f : Ω→ R a fitness function. The optimisation time T is the first point in
time when the process’ value yields the maximum fitness value, i.e.,

T := min{t ≥ 0 | Xt = argmaxXt∈Ω f (Xt)}.

Although this is the current main research line in the field, there is an obvious hurdle:
How can we know if the algorithm has seen an optimum?. As described in Section 2.1, we
will only consider toy problems which are believed to be building blocks for more complex
functions. For these problems, unlike in many real world problems, we know the optimal
solution a priori, evading the hurdle. However, for many problems (e.g. travelling salesman)
we cannot be sure that an optimum has been sampled. We will see in Section 2.4 how this
is solved by the new perspective of fixed budget which looks at the fitnesses that have been
observed. At the end of this thesis (Subsection 8.5.3) we will discuss further how to reconcile
runtime analysis with fixed budget.

As mentioned before, EAs are randomised algorithms, hence the question translates to
finding the expected time E [T] needed to find the optimal solution. This time is typically
expressed with asymptotic notation in terms of the problem size n (Cormen et al., 2001).

Definition 2.8 (Asymptotic Notation). For any two functions f ,g : N0→ R, we say that:

• f = O(g) if and only if there exist constants c ∈ R+ and n0 ∈ N, such that for all
n≥ n0 it holds that f (n)≤ cg(n).

• f = Ω(g) if and only if g = O(f).

• f = Θ(g) if and only if f = O(g) and f = Ω(g).

• f = o(g) if and only if limn→∞ f (n)/g(n) = 0.

• f = ω(g) if and only if g = o(f).

26 Evolutionary Algorithms

By using asymptotic notation we can express runtime results with a rigorous mathe-
matical expression. Furthermore, we can establish different orders of growth as stated in
the following definition. This way, we can establish efficiency criteria for evolutionary
algorithms. Generally speaking, we will say that an algorithm with a superpolynomial (or
higher growing order) optimisation time is inefficient for the problem at hand. In contrast to
a polynomial runtime that denotes an efficient algorithm.

Definition 2.9. For a function f : N→ R+, we say that

• f is polynomial f = poly(n) if f (n) = O(nc) for some constant c ∈ R+
0 .

• f is superpolynomial if f (n) = ω(nc) for every constant c ∈ R+
0

• f is exponential if f (n) = Ω

(
2nε
)

for some constant ε ∈ R+.

• f is polynomially small f = 1/poly(n) if 1/ f is polynomial.

• f is superpolynomially small if 1/ f is superpolynomial.

• f is exponentially small if 1/ f is exponential.

But a mathematical expression and an order of growth for the expected optimisation time
does not completely settle the question. Despite being able to guarantee that EAs find the
optimum in finite time, we can not ensure that for a given amount of time an EA obtains
the optimal solution with probability one (see e.g. Doerr et al., 2013). Furthermore, the
distribution followed by the optimisation time T might be very disperse, and its expectation
will not give useful information about the runtime. To mitigate these issues, we can usually
find that runtime analysis results are presented in the form of an expected optimisation
time, together with a success probability. A success probability can be seen as a tail bound
Pr(T ≤ t) which expresses the probability that the random optimisation time T is less that a
given amount of time.

Definition 2.10 (Adapted from Definition 1 in Wegener, 2005). Let A be a randomised
search heuristic running for a polynomial number of rounds p(m) and let s(m) be the success
probability, i.e., the probability that A finds an optimal search point within this phase. A is
called

• successful, if s(m) is polynomially small,

• highly successful, if 1− s(m) is polynomially small, and

• successful with overwhelming probability, if 1− s(m) is exponentially small.

2.3 Runtime Analysis of Evolutionary Algorithms 27

The reason behind calling successful the case where the success probability is just
polynomially small is that, multistart variants of the algorithm which do not depend on p and
s will be successful with overwhelming probability (Wegener, 2005).

Finally we introduce some methods for the time complexity analysis of EAs. Some
parts of the following subsections have been freely adapted from the main three textbooks
regarding the theoretical runtime analysis of EAs: Auger and Doerr (2011), Jansen (2013)
and Neumann and Witt (2010).

2.3.1 Markov Chains

Markov processes are one of the most studied processes in probability theory. They are named
after Andrey Markov who first studied this process in 1906. A century later, Markovian
processes constitute a main component in many research fields, including computer science
or physics among others (Levin et al., 2008). We briefly recap just the basic notions of
Markov Chains. We refer the interested reader to Chapter 4 from the textbook by Ross (1996)
or Chapter 1 from the textbook by Levin et al. (2008).

Let {Xt , t = 0,1,2, . . .} be a collection of random variables in time that takes values on a
finite state space Ω. We write Xt = x and say that the process is at state x at time t. We will
say that such process is Markovian when the transition probability px→y of moving between
any two states x and y only depends on the present state. Mathematically speaking,

px→y = Pr(Xt+1 = y | Xt = xt ,Xt−1 = xt−1, . . .X0 = x0) = Pr(Xt+1 = x | Xt = y) . (2.4)

Or in matrix formulation, we can assign px→y to the element (x,y) of the so-called transi-
tion matrix P. Analogous to transition probabilities, we can define τ-iterations transition
probabilities as

pτ
x→y = Pr(Xt+τ = x | Xt = y) , τ ∈ N. (2.5)

A Markov chain is called irreducible if every state can be reached from every other state in
finite time, i.e., pτ

x→y > 0. Irreducible Markov chains have a stationary distribution π ∈Ω

such that π = πP and π(x)> 0 for all x ∈Ω (see e.g. Proposition 1.14 in Levin et al., 2008).
A common approach to derive the stationary distribution of a Markov chain is to use the fact
that π fulfils the so-called detailed balance condition (see e.g. Proposition 1.19 in Levin
et al., 2008).

π(x) · px→y = π(y) · py→x, for all x,y ∈Ω. (2.6)

28 Evolutionary Algorithms

As an example, the following theorem derives the stationary distribution of the Metropolis
algorithm. This result is well known in the literature, and its somehow trivial since the
algorithm was built around the Boltzmann distribution (Metropolis et al., 1953).

Theorem 2.2. Consider the Metropolis algorithm (Algorithm 2.7) as a Markov chain on the
state space Ω = {0,1}n of a fitness function f : Ω→ R. Then, the stationary distribution of
such process is

π(x) =
eα f (x)

Z
,

where Z = ∑x∈{0,1}n eα f (x) is the normalisation constant.

Proof. To use the detailed balance condition, we first need to establish that the Metropolis
algorithm is an irreducible Markov chain. First, we notice that local mutations can only
produce (in one iteration) search points that differ in exactly one bit. However, it is straight-
forward to notice that after n iterations there will be a non-zero probability of mutation having
produced any state of Ω. If we pessimistically assume that during this n steps mutation only
produces search points with the biggest fitness difference ∆ f Max := maxx,y∈Ω (f (y)− f (x)),
we can lower bound the n-th transition probability by

pn
x→y ≥

(
1
n
· pMA

acc (−∆ f Max)

)n

≥ 0,

where in the last inequality we have used the fact that the problem size n is finite and that
pMA

acc (i)> 0 for any finite i ∈ R.
Now that the irreducibility of the Markov chain is proven, we can use the detailed balance

condition (Equation (2.6)). Let us now consider the term π(x) · px→y, as the algorithm
itself, the transition probability px→y can be broken down in two components: mutation and
selection. We denote by mut(x,y) the probability of mutation producing the state y from the
state x. Hence, using the candidate distribution from the statement we obtain

π(x) · px→y =
eα f (x)

Z
· px→y

=
eα f (x)

Z
·mut(x,y) · pMA

acc (f (y)− f (x)).

2.3 Runtime Analysis of Evolutionary Algorithms 29

If f (y)− f (x)< 0, then pMA
acc (f (y)− f (x)) = eα(f (y)− f (x)) yielding

π(x) · px→y =
eα f (x)

Z
·mut(x,y) · eα(f (y)− f (x))

=
eα f (y)

Z
·mut(x,y) ,

since the mutation operator is unbiased mut(x,y) = mut(y,x) and we obtain

π(x) · px→y =
eα f (y)

Z
·mut(y,x) = π(y) · py→x.

On the other hand, if f (y)≥ f (x) it follows the same calculations by swapping x↔ y.

It seems natural to introduce rigorous measurements of how far the process is from this
limit behaviour. In order to do that, we first measure the distance between two distributions
µ and ν by using the total variation distance.

∥µ−ν∥TV :=
1
2 ∑

x∈Ω

| µ(x)−ν(x) |= max
A⊆Ω

| µ(A)−ν(A) | . (2.7)

Analogously, we can estimate the time needed for the process to reach the equilibrium with
the so-called mixing time. This is, the first point in time when the total variation distance
is smaller than a predefined threshold. We have chosen a value of 1/(2e) for this threshold,
however there are similar but different values used in the literature.

Definition 2.11 (Mixing Time). Let pt(x) be the probability distribution of an ergodic
Markov Chain after t iterations. Then, the ε-mixing time is defined as t(ε) := min{t |
∥pt(x)−π∥TV ≤ ε}. And the mixing time tmix is the worst case until the distance is reduced
to 1/(2e), i.e., tmix := maxx∈Ω t (1/(2e)) .

Regarding the theoretical analysis of evolutionary algorithms, He and Yao (2003) in-
troduced an analytic framework based on Markov chains. However, the generality of this
approach was at the cost of its applicability. Although they derived explicit solutions for
some case studies, the authors recognised that in general it might even be impossible to solve
the proposed equations.

Another method based on Markov chain theory was presented by Sudholt (2011b). Here,
the author exploited the link between runtime and mixing time and applied the coupling
technique to derive estimations of the algorithm’s runtime. In Chapters 7 and 8, we will
partly make use of this approach and the above introduced concepts from Markov chain
theory.

30 Evolutionary Algorithms

2.3.2 Gambler’s Ruin Problem

One special case of a Markov chain that appears often enough to be interesting by itself is the
so-called Gambler’s Ruin problem. It depicts a game where two gamblers bet their money in
the following way: at each iteration player 1 wins one of player’s 2 dollars with probability
p1 and player 2 wins one of player’s 1 dollars with probability p2 = 1− p1.

It is straightforward to notice that we can cast this process with a simple Markov chain.
The state space will be the integers up to some maximum number Ω = {0,1, . . . ,n}, where
n accounts for the sum of each player’s money (n1 and n2). Since only one dollar can be
won (or lost) at each time step, only transition probabilities between neighbour states (in the
integer line) will have a non-zero value. Furthermore, these probabilities do not depend on
the state of the process and remain fixed during the game. Finally, since the game finishes
when one of the two extreme states (0 and n) is reached, these two states will not have
out-going probabilities, i.e., they are absorbing states.

0 1 · · · n1 · · · n2 · · · n−1 n1

p1 p1 p1 p1 p1 p1 p1

p2 p2 p2 p2 p2 p2 p2

1

Fig. 2.7 Graphical representation of the underlying Markov Chain of a Gambler’s ruin
process.

The two main questions of interest for this process are: what are each player’s chances of
becoming bankrupt? and What is the expected time until such event occurs? The following
theorem, adapted from Chapter XIV from Feller’s textbook (1968), answers the above
questions.

Theorem 2.3 (Gambler’s Ruin). Consider a game where two players start with n1 ∈N+ and
n2 ∈ N+ dollars respectively. In each iteration, player 1 wins one of player’s 2 dollars with
probability p1 and player 2 wins one of player’s 1 dollars with probability p2 = 1− p1. Then
the probability of player 1 winning all the dollars before going bankrupt is

P1 =


n1

n1+n2
if p1 = p2

1−
(

p2
p1

)n1

1−
(

p2
p1

)n1+n2 if p1 ̸= p2.

2.3 Runtime Analysis of Evolutionary Algorithms 31

The expected time until either of both players become bankrupt, i.e., the expected duration of
the game is

E [T] =

n1n2 if p1 = p2
n1−(n1+n2)P1

p2−p1
if p1 ̸= p2.

This result is useful when analysing evolutionary algorithms that are optimising a fitness
path (recall Figure 2.2). This landscape feature can resemble a linear Markov chain as in a
Gambler’s ruin process. Finally, we present a case study to exemplify the use of this theorem
for a random walk (Algorithm 2.4) on the integers.

Theorem 2.4. Let n/2 be the starting position of a Random Walk that can take values on
{0,1, . . . ,n}. Then, the probability of reaching the state n before hitting state 0 is 1/2. And
the expected time until such event occurs will be n2/4.

Proof. Noticing that for a RW p1 = p2 = 1/2, the results follows straightforward after
introducing n1 = n2 = n/2 in Theorem 2.3.

2.3.3 The Coupon Collector Problem

Another Markov chain of interest is the so-called coupon collector problem (see e.g. Motwani
and Raghavan, 1995). Consider a collector who wants to complete a collection of n different
coupons. Whenever he makes a purchase, he chooses uniformly at random one coupon.

0 1 2 · · · n−2 n−1 n
1 1−1/n 2/n 1/n

1/n 2/n 1−2/n 1−1/n 1

Fig. 2.8 Underlying Markov Chain of the Coupon Collector Problem.

There are two main differences to the Gambler’s Ruin problem. Firstly, the collector
cannot lose coupons. Secondly, the more coupons the collector has, the smaller the probability
of choosing a new coupon. Obviously the collector will eventually finish the collection.
Hence, the only research question is regarding the expected time until such event occurs. The
following theorem, adapted from Theorem 1.21 in Auger and Doerr (2011), answers this
question.

Theorem 2.5 (Coupon Collector). The expected time to collect all the coupons is n ·
∑

n
i=1 1/i = nHn, where Hn is the nth harmonic number.

32 Evolutionary Algorithms

This result is useful when analysing elitist algorithms on functions of unitation. This
is, the class of functions where the fitness depends on the number of ones in the bitstring
regardless its position. Finally, as a case study, we analyse RLS (Algorithm 2.5) on the
ONEMAX problem (see Definition 2.4).

Theorem 2.6. Consider RLS with initial search point 0n on ONEMAX. Then, the expected
optimisation time is E [T] = nHn.

Proof. Let x denote the number of 1-bits in the current solution. Since RLS uses local
mutations, it can only create Hamming neighbours. Out of those n search points, only
n− x possess a higher ONEMAX fitness. The remaining neighbours will be rejected by
selection if they are sampled by mutation. Hence, the probability of moving to a point
of higher fitness is px→x+1 = (n− x)/n. Since the remaining probability falls into the
current state, i.e., px→x = 1− px→x+1, we have a coupon collector problem. Finally, calling
Theorem 2.5 completes the proof.

2.3.4 Drift Analysis

We can find the term drift in many scientific fields. In fluid dynamics, the Stokes drift is
the average velocity of a fluid parcel. Also, charge carriers in a material experience a drift
velocity due to an electric field. In population genetics, the genetic drift are the gene’s
frequency changes in a population due to a random sampling.

However, we are interested in the so-called stochastic drift, i.e., the expected change of
a stochastic process’ value. The study of the stochastic drift within the field of probability
theory was started by Hajek (1982). Roughly two decades later, He and Yao (2001) introduced
drift as an analysis tool for randomised algorithms.

As in classical mechanics, the velocity is the rate of change in position with respect to
time, the stochastic drift is the expected rate of change of the stochastic process. This is a
great motivation for the use of drift analysis, since classical mechanics have proven to be
extraordinarily successful for analysing deterministic processes. However, the mathematical
translation is not trivial since evolutionary algorithms are stochastic and discrete-time systems.
Furthermore, the rules of the game vary with each algorithm and problem, unlike in nature.
Nevertheless, drift is perhaps the most successful analysis tool for evolutionary algorithms.

Definition 2.12 (Stochastic Drift). Let {Xt}t≥0 be a stochastic process over a finite state
space Ω. The drift is defined as b(Xt , t) := E [Xt−Xt+1 | Xt].

Although in the general case the drift can depend on the current state and the time iteration
b(Xt , t), in this thesis, we will only face drifts that do not depend on the current time. Hence,
from now on we will write b(Xt) for the sake of simplicity.

2.3 Runtime Analysis of Evolutionary Algorithms 33

Unfortunately, there is no general method to obtain a runtime estimate from every
mathematical expression of b(Xt). However, there are several special cases where we
can analytically solve the problem. These are, the so-called additive (He and Yao, 2001),
multiplicative (Doerr et al., 2012) and variable drift (Johannsen, 2010) theorems. In a
nutshell, the idea is to find easier expressions for the drift of the studied algorithm. These
alternative drift has to be always slower (or faster) than the real drift. Then, we can derive
pessimistic (or optimistic) estimations for the real runtime.

The additive drift will use constant bounds for the real drift (dashed grey lines in Fig-
ure 2.9), whereas a multiplicative drift approach consider that the drift is proportional to the
current state’s value (green curve in Figure 2.9). Finally, the variable drift considers a broader
range of dependencies with the current state’s value generalising the other approaches (red
curve in Figure 2.9). However, all share an important limitation, the bounds for the drift must
be monotonic functions. Hence, depending on the algorithm and problem this will yield a
lack of accuracy (see gaps between the blue and other curves in Figure 2.9).

xmin xmax

bl

bu

Xt

b(
X t
)

Fig. 2.9 Real drift (blue curve) of a stochastic process Xt , additive bounds bu and bl (dashed
grey), multiplicative lower bound (green) and variable drift lower bound (red).

To exemplify the concept of drift we now compute three different lower bounds for the
drift of the (1+1) EA on ONEMAX.

Lemma 2.2. Let Zt be the number of 0-bits at time t of the (1+1) EA on ONEMAX. Then,
the drift b(Zt) = E [Zt−Zt+1 | Zt] can be bounded as follows.

b(Zt)≥
Zt

n

(
1− 1

n

)n−Zt

≥ Zt

en
≥ 1

en
,

unless Zt = 0, in which case, the function is already optimised.

34 Evolutionary Algorithms

Proof. By definition of expectation b(Zt) = ∑k k ·Pr(Zt−Zt+1 | Zt = k). In order to obtain a
drift with an impact of k we need: mutation producing a search point with an impact of k and
selection accepting the corresponding fitness change. Furthermore, we have to consider all
the possible values of the impact k at state Zt , hence:

b(Zt) =
Zt

∑
k=−(n−Zt)

k ·mut(Zt ,Zt− k) · pEA
acc(k), (2.8)

noticing that pEA
acc is zero for k < 0 and pEA

acc = 1 for the remaining values of k, we can simplify
the previous expression to

b(Zt) =
Zt

∑
k=1

k ·mut(Zt ,Zt− k) ,

the probability of mutation increasing the number of 1-bits by k is at least the probability of
flipping k 0-bits while not flipping any 1-bit, therefore

b(Zt)≥
Zt

∑
k=1

k ·
(

Zt

k

)(
1
n

)k(
1− 1

n

)n−k

=

(
1− 1

n

)n−Zt

·
Zt

∑
k=1

k ·
(

Zt

k

)(
1
n

)k(
1− 1

n

)Zt−k

.

Noticing that now the sum is the expectation of a binomial distribution leads to

b(Zt)≥
Zt

n
·
(

1− 1
n

)n−Zt

.

The remaining claims follow after using (1−1/n)n−Zt ≥ 1/e since n−Zt < n and Zt ≥ 1.

Additive Drift

The simplest case is when the drift does not depend on the time t or the current state Xt . Here
b(Xt , t) = b remains constant with respect to the time and the process’ value, although it
can depend on the problem size n. This scenario is known as additive drift and it was first
introduced to the EC community by He and Yao (2001).

Theorem 2.7 (Additive Drift). Let {Xt}t≥0 be a stochastic process over a finite set of non-
negative real numbers Ω⊆ R+

0 . Furthermore, let T be a random variable denoting the first
point in time when Xt = 0. If there exist positive constants bu ≥ bl > 0 such that for all t and

2.3 Runtime Analysis of Evolutionary Algorithms 35

Xt it holds that
bu ≥ E [Xt−Xt+1 | Xt]≥ bl,

then the expected optimisation time E [T] is

X0

bu
≤ E [T | X0]≤

X0

bl
,

and by linearity of expectation

E [X0]

bu
≤ E [T]≤ E [X0]

bl
.

The idea here is simple, no matter how complex the drift of an algorithm is, we can find
an imaginary process whose drift is constant and always slower (or always faster). Then,
we can easily obtain a pessimistic (or optimisation) estimation of the algorithm’s runtime.
However, it is straightforward to notice that, depending on the real drift, this estimations can
be very loose. This was informally depicted in Figure 2.9 but now we formally present an
example by analysing the (1+1) EA on ONEMAX. We will see in Theorem 2.10 that the
following upper bound of en2 is not tight.

Theorem 2.8. For any initialisation, the expected optimisation time of the (1+1) EA on
ONEMAX is at most en2.

Proof. Let Zt be the number of 0-bits at time t, then by the last bound of Lemma 2.2:
b(Zt) ≥ 1/en = bl . Hence, by the Additive Drift (Theorem 2.7) the runtime is at most
en ·E [Z0]. Finally, pessimistically assuming that initialisation is at the all zeros bitstring we
obtain E [T]≤ en2.

Multiplicative Drift

As mentioned earlier, using an fixed bound for the drift can yield loose results for the runtime.
In order to tighten these results, we need to relax the additive drift conditions by allowing the
drift bounds to depend on the current state. This is partly solved by multiplicative drift by
bounding the drift by an expression proportional to the current state’s value. This was first
presented by Doerr et al. (2012) and extended by Doerr and Goldberg (2010) to include a
probability tail bound.

Theorem 2.9 (Multiplicative Drift). Let {Xt}t≥0 be a stochastic process over a finite set of
non-negative real numbers Ω⊆ R+

0 and assume that Xmax = max{Xt} exists. Furthermore,
let T be a random variable denoting the first point in time when Xt = 0. If there exist δ > 0

36 Evolutionary Algorithms

such that
E [Xt−Xt+1 | Xt]≥ δXt ,

then the expected optimisation time E [T] is

E [T]≤ 1
δ
(1+ lnXmax),

and for every c > 0

Pr
(

T >
1
δ
(lnXmax + c)

)
≤ e−c.

The condition of the drift bound being of the form δXt might sound too specific, however,
we can find this expression in many scenarios. For example, when the fitness depends
only on the number of ones (unitation), a mutation operator that does not prefer flipping a
0-bit over a 1-bit (unbiased) will exhibit this effect. This family of operators tend towards
sampling points with the same number of 1 and 0-bits. Hence, when the current solution
Xt has H(Xt ,0n)≥ n/2 the bigger the number of 1-bits, the bigger the time to obtain a new
1-bit.

Finally, we recover the same study case as in Theorem 2.8, but by using the multiplicative
drift we can improve our runtime estimation from en2 to O(n lnn).

Theorem 2.10. For any initialisation, the expected optimisation time of the (1+1) EA on
ONEMAX is at most en lnn+ en.

Proof. Let Zt be the number of 0-bits at time t, then by the second bound of Lemma 2.2:
b(Zt)≥ Zt/en. Hence, by the Multiplicative Drift (Theorem 2.9) with δ = 1/en and Xmax = n
we obtain a runtime of E [T]≤ en(1+ lnn).

Variable Drift

In order to further improve our runtime estimates, we have to leave the multiplicative drift
assumption and allow for further dependencies with Xt . The variable drift, almost completely,
solves this issue by allowing any drift bound b(Xt) ≥ h(Xt), as long as h(Xt) is monotone
increasing. This assumption is sensible, since one expects that, in general, an EA slows its
progress when it is approaching the optimum (Eiben and Smith, 2015). However, there can
be drift expressions which are not monotone increasing (like the example in Figure 2.9). The
variable drift was first presented by Johannsen (2010), from where we take the following
statement.

Theorem 2.11 (Variable Drift). Let {Xt}t≥0 be a stochastic process over a finite set of non-
negative real numbers Ω⊆R+

0 and assume that Xmin = {X ∈Ω | x > 0} exists. Furthermore,

2.3 Runtime Analysis of Evolutionary Algorithms 37

let T be the first point in time for which Xt = 0. If there exists a continuous and monotone
increasing function h : R+

0 → R+ such that for all t < T it holds that

E [Xt−Xt+1 | Xt]≥ h(Xt).

Then,

E [T | X0]≤
Xmin

h(Xmin)
+
∫ X0

Xmin

1
h(x)

dx.

Again, we exemplify the use of the variable drift on the same problem, (1+1) EA on
ONEMAX, to show that it outperforms both the multiplicative and additive drift. The
following theorem is adapted from Theorem 4 in Doerr et al. (2011).

Theorem 2.12. For any initialisation, the expected optimisation time of the (1+1) EA
on ONEMAX is at most en lnn− n(eγ − 1) + e(e− 1), where γ = 0.577 . . . is the Euler-
Mascheroni constant.

Proof. Let Zt be the number of 0-bits at time t, then by the first bound of Lemma 2.2:
b(Zt) ≥ Zt/n(1−1/n)n−Zt . Since this bound is monotone increasing with Zt , let it be our
h-function in the Variable Drift (Theorem 2.11). Pessimistically assuming that initialisation
is at the all zeros bitstring E [T]≤ E [T | Z0 = n] and hence

E [T]≤ 1
h(1)

+
∫ n

1

1
h(z)

dz

=
n(

1− 1
n

)n−1 +
n(

1− 1
n

)n ·
∫ n

1

(
1− 1

n

)z

z
dz

≤ n(
1− 1

n

)n−1 +
n(

1− 1
n

)n ·
∫ n

1

e−z/n

z
dz. (2.9)

Computing a precise upper bound for the integral above is quite involved. Since this is a case
study, we just recycle the following upper bound from Theorem 4 by Doerr et al. (2011).

n(
1− 1

n

)n ·
∫ n

1

e−z/n

z
dz≤ n

(
1− 1

n

)−n(
−γ + lnn+

e−1
n
−
∫ n

1

e
z

dz
)
.

38 Evolutionary Algorithms

Introducing this back into Equation (2.9) we obtain

E [T]≤ n
(

1− 1
n

)1−n

+n
(

1− 1
n

)−n(
−γ + lnn+

e−1
n
−
∫ n

1

e
z

dz
)

≤ n+ne
(
−γ + lnn+

e−1
n

)
= en lnn−n(eγ−1)+ e(e−1).

Negative Drift

Finally, we present a drift theorem with a different purpose. Instead of deriving upper
bounds to show the efficiency of an algorithm, the negative drift shows the inefficiency of
algorithms by providing an exponential lower bound. There are two simple requirements
for an algorithm to be inefficient: the drift must be smaller than a negative constant and the
probability of large jumps must be low.

Fig. 2.10 Illustration of the scenario underlying the drift theorems for lower bounds (Figure 1
in Oliveto and Witt, 2011)

The negative drift was introduced to the EC community by Oliveto and Witt (2008);
Oliveto and Witt (2012). However, we use the following formulation, adapted from Theorem
3 by Rowe and Sudholt (2014), because it considers self-loop probabilities.

Theorem 2.13 (Negative Drift with Self-loops). Let {Xt}t≥0 be a stochastic process over
the state space {0, . . . ,m} and transition probabilities pi→ j. If there exist integers a,b with
0 < a < b≤ m and ε > 0 such that for all a≤ k ≤ b it holds that

E [Xt−Xt+1 | Xt = k]<−ε(1− pk→k),

2.3 Runtime Analysis of Evolutionary Algorithms 39

and also there exist constants r,δ > 0 (i. e. they are independent of m) such that for all k ≥ 1
and all d ≥ 1

pk→k±d ≤
r(1− pk→k)

(1+δ)d .

Then, there is a constant c > 0 such that

Pr
(

T ≤ 2c(b−a)/r
)
= 2−Ω((b−a)/r).

where T be the first hitting time of a state at most a, starting from X0 ≥ b.

This time we consider a different heuristic, the Metropolis algorithm. The following
theorem shows that if the parameter is not chosen properly, MA cannot even optimise a
simple function like ONEMAX.

Theorem 2.14. If α ≤ (1− ε) lnn for some 0 < ε < 1, then the expected optimisation time
of the Metropolis algorithm on ONEMAX is at least 2cn with overwhelming probability
1−2−Ω(n), for some constant c > 0 and a initial number of ones X0 ≤ 3n/4.

Proof. Let Xt be the number of 1-bits at time t. To compute the drift, we follow similar
steps as in the proof of Lemma 2.2. We start from adapting Equation (2.8) to the Metropolis
algorithm, yielding

b(Xt) =
n−Xt

∑
k=−Xt

k ·mut(Xt ,Xt + k) · pMA
acc (k),

since MA uses local mutations, it can only create points with Hamming distance 1. Hence
k = {−1,1}, which yields

b(Xt) = mut(Xt ,Xt +1) · pMA
acc (1)−mut(Xt ,Xt−1) · pMA

acc (−1),

out of the n Hamming neighbours only Xt have a worse fitness, hence the mutation probabili-
ties become

b(Xt) =
n−Xt

n
· pMA

acc (1)−
Xt

n
· pMA

acc (−1)

using MA’s acceptance probability (Equation (2.3)) leads to

b(Xt) =
n−Xt

n
− Xt

n
· e−α = 1− Xt

n

(
1+ e−α

)
.

40 Evolutionary Algorithms

Finally, we introduce the statement’s condition α ≤ (1− ε) lnn yielding

b(Xt)≤ 1− Xt

n

(
1+

1
1− ε

)
.

Let us now consider when the algorithm is optimising the last n/4 1-bits. Then, b(Xt ≥
3n/4) ≤ 1− 3/4(1+1/(1− ε)), which is negative for any 0 < ε < 1 fulfilling the first
condition from the Negative Drift with Self-loops (Theorem 2.13). The second condition
holds trivially since the probability of jumps further than the Hamming neighbourhood have
zero probability.

2.4 Fixed Budget

In addition to runtime analysis, Jansen and Zarges (2012) introduced a new approach to
measure the performance of randomised algorithms, the fixed-budget perspective. Runtime
analysis, as shown in the previous section, focuses on the expected first hitting time of the
optimum, this time is expressed as a function of the problem size; E [T] = f (n). On the other
hand, fixed-budget considers the expected fitness Xt obtained after t iterations. Hence, the
result will also depend on the time; E [Xt] = f (n, t). As argued by the authors, this approach
provides more information about the optimisation process than the classical runtime analysis.
Furthermore, it is closer to experimental settings where one typically runs the algorithms for
a fixed mount of time (budget).

Nevertheless, both approaches should be in concordance. If we know the first hitting
time T (X) of any specific fitness value X , it looks natural to compute the inverse function to
obtain the equivalent fixed-budget result. As shown by Doerr et al. (2013) this is the case for
deterministic algorithms, but it will not be necessarily true for randomised algorithms. The
authors circumvent this problem by using sharp bounds on the probability of deviating from
the expected times. Finally, the authors developed a method to recycle expected optimisation
times to derive fixed-budget results.

Fixed budget has kept gaining importance in the community with roughly a publication
per year. Nallaperuma et al. (2017a) produced the first fixed-budget results for a real-world
NP-hard problem, the travelling salesman problem. Lengler and Spooner (2015) derived the
fixed-budget analogue of the multiplicative drift (Theorem 2.9). Doerr et al. (2016) studied
optimal parameter choices for both runtime and fixed-budget. And Paixão and Pérez Heredia
(2017) derived additive and multiplicative drift theorems based on stochastic differential
equations (see Section 8.3).

2.4 Fixed Budget 41

Finally, we conclude this section with an example application. Since we already have
drift estimates for the (1+1) EA on ONEMAX and for the sake of brevity, we recover the
same case study as in the previous section.

Theorem 2.15. Let {Xt}t≥0 be the number of 1-bits in the current solution of the (1+1) EA
on ONEMAX. Then, after t iterations

E [Xt]≥ n
(

1− e−
t

en

)
+E [X0] · e−

t
en .

In order to prove the previous claim, we use the following Fixed-Budget Multiplicative
Drift Theorem. The statement corresponds to Theorem 1 by Lengler and Spooner (2015).

Theorem 2.16. Let {Xt}t≥0 be a stochastic process over a finite set of non-negative real
numbers Ω⊆ R+

0 , and 0 < bl < bu < 1. If for all t it holds that,

buXt ≥ E [Xt−Xt+1 | Xt]≥ blXt .

Then (for bu ≤ 0.797) it also holds that

X0e−2but ≤ X0(1−bu)
t ≤ E [Xt | X0]≤ X0(1−bl)

t ≤ X0e−blt .

Proof of Theorem 2.15. Let Zt be the number of 0-bits at time t, then by the second bound of
Lemma 2.2: b(Zt)≥ Zt/en. Hence, by the Fixed-Budget Multiplicative Drift (Theorem 2.16)
with bl = 1/en we obtain

E [Zt | Z0]≤ Z0e−t/en.

Translating to the number of ones (Xt = n−Zt) leads to

n−E [Xt | X0]≤ (n−X0)e−t/en

E [Xt | X0]≥ n− (n−X0)e−t/en

E [Xt | X0]≥ n(1− e−t/en)+X0 · e−t/en.

Applying linearity of expectations completes the proof.

Chapter 3

Population Genetics

To finalise the introductory part of this thesis, we present a chapter about Population Genetics.
The main scope in population genetics is to study the variations in gene frequencies due to
evolutionary processes such as mutation, recombination or selection. This chapter does not
aim to be a thorough literature review or a full introduction to the field. The scope of this
chapter is to motivate, from the biological point of view, the results that we will present on
Parts II and III. Hence, we will restrict this chapter merely to the mathematical and biological
foundations needed to derive the so-called Strong Selection Weak Mutation (SSWM) regime.
The choice of this regime is not arbitrary, during this chapter the importance and relevance
of the SSWM regime for the theoretical study of evolution will become clear. For a general
introduction to the concepts of population genetics we refer the interested reader to the
textbook by Barton et al. (2007). In addition, for a proper introduction to the mathematics
and methods of PG we recommend the textbook by Rice (2004). To finalise this disclaimer,
we would like to point out that we have chosen to use the same notation as in the previous
chapter, therefore, it can substantially differ from the notation used in the PG literature.

We have followed the standard approach of many PG texts, however there are deviations
and simplifications for the above mentioned reasons. After briefly going through the history
of Population Genetics, we will focus on the independent study of selection, mutation and
genetic drift (Section 3.1). Along the way, our analysis will highlight the importance of
keeping track of the frequency of non-optimal alleles in the population. In Section 3.2, we
generalise the analysis to combine selection, mutation and genetic drift altogether in one
model. This approach will yield an important result: detrimental alleles not only can avoid
extinction, but that they can even take over the population by replacing all the genotypes.
Finally, we conclude with the derivation of the SSWM regime which will become a crucial
component of this thesis.

44 Population Genetics

Before jumping into the mathematical foundations of PG, we briefly recap the history
of this field. As mentioned in the introduction, we can trace back the human interest for
evolution to the ancient Greeks (e.g. Hippocrates, circa 400 BCE or Aristotle, circa 300
BCE), specifically to the concept of inheritance of acquired characteristics. This concept
claims that an individual can transfer the physiological changes acquired during its lifetime
to its offspring. Many centuries later, Lamarck (1809) recovered this idea in, what can be
considered, the start of the scientific study of evolution.

Fifty years later, Darwin (1859) and Wallace (1855) independently proved wrong Lamarck’s
proposed evolutionary mechanism. After reading the work on population growth of the
economist Malthus (1798), Darwin realised that while natural resources are limited, species
are reproducing exponentially. Hence, individuals are in competition for resources and if
the variations present in living organisms are hereditary, nature will be selecting the fitter
individuals.

However, Darwin could not solve what appeared to be a major flow in his theory. If
parents transfer a blend of their characteristics to their children, diversity should vanish
after sufficiently many generations. Interestingly enough, the answer was hidden in the
already published work by Mendel (1866). Nevertheless, we had to wait until the early 1900s,
when Hardy (1908) and Weinberg (1908) independently showed with a simple formula that
Mendelian inheritance does preserve diversity under random mating. Later in the 1920s and
1930s, Fisher (1930), Haldane (1990) and Wright (1932) developed a precise mathematical
framework that would definitely unify Mendelian genetics and Darwian evolution, giving
birth to the research field of population genetics.

Finally, we would like to point out that despite being a theoretical discipline, the applica-
tions and repercussions of PG in the real world are huge. Some examples collected by Nowak
(2006) are: HIV progression mechanism, evolution of virulence, cancer evolutionary dynam-
ics or language evolution.

3.1 Selection, Mutation and Genetic Drift

In this section we introduce the basic notions of selection, mutation and genetic drift within
the framework established by Fisher (1930), Haldane (1990) and Wright (1932). This
approach studies evolution by assigning fitness values to genotypes and analysing the change
in allele frequencies. Although this is not the only approach, it has proven to be very
useful and has greatly contributed to the basic understanding of evolution (Rice, 2004). It is
important to note that the term genetic drift differs from the stochastic drift introduced in

3.1 Selection, Mutation and Genetic Drift 45

Definition 2.12. Although in biology, genetic drift is typically referred to just as drift, we
will use the full name to avoid confusion.

3.1.1 Selection

As mentioned above, our aim is to analyse the change in allele frequencies. However,
selection acts mainly at the genotype level1 and therefore we have to establish a relationship
between allele and genotype frequencies. Hardy (1908) and Weinberg (1908) independently
showed that under random mating (and absence of mutation, selection and migration) the
genotype frequencies only depend on the allele frequencies. Furthermore, they remain
constant during following generations, proving that diversity is preserved (under those
conditions).

Definition 3.1 (Hardy-Weinberg (H-W) Frequencies). Let Ai be an allele i and pi its fre-
quency. Then its genotype frequencies Freq(AiA j) are

Freq(AiAi) = p2
i

Freq(AiA j) = 2pi p j (j ̸= i)

Freq(A jA j) = p2
j .

Note that the order of the alleles in a genotype does not matter since it only represents if
the allele comes from the mother or from the father. Then we do not distinguish between
heterozygotes (AiA j = A jAi) and hence the factor 2 in the frequency Freq(AiA j). If we were
interested in knowing the origin of the allele Ai, we would have to distinguish between AiA j

and A jAi, and also between their frequencies Freq(AiA j) and Freq(A jAi). However, in most
populations the number of genotypes A jAi is the same as the number of genotypes AiA j and
the distinction is not necessary (see e.g. Chapter 2 in Crow and Kimura, 2009).

With the relation between genotype and allele frequencies we just have to define the
notion of fitness within biology. The following definition is adapted from Chapter 2 in the
textbook by Rice (2004).

Definition 3.2 (Fitness). Let P be a population of individuals with genotypes AiA j. Then we
can define the following fitness measurements:

• Fitness of an individual, F: is the reproductive contribution of an individual to the
next generation.

1Strictly speaking it acts on individuals through their phenotype, which is determined by the genotype.

46 Population Genetics

• Genotypic fitness, fi j: is the average fitness of all individuals with the genotype Ai j in
a population.

• Marginal fitness, f ∗i : is the average genotypic fitness over all the genotypes that
contains the allele Ai, weighted by the probability of finding such allele in that genotype.

Let us now focus on the most common selection model studied in PG: selection acting
on one locus with two alleles (Rice, 2004). Hence, we can simplify the notation from
Definition 3.1 to: just p for the frequency of the allele A1 and obviously the other allele will
have a frequency of 1− p.

We have defined the mean fitness of a population in terms of how much it favours the
growth of such population, it seems natural then, to measure this growth per generation.
Let Nt be the size of a population at time t, we can compute the population size after
one generation as the sum of each genotype’s fitness, weighted by their frequency in the
population. Assuming H-W frequencies, this is simply Nt+1 = Nt f , where f is the mean
population fitness.

f = p2 f11 +2p(1− p) f12 +(1− p)2 f22. (3.1)

Recall that since the order of the alleles in the genotype is not relevant we have that f21 = f12.
We now take the derivative of the previous equation to study how f varies with respect to the
allele frequencies. For that, we have to consider the case where the fitness is a function of
the allele frequencies, hence

d f
d p

= 2p f11+ p2 d f11

d p
+2(1−2p) f12+2p(1− p)

d f12

d p
−2(1− p) f22+(1− p)2 d f22

d p
. (3.2)

To simplify this expression we recover the concept of marginal fitness (see Definition 3.2),
f ∗i can be computed as the probability of finding Ai in each genotype. If we stick to the
assumption of random mating used to derived the H-W frequencies, these probabilities are
simply each allele frequency. Therefore,

f ∗1 = p f11 +(1− p) f12

f ∗2 = p f12 +(1− p) f22. (3.3)

Introducing this back into Equation (3.2) leads to

d f
d p

= 2(f ∗1 − f ∗2)+ p2 d f11

d p
+2p(1− p)

d f12

d p
+(1− p)2 d f22

d p
,

3.1 Selection, Mutation and Genetic Drift 47

which we can simplify by noticing that the three last terms are just E [d f/d p] since each
derivative is multiplied by its corresponding H-W frequency, leading to

d f
d p

= 2(f ∗1 − f ∗2)+E
[

d f
d p

]
. (3.4)

Let us leave this equation for a moment and focus again on the marginal fitnesses, from
Definition 3.2, we can also understand f ∗i as the expected number of descendants of the
allele Ai. Hence, if at the current generation there are ni alleles of type Ai, in the next
generation there will be, in expectation, n1 f ∗1 . Furthermore, we also notice that the total
population size N = ∑ni grows with the mean population fitness f . Then, we can derive the
allele frequencies in the next generation as

pt+1 = n1 f ∗1 /N f = pt f ∗1 / f .

Returning to our original aim, we compute the variation in the allele frequencies ∆p =

pt+1− pt as follows

∆p =
p
(

f ∗1 − f
)

f
=

p(1− p)(f ∗1 − f ∗2)
f

, (3.5)

where in the last step we have used the fact that f = p f ∗1 +(1− p) f ∗2 . Finally, we recover
Equation (3.4) to introduce it into Equation 3.5 yielding

∆p =
p(1− p)

2 f

(
d f
d p
−E

[
d f
d p

])
. (3.6)

This equation is crucial for the theoretical understanding of evolution. In the special case
when the fitness is frequency-independent (i.e, d f/d p = 0) it corresponds with the equation
for an adaptive landscape by Wright (1937).

∆p =
p(1− p)

2 f
d f
d p

. (3.7)

If we consider this equation as a dynamical system, we find a very important result. Apart
from the extreme cases when one of the two alleles has taken over the whole population
(p = 0 or p = 1), the fixed points of Equation (3.7) (i.e., when ∆p = 0) are located at
d f/d p = 0. Therefore, we find stability when the mean population fitness is maximised!
This result backs up the principle of adaptation from the Darwin-Wallace evolutionary
theory. Unfortunately, Moran (1963) showed that for the multi-loci case it no longer holds
(in general) that populations tend to maximize f . Specifically, when the fitness is dependent

48 Population Genetics

on more than one locus. However, Moran also mentioned that adaptive landscapes can still
be used to obtain approximated results when the genotypic fitnesses are very close to each
other.

To further understand Equation (3.7), we present a case study where the heterozygote
has a higher fitness than both homozygotes. This is modelled by assigning (for example)
the following genotypic fitnesses: f11 = f22 = 1 and f12 = 1+∆ f . Then, assuming H-W
frequencies, we can use Equation (3.1) to compute the mean population fitness: f = 1+
2∆ f p(1− p). Introducing this value of f in Equation (3.7) leads to

∆p =
p(1− p)(1−2p)∆ f

1+2∆ f p(1− p)
. (3.8)

Let us now plot both ∆p and f against p. In the right-hand graph of Figure 3.1, we can
observe that the mean population fitness approaches its minimum value when there are
no alleles A1 (p = 0). This corresponds with all the population consisting of copies of
the genotype A22. Analogously, when p = 1, all the alleles present in the population are
A11, hence a minimal f = 1. However, when the population is composed of half A1 alleles
(p = 1/2) we observe that the fitness is maximised.

As we mentioned before, the value p = 1/2 must correspond with a stability point
(∆p = 0). We can observe that this is the case on the left-graph of Figure 3.1. It is also
interesting to study the stability of this fixed point. For that, we observe that f (p) is increasing
for p < 1/2 and decreasing as soon as p > 1/2. Since the sign of ∆p is determined by the
slope of f (p), recall Equation (3.7), we can conclude that the point p = 1/2 is a stable
equilibrium point.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
·10−2

p

∆
p

0 0.2 0.4 0.6 0.8 1

1

1.01

1.02

1.03

1.04

1.05

p

f

Fig. 3.1 Heterozygote advantage model with f11 = f22 = 1 and f12 = 1.1. The graph on the
left shows the variation in the frequency ∆p = pt+1− p of allele A1, versus the frequency p
of the allele A1. The graph on the right shows the mean population fitness f against p.

3.1 Selection, Mutation and Genetic Drift 49

Finally, it is important to notice that if we recover Equation (3.6), then the fitness has
a dependency with the allele frequencies and we see that it is not necessarily the case that
f is maximised. This presence of non-optimal genotypes prevents the population from
reaching the maximum fitness. To gain further insight into this issue we need to consider the
mechanism that produces new genotypes, mutation.

3.1.2 Mutation

Mutation is the main mechanism to produce diversity. Diversity already appeared in the
previous subsection, we saw how different alleles may have a different genotypic fitness, but
we did not wonder about the origin of such difference. Equation (3.6) yields an important
insight, despite having a selecting disadvantage (lower fitness), a non-optimal genotype can
survive in the population. We now wish to study this trade-off between mutation producing
a deleterious allele and selection “trying to get rid of it”. More precisely, we would like to
derive an expression for when these two factors cancel out, this is known as the mutation-
selection equilibrium. This is an important research question since it is one of the most
important factors maintaining diversity within a population (Rice, 2004).

Since we want to study the variation in allele frequencies, we recover Equation (3.5). To
study mutation, we introduce terms for the rate at which each allele mutates to the other.
Considering as well the frequency of each allele leads to

∆p = p
f ∗1 − f

f
+mut(A2,A1)(1− p)−mut(A1,A2) p, (3.9)

where mut
(
Ai,A j

)
denotes the rate at which the allele Ai mutates into the allele A j. To further

continue studying the frequency of a detrimental allele, we have to make some assumptions
on the fitness of each genotype. To model this selective difference we introduce a parameter
∆ f = f22− f11 > 0 to represent the selection disadvantage of the genotype A1A1 against the
optimal genotype. Furthermore, to include a possible dominance relationship between the
two alleles, we use the parameter h ∈ [0,1]. This constitutes the traditional model to study
the mutation-selection equilibrium (see Chapter 1 of Rice, 2004).

f11 = 1−∆ f , f12 = 1−h∆ f , f22 = 1. (3.10)

50 Population Genetics

Assuming H-W frequencies we can now compute the mean population and the marginal
fitnesses as follows.

f = p2(1−∆ f)+2p(1− p)(1−h∆ f)+(1− p)2

= 1−∆ f p2−2h∆ f p(1− p) (3.11)

f ∗1 = 1−∆ f p−h∆ f (1− p).

The gap between f and the fitness of an optimal population (all genotypes at A2A2, i.e., p = 0)
is know as the genetic load, which in our model has a value of ∆ f p2 +2h∆ f p(1− p).

Let us consider again Equation (3.9). We could introduce the fitnesses computed in
Equation (3.11). However to obtain a simple mathematical result we will perform some
approximations. First, since one would expect a deleterious allele to have a really low
frequency, it is a good approximation to use f ≈ 1. Then we obtain,

∆p≈ p(f ∗1 −1)+mut(A2,A1)(1− p)−mut(A1,A2) p

= p(−∆ f p−h∆ f (1− p))+mut(A2,A1)(1− p)−mut(A1,A2) p. (3.12)

To find the equilibrium point peq we solve this equation for ∆p = 0, leading to

∆ f p2
eq +h∆ f peq(1− peq)≈mut(A2,A1)(1− peq)−mut(A1,A2) peq. (3.13)

The second approximation is to neglect square terms in peq, yielding

h∆ f peq ≈mut(A2,A1)(1− peq)−mut(A1,A2) peq.

Finally, it is also safe to assume that the mutation rates are small, hence we can neglect their
products with peq. Hence,

peq ≈
mut(A2,A1)

h∆ f
. (3.14)

We conclude with a graphical representation of this model. Unlike in the heterozygote
advantage model from Figure 3.1, we can observe in Figure 3.2 (right) that the mean
population fitness always decreases with p. According to Equation 3.7, this implies that
generations will yield a reduction in the proportion p of deleterious alleles A1 (Figure 3.2,
left). However, for p < peq we observe that ∆p > 0 which corresponds to the situation when
the mutation rate at which the allele A1 appears is higher than the selective pressure.

3.1 Selection, Mutation and Genetic Drift 51

0 0.2 0.4 0.6 0.8 1
·10−3

−4

−3

−2

−1

0

1

·10−5

p

∆
p=

p t+
1−

p t

0 0.2 0.4 0.6 0.8 1

0.9

0.92

0.94

0.96

0.98

1

p

f

Fig. 3.2 Detrimental allele model from Equation (3.10) with mut(A2,A1) = 10−5, ∆ f = 0.1
and h = 1/2. Notice that for the left plot only values for p ∈ [0,0.001] are considered, hence
Equation (3.12) becomes ∆p≈mut(A2,A1)−∆ f hp. And by Equation (3.14): peq ≈ 0.0002.

3.1.3 Genetic Drift

So far we have assumed that the time-variation of the allele frequencies is determined by the
expected change due to different evolutionary mechanisms. This would be true for infinite
populations, however populations are finite and hence it is important to consider deviations
from the expected behaviour. In this subsection, we will momentarily forget about selection
and mutation to study just these deviations from expectation, i.e., the genetic drift.

The most common model to analyse the genetic drift is the so-called Wright-Fisher
model (Ewens, 2004). This model considers that the genetic drift is due to the following
random sampling of gametes (reproduction). Let p be the proportion of the allele A1 in a
population of size N (2N locus). At each generation we form a new population by taking a
sample (with replacement) of 2N alleles from the current population. Hence, the probability
of the new population having i alleles A1 is given by

Pr(|A1|= i) =
(

2N
i

)
pi(1− p)2N−i, (3.15)

where |A1| denotes the number of A1 alleles. This is known as binomial sampling since
the previous expression is a binomial distribution with parameters p and 2N. Since we are
interested in deviations from the expected behaviour it is natural to look into the variance of
this process, which has a value of Var [|A1|] = 2N p(1− p). But we are interested in the allele
frequencies (p = |A1|/2N), therefore recalling that Var [aX] = a2Var [X] for any variable X
and a constant a, we obtain

Var [p] =
p(1− p)

2N
. (3.16)

52 Population Genetics

This equation is important since it shows that, for a random sampling of gametes, the bigger
the population size is, the smaller the deviation from the expected behaviour. Hence, while the
study for large populations will be mainly described by our analysis from Subsections 3.1.1
and 3.1.2, the study of small populations will be mainly described by the genetic drift.

3.2 Diffusion Theory

In previous subsections we saw that large enough populations progress with the expected
change due to mutation and selection. On the other hand, small populations are governed by
the genetic drift. We wonder now what will happen for intermediate population sizes, and if
there is a way to combine all the previous evolutionary processes within the same model. We
find the answer in Rice (2004): “The most powerful method devised for combining different
deterministic and stochastic mechanisms in the same model is diffusion theory”.

Diffusion theory was introduced to population genetics by Wright (1945), and it has
since become one of the main methods in the field. For example, it was the method used
by Kimura (1983) to derive his neutral theory of molecular evolution. As in evolutionary
algorithms, due to the stochastic component of the evolutionary processes, we cannot explain
with absolute certainty what will happen in future generations. Hence, once again, we have
to rely on probability theory.

We will denote by φ(p, t) the probability that the allele A1 is at frequency p at time t.
If one considers a large number of populations (with identical conditions), φ(p, t) can
also be interpreted as the distribution of allele frequencies among a large number of those
populations.

Under the diffusion theory we can group the evolutionary processes according to their
effect in the change of the allele frequencies of one population (Rice, 2004):

• Directional processes: those processes with a non-zero expectation. Includes selection,
mutation, migration and recombination.

• Non-directional processes: those processes with no expectation. Includes random
variation in mating or survival selection, i.e., all genetic drift-like processes.

The action of these processes will shape how φ(p, t) varies over time. While directional
processes will cause φ(p, t) to shift along the state space p, non-directional processes will
contribute to a spread out of the probability distribution.

3.2 Diffusion Theory 53

Let ψ(δ | p) be the transition probability of reaching p from p−δ in the time between
one generation ∆t. To study the time evolution of the probability density φ(p, t) of the allele
frequencies we use the so-called Chapman-Kolmogorov Equation (see e.g. Feller, 1949).

φ(p, t +∆t) =
∫

ψ(δ | p) ·φ(p−δ , t) ·dδ . (3.17)

If we can solve this equation, we will have a complete understanding of the process no
matter the current allele frequencies or time. However, the Kolmogorov forward equation
is typically intractable. In order to work with this equation we will perform the following
approximations.

Firstly, despite the fact that the allele frequencies p can only take values that are multiples
of 1/2N, we will treat them as a continuous variable (the bigger the population size is, the
better this approximation will be). Furthermore, instead of studying the change in p per
generation we will approximate the process as a time-continuous one. This is known as the
continuous approximation since it corresponds to a first order Taylor expansion of the term
φ(p, t +∆t) around ∆t = 0. From a direct application of Taylor’s theorem, we can see that
this approximation carries an error of order O(∆t).

Secondly, we assume that the transition probability ψ(δ | p) is small enough such that
it can be accurately approximated by a Gaussian distribution with the same expectation
and variance as the original ψ(δ | p). This is known as a Gaussian approximation since it
corresponds with a second order Taylor expansion of the term ψ(δ | p) ·φ(p−δ , t) around
p−δ = p. By Taylor’s theorem, it will carry an error of order O(δ 2).

Obviously, these are many approximations to constitute a rigorous model (Gillespie,
1989). However, the conditions are biologically reasonable and the model proves to be good
enough for many purposes. Furthermore, Karlin and McGregor (1964) showed that the model
tends to be exact when N tends to infinity, provided that we scale time in units of 2N and
ψ(δ | p) leads to changes in p of at most 1/(2N).

After performing the above approximations, one obtains the so-called diffusion or Kol-
mogorov forward equation. For simplicity and since this derivation is widely known (see
e.g. Einstein, 1905) we omit them from the main text, however they can be found in Ap-
pendix B.

∆t · ∂φ(p, t)
∂ t

≈− ∂

∂ p
(φ(p, t) ·E [ψ])+

1
2
· ∂

∂ p2

(
φ(p, t) ·E

[
ψ

2]) . (3.18)

However, the diffusion equation still seems quite intractable. We will follow the same
approach as Wright (1945) and study just the equilibrium distribution. This limit case is

54 Population Genetics

obtained from the previous equation when ∂φ(p, t)/∂ t = 0. Hence,

∂

∂ p
φeq(p, t) ·E [ψ]≈ 1

2
· ∂

∂ p2 φeq(p, t) ·E
[
ψ

2] . (3.19)

Again, we include the calculations in Appendix B, but it can be shown that the solution, up
to an integration constant c, is

φeq ≈
c

Var [ψ]
e
∫ 2E[ψ]

Var[ψ]
d p
. (3.20)

However, for some scenarios (we will see an example in the following subsections) it is more
relevant to consider the Kolmogorov backward equation. To derive this equation, we must
rewrite Equation (3.17) (Chapman-Kolmogorov equation), by taking into consideration the
starting state of the allele frequencies p(t = 0) := p0. Hence, φ(p, t | p0) now reads as the
probability density of populations with allele frequency p at time t given that the frequency
at time 0 was p0.

φ(p, t +∆t | p0) =
∫

ψ(δ | p0) ·φ(p, t | p0 +δ) ·dδ . (3.21)

Following similar steps as for the forward equation, we obtain analogous expressions to: the
diffusion equation, the diffusion equation at equilibrium and its solution. Once more, all the
calculations are included in Appendix B.

∆t · ∂φ(p, t | p0)

∂ t
≈ E [ψ] · ∂φ(p, t | p0)

∂ p0
+

Var [ψ]

2
· ∂φ(p, t | p0)

∂ p2
0

(3.22)

E [ψ] ·
∂φeq(p, t | p0)

∂ p0
+

Var [ψ]

2
·

∂φeq(p, t | p0)

∂ p2
0

≈ 0 (3.23)

∂φ

∂ p0
≈ c · e−

∫ 2E[ψ]
Var[ψ]

d p
, (3.24)

where c is an integration constant. It is straightforward to notice that we have not completely
solved Equation (3.23), we still need to perform one more integration step. Due to the already
involved expression of Equation (3.24), we leave it here and we will solve it for specific
scenarios in subsequent subsections.

3.2 Diffusion Theory 55

3.2.1 Mutation, Selection and Genetic Drift under Diffusion Theory

We are now ready to include in the same model: mutation, selection and the genetic drift.
In order to do that, we recover the results from the previous subsections where we analysed
separately these processes.

Let us start considering the equilibrium distribution obtained in Equation (3.20). As
mentioned earlier, directional processes (mutation and selection) are those that yield a non-
zero expected change, hence they will be our estimates for E [ψ]. By using Equation (3.7)
(Wright’s adaptive landscape) and including the mutation rates as we did in Equation (3.9),
we obtain

E [ψ] =
p(1− p)

2 f
d f
d p

+mut(A2,A1)(1− p)−mut(A1,A2) p. (3.25)

Analogously, non-directional processes (genetic drift) will be the causing the spread out
of the allele frequencies, i.e., they will contribute to Var [ψ]. By using Equation (3.16)
(Wright-Fisher model) we obtain

Var [ψ] =
p(1− p)

2N
. (3.26)

Let us focus now on the integral term from Equation (3.20). Introducing the two previous
equations leads to

∫ 2E [ψ]

Var [ψ]
=
∫ (2N

f
d f
d p

+4N ·mut(A2,A1) p−1−4N ·mut(A1,A2)(1− p)−1
)

d p,

it can be shown that the solution to this integral is∫ 2E [ψ]

Var [ψ]
= 2N ln(f)+4N ·mut(A2,A1) ln p+4N ·mut(A1,A2) ln(1− p)+ c,

where c is an integration constant. Introducing this back into Equation (3.20) yields

φeq ∝ f 2N · p4Nmut(A2,A1)−1 · (1− p)4Nmut(A1,A2)−1. (3.27)

If one wants to compute the constant hidden in the “proportional to” symbol, we can use the
fact that φeq(p) is a probability distribution and therefore

∫ 1
0 φeq(p)d p = 1.

Equation (3.27) is very important since it allows to mathematically analyse many scenar-
ios. For example, Kimura (1983) in his neutral theory of molecular considered the absence
of selection (f constant), to study how much neutral variation is maintained due to the joint

56 Population Genetics

application of mutation and genetic drift. In this case, Equation (3.27) simplifies to

φeq ∝ p4Nmut(A2,A1)−1 · (1− p)4Nmut(A1,A2)−1. (3.28)

However, we are more interested in the study of alleles that have a selection disadvantage.
This is an important question since, as we saw in previous sections, non-optimal alleles
prevent the population from reaching its optimal fitness. Furthermore, we saw in the model
depicted by Equation (3.10), that these alleles can reach an equilibrium frequency which
might be greater than zero, Equation (3.14). Now we use a similar model where, for
simplicity, we no longer consider dominance relationships.

f11 = 1+∆ f

f12 = 1+∆ f (3.29)

f22 = 1.

Hence, the mean population fitness is f = 1+2∆ f p− p2∆ f . As discussed earlier, we can
neglect terms with p2, but we can also approximate e2∆ f p ≈ 1+2∆ f p yielding

f ≈ e2∆ f p. (3.30)

Introducing this back into Equation (3.27) leads to

φeq ∝ e4N∆ f p · p4Nmut(A2,A1)−1 · (1− p)4Nmut(A1,A2)−1. (3.31)

If we assume that the mutation rates are unbiased, i.e., mut(A1,A2) = mut(A2,A1) = µ , the
above expression simplifies to

φeq ∝ e4N∆ f p · (p(1− p))4Nµ−1. (3.32)

Finally, we plot Equation (3.32) for a relatively recessive allele ∆ f = 0.01 with a mutation
rate µ = 0.00001 (same as in Figure 3.2). It is really interesting to observe the small peak at
p = 0 in the blue curve of Figure 3.3. This means that, even though the allele A2 is selected
against, it may be the case that it takes over the whole population! We saw in Subsection 3.1.2
how detrimental alleles prevent the population from reaching the optimal fitness, however
here, it can even be the case that the fitness is the minimal possible. On the other hand, the
red curve suggests that for bigger population sizes, the peak disappears.

3.2 Diffusion Theory 57

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
·10−2

p

∝
φ

eq

4N = 100
4N = 1000

Fig. 3.3 Stationary distribution φeq of the allele A1 frequencies p from Equation (3.32) with
µ = 0.00001. The genotypic fitness model used considers that the allele A2 is detrimental:
f11 = f12 = 1.01 and f22 = 1. For aesthetic reasons the vertical axis is not normalised.

3.2.2 Probability of Fixation

We have seen the importance of studying detrimental alleles. They cannot only prevent
a population to be at the optimal fitness, but also, the population at equilibrium can be
composed solely by homozygotes of the detrimental allele. On the other hand, the red curve
from Figure (3.3) suggested that the probability of such events occurring might decrease
when the population size increases. The straightforward research question is to further
investigate this probability, this work was carried on by Kimura (1962) who derived a neat
formula such probability.

Going back to Equation (3.31), we can observe another important insight: the probability
masses concentrates in both extremes cases of p (see also Figure (3.3)). This is the case
when the population consists solely of copies of either the detrimental p = 0 or the beneficial
allele p = 1. When a population is composed solely of one allele we say that such allele goes
to fixation. Analogously, we write pfix and say fixation probability for the probability of the
above event occurring. Or mathematically speaking,

pfix(p0) := lim
t→∞

φ(p, t | p0). (3.33)

We can now recover Equation (3.24) (the partial solution of the Kolmogorov backward
equation) and add the boundary condition for the considered regime: pfix(1)= 1 and pfix(0)=

58 Population Genetics

0. Which leads to the expression found by Kimura (1962)

pfix(p0) =

∫ p0
0 e−

∫ 2E[ψ]
Var[ψ]

d pd p∫ 1
0 e−

∫ 2E[ψ]
Var[ψ]

d pd p
. (3.34)

We notice immediately that this is a quite complex expression. Again, we can lose some
generality and focus on a more specific model. Since we are concerned about the probability
of a deleterious allele taking over the whole population, we recover the genotypic fitnesses
from Equation (3.29): f11 = 1+∆ f , f12 = 1+∆ f and f22 = 1. This model, at H-W fre-
quencies, has a mean population fitness of f = 1+ 2∆ f p− p2∆ f ≈ 1+ 2∆ f p. Moreover,
using Equation (3.7) (Wright’s adaptive landscape) we can estimate the contribution of the
directional processes as

E [ψ] =
p(1− p)

2 f
d f
d p
≈ ∆ f p(1− p), (3.35)

where we have neglected the effect of mutations since they are very small. As in the
previous subsection, the effects of the genetic drift are estimated from the Equation (3.16)
(Wright-Fisher model).

Var [ψ] =
p(1− p)

2N
.

Introducing these two equations back into Equation (3.34) leads to

pfix(p0) =

∫ p0
0 e−

∫
4N∆ f d pd p∫ 1

0 e−
∫

4N∆ f d pd p
=

∫ p0
0 e−4N∆ f pd p∫ 1
0 e−4N∆ f pd p

=
1− e4N p0∆ f

1− e4N∆ f .

This formula, first derived by Kimura (1962), provides a simple expression for the probability
that an allele that starts with a frequency p0 will eventually take over the whole population.
Conversely, 1− pfix(p0) will be the probability of such an allele going to extinction. If we
want to consider the above expression when ∆ f = 0, we should redefine pfix as follows:
pfix(p0,∆ f = 0) := lim∆ f→0 pfix(p0) = p0.

We conclude with a graphical representation of Equation (3.36). We observe how it is
monotonically increasing with ∆ f , meaning that the bigger the selection pressure, the smaller
the probability that a deleterious allele fixates (∆ f < 0) and the bigger the probability that a
beneficial allele fixates (∆ f > 0). Finally, it is interesting to notice that an increase in the
population size N, although it decreases pfix no matter the value of ∆ f , it increases the ratio
pfix(∆ f)/pfix(−∆ f). In other words, the population size highly affects the probability of

3.2 Diffusion Theory 59

deleterious alleles fixating, while it does not disrupt too much the fixation probability of
beneficial alleles.

∆ f
−1

1

0

pfix

1 2

1/2

N = 4
N = 2

N = 100

Fig. 3.4 Fixation probability with p0 = 1/N for N = 2 (red line), N = 10 (blue line) and
N = 100 (green line). The horizontal axis represents the fitness difference between the
optimal and the minimal genotype.

3.2.3 The Strong Selection Weak Mutation Regime

While tracking how the allele frequencies change over time, we found the importance of
studying deleterious alleles. Ultimately, we derived a simple mathematical expression for
the fixation probability of any allele. However, in our path to derive this formula, we had to
perform the following approximations and assumptions:

• Hardy-Weinberg frequencies (see Definition 3.1).

• Generations are no-overlapping⇒ allows to define fitness in terms of the reproductive
contribution per generation (see Definition 3.2).

• Genotypic fitness is independent of the allele frequencies⇒Wright’s adaptive land-
scape equation holds (see Equation (3.7)).

• Genetic drift is due to random sampling from a finite population ⇒ Wright-Fisher
model holds (see Equation (3.16)).

• Weak Mutation: Mutation rates are very low⇒ avoids to add the mutation rates in
the Wright’s adaptive landscape equation (see Equation (3.35)).

• Strong Selection: Selection is strong enough such that the population goes to fixation
before new mutations occur (see Figure 3.5).

60 Population Genetics

The above set of conditions is better known as the strong selection weak mutation regime.
Because the time to fixation is much smaller than the occurrences of new mutations, under
the SSWM regime, the population is nearly always composed of a unique genotype.

time

1

0

fr
eq

ue
nc

y

“generation”

Fig. 3.5 Illustration of the SSWM regime. The y-axis represents the frequency of genotypes that
carry a specific mutation. Most of the time the population is composed of a single genotype, as new
mutations (represented by different colors) are quickly either fixed (green, blue, cyan) or lost (red).

We also saw that despite the fact that this regime does not constitute a rigorous model (Gille-
spie, 1989), the conditions are biologically reasonable and the SSWM regime can provide
good results. Specially, when the mutation rates are no bigger than 1/(2N) and we scale time
in units of 2N (expected waiting time for a mutation), Karlin and McGregor (1964) proved
that the model tends to be exact as N tends to infinity.

3.2 Diffusion Theory 61

Part II

Runtime Analysis of a Natural
Evolutionary Regime

Chapter 4

Runtime Analysis and the Speed of
Adaption

This chapter is based on the following publications:

1. Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2015). First steps
towards a runtime comparison of natural and artificial evolution. Proceedings of
the Genetic and Evolutionary Computation Conference 2015 (GECCO ’15), pages
1455–1462. ACM.

2. Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017). Towards a
runtime comparison of natural and artificial evolution. Algorithmica, 78(2):681–713.

3. Pérez Heredia, J., Trubenová, B., Sudholt, D., and Paixão, T. (2017). Selection limits
to adaptive walks on correlated landscapes. Genetics, 205(2):803–825, 2017.

In this chapter we discuss one of the most important topics in population genetics: the speed
of adaptation. After motivating and introducing the problem, we will discuss the state of the
art and how our proposed approach can improve it. As pointed out in the introduction, we
will exploit the similarities between EC and PG to argue that runtime analysis is an equivalent
research question to the study of the speed of adaptation. However, there is a discrepancy in
the nomenclature that both fields use to denote equivalent concepts. In Table 4.1 we present
an informal translation of some relevant terms that will be used in subsequent chapters. For
a further translation and unified framework we refer the interested reader to Paixão et al.
(2015), from where Table 4.1 is inspired.

66 Runtime Analysis and the Speed of Adaption

PG EC Meaning

Genotype Solution Where natural or artificial evolution
takes place.

Locus Bit Each component of a genotype or
solution.

Allele ∈ {A,C,G,T} Bit-value ∈ {0,1} Possible values of a locus or a bit.

Number of sites under selection m Problem size n The (relevant) length of a genotype or
solution.

Genotype space {A,C,G,T}m Search space {0,1}n The set from where genotypes or solu-
tion belong to.

Adaptive walk Trajectory A collection during time of a genotype
(solution) and its offspring genotypes.

Genetic drift Genetic drift Stochasticity associated with sampling
from finite populations.

- Drift Expected change of a stochastic process.

Fitness Fitness PG: Reproductive contribution of an in-
dividual to the next generation. EC:
Measure of how good a solution is.

Genotypic Fitness - Average fitness across individuals with
the same genotype in a population.

Speed of adaptation Runtime How quickly a natural population
evolves complex adaptations. This is
equivalent to the first hitting time of the
optimum in an optimisation problem.

Mutational effects Bit weights Fitness contribution of a bit-position (lo-
cus) being set to a certain value (allele).

Table 4.1 Translation of some concepts between PG and EC.

The question of how long it takes for a natural population to evolve complex adaptations
has fascinated researchers for decades (Grant and Flake, 1974; Haldane, 1957; Kimura, 1961;
Valiant, 2013). The evolution of populations can be seen as an adaptive walk (trajectories)

67

across the “mutational landscape” (search space), the space of all possible genotypes (Gille-
spie, 1984). The speed of adaptation (runtime) critically depends on how the fitness values
of all genotypes (solutions) are organised in this space (fitness landscape). In particular,
it depends on the number and shape of the fitness paths leading to the optimum on this
landscape. This raises both empirical and theoretical difficulties for the study of the speed
of adaptation. Empirically, measuring the fitness of every possible genotype is virtually
impossible. For this reason, most empirical studies focused on distributions of effects of
single mutants (Eyre-Walker and Keightley, 2007). However, organisms are not just the
sum of their genes: gene interactions (epistasis) are pervasive and the effects of mutations
will change depending on the background they occur in (Phillips, 2008). The difficulty of
measuring mutational effects across multiple backgrounds grows combinatorially with the
length of the genotype and most studies are restricted to studying the effects of interactions
in a local neighbourhood of some genotype. In part because of this lack of knowledge about
the structure of the fitness landscape, and in part due to the added difficulty of analysing
correlated landscapes, most theoretical studies have focused on landscapes in which either
the fitness of genotypes (Gillespie, 1983, 1984; Kauffman and Levin, 1987; Orr, 2002) or the
effects of new mutations (Desai et al., 2007; Fogle et al., 2008; Wilke, 2004) are drawn from
a random distribution. The first case, adaptation on random landscapes, leads to extremely
short adaptive walks and may be realistic only when the population is very close to a fitness
peak (Orr, 2006). In the second case, adaptation in linear landscapes, such as when the
effects of mutations are drawn from a random distribution, ignores potential correlations
between mutational neighbourhoods and any kind of interaction between mutations.

Most studies on the speed of adaptation have focused on the limits imposed by competition
between multiple beneficial mutations (Gerrish and Lenski, 1998). Because of this, most
models assume that populations evolve in a continuous space under a never ending supply
of beneficial mutations ((Orr, 2000; Wilke, 2004), but see Kim and Orr (2005) for a model
of a finite genome), when in reality the stage in which evolution proceeds is composed of
discrete genotypes. This fact results in a number of new and important features for the
dynamics of adaptation. First, in a discrete space of genotypes the supply of new beneficial
mutations naturally decreases as adaptation occurs, as a consequence of the finite size
of the genome. Second, and consequently, as the population becomes more adapted the
potential for deleterious mutations increases as more and more sites become adapted. Models
analysing adaptive walks typically assume that the population or selection strength are large
enough such that the probability of fixation of deleterious mutations is zero, effectively
disregarding the growing difficulty of maintaining the acquired adaptations. Finally, fitness
landscapes can display strong correlations between mutational neighbourhoods, making the

68 Runtime Analysis and the Speed of Adaption

effects of new mutations not necessarily constant across the fitness landscape nor simply
drawn from a random distribution. Previous attempts at analysing the speed of adaptation
in correlated neighbourhoods (Kryazhimskiy et al., 2009) assumed an infinite supply of
beneficial mutations and strong selection, disregarding the growing difficulty of finding new
beneficial mutations and maintaining previously acquired ones. As we will show, these
effects impose strong constraints to adaptation.

Other studies have focused on properties of adaptive walks, which explicitly consider
the discrete nature of the genotype space (Kauffman and Levin, 1987; Orr, 2002; Park et al.,
2016). Many of these studies have focused on models of fitness landscapes that can display
high levels of ruggedness, such as the House-of-Cards model (Kingman, 1978), in which
fitness values are drawn randomly from some distribution, the Rough Mount Fuji (Aita et al.,
2000), in which fitness effects, combined with a deterministic part of fitness, are drawn
randomly, or the NK-model in which the fitness effect of a locus depends in some randomly
prescribed way on the state of K other loci (Kauffman and Weinberger, 1989). Both of these
classes of models lead to landscapes exhibiting multiple peaks. For this reason, these studies
have focused mainly on the length of the adaptive walk, the number of substitutions that
occurs before the process reaches a local peak, and how this depends on the number of local
peaks in the landscape. Even though this is an empirically measurable quantity it does not
directly address the question of how long a population takes to reach this peak and how this
depends on the shape of the paths leading up to it. Note that the number of substitutions is
not equivalent to the time it takes to reach a peak: new mutations, even if beneficial, can
be lost, and deleterious mutations can be fixed. Here, we directly address this question by
asking how much time a population requires to reach a fitness peak.

In order to do this, instead of considering the rate of adaptation in specific fitness land-
scapes, which may not be informative of real trajectories since their details are unknowable,
we consider classes of fitness landscapes, including many patterns of gene interactions, and
focus on upper bounds for the time to reach a fitness peak. We focus on traits encoded by
many genes and study how this time depends on the number of sites under selection (problem
size). We argue that the scaling of this time with the length of the target sequence quantifies
the complexity or “hardness” for a natural population to perform an adaptive walk on a
class of landscapes. Similar to previous approaches (Gillespie, 1983, 1984; Orr, 2002, 2005,
2006) we consider a monomorphic population in the weak mutation regime. However, in
order to address the difficulties outlined above, we consider that this population evolves in a
sequence space and under the combined action of mutation, selection, and drift, allowing for
the possibility that deleterious mutations are fixed.

4.1 SSWM as a Trajectory-Based Algorithm 69

In order to analyse the dynamical properties of the adaptive trajectory we take advan-
tage of tools commonly used in the theory of randomised and evolutionary algorithms (see
Chapter 2). Interestingly, although evolutionary algorithms are heavily inspired by natural
evolution, these methods have seldom been applied to natural evolution as studied in math-
ematical population genetics. This is a missed opportunity: the time it takes for a natural
population to reach a fitness peak is an important question for the study of natural evolution.
The kinds of results obtained from runtime analysis, namely how the runtime scales with
genome size and mutation rate, are of general interest to population genetics. Moreover,
recently there has been a renewed interest in applying computer science methods to problems
in evolutionary biology with contributions from unlikely fields such as game theory (Chastain
et al., 2014), machine learning (Valiant, 2009), Markov chain theory (Chatterjee et al., 2014)
or even the more general aim of unifying both fields (Paixão et al., 2015).

In this part of the thesis, we present an application of runtime analysis to the so-called
Strong Selection Weak Mutation regime of natural populations (see Subsection 3.2.3). How-
ever, in order to apply the runtime analysis techniques introduced in Chapter 2, we must
establish a relationship between the SSWM regime and evolutionary algorithms.

4.1 SSWM as a Trajectory-Based Algorithm

In Chapter 3, we saw that: the SSWM model applies when mutations are rare enough and
selection is strong enough that the time between occurrences of new mutations is long
compared to the time a new genotype takes to replace the parent genotype. Mutations occur
rarely either because the mutation rate is low, or because the size of the underlying population
is small. Upon occurrence, a new mutation represents relatively high fitness advantage
or fitness loss, and strong selection ensures that it either promptly replaces the original
genotype, or is entirely lost from the population (Figure 3.5). Therefore, the population
is most of the time composed of a single genotype and evolution occurs through “jumps”
between different genotypes, corresponding to a new mutated genotype replacing the resident
genotype in the population. Which one of the two genotypes is the survivor is determined by
the so-called fixation probability (see Equation (3.36)). Hence, the relevant dynamics can
then be characterised by a Markov process evolving just one genotype.

As can be seen from the description above, the model resembles a trajectory-based
algorithm (see Algorithm 2.2). However, for a meaningful translation we must keep in mind
the assumptions and approximations described in Subsection 3.2.3. Specially, we should
comply with the guidelines by Karlin and McGregor (1964), therefore we will use local
mutations and we will measure time as the number of mutations. To recover the real time

70 Runtime Analysis and the Speed of Adaption

it suffices to multiply by the expected waiting time for a mutation. Finally, it is important
to note that the derivations from Chapter 3 considered a diploid population of size N (2N
locus), however in Chapter 2 we were using an haploid encoding. Fortunately, to translate
our results for the haploid scenario, it suffices to exchange 2N↔ N in the expression of the
fixation probability (see Equation (3.36)). Hence,

pfix(∆ f) =
1− e−2β∆ f

1− e−2Nβ∆ f
, (4.1)

where we have used p0 = 1/N since we are using local mutations and we have introduced
a new parameter β ∈ R+ which acts as a scaling factor. In the next section we will deeply
analyse this expression, but first we conclude the process of casting the SSWM regime as
an evolutionary algorithm. By using this fixation probability as the acceptance function in
Algorithm 2.3, we finally obtain the pseudo-code for the SSWM algorithm.

Algorithm 4.1: SSWM

1 Initialise x ∈ {0,1}n

2 Choose a population size N ∈ N
3 Choose a scaling parameter β ∈ R+

4 repeat
5 y← flip a uniform randomly chosen bit from x
6 ∆ f ← f (y)− f (x)
7 Choose r ∈ [0,1] uniformly at random
8 if r ≤ pfix(∆ f) then
9 x← y

10 until stop;

Our analysis of the SSWM algorithm in subsequent chapters, will not only be meaningful
for the PG community, but will also improve the understanding of non-elitist EAs which are
much less studied than the elitist versions. The use of pfix introduces two main differences to
the (1+1) EA (Algorithm 2.6). First, while the (1+1) EA never decreases its current fitness (a
property called elitism), SSWM accepts solutions of lower fitness (worsenings) with some
positive probability. This is reminiscent of the Metropolis algorithm (Algorithm 2.7) which
can also accept worsenings (see e. g. Metropolis et al., 1953). Second, and in contrast to the
Metropolis algorithm, solutions of higher fitness can be rejected, since they are accepted with
a probability that is roughly proportional to the relative advantage they have over the current
solution.

4.2 Understanding the Fixation Probability 71

The main technical difficulties are that in contrast to the simple (1+1) EA, SSWM is a
non-elitist algorithm, hence fitness-level arguments based on elitism are not applicable. In
a nutshell, elitist fitness-level methods break the search space into m partitions according
to increasing fitness values. Then, if the algorithm is elitist, the expected runtime can be
upper bounded by ∑

m
i=1 1/pi, where pi is a lower bound on the probability of sampling a

search point in a partition of higher fitness than the current partition (see e.g. Oliveto and
Yao, 2011). Although fitness-levels have been extended to consider non-elitism (Corus et al.,
2014), it is required that the algorithm has a population size larger than 1 (which is not the
case of SSWM). Moreover, while for the (1+1) EA transition probabilities to better solutions
are solely determined by probabilities for flipping bits during mutation, for SSWM these
additionally depend on the fitness difference. The analysis of SSWM is more challenging
than the analysis of the (1+1) EA, and requires tailored proof techniques.

4.2 Understanding the Fixation Probability

Before starting to analyse the SSWM regime as an algorithm, it is important to improve
our understanding of the fixation probability. This is crucial since pfix is the characteristic
that differentiates SSWM from other trajectory-based algorithms. We start by studying
the meaning of the parameters of the fixation probability: ∆ f , N and β . For the sake of
readability we present again the expression for the fixation probability.

pfix(∆ f) =
1− e−2β∆ f

1− e−2Nβ∆ f
, (4.2)

where ∆ f ̸= 0 is the fitness difference to the current solution and N ≥ 1 is the size of the
underlying population (see Chapter 3). From an algorithmic point of view N is just a
parameter. For ∆ f = 0 we define pfix(0) := lim∆ f→0 pfix(∆ f) = 1

N , so that pfix is continuous
and well defined for all ∆ f . If N = 1, this probability is pfix(∆ f) = 1, meaning that any
offspring will be accepted, and if N→ ∞, it will only accept solutions for which ∆ f > 0.

To finalise studying the effect of the population size N on the fixation probability, we
show that for all N > 1 the function pfix is strictly increasing.

Lemma 4.1. pfix is monotonic for all N ≥ 1 and strictly increasing for N > 1.

72 Runtime Analysis and the Speed of Adaption

∆ f
−1−2−3

1

0

pacc

1 2 3

MA

RLSRW

SSWM

Fig. 4.1 Acceptance probability for RW (green dashed line), RLS and (1+1) EA (blue solid
line), MA (red dotted line) and SSWM (orange solid line).

Proof. If N = 1, pfix(∆ f) = 1. In order to show that pfix(∆ f) is monotonically increasing
for N > 1 we show that ∂ pfix(∆ f)

∂ ∆ f > 0 for all ∆ f ̸= 0. The derivative is

∂ pfix(∆ f)
∂ ∆ f

=
2β · e−2∆ f

1− e−2N∆ f −
2Nβ · e−2N∆ f (1− e−2∆ f)

(1− e−2N∆ f)2 .

Dividing the derivative by 2β and multiplying by (1− e−2N∆ f)2, which for ∆ f ̸= 0 is always
positive, we get

(1− e−2N∆ f)2

2β

∂ pfix(∆ f)
∂ ∆ f

= e−2∆ f
(

1− e−2N∆ f
)
−N · e−2N∆ f

(
1− e−2∆ f

)
= e−2(N+1)∆ f

(
e2N∆ f +N−1−Ne2∆ f

)
.

Hence ∂ pfix(∆ f)
∂ ∆ f > 0 if and only if

e2N∆ f +N−1 > Ne2∆ f . (4.3)

If N = 1 then e2N∆ f +N−1 = Ne2∆ f , and from comparing the derivatives w. r. t. N of both
sides of (4.3):

∂

∂ N

(
e2N∆ f +N−1

)
= 2∆ f e2N∆ f +1 (4.4)

∂

∂ N
Ne2∆ f = e2∆ f (4.5)

4.2 Understanding the Fixation Probability 73

we see that for N = 1 the derivative (4.4) is larger than derivative (4.5). Since expression
(4.4) is an increasing positive function of N for any ∆ f while expression (4.5) is constant in
N, the inequality (4.3) is established for N > 1 and hence ∂ pfix(∆ f)

∂ ∆ f > 0.

In Figure 4.2 we observe the same behaviour as in Figure 3.4, increasing N rapidly reduces
the probability of accepting both detrimental and slightly beneficial mutations. However, for
beneficial enough mutations, the value of N does not yield a significant change in pfix.

∆ f
−1

1

0

pfix

1 2

1/2

1/4 N = 4
N = 2

N = 100

Fig. 4.2 Fixation probability with β = 2 and N = 2 (red), N = 10 (blue) and N = 100 (green).

We now move on to the study of the parameter β . The reason behind introducing this
parameter is that the acceptance function in this algorithm depends on the difference in
fitness between genotypes. By incorporating β as a parameter of this function (and hence of
the algorithm) we avoid having to explicitly rescale the fitness functions we analyse, while
allowing us to explore the performance of this algorithm on a family of functions.

As depicted in Figure 4.1, the fixation probability resembles a sigmoidal shape with
limits lim∆ f→−∞ pfix(∆ f) = 0 as well as lim∆ f→∞ pfix(∆ f) = 1 (Figure 4.1). Similar limits
are obtained when β tends to ∞,

lim
β→∞

pfix(∆ f) =


0 if ∆ f < 0

1/N if ∆ f = 0

1 if ∆ f > 0

As such, for large |β∆ f | this probability of acceptance is close to the one in the (1+1) EA
(as long as N > 1) defeating the purpose of the comparison, with the only difference being
the tie-breaking rule. While the (1+1) EA always accepts the new solution in case of a tie in
fitness (∆ f = 0), SSWM only accepts the new solution with probability 1/N.

74 Runtime Analysis and the Speed of Adaption

∆ f
−1

1

0

pfix

1 2

β = 1

β = 5
β = 10

β = 0.1

Fig. 4.3 Fixation probability with N = 10 and β = 0.1 (orange), β = 1 (blue), β = 5 (red)
and β = 10 (green).

After improving our understanding of the parameters β and N, we return to a general
study of the fixation probability. We conclude this chapter presenting three powerful lemmas
that, in addition to improving the understanding of pfix, will simplify the analysis of the
SSWM algorithm. First, the following lemma derives upper and lower bounds for pfix(∆ f).

Lemma 4.2. For every β ∈ R+ and N ∈ N+ the following inequalities hold. If ∆ f > 0 then

2β∆ f
1+2β∆ f

≤ pfix(∆ f)≤ 2β∆ f
1− e−2Nβ∆ f

.

If ∆ f < 0 then
−2β∆ f
e−2Nβ∆ f

≤ pfix(∆ f)≤ e−2β∆ f

e−2Nβ∆ f −1
.

∆ f
−1/3

1

0

pfix

1

Fig. 4.4 Fixation probability with N = 10 and β = 1 (blue line) and lower (red dashed line)
and upper (green dashed line) bounds from Lemma 4.2.

4.2 Understanding the Fixation Probability 75

Proof of Lemma 4.2. In the following we frequently use 1+ x≤ ex and 1− e−x ≤ 1 for all
x ∈ R as well as ex ≤ 1

1−x for x < 1. If ∆ f > 0,

pfix(∆ f) =
1− e−2β∆ f

1− e−2Nβ∆ f
≥ 1− e−2β∆ f ≥ 1− 1

1+2β∆ f
=

2β∆ f
1+2β∆ f

as well as

pfix(∆ f) =
1− e−2β∆ f

1− e−2Nβ∆ f
≤ 2β∆ f

1− e−2Nβ∆ f
.

If ∆ f < 0, using the fact that e−x−1≤ e−x:

pfix(∆ f) =
e−2β∆ f −1

e−2Nβ∆ f −1
≤ e−2β∆ f

e−2Nβ∆ f −1
.

Similarly:

pfix(∆ f) =
e−2β∆ f −1

e−2Nβ∆ f −1
≥ e−2β∆ f −1

e−2Nβ∆ f
≥ −2β∆ f

e−2Nβ∆ f
.

The next lemma shows that the probability of accepting an improvement of ∆ f is expo-
nentially larger (in 2(N−1)β∆ f) than accepting its symmetric fitness variation −∆ f .

Lemma 4.3. For every β ∈ R+, ∆ f ∈ R and N ∈ N+

pfix(−∆ f)
pfix(+∆ f)

= e−2(N−1)β∆ f .

Proof.

pfix(−∆ f)
pfix(+∆ f)

=
e2β∆ f −1

e2Nβ∆ f −1
· 1− e−2Nβ∆ f

1− e−2β∆ f

=
e2β∆ f

e2Nβ∆ f
= e−2(N−1)β∆ f

where we have applied the relation ex−1
1−e−x = ex.

Finally, we mathematically express the rapid decreasing with ∆ f of the probability of
accepting a worsening. The next lemma shows that: when comparing two deleterious
mutations with a fitness difference of δ ∈ R+ between them, the probability of accepting the
worse mutation pfix(∆ f −δ) is exponentially smaller (in δ) than the probability of accepting
the best, but still deleterious mutation, pfix(∆ f).

76 Runtime Analysis and the Speed of Adaption

Lemma 4.4. Let δ ∈ R+, β ∈ R+ and ∆ f ≤ 0, then pfix decreases exponentially with δ

pfix(∆ f)≥ eδ · pfix(∆ f −δ)

provided

2β (N−1)≥ 1+2 ·max
(

1,
1
δ

)
.

Proof.

eδ · pfix(∆ f −δ)≤ pfix(∆ f)

⇔ eδ · e−2β (∆ f−δ)−1
e−2βN(∆ f−δ)−1

≤ e−2β∆ f −1
e−2βN∆ f −1

defining x := e−2β∆ f and y := e−2βδ

⇔ eδ ·
x
y −1(

x
y

)N
−1
≤ x−1

xN−1

⇔ eδ · 1

∑
N−1
k=0

(
x
y

)k ≤
1

∑
N−1
k=0 xk

⇔ eδ ·
N−1

∑
k=0

xk ≤
N−1

∑
k=0

(
x
y

)k

.

Splitting the sums over the point 2βk = 1 yields

⇔

⌊
1

2β

⌋
∑
k=0

eδ · xk +
N−1

∑
k=
⌈

1
2β

⌉eδ · xk ≤

⌊
1

2β

⌋
∑
k=0

(
x
y

)k

+
N−1

∑
k=
⌈

1
2β

⌉
(

x
y

)k

.

Grouping the terms with the same summation limits and recovering y := e−2βδ yields

⇔

⌊
1

2β

⌋
∑
k=0

(
eδ − e2βδk

)
xk ≤

N−1

∑
k=
⌈

1
2β

⌉
(

e2βδk− eδ

)
xk

4.2 Understanding the Fixation Probability 77

and by using eδ − e2βδk ≤ eδ we get

⇐

⌊
1

2β

⌋
∑
k=0

eδ xk ≤
N−1

∑
k=
⌈

1
2β

⌉
(

e2βδk− eδ

)
xk. (4.6)

We need to find the point from where e2βδk− eδ > eδ

e2βδk > 2eδ ⇔ δ (2βk−1)> ln2⇔ kβ >
ln2
δ

+1.

Separating δ greater and smaller than 1 leads to

⇐ k ≥max
(

1
β
,

1
δβ

)
.

Going back to the previous calculations (4.6) leads to

⇔

⌊
1

2β

⌋
∑
k=0

eδ xk ≤

⌊
max

(
1
β
, 1

δβ

)⌋
∑

k=
⌈

1
2β

⌉
(

e2βδk− eδ

)
xk +

N−1

∑
k=
⌈

max
(

1
β
, 1

δβ

)⌉eδ xk

⇐

⌊
1

2β

⌋
∑
k=0

eδ xk ≤
N−1

∑
k=
⌈

max
(

1
β
, 1

δβ

)⌉eδ xk.

Now we are comparing two polynomials with equal positive coefficients, but as the right-hand
degrees are greater (note that x≥ 1), we get

⇐

⌊
1

2β

⌋
∑
k=0

eδ ≤
N−1

∑
k=
⌈

max
(

1
β
, 1

δβ

)⌉eδ

⇔ eδ ·
(⌊

1
2β

⌋
+1
)
≤ eδ ·

(
N−

⌈
max

(
1
β
,

1
δβ

)⌉)
⇐ 1

2β
≤ N−max

(
1
β
,

1
δβ

)
−1.

Solving for N yields

⇔ N ≥ 1
2β

+1+max
(

1
β
,

1
δβ

)
.

78 Runtime Analysis and the Speed of Adaption

4.3 Conclusions

This chapter has established a relationship between two important questions from two
different research fields. Whereas in PG the question of how long it takes for a natural
population to evolve complex adaptations is of high relevance, in EC we find that researchers
are interested in the time that an EA needs to find the optimum of a given function. Since
these research questions are equivalent, we propose to apply the runtime analysis techniques
introduced in Section 2.3 to study the speed of adaptation. Precisely, as motivated in
Chapter 3, we would like to study the speed of adaptation of the SSWM regime.

However, in order to apply the analysis tools from EAs, we first showed that the SSWM
regime can be cast as a trajectory-based algorithm (recall Algorithm 4.1). This algorithmic
version of the SSWM regime will use as acceptance probability the fixation probability
derived by theoretical biologists. Since this is the distinguishing characteristic from other
trajectory-based algorithms, we used a full subsection devoted to improve our understanding
of the fixation probability.

We derived several lemmas that will be useful in subsequent chapters. Firstly, we showed
that pfixis monotonic with respect to ∆ f , i.e., it never decreases while ∆ f increases. Secondly,
to ease future calculations, we derived simple mathematical expressions that lower and
upper bound the fixation’s probability value. Then, we found an equality for the quotient
of the fixation probability of two symmetrical fitness differences (∆ f and −∆ f), the result
shows that this ratio is exponentially big in 2(N−1)β∆ f . Finally, we showed that for two
detrimental moves with ∆ f1,∆ f2 < 0, the quotient of their pfixvalues is, at least, exponentially
big in ∆ f2−∆ f1.

Chapter 5

Speed of Adaptation in Additive
Landscapes

Having laid the foundations in Chapter 4, Chapter 5 is also based on these papers:

1. Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2015). First steps
towards a runtime comparison of natural and artificial evolution. Proceedings of
the Genetic and Evolutionary Computation Conference 2015 (GECCO ’15), pages
1455–1462. ACM.

2. Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017). Towards a
runtime comparison of natural and artificial evolution. Algorithmica, 78(2):681–713.

3. Pérez Heredia, J., Trubenová, B., Sudholt, D., and Paixão, T. (2017). Selection limits
to adaptive walks on correlated landscapes. Genetics, 205(2):803–825, 2017.

After casting the SSWM regime as a trajectory-based algorithm in the previous chapter, we
are ready to apply the runtime analysis techniques from Chapter 2. Using these tools, we first
calculate an upper bound for the time to reach an adaptive peak (fitness peak) in a simple
landscape with equal, additive contributions of all sites (loci or bit-positions) as a function of
the number of such sites contributing to the trait (problem size). This landscape is formalised
by the already introduced problem of ONEMAX.

As discussed in Section 2.3, we focus on the crucial distinction between a polynomial
and an exponential scaling of this time with the number of sites under selection, and argue
that these two qualitatively distinct regimes correspond to situations in which adaptation is
“efficient” or “inefficient”, respectively. We find conditions on the selection strength that
separate these two regimes, and show that populations in the weak mutation regime can adapt
efficiently, but the critical selection strength grows with the number of sites under selection,

80 Speed of Adaptation in Additive Landscapes

effectively setting a limit to adaptation. We generalise these results to a large family of fitness
landscapes that includes very general forms of interactions between the sites under selection,
excluding only forms of interactions that create multiple fitness peaks (this will be analysed
in Chapters 6 and 7). We derive an upper limit to the time to reach a fitness peak, setting a
lower speed limit to adaptation in these landscapes.

Finally, we analyse in detail one instance of this class, an extreme form of epistasis
in which mutations need to be accumulated in a particular order. We show that in this
case, despite a slower speed of adaptation, the critical selection strength enabling efficient
adaptation does not depend on the number of sites under selection, eliminating the limits to
adaptation previously identified for simpler landscapes.

5.1 Simple Hill Climbing Tasks

One of the simplest scenarios for adaptation is when all sites—genes, or loci—contribute
equally to the fitness. This leads to a fitness landscape where the fitness of a genotype depends
only on the number of correct matches to a target sequence. We formalise this scenario by
the function ONEMAX(x) = ∑

n
i=1 xi (see Definition 2.4), which counts the number of correct

matches x in a genome of length n. This function induces a structure in sequence space in
which the fraction of beneficial mutations decreases linearly as a function of the distance
to the optimum. We use this function to determine under which conditions populations can
efficiently climb simple fitness peaks.

From the algorithmic perspective, the ONEMAX function has been extensively studied
because of its simplicity. It represents an easy hill climbing task, and it is the easiest function
with a unique optimum for all evolutionary algorithms that only use standard bit mutation for
variation (Sudholt, 2013). Showing that SSWM can optimise ONEMAX efficiently serves
as proof of concept that SSWM is a reasonable optimiser. It further sheds light on how to
set algorithmic parameters such as the selection strength β and the population size N. To
this end, we first show a polynomial upper bound for the runtime of SSWM on ONEMAX

for a selection strength of 2(N−1)β ≥ ln(cn). We then show that SSWM exhibits a phase
transition on its runtime as a function of 2Nβ ; decreasing this parameter by a constant factor
below lnn leads to exponential runtimes on ONEMAX (see Figure 5.1).

Another reason why studying ONEMAX for SSWM makes sense is because not all
evolutionary algorithms that use a fitness-dependent selection perform well on ONEMAX.
Neumann et al. (2009) as well as Oliveto and Witt (2014) showed that evolutionary algorithms
using fitness-proportional selection, including the Simple Genetic Algorithm, fail badly on
ONEMAX even within exponential time, with very high probability.

5.1 Simple Hill Climbing Tasks 81

The following theorem shows that SSWM is efficient on ONEMAX whenever 2(N−1)β ≥
ln(cn) for some constant c > 1, since then pfix(1) starts being greater than n · pfix(−1), allow-
ing for a positive drift even on the hardest fitness level (n−1 ones). The obtained expression
quantifies the impact of the length of the target sequence on the time (in units of mutation rate)
to attain it. It shows that the time required to evolve adaptations involving larger numbers
of sites will simply require a polynomial number of extra mutational “trials”, provided that
β = 1/poly(n).

Theorem 5.1. If 2(N−1)β ≥ ln(cn) with β ∈R+ and c > 1, then the expected optimisation
time of SSWM on ONEMAX is at most

n ln(n)+O(n)
pfix(1)

≤
(

1+
1

2β

)
· (n ln(n)+O(n))

for every initial search point.

Proof. The drift (see Definition 2.12) can be expressed as a combination of a forward and a
backward drift

∆(x) = ∆
+(x)−|∆−(x)|

where the forward drift is the probability of mutation flipping a 0-bit ((n− x)/n) multiplied
by the probability of accepting such a mutation (pfix(1)). Note that all mutations in this
fitness landscape have fitness contribution of ±1. Analogously, the backward drift, is given
by the probability of negative mutation occurring (x/n) and fixing in the population with
probability (pfix(−1)). Therefore, the total expected progress is

∆(x) =
n− x

n
· pfix(1)−

x
n
· pfix(−1)

= pfix(1) ·
(

n− x
n
− x

n
· pfix(−1)

pfix(1)

)
.

Using Lemma 4.3 we get

∆(x) = pfix(1) ·
(

n− x
n
− x

n
· e−2(N−1)β

)
and since 2(N−1)β ≥ ln(cn) with c > 1, we can bound ∆(x) from below by

∆(x)≥ pfix(1) ·
(

n− x
n
− 1

cn

)
.

82 Speed of Adaptation in Additive Landscapes

To find the upper bound on the expected time that SSWM needs to find the fitness peak, we
apply variable drift theorem (see Theorem 2.11) to the decreasing number of zeros z = n− x.

∆(x)≥ pfix(1) ·
zc−1

cn
= h(z)

The number of zeros changes from n (in the worst case scenario) to 1 (the last state that is
not optimum), defining the boundaries of the integral

E(T | X0)≤
1

h(1)
+
∫ n

1

1
h(z)

dz

=
1

pfix(1)
· cn

c−1
+
∫ n

1

1
pfix(1)

· cn
zc−1

dz

=
1

pfix(1)
·
(

cn
c−1

+n · ln
(

cn−1
c−1

))
≤ 1

pfix(1)
·
(

O(n)+n · ln
(

n · c
c−1

))
=

1
pfix(1)

·
(

O(n)+n · ln(n)+n · ln
(

c
c−1

))
=

n ln(n)+O(n)
pfix(1)

.

Alternatively, we can use pfix bounds (see Lemma 4.2) to obtain

E(T | X0)≤
(

1+
1

2β

)
· (n ln(n)+O(n)).

The upper bound from Theorem 5.1 required 2(N−1)β ≥ ln(cn), or equivalently, 2Nβ ≥
ln(n)+ ln(c)+2β . This condition is vital since if Nβ is chosen too small, the runtime of
SSWM on ONEMAX is exponential with very high probability, as we show next.

If 2Nβ is smaller than ln(n) by a factor of 1− ε , for some constant ε > 0, the optimisa-
tion time is exponential in n, with overwhelming probability. SSWM therefore exhibits a
phase transition behaviour: changing Nβ by a constant factor makes a difference between
polynomial and exponential expected optimisation times on ONEMAX (see Figure 5.1).

This result sets a limit to the complexity that can be evolved: for a fixed selection strength,
there is a maximum number of sites that can be efficiently adapted. Typically, selection is
deemed efficient when N∆ f > 1 (corresponding to Nβ , in our framework). Our result defines
the conditions for which selection is efficient in a multilocus setting, taking into account
mutational pressure. It shows that, even if Nβ > 1 at every locus, for selection to be able to

5.1 Simple Hill Climbing Tasks 83

drive a population to the fitness peak Nβ needs to scale non-linearly with the length of the
target sequence (2Nβ > ln(cn)).

Theorem 5.2. If 1≤ Nβ ≤ 1−ε

2 lnn for some 0 < ε < 1, then the optimisation time of SSWM
on ONEMAX is at least 2cnε/2

with probability 1−2−Ω(nε/2), for some constant c > 0.

The condition Nβ ≥ 1 is used to ease the presentation; we believe it not to be essential
and we believe it can be dropped when using more detailed calculations. The idea behind the
proof of Theorem 5.2 is to show that for all search points with at least n−nε/2 ones, there is
a negative drift for the number of ones. This is because for small Nβ the selection pressure
is too weak, and worsenings in fitness are more likely than steps where mutation leads the
algorithm closer to the optimum. We then use the negative drift theorem with self-loops
(Theorem 2.13 on page 38). Finally, note that the theorem uses “pk,k±d ≤ x” as a shorthand
for “pk,k+d ≤ x and pk,k−d ≤ x”.

Proof of Theorem 5.2. To prove this theorem, the negative drift theorem (Theorem 2.13) will
be applied, taking the number of zeros as distance function to the optimum. Our notation
refers to numbers of ones for simplicity. Let px,x±1 be the probability that SSWM will make a
transition from a search point with x ones to one with x±1 ones, and assuming x≥ n−nε/2,
then the expected drift towards the optimum is bounded as follows

px,x+1 =
n− x

n
· pfix(1) ≤ nε/2−1 · pfix(1)

since pfix(1)≤ 2β

1−e−2Nβ
(see Lemma 4.2)

px,x+1 ≤ nε/2−1 · 2β

1− e−2Nβ
≤ nε/2−1 · 2β

1− e−2 .

On the other hand,

px,x−1 ≥
x
n
· pfix(−1) ≥ n−nε/2

n
· pfix(−1)

= pfix(−1) ·
(

1−nε/2−1
)

using e2Nβ ≤ e(1−ε) lnn = n1−ε

px,x+1 ≥
2β ·nε

n
·
(

1−nε/2−1
)
.

84 Speed of Adaptation in Additive Landscapes

The expected drift ∆(x) is hence at most

∆(x)≤ 2β

1− e−2 ·n
ε/2−1− 2β ·nε

n
·
(

1−nε/2−1
)

= 2β ·nε/2−1 ·
(

1
1− e−2 −nε/2 ·

(
1−nε/2−1

))
= −Ω(β ·nε−1).

Now, the self-loop probability is at least px,x = 1− px,x+1− px,x−1 = 1−O(βnε−1), hence the
first condition of the negative drift theorem is satisfied. Since there are only local mutations
the second condition on exponentially decreasing transition probabilities follows immediately.
The negative drift theorem, applied to the number of zeros on an interval of [0,nε/2], proves
the claimed result.

0 5 10 15 20
Nβ

10000

20000

30000

40000

50000

60000

70000

E
xp

ec
te

d
tim

e

0 200 400 600 800 1000
Number of sites (n)

0

10000

20000

30000

40000

50000

E
xp

ec
te

d
tim

e

A

B

Fig. 5.1 (A) Expected time required to reach the fitness peak in the ONEMAX as a function of
genome size. Solid black line represents the mean of 100 runs for given n and shaded area their
standard deviation. Dashed line represents the theoretical upper bound on this expectation: (1+
1/(2β))n ln(n)+n. Nβ was set to 100. (B) Black line represents the mean time to reach the fitness
peak for a constant genome size (n = 500) and selection strength (β = 0.1), with increasing population
size N, and shaded areas represent the standard deviation. Dashed line represents the critical value of
selection strength (2(N−1)β = lnn) separating the polynomial and exponential regimes for the time
to reach the fitness peak. Simulations were stopped if they took longer than 6×104 iterations.

5.1 Simple Hill Climbing Tasks 85

To conclude this section, we generalise the previous results to linear landscapes regard-
less of their distribution of mutational effects, for that, we introduce the family of linear
functions. For elitist algorithms such as RLS or the (1+1) EA, linear functions are as easy as
ONEMAX (Droste et al., 2002). This is due to the fact that their acceptance probability (see
Equation (2.2)) only considers the sign of the fitness difference between the mutated and the
parent genotype. However, for fitness dependent selection operators like those used by MA
or SSWM (see Equations (2.3) and (4.2)), linear functions can be difficult as we will see in
Theorem 5.3. Finally, note that ONEMAX is just the special case of a linear function when
all the weights have value 1.

Definition 5.1 (LINEAR). Let x ∈ {0,1}n be a bit-string and wi=1,...,n ∈ R+ denote the
contribution of each bit-position to the total fitness. Then,

LINEAR(x) =
n

∑
i=1

wixi.

For ONEMAX we showed that 2(N−1)β ≥ ln(cn) for c > 1 is sufficient to get a positive
drift. In the case of linear functions, for bits of weight at least w∗ we get a positive drift on
those bits if 2(N−1)βw∗ ≥ ln(cn). Call all such bits large effect sites or heavy, then by the
same arguments as for ONEMAX, SSWM optimises all heavy bits in the same time bound as
for ONEMAX.

When β = 1/poly(n), the only sites we cannot guarantee to fix in polynomial time are
those with effect smaller than w∗, where w∗ defines a threshold on the distribution of effects
separating the loci “easily” adapted from the “small effect” ones. The total contribution of
these sites is at most nw∗. Actually, when these site weights are small enough we have that
pfix(+w)≈ pfix(−w), and thus these bits will flip back and forth mimicking a random walk.

Theorem 5.3. Let w1, . . . ,wn and W := ∑
n
i=1 wi. Then SSWM with 2(N−1)βw∗ ≥ ln(cn)

and c > 1 finds a solution of fitness at least

n−n∗

∑
i=1

wi ≥W −n∗w∗ ≥W −nw∗ = W
(

1−w∗
n

W

)
in expected time at most

n ln(n)+O(n)
pfix(w∗)

≤
(

1+
1

2βw∗

)
· (n ln(n)+O(n))

where w∗ is the minimum weight we want to optimise and n∗ the number of weights with
value less than w∗.

86 Speed of Adaptation in Additive Landscapes

Proof. If w∗≥ W
n the statement is trivial as then the lower bound on the fitness is non-positive.

Without loss of generality, we assume that the weights are ordered in ascending order:
w1 ≤ w2 ≤ ·· · ≤ wn. Looking now when w∗ < W

n and ignoring the n∗ weights such that

wi < w∗, i = 1, . . . ,n∗, (note that w∗ ∈
[

ln(cn)
2(N−1)β ,

W
n

)
), we lower bound the positive drift by

the probability of flipping one of the 0-bits with weight bigger than w∗ times the fixation
probability underestimated for the case where that bit has exactly weight of w∗

∆
+(x)≥ n−n∗− x

n
· pfix(w∗).

For the backward drift, we look to the worst expected impact of one single bit 1
n · pfix(−w∗),

then applying linearity of expectations we obtain

|∆−(x)| ≤ pfix(−w∗).

The total expectation of the progress towards the optimum is therefore

∆(x)≥ pfix(w∗)
(

n−n∗− x
n

− pfix(−w∗)
pfix(w∗)

)
.

Using Lemma 4.3 leads to

∆(x)≥ pfix(w∗)
(

n−n∗− x
n

− e−2(N−1)βw∗
)

and using 2(N−1)βw∗ ≥ ln(cn), we get

∆(x)≥ pfix(w∗) ·
(

n−n∗− x
n

− 1
cn

)
= pfix(w∗) ·

c(n−n∗− x)−1
cn

. (5.1)

Now we apply variable drift to the number of zeros z in the n− n∗ bits that we want to
optimise, i.e., z = n−n∗− x. We obtain the following drift bound which is always positive
if c > 1.

∆(x)≥ pfix(w∗) ·
cz−1

cn
= h(z).

5.1 Simple Hill Climbing Tasks 87

The integral range will go from the farthest point to the optimum (all of the n−n∗ heaviest
weights being 0) to the closest (only 1 bit of the n−n∗ heaviest weights being 0)

E(T | X0)≤
1

h(1)
+
∫ n−n∗

1

1
h(z)

dz ≤ 1
h(1)

+
∫ n

1

1
h(z)

dz

=
1

pfix(w∗)
· cn

c−1
+
∫ n

1

1
pfix(w∗)

· cn
cz−1

dz

=
1

pfix(w∗)
·
(

cn
c−1

+n · ln
(

cn−1
c−1

))
≤ 1

pfix(w∗)
·
(

O(n)+n · ln
(

cn
c−1

))
=

1
pfix(w∗)

·
(

O(n)+n · ln
(

c
c−1

)
+n ln(n)

)
=

n ln(n)+O(n)
pfix(w∗)

≤
(

1+
1

2βw∗

)
· n ln(n)+O(n)

w∗
,

where the last bound follows from Lemma 4.2.

Since the n− n∗ sites of large effect behave essentially like the equal effects case, for
a constant selection strength there is a maximum fitness that can be reached in O(n lnn).
Reaching a fraction of this fitness takes linear time, whilst adapting further becomes highly
inefficient as we show graphically with simulations (Figure 5.2). Without knowledge of the
actual distribution of effects, it is impossible to determine n∗ and, hence the fitness level that
is guaranteed to be reached in polynomial time. However, since all effects are drawn from the
same distribution, n∗ will always be a constant fraction of n (since n∗ is simply the fraction of
weights below w∗, n∗ = CDF(w∗) ·n). These scalings are valid for any distribution of effects
and represent hard limits on this class of fitness functions.

10 20 50 100 200 500 1000101

102

103

104

105

106

107

108

Number of sites HnL

E
x
p

e
c
te

d
ti
m

e

W *

=0.90W

W *

=0.97W

W *

=0.98W

Tµn

Tµnlogn

Fig. 5.2 Expected time to reach different fractions of the total fitness for an exponential distribution
of effects. Data points correspond to means of 1000 runs, N = 20 and β = 0.1.

88 Speed of Adaptation in Additive Landscapes

5.2 Fitness Ridges

One extreme form of epistatic landscape is when mutations need to be accumulated in a
particular order, having no effect outside of this order (Kondrashov and Kondrashov, 2001).
This creates a landscape in sequence space characterised by a fitness ridge and vast neutral
plateaus leading to the optimum. A well-known example in EC with this feature is the
LEADINGONES function, which counts the number of ones until the first appearance of a
0-bit (Rudolph, 1997a). We saw in Definition 2.5 that it can be mathematically expressed as

LEADINGONES(x) =
n

∑
i=1

i

∏
j=1

x j.

In order to increase its current fitness, it is necessary to flip the first zero in the genome to
one. Flipping any other zero to one will result in a mutant offspring with the same fitness as
its parent, while flipping any of the leading ones into zero can result in a drastic fitness loss.
In this landscape, the probability of a beneficial mutation is 1/n, as only flipping the first zero
in the genome will result in a fitness increase. However, as more ones can follow this locus
(neutral mutations that may have fixed neutrally), the increase in trait value can be higher
than 1. On the other hand, mutating the j-th position of the x already well adapted sites will
result in a fitness decrease of size k = x− j+1 yielding a big negative impact on the drift.
However as long as N ≥ 3 the fixation probability decreases exponentially for deleterious
mutations and can overcome the linear impact k of mutation (see Lemma 4.4).

The following theorem shows that even if the path to the optimum is narrow and mutations
have to occur in a specific order, populations in the SSWM regime are able to climb the
fitness peak relatively fast (polynomial time). Remarkably, this result holds for any selection
strength above a constant value, indicating that, for landscapes of this type, there are no
limits to the number of loci that can be adapted in polynomial time, as long as selection
strength is above this constant value. The main reason for this is that, even though the
number of deleterious mutations still increases as the population approaches the optimum,
most of them are much less likely to be fixed due to their strong deleterious effects. This
leads to a much less pronounced slowdown of the speed of adaptation as the population
approaches the optimum. Notice that in this family of landscapes, the time to reach a fraction
of the maximum fitness is also O(n2) (note that pfix(1) = Ω(1) due to the required selection
strength). Note that in order to obtain polynomial upper bounds we need the extra condition
of beta = 1/poly(n).

5.2 Fitness Ridges 89

Theorem 5.4. The expected optimisation time of SSWM with local mutations, β ∈ R+ and
2(N−1)β ≥ 3 on LEADINGONES is

O
(

n2

pfix(1)

)
= O

(
n2 ·
(

1+
1

2β

))
.

Proof. The forward and backward drift can be bounded as follows

∆
+(x)≥ 1

n
· pfix(1), |∆−(x)|=

1
n
·

x

∑
k=1

pfix(−k).

To use Lemma 4.4 we need that 2β (N − 1) ≥ 1 + 2 ·max
(
1, 1

δ

)
. Since the minimum

worsening δ in LEADINGONES is 1 the condition reduces to 2β (N−1)≥ 3, thus

|∆−(x)| ≤ 1
n
·

n

∑
k=1

e−(k−1) · pfix(−1)≤ 1
n
· e

e−1
· pfix(−1)≤ 2

n
· pfix(−1).

The total drift is

∆(x)≥ pfix(1)
n
·
(

1−2 · pfix(−1)
pfix(1)

)
and using Lemma 4.3 leads to

∆(x)≥ pfix(1)
n
·
(

1−2 · e−2(N−1)β
)
.

Assuming 2(N−1)β ≥ 3 yields

∆(x)≥ pfix(1)
n
·
(

1− 2
e3

)
≥ 9pfix(1)

10n
.

Now we apply variable drift theorem to the number of zeros z

∆(x)≥ 9
10n
· pfix(1) = h(z)

E(T | X0)≤
10n

9pfix(1)
+
∫ n

1

10n
9pfix(1)

dz = O
(

n2

pfix(1)

)
using pfix bounds (see Lemma 4.2) one gets

E(T | X0)≤ O
(

n2 ·
(

1+
1

2β

))
.

90 Speed of Adaptation in Additive Landscapes

5.3 Adaptation in a General Class of Landscapes

We now turn to a general class of fitness landscapes: unimodal functions. This class includes
all functions that have only one maximum, meaning that it includes functions displaying
arbitrary forms of epistasis, excluding only some types of sign epistasis which may lead to
multiple peaks (Poelwijk et al., 2007; Weinreich et al., 2005), as mentioned before.

The defining feature of the members of the unimodal class is that any genotype other
than the peak has at least one mutational neighbour (a genotype that differs exactly by
one mutation) of higher fitness value. The following theorem proves an upper bound of
O(nd/pfix(δ)), where d is the longest shortest path to the optimum and δ denotes the
minimum of these trait increases (or decreases) in the landscape.

This bound depends on the length d, and as such is not independent of the instance of the
function class we are considering. It should be noted that this bound can be loose, as can be
seen by comparing to the previous results for linear functions (which are part of the unimodal
function class): the fitness range d is of size n, entailing a bound for the time to adaptation
of O(n2) when, in reality, the time on the linear function class grows slower O(n lnn) (see
Theorem 5.3). On the other hand, it leads to a tight bound for the LEADINGONES function
(see Theorem 5.4).

Moreover, the O(nd/pfix(δ)) upper bound does not guarantee that the time to reach the
peak is polynomial: there could exist members of the unimodal function class for which d is
exponential (Droste et al., 2006; Rudolph, 1997b), making the bound exponential. More gen-
erally, it is known that the black-box complexity of unimodal functions is exponential (Droste
et al., 2006).

Theorem 5.5. SSWM can optimise every unimodal function in

O
(

nd
pfix(δ)

)
= O

(
nd ·

(
1+

1
2βδ

))
where d is the longest shortest path to the optimum. Provided 2(N− 1)βδ ≥ ln(cn) with
c > 1, β ∈ R+ and δ ∈ R+ which is the minimum fitness improvement (and worsening).

Proof. Pessimistically assuming that only one specific bit flip leads to an improvement, the
positive drift can be bounded by

∆
+(x)≥ 1

n
· pfix(δ).

5.3 Adaptation in a General Class of Landscapes 91

For the backward drift, we look to the worst expected impact of one single bit 1
n · pfix(−δ),

then applying linearity of expectations we obtain

|∆−(x)| ≤ pfix(−δ).

The total expectation of the progress towards the optimum is therefore

∆(x)≥ pfix(δ)

(
1
n
− pfix(−δ)

pfix(δ)

)
using Lemma 4.3 leads to

∆(x)≥ pfix(δ) ·
(

1
n
− e−2(N−1)βδ

)
and since 2(N−1)βδ ≥ ln(cn) with c > 1

∆(x)≥ pfix(δ) ·
(

1
n
− 1

cn

)
= Ω

(
pfix(δ)

n

)
.

Now we apply variable drift theorem to the number of zeros z, integrating from the farthest
point to the optimum (z = d) to the closest (z = 1)

∆(x) = Ω

(
pfix(δ)

n

)
= h(z),

E(T | X0)≤ O
(

n
pfix(δ)

)
+O

(∫ d

1

n
pfix(δ)

dz
)

= O
(

nd
pfix(δ)

)
using pfix bounds (see Lemma 4.2) we obtain an alternative formula

E(T | X0) = O
(

nd ·
(

1+
1

2βδ

))
.

92 Speed of Adaptation in Additive Landscapes

5.4 Detecting the Steepest Slope

Finally, we investigate a feature that distinguishes SSWM from the (1+1) EA as well as
the Metropolis algorithm: the fact that larger improvements are more likely to be accepted
than smaller improvements. To this end, we consider the function BALANCE, originally
introduced by Rohlfshagen et al. (2009) as an example where rapid dynamic changes in
dynamic optimisation can be beneficial. The function has also been studied in the context of
stochastic ageing by Oliveto and Sudholt (2014) and it goes back to an earlier idea by Witt
(2008).

In its static (non-dynamic) form, BALANCE can be illustrated by a two-dimensional
plane, whose coordinates are determined by the number of leading ones (LO) in the first half
of the bit string, and the number of ones in the second half, respectively. The former has a
steeper gradient than the latter, as the leading ones part is weighted by a factor of n in the
fitness (see Figure 5.3).

Definition 5.2 (BALANCE Rohlfshagen et al., 2009). Let a,b ∈ {0,1}n/2 and x = ab ∈
{0,1}n. Then

BALANCE(x) =


n3 if LO(a) = n/2,else

|b|1 +n ·LO(a) if n/16 < |b|1 < 7n/16,else

n2 ·LO(a) if |a|0 >
√

n,else

0 otherwise

where |x|1 = ∑
n/2
i=1 xi, |x|0 is a number of zeros and LO(x) := ∑

n/2
i=1 ∏

i
j=1 x j counts the number

of leading ones.

0

0

n3

n2 ·LO(a)

n2 ·LO(a)

n ·LO(a)+ |b|1

LO(a)

|b|1

Fig. 5.3 Visualisation of BALANCE Rohlfshagen et al. (2009).

5.4 Detecting the Steepest Slope 93

The function is constructed in such a way that all points with a maximum number of
leading ones are global optima, whereas increasing the number of ones in the second half
beyond a threshold of 7n/16 (or decreasing it below a symmetric threshold of n/16) leads to
a trap, a region of local optima that is hard to escape from.

Rohlfshagen et al. (2009) showed the following lower bound for the (1+1) EA. The
statement is specialised to non-dynamic optimisation and slightly strengthened by using a
statement from their proof.

Theorem 5.6 (Theorem 3 in Rohlfshagen et al., 2009). With probability Ω(1) the (1+1) EA
on BALANCE reaches a trap, and then needs at least n

√
n further generations in expectation

to find an optimum from there. The expected optimisation time of the (1+1) EA is thus
Ω(n

√
n).

We believe that the probability bound Ω(1) can be strengthened to 1− e−Ω(n1/2) with
a more detailed analysis, which would show that the (1+1) EA gets trapped with an over-
whelming probability.

We next show that SSWM with high probability finds an optimum in polynomial time.
For appropriately small β we have sufficiently many successes on the LEADINGONES part
such that we find an optimum before the ONEMAX-part reaches the region of local optima
(see Figure 5.4). This is because for small β the probability of accepting small improvements
is small. The fact that SSWM is slower than the (1+1) EA on ONEMAX (see Theorems 2.10
and 5.1) by a factor of O(1/pfix(1)) turns into an advantage over the (1+1) EA on BALANCE.

0

0

n3

n2 ·LO(a)

n2 ·LO(a)

n ·LO(a)+ |b|1

LO(a)

|b|1

Θ(1) · pfix(1) = O(β)

1/n · pfix(n) = Ω(β)O(n−n)

ignore

SSWM

Fig. 5.4 Transition probabilities of the SSWM algorithm on BALANCE (see Lemmas 5.1
and 5.3).

94 Speed of Adaptation in Additive Landscapes

The following lemma shows that SSWM effectively uses elitist selection on the LEADINGONES

part of the function in a sense that every decrease is rejected with overwhelming probability.
This scenario corresponds with the arrow pointing to the left on Figure 5.4.

Lemma 5.1. For every x = ab with n/16 < |b|1 < 7n/16 and β = n−3/2 and Nβ = lnn, the
probability of SSWM accepting a mutant x′ = a′b′ with LO(a′)< LO(a) and n/16 < |b′|1 <
7n/16 is O(n−n).

Proof. The loss in fitness is at least n− (|b′|1− |b|1) ≥ n/2. The probability of SSWM
accepting such a loss is at most

pfix(−n/2)≤ 1− e−2β (−n/2)

1− e−2Nβ (−n/2)
≤ eβn

eNβn−1
.

Assuming β = n−3/2 and Nβ = lnn, this is at most

e
√

n
n

nn−1
≤ e

nn−1
= O(n−n).

The following lemma establishes the optimisation time of the SSWM algorithm on either
the ONEMAX or the LEADINGONES part of BALANCE.

Lemma 5.2. Let β = n−3/2 and Nβ = lnn. With probability 1− e−Ω(n1/2), SSWM optimises
the LEADINGONES part or reaches the trap (all search points with fitness n2 ·LO(a)) within
T steps.

T :=
n2

4
· 1

pfix(n)
·
(

1+n−1/4
)

Proof. We use the method of typical runs (Wegener, 2003): we consider the typical behaviour
of the algorithm, and show that events where the algorithm deviates from a typical run are
very unlikely. A union bound over all such failure events proves the claimed probability
bound.

With probability 1/n a local mutation will flip the first 0-bit. This increases the fitness by
k ·n where k is the number of consecutive 1-bits following this bit position after mutation.
The latter bits are called free riders and it is well known (Lehre and Witt, 2012a, Lemma 1
and proof of Theorem 2) that the number of free riders follows a geometric distribution with
parameter 1/2, only capped by the number of bits to the end of the bit string a.

We assume that the number of leading ones is never decreased since the probability of
accepting such a fitness decrease is O(n−n) by Lemma 5.1. On the other hand, any increase by

5.4 Detecting the Steepest Slope 95

mutation is accepted with probability at least pfix(n). In a step, the probability of increasing
the number of leading ones is hence at least 1/n · pfix(n) and the expected number of such
improvements in

T :=
n2

4
· 1

pfix(n)
· (1+n−1/4)

steps is at least n/4+ n3/4/4. By Chernoff bounds (see Lemma A.4 in Appendix A), the
probability that less than n/4+n3/4/8 improvements happen is e−Ω(n1/2). Also the probability
that during this number of improvements less than n/4−n3/4/8 free riders occur is e−Ω(n1/2).
If these two rare events do not happen, a LEADINGONES value of n/2 is reached before
time T . Taking the union bound over all rare failure probabilities proves the claim.

We now show that the ONEMAX part is not optimised before the LEADINGONES part.
This yields an overall expected progress towards the optimum and not the traps as depicted
in Figure 5.4.

Lemma 5.3. Let β = n−3/2, Nβ = lnn, and T be as in Lemma 5.2. The probability that
SSWM starting with a0b0 such that n/4≤ |b0|1 ≤ n/4+n3/4 creates a search point ab with
|b|1 ≤ n/16 or |b|1 ≥ 7n/16 in T steps is e−Ω(n1/2).

The proof of Lemma 5.3 requires a careful and delicate analysis to show that the constant
factors are small enough such that the stated thresholds for |b|1 are not surpassed.

Proof of Lemma 5.3. We only prove that a search point with |b|1 ≥ 7n/16 is unlikely to
be reached with the claimed probability. The probability for reaching a search point with
|b|1 ≤ n/16 is clearly no larger, and a union bound for these two events leads to a factor of 2
absorbed in the asymptotic notation.

Note that using the bounds on pfix from Lemma 4.2 and introducing β = n−3/2 we have

pfix(n)≥
2βn

1+2βn
≥ 1

n1/2

for n≥ 2, hence

T ≤ n3/2

4
·
(

1+n−1/4
)
= O

(
n5/2

)
.

We call a step improving if the number of ones in b increases and the step is accepted. The
probability p1 that the ONEMAX value increases by 1 is at most

p1 ≤ pfix(1) =
1− e−2β

1− e−2Nβ

96 Speed of Adaptation in Additive Landscapes

using β = n−3/2 and Nβ = lnn

p1 ≤
n−3/2

1−n−2

=
1

n3/2−n−1/2

= O
(

n−3/2
)

Now, by Chernoff bounds, the probability of having more than S := (1+ n−1/4) · p1 · T
improving steps in T steps is e−Ω(n1/2). Using a Chernoff bound for geometric random
variables (Doerr, 2011, Theorem 1.14), the probability of S improving steps yielding a total
progress of at least (1+n−1/4) ·4/3 ·S is e−Ω(n1/2). If none of these rare events happen, the
progress is at most

(1+n−1/4) · 4
3
·S

(1+O(n−1/4)) · 4
3
· p1 ·T

≤ (1+O(n−1/4)) · 1.14
9
·n.

which for large enough n is less than the distance 7n/16− (n/4+n3/4) to reach a point with
|b|1 ≥ 7n/16 from initialisation. This proves the claim.

Finally, we put the previous lemmas together into our main theorem that establishes that
SSWM can optimise BALANCE in polynomial time.

Theorem 5.7. With probability 1− e−Ω(n1/2) SSWM with random initialisation, β = n−3/2

and Nβ = lnn optimises BALANCE in time O
(

n5/2
)

.

Proof. By Chernoff bounds, the probability that for the initial solution x0 = a0b0 we have
n/4− n3/4 ≤ |b0|1 ≤ n/4+ n3/4 is 1− e−Ω(n1/2). We assume pessimistically that n/4 ≤
|b0|1 ≤ n/4+n3/4. Then Lemma 5.3 is in force, and with probability 1− e−Ω(n1/2) within
T steps, T as defined in Lemma 5.2, SSWM does not reach a trap or a search point with
fitness 0. Lemma 5.2 then implies that with probability 1− e−Ω(n1/2) an optimal solution
with n/2 leading ones is found.

Finally, to complete the picture we present experimental results for the (1+1) EA and
SSWM on BALANCE. As shown in Theorems 5.6 and 5.7, SSWM can effectively optimise
this problem while the (1+1) EA needs exponential time.

5.5 Conclusions 97

1e+03

1e+06

1e+09

10 20 30 40
Problem size (n)

Ite
ra

tio
ns algorithm

(1+1) EA
SSWM

Fig. 5.5 Expected time required to reach an optimal search point of BALANCE for the
(1+1) EA (red) and SSWM (blue). Results are averaged over 50 independent runs and error
bars include ± one standard deviation. Simulations were stopped if they took longer than
n
√

n iterations (recall Theorem 5.6) Parameters of SSWM were chosen in concordance with
Theorem 5.7, i.e., β = n−3/2 and Nβ = lnn. A logarithmic scale with base 10 is used for the
y-axis.

5.5 Conclusions

We have shown that, for a large class of fitness landscapes, it is sufficient that the selection
strength 2Nβ is above the threshold lnn (along with β = 1/poly(n)) for populations to be
able to efficiently climb to the fitness peak. We proved that, in the class of additive landscapes,
this condition is both sufficient and necessary, implying a limit to the number of sites that can
be efficiently adapted at a constant selection strength. Nevertheless, this critical threshold
does not seem severe: selection strength should increase logarithmically with the number of
sites under selection, indicating that a small increase in the selection gradient or population
size translates in an exponential increase in the length of the sequences that can be evolved
efficiently. Moreover, this condition is not always necessary: when considering a class of
epistatic landscapes characterised by a single mutational path of strictly increasing fitness, we
found that this limit no longer applies. A constant selection strength will enable a population
to climb to the optimum, albeit at a slower rate than in an additive landscapes, regardless
of the number of sites contributing to the trait. These results quantify the complexity of

98 Speed of Adaptation in Additive Landscapes

adaptive walks beyond linear landscapes or uncorrelated mutational neighbourhoods. They
illustrate how the structure of the fitness landscape can impose limits to adaptation and how
these stem directly from how the landscape conditions the distribution of effects of single
mutants, in particular of deleterious mutations. Furthermore, they reveal how the buildup of
mutational pressure that necessarily counteracts selection imposes a limit on the selection
strength required for populations to overcome the entropic effects of mutation and make
progress towards fitter genotypes.

From a computational perspective, we also showed that SSWM can take advantage of
information about the steepest gradient outperforming classical evolutionary algorithms such
as the (1+1) EA.

Chapter 6

When Non-Elitism Outperforms Elitism
for Crossing Fitness Valleys

This chapter is mainly based on the following publications:

1. Oliveto, P. S., Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2016)
When non-elitism outperforms elitism for crossing fitness valleys. Proceedings of
the Genetic and Evolutionary Computation Conference 2016 (GECCO ’16), pages
1163–1170. ACM.

2. Oliveto, P. S., Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017).
How to Escape Local Optima in Black Box Optimisation: When Non-Elitism Outper-
forms Elitism. In Algorithmica. To appear.

As we studied in Chapter 2, evolutionary algorithms mainly differ in the way new solutions
are generated (i.e. variation operators), how solutions are chosen for the next iterations (i.e.
selection) and how many solutions are used by the heuristic in each iteration (i.e. population).
Different variation operators, selection operators, population sizes and combinations of these
lead to different algorithmic behaviours. In this chapter we analyse the effects of mutation
and selection in overcoming local optima.

Two different approaches are commonly used by most black box algorithms. One
strategy is to rely on variation operators such as mutation to produce new solutions of high
fitness outside the basin of attraction of the local optimum. These are unary operators that
construct a new candidate solution typically by flipping bits of an existing solution (see
Subsection 2.2.1). Elitist algorithms (i.e. those that never discard the best found solution),
mainly rely on such strategies when stuck on a local optimum. In a population-based
algorithm different individuals may use different mutation rates to help escape local optima

100 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

faster (Oliveto et al., 2009). Other variation operators may escape even faster than mutation.
Population-based algorithms can recombine different solutions through the crossover operator
to reach points outside the area of attraction of the local optima (Jansen and Wegener, 2002).
This operation requires that sufficient diversity is available in the population which may be
introduced by using some diversity-enforcing mechanism (Dang et al., 2017). Recently it has
been shown that the interplay between the two variation operators, mutation and crossover,
may efficiently give rise to the necessary burst of diversity without the need of any artificial
diversity mechanism (Dang et al., 2017). Another combination that has been proven to
be effective for elitist algorithms to overcome local optima is to alternate mutations with
variable depth search (Sudholt, 2011a). A common approach used in practice is to restart the
algorithm or perform several runs in parallel with the hope that the algorithm does not get
stuck on the same local optima every time.

A very different approach is to attempt to escape by accepting solutions of lower fitness
in the hope of eventually leaving the basin of attraction of the local optimum. This approach
is the main driving force behind non-elitist algorithms. Compared to the amount of work on
elitist black box algorithms, there are few theoretical works analysing the performance of
non-elitism (see, e. g. Jansen, 2007; Neumann et al., 2009; Oliveto and Witt, 2014; Sasaki
and Hajek, 1988). While both approaches may clearly be promising, it is still unclear when
one should be preferred to the other.

In this chapter we investigate this topic by considering the areas between consecutive
local optima, which we call fitness valleys. These valleys can have arbitrary length ℓ, i.e., , the
distance between the local optima, and arbitrary depth d, i.e., the difference in function values
between the optima and the point of minimum fitness between them. More precisely, we
define a valley on a Hamming path (a path of Hamming neighbours) to ensure that mutation
has the same probability of going forward on the path as going backwards. The valley is
composed of a slope of length ℓ1 descending towards a local minimum from which a slope
of increasing fitness of length ℓ2 can be taken to reach the end of the valley. The steepness of
each slope is controlled by parameters d1 and d2, respectively indicating the fitness of the
two local optima at the extreme left and extreme right of the valley. A sketch of a fitness
valley is shown in Figure 6.1. Our aim is to analyse how the characteristics of the valley
impact the performance of elitist versus non-elitist strategies.

101

i0

0

fitness

ℓ1 ℓ

d1

d2

ℓ1 ℓ2

Fig. 6.1 Sketch of the function VALLEY.

We point out that understanding how to cross fitness valleys efficiently is a very important
problem also in biology (Whitlock et al., 1995). Crossing fitness valleys represents one of the
major obstacles to the evolution of complex traits. Many of these traits require accumulation
of multiple mutations that are individually harmful for their bearers; a fitness advantage is
achieved only when all mutations have been acquired—a fitness valley has been crossed.

The understanding of adaptation on highly rugged landscapes is still an open question
in biology. The most famous attempt to shed light on this issue is Wright’s shifting balance
theory (SBT) (Wright, 1932). This theory suggests that isolated populations might fail
to adapt on fitness landscapes with multiple peaks. However, by splitting into parallel
populations, evolution could effectively cross the valleys and adapt on such landscapes.
However, the SBT is still highly debated with supporting and dismissing literature (see
e.g. (Goodnight and Wade, 2000) and (Coyne et al., 2000) respectively). Settling the debate
on the SBT is not the purpose of this chapter since this thesis focused just on trajectory-based
algorithms. However, we will identify fitness valleys’ characteristics that represent intractable
adaptive landscapes for isolated populations. We notice that this result is in concordance
with the first claim of the SBT (isolated populations fail on highly rugged landscapes).

We consider the simple elitist (1+1) EA, the most-studied elitist evolutionary algorithm,
and compare its ability to cross fitness valleys with the Strong Selection Weak Mutation
regime (see Subsection 3.2.3) via a runtime analysis of the SSWM algorithm (see Algo-
rithm 4.1). We show that greater speed-ups can be achieved by SSWM on fitness valleys.

102 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

After introducing the fitness functions and their encoding, we build upon Gambler’s Ruin
theory (see Subsection 2.3.2) to devise a general mathematical framework for the analysis
of non-elitist algorithms using local mutations for crossing fitness valleys. We use it to
rigorously show that SSWM is able to efficiently perform a random walk across the valley
using only local mutations by accepting worse solutions, provided that the valley is not too
deep. On the other hand, the (1+1) EA cannot accept worse solutions and therefore relies on
global mutations to reach the other side of the valley in a single jump. More precisely, the
(1+1) EA needs to make a jump across all valley points that have lower fitness; we call this
the effective length of the valley.

As a result, the runtime of the (1+1) EA is exponential in the effective length of the
valley while the runtime of SSWM depends crucially on the depth of the valley. We demon-
strate the generality of the presented mathematical tool by using it to prove that the same
asymptotic results achieved by SSWM also hold for the well-known Metropolis algorithm
(MA) (Algorithm 2.7) that, differently from SSWM, always accepts improving moves. In
Chapter 7, we will further investigate the similarities and differences of the SSWM and
Metropolis algorithms. Jansen and Wegener (2007) previously compared the performance of
the (1+1) EA and MA for a fitness valley encoded as a unitation function where the slopes
are symmetric and of the same length. They used their fitness valley as an example where
the performance of the two algorithms is asymptotically equivalent.

The framework also allows the analysis for concatenated “paths” of several consecutive
valleys, creating a rugged fitness landscape that loosely resembles a “big valley” structure
found in many problems from combinatorial optimisation (Boese et al., 1994; Merz and
Freisleben, 1998; Ochoa and Veerapen, 2016; Reeves, 1999). In particular, in Section 6.3
we use it to prove that SSWM and MA can cross consecutive paths in expected time that
depends crucially on the depth and number of the valleys.

Finally, we allow SSWM to use global mutations and show how it effectively combines
non-elitism with global mutations to overcome sharp valleys. We will use the problem
CLIFFd , a function defined such that non-elitist algorithms have a chance to jump down
a “cliff” of height roughly d and to traverse a fitness valley of Hamming distance d to the
optimum. The function is a generalised construction of the unitation function (a function that
only depends on the number of 1-bits in the bit string) introduced by Jägersküpper and Storch
(2007) to give an example class of functions where a (1,λ) EA outperforms a (1+λ) EA.
This analysis revealed that SSWM can cross the fitness valley. However, upon comparison
with the (1+1) EA, SSWM achieved only a small speed-up: the expected time (number of
function evaluations) of SSWM is at most nd/eΩ(d), while the (1+1) EA requires Θ(nd).

6.1 Long Paths 103

6.1 Long Paths

Previous work on valley crossing (see e.g. Jägersküpper and Storch, 2007; Jansen, 2007)
used functions of unitation to encode fitness valleys, with 1n being a global optimum. The
drawback of this construction is that the transition probabilities for mutation heavily depend
on the current position. The closer an algorithm gets to 1n, the larger the probability of
mutation decreasing the number of ones and moving away from the optimum.

We follow a different approach to avoid this mutational bias, and to ensure that the
structure of the fitness valley is independent of its position in the search space. This also
allows us to easily concatenate multiple valleys.

We base our construction on the so-called long k-paths, paths of Hamming neighbours
with increasing fitness whose length can be exponential in n. These paths were introduced
and investigated experimentally by Horn et al. (1994) and subsequently formalised and
rigorously analysed by Rudolph (1997b). Exponential lower bounds were shown by Droste
et al. (2002). An example of a long k-path is shown in Table 6.1. The following formal,
slightly revised definition is taken from (Sudholt, 2009, page 2517).

Definition 6.1. Let k ∈ N and n be a multiple of k. The long k-path of dimension n is
a sequence of bit strings from {0,1}n defined recursively as follows. The long k-path
of dimension 0 is the empty bit string. Assume the long k-path of dimension n− k is
given by the sequence Pk

n−k = (p1, . . . , pℓ), where p1, . . . , pℓ ∈ {0,1}n−k and ℓ is the length
of Pk

n−k. Then the long k-path of dimension n is defined by prepending k bits to these
search points: let S0 := (0k p1,0k p2, . . . ,0k pℓ), S1 := (1k pℓ,1k pℓ−1, . . . ,1k p1), and B :=
(0k−11pℓ,0k−212 pℓ, . . . ,01k−1 pℓ). The search points in S0 and S1 differ in the k leading bits
and the search points in B represent a bridge between them. The long k-path of dimension n,
Pk

n, is the concatenation of S0,B, and S1.

The length of Pk
n is k ·2n/k− k+1 (Sudholt, 2009, Lemma 3), which is exponential in n

if, for example, k = Θ(
√

n). An exponential length implies that the path has to be folded
in {0,1}n in a sense that there are i < j such that the i-th and the j-th point on the path
have Hamming distance H(·, ·) smaller than j− i. Standard bit mutations have a positive
probability of jumping from the i-th to the j-th point, hence there is a chance to skip large
parts of the path by taking a shortcut. However, long k-paths are constructed in such a way
that at least k bits have to flip simultaneously in order to take a shortcut of length at least k.
The probability of such an event is exponentially small if k = Θ(

√
n), in which case the path

still has exponential length.

104 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

Long k-paths turn out to be very useful for our purposes. If we consider the first points of
a long k-path and assign increasing fitness values to them, we obtain a fitness-increasing path
of any desired length (up to exponential in n (Sudholt, 2009, Lemma 3)).

P0: 000000000 P6 : 000111111 P12: 111111000 P18: 111000111
P1: 000000001 P7 : 000111011 P13: 111111001 P19: 111000011
P2: 000000011 P8 : 000111001 P14: 111111011 P20: 111000001
P3: 000000111 P9 : 000111000 P15: 111111111 P21: 111000000
P4: 000001111 P10: 001111000 P16: 111011111
P5: 000011111 P11: 011111000 P17: 111001111

Table 6.1 Example of a long k-path for n = 9 and k = 3: P3
9 = (P0,P1, . . . ,P21).

Given two points Ps,Ps+i for i > 0, Ps+i is called the i-th successor of Ps and Ps is called
a predecessor of Ps+i. Long k-paths have the following properties.

Lemma 6.1 (Long Paths).

1. For every i ∈ N0 and path points Ps and Ps+i, if i < k then H(Ps,Ps+i) = i, otherwise
H(Ps,Ps+i)≥ k.

2. The probability of a standard bit mutation turning Ps into Ps+i (or Ps+i into Ps) is
1/ni · (1−1/n)n−i for 0 ≤ i < k and the probability of reaching any search point in
{Ps+i | i≥ k} from Ps is at most 1/(k!).

Proof. The first statement was shown in (Sudholt, 2009, page 2517) (refining a previous
analysis in Droste et al., 2002, page 73). The second statement follows from the first one,
using that the probability of mutating at least k bits is at most

(n
k

)
n−k ≤ 1/(k!).

In the following, we fix k :=
√

n such that the probability of taking a shortcut on the path
is exponentially small. We assign fitness values such that all points on the path have a higher
fitness than those off the path. This fitness difference is made large enough such that the
considered algorithms are very unlikely to ever fall off the path. Assuming that we want to
use the first m path points P0, . . . ,Pm−1, then the fitness is given by

f (x) :=

h(i) if x = Pi, i < m

−∞ otherwise

where h(i) gives the fitness (height) of the i-th path point.
Then, assuming the algorithm is currently on the path, the fitness landscape is a one-

dimensional landscape where (except for the two ends) each point has a Hamming neighbour

6.2 Crossing Simple Valleys 105

as predecessor and a Hamming neighbour as successor on the path. Local mutations will
create each of these with equal probability 1/n. If we call these steps relevant and ignore
all other steps, we get a stochastic process where in each relevant step we create a mutant
up or down the path with probability 1/2 each (for the two ends we assume a self-loop
probability of 1/2). The probability whether such a move is accepted then depends on the
fitness difference between these path points.

It then suffices to study the expected number of relevant steps, as we obtain the expected
number of function evaluations by multiplying with the expected waiting time n/2 for a
relevant step.

Lemma 6.2. Let E [T] be the expected number of relevant steps for any algorithm described
by Algorithm 2.3 with local mutations finding a global optimum. Then the respective expected
number of function evaluations is n/2 ·E [T], unless the algorithm falls off the path.

In the following, we assume that all algorithms start on P0. This behaviour can be
simulated from random initialisation with high probability by embedding the path into a larger
search space and giving hints to find the start of the path within this larger space (Sudholt,
2009). As such a construction is cumbersome and does not lead to additional insights, we
simply assume that all algorithms start in P0.

6.2 Crossing Simple Valleys

As mentioned earlier we will use the VALLEY problem (Figure 6.1). On the first slope
starting at point P0 the fitness decreases from the initial height d1 ∈ R+ until the path point
Pℓ1 with fitness 0. Then the second slope begins with fitness increasing up to the path point
Pℓ1+ℓ2 of fitness d2 ∈ R+. The total length of the path is ℓ = ℓ1 + ℓ2. We call such a path
VALLEY.

Definition 6.2 (VALLEY). Let d1,d2 ∈ R+ and ℓ1, ℓ2 ∈ N, then the fitness h(i)VALLEY of the
i-th path point is given by

h(i)VALLEY :=

d1− i · d1
ℓ1

if i≤ ℓ1

(i− ℓ1) · d2
ℓ2

if ℓ1 < i≤ ℓ.

Here, d1
ℓ1

and d2
ℓ2

indicate the steepness of the two slopes (see Figure 6.1). We will use
d2 > d1 to force the point Pℓ to be the optimum.

106 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

6.2.1 Analysis for the (1+1) EA

We first show that the runtime of the (1+1) EA depends on the effective length ℓ∗ of the
valley, defined as the distance between the initial point P0 and the first valley point of greater
or equal fitness. Here we restrict parameters to ℓ1 + ℓ2 ≤

√
n/4, as then the probability of

the (1+1) EA taking a shortcut is no larger than the probability of jumping by a distance of
ℓ1 + ℓ2: 1

(
√

n)! ≤ n−
√

n/4 for n≥ 4.

Theorem 6.1. Assume ℓ1 + ℓ2 ≤
√

n/4 and d1 ≤ d2. The expected time for the (1+1) EA
starting in P0 to cross the fitness valley is Θ(nℓ

∗
) where ℓ∗ = ℓ1 + ⌈d1ℓ2/d2⌉.

Proof. Let us first recall that due to its elitism the (1+1) EA can not fall off the path. To cross
the fitness valley the (1+1) EA needs to jump from P0 to a point with higher or equal fitness,
thus it has to jump at least a distance ℓ∗. The probability of such a jump can be bounded
from below using Lemma 6.1 by

pjump ≥ n−ℓ
∗
(

1− 1
n

)n−ℓ∗

≥ e−1n−ℓ
∗

(6.1)

resulting in an expected time needed to jump over the valley of at most enℓ
∗
= O(nℓ

∗
). After

jumping over the valley, the (1+1) EA has to climb at most the remaining
(

1− d1
d2

)
ℓ2 ≤ ℓ2

steps, and each improvement has a probability of at least 1/(en). The expected time for this
climb is thus at most eℓ2n. As ℓ2 < n and ℓ∗ ≥ ℓ1 ≥ 2, this time is O(nℓ

∗
).

Note that, in case Pℓ∗ has the same fitness as P0, the (1+1) EA can jump back to the
beginning of the path, in which case it needs to repeat the jump. However, conditional on
leaving Pℓ∗ , the probability that a successor is found is at least Ω(1). Hence in expectation
O(1) jumps are sufficient.

Furthermore, the probability of the jump can be bounded from above by the probability
of jumping to any of the next potential

√
n path points and by the probability of taking a

shortcut (see Lemma 6.1)

pjump ≤
1√
n!

+

√
n

∑
i=ℓ∗

n−i
(

1− 1
n

)n−i

= O(n−ℓ
∗
)

where we used 1
(
√

n)! ≤ n−
√

n/4 ≤ n−ℓ
∗
. Thus the expected time is Ω(nℓ

∗
).

6.2 Crossing Simple Valleys 107

6.2.2 A General Framework for Local Search Algorithms

We introduce a general framework to analyse the expected number of relevant steps of
non-elitist local search algorithms (Algorithm 2.3 with local mutations) for the VALLEY

problem. As explained in Section 6.1, in a relevant step mutation creates a mutant up or down
the path with probability 1/2, and this move is accepted with a probability that depends only
on the fitness difference. For slopes where the gradient is the same at every position, this
resembles a gambler’s ruin process.

To apply classical gambler ruin theory (see Theorem 2.3) two technicalities need to be
taken into account. Firstly, two different gambler ruin games need to be considered, one
for descending down the first slope and another one for climbing up the second slope. The
process may alternate between these two ruin games as the extreme ends of each game at
the bottom of the valley are not absorbing states. Secondly, a non-elitist algorithm could
reject the offspring individual even when it has a higher fitness than its parent. Hence the
probabilities of winning or losing a dollar (i.e., the probabilities of moving one step up or
down in the slope) do not necessarily add up to one. Here, loop probabilities of neither
winning or losing a dollar need to be taken into account when estimating expected times
(winning probabilities are unaffected by self-loops).

Theorem 6.2 (Gambler’s Ruin with self-loops). Consider a game where two players start
with n1 ∈ N+ and n2 ∈ N+ dollars respectively. In each iteration player 1 wins one of
player’s 2 dollars with probability p1, player 2 wins one of player’s 1 dollars with probability
p2, and nothing happens with probability 1− p1− p2. Then the probability of player 1
winning all the dollars before going bankrupt is:

P1 =


n1

n1+n2
if p1 = p2

1−
(

p2
p1

)n1

1−
(

p2
p1

)n1+n2 if p1 ̸= p2.

The expected time until either of both players become bankrupt i.e. the expected duration of
the game is

E [T] =


n1n2

p1+p2
if p1 = p2

n1−(n1+n2)P1
p2

2−p2
1

if p1 ̸= p2.

Proof. The proof follows directly from the results of the standard problem (p1 + p2 = 1),
see Theorem 2.3. The only effect of the self-loops is to add extra iterations in the problem
where nothing happens, therefore the winning probabilities will not be affected, however the

108 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

expected duration of the game will be increased by the waiting time needed for a relevant
iteration 1/(p1 + p2).

In order to simplify the calculations and improve the readability of this chapter we have
developed the following notation.

Definition 6.3 (Framework’s notation). The VALLEY problem can be considered as a Markov
chain with states {P0,P1, . . . ,Pℓ1−1,Pℓ1,Pℓ1+1, . . . ,Pℓ1+ℓ2}. For simplicity we will sometimes
refer to these points only with their sub-indices {0,1, . . . , ℓ1−1, ℓ1, ℓ1 +1, . . . , ℓ1 + ℓ2}.

For any stochastic process on the VALLEY problem we will denote by:

(1) pi→ j the probability of moving from state i to j ∈ {i−1, i, i+1} in one iteration,

(2) pGR
i→k the probability of a Gambler’s Ruin process starting in i finishing in k before

reaching the state i−1,

(3) E
[
T GR

i,k

]
the expected duration until either the state i−1 or k is reached,

(4) E [Ti→m] the expected time to move from state i to state m.

We now present some lemmas that will simplify the runtime analysis of any trajectory-
based optimiser (Algorithm 2.3) with local mutations, as long as some reasonable conditions
on the selection operator are met. After stating the first lemma we will discuss in detail these
conditions.

Lemma 6.3. Consider any algorithm described by Algorithm 2.3 with local mutations and
the following properties on VALLEY with ℓ1, ℓ2 ∈ {2,3, . . .} and d1,d2 ∈ R+.

(i) pℓ1→ℓ1−1, pℓ1→ℓ1+1 = Ω(1)

(ii) pℓ1→ℓ1+1 ≥ pℓ1+1→ℓ1 + ε , for ε > 0 a constant

(iii) pacc(∆ f) is non-decreasing.

Then the expected number of relevant steps for such a process to reach the point Pℓ1+ℓ2

starting from P0 is
E [T0→ℓ1+ℓ2] = Θ(E [T1→ℓ1])+Θ(ℓ2).

Property (iii) describes a common feature of optimisation algorithms: the selection
operator prefers fitness increases over decreases (e.g. Randomised Local Search, (1+1) EA
or MA). Then, the bottleneck of VALLEY seems to be climbing down the first ℓ1 steps since
several fitness decreasing mutations have to be accepted.

6.2 Crossing Simple Valleys 109

Once at the bottom of the valley Pℓ1 the process must keep moving. It could be the case
that the algorithm climbs up again to P0. But under some mild conditions it will only have to
repeat the experiment a constant number of times (property (i) of the following lemma).

Finally, the algorithm will have to climb up to Pℓ1+ℓ2 . This will take linear time in ℓ2,
provided the probability of accepting an improvement pℓ1→ℓ1+1 is by a constant greater than
accepting a worsening of the same size pℓ1+1→ℓ1 , as required by property (ii).

Consider an algorithm with a selection operator that satisfies condition (iii) such as MA or
SSWM. In order to satisfy the first two conditions, the selection strength must be big enough
to accept the two possible fitness increases of VALLEY (d1/ℓ1 and d2/ℓ2) with constant
probability. As we will see at the end of this section, this condition directly translates to
βd1/ℓ1, βd2/ℓ2 = Ω(1) for SSWM and αd1/ℓ1, αd2/ℓ2 = Ω(1) for MA.

In order to prove the previous lemma we will make use of the following lemma that
shows some implications of the conditions from the previous lemma.

Lemma 6.4. In the context of Lemma 6.3, properties (i) and (ii) imply that

(i) pℓ1→ℓ1−1 + pℓ1→ℓ1+1 = 1/c1 for some constant c1 ≥ 1

(ii) 1− c1 · pGR
ℓ1+1→ℓ1

= 1/c2 for some constant c2 > 1

(iii) 1− c1c2 · pℓ1→ℓ1−1 = 1/c3 for some constant c3 > 1.

We believe that the proof of Lemma 6.4 is mainly technical and does not shed much light
on the understanding on the problem. Hence, for the sake of readability we do not include it
here, however it can be found in the Appendix 6.A.

Proof of Lemma 6.3. Since the algorithm only produces points in the Hamming neighbour-
hood it will have to pass through all the states on the path. We break down the set of states in
three sets and expand the total time as the sum of the optimisation time for those three sets:

E [T0→ℓ1+ℓ2] = E [T0→1]+E [T1→ℓ1]+E [Tℓ1→ℓ1+ℓ2] . (6.2)

Note that the lower bound follows directly. Let us now consider the upper bound. We
start using a recurrence relation for the last term: once in state ℓ1, after one iteration, the
algorithm can either move to state ℓ1+1 with probability pℓ1→ℓ1+1, move to state ℓ1−1 with
probability pℓ1→ℓ1−1 or stay in state ℓ1 with the remaining probability (if the mutation is not
accepted).

E [Tℓ1→ℓ1+ℓ2] =

1+ pℓ1→ℓ1+1 ·E [Tℓ1+1→ℓ1+ℓ2]+ pℓ1→ℓ1−1 ·E [Tℓ1−1→ℓ1+ℓ2]+ pℓ1→ℓ1 ·E [Tℓ1→ℓ1+ℓ2] .

110 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

Using E [Tℓ1−1→ℓ1+ℓ2]≤ E [T0→ℓ1+ℓ2] this expression reduces to

≤ 1+ pℓ1→ℓ1+1 ·E [Tℓ1+1→ℓ1+ℓ2]+ pℓ1→ℓ1−1 ·E [T0→ℓ1+ℓ2]+ pℓ1→ℓ1 ·E [Tℓ1→ℓ1+ℓ2] .

Solving the previous expression for E [Tℓ1→ℓ1+ℓ2] leads to

E [Tℓ1→ℓ1+ℓ2]≤
1+ pℓ1→ℓ1+1 ·E [Tℓ1+1→ℓ1+ℓ2]+ pℓ1→ℓ1−1 ·E [T0→ℓ1+ℓ2]

pℓ1→ℓ1−1 + pℓ1→ℓ1+1
.

Since property (i) of Lemma 6.3 implies that the denominator is a constant 1/c1, we get

E [Tℓ1→ℓ1+ℓ2]≤ c1 (1+ pℓ1→ℓ1+1 ·E [Tℓ1+1→ℓ1+ℓ2]+ pℓ1→ℓ1−1 ·E [T0→ℓ1+ℓ2]) . (6.3)

Let us now focus on the term E [Tℓ1+1→ℓ1+ℓ2]. Since the acceptance probability is a
function of ∆ f , for both sides of the valley the probabilities of moving to the next or previous
state remain constant during each slope and we can cast the behaviour as a Gambler’s Ruin
problem. Then, when the state is Pℓ1+1 a Gambler’s Ruin game (with self-loops) occurs. The
two possible outcomes are: (1) the problem is optimised or (2) we are back in Pℓ1 . Hence,

E [Tℓ1+1→ℓ1+ℓ2] = E
[
T GR
ℓ1+1,ℓ1+ℓ2

]
+ pGR

ℓ1+1→ℓ1
·E [Tℓ1→ℓ1+ℓ2] . (6.4)

Now we introduce (6.4) in (6.3), obtaining

E [Tℓ1→ℓ1+ℓ2]≤ c1 (1+ pℓ1→ℓ1−1 ·E [T0→ℓ1+ℓ2])

+ c1 · pℓ1→ℓ1+1 ·
(

E
[
T GR
ℓ1+1,ℓ1+ℓ2

]
+ pGR

ℓ1+1→ℓ1
·E [Tℓ1→ℓ1+ℓ2]

)
.

Solving for E [Tℓ1→ℓ1+ℓ2] yields

E [Tℓ1→ℓ1+ℓ2]≤
c1

(
1+ pℓ1→ℓ1+1 ·E

[
T GR
ℓ1+1,ℓ1+ℓ2

]
+ pℓ1→ℓ1−1 ·E [T0→ℓ1+ℓ2]

)
1− c1 · pℓ1→ℓ1+1 · pGR

ℓ1+1→ℓ1

.

By Lemma 6.4, properties (i) and (ii) of Lemma 6.3 imply that the denominator is a constant
1/c2. Hence,

E [Tℓ1→ℓ1+ℓ2]≤ c1c2 ·
(

1+ pℓ1→ℓ1+1 ·E
[
T GR
ℓ1+1,ℓ1+ℓ2

]
+ pℓ1→ℓ1−1 ·E [T0→ℓ1+ℓ2]

)
≤ c1c2 ·

(
1+E

[
T GR
ℓ1+1,ℓ1+ℓ2

]
+ pℓ1→ℓ1−1 ·E [T0→ℓ1+ℓ2]

)
.

6.2 Crossing Simple Valleys 111

We introduce this into (6.2), leading to

E [T0→ℓ1+ℓ2]≤ E [T0→1]+E [T1→ℓ1]+

c1c2

(
1+E

[
T GR
ℓ1+1,ℓ1+ℓ2

]
+ pℓ1→ℓ1−1 ·E [T0→ℓ1+ℓ2]

)
.

Solving for E [T0→ℓ1+ℓ2] leads to

E [T0→ℓ1+ℓ2]≤
E [T0→1]+E [T1→ℓ1]+ c1c2 + c1c2 ·E

[
T GR
ℓ1+1,ℓ1+ℓ2

]
1− c1c2 · pℓ1→ℓ1−1

.

Again by Lemma 6.4, properties (i) and (ii) of Lemma 6.3 imply that the denominator is a
constant 1/c3. Hence,

E [T0→ℓ1+ℓ2]≤ c3

(
E [T0→1]+E [T1→ℓ1]+ c1c2 + c1c2 ·E

[
T GR
ℓ1+1,ℓ1+ℓ2

])
. (6.5)

Since E [T0→1]≤ E [T1→ℓ1] we have that E [T0→1]+E [T1→ℓ1] = Θ(E [T1→ℓ1]). Now we con-
sider the last term. Due to property (ii) of Lemma 6.3, once in ℓ1 + 1 there is a constant
probability of moving towards the optimum. Since the algorithm has to cover a distance of
ℓ2 + ℓ1− (ℓ1 +1) = ℓ2−1, then E

[
T GR
ℓ1+1,ℓ1+ℓ2

]
= Θ(ℓ2). Plugging this into (6.5) proves the

claimed upper bound.

Now we estimate the time to move from P0 to Pℓ1 . As in the previous proof, the main
arguments are a recurrence relation and a Gambler’s Ruin game.

Lemma 6.5. Consider any algorithm described by Algorithm 2.3 with local mutations on
VALLEY with ℓ1, ℓ2 ∈ N\{1} and d1,d2 ∈ R+. Then the number of relevant steps to go from
the state P1 to Pℓ1 is

E [T1→ℓ1] =
1

pGR
1→ℓ1

·
(

E
[
T GR

1,ℓ1

]
+

pGR
1→0

p0→1

)
.

Proof. At the state P1 a Gambler’s Ruin game (with self-loops) occurs. The two possible
outcomes are: (1) we have reached the valley Pℓ1 or (2) we are back to P0. Hence,

E [T1→ℓ1] = E
[
T GR

1,ℓ1

]
+ pGR

1→0 ·E [T0→ℓ1]

= E
[
T GR

1,ℓ1

]
+ pGR

1→0 · (E [T0→1]+E [T1→ℓ1]) .

112 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

Solving for E [T1→ℓ1] leads to

E [T1→ℓ1] =
E
[
T GR

1,ℓ1

]
+ pGR

1→0 ·E [T0→1]

1− pGR
1→0

,

which, by using 1− pGR
1→0 = pGR

1→ℓ1
, simplifies to

E [T1→ℓ1] =
1

pGR
1→ℓ1

·
(

E
[
T GR

1,ℓ1

]
+

pGR
1→0

p0→1

)
. (6.6)

6.2.3 Application to SSWM

In this subsection we make use of the previous framework to analyse the SSWM for the
VALLEY problem. To apply this framework we need to know how a Gambler’s Ruin with
the acceptance probabilities of the SSWM behaves. The following lemma contains bounds
on the expected duration of the game and winning probabilities for SSWM. Although
VALLEY has slopes of d1/ℓ1 and d2/ℓ2, SSWM through the action of the parameter β sees
an effective gradient of β ·d1/ℓ1 and β ·d2/ℓ2. Varying this parameter allows the algorithm
to accommodate the slope to a comfortable value. We have set this effective gradient to
β |∆ f |= Ω(1) so that the probability of accepting an improvement is at least a constant.

Lemma 6.6 (SSWM Gambler’s Ruin). Consider a Gambler’s Ruin problem as described
in Theorem 6.2 with starting dollars n1 = 1 and n2 = ℓ− 1, and probabilities p1 and p2

dependent on SSWM’s acceptance function as follows

p1 =
1
2
· pfix(∆ f) p2 =

1
2
· pfix(−∆ f)

where ∆ f < 0 and (N−1)β |∆ f |= Ω(1). Then the winning probability of player one PGR
1→ℓ1

can be bounded as follows

−2(N−1)β∆ f
e−2(N−1)β (n1+n2)∆ f

≤ PGR
1→ℓ1

≤ e−2(N−1)β∆ f

e−2(N−1)β (n1+n2)∆ f −1

and the expected duration of the game will be E
[
T GR

1,ℓ

]
= O(1).

6.2 Crossing Simple Valleys 113

Proof. We start with the winning probability. Invoking Theorem 6.2 and simplifying the
ratio of pfix of symmetric fitness variations with Lemma 4.3 we obtain

PGR
1→ℓ1

=
1−
(

p2
p1

)n1

1−
(

p2
p1

)n1+n2
=

1−
(

pfix(−∆ f)
pfix(∆ f)

)n1

1−
(

pfix(−∆ f)
pfix(∆ f)

)n1+n2
=

1− e−2(N−1)βn1∆ f

1− e−2(N−1)β (n1+n2)∆ f
.

Notice that this is the same expression as the acceptance probability if we change β for
(N−1)β and N for ℓ. Then we can apply the bounds for the original acceptance probabilities
from Lemma 4.2 to obtain the inequalities of the theorem’s statement.

Finally, for the expected duration of the game we call again Theorem 6.2

E
[
T GR

1,ℓ

]
=

1
p2 + p1

·
n1− (n1 +n2) ·PGR

1→ℓ1

p2− p1

≤
1− ℓ ·PGR

1→ℓ1

p2
2− p2

1
≤ 1

p2
2− p2

1
=

1

p2
2

(
1− p2

1
p2

2

)
=

1
p2

2
(
1− e−4β (N−1)∆ f

) .
Note that in the last step we have used Lemma 4.3, and that since N ≥ 2 the condition
(N− 1)β |∆ f | = Ω(1) implies that β |∆ f | = Ω(1). Hence all the parameters of SSWM’s
acceptance probability (Equation (4.2)) are Ω(1) and so is p2. For the same reason the factor
1− e−4β (N−1)∆ f is constant yielding E

[
T GR

1,ℓ

]
= O(1).

While the optimisation time of the (1+1) EA grows exponentially with the length of the
valley, the following theorem shows that for the SSWM the growth is exponential in the
depth of the valley.

Theorem 6.3. The expected number of function evaluations E
[
Tf
]

for SSWM with local
mutations to reach Pℓ1+ℓ2 from P0 on VALLEY with ℓ1, ℓ2 ∈ {2,3, . . .} and d1,d2 ∈ R+ is

E
[
Tf
]
= O

(
n · e2Nβd1(ℓ1+1)/ℓ1

)
+Θ(n · ℓ2) and

E
[
Tf
]
= Ω

(
n · e2(N−1)βd1(ℓ1−1)/ℓ1

)
+Θ(n · ℓ2)

provided βd1/ℓ1, βd2/ℓ2 = Ω(1) and N being a large enough constant.

The conditions βd1/ℓ1, βd2/ℓ2 = Ω(1) are identical to those in Lemma 6.6: SSWM
must have a selection strength β strong enough such that the probability of accepting a

114 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

move uphill (fitness difference of d1/ℓ1 or d2/ℓ2) is Ω(1). This is a necessary and sensible
condition as otherwise SSWM struggles to climb uphill (recall Theorem 5.2).

The upper and lower bounds in Theorem 6.3 are not tight because of the terms (ℓ1+1)/ℓ1

and (ℓ1−1)/ℓ1 in the exponents, respectively. However, both these terms converge to 1 as
ℓ1 grows. The running time, particularly the term e2Nβd1(ℓ1+1)/ℓ1 , crucially depends on βd1,
the depth of the valley after scaling. Note that the condition βd1/ℓ1 = Ω(1) is equivalent
to βd1 = Ω(ℓ1), hence Theorem 6.3 applies if the depth after scaling is at least of the same
order of growth as the length (recall that d1 and ℓ1 may grow with n).

Theorem 6.3 also indicates how to choose β according to the valley function in hand, in
order to meet the theorem’s condition and to minimise the (upper bounds on the) running
time. One can always choose β = εℓ1/d1 for some constant ε > 0 and any valley structure
(even when ℓ1 = ω(d1)). This way the theorem’s condition becomes βd1/ℓ1 = ε and
the running time simplifies to O

(
n · e2Nβε(ℓ1+1)

)
+Θ(n · ℓ2), where we can choose the

constant ε > 0 as small as we like. For N = O(1) we can further simplify the runtime to
O
(

n · eO(ℓ1)
)
+Θ(n · ℓ2). For all ℓ1 ≥ 2 (and reasonable ℓ2) this is asymptotically smaller

that the expected optimisation time of the (1+1) EA, which is at least Ω(nℓ1) = Ω(eℓ1 lnn)

(see Theorem 6.1).

Proof of Theorem 6.3. The first part of the proof consists of estimating E [T1→ℓ1] by using
the statement of Lemma 6.5. Then we will check that the conditions from Lemma 6.3 are
met and we will add the Θ(ℓ2) term. Finally, we will take into account the time needed for a
relevant step in the long path to obtain the n factor in the bounds (see Lemma 6.2).

As just described above we start considering E [T1→ℓ1] by using Lemma 6.5. Let us start
with the upper bound.

E [T1→ℓ1] = O

(
1

pGR
1→ℓ1

·
(

E
[
T GR

1,ℓ1

]
+

1
p0→1

))
.

Using Lemma 6.6 we bound pGR
1→ℓ1

yielding

E [T1→ℓ1] = O

(
e2(N−1)βd1

2(N−1)βd1/ℓ1
·
(

O(1)+
1

p0→1

))
.

6.2 Crossing Simple Valleys 115

Since pfix for ∆ f < 0 decreases when the parameters N, β and |∆ f | increase and Nβd1/ℓ1 =

Ω(1), we get p−1
0→1 = Ω(1) and O(1)+ 1

p0→1
= O

(
1

p0→1

)
. Hence,

E [T1→ℓ1] = O

(
e2(N−1)βd1

2(N−1)βd1/ℓ1
· 1

p0→1

)
.

Using Lemma 4.2 to lower bound p0→1 we get

E [T1→ℓ1] = O

(
e2(N−1)βd1

2(N−1)βd1/ℓ1
· e

2Nβd1/ℓ1

2β
d1
ℓ1

)
.

Using (N−1)βd1/ℓ1 = Ω(1) and βd1/ℓ1 = Ω(1) both terms of the denominator are Ω(1)
leading to

E [T1→ℓ1] = O
(

e2Nβd1(ℓ1+1)/ℓ1
)
.

We now consider the lower bound. Starting again from Lemmas 6.3 and 6.5 and bounding
pGR

1→ℓ1
with Lemma 6.6

E [T1→ℓ1] = Ω

(
1

pGR
1→ℓ1

)
= Ω

(
e2(N−1)βd1−1
e2(N−1)βd1/ℓ1

)

= Ω

(
e2(N−1)βd1

ℓ1−1
ℓ1 − 1

e2(N−1)βd1/ℓ1

)
= Ω

(
e2(N−1)βd1

ℓ1−1
ℓ1

)
.

Now we need to apply Lemma 6.3 to add the Θ(ℓ2) term in both bounds. We start checking
that all the conditions are satisfied. Firstly, since pfix for ∆ f > 0 increases when the parame-
ters (N, β and ∆ f) increase, then Nβd2/ℓ2 = Ω(1) implies pℓ1→ℓ1+1 = Ω(1). Analogously
for pℓ1→ℓ1−1 with Nβd1/ℓ1 = Ω(1) satisfying the first property. Secondly, property (ii)
follows directly from Lemma 4.3 and the condition Nβd2/ℓ2 = Ω(1). The third property is
satisfied since for N > 1 the acceptance probability is strictly increasing with ∆ f . Considering
the time for a relevant step from Lemma 6.2 completes the proof.

Finally, we graphically show the exponential scaling of SSWM’s runtime on VALLEY.
We fixed to constant values all the parameters but ℓ1 which increases with the problem size
with ℓ1 = ⌊n/10⌋. This way the term e2Nβd1(ℓ1+1)/ℓ1 from Theorem 6.3 grows exponentially
with n, or linearly in a logarithmic scale as in Figure 6.2.

116 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

1e+03

1e+05

25 50 75 100
Problem size (n)

Re
le

va
nt

 s
te

ps

Fig. 6.2 Expected runtime of SSWM on VALLEY with ℓ1 = ⌊n/10⌋, d1 = ℓ1, ℓ2 = n− ℓ1 and
d2 = d1 +1. The algorithm parameters (N = 2 and β = 1/2) meet the conditions required by
Theorem 6.3. A logarithmic scale with base 10 is used for the y-axis. Results were averaged
over 50 independent runs and the error bars contain ± one standard deviation.

6.2.4 Application to the Metropolis algorithm

We now apply the framework from Section 6.2.2 to the Metropolis algorithm. Since the
analysis follows very closely the one of SSWM the proofs for this subsection are provided in
Appendix 6.B. We first cast MA on VALLEY as a Gambler’s Ruin problem. Like SSWM,
MA can make use of its parameter α to accommodate the gradient of VALLEY.

Lemma 6.7 (Metropolis Gambler’s Ruin downhill). Consider a Gambler’s Ruin problem as
described in Theorem 6.2 with starting dollars n1 = 1 and n2 = ℓ−1, and probabilities p1

and p2 dependent on MA’s acceptance function as follows

p1 =
1
2
· e−α∆ f p2 =

1
2

where ∆ f < 0 and α|∆ f | = Ω(1). Then the winning probability of player one P1 can be
bounded as follows

−α∆ f
e−αℓ∆ f < PGR−Met

1 <
e−α∆ f

e−αℓ∆ f −1

and the expected duration of the game will be E
[
T GR

1,ℓ

]
= O(1).

Lastly, we make use of the previous lemma and the framework presented in Section 6.2.2
to determine bounds on the runtime of the Metropolis algorithm for VALLEY. Note that the

6.3 Crossing Concatenated Valleys 117

required conditions are similar to those from Theorem 6.3 for the SSWM algorithm, with
only difference being that the parameter α substitutes the selection strength β . Hence the
previous considerations for SSWM translate to MA on VALLEY by simply applying β ← α .

Theorem 6.4. The expected number of function evaluations E
[
Tf
]

for the Metropolis algo-
rithm to reach Pℓ1+ℓ2 from P0 on VALLEY with ℓ1, ℓ2 ∈ N\{1} and d1,d2 ∈ R+ is

E(Tf) = O
(

n · eαd1(1+1/ℓ1)
)
+Θ(n · ℓ2) and

E(Tf) = Ω

(
n · eαd1(1−1/ℓ1)

)
+Θ(n · ℓ2)

provided αd1/ℓ1, αd2/ℓ2 = Ω(1).

Finally, we recover the experimental setting from Figure 6.2 to graphically show the
exponential scaling of MA’s runtime on VALLEY.

1e+03

1e+05

25 50 75 100
Problem size (n)

Re
le

va
nt

 s
te

ps

Fig. 6.3 Expected runtime of MA on VALLEY with ℓ1 = ⌊n/10⌋, d1 = ℓ1, ℓ2 = n− ℓ1 and
d2 = d1+1. The algorithm parameters (α = 1) meet the conditions required by Theorem 6.4.
A logarithmic scale with base 10 is used for the y-axis. Results were averaged over 50
independent runs and the error bars contain ± one standard deviation.

6.3 Crossing Concatenated Valleys

We define a class of functions called VALLEYPATH consisting of m consecutive valleys of
the same size. Each of the consecutive valleys is shifted such that the fitness at the beginning
of each valley is the same as that at the end of the previous valley (see Figure 6.4). Fitness
values from one valley to the next valley increase by an amount of d2−d1 > 0. Formally:

118 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

Definition 6.4 (VALLEYPATH).

h(i, j)VALLEYPATH :=

 j · (d2−d1)+d1− i · d1
ℓ1

if i≤ ℓ1

j · (d2−d1)+(i− ℓ1) · d2
ℓ2

if ℓ1 < i≤ ℓ.

Here 0 < j ≤ m indicates a valley while 0≤ i≤ ℓ1 + ℓ2 = ℓ indicates the position in the
given valley. Hence, the global optimum is the path point Pm·ℓ.

0
0

fitness

ℓ1 ℓ

d1

d2

ℓ1 ℓ2

Fig. 6.4 Sketch of the function VALLEYPATH.

VALLEYPATH represents a rugged fitness landscape with many valleys and many local
optima (peaks). It loosely resembles a “big valley” structure found in many real-world
problems (Boese et al., 1994; Merz and Freisleben, 1998; Ochoa and Veerapen, 2016; Reeves,
1999): from a high-level view the concatenation of valleys indicates a “global” gradient, i. e.
the direction towards valleys at higher indices. The difficulty for optimisation algorithms is
to overcome these many local optima and to still be able to identify the underlying gradient.
We show here that both SSWM and MA are able to exploit this global gradient and find the
global optimum efficiently. Note that VALLEYPATH is a very broad function class in that it
allows for many shapes to emerge, from few deep valleys to many shallow ones. Our results
hold for all valley paths with d1 < d2.

As in the analysis for VALLEY, instead of considering the whole Markov chain underlying
VALLEYPATH we take a high-level view and consider the chain that describes transitions
between neighbouring peaks. Since the peaks have increasing fitness, this chain is quite
simple and allows for an easy application of drift arguments. By choosing the number of
peaks to the right of the current peak as distance function, the next theorem shows that, if we
can find constant bounds for the drift, we will only need to repeat the VALLEY experiment
for as many peaks as there are in VALLEYPATH.

Theorem 6.5. Consider any algorithm described by Algorithm 2.3 with local mutations on
VALLEYPATH. Consider the points in time where the algorithm is on a peak and focus on

6.3 Crossing Concatenated Valleys 119

transitions between different peaks. Let Xt be a random variable describing the number of
peaks to the right of the current valley at the t-th time a different peak is reached. If the drift
over peaks ∆ can be lower bounded by some positive constant

∆ := E [Xt−Xt+1 | Xt > 0]≥ c > 0 (6.7)

then the expected number of function evaluations E
[
Tf
]

to reach the optimum starting from
any peak is

E
[
Tf
]
= O

(
m ·E

[
T O

VALLEY

])
and Ω

(
m ·E

[
T Ω

VALLEY

])
where m is the number of valleys that compose VALLEYPATH, and E

[
T O

VALLEY

]
and E

[
T Ω

VALLEY

]
are the upper and lower bounds for VALLEY respectively.

Proof. The lower bound is trivial since the algorithm can only move to a neighbour peak
and has to visit m peaks. The upper bound follows from the standard additive drift theorem
(Theorem 2.7).

To compute the drift over the peaks ∆ from Equation (6.7) we perform a slightly different
abstraction over the VALLEYPATH problem. We will also consider, apart from the peaks
(local maxima), the points of minimal fitness between them (valleys). For simplicity we will
use the following notation.

Definition 6.5 (VALLEYPATH Notation). Consider any algorithm described by Algorithm 2.3
with local mutations where the current search point is any extreme point (a maximum or
minimum) of VALLEYPATH. If the algorithm is on a valley (minimum) we will denote by:

(1) Tpeaks the first hitting time of either of the neighbouring peaks,

(2) p↑r the probability of the algorithm being in the right-hand peak at Tpeaks,

(3) p↑l = 1− p↑r the probability of the algorithm being in the left-hand peak at Tpeaks.

If the algorithm is on a peak (a maximum) we will denote by:

(4) Tmin the first hitting time of either of the neighbouring minima,

(5) p↓r the probability of the algorithm being in the right-hand minimum at Tmin,

(6) p↓l = 1− p↓r the probability of the algorithm being in the left-hand minimum at Tmin.

120 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

0
0

fitness

ℓ1 ℓ

d1

d2

ℓ1 ℓ2

ppeaks
i→i+1

ppeaks
i→i−1

p↓r

p↑rp↑l

p↓l

Fig. 6.5 Sketch of the function VALLEYPATH with the probabilities used for its runtime
analysis.

The following lemma computes the drift between peaks ∆ from Equation (6.7) by introduc-
ing transition probabilities between neighbouring peaks ppeaks

i→i−1 and ppeaks
i→i+1 (see Figure 6.5).

These two new probabilities can be expressed in terms of the transition probabilities between
consecutive peaks and minima from Definition 6.5, yielding a neat expression for the drift.

Lemma 6.8. In the context of Theorem 6.5 and Definition 6.5, if p↓r p↑r ≥ γ p↓l p↑l for some
constant γ > 1 then the drift between peaks will be Ω(1).

Proof. Let us start from the definition of the drift between peaks from Theorem 6.5, we
expand the drift in terms of two probabilities: ppeaks

i→i−1 which reads as the probability of
decreasing the number of peaks on the right by 1 and for the opposite event ppeaks

i→i+1 =

1− ppeaks
i→i−1. Then,

E [Xt−Xt+1 | Xt = i > 0] = i− ppeaks
i→i−1(i−1)− ppeaks

i→i+1(i+1)

= i · (1− ppeaks
i→i−1− ppeaks

i→i+1)+ ppeaks
i→i−1− ppeaks

i→i+1

= 2ppeaks
i→i−1−1

where in the last step we have used ppeaks
i→i−1 + ppeaks

i→i+1 = 1. Therefore a sufficient condition for
the drift to be constant is ppeaks

i→i−1 ≥
1
2 +

1
c for some constant c≥ 0.

We can break down this term using the four probabilities from Definition 6.5. We consider
the Markov Chain composed of the extreme points (maxima and minima) of VALLEYPATH

and the algorithm on a peak. After two steps the system can be only in one of three points:
with probability p↓l p↑l the algorithm will reach the peak on its left, analogously it will reach
the right peak with probability p↓r p↑r and with the remaining probability p↓r p↑l + p↓l p↑r the
algorithm will leave and return to the starting peak before reaching any other peak. We can
now express the probability of moving to a specific peak given that we have moved to a peak

6.3 Crossing Concatenated Valleys 121

ppeaks
i→i−1 as

ppeaks
i→i−1 =

p↓r p↑r
p↓r p↑r + p↓l p↑l

=
1

1+ p↓l p↑l
p↓r p↑r

.

The previous condition ppeaks
i→i−1 ≥

1
2 +

1
c can now be translated to p↓r p↑r ≥ γ p↓l p↑l for some

constant γ > 1.

The previous lemma gives us a simple equation that determines the drift. Losing rigour
for a moment we neglect the factor γ and identify some regimes where the overall drift is
positive: (1) p↓r > p↓l and p↑r > p↑l , (2) p↓r ≫ p↓l and p↑r < p↑l or (3) p↓r < p↓l and p↑r ≫ p↑l . In
the next lemma we recover the original Markov Chain and express these four probabilities in
terms of the real transition probabilities between the states of VALLEYPATH. We will also
make an assumption on the algorithm (the probability of accepting an improvement of ∆ f
must be exponentially bigger than the probability of accepting a worsening of the same size
with ∆ f). As the reader might notice from the previous section both SSWM and MA meet
this condition.

Finally we can simplify the condition to have a positive drift in a neat expression that
only depends on the depth of the valleys (d1 and d2) and the parameter λ of the acceptance
probability distribution.

Lemma 6.9. In the context of Lemma 6.8, consider any algorithm described by Algorithm 2.3
with an acceptance function such that pacc(∆ f)

pacc(−∆ f) = eλ∆ f for some λ ∈ R+. Then

p↓l p↑l
p↓r p↑r

= e−λ (d2−d1).

Proof. According to our notation (Definition 6.5) p↓l reads as the probability of reaching the
minimum on the left of a peak before reaching the minimum on its right. As in the VALLEY

section we can break down the process of moving to a neighbouring minimum in two steps:
(1) first moving just one point towards the left slope and (2) winning a Gambler’s Ruin game
starting with one dollar, using a notation in the same spirit as in the previous section (see
Definition 6.3). We will respectively denote the probability of the events (1) and (2) p↓ℓ2

and

pGR↓
ℓ2

, where ℓ2 determines that the process is on the slope with length ℓ2. Using the same

122 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

rationale for the other probabilities we can rewrite the quotient from Lemma 6.8 as

p↓l p↑l
p↓r p↑r

=

(
p↓ℓ2

pGR↓
ℓ2

p↓ℓ2
pGR↓
ℓ2

+p↓ℓ1
pGR↓
ℓ1

)
·
(

p↑ℓ1
pGR↑
ℓ1

p↑ℓ1
pGR↑
ℓ1

+p↑ℓ2
pGR↑
ℓ2

)
(

p↓ℓ1
pGR↓
ℓ1

p↓ℓ1
pGR↓
ℓ1

+p↓ℓ2
pGR↓
ℓ2

)
·
(

p↑ℓ2
pGR↑
ℓ2

p↑ℓ1
pGR↑
ℓ1

+p↑ℓ2
pGR↑
ℓ2

)
=

p↓ℓ2
pGR↓
ℓ2
· p↑ℓ1

pGR↑
ℓ1

p↓ℓ1
pGR↓
ℓ1
· p↑ℓ2

pGR↑
ℓ2

=
p↓ℓ2

p↑ℓ2

·
p↑ℓ1

p↓ℓ1

·
pGR↓
ℓ2

pGR↑
ℓ2

·
pGR↑
ℓ1

pGR↓
ℓ1

.

Using the Gambler’s Ruin problem results (see Theorem 2.3) we can expand the previous
equality into

p↓l p↑l
p↓r p↑r

=
p↓ℓ2

p↑ℓ2

·
p↑ℓ1

p↓ℓ1

·


1−

p↑
ℓ2

p↓
ℓ2

1−

 p↑
ℓ2

p↓
ℓ2

ℓ2




1−
p↓
ℓ2

p↑
ℓ2

1−

 p↓
ℓ2

p↑
ℓ2

ℓ2


·


1−

p↓
ℓ1

p↑
ℓ1

1−

 p↓
ℓ1

p↑
ℓ1

ℓ1




1−
p↑
ℓ1

p↓
ℓ1

1−

 p↑
ℓ1

p↓
ℓ1

ℓ1


.

Now using the acceptance function’s property from the lemma statement we can simplify
this expression to

p↓l p↑l
p↓r p↑r

= e−λd2/ℓ2 · eλd1/ℓ1 ·

(
1−eλd2/ℓ2

1−eλd2

)
(

1−e−λd2/ℓ2

1−e−λd2

) ·
(

1−e−λd1/ℓ1

1−e−λd1

)
(

1−eλd1/ℓ1

1−eλd1

) .

Notice that the last four terms have the same format as the equation for pfix (with different
parameters). Lets rename them as p∗fix for simplicity

p↓l p↑l
p↓r p↑r

= e−λd2/ℓ2 · eλd1/ℓ1 ·

(
p∗↓ℓ2

fix

p∗↑ℓ2
fix

)
·

(
p∗↑ℓ1

fix

p∗↓ℓ1
fix

)
.

6.3 Crossing Concatenated Valleys 123

We find again the ratio between symmetric fitness differences, then Lemma 4.3 highly
simplifies the previous expression to

p↓l p↑l
p↓r p↑r

= e−λd2/ℓ2 · eλd1/ℓ1 · e−λd2(ℓ2−1)/ℓ2 · eλd1(ℓ1−1)/ℓ1 = e−λ (d2−d1).

6.3.1 Application for SSWM and the Metropolis algorithm

In the next two theorems we apply the previous results on VALLEYPATH to the SSWM
and Metropolis algorithms. The application is straightforward when making the parameter
λ = Ω(1) and the depths of the valley (d1 and d2) differ in some positive constant. Notice
that it could be the case that d2− d1 is smaller than a constant but the parameters are big
enough to compensate for this effect and still have a positive drift over peaks. However
this increase in the parameters will affect the optimisation time between peaks (i.e. the
VALLEY problem). Note that, by applying Theorem 6.1, it is easy to see that the runtime of
the (1+1) EA will be exponential in the length of the individual valleys, hence the algorithm
will be efficient only for valley paths consisting of valleys of moderate length.

The remaining conditions that Theorems 6.6 and 6.7 require are those already required
on the analysis for VALLEY (see Theorems 6.3 and 6.4).

Theorem 6.6. The expected number of function evaluations E
[
Tf
]

for SSWM to reach the
optimum starting from any peak on VALLEYPATH with 2β (N−1) · (d2−d1)≥ c for some
constant c > 0 is

E
[
Tf
]
= O

(
m ·n ·

(
e2Nβd1(l1+1)/l1 +Θ(l2)

))
and

E
[
Tf
]
= Ω

(
m ·n ·

(
e2(N−1)βd1(l1−1)/l1 +Θ(l2)

))
provided ℓ1, ℓ2 ∈ N\{1}, d2 > d1, N = Ω(1) and βd1/ℓ1,βd2/ℓ2 = Ω(1).

Proof. Due to Lemma 4.3, SSWM meets the exponential ratio property needed by Lemma 6.9
with λ = 2β (N−1). Then we can say that

p↓l p↑l
p↓r p↑r

= e−λ (d2−d1) =
1

e2β (N−1)(d2−d1)
=

1
γ
.

Since 2β (N−1)(d2−d1)≥ c > 0, then γ is a constant greater than 1 fulfilling the condition
required by Lemma 6.8 for the drift to be constant. Finally we apply Theorem 6.5 taking into
account the optimisation time for VALLEY to obtain the claimed result.

124 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

An equivalent result to that of the SSWM for VALLEYPATH is shown for MA in the
following theorem.

Theorem 6.7. The expected number of function evaluations E
[
Tf
]

for the Metropolis algo-
rithm to reach the optimum starting from any peak on VALLEYPATH with α(d2−d1) ≥ c
for some constant c > 0 is

E
[
Tf
]
= O

(
m ·n ·

(
eαd1(l1+1)/l1 +Θ(l2)

))
and

E
[
Tf
]
= Ω

(
m ·n ·

(
eαd1(l1−1)/l1 +Θ(l2)

))
provided ℓ1, ℓ2 ∈ N\{1}, d2 > d1, and αd1/ℓ1,αd2/ℓ2 = Ω(1).

Proof. The proof follows exactly as the proof of Theorem 6.6 with the only difference that
λ = α (see Equation (2.3)).

Note that our approach can be extended to concatenations of valleys of different sizes,
assuming d1 < d2 for each valley. In this case the expression of the runtime would be
dominated by the deepest valley.

Finally, we graphically represent the runtime of SSWM and MA on VALLEYPATH. In this
case the x-axis of Figure 6.6 represents the number of valleys that constitutes VALLEYPATH,
with each of these valleys having constant values for its four parameters (ℓ1, ℓ2, d1 and d2).
We can observe, as proven in Theorems 6.6 and 6.7, that both algorithms solve this problem
in linear time.

0

30000

60000

90000

0 200 400 600 800
Number of valleys (m)

R
e

le
v
a

n
t

s
te

p
s

0

25000

50000

75000

0 200 400 600 800
Number of valleys (m)

R
e

le
v
a

n
t

s
te

p
s

Fig. 6.6 Expected runtime of SSWM (left) and MA (right) on VALLEYPATH. Results were
averaged over 50 independent runs and the shadowed zones include± one standard deviation.

6.4 Global Mutations Speed-up Sharp Cliff Optimisation 125

6.4 Global Mutations Speed-up Sharp Cliff Optimisation

This section is based on the following publications:

1. Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2015). First steps
towards a runtime comparison of natural and artificial evolution. Proceedings of
the Genetic and Evolutionary Computation Conference 2015 (GECCO ’15), pages
1455–1462. ACM.

2. Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017). Towards a
runtime comparison of natural and artificial evolution. Algorithmica, 78(2):681–713.

We conclude this chapter by using the, more common, encoding from functions of unitation
(i.e., the fitness is determined by the number of ones in the bitstring). On top of this encoding,
we will define a sharp VALLEY-like function resembling a deep cliff. Note that this is a
really hard problem for SSWM, since the depth was the critical parameter in Theorem 6.3.
However, we will allow SSWM to use global mutations (see Definition 2.6). Although
this is a slightly deviation from the weak mutation condition from the SSWM regime (see
Subsection 3.2.3), we believe that is highly interesting from an algorithmic point of view. We
will show that by combining global mutations with non-elitism SSWM manages to escape a
hard local optima more efficiently than elitist algorithms such as the (1+1) EA.

Algorithm 6.1: SSWM with global mutations

1 Initialise x ∈ {0,1}n

2 Choose a population size N ∈ N
3 Choose a scaling parameter β ∈ R+

4 repeat
5 y← flip each bit of x uniform at random with probability 1/n
6 ∆ f ← f (y)− f (x)
7 Choose r ∈ [0,1] uniformly at random
8 if r ≤ pfix(∆ f) then
9 x← y

10 until stop;

Jansen and Wegener (2007) compared the ability of the (1+1) EA and a Metropolis
algorithm in crossing fitness valleys and found that both showed similar performance on
smooth integer functions: functions where two Hamming neighbours have a fitness difference
of at most 1 (Jansen and Wegener, 2007, Section 6).

126 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

We consider a similar function, generalising a construction by Jägersküpper and Storch
(2007): the function CLIFFd is defined such that non-elitist algorithms have a chance to jump
down a “cliff” of height roughly d and to traverse a fitness valley of Hamming distance d to
the optimum (see Figure 6.7). Note that d may depend on n.

|x|10
0

fitness

n−d n
Fig. 6.7 Sketch of the function CLIFFd .

Definition 6.6 (Cliff).

CLIFFd(x) =

|x|1 if |x|1 ≤ n−d

|x|1−d + 1
2 otherwise

where |x|1 = ∑
n
i=1 xi counts the number of ones.

The (1+1) EA typically optimises CLIFFd through a direct jump from the top of the cliff
to the optimum, which takes expected time Θ(nd).

Theorem 6.8. The expected optimisation time of the (1+1) EA on CLIFFd , for 2≤ d ≤ n/2,
is Θ(nd).

In order to prove Theorem 6.8, the following lemma will be useful for showing that the
top of the cliff is reached with good probability. More generally, it shows that the conditional
probability of increasing the number of ones in a search point to j, given it is increased to
some value of j or higher, is at least 1/2.

Lemma 6.10. For all 0≤ x < j ≤ n,

mut(x, j)
∑

n
k= j mut(x,k)

≥ 1
2
.

6.4 Global Mutations Speed-up Sharp Cliff Optimisation 127

The proof of this lemma is presented in Appendix 6.C.

Proof of Theorem 6.8. From any search point with x< n−d ones, the probability of reaching
a search point with higher fitness is at least n−x

en . The expected time for accepting a search
point with at least n− d ones is at most ∑

n−d−1
x=0

en
n−x = O(n logn). Note that this is O(nd)

since d ≥ 2.
We claim that with probability Ω(1), the first such search point has n− d ones: with

probability at least 1/2 the initial search point will have at most n− d ones. Invoking
Lemma 6.10 with j := n− d, with probability at least 1/2 the top of the cliff is reached
before any other search point with at least n−d ones.

Once on the top of the cliff the algorithm has to jump directly to the optimum to overcome
it. The probability of such a jump is 1

nd

(
1− 1

n

)n−d
and therefore the expected time to make

this jump is Θ(nd).

SSWM with global mutations also has an opportunity to make a direct jump to the
optimum. However, compared to the (1+1) EA its performance slightly improves when
considering shorter jumps and accepting a search point of inferior fitness. The following
theorem shows that for large enough cliffs, d = ω(logn), the expected optimisation time is
by a factor of eΩ(d) = nω(1) smaller than that of the (1+1) EA. Although both algorithms
need a long time for large d, the speedup of SSWM is significant for large d.

Theorem 6.9. The expected optimisation time of SSWM with global mutations and β =

1,N = 1
2 ln(9n) on CLIFFd with d = ω(logn) is at most nd/eΩ(d).

Proof. We define R as the expected time for reaching a search point with either n−d or n
ones, when starting with a worst possible non-optimal search point. Let Tcliff be the random
optimisation time when starting with any search point of n−d ones, hereinafter called the
top of the cliff or a local peak. Then the expected optimisation time from any initial point is
at most R+E [Tcliff].

Let psuccess be the probability that SSWM starting on top of the cliff will reach the
optimum before reaching the top of the cliff again. We call the time period needed to reach
the top of the cliff, or the global optimum, a trial. After the end of a trial, taking at most R
expected generations, with probability 1− psuccess SSWM returns to the top of the cliff again,
so

E [Tcliff]≤ R+(1− psuccess) ·E [Tcliff]⇔ E [Tcliff]≤
R

psuccess
. (6.8)

We first bound the worst-case time to return to the local peak or a global optimum as R =

O(n logn). Let S1 be the set of all search points with at most n−d ones and S2 := {0,1}n \S1.

128 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

As long as the current search point remains within S2, SSWM behaves like on ONEMAX.
Here we have 2Nβ = ln(9n) and by

2(N−1)β ≥ ln(cn)⇔ 2Nβ ≥ ln
(

e2β cn
)
,

along with e2β · c = e2 · c < 9 for a suitable constant c > 1.2 (e. g. c := 1.21)1, the condition
2(N− 1)β ≥ ln(cn) of Theorem 5.1 is satisfied. Repeating arguments from the proof of
Theorem 5.1, in expected time O

(
n logn ·

(
1+ 1

2β

))
= O(n logn) (as here β = 1) SSWM

either finds a global optimum or a search point in S1. Likewise, as long as the current search
point remains within S1, SSWM essentially behaves like on ONEMAX and within expected
time O(n logn) either the top of the cliff or a search point in S2 is found.

SSWM can switch indefinitely between S1 and S2 within one trial, as long as no optimum
nor a local peak is reached. Let Xt be the number of ones at time t, then the conditional
probability of moving to a local peak—when from a search point with x < n−d ones either
a local peak or a non-optimal search point in S2 is reached—is

Pr(Xt+1 = n−d | Xt+1 ≥ n−d,Xt = x < n−d)

=
Pr(Xt+1 = n−d | Xt = x < n−d)
Pr(Xt+1 ≥ n−d | Xt = x < n−d)

=
mut(x,n−d) · pfix(n−d− x)

mut(x,n−d) · pfix(n−d− x)+∑
n−1
k=n−d+1 mut(x,k) · pfix(k− x−d +1/2)

=
mut(x,n−d)

mut(x,n−d)+∑
n−1
k=n−d+1 mut(x,k) · pfix(k− x−d +1/2)/pfix(n−d− x)

≥ mut(x,n−d)
∑

n
k=n−d mut(x,k)

as pfix(n−d− x)≥ pfix(k− x−d +1/2) for all n−d < k < n. By Lemma 6.10, the above
fraction is at least 1/2. Hence every time SSWM increases the number of ones to at least
n−d, with probability at least 1/2 a local peak is found. This means that in expectation at
most two transitions from S1 to S2 will occur before a local peak is reached, and the overall
expected time spent in S1 and S2 is at most R = O(1) ·O(n logn).

The remainder of the proof now shows a lower bound on psuccess, the probability of
a trial being successful. A sufficient condition for a successful trial is that the following
events occur: the next mutation creates a search point with n−d + k ones, for some integer

1The reason for c > 1.2 and not 1 as in Theorem 5.1 is that here global mutations are used (Theorem 5
in Paixão et al., 2017).

6.4 Global Mutations Speed-up Sharp Cliff Optimisation 129

1≤ k ≤ d chosen later, this point is accepted, and from there the global optimum is reached
before returning to the top of the cliff.

We estimate the probabilities for these events separately in order to get an overall lower
bound on the probability of a trial being successful.

From any local peak there are
(d

k

)
search points at Hamming distance k that have n−d+k

ones. Considering only such mutations, the probability of a mutation increasing the number
of ones from n−d by k is at least

mut(n−d,n−d + k)≥ 1
nk ·
(

1− 1
n

)n−1

·
(

d
k

)
≥ 1

enk ·
(

d
k

)k

.

The probability of accepting such a move is

pfix(k−d +1/2) =
e2β (d−k−1/2)−1

e2Nβ (d−k−1/2)−1
≥ e2(d−k−1/2)−1

(9n)(d−k−1/2)
.

We now fix k := ⌊d/e⌋ and estimate the probability of making and accepting a jump of
length k:

mut(n−d,n−d + k) · pfix(k−d +1/2)

≥ 1
enk ·

(
d
k

)k

· e
2(d−k−1/2)−1
(9n)(d−k−1/2)

= Ω

(
n−d+1/2 ·

(
d
k

)k

·
(

e2

9

)d−k
)

= Ω

n−d+1/2 ·

(
e1/e ·

(
e2

9

)1−1/e
)d


= Ω

(
n−d+1/2 ·

(
5
4

)d
)
.

Finally, we show that, if SSWM does make this accepted jump, with high probability it
climbs up to the global optimum before returning to a search point in S1. To this end we
work towards applying the negative drift theorem to the number of ones in the interval
[a := ⌈n−d + k/2⌉,b := n−d + k] and show that, since we start in state b, a state a or less
is unlikely to be reached in polynomial time.

130 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

We first show that the drift is typically equal to that on ONEMAX. For every search point
with more than a ones, in order to reach S1, at least k/2 bits have to flip. Until this happens,
SSWM behaves like on ONEMAX and hence reaches either a global optimum or a point
in S1 in expected time O(n logn). The probability for a mutation flipping at least k/2 bits
is at most 1/(k/2)! = (logn)−Ω(logn) = n−Ω(log logn), so the probability that this happens in
expected time O(n logn) is still n−Ω(log logn).

Assuming such jumps do not occur, we can then use drift bounds from the analysis of
ONEMAX for states with at least a ones. However, we have to adapt the drift calculations
from the proof of Theorem 5.1 to global mutations. Since the result and calculations are fairly
similar, we include this translation in Lemma 6.11 in Appendix 6.C. Using Lemma 6.11 we
know that the drift at x ones for β = 1 is at least

∆(x)≥Ω

(
n− x

n

)
.

As in the proof of Theorem 5.2, we denote by px, j the transition probability from a state
with x ones to one with j ones. The probability of decreasing the current state is at most
pfix(−1) = O(1/n) due to Lemma 4.2. The probability of increasing the current state is at
most (n−x)/n as a necessary condition is that one out of n−x zeros needs to flip. Hence for
x≤ b, which implies n− x = ω(1), the self-loop probability is at least

px,x ≥ 1−O
(

1
n

)
− n− x

n
= 1−O

(
n− x

n

)
.

Together, we get ∆(x) ≥ Ω(1− px,x), establishing the first condition of the negative drift
theorem (see Theorem 2.13).

Note that pfix(1) = 1−e−2

1−1/n = Ω(1), hence

1− px,x ≥ px,x+1 ≥
n− x

en
· pfix(1) = Ω

(
n− x

n

)
. (6.9)

The second condition of the negative drift theorem follows for improving jumps from x to
x+ j, j ≥ 1, from Lemma 2.1 and (6.9):

px,x+ j ≤
(

n− x
n

) j

· 1
j!
· pfix(j)

≤ n− x
n
· 1

j!

≤ (1− px,x) ·
O(1)

2 j .

6.4 Global Mutations Speed-up Sharp Cliff Optimisation 131

For backward jumps we get, for 1≤ j ≤ k/2, and n large enough,

px,x− j ≤ pfix(− j)

≤ e2 j

e2N j−1

=
e2 j

(9n) j−1
≤ 2− j.

Now the negative drift theorem can be applied with r = O(1) and δ = 1 and it yields that the
probability of reaching a state of a or less in nω(1) steps is n−ω(1).

This implies that following a length-k jump, a trial is successful with probability 1−
n−ω(1). This establishes psuccess := Ω

(
n−d+1/2 ·

(5
4

)d
)

. Plugging this into (6.8), adding time

R for the time to reach the top of the cliff initially, and using that O(n1/2 logn) · (4/5)d =

e−Ω(d) for d = ω(logn) yields the claimed bound.

To complete the picture, we performed some experiments. As implied by Theorems 6.8
and 6.9, the following figures show how both the (1+1) EA and SSWM need superpolynomial
time to optimise CLIFFn/4 (Figure 6.8, left), however there is a superpolynomial gap between
the runtimes of these algorithms (Figure 6.8, right).

1e+04

1e+07

1e+10

10 15 20 25 30
Problem size (n)

It
e

ra
ti
o

n
s

0e+00

1e+10

2e+10

3e+10

4e+10

10 15 20 25 30
Problem size (n)

It
e

ra
ti
o

n
s

Fig. 6.8 Expected runtime of SSWM (blue) and the (1+1) EA (red) on CLIFFn/4. Simulations
were stopped after nd = nn/4 iterations (recall Theorem 6.8). SSWM’s parameters were
chosen according to Theorem 6.9 , i.e., β = 1 and Nβ = 1/2ln(9n). Results were averaged
over 50 independent runs. For the left figure, a logarithmic scale with base 10 is used for the
y-axis. Error bars include ± one standard deviation.

132 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

6.5 Conclusions

We presented an analysis of randomised search heuristics for crossing fitness valleys where
no mutational bias exists and thus the probability for moving forwards or backwards on
the path depends only on the fitness difference between neighbouring search points. Our
focus was to highlight characteristics of valleys where an elitist selection strategy should
be preferred to a non-elitist one and vice-versa. In particular, we compared the (1+1) EA
using standard bit mutation with elitism against two algorithms using local mutations with
non-elitism, namely SSWM and MA. To achieve our goals we presented a mathematical
framework to allow the analysis of non-elitist algorithms on valleys and paths of concatenated
valleys. We rigorously proved that while the (1+1) EA is efficient for valleys and valley paths
up to moderate lengths, both SSWM and MA are efficient when the valleys and valley paths
are not too deep.

Finally, we followed the natural research direction and let SSWM use global mutations.
This allowed highlighting the benefits of combining both non-elitism and global mutations
for overcoming local optima. We have shown that SSWM can effectively tunnel through
sharp valleys such as posed by CLIFFd , in contrast to elitist algorithms which get stuck for a
long time on top of the cliff.

In addition, our results are meaningful for PG since crossing fitness valleys and highly
rugged landscapes are very important topics in biology (Whitlock et al., 1995). As future
work, we would like to check the agreement or disagreement of this chapter’s results with
Wright’s shifting balance theory (Wright, 1932). This theory states that on fitness landscapes
with multiple peaks where isolated populations might fail, parallel populations can cooperate
to effectively adapt on such landscapes. We have identified families of fitness valleys that are
intractable for SSWM, hence our results are in concordance with the first claim from Wright’s
theory (isolated populations fail). The remaining unanswered question from this chapter
would be to analyse a distributed scenario where several SSWM algorithms cooperate.

6.A Omitted Proofs from Subsection 6.2.2 133

Appendix 6.A Omitted Proofs from Subsection 6.2.2

Restating Lemma 6.4. In the context of Lemma 6.3, properties (i) and (ii) imply that

(i) pℓ1→ℓ1−1 + pℓ1→ℓ1+1 = 1/c1 for some constant c1 ≥ 1

(ii) 1− c1 · pℓ1→ℓ1+1 · pGR
ℓ1+1→ℓ1

= 1/c2 for some constant c2 > 1

(iii) 1− c1c2 · pℓ1→ℓ1−1 = 1/c3 for some constant c3 > 1

Proof of Lemma 6.4. The first result follows directly from

pℓ1→ℓ1+1, pℓ1→ℓ1−1 = Ω(1) (property (i) of Lemma 6.3)

pℓ1→ℓ1−1 + pℓ1→ℓ1+1 ≤ 1.

For the second result, first we observe that 1− c1 · pℓ1→ℓ1+1 · pGR
ℓ1+1→ℓ1

< 1. Then we need to
prove a constant lower bound on 1− c1 · pℓ1→ℓ1+1 · pGR

ℓ1+1→ℓ1
. For that, we start considering

the term pGR
ℓ1+1→ℓ1

, which was defined in the framework’s notation (see Definition 6.3). Using
the results from the Gambler’s Ruin problem (see Theorem 2.3) we can express pGR

ℓ1+1→ℓ1
as

pGR
ℓ1+1→ℓ1

=
1−
(

pℓ1→ℓ1+1
pℓ1+1→ℓ1

)ℓ2−1

1−
(

pℓ1→ℓ1+1
pℓ1+1→ℓ1

)ℓ2
=

pℓ1+1→ℓ1

pℓ1→ℓ1+1
·

(
pℓ1→ℓ1+1
pℓ1+1→ℓ1

)ℓ2
− pℓ1→ℓ1+1

pℓ1+1→ℓ1(
pℓ1→ℓ1+1
pℓ1+1→ℓ1

)ℓ2
−1

≤
pℓ1+1→ℓ1

pℓ1→ℓ1+1
(6.10)

where in the last step we have used that pℓ1+1→ℓ1 < pℓ1→ℓ1+1 (property (ii) of Lemma 6.3) to
upper bound the quotient by 1. Now we recover the second claim and introduce the already
proven first result: pℓ1→ℓ1−1 + pℓ1→ℓ1+1 = 1/c1 leading to

1− c1 · pℓ1→ℓ1+1 · pGR
ℓ1+1→ℓ1

= 1−
pℓ1→ℓ1+1 · pGR

ℓ1+1→ℓ1

pℓ1→ℓ1−1 + pℓ1→ℓ1+1
.

Using pGR
ℓ1+1→ℓ1

≤ pℓ1+1→ℓ1/pℓ1→ℓ1+1 obtained in Equation (6.10) yields

1− c1 · pℓ1→ℓ1+1 · pGR
ℓ1+1→ℓ1

≥ 1−
pℓ1+1→ℓ1

pℓ1→ℓ1+1 + pℓ1→ℓ1−1
≥

pℓ1→ℓ1+1− pℓ1+1→ℓ1

pℓ1→ℓ1+1 + pℓ1→ℓ1−1
=

1
c

for some constant c > 1. The last step follows since both numerator and denominator are
constant due to properties (ii) and (i) from Lemma 6.3 respectively. The claimed equality
from the statement with 1/c2 will hold for some constant c2 in the range c≥ c2 > 1.

Finally, for the third statement we start by observing that 1− c1c2 · pℓ1→ℓ1−1 < 1. The
remaining part of the proof is to show a constant lower bound on 1− c1c2 · pℓ1→ℓ1−1 . For

134 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

this, we introduce the already proven results for c1 and c2 obtaining

1− c1c2 · pℓ1→ℓ1−1

= 1−
c1 · pℓ1→ℓ1−1

1− c1 · pℓ1→ℓ1+1 · pGR
ℓ1+1→ℓ1

= 1−
pℓ1→ℓ1−1

pℓ1→ℓ1−1 + pℓ1→ℓ1+1
· 1

1−
pℓ1→ℓ1+1·pGR

ℓ1+1→ℓ1
pℓ1→ℓ1−1+pℓ1→ℓ1+1

= 1−
pℓ1→ℓ1−1

pℓ1→ℓ1−1 + pℓ1→ℓ1+1− pℓ1→ℓ1+1 · pGR
ℓ1+1→ℓ1

≥ 1−
pℓ1→ℓ1−1

pℓ1→ℓ1−1 + pℓ1→ℓ1+1− pℓ1+1→ℓ1

(Equation (6.10))

≥ 1−
pℓ1→ℓ1−1

pℓ1→ℓ1−1 + ε
, ε > 0 (property (ii) of Lemma 6.3)

=
1
c3
, c3 > 1. (property (i) of Lemma 6.3)

Appendix 6.B Omitted Proofs from Subsection 6.2.4

Restating Lemma 6.7. Consider a Gambler’s Ruin problem as described in Theorem 2.3
with starting dollars n1 = 1 and n2 = ℓ−1. And probabilities p1 and p2 dependent on MA’s
acceptance function as follows

p1 =
1
2
· eα∆ f p2 =

1
2

where ∆ f < 0 and α|∆ f | = Ω(1). Then the winning probability of player one P1 can be
bounded as follows

−α∆ f
e−αℓ∆ f < PGR−Met

1 <
e−α∆ f

e−αℓ∆ f −1

and the expected duration of the game will be E
[
T GR

1,ℓ

]
= O(1).

Proof of Lemma 6.7. Since in general 1/2+ 1/2 · e−α|∆ f | < 1 we have to make use of the
Gambler’s Ruin problem with self-loops (see Theorem 2.3). Let us start with the winning

6.B Omitted Proofs from Subsection 6.2.4 135

probabilities

PGR−Met
1→ℓ1

=
1−
(

p2
p1

)n1

1−
(

p2
p1

)n1+n2
=

1− e−αn1∆ f

1− e−α(n1+n2)∆ f
.

For the upper bound:

PGR−Met
1→ℓ1

=
1− e−α∆ f

1− e−αℓ∆ f =
e−α∆ f −1
e−αℓ∆ f −1

<
e−α∆ f

e−αℓ∆ f −1
.

For the lower bound:

PGR−Met
1→ℓ1

=
e−α∆ f −1
e−αℓ∆ f −1

>
−α∆ f

e−αℓ∆ f −1
>
−α∆ f
e−αℓ∆ f .

Using again Theorem 2.3 for the expected duration of the game leads to

E
[
T GR−Met

1,ℓ1

]
=

n1− (n1 +n2) ·PGR−Met
1

p2
2− p2

1
=

1− ℓ ·PGR−Met
1

p2
2− p2

1
≤ 1

p2
2

(
1− p2

1
p2

2

)
introducing p1 and p1 and noticing that ∆ f < 0 yields

E
[
T GR−Met

1,ℓ1

]
≤ 4

1− e2α∆ f =
4

1− e−2α|∆ f | = O(1).

Where in the last step we have used that α|∆ f |= Ω(1) implies e−2α|∆ f | = 1−Ω(1).

Restating Theorem 6.4. The expected number of function evaluations E
[
Tf
]

for the Metropo-
lis algorithm to reach Pℓ1+ℓ2 from P0 on VALLEY with ℓ1, ℓ2 ∈ N\{1} and d1,d2 ∈ R+ is

E(T) = O
(

n · eαd1(1+1/ℓ1)
)
+Θ(n · ℓ2)

E(T) = Ω

(
n · eαd1(1−1/ℓ1)

)
+Θ(n · ℓ2)

provided αd1/ℓ1, αd2/ℓ2 = Ω(1).

Proof of Theorem 6.4. Let’s begin by checking the conditions of Lemma 6.5 for MA. First,(i)
pℓ1→ℓ1+1 = pℓ1→ℓ1−1 = 1/2. Next, (ii) p2

ℓ1→ℓ1+1 = 1/4 and pℓ1+1→ℓ1 = e−αd2/ℓ2/2. This
implies that condition (ii) only applies if e−αd2/ℓ2 < 1

2 ⇔ αd2/ℓ2 > ln2. Conditions (iii)
and (iv) are valid since MA accepts solutions with a probability that depends only on
∆ f and is non-decreasing in ∆ f .The proof for the fourth condition follows directly from

136 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

pℓ1→ℓ1+1/pℓ1+1→ℓ1 = eαd2/ℓ2 and the condition αd2/ℓ2 = Ω(1). Since these conditions are
satisfied, Lemmas 6.3 and 6.4 apply and the expected time is:

E [T0→ℓ1+ℓ2] = Θ

(
1

pGR
1→ℓ1

·
(

E
[
T GR

1,ℓ1

]
+

pGR
1→0

p0→1

))
.

For the upper bound, note that from Lemma 6.7:

E
[
T GR−Met

1,ℓ1

]
= O(1)

as long as αd1
ℓ1

= Ω(1). Then, using the bounds on P1 from Lemma 6.7

E [T0→ℓ1+ℓ2] = O

(
1

pGR
1→ℓ1

·
(

E
[
T GR−Met

1,ℓ1

]
+

pGR
1→0

p0→1

))

= O

(
1

pGR
1→ℓ1

·
(

O(1)+ eαd1/ℓ1
))

= O
(

ℓ1

αd1
eαd1 ·

(
O(1)+ eαd1/ℓ1

))
= O

(
ℓ1

αd1
eαd1(1+1/ℓ1)

)
= O

(
eαd1(1+1/ℓ1)

)
.

For the lower bound, since E
[
T GR−Met

1,ℓ1

]
> 0 and pGR

1→0
p0→1

= eαd1/ℓ1 > 1 :

E [T0→ℓ1+ℓ2] = Ω

(
1

pGR
1→ℓ1

·
(

E
[
T GR−Met

1,ℓ1

]
+

pGR
1→0

p0→1

))

= Ω

(
1

pGR
1→ℓ1

)
= Ω

(
eαd1−1
eαd1/ℓ1

)
= Ω

(
eαd1(1−1/ℓ1)− e−αd1/ℓ1

)
= Ω

(
eαd1(1−1/ℓ1)

)
.

Finally, we add the Θ(ℓ2) term (Lemma 6.3) and multiply by the time needed for a relevant
step n/2 (Lemma 6.2).

6.C Omitted Proofs from Section 6.4 137

Appendix 6.C Omitted Proofs from Section 6.4

Restating Lemma 6.10. For all 0≤ x < j ≤ n,

mut(x, j)
∑

n
k= j mut(x,k)

≥ 1
2
.

Proof of Lemma 6.10. The proof consists of two parts:
1) The probability of improving by j− x = k bits is at least twice as large as the probability
of improving by k+1 bits, i.e. mut(x,x+ k)≥ 2mut(x,x+ k+1) for any 0≤ x < j ≤ n.

2) We use 1) to prove that mut(x, j)
∑

n
m= j mut(x,m) ≥

1
2

.

Part 1) The probability to improve by k bits is

mut(x,x+ k) =
n

∑
l=0

(
x
l

)(
n− x
k+ l

)(
1
n

)k+2l(
1− 1

n

)n−k−2l

while the probability to improve by k+1 bits is

mut(x,x+ k+1) =
n

∑
l=0

(
x
l

)(
n− x

k+ l +1

)(
1
n

)k+2l+1(
1− 1

n

)n−k−2l−1

.

We want to show that the following is true:

mut(x,x+ k)≥ 2mut(x,x+ k+1)

⇔
n

∑
l=0

(
x
l

)(
n− x
k+ l

)(
1
n

)k+2l(
1− 1

n

)n−k−2l

≥ 2
n

∑
l=0

(
x
l

)(
n− x

k+ l +1

)(
1
n

)k+2l+1(
1− 1

n

)n−k−2l−1

⇔
n

∑
l=0

(
x
l

)(
n− x
k+ l

)
(n−1)n−k−2l ≥ 2

n

∑
l=0

(
x
l

)(
n− x

k+ l +1

)
(n−1)n−k−2l−1

⇔
n

∑
l=0

x!(n− x)!
l!(x− l)!

(n−1)n−k−2l

(n− x− k− l−1)!(k+ l)!

[
1

(n− x− k− l)
− 2

(n−1)(k+ l +1)

]
≥ 0.

This holds if following holds for any 0≤ l ≤ n[
1

(n− x− k− l)
− 2

(n−1)(k+ l +1)

]
≥ 0

⇔ (n−1)(k+ l +1)≥ 2(n− x− k− l).

138 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

This is true for any k ≥ 1 (thus for any 0≤ x < j ≤ n).

Part 2) Using the above inequality mut(x,x+k)≥ 2mut(x,x+k+1) we can bound every
possible improvement better than k from above by

mut(x,x+ k+ l)≤
(

1
2

)l

mut(x,x+ k)

for any 0≤ l ≤ n− x− k. This can also be written as

mut(x, j+ l)≤
(

1
2

)l

mut(x, j)

for any 0≤ l ≤ n− j. This leads to

mut(x, j)
∑

n
m= j mut(x,m)

=
mut(x, j)

∑
n− j
l=0 mut(x, j+ l)

≥ mut(x, j)

∑
n− j
l=0

(1
2

)l
mut(x, j)

=
1

∑
n− j
l=0

(1
2

)l =
1

2− 1
2n− j

≥ 1
2

which proves Lemma 6.10.

Lemma 6.11. If 2(N−1)β ≥ ln(cn), for a constant c > 1.2 and β ∈R+ then drift of SSWM
with global mutations on ONEMAX can be bounded by

∆(x)≥ pfix(1) ·
c(n− x)−1.2

cen
.

Proof. The drift (see Definition 2.12) can be expressed as a combination of a forward and
a backward drift ∆(x) = ∆+(x)− |∆−(x)|. We start by computing a lower bound for the
forward drift

∆
+(x) =

n−x

∑
j=1

mut(x,x+ j) · j · pfix(j)

≥mut(x,x+1) · pfix(1)

≥ n− x
n

(
1− 1

n

)n−1

pfix(1). (6.11)

6.C Omitted Proofs from Section 6.4 139

Secondly we calculate the upper bound for the backward drift,

|∆−(x)|=
x

∑
j=1

mut(x,x− j) · j · pfix(− j),

where j is now the number of new zeros. Bounding mut(x,x− j) from above by Lemma 2.1
and bounding x/n≤ 1−1/n yields

|∆−(x)| ≤
x

∑
j=1

1.14
j!
·
(

1− 1
n

) j

·
(

1− 1
n

)n− j

· j · pfix(− j)

≤
x

∑
j=1

1.14
j!
·
(

1− 1
n

)n−1

· j · pfix(− j).

Separating the case j = 1 and bounding the remaining fixation probabilities by pfix(−2)

|∆−(x)| ≤ 1.14
(

1− 1
n

)n−1

pfix(−1)+1.14
(

1− 1
n

)n−1

· pfix(−2) ·
x

∑
j=2

1
(j−1)!

≤ 1.14
(

1− 1
n

)n−1

(pfix(−1)+ pfix(−2) · e) (6.12)

where in the last step we have used ∑
x
j=2

1
(j−1)! ≤ ∑

∞
j=1

1
j! = e−1≤ e.

Let us now estimate an upper bound for pfix(−2),

pfix(−2) =
e4β −1

e4Nβ −1
=

e2β −1
e2Nβ −1

· e2β +1
e2Nβ +1

= pfix(−1) · e2β +1
e2Nβ +1

≤ pfix(−1) · 2e2β

e2Nβ
,

using 2(N−1)β ≥ ln(cn) leads to

pfix(−2)≤ pfix(−1) · 2
cn

. (6.13)

Introducing (6.12) and (6.11) into ∆(x) = ∆+(x)−|∆−(x)| leads to

∆(x)≥
(

1− 1
n

)n−1

·
(

n− x
n
· pfix(1)−1.14pfix(−1)−1.14e · pfix(−2)

)
=

(
1− 1

n

)n−1

pfix(1) ·
(

n− x
n
−1.14

pfix(−1)
pfix(1)

−1.14e
pfix(−2)
pfix(1)

)
.

140 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys

Using pfix(−2)≤ pfix(−1) · 2
cn (Equation (6.13)) and then Lemma 4.3 leads to

∆(x)≥
(

1− 1
n

)n−1

pfix(1) ·
(

n− x
n
−1.14

pfix(−1)
pfix(1)

− 2.28e
cn

pfix(−1)
pfix(1)

)
=

(
1− 1

n

)n−1

pfix(1) ·
(

n− x
n
−
(

1.14+
2.28e

cn

)
· e−2(N−1)β

)
.

Since 2(N−1)β ≥ ln(cn), c> 1.2 and assuming n≥ 100 (otherwise an O(n) bound is trivial)
we obtain

∆(x)≥
(

1− 1
n

)n−1

pfix(1) ·
(

n− x
n
− 1.2

cn

)
.

Using c > 1.2 we verify that (n− x)/n− 1.2/(cn) is always positive for x ≥ 1, hence we
may bound (1−1/n)n−1 ≥ 1/e, leading to

∆(x)≥ pfix(1) ·
(

n− x
en
− 1.2

cen

)
≥ pfix(1) ·

c(n− x)−1.2
cen

.

Chapter 7

When is it Beneficial to Reject
Improvements?

This chapter is based on the following publications:

1. Nallaperuma, S., Oliveto, P. S., Pérez Heredia, J., and Sudholt, D. (2017). When is
it beneficial to reject improvements?. Proceedings of the Genetic and Evolutionary
Computation Conference 2017 (GECCO ’17), pages 1455–1462. ACM.

2. Nallaperuma, S., Oliveto, P. S., Pérez Heredia, J., and Sudholt, D. (2017). On the
Analysis of Trajectory-Based Search Algorithms: When is it Beneficial to Reject
Improvements or to Exploit? Submitted to Algorithmica.

As seen in previous chapters, the SSWM algorithm belongs to the class of trajectory-based
search heuristics which evolve a single lineage rather than using a population. Amongst
single trajectory algorithms, well-known ones are (randomised) local search, simulated
annealing, the Metropolis algorithm (MA) and simple classes of evolutionary algorithms
such as the well-studied (1+1) EA and the (1+λ) EA. The main differences between SSWM
and the (1+1) EA is that the latter only accepts new solutions if they are at least as good as
the previous ones (a property called elitism), while SSWM can reject improvements and it
may also accept non-improving solutions with some probability (known as non-elitism). This
characteristic may allow SSWM to escape local optima by gradually descending the slope
leading to the optimum rather than relying on large, but rare, mutations to a point of high
fitness far away.

In Chapter 6, we rigorously analysed the performance of SSWM in comparison with
the (1+1) EA for escaping local optima. The study from Sections 6.2 and 6.3 only allowed
SSWM to use local mutations such that the algorithm had to rely exclusively on its non-
elitism to escape local optima, hence to highlight the differences between elitist and non-elitist

142 When is it Beneficial to Reject Improvements?

strategies. The analysis revealed that the expected time of the (1+1) EA to cross the valley
(i.e., escape the local optimum) is exponential in the length of the valley (Theorem 6.1) while
the expected time for SSWM can be exponential in the depth of the valley (Theorem 6.3).

However, other non-elitist trajectory-based algorithms such as the well-known Metropolis
algorithm have the same asymptotic runtime as SSWM on fitness valleys (Theorem 6.4).
While both algorithms rely on non-elitism to descend the valleys, it is not necessarily
obvious that the algorithms should have the same runtime on the valleys, because they differ
significantly in the probability of accepting improving solutions. In particular, MA always
accepts improvements while SSWM may reject an improving solution with a probability that
depends on the difference between the quality of the new and the previous solution (recall
Figure 4.1).

The reader might notice that, we already showed in Section 5.4 that SSWM can profit
from rejecting improvements to optimise BALANCE in polynomial time. However, we
believe that the Metropolis algorithm would also be efficient on BALANCE. In this chapter,
we investigate SSWM and MA with the goal of identifying function characteristics for which
the two algorithms perform differently. Given that the main difference between the two is
that SSWM may reject improvements, we aim to identify a class of functions where it is
beneficial to do so and, as a result, identify an example where SSWM outperforms MA.

The roadmap is as follows. First, we show that our task is not trivial by proving that both
algorithms converge to the same stationary distribution for equivalent parameters. While this
result seems to have been known in evolutionary biology (see e.g. Sella and Hirsh, 2005)
we are not aware of a previous proof in the literature. In Section 7.2 we define a simple
fitness function (called 3 state model) where two possible choices may be made from the
initial point; one leading to a much larger fitness than the other. The idea is that, while MA
should be indifferent to the choice, SSWM should pick one choice more often than the other.
Although this intuition is true, it turns out that, due to MA’ ability of escaping local optima,
the mixing time for the 3 state model is small and afterwards the two algorithms behave
equivalently as proven in the previous section. In Section 7.3 we extend the fitness function
(leading to a 5 state model) by adding two more states of extremely high fitness such that,
once the algorithms have made their choice, the probability of escaping the local optima is
very low. By tuning these high fitness points we can either reward or penalise a strategy that
rejects small improvements. We capitalise on this by concatenating several 5 state models
together (each of which we refer to as a component) and by defining a composite function
that requires that a high number of correct choices are made by the algorithm. Then we show
that for appropriate fitness values of the different states, SSWM achieves the target of the
function and MA does not with overwhelming probability.

7.1 A Common Stationary distribution 143

In Section 7.4 we consider other common single trajectory-based search algorithms
to compare their performance on the identified function class with SSWM and MA. The
reason that SSWM outperforms MA for the identified composite function is that the former
algorithm tends to favour the acceptance of search points on the slope of largest uphill
gradient while the latter algorithm accepts any improvement independent of its quality.
Hence, we expect that also other algorithms that prefer improvements of higher quality over
smaller ones (i.e., a characteristic often referred to as exploitation) to also perform well on the
composite function. To this end we consider the well known Best-Improvement Local Search
(BILS) algorithm that always selects the neighbouring point of highest fitness and compare it
with a less exploitational local search strategy which accepts the first found improvement
(FILS). Finally, we also consider a classical single trajectory evolutionary algorithm that
favours exploitation. In order to achieve a fair performance comparison with SSWM and MA
we consider the (1,λ) RLS algorithm which, like the former algorithms, uses non-elitism
and local mutations. The results show that BILS excels on the composite function while
the (1,λ) RLS needs a sufficiently large value of λ . Along the way we complement our
theoretical findings with experiments which help to understand the complete picture.

7.1 A Common Stationary distribution

For a brief recall of the foundations of Markov chains and mixing times we refer the reader to
Subsection 2.3.1. However for a detailed formal introduction we refer the interested reader to
the documents by Aldous and Fill (2017), Jerrum and Sinclair (1996) or Levin et al. (2008).

We already showed in Theorem 2.2 that the stationary distribution π(x) of MA assigns
to each bitstring x a probability mass proportional to eα f (x). The case for SSWM follows
easily after noticing that for both algorithms pacc(∆ f)/pacc(−∆ f) = eγ∆ f , where γ = α for
MA and γ = 2β (N−1) for SSWM (Lemma 4.3). The next theorem uses this fact to show
that both SSWM and MA have the same stationary distribution.

Theorem 7.1. Consider SSWM (Algorithm 4.1) over a Markov chain with states x ∈ {0,1}n

and a fitness function f : {0,1}n→ R. Then the stationary distribution of such process will
be

π(x) =
e2(N−1)β f (x)

Z

where Z = ∑x∈{0,1}n e2(N−1)β f (x).

Proof. The proof follows similar steps as the proof of Theorem 2.2. Let us start considering
the left-hand side term from the detailed balance condition (2.6) to find out the stationary

144 When is it Beneficial to Reject Improvements?

distribution.

π(x) · p(x→ y) =
e2(N−1)β f (x)

Z
· 1

n
· pfix(f (y)− f (x))

=
e2(N−1)β f (x)

Z
· 1

n
· pfix(f (y)− f (x))

pfix(f (x)− f (y))
· pfix(f (x)− f (y)),

since pfix(∆ f)/pfix(−∆ f) = e2(N−1)β∆ f (Lemma 4.3) we obtain

π(x) · p(x→ y) =
e2(N−1)β f (x)

Z
· 1

n
· e2(N−1)β (f (y)− f (x)) · pfix(f (x)− f (y))

=
e2(N−1)β f (y)

Z
· 1

n
· pfix(f (x)− f (y))

= π(y) · py→x.

As we saw in Subsection 2.3.1, the distance between the current distribution and the
stationary distribution is measured by the total variation distance (2.7). And we introduced
the concept of mixing time (see Definition 2.11) as the time required for both distributions
to be closer than a predefined threshold. After the mixing time, both algorithms will be
close to the stationary distribution, hence any differing behaviour can only be shown before
the mixing time. In the following, we aim to construct problems where the mixing time is
large, such that SSWM and MA show different performance over a long period of time. In
particular, we seek to identify a problem where the expected first hitting time of SSWM is
less than the mixing time.

7.2 A 3 State Model

We first introduce a fitness function defined on 2 bits. We will analyse the behaviour of
SSWM and MA on this function, before proceeding (in Section 7.3.1) to concatenate n copies
of the fitness function to create a new function where SSWM drastically outperforms MA.

The idea is simple: we start in a search point of low fitness, and are faced with two
improving moves, one with a higher fitness than the other. This construction requires 3
search points, which are embedded in a 2-dimensional hypercube as shown in Figure 7.1.
The 4th possible bitstring will have a fitness of −∞, making it inaccessible for both MA and
SSWM. As common in evolutionary computation, we sometimes refer to the model states as
phenotypes and their bitstring encoding as genotypes.

7.2 A 3 State Model 145

Considering the 3 relevant nodes of the Markov Chain, they form a valley structure
tunable through two parameters a and b representing the fitness difference between the
minimum and the local and global optimum respectively.

Definition 7.1 (3 state model). For any b > a > 0 and a bit-pair {0,1}2 the 3 state model
f a,b
3 assigns fitness as follows:

f a,b
3 (01) = a, (state 1)

f a,b
3 (00) = 0, (state 2)

f a,b
3 (10) = b, (state 3)

and f a,b
3 (11) =−∞.

00
2

10
3

01
1

11
4

p2

q3 p1

q2

s2

s1s3

x1x2

a

b

0

f a,b
3 (x1x2)

01 00 10

Fig. 7.1 Diagrams of the relevant nodes of f a,b
3 (x1x2) at the genotype and phenotype level.

This model is loosely inspired by a two-locus (two bit) Dobzhansky-Muller incompat-
ibility model (Orr, 1995; Unckless and Orr, 2009) in population genetics, where starting
from an initial genotype (00 with fitness 0) there are two beneficial mutations (genotypes 01
with fitness a > 0 and 10 with fitness b > 0), but both mutations together are incompatible
(genotype 11 with fitness −∞).

This model is well suited for our purposes as MA is indifferent to the choice of the local
optimum (fitness a > 0) and the global optimum (fitness b > a), hence it will make either
choice from state 00 with probability 1/2. SSWM, on the other hand, when parameterised
accordingly, may reject a small improvement of fitness a more often than it would reject a
larger improvement of b > a. Hence we expect SSWM to reach the global optimum with
a probability larger than 1/2 in just a relevant step (an iteration excluding self-loops). We
make this rigorous in the following.

146 When is it Beneficial to Reject Improvements?

Since the analysis has similarities with the classical Gambler’s Ruin problem (see Theo-
rem 2.3) we introduce similar concepts to the ruin probability and the expected duration of
the game.

Definition 7.2 (Notation). Consider a Markov Chain with only local probabilities.

P(Xt+1 = i | Xt = j) =


qi if j = i−1

si = 1−qi− pi if j = i

pi if j = i+1

0 if j ̸∈ {i−1, i, i+1}.

We define absorbing probabilities ρi as the probability of hitting state k before state 1 starting
from i. Equivalently, we define expected absorbing times E [Tk∨1 | i] as the expected hitting
time for either state 1 or k starting from i.

Note that this definition may differ from the standard use of absorbing within Markovian
processes. In our case the state k has an absorbing probability, but the state itself is not
absorbing since the process may keep moving to other states.

The following lemma derives a closed form for the just defined absorbing probability,
both for the general scheme 2.3 and for two specific algorithms. The obtained expression of
ρ2 = p2/(p2 +q2) is simply the conditional probability of moving to the global optimum p2

given that the process has moved, hence the factor 1− s2 in the denominator.

Theorem 7.2. Consider any trajectory-based algorithm that fits in Algorithm 2.3 on f a,b
3

starting from state 2. Then the absorbing probability of state 3 is

ρ2 =
p2

p2 +q2
.

And for the Metropolis algorithm and SSWM (N ≥ 2) it is

ρ
MA
2 =

1
2

ρ
SSWM
2 =

pfix(b)
pfix(b)+ pfix(a)

>
1
2
.

Proof. Let us start expressing the absorbing probability with a recurrence relation: ρ2 =

p2ρ3 +q2ρ1 +(1− p2−q2)ρ2. Using the boundary conditions ρ3 = 1 and ρ1 = 0 we can
solve the previous equation yielding ρ2 = p2/(p2 +q2).

The result for MA follows from introducing p2 = q2 since both probabilities lead to
a fitness improvement. For SSWM the mutational component of p2 and q2 cancels out,
yielding only the acceptance probabilities. Finally the lower bound of 1/2 is due to state 3
having a fitness b > a.

7.2 A 3 State Model 147

Note that SSWM’s ability to reject improvements resembles a strategy of best improve-
ment or steepest ascent (Smith, 2007): since the probability of accepting a large improvement
is larger than the probability of accepting a small improvement, SSWM tends to favour the
largest uphill gradient. MA, on the other hand, follows the first slope it finds, resembling a
first (or greedy) ascent strategy.

However, despite these different behaviours, we know from Theorems 2.2 and 7.1 that
both algorithms will eventually reach the same state. This seems surprising in the light of
Theorem 7.2 where the probabilities of reaching the local versus global optimum from the
minimum are potentially very different.

This seeming contradiction can be explained by the fact that MA is able to undo bad
decisions by leaving the local optimum and going back to the starting point. Furthermore,
leaving the local optimum has a much higher probability than leaving the global optimum.
In the light of the previous discussion, MA’ strategy in local optima resembles that of a
shallowest descent: it tends to favour the smallest downhill gradient. This allows MA to also
converge to the stationary distribution by leaving locally optimal states.

We show that the mixing time is asymptotically equal to the probability of accepting a
move leaving the local optimum, state 1. Note that asymptotic notation is used with respect
to said probability, as the problem size is fixed to 2 bits. To be able to bound the mixing time
using Theorem 1.1 in Chen and Saloff-Coste (2013), we consider lazy versions of SSWM
and MA: algorithms that with probability 1/2 execute a step of SSWM or MA, respectively,
and otherwise produce an idle step. This behaviour can also be achieved for the original
algorithms by appending two irrelevant bits to the encoding of f a,b

3 .
Another assumption is that the algorithm parameters are chosen such that π(3)≥ 1/2.

This is a natural assumption as state 3 has the highest fitness, and it is only violated in case
the temperature is extremely high.

Theorem 7.3. The mixing time of lazy SSWM and lazy MA on f a,b
3 is Θ(1/pacc(−a)), pro-

vided b > a > 0 are chosen such that π(3)≥ 1/2.

Proof. We use the transition probabilities from Figure 7.1. According to Theorem 1.1
in Chen and Saloff-Coste (2013), if π(3)≥ 1/2 then the mixing time of the lazy algorithms
is of order Θ(t) where

t =
1
p1

+
π(1)+π(2)

π(2)p2

As p1 = 1/2 · pacc(−a) this proves a lower bound Ω(1/pacc(−a)). For the upper bound,
we bound t from above as follows, using π(1)p1 = π(2)q2 (the stationary distribution is

148 When is it Beneficial to Reject Improvements?

reversible):

t =
1
p1

+
π(1)+π(2)

π(2)p2

=
1
p1

+
π(1)

π(2)p2
+

1
p2

=
1
p1

+
q2

p2
· 1

p1
+

1
p2
≤ 3

p1

as q2/p2 = pacc(a)/pacc(b)≤ 1 and p2 ≥ p1. Recalling that p1 = 1/2 · pacc(−a) completes
the proof.

7.2.1 Experiments

We performed experiments to see the analysed dynamics more clearly. To this end, we
considered a concatenated function

f (X) =
n

∑
i=1

f M,a,b
3 (xi)

consisting of n copies of the 3 state model (i.e. n components) xi with 1≤ i≤ n, such that
the concatenated function f (x) returns the sum of the fitnesses of the individual components.
Note that 2n bits are used in total. In our experiments, we chose n = 100 components.

In the case of SSWM we considered different population sizes N = (10,100) and scaling
parameter values β = (0.01,0.1). For MA we choose a temperature of 1/α , such that
α = 2(N−1)β . This choice was made according to Theorems 2.2 and 7.1 such that both
algorithms have the same stationary distribution. The algorithms are run for 10000 iterations.
The fitness values for states representing local and global optimum are chosen as a = 1
and b = 10 respectively. We record the average and standard deviations of the number of
components in the local and global optimum for 50 runs.

Figure 7.2 shows the number of components optimised (at both state 1 or state 3) for
SSWM and MA. As suggested by Lemma 7.2, we observe on the left graph how SSWM
(green curve) outperforms MA which only optimises correctly half of the components (purple
curve). However, we know from Theorem 7.1 that both algorithms will eventually reach the
same state. This is shown on the right plot of Figure 7.2 where the temperature was increased
to facilitate the acceptance of worsening moves by MA.

The reason why the limit behaviour is only achieved on the right hand plot of Figure 7.2
is that the mixing time is inversely proportional to pacc(−a) (Theorem 7.3), which in turn
depends on a and the parameters of SSWM and MA. If the temperature is low (large α), the

7.3 A 5 State Model 149

algorithms show a different behaviour before the mixing time, whereas if the temperature is
high (small α), the algorithms quickly reach the same stationary distribution within the time
budget given.

�

��

��

��

�� ����

����������

�
�
�
�
�
�
�
�
��

�����

�����

�������

�������

�

��

��

��

��

�� ����

����������

�
�
�
�
�
�
�
�
��

�����

�����

�������

�������

Fig. 7.2 Performance of SSWM with N = 100 and β = 0.1 (left) and N = 10 and β = 0.01 (right)
on 100 concatenated components of the 3 state model. For MA the temperature was chosen such that
α = 2(N−1)β in both cases. The average number of components (± one standard deviation) in the
global and local optimum are plotted for SSWM and for MA with colours red, green, purple and cyan
respectively.

7.3 A 5 State Model

We saw in the previous section how two algorithms with different selection operators dis-
played the same limit behaviour. Moreover the mixing time was small for both algorithms
despite the asymmetric valley structure of the function. This asymmetry favoured moving
towards the steepest slope, a landscape feature from which SSWM benefits and MA is
indifferent. However this feature also implied that it was easier climbing down from the
shallowest slope, and MA successfully exploits this feature to recover from wrong decisions.

Making use of this results we build a new function where the previous local optimum
will now be a transition point between the valley and the new local optimum. We will assign
an extremely large fitness to this new search point. In this way we lock in bad decisions made
by any of the two algorithms. In the same way, if the algorithm moves to the previous global
optimum we offer a new search point with the highest fitness.

This new 5 state model is shown in Figure 7.3, along with its encoding of genotypes in a
3-dimensional hypercube.

150 When is it Beneficial to Reject Improvements?

Definition 7.3 (5 state model). For any M′ > M≫ b > a > 0 and a search point x ∈ {0,1}3

the 5 state model f M,a,b,M′
5 assigns fitness as follows

f M,a,b,M′
5 (011) = M, (state 1)

f M,a,b,M′
5 (001) = a, (state 2)

f M,a,b,M′
5 (000) = 0, (state 3)

f M,a,b,M′
5 (100) = b, (state 4)

f M,a,b,M′
5 (110) = M′ (state 5)

and f M,a,b,M′
5 (010) = f M,a,b,M′

5 (101) = f M,a,b,M′
5 (111) =−∞.

000
3

010
6

100
4

001
2

101
7

110
5

011
1

111
8

p3 q3

s3

p2

q2

s2

p1

s1

p4

q4

s4

q5

s5

x1x2x3
0

a

b

M

M′

f M,a,b,M′
5

011 001 000 100 110

Fig. 7.3 Diagrams of the relevant nodes of f M,a,b,M′
5 at the genotype and phenotype level.

Let us consider the Markov chain with respect to the above model. For simplicity we
refer to states with the numbers 1-5 as in the above description.

Again, we will compute the absorbing probability for the global optimum (state 5 or 110
of the Markov Chain). Note that by choosing very large values of M and M′, we can make
the mixing time arbitrarily large, as then the expected time to leave state 1 or state 5 becomes
very large, and so does the mixing time.

For simplicity we introduce the following conditional transition probabilities Qi and Pi

for each state i as
Pi :=

pi

pi +qi
Qi :=

qi

pi +qi
. (7.1)

By using this notation the following lemma derives a neat expression for the absorption
probability ρ3 = P3P4/(Q2Q3 +P3P4). This formula can be understood in terms of events

7.3 A 5 State Model 151

that can occur in 2 iterations starting from state 3. Since Q and P are conditioning on the
absence of self-loops there will be only 4 events after 2 iterations, whose probabilities will
be {Q3Q2,Q3P2,P2Q4,P3P4}. Therefore the expression ρ3 = P3P4/(Q2Q3 +P3P4) is just the
success probability over the probability space.

Lemma 7.1. Consider any trajectory-based algorithm that fits in Algorithm 2.3 on f M,a,b,M′
5

starting from the node 3. Then the absorbing probability for state 5 is

ρ3 =
P3P4

Q2Q3 +P3P4
.

Proof. Firstly we compute the absorbing probabilities,

ρ1 = 0

ρ2 = p2ρ3 +q2ρ1 +(1− p2−q2)ρ2

ρ3 = p3ρ4 +q3ρ2 +(1− p3−q3)ρ3

ρ4 = p4ρ5 +q4ρ3 +(1− p4−q4)ρ4

ρ5 = 1

which can be rewritten using Pi and Qi from Equation (7.1) and the two boundary conditions
as

ρ2 = P2ρ3

ρ3 = P3ρ4 +Q3ρ2

ρ4 = P4 +Q4ρ3.

Solving the previous system for ρ3 yields ρ3 = P3 · (P4 +Q4ρ3)+Q3P2ρ3 which leads to

ρ3 =
P3P4

1−Q3P2−P3Q4
.

Introducing Q3 = 1−P3, P2 = 1−Q2 and Q4 = 1−P4 in the denominator yields the claimed
statement.

Now we apply the previous general result for the two studied heuristics. First, for the
Metropolis algorithm one would expect the absorbing probability to be 1/2 since it does
not distinguish between improving moves of different magnitudes. However, it comes as a
surprise that this probability will always be greater than 1/2. The reason is again due to the
fitness dependent acceptance probability of detrimental moves.

152 When is it Beneficial to Reject Improvements?

Theorem 7.4. Consider MA starting from state 3 on f M,a,b,M′
5 . Then the absorbing probability

for state 5 is

ρ
MA
3 =

1+ e−αa

2+ e−αa + e−αb ≥
1
2
.

Proof. First let us compute the two conditional probabilities

Q2 =
1

1+ e−αa , P4 =
1

1+ e−αb .

Now we invoke Lemma 7.1 but with P3 = Q3 = 1/2 since MA does not distinguish slope
gradients. Hence,

ρ3 =
P4

Q2 +P4
=

1/
(
1+ e−αb)

1/(1+ e−αa)+1/
(
1+ e−αb

) = 1+ e−αa

2+ e−αa + e−αb .

Finally, using ∆ f 2
3 ≤ ∆ f 4

3 , it follows that ρMA
3 ≥ 1/2.

Finally, for SSWM we were able to reduce the complexity of the absorbing probability
to just the two intermediate points (states 2 and 4) between the valley (state 3) and the two
optima (states 1 and 5). The obtained expression is reminiscent of the absorbing probability
on the 3 State Model (Theorem 7.2). However, it is important to note that a and b were the
fitness of the optima in f a,b

3 and now they refer to the transition nodes between the valley and
the optima.

Theorem 7.5. Consider SSWM (N ≥ 2) starting from state 3 on f M,a,b,M′
5 . Then the absorbing

probability of state 5 is

ρ
SSWM
3 ≥ pfix(b)

pfix(b)+ pfix(a)
>

1
2
.

Proof. Let us start by computing the probabilities required by Lemma 7.1.

P4 =
1

1+ pfix(−b)/pfix(M′−b)
Q2 =

1
1+ pfix(−a)/pfix(M−a)

P3 =
1

1+ pfix(a)/pfix(b)
Q3 =

1
1+ pfix(b)/pfix(a)

7.3 A 5 State Model 153

Let us now focus on the term Q2Q3/(P3P4):

Q2Q3

P3P4
=

(
1+ pfix(−b)

pfix(M′−b)

)
(

1+ pfix(−a)
pfix(M−a)

) ·
(

1+ pfix(a)
pfix(b)

)
(

1+ pfix(b)
pfix(a)

)
the last term is of the form (1+ x)/(1+1/x) = x, hence it can be highly simplified to just
pfix(a)/pfix(b), yielding

Q2Q3

P3P4
=

(
1+ pfix(−b)

pfix(M′−b)

)
(

1+ pfix(−a)
pfix(M−a)

) · pfix(a)
pfix(b)

since 0 < pfix(−b)< pfix(−a)< pfix(M−a)< pfix(M′−b)< 1, we can bound
pfix(−b)/pfix(M′−b)≤ pfix(−a)/pfix(M−a) to obtain

Q2Q3

P3P4
≤

(
1+ pfix(−a)

pfix(M−a)

)
(

1+ pfix(−a)
pfix(M−a)

) · pfix(a)
pfix(b)

=
pfix(a)
pfix(b)

.

Introducing this in Lemma 7.1 leads to

ρ3 =
1

1+Q2Q3/(P3P4)
≥ 1

1+ pfix(a)/pfix(b)
=

pfix(b)
pfix(b)+ pfix(a)

.

Finally, using b > a we obtain the lower bound of 1/2.

7.3.1 An Example Where SSWM Outperforms the Metropolis algo-
rithm

We now consider a smaller family of problems f M,1,10,M′
5 and create an example where

SSWM outperforms MA. In this simpler yet general scenario we can compute the optimal
temperature for MA that will maximise the absorbing probability ρMA

3 .

Lemma 7.2. Consider the Metropolis algorithm on f M,1,10,M′
5 starting from state 3. Then for

any parameter α ∈ R+ the absorbing probability ρMA
3 of state 5 can be bounded as

ρ
MA
3 (α)≤ ρ

MA
3 (α∗)< 0.63

where α∗ = 0.312 . . . is the optimal value of α .

154 When is it Beneficial to Reject Improvements?

Proof. Introducing the problem settings (a = 1 and b = 10) in the absorbing probability from
Theorem 7.4 yields

ρ
MA
3 (α) =

1+ e−α

2+ e−α + e−10α

whose derivative is

dρMA
3 (α)

dα
=

e9α(10eα−e10α+9)

(e9α +2e10α +1)2 .

By solving numerically this equation for d(ρMA
3 (α))/dα = 0 with α > 0 we obtain an opti-

mal value of α∗= 0.312071 . . . which yields the maximum value of ρMA
3 (α∗)= 0.623881 . . .

ρMA
3

α

0.63

0.5

0.312 1 2

Fig. 7.4 Absorbing probability of MA on the 5-state model.

Now that we have shown the optimal parameter for MA, we will find parameters such that
SSWM outperforms MA. To obtain this we must make use of SSWM’s ability of rejecting
improvements. We wish to identify a parameter setting such that small improvements
(∆ f = a = 1) are accepted with small probabilities, while large improvements (∆ f = b = 10)
are accepted with a considerably higher probability. The following graph shows pfix for
different values of β . While for large β , pfix(1) and pfix(10) are similar, for smaller values
of β there is a significant difference. Furthermore we can see that pfix(1) ≤ 1/2 i.e. the
algorithm will prefer to stay put, rather than moving to the local optimum.

pfix

∆ f

1

0.5

0 a = 1 2.5 5 7.5 b = 10

Fig. 7.5 Acceptance probability of SSWM with N = 20 and β = (0.2 , 2 , 4) for the (green, blue, red)
curves respectively.

7.3 A 5 State Model 155

In the following lemma we identify a range of parameters for which the desired effect
occurs. The results hold for arbitrary population size, apart from the limit case N = 1 where
SSWM becomes a pure random walk. The scaling factor β is the crucial parameter; only
small values up to 0.33 will give a better performance than the Metropolis algorithm.

Lemma 7.3. Consider SSWM on f M,1,10,M′
5 starting from state 3. Then for β ∈ (0,0.33] and

N ≥ 2 the absorbing probability ρSSWM
3 of state 5 is at least 0.64.

Proof. Using the bound on ρSSWM
3 from Theorem 7.5 with a = 1 and b = 10 we obtain

ρ
SSWM
3 ≥ pfix(10)

pfix(1)+ pfix(10)
=

1
1+ pfix(1)/pfix(10)

.

We want to show that ρSSWM
3 ≥ 0.64, which is equivalent to pfix(1)/pfix(10)≤ 1/0.64−1 =

9/16. Using the bounds pfix(1) ≤ 2β/(1− e−2Nβ) and pfix(10) ≥ 20β/(1+ 20β) (see
Lemma 4.2) we obtain

pfix(1)
pfix(10)

≤ 2β

1− e−2Nβ
· 1+20β

20β
=

1+20β

10
(
1− e−2Nβ

) ≤ 1+20β

10
(
1− e−4β

)
where in the last step we have used N ≥ 2. The obtained expression is always increasing
with β > 0, hence we just need to find the value β ∗ for when it crosses our threshold value
of 9/16. Solving this numerically we found that the value is β ∗ = 0.332423 . . . , and the
statement will be true for β values up to this cut off point.

Now that we have derived parameter values for which SSWM has a higher absorbing
probability on the 5 state model than MA for any temperature setting 1/α (Lemma 7.2),
we are ready to construct a function where SSWM considerably outperforms MA. We first
define a concatenated function

f (X) =
n

∑
i=1

f M,a,b,M′
5 (xi) (7.2)

consisting of n copies of the 5 state model (i.e. n components) xi with 1≤ i≤ n, such that
the concatenated function f (x) returns the sum of the fitnesses of the individual components.
Note that 3n bits are used in total. To ensure that the algorithms take long expected times to
escape from each local optimum we set M = n and M′ = 2n for each component xi, apart
from keeping a = 1 and b = 10, for which the absorbing probabilities from Lemmata 7.2
and 7.3 hold. Furthermore, we assume 2β (N−1) = Ω(1) to ensure that SSWM remains in
states 1 or 5 for a long time.

156 When is it Beneficial to Reject Improvements?

Theorem 7.6. The expected time for SSWM and MA to reach either the local or global
optimum of all the components of f n,1,10,2n

5 is O(n logn). With overwhelming probability
1− e−Ω(n), SSWM with positive constant β < 0.33 and N ≥ 2 has optimised correctly at
least (639/1000)n components while the Metropolis algorithm with optimal parameter
α = 0.312 . . . has optimised correctly at most (631/1000)n components. The expected time
for either algorithm to increase (or decrease) further the number of correctly optimised
components by one is at least eΩ(n).

Proof. The expected time to reach either of the states 5 or 1 on the single-component 5
state model is a constant c for both algorithms. Hence, the first statement follows from an
application of the coupon collector where each coupon has to be collected c times (Oliveto
and Yao, 2011). The second statement follows by straightforward applications of Chernoff
bounds (Lemma A.4) using that each component is independent and, pessimistically, that
SSWM optimises each one correctly with probability 640/1000 (i.e., Lemma 7.3) and MA
with probability 630/1000 (i.e., Lemma 7.2). The final statement follows because both
algorithms with parameters Ω(1) accept a new solution, that is Ω(n) worse, only with
exponentially small probability.

The previous theorem ensures (with overwhelming probability) that after an expected
polynomial time SSWM has correctly optimised at least (8/1000)n more components than
MA. Although this performance threshold is marginal, since the absorbing probabilities of
SSWM and MA are both constants, with that of SSWM being higher than that of MA, we
expect SSWM to achieve a higher fitness. We can amplify these potentially small differences
by transforming our fitness function f with a step function g(X) returning 1 if at least a certain
number of components are optimised correctly (i.e. state 110 is found) and 0 otherwise:

g(X) :=

1 if at least 0.635n components are in the global optimum state

0 otherwise.
(7.3)

We use this to compose a function h where with overwhelming probability SSWM is
efficient while MA is not:

h(X) = f (X) · (1−g(X))+2nM′ ·g(X) (7.4)

Note that h(X) = f (X) while the step function g(X) returns 0, and h attains a global optimum
if and only if g(X) = 1. Our analysis transfers to the former case.

7.3 A 5 State Model 157

Corollary 7.1. In the setting described in Theorem 7.6, with probability 1− e−Ω(n) SSWM
finds an optimum on h(X) after reaching either the local or global optimum on every
component (which happens in expected time O(n logn)), while MA requires eΩ(n) steps with
probability 1− e−Ω(n).

Obviously, by swapping the values of M and M′ in f , the function would change into one
where preferring improvements of higher fitness is deceiving. As a result, SSWM would, with
overwhelming probability, optimise at least 63.9% of the components incorrectly. However,
although MA would optimise more components correctly than SSWM, it would still be
inefficient on h.

7.3.2 Experiments

We performed experiments to study the performance of SSWM and MA on the 5 state model
under several parameter settings. The experimental setting is similar to that of the 3 state
model. We can see in Figure 7.6 how: while SSWM is able to reached the performance
threshold imposed by g(X), MA is not. As expected, both algorithms start with a g-value
of 0 and hence they are optimising f (X). However, for SSWM, once the dashed line on
Figure 7.6 is reached, g(X) drastically changes to 1 and h(X) is optimised, hence the flat
effect on the SSWM’s curves.

0

100

200

300

10 1000
Iterations

Co
mp

one
nts algorithm

MA α=0.18
SSWM N=10 β=0.01
MA α=19.8
SSWM N=100 β=0.1

Fig. 7.6 Time evolution of the average number of components at state 5 by SSWM and MA when
optimising h(X) with 500 components of the 5 state model. Algorithm’s parameters are in concordance
with α = 2(N−1)β . Results are averaged over 50 independent runs and the shadowed zones include
± one standard deviation. A logarithmic scale with base 10 is used for the x-axis. The dashed line
(y = 500∗0.635) indicates the threshold established on the definition of the step function g(X).

158 When is it Beneficial to Reject Improvements?

We also plot the step function g(X) as this is the most crucial term in h(X). Again the
results from Figure 7.7 are in concordance with the theory showing that SSWM outperforms
MA. However, we observe that when choosing effective values of the temperature (α = 0.18
in the figure) we can see that some runs of MA manages to optimise g(X) yielding a non-zero
expected value. The opposite effect can be seen for SSWM on the green curve, although
its average g-value is much better than MA’s, not all the runs made it to g(X) = 1. This
is due to the chosen problem size not being enough large. If we recall Theorem 7.6, MA
will in expectation optimise up to (631/100)n components and SSWM at least (639/1000)n.
This means that the gap for our chosen value of n = 500 is just 4 components, which can be
achieved by some runs deviating from the expected behaviour. Due to limited computational
resources we did not consider bigger values of n.

0.00

0.25

0.50

0.75

1.00

10 1000
Iterations

g(
X)

algorithm
MA α=0.18
SSWM N=10 β=0.01
MA α=19.8
SSWM N=100 β=0.1

Fig. 7.7 Average g(X) values over time for SSWM and MA when optimising h(X) with 500 compo-
nents of the 5 state model. Algorithm’s parameters are in concordance with α = 2(N−1)β . Results
are averaged over 50 independent runs and a logarithmic scale with base 10 is used for the x-axis.

7.4 When is it Beneficial to Exploit? 159

7.4 When is it Beneficial to Exploit?

We further analyse the performance of other common single trajectory-based search algo-
rithms on the function classes we identified in the previous sections. The reason that SSWM
outperforms MA for the identified composite function is that the former algorithm tends
to favour the acceptance of search points on the slope of largest uphill gradient while the
latter algorithm accepts any improvement independent of its quality. Hence, we expect that
also other algorithms that prefer improvements of higher quality over smaller ones (i.e.,
a characteristic often referred to as exploitation) to also perform well on the composite
function. A well known algorithm that predilects exploitation is the traditional local search
strategy that selects the best improvement in the neighbourhood of the current search point
(i.e., Best-Improvement Local Search). In particular, since a similar distinction between the
behaviours of SSWM and MA is also present between BILS (Algorithm 2.10) and the local
search strategy which selects the first found improvement (Algorithm 2.9) in the current
neighbourhood, we will analyse the performance of these two algorithms. This also relates
to previous work where the choice of the pivot rule was investigated in local search and
memetic algorithms that combine evolutionary algorithms with local search (Gießen, 2013;
Sudholt, 2011a; Wei and Dinneen, 2014).

FILS and BILS, like any Algorithm 2.2 with local mutations, can only explore the
Hamming neighbourhood in one iteration. FILS will keep producing Hamming neighbours
until it finds an improvement, whilst BILS computes the set of all neighbours and chooses
one of those with the highest fitness. Both algorithms stop when there is no improving
neighbour.

We will also consider a classical single trajectory evolutionary algorithm that favours
exploitation. In order to achieve a fair performance comparison with SSWM and MA we
consider the (1,λ) RLS algorithm which, like the former algorithms, uses non-elitism and
local mutations. The algorithm creates λ new solutions, called offspring, at each step by
mutating the current search point, and then it selects the best offspring, independent of
whether it is an improvement. If the number of offspring λ is sufficiently large, then with
high probability the slope with steepest gradient will be identified on one component. Since
the analysis of the algorithm on the concatenated function is hard we rely on empirical tests
to evaluate its performance.

The pseudo-code of the (1,λ) RLS was given in Algorithm 2.8 on page 22. This optimiser
produces λ offspring by flipping one bit chosen uniformly at random independently for
each offspring, and then choosing a best one to survive to the next generation. Although
the selection mechanism picks the best offspring for survival, the (1,λ) RLS is not an elitist
algorithm. Since the parent genotype is left out the fitness comparison, if the λ children have

160 When is it Beneficial to Reject Improvements?

a lower fitness than the current solution, then the algorithm will move to a search point of
lower fitness (even if the fitness is −∞).

7.4.1 Analysis for the 3 State Model

We first derive the absorbing probabilities of the three new algorithms (FILS, BILS and
the (1,λ) RLS) on the 3 state model. Theorem 7.7 confirms that BILS optimises the 2-bit
function with probability 1, while FILS only does so with probability 1/2. On the other
hand, Theorem 7.8 reveals that the (1,λ) RLS always outperforms FILS for any λ > 1 and
converges to the performance of BILS as the offspring population size λ increases.

Theorem 7.7. Consider FILS and BILS on f a,b
3 starting from state 2. Then the absorbing

probabilities of state 3, respectively, are

ρ
FILS
2 =

1
2

and ρ
BILS
2 = 1.

Proof. FILS will produce either state 1 or state 3 (both with probability 1/2) and accept the
fitness change. Hence, like MA, FILS has transition probabilities p2 = q2 which, after a
direct application of Theorem 7.2, yields the claimed result. On the other hand, BILS will
produce both state 1 and state 3, and move to the latter since it has higher fitness. Hence,
q2 = 0 and p2 = 1 which leads to an absorbing probability of 1 by Theorem 7.2.

Theorem 7.8. Consider the (1,λ) RLS on f a,b
3 starting from state 2. Then, the absorbing

probability of state 3 is
ρ

(1,λ) RLS
2 ≥ 1−2−λ .

Proof. In order for the (1,λ) RLS to move to state 3 from state 2 it suffices to create just one
offspring at state 3 (the global optimum). The probability of creating such a search point is
just the probability of choosing the first bit to be flipped, which is 1/2. Then, with probability
(1−1/2)λ = 2−λ none of the λ offspring will be at state 3. And, the probability of at least
one child being at the global optimum is 1−2−λ .

Hence, p2 = 1−2−λ and since every mutation of state 2 leads to either state 1 or state 3,
q2 = 1− p2 = 2−λ . Introducing this in Theorem 7.2 we obtain ρ2 = p2.

7.4.2 Analysis for the 5 State Model

We now derive the absorbing probabilities of the three algorithms for the 5 state model. The
absorbing probabilities for BILS and FILS as stated in the theorem below are the same as for
the 3 state model.

7.4 When is it Beneficial to Exploit? 161

Theorem 7.9. Consider FILS and BILS on f M,a,b,M′
5 starting from state 3. Then the absorbing

probabilities of state 5, respectively, are

ρ
FILS
3 =

1
2

and ρ
BILS
3 = 1.

Proof. For FILS, a direct application of Lemma 7.1 with P4 = 1, P3 = 1/2, Q2 = 1 and
Q3 = 1/2 yields an absorbing probability of 1/2. For BILS, Lemma 7.1 with P4 = 1, P3 = 1,
Q2 = 1 and Q3 = 0 yields an absorbing probability of 1.

Interestingly, the analysis of (1,λ) RLS on the 5 state model turns out to be more complex
than that of SSWM, MA, and (1,λ) RLS on the 3 state model as for the 5 state model
it is possible for the algorithm to reach search points of fitness −∞. This is because the
non-absorbing states have Hamming neighbours of fitness −∞, and such a search point is
reached in case all λ offspring happen to have this fitness. While the genotypic encoding
was irrelevant in all previous settings, it does become relevant in the following analysis.

The following Theorem 7.10 shows that the absorbing probability of the (1,λ) RLS
converges to 1 slightly more slowly as λ increases than the one derived for the 3 state model.

Theorem 7.10. Consider the (1,λ) RLS starting from state 3 on f M,a,b,M′
5 . Then the absorbing

probability of state 5 is

ρ
(1,λ) RLS
3 =

1− (2/3)λ

1− (1/3)λ
.

Proof. Since the (1,λ) RLS can move to states with a fitness of −∞, the diagram from
Figure 7.3 is incomplete. However, let us focus now on the Hamming neighbours of each
state. Recall that our genotype encoding of the 5 state model is based on 3 bits. We observe
that, apart from the two maximal states (states 1 and 5), the three neighbours of each state have
mutually different fitness values. Hence, we denote by p, q and r the transition probabilities
towards the neighbour with the highest, intermediate and lowest fitness, respectively. Using

162 When is it Beneficial to Reject Improvements?

this notation, we can express the absorbing probabilities as

ρ1 = 0

ρ2 = qρ3 + rρ7

ρ3 = qρ2 + pρ4 + rρ6

ρ4 = qρ3 + p+ rρ7

ρ5 = 1

ρ6 = rρ3 + p

ρ7 = qρ2 + pρ4 + rρ8

ρ8 = p+ rρ7.

We now move to a matrix formulation of the form Aρ = b. But first, we introduce ρ8 in
ρ7 and we no longer consider the trivial ρ1 = 0 and ρ5 = 1, hence ρ = (ρ2,ρ3,ρ4,ρ6,ρ7)

⊤,
leading to

1 −q 0 0 p+q−1
−q 1 −p p+q−1 0
0 −q 1 0 p+q−1
0 p+q−1 0 1 0
−q 0 −p 0 1− (1− p−q)2

 ·


ρ2

ρ3

ρ4

ρ6

ρ7

=


0
0
p
p

(1− p−q)p

 .

The solution will be ρ = A−1b, but we are just interested in ρ3. Then, taking the second row
of A−1 (here denoted as A−1

2) we can express the absorbing probability as ρ3 = A−1
2 b⊤. By

standard matrix calculations, we obtain

A−1
2 =

1
(q−1)(p+q)

·
(
−q, 1

p+q−2 , −p, −p−q+1
p+q−2 , −p−q+1

p+q−2

)
,

which can be verified with the expression A⊤
(
A−1

2
)⊤

= (0,1,0,0,0). Finally, we compute
ρ3 = A−1

2 b⊤ as follows:

ρ3 =
1

(q−1)(p+q)
·
(
−q, 1

p+q−2 , −p, −p−q+1
p+q−2 , −p−q+1

p+q−2

)
·


0
0
p
p

(1− p−q)p

 .

7.4 When is it Beneficial to Exploit? 163

Which highly simplifies with the following calculations.

ρ3 =
−p2 + p(−p−q+1)/(p+q−2)+ p(−p−q+1)2/(p+q−2)

(q−1)(p+q)

=
p

p+q
· −p(p+q−2)+(−p−q+1)+(−p−q+1)2

(q−1)(p+q−2)

=
p

p+q
·
(
−p

q−1
+

(−p−q+1)(2− p−q)
(q−1)(p+q−2)

)
=

p
p+q

·
(
−p

q−1
+

p+q−1
q−1

)
=

p
p+q

. (7.5)

Finally, we just have to introduce the values of p and q. First, to move to the neighbour
with the highest fitness, it is sufficient to produce one offspring at the desired search point.
Noticing that (1−1/3)λ is the probability that none of the offspring are at the best neighbour,
it follows that p = 1− (1− 1/3)λ = 1− (2/3)λ . In order to move to the neighbour with
the lowest fitness, all λ offspring must be equal to said neighbour, which happens with
probability r = (1/3)λ . Finally, q = 1− p− r = (2/3)λ − (1/3)λ . Introducing these values
in Equation (7.5) leads to the claimed statement.

Introducing λ ≥ 3 in the expression obtained in Theorem 7.10, which is monotonically
non-decreasing with λ , leads to

ρ
(1,λ) RLS
3 ≥ 1− (2/3)3

1− (1/3)3 =
1−8/27
1−1/27

=
19
26

= 0.7307 . . .≥ 0.64.

Hence already an offspring population size of λ = 3 is sufficient to raise the success proba-
bility above that of the Metropolis algorithm with optimal parameters.

However, it is not straightforward to translate our results from one component f M,a,b,M′
5 to

n components. Unlike for SSWM and MA, on n≫ 1 components the (1,λ) RLS is likely to
perform mutations in different components. Our analysis from Theorem 7.10 breaks down as
all transition probabilities rely on the fact that all λ mutations concern the same component.

The dynamics on n≫ 1 components seem very different to the dynamics on one compo-
nent, and quite complex. We therefore resort to experiments to shed light on the performance
of (1,λ) RLS on n components and our composite function h.

164 When is it Beneficial to Reject Improvements?

7.4.3 Experiments

We present experimental results to understand the dynamics of the (1,λ) RLS on concatenated
components of the 5 state model. Figure 7.8, shows the behaviour of the (1,λ) RLS when
optimising f (X) with 100 components. It is important to note that this setting does not
exactly match the one from Figure 7.6, as there it was h(X) the function that was being
optimised. The only difference, is that in Figure 7.8 the algorithms can keep optimising
components once the dashed line (g(X) = 1) is reached.

We observe an interesting effect for small values of λ , the algorithm starts accumulating
components at state 5, however, at some point in time, the fitness decreases to that of a
random configuration. This is due to the fact that states 6, 7 and 8 have a value of −∞ for
f M,a,b,M′
5 . If at some point in time, the algorithm sets just one component to either of these

states, the total fitness f (X) will be −∞, no matter the fitness of the remaining components.
Then, all that the (1,λ) RLS sees are points of equal fitness and it just chooses one uniformly
at random. Obviously, the bigger the λ , the smaller the probability of sampling a point with
f (X) =−∞ in the first place and therefore, as seen in the figure, big values of λ manage to
reach the threshold imposed by g(X).

0

25

50

75

100

10 1000
Iterations

Co
mp

on
en

ts algorithm
(1,1) RLS
(1,2) RLS
(1,3) RLS
(1,5) RLS
(1,10) RLS
(1,100) RLS
(1,1000) RLS

Fig. 7.8 Time evolution of the average number of components correctly optimised by the
(1,λ) RLS on 100 concatenated components of the 5 state model. Results are averaged
over 50 independent runs and the shadowed zones include ± one standard deviation. A
logarithmic scale with base 10 is used for the x-axis. The dashed line (y = 63.5) indicates
the threshold established on the definition of the step function g(X).

7.5 Conclusions 165

We now move to the study of the (1,λ) RLS when optimising h(X). This is shown in
Figure 7.9 by plotting the step function g(X) as this is the most crucial term in h(X). As
suggested by Figure 7.8, it is needed a sufficiently large value of λ to ensure that all runs
optimise g(x) and by extension h(X).

0.00

0.25

0.50

0.75

1.00

10 1000
Iterations

g(X
)

algorithm
(1,1) RLS
(1,2) RLS
(1,3) RLS
(1,5) RLS
(1,10) RLS
(1,100) RLS
(1,1000) RLS

Fig. 7.9 Average g(X) values over time for the (1,λ) RLS when optimising h(X) for 100
components of the 5 state model. Algorithm’s parameters are in concordance with α =
2(N−1)β . Results are averaged over 50 independent runs and a logarithmic scale with base
10 is used for the x-axis.

We conclude the subsection by presenting in Figure 7.10 a comparison graph that plots
the performance of all the algorithms considered in this chapter. While BILS optimises all the
components, the performance of SSWM and the (1,λ) RLS is comparable and outperform the
other algorithms. In particular, they both identify correctly a sufficient number of components
such that they find the optimum of the composite function h.

7.5 Conclusions

We have presented a rigorous comparison of the non-elitist SSWM and Metropolis algorithms.
Their main difference is that SSWM may reject improving solutions while MA always accepts
them. Nevertheless, we prove that both algorithms have the same stationary distribution, and

166 When is it Beneficial to Reject Improvements?

0

20

40

60

10 1000
Iterations

Co
mp

one
nts algorithm

MA α=19.8
SSWM N=100 β=0.1
FILS
BILS
(1,100) RLS

Fig. 7.10 Time evolution of the average number of components correctly optimised by all the
algorithms when optimising h(X) with 100 concatenated components of the 5 state model. Results
are averaged over 50 independent runs and the shadowed zone includes ± one standard deviation.
A logarithmic scale with base 10 is used for the x-axis. The dashed line (y = 63.5) indicates the
threshold established on the definition of the step function g(X).

they may only have considerably different performance on optimisation functions where the
mixing time is large.

Our analysis on a 3 state model highlights that a simple function with a local optimum of
low fitness and a global optimum of high fitness does not allow the required large mixing
times. The reason is that, although MA initially chooses the local optimum more often than
SSWM, it still escapes quickly. As a result we designed a 5 state model which “locks” the
algorithms to their initial choices. By amplifying the function to contain several copies of the
5 state model we achieve our goal of defining a composite function where SSWM is efficient
while MA requires exponential time with overwhelming probability, independent from its
temperature parameter.

Given the similarities between SSWM and other particularly selective strategies such as
steepest ascent and single-trajectory algorithms using offspring populations, we compared
the performance of SSWM and MA with BILS, FILS and a (1,λ) RLS. We rigorously showed
that BILS excels on the composite function and experiments have shown that the (1,λ) RLS
performs comparable to SSWM for big enough λ .

7.5 Conclusions 167

Part III

An Application of Stochastic Differential
Equations to Evolutionary Algorithms

Chapter 8

Modelling Evolutionary Algorithms with
Stochastic Differential Equations

This chapter is based on the following publications:

1. Paixão, T. and Pérez Heredia, J. (2017). An application of stochastic differential equa-
tions to evolutionary algorithms. Proceedings of the 14th ACM/SIGEVO Conference
on Foundations of Genetic Algorithms, FOGA ’17, pages 3–11. ACM.

2. Pérez Heredia, J. (2017). Modelling Evolutionary Algorithms with Stochastic Differ-
ential Equations. In Evolutionary Computation. To appear.

Part II of this thesis focused on applying the runtime analysis techniques introduced in
Chapter 2 to the strong selection weak mutation evolutionary regime derived in Chapter 3.
We saw how this approach yields many interesting and meaningful results for both the
evolutionary computing and population genetics communities. We now want to consider if
EC can borrow some of the tools used for the analysis of allele frequencies. Specifically, we
will consider the use of the diffusion theory explained in Section 3.2 and Appendix B.

Nowadays the theoretical study of randomised heuristics mainly focuses on rigorous
runtime analysis, however we can trace back literature about general models of evolutionary
computation to Holland (1975). Roughly a decade later, Goldberg (1987) focused on
modelling the evolving population of a genetic algorithm (GA). This was extended by Vose
(1995) who used a Markov Chain approach and fixed points analysis. In the same spirit of
dynamical systems, we can find an analysis for steady state GAs by Wright and Rowe (2001).

However, Schema theory was proven wrong (Altenberg, 1994) and Markov Chain ap-
proaches are, in general, intractable (He and Yao, 2003). The remaining mentioned techniques
share a common rationale, the stochastic process describing an EA varies according to its

172 Modelling Evolutionary Algorithms with Stochastic Differential Equations

expected change. The same idea is used in the so-called ordinary differential equation (ODE)
method by Wormald (1995). Here, the EA is considered as a noisy version of an ODE that
tracks the expected rate of change. This method has been applied several times in EC (see
e.g. Yin et al., 1995 or Akimoto et al., 2012).

Due to this deterministic approach of the expected change, these methods disregard the
random component of EAs. In this chapter we use a method based on stochastic differential
equations. This approach naturally includes the stochasticity implicit in randomised heuristics
through the well established tools from Itô calculus. The use of SDE has already been in EC
for convergence analysis by Schaul (2012), however the results did not improve the state of
the art.

Other modelling attempts such as the application of statistical physics by Prügel-Bennett
and Shapiro (1994) yielded highly accurate results when modelling finite populations and
fluctuations were also modelled by Prügel-Bennett (1997). However, this method requires
that the algorithm’s selection operator weights each search point according to the Boltzmann
distribution. This is the case for algorithms like MA or SSWM but it will not hold in general.
On the other hand, this method and some of the previously mentioned approaches were
tackling more general and ambitious problems than what this chapter covers.

Stochastic differential equations have proven to be a powerful tool when dealing with
stochastic processes, many examples can be found in the textbook by Øksendal (2003). SDEs
have accomplished great achievements in physics, starting with the explanation of Brownian
motion by Einstein (1905). In finance, specially for Black and Scholes (1973) work on
options prices that yielded a Nobel Prize in Economics in 1997. As we saw in Section 3.2,
the more related field of Population Genetics made used of the diffusion theory, which as
we will see, is connected with SDEs. SDEs have been used in PG to track the frequency of
genes in a population. This approach was used by Kimura (1957) and has ever since been
an integral part of the so-called modern synthesis. Many classical results were obtained
through this approach, including the steady state distribution of gene frequencies of a finite
population under mutation and selection by Kimura (1964), and the probability of fixation of
a gene by Kimura (1968) (see Chapter 3). Our work also contributes to the renewed interest
of unifying EC and PG as in Paixão et al. (2015).

Building on top of the so-called diffusion approximation (see Section 3.2 and Appendix B),
we derive a SDE that will be used to model the dynamics of EAs. For some scenarios we
will be able to solve this equation analytically. We show that this is the case by obtaining
equivalent statements to the well-known additive (Theorem 2.7) and multiplicative drift
(Theorem 2.9). Furthermore we will derive a new version of the multiplicative drift, extending

8.1 Stochastic Differential Equations 173

its applicability to non-elitist algorithms even when the drift is pushing the algorithm away
from the optimum. The work we present here has several aims:

• improving the understating of EA dynamics,

• deriving analytic expressions for the expectation and the variance,

• introducing SDE to the field of EC and

• translation of drift theorems from runtime analysis to fixed budget analysis.

This chapter focuses on a fixed budget analysis, we refer to Section 2.4 and the papers
mentioned there for a introduction and motivation to fixed budget.

We present what to our best knowledge is the first fixed budget analysis of non-elitist EAs.
Furthermore, our formulation considers any selection strength. This constitutes an important
advantage since drift theorems require to bound the process by a positive and monotonic
non-increasing distance function, (see e.g. Doerr et al., 2012; He and Yao, 2001; Johannsen,
2010). In the case of non-elitist EAs, this implies increasing the selection strength such that
worsening moves are not very likely to be accepted. However in our results the drift can even
be negative and yet we will be able to provide the expected behaviour, and the variance.

The disadvantage of the SDE method, unlike runtime analysis or other fixed budget
techniques, is that it requires performing two approximations. The first approximation
consists of considering the system as a time-continuous process. In the second approximation,
we will assume that the change of the process Xt+1−Xt follows a distribution without higher
statistical moments than the variance. Hence, this method, although is mathematically based,
is not completely rigorous. Due to this reason, the last section of the chapter presents
an extensive validation of these approximations. We will compare the obtained results
against rigorous literature for runtime and fixed budget. In addition, we present a graphical
comparison against the simulated results, and we will experimentally measure the error of
the approximation.

8.1 Stochastic Differential Equations

This subsection contains the minimal knowledge of SDEs to be able to understand this chapter.
For more extended and rigorous details we refer the reader to the textbook by Øksendal (2003).
Stochastic differential equations are equations that deal with the behaviour of stochastic
processes. We can define these processes as a collection of random variables in R over time t
(i.e. {Xt}t≥0), together with an underlying probability space (Ω,F ,P) that from now on we
will take for granted.

174 Modelling Evolutionary Algorithms with Stochastic Differential Equations

The simplest stochastic process is probably the well-known white noise Wt . Its signal
integrated over time will produce another famous process Bt =

∫
Wtdt known as Brownian

motion or Wiener process. Some of the characteristics of these processes are that they have
0 mean and their increments are independent and stationary. Furthermore, all the moments
higher than the second are 0 (see e.g. Ross, 1996). We will focus on SDEs of the form

dXt = b(t,Xt)dt +σ(t,Xt)Wtdt

= b(t,Xt)dt +σ(t,Xt)dBt . (8.1)

This equation represents a process where the state change dXt depends on both the time
and the current position (which can also depend on the time) through the terms b(t,Xt) and
σ(t,Xt). These are usually referred to as the drift and diffusion terms or coefficients. We
can say that b tracks the expected evolution of the process, note that if σ = 0 (absence of
noise) the drift coefficient simply becomes dXt/dt. And σ collects the random behaviour
by amplifying a white noise or Brownian motion term. After applying the usual integration
rules one obtains a simple expression for the state after t iterations.

Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs. (8.2)

The challenge now is to prove the existence of an integral over an stochastic process
∫

f dBs

and develop its integration rules. This was done by Itô (1944, 1946, 1950, 1951): he proved
the existence of this integral, worked on stochastic integral equations of the type (8.2) and
applied his developments to the already existing field of SDE. The key idea of Itô’s work is a
stochastic extension of the Riemann-Stieltjes (1894) integral, which is itself, an extension
of the standard Riemann integral for when a function is integrated with respect to another
function. The other traditional formulation was given by Stratonovich (1966). In this work
we will focus on stochastic processes that fit into the following definition of an Itô process
(Definition 4.1.1 in Øksendal, 2003).

Definition 8.1 (1-dimensional Itô process). A 1-dimensional Itô process is a stochastic
process Xt on (Ω,F ,P) of the form

dXt

dt
= b(t,Xt)+σ(t,Xt)Wt (8.3)

where Wt denotes a white noise process, b is absolute integrable in t and σ is square
integrable in t.

8.1 Stochastic Differential Equations 175

In the following we will refer as Itô integrals to integrals over a Brownian process
∫

f dBs

(a formal definition can be found in e.g. Øksendal, 2003). These integrals will have the
following properties (adapted from Theorem 3.2.1 in Øksendal, 2003).

Theorem 8.1 (Properties of the Itô integral). Let f ,g ∈ V (0,T) and let 0 ≤ S < U < T .
Then

(i)
∫ T

S f dBt =
∫U

S f dBt +
∫ T

U f dBt

(ii)
∫ T

S (c f +g)dBt = c ·
∫ T

S f dBt +
∫ T

S gdBt (c constant)

(iii) E
[∫ T

S f dBt

]
= 0

Performing a variable change on a stochastic integral is a bit more involved than for
ordinary integrals. The usual rules do not apply and we will have to use the following
statement (Theorem 4.1.2 in Øksendal, 2003) which is known as Itô’s formula.

Theorem 8.2 (Itô formula). Let Xt be a Itô process given by

dXt = b(t,Xt)dt +σ(t,Xt)dBt .

Let g(t,x) be twice continuously differentiable on x∈R and once in t ∈R+. Then Yt = g(t,Xt)

is again an Itô process, and

dYt =
∂g
∂ t

dt +
∂g
∂x

dXt +
1
2

∂ 2g
∂x2 · (dXt)

2, (8.4)

where (dXt)
2 = (dXt) · (dXt) is computed according to the rules

dt ·dt = dt ·dBt = dBt ·dt = 0, dBt ·dBt = dt. (8.5)

Then, an alternative form is given by

dYt =

(
∂g
∂ t

+b
∂g
∂x

+
σ2

2
∂ 2g
∂x2

)
·dt +σ

∂g
∂x

dBt . (8.6)

Finally, another useful property specially when computing higher moments, such as the
variance, is the Itô Isometry (Corollary 3.1.7 in Øksendal, 2003).

Theorem 8.3 (Itô Isometry). For all f ∈ V (S,T)

E

[(∫ T

S
f (Xt , t)dBt

)2
]
= E

[∫ T

S
f (Xt , t)2dt

]
.

176 Modelling Evolutionary Algorithms with Stochastic Differential Equations

8.2 The Diffusion Approximation

This section is very similar to Section (3.2) where we used diffusion theory to track the time
evolution of the probability density φ(p, t) of the allele frequencies p. However, the notation
varies due to a change in the variable of interest. We now wish to track the time evolution of
the probability density p(x, t) of a stochastic process Xt . To study this variable we start again
from the Chapman-Kolmogorov equation (3.17), which for simplicity we rewrite here with
the updated notation.

p(x, t +∆t) =
∫

∆(δ | x) · p(x−δ , t) ·dδ , (8.7)

where ∆(δ | x) is the transition probability of reaching x from x−δ .
Now we perform the diffusion approximation which refers to the joint application of a:

• Time-continuous approximation: first order Taylor expansion of p(x, t +∆t) around
∆t = 0. By Taylor’s theorem it carries an error of order O(∆t).

• Gaussian approximation: second order Taylor expansion of ∆(δ | x)·(x−δ , t) around
x−δ = x. By Taylor’s theorem it carries an error of order O(δ 2).

While the time-continuous approximation is intrinsic to using differential (and not difference)
equations for a time-discrete process, the Gaussian approximation will be more accurate
when δ is small i.e. when the process usually moves between close by states.

It can be shown that, by introducing both approximations in (8.7) we arrive to the well-
known diffusion equation. Again, for the sake of simplicity, the calculations are included
in the Appendix B. This equation is known as the Fokker-Planck equation or the Forward
Kolmogorov equation (see e.g. Karlin and Taylor, 1981).

∆t · ∂ p(x, t)
∂ t

≈− ∂

∂x
p(x, t) ·E [∆]+

1
2
· ∂

∂x2 p(x, t) ·E
[
∆

2] . (8.8)

This is an equation for the time evolution of the probability density p(x, t) of the random
variable Xt . In principle, one could solve this equation to obtain a probability distribution
at any particular time point. However, this is often impossible in practice. Instead, we deal
directly with the SDE associated with the Fokker-Planck equation and take that as a model
of our EA. The SDE corresponding to equation 3.18 will be an Itô process of the form (see
e.g. Øksendal, 2003):

dXt ≈ E [∆]dt +
√

E [∆2]dBt

8.2 The Diffusion Approximation 177

This is the central equation for this thesis. We will use it to describe the dynamics of
evolutionary algorithms by computing its drift coefficient E [∆] and second moment or
diffusion coefficient

√
E [∆2]. Finally, we present our model as an hypothesis where it is

interesting to note that the first moment E(∆) exactly corresponds to the drift as used in
runtime analysis (see Subsection 2.3.4).

Hypothesis 8.1 (The Diffusion Approximation). The dynamics of any algorithm described
by Algorithm 2.2 with local or global mutations can be approximated by an Itô process Xt of
the form

dXt = b(Xt , t)dt +σ(Xt , t)dBt

b(Xt , t) = E [Xt+1−Xt |Xt]

σ
2(Xt , t) = E

[
(Xt+1−Xt)

2 |Xt

]
,

where Bt is a Brownian motion process.

8.2.1 Are Evolutionary Algorithms Diffusive Processes?

The previous hypothesis would be a rigorous theorem if evolutionary algorithms were a
pure diffusion process, but they are not. First of all, we used differential and not difference
equations to model a discrete process. This approximation is intrinsic to the chosen method
and carries an error of constant size.

On the other hand, the Gaussian approximation depends on each algorithm and the fitness
function. The variable of interest is the transition probability ∆(δ | x) from Equation (8.7).
Which reads as the probability of reaching the state x from the state x−δ in one iteration.
It was shown that the Gaussian approximation will carry an error of size O(δ 2) (See Ap-
pendix B). Hence, depending on the evolutionary operators of the EA this approximation
will or will not be accurate.

To motivate the use of this approximation for trajectory-based algorithms (see Section 2.2),
we can focus just on the mutation operator. The reason is that selection cannot increase
the distance δ between the parent and the child solutions. It will only decide if the new
individual is accepted or rejected.

The question resides then in how big is the δ produced by mutation. To illustrate this,
let us consider a random walk on the Boolean hypercube and its number of ones x. First,
with local mutations, the RW will have a constant δ = 1. On the other hand, if global
mutations are used δ can be any integer number in {0,1, . . . ,n}. Fortunately, the probability
of large mutations decays exponentially with their size δ . Actually, the two smallest values

178 Modelling Evolutionary Algorithms with Stochastic Differential Equations

of δ (0 and 1) will carry together a probability mass of approximately 2/e. Hence, all the
larger jumps together will only have a probability of ≈ 1−2/e. Since δ is concentrated, the
higher order moments should be close to zero, suggesting that the Gaussian approximation
is also accurate for global mutations. However, on some fitness problems all the relevant
events could belong to the neglected probability mass of 1−2/e. In this chapter, we only
consider problems (ONEMAX and LEADINGONES) where, as we will see, global mutations
are decently Gaussian approximated. Nevertheless, at the end of the chapter, we provide an
extensive validation for Hypothesis 8.1.

8.3 Drift Theorems for Fixed Budget Analysis

The Diffusion Approximation (Hypothesis 8.1) considers a scenario which in general does
not have an analytic solution. This will be dependent on the mathematical expressions of the
drift b(Xt , t) and diffusion σ(Xt , t) coefficients. In this chapter we will consider two simple
scenarios where we can obtain equivalent results to drift theorems for runtime analysis.

The methods to solve SDEs are similar to those to solve ODE, but we have to use the
Itô formula (Theorem 8.2) when performing a change of variables. In the following two
subsections our approach is to use a priori knowledge. We will find another process Yt ,
described by a simpler function g(x, t) that we know is the solution of the equivalent ODE
(SDE with σ = 0). For example, if our process is of the form dXt = Xtdt +XtdBt our
candidate solution will be Yt = ln(Xt). When the coefficients are more complex, we will try
to find a variable change that leads to an already known SDE.

Before starting the derivation of these theorems, we would like to emphasise that this
section is purely rigorous. No approximations are used unlike in the derivation of Hypothe-
sis 8.1.

8.3.1 Additive Drift

The simplest case is when the drift b(Xt , t) does not depend on the time t or the current state
Xt i.e. b(Xt , t) = b, as in the additive drift for runtime analysis (Theorem 2.7).

Theorem 8.4. Let Xt be an Itô process of the form dXt = bdt+σdBt , where Bt is a Brownian
process, b ∈ R and σ ∈ R+

0 . Then,

Xt = X0 +bt +σBt

E [Xt] = E [X0]+bt

Var [Xt] = Var [X0]+σ
2t.

8.3 Drift Theorems for Fixed Budget Analysis 179

Proof. This is a trivial case that can be solved by directly integrating∫ t

0
dXs =

∫ t

0
bds+

∫ t

0
σdBs (8.9)

Xt = X0 +bt +σBt (B0 = 0). (8.10)

Taking expectations in Equation (8.9) we can compute the expected value

E [Xt] = E [X0]+E
[∫ t

0
bds
]
+E

[∫ t

0
σdBs

]
due to property (iii) from Theorem 8.1 the last term averages out yielding

E [Xt] = E [X0]+
∫ t

0
E [b]ds = E [X0]+bt. (8.11)

Finally, to compute the variance we use the results obtained in (8.10) and (8.11) as follows

Var [Xt] = E
[
(Xt−E [Xt])

2
]
= E

[
(X0−E [X0])

2 +σ
2B2

t

]
= Var [X0]+σ

2 ·E
[
B2

t
]
.

Considering a normalised Brownian motion (E
[
B2

t
]
= t) yields the claimed statement.

As in runtime analysis, it is not typically the case that we know exactly the drift’s value,
but we can bound it within some range. It follows directly that knowing those bounds we
will be able to bound the expected progress after t iterations.

Corollary 8.1. In the context of Theorem 8.4, if bℓ≤ b≤ bu and σℓ≤ σ ≤ σu, with bℓ,bu ∈R
and σℓ,σu ∈ R+

0 . Then

X0 +bℓt +σlBt ≤ Xt ≤ X0 +but +σuBt

E [X0]+bℓt ≤ E [Xt]≤ E [X0]+but

Var [X0]+σ
2
ℓ t ≤ Var [Xt]≤ Var [X0]+σ

2
u t.

8.3.2 Multiplicative Drift

Analogous to runtime analysis, the assumption of additive drift is in general too loose since it
does not take into account the current state of the process. This is solved by the multiplicative
drift theorem (Theorem 2.9) when the drift is proportional to the current state Xt .

As discussed in the introduction, SDEs are a well established method in other research
fields, allowing us to recycle already existing results. We will make use of a simplified

180 Modelling Evolutionary Algorithms with Stochastic Differential Equations

version of the Cox-Ingersoll-Ross (CIR) model (see Cox et al., 1985; Maghsoodi, 1996)
which describes the evolution of interest rates with the following SDE

dXt = b(θ −Xt)dt +σ
√

XtdBt . (8.12)

The coefficient b specifies the speed (drift) at which the process approaches its expected
value θ provoking a mean reversion effect. The noise due to the market dBt is amplified by
a term σ

√
Xt to ensure that there are not negative interest rates (note that this effect is also

obtained with any diffusion coefficient that goes to 0 when Xt = 0). We will use a simplified
version without the mean reversion effect (θ = 0), which resembles an elitist multiplicative
drift process.

Theorem 8.5 (CIR without mean reversion Cox et al., 1985). Let Xt > 0 be an Itô process of
the form

dXt =−bXtdt +σ
√

XtdBt

where Bt is a Brownian process and b ∈ R+ and σ ∈ R+
0 . Then,

E [Xt] = E [X0] · e−bt

Var [Xt] = E [X0]
σ2

b
· e−bt

(
1− e−bt

)
Proof. The results for the expectation and variance of the original CIR process (8.12) are
(Equation (19) in Cox et al., 1985)

E [Xt] = E [X0] · e−bt +θ
(
1− e−t)

Var [Xt] = E [X0]
σ2

b
· e−bt

(
1− e−bt

)
+θ

σ2

2b

(
1− e−t)2

.

Our statement is just the special case when θ = 0.

Once more, if we can only compute bounds rather than exact values it follows straight-
forward the next corollary. Notice that the result for the expectation is similar to a previous
fixed-budget multiplicative drift (Theorem 2.16).

8.3 Drift Theorems for Fixed Budget Analysis 181

Corollary 8.2. In the context of Theorem 8.5, if bℓ≤ b≤ bu and σℓ≤σ ≤σu with bℓ,bu ∈R+

and σℓ,σu ∈ R+
0 . Then,

E [X0] · e−bℓt ≥ E [Xt]≥ E [X0] · e−but

Var [Xt]≥ E [X0]
σ2
ℓ

bℓ
e−bℓt

(
1− e−bℓt

)
Var [Xt]≤ E [X0]

σ2
u

bu
e−but

(
1− e−but

)
.

8.3.3 Non-elitist Multiplicative Drift

Drift theorems for the runtime share a common condition - the drift must be bounded by
a monotonic function towards the optimum (see Theorems 2.7, 2.9, 2.11 and 2.16). In the
following statement we relax this condition - the process also follows a monotonic behaviour
in expectation, but towards the stationary distribution (which can be far away from the
optimum). In fact, as we will see in the experimental section, even when the process starts
near the optimum it will follow an exponential decay towards its equilibrium state, moving
away from the optimum.

Although we have named it Non-Elitist Multiplicative Drift this theorem can also be
applied for elitist algorithms. This will be the limit case when b = α = 0 and β < 0 where
we recover Theorem 8.5.

Theorem 8.6. Let Xt ≥ 0 be an Itô process of the form

dXt = a(b−Xt)dt +
√

α−βXtdBt

with a ∈ R+, b,α ∈ R+
0 , β ∈ R, α−βXt ≥ 0 for all Xt , α−bβ ≥ 0 and Bt is a Brownian

process. Then,

Xt = X0e−at +b
(
1− e−at)+∫ t

0
e−a(t−s)

√
α−βXsdBs

E [Xt | X0] = X0e−at +b
(
1− e−at)

Var [Xt | X0] =
α

2a
(1− e−2at)− β

a
X0e−at(1− e−at)− bβ

2a

(
1− e−at)2

182 Modelling Evolutionary Algorithms with Stochastic Differential Equations

Proof. Let us use the integrating factor eat to perform the variable change Yt = eatXt , then by
applying Itô formula (Theorem 8.2) we obtain

dYt =

(
∂ (eatXt)

∂ t
+a(b−Xt)

∂ (eatXt)

∂Xt
+

α−βXt

2
∂ 2(eatXt)

∂X2
t

)
·dt

+
√

α−βXt
∂ (eatXt)

∂Xt
dBt

=
(
aeatXt +a(b−Xt)eat) ·dt +

√
α−βXteatdBt

= abeatdt +
√

α−βXteatdBt .

Applying the usual integration rules leads to

Yt = Y0 +ab
∫ t

0
easds+

∫ t

0

√
α−βXseasdBs

Let us now compute just the first integral and also revert the variable change. Then,

eatXt = X0 +b
(
eat−1

)
+
∫ t

0

√
α−βXseasdBs.

Multiplying both sides by e−at leads to the first claimed result in the theorem. For the second
result we take expectations leading to

E [Xt] = E [X0]e−at +b
(
1− e−at)+E

[∫ t

0
e−a(t−s)

√
α−βXsdBs

]
.

Fortunately, expectations of integrals over a Brownian motion average out (see property
(iii) from Theorem 8.1) yielding the second result of the theorem. Finally, to compute the
variance we will start from the formula Var [Xt] = E

[
(Xt−E [Xt])

2
]

which after introducing
the two previous results yields

Var [Xt | X0] = E

[(∫ t

0

√
α−βXse−a(t−s)dBs

)2
]

applying Itô isometry (Theorem 8.3) we obtain

Var [Xt | X0] =
∫ t

0
(α−βE [Xs])e−2a(t−s)ds = αe−2at

∫ t

0
e2asds−βe−2at

∫ t

0
E [Xs]e2asds

8.4 Applications 183

introducing the result for the expectation leads to

Var [Xt | X0] = αe−2at
∫ t

0
e2asds−βe−2at

∫ t

0

(
X0e−as +b

(
1− e−as))e2asds

= αe−2at
∫ t

0
e2asds−βe−2atX0

∫ t

0
easds−bβe−2at

∫ t

0

(
e2as− eas)ds

computing the integrals completes the proof

Var [Xt | X0] = αe−2at · e
2at−1

2a
−βe−2atX0 ·

eat−1
a
−bβe−2at · (e

at−1)2

2a

=
α

2a
(1− e−2at)− β

a
X0e−at(1− e−at)− bβ

2a

(
1− e−at)2

.

Once more, if exact values for the drift and diffusion coefficients are hard to compute,
but can be bounded we can make use of the following corollary.

Corollary 8.3. In the context of Theorem 8.6, if aℓ(bℓ−Xt)≤ a(b−Xt)≤ au(bu−Xt) ∈ R+

for all Xt , and αℓ−βℓXt ≤ α−βXt ≤ αu−βuXt ∈ R+
0 for all Xt . Then,

X0e−aℓt +bℓ
(
1− e−aℓt

)
≤ E [Xt | X0]≤ X0e−aut +bu

(
1− e−aut)

Var [Xt | X0]≤
αu

2au
(1− e−2aut)− βu

au
X0e−aut(1− e−aut)− buβu

2au

(
1− e−aut)2

Var [Xt | X0]≥
αℓ

2aℓ
(1− e−2aℓt)− βℓ

aℓ
X0e−aℓt(1− e−aℓt)− bℓβℓ

2aℓ

(
1− e−aℓt

)2
.

8.4 Applications

Although the results derived in the previous section are rigorous, its application for evolu-
tionary algorithms is just an approximation (see Section 8.2). In this section we will take
for granted that the diffusion approximation holds and we will relax our statements to the
category of application rather than theorem. It will be finally in section 8.5 where we will
extensively validate this assumption (Hypothesis 8.1).

8.4.1 Elitist Algorithms on LEADINGONES

First, we start with a study case for the additive drift (Theorem 8.4). A good problem
candidate, although not ideal, is the LEADINGONES function. Many algorithms like RLS
or the (1+1) EA have an almost additive drift on this function, however at the end of the
optimisation process the drift depends on the state. The reason this fitness function is not

184 Modelling Evolutionary Algorithms with Stochastic Differential Equations

ideal for an additive drift approach are the fitness boundary conditions (0 ≤ x ≤ n). Our
formulation of additive drift does not consider boundaries on the process. SDEs can cope
with these conditions but this will highly increase the complexity and extension of the chapter
deviating from our introductory interests. To circumvent this problem, we will add a clause in
the application’s statement excluding our results after the optimum is reached. This approach
has already been used in the literature as in Nallaperuma et al. (2017a).

Application 8.1. Under the Diffusion Approximation, after t iterations, RLS on LEADINGONES

will find the optimum or reach an expected value and variance of:

E [X0]+
1
n

t ≤ E [Xt]≤ E [X0]+
2
n

t

E [X0]+
1
n

t ≤ Var [Xt]≤ Var [X0]+
4
n

t

where X0 is the number of leading ones of the initial search point.

Proof. Let us denote by Xt the number of leading ones in the bitstring at time t. And assume
that Hypothesis 8.1 is a good approximation for the dynamics of Xt . As explained in the
introduction, the drift and diffusion coefficients will be the first and second moments of the
rate of change of the process. Or mathematically speaking

b = E [Xt+1−Xt | Xt] = ∑
x

x · p(Xt+1−Xt = x | Xt)

σ
2 = E

[
(Xt+1−Xt)

2 | Xt

]
= ∑

x
x2 · p((Xt+1−Xt)

2 = x | Xt).

Since RLS uses local mutations it can only produce points in the Hamming neighbourhood,
with only one out of these n points (flipping the first 0-bit) leading to an improvement. Note
that this event will in fact increase Xt in at least 1, actually the increment will be almost 2
due to the geometric distribution followed by the free riders (bits after the leading ones), see
e.g. Lehre and Witt (2012b). Hence, the drift coefficient will be the probability of mutation
sampling an improving search point times the fitness increment of that mutation.

b(Xt) =
1
n
·
(

2−2−(n−1−Xt)
)
.

We now bound the drift by bounding the impact in the range [1,2) yielding

bl =
1
n
, bu =

1
n
·2. (8.13)

8.4 Applications 185

To compute the diffusion coefficient σ we use the same rationale but raising the impact to
the power of 2, therefore

σ
2
l =

1
n

σ
2
u =

1
n
·22.

These coefficient bounds fit in our additive drift description (Corollary 8.1), using this
corollary with the previously computed coefficients directly leads to the claimed results.

The application to the (1+1) EA is equivalent but we have to deal with global mutations,
which makes computing the exact value for the drift and diffusion coefficients harder.

Application 8.2. Under the Diffusion Approximation, after t iterations, the (1+1) EA on
LEADINGONES will find the optimum or reach an expected value and variance of:

E [X0]+
1
en

t ≤ E [Xt]≤ E [X0]+
2
n

t

Var [X0]+
1
en

t ≤ Var [Xt]≤ Var [X0]+
4
n

t

where X0 is the number of leading ones of the initial search point.

Proof. Let us denote by Xt the number of leading ones in the bitstring at time t. And assume
that Hypothesis 8.1 is a good approximation for the dynamics of Xt . As in the previous
application, the drift can be expressed with two terms: the probability of having a positive
drift and its impact. The impact term remains identical, but the mutational term is different
since we have to ensure that all the 1-bits of the current solution are preserved.

b(Xt) =
1
n

(
1− 1

n

)Xt

·
(

2−2−(n−1−Xt)
)
.

To obtain the bounds for the drift we will consider the extreme cases Xt = 0 and Xt = n−1
for the mutational term and bound the impact in the range [1,2) yielding

b≤ 1
n
·2 = bu (8.14)

b≥ 1
n

(
1− 1

n

)n−1

·1≥ 1
en

= bl. (8.15)

186 Modelling Evolutionary Algorithms with Stochastic Differential Equations

For the diffusion coefficient we can recycle the previous probabilities but we have to raise
the impact to the power of 2 to obtain the second moment of the process

σ
2 ≥ 1

en
·12 = σ

2
l ,

σ
2 ≤ 1

n
·22 = σ

2
u .

Finally, introducing these calculations in Corollary 8.1 proves the result.

8.4.2 Elitist Algorithms on ONEMAX

Secondly we apply the multiplicative drift for the same algorithms but for the ONEMAX,
problem which is ideal for this drift theorem. Unlike in LEADINGONES, the boundary
conditions are not a problem since our multiplicative drift bounds can not push the system
out of the fitness interval [0,n]. Notice that the drift is always increasing the number of ones
and vanishes when approaching the optimum.

Application 8.3. Under the Diffusion Approximation, the expected fitness reached by RLS in
ONEMAX after t iterations is

E [Xt] = n
(

1− e−
t
n

)
+E [X0] · e−

t
n

Var [Xt] = (n−E [X0]) · e−
t
n

(
1− e−

t
n

)
where E [X0] is the expected number of ones of the initial search point.

Proof. Let us denote by Zt the number of ones in the bitstring at time t. And assume that
Hypothesis 8.1 is a good approximation for the dynamics of Zt . The drift coefficient, as
always, will be the first moment (expectation) of the process. The diffusion coefficient will
be the second moment.

b(Zt) = E [Zt+1−Zt | Zt]

= ∑
z

z · p(Zt+1−Zt = z | Zt),

σ
2(Zt) = E

[
(Zt+1−Zt)

2 | Zt

]
= ∑

z
z2 · p((Zt+1−Zt)

2 = z | Zt).

8.4 Applications 187

In the ONEMAX problem at state Zt there are Zt bit-flips out of n that lead to an improvement,
with each of these events reducing the number of zeros by 1, therefore

b(Zt) =−
Zt

n
.

For the diffusion coefficient we just have to repeat the calculations raising to 2 the impact of
each event (−1)2, yielding

σ
2(Zt) = (−1)2 Zt

n
=

Zt

n
.

Therefore the approximated SDE for this process is of the form dZt = b(Zt)dt+σ
(√

Zt
)

dBt ,
which fits in our multiplicative drift (Theorem 8.5). Applying this theorem with b =−1/n
and σ = 1/

√
n we obtain the following results

E [Zt] = E [Z0] · e−
t
n

Var [Zt] = E [Z0] · e−
t
n

(
1− e−

t
n

)
.

Finally translating to the number of ones Xt = n−Zt leads to the theorem’s statement.

The next application is regarding the (1+1) EA, again in this case we have computed
bounds on the coefficients rather than exact values due to the difficulty to obtain exact results
with global mutations.

Application 8.4. Under the Diffusion Approximation, the expected fitness reached by the
(1+1) EA in ONEMAX after t iterations is bounded by

E [Xt]≥ n
(

1− e−
t

en

)
+E [X0] · e−

t
en

E [Xt]≤ n
(

1− e−
3.1t

n

)
+E [X0] · e−

3.1t
n

Var [Xt]≥ (n−E [X0]) · e−
t

en

(
1− e−

t
en

)
Var [Xt]≤ (n−E [X0]) · e−3.1 t

n

(
1− e−3.1 t

n

)
where E [X0] is the expected number of ones of the initial search point.

Proof. Let us denote by Zt the number of ones in the bitstring at time t. And assume that
Hypothesis 8.1 is a good approximation for the dynamics of Zt . The drift and diffusion

188 Modelling Evolutionary Algorithms with Stochastic Differential Equations

coefficients (first and second statistic moments of the process) can be expressed as

b(Zt) =
Zt

∑
j=1
− j ·mut(Zt ,Zt− j)

σ
2(Zt) =

Zt

∑
j=1

(− j)2 ·mut(Zt ,Zt− j),

where mut(Zt ,Zt− j) is the probability of a mutation moving the process from Zt to Zt− j
zeros.

For such event to occur, we need that k 1-bits are flipped into 0-bits, and that k+ j 0-bits
are flipped into 1-bits. Then,

mut(Zt ,Zt− j) =
n

∑
k=0

(
n−Zt

k

)(
Zt

k+ j

)(
1
n

) j+2k(
1− 1

n

)2n− j−2k

.

The drift coefficient can be lower bounded using only the case when j = 1 leading

b(Zt)≥ −
Zt

n

(
1− 1

n

)n−1

≥ −Zt

ne
.

For the upper bound, we make use of Lemma 2.1 to upper bound mut(Zt ,Zt + j) by
(Zt

n

) j ·(
1− 1

n

)n− j · 1.14
j! yielding

b(Zt) =−
Zt

∑
j=1

(
Zt

n

) j

·
(

1− 1
n

)n− j

· 1.14
j!
· j

≤−1.14 · Zt

n
·

∞

∑
j=1

j
j!

=−1.14 · Zt

n
· e

≤−3.1 · Zt

n
.

Analogous calculations lead to the following bounds on the diffusion coefficient

Zt

en
≤ σ

2(Zt)≤ 3.1 · Zt

n
.

8.4 Applications 189

Calling Corollary 8.2 with −1/en≤ b≤−3.1/n and 1/en≤ σ2 ≤ 3.1/n leads to

E [Zt]≥ E [Z0] · e−
1
en t

E [Zt]≤ E [Z0] · e−
3.1
n t

Var [Zt]≥ E [Z0] · e−
t

en

(
1− e−

t
en

)
Var [Zt]≤ E [Z0] · e−3.1 t

n

(
1− e−3.1 t

n

)
.

Finally translating to the number of ones Xt = n−Zt leads to the claimed results.

8.4.3 Non-Elitist Algorithms on ONEMAX

In this subsection we will consider algorithms with local mutation but different selection
operators. We keep general the acceptance probability, with the only assumption that it is
monotonically non-decreasing. Afterwards, in the validation section we will plug in the
expressions for a RW, MA and SSWM.

Lemma 8.1. Consider any Algorithm 2.3 with a monotonically non-decreasing acceptance
function pacc(∆ f) on ONEMAX. Then,

E [Xt+1−Xt | Xt] =
p↑+ p↓

n
·
(

n
p↑

p↑+ p↓
−Xt

)
E
[
(Xt+1−Xt)

2 | Xt
]
= p↑− Xt

n

(
p↑− p↓

)
.

where Xt denotes the number of 1-bits in the search point at time t, p↑ = pacc(∆ f = 1) and
p↓ = pacc(∆ f =−1).

Proof. Let us start from the definition of expectation

E [Xt+1−Xt | Xt] = ∑
x

x · p(Xt+1−Xt = x | Xt)

now we use the same arguments as for the analysis of RLS on ONEMAX (see the proof of
Application 8.3) but considering the acceptance of deleterious mutations. Then,

E [Xt+1−Xt | Xt] =
n−Xt

n
p↑− Xt

n
p↓ = p↑− Xt

n

(
p↑+ p↓

)

190 Modelling Evolutionary Algorithms with Stochastic Differential Equations

multiplying and dividing by
(

p↑+ p↓
)
/n leads to

E [Xt+1−Xt | Xt] =
p↑+ p↓

n
·
(

n
p↑

p↑+ p↓
−Xt

)
.

For the diffusion coefficient, we use the definition of the second statistical moment

E
[
(Xt+1−Xt)

2 | Xt

]
= ∑

x
x2 · p(Xt+1−Xt = x | Xt)

using the same rationale as for the drift coefficient but noticing that the second moment can
only change by (±1)2 yields

E
[
(Xt+1−Xt)

2 | Xt

]
= (+1)2 · n−Xt

n
p↑+(−1)2 · Xt

n
p↓ = p↑− Xt

n

(
p↑− p↓

)
.

Once the coefficients are known, the following application derives the fixed budget results
by using the non-elitist multiplicative drift (Theorem 8.6).

Application 8.5. Consider any Algorithm 2.3 with a monotonically non-decreasing accep-
tance function pacc(∆ f) on ONEMAX. Under the Diffusion Approximation the following
statements hold

E [Xt | X0] = X0e−
p↑+p↓

n t +n
p↑

p↑+ p↓

(
1− e−

p↑+p↓
n t
)

Var [Xt | X0] =
np↑

2(p↑+ p↓)

(
1− e−2t p↑+p↓

n

)
− p↑− p↓

p↑+ p↓
X0e−

p↑+p↓
n t
(

1− e−
p↑+p↓

n t
)

− p↑(p↑− p↓)
2n

(
1− e−

p↑+p↓
n lt

)2

where Xt denotes the number of 1-bits in the search point at time t, p↑ = pacc(∆ f = 1) and
p↓ = pacc(∆ f =−1).

Proof. Assume that Hypothesis 8.1 is a good approximation for the dynamics of Xt . Then,
the statement is proven after a direct application of Theorem 8.6 with the coefficients from
Lemma 8.1.

a =
p↑+ p↓

n
, b = n

p↑

p↑+ p↓
, α = p↑, β =

p↑− p↓

n
. (8.16)

8.5 Validation of the Diffusion Approximation 191

Algorithm E [Xt] Literature Diffusion Approximation

RLS ≥ 1+2t/n−2−Ω((1−β)n) 1+ t/n−2−n

≤ 1+2t/n−2−n 1+2t/n−2−n

(1+1) EA ≥ 1+2t/n−o(t/n) 1+ t/(en)−2−n

≤ 1+2t/n−o(t/n) 1+2t/n−2−n

Table 8.1 Comparison of results for LEADINGONES. The literature column is obtained from
Theorems 7 and 8 in Jansen and Zarges (2012). The results for RLS hold for t = (1−β)n2

with 1/2+ c < β < 1. In the case of the (1+1) EA, the result holds for t = (1−β)n2

α(n) with
1/2+ c < β < 1 and α(n) = w(1). The diffusion approximation column corresponds with
Applications 8.1 and 8.2 and hold for t < min{t ≥ 0 | Xt = n}. Random initialisation was
considered in all the cases: E [X0] = 1−2−n.

8.5 Validation of the Diffusion Approximation

The previous section showed several case studies of the application of the three rigorous drift
theorems for fixed budget analysis. However this method was the result of an approximation
which we were assuming to be accurate (Hypothesis 8.1). Finally, we provide an extensive
validation to this assumption. We will tackle the accuracy of the method from several angles
including experiments but also comparing the results against those obtained by rigorous
methods.

8.5.1 Comparison with the Literature

We now compare the results obtained in subsections 8.4.1 and 8.4.2 with some of the fixed
budget literature. For the comparison on the LEADINGONES problem, we use the paper
that presented the first fixed budget analysis (Jansen and Zarges, 2012). In Table 8.1, we
observe a high agreement for the upper bounds estimations (even an exact match for the
RLS). Both approaches obtained the same growth term of 2t/n and the discrepancies for the
(1+1) EA are present only on small terms. However, on the lower bounds the discrepancy is
bigger, our method only obtained a growth term of t/n since we had to pessimistically use the
smallest drift value (when Xt = n−1) to be able to apply the additive drift (recall the proof of
Application 8.1). On the other hand, the results from the literature only hold for time budget
values which are sufficiently smaller that the expected optimisation, whereas our results hold
until the optimum is found. In Table 8.2 we consider the ONEMAX problem. Again, for RLS
we compare against Jansen and Zarges (2012), we observe how both results (first two rows)
can be recovered from our method noticing that e−t/n = (e−1/n)t ≈ (1−1/n)t , which is a

192 Modelling Evolutionary Algorithms with Stochastic Differential Equations

Algorithm E [Xt] Literature Diffusion Approximation

RLS = n
(
1− (1−1/n)t) n

(
1− e−t/n

)
= n−n/2(1−1/n)t n−n/2e−t/n

(1+1) EA ≥ n
(

1− 1
2e−t/(en)

)
n
(

1− 1
2e−t/(en)

)
≤ n

(
1− 1

2e−t/n
)
−O(t/n) n

(
1− 1

2e−(3.1t)/n
)

Table 8.2 Comparison of results for ONEMAX. The literature column is obtained from
Theorems 4 and 5 in Jansen and Zarges (2012) and Theorem 5 in Lengler and Spooner
(2015). The diffusion approximation column corresponds with Applications 8.3 and 8.4.
Random initialisation was considered in all the cases apart from the first row (X0 = 0n).

good approximation for large n. In the case of the (1+1) EA we were able to obtain exactly
the same lower bound as Lengler and Spooner (2015). The upper bounds are also in high
agreement, however the constant inside the exponential term is not as tight as in the literature.
Finally, since to our best knowledge, there are no previous fixed budget analysis of non-elitist
algorithm we could not perform this sanity check for RW, MA and SSWM. Nonetheless, the
following subsections circumvents this problem by recurring to the concept of stationary
distribution.

8.5.2 Stationary Distribution

One feature of non-elitist EAs is that although they can sample the optimum, they might
leave it and move to a search point of lower fitness. Actually, in the long run the algorithm
(under certain conditions) will reach the so-called stationary distribution π(x) for when the
probabilities of leaving each state cancel out with the probabilities of reaching that state (see
Subsection 2.3.1). Once the process reaches this limit state all the points in the search space
will have a non-zero probability of being found when measuring the system. However a
smart algorithm will assign higher probability masses to points of higher fitness.

If we consider now a RW with local mutations, it will follow the mutational bias towards
bitstrings with n/2 zeros and n/2 ones. Then, after enough time depending on the initiali-
sation, the expected number of ones will be n/2. In the case of MA and SSWM, we know
from Theorems 2.2 and 7.1 that they share the following stationary distribution.

π(x) =
eγ f (x)

Z
(8.17)

where γ = α for MA, γ = 2β (N−1) for SSWM and Z is the normalising constant.

8.5 Validation of the Diffusion Approximation 193

Theorem 8.7. Consider the Metropolis algorithm with γ = α and SSWM with γ = 2β (N−1)
on ONEMAX once they have reached the stationary distribution. Then for any initialisation,
the expected number of ones is:

E [Xt] =
n

1+ e−γ
.

Proof. In the case of ONEMAX we can express E [Xt] with the probabilities of each bit i
being in each of the two possible values pi(1) and pi(0),

E [Xt] =
n

∑
i=1

pi(1)
pi(1)+ pi(0)

= n · p(1)
p(1)+ p(0)

,

where in the last equality we have used the fact that each bit is optimised independently,
thus we can apply linearity of expectations and consider that for any bit pi(1) = p(1) and
pi(0) = p(0). Finally, introducing the probabilities at equilibrium from Equation (8.17)
yields the claimed results.

As discussed earlier, the long term (limit for t→ ∞) expectation of the non-elitist multi-
plicative drift tends to the b term from the drift coefficient which according to Equation (8.16)
has a value of b = (np↑)/(p↑+ p↓). We can observe in the following table how this value
matches exactly the real expected fitness at equilibrium E [Xt] showing the strength of the
SDE approach for this scenario.

RW MA SSWM

p↑ 1 1 1−e−2β

1−e−2Nβ

p↓ 1 e−α e2β−1
e2Nβ−1

b n/2 n
1+e−α

n
1+e−2β (N−1)

E [Xt] n/2 n
1+e−α

n
1+e−2β (N−1)

Table 8.3 Expected value at equilibrium E [Xt] from Theorem 8.7 and long term expectation
b from Application 8.5 on ONEMAX. With p↑ = pacc(1) and p↓ = pacc(−1).

8.5.3 Reconciling Fixed Budget with Runtime Analysis

As argued by Jansen and Zarges (2012), the fixed budget perspective provides more insight
on the optimisation process. Runtime analysis focuses on the expected first hitting time of
the optimum, this time is expressed as a function of the problem size E [T] = f (n). On the

194 Modelling Evolutionary Algorithms with Stochastic Differential Equations

other hand, fixed budget considers the expected fitness obtained after t iterations. Hence, the
result will also depend on the time E [Xt] = f (n, t).

However, both approaches should be in concordance. If we know the first hitting time
T (X) of any specific fitness value X , it looks natural to compute the inverse function to
obtain the equivalent fixed budget result. As shown by Doerr et al. (2013) this is the case for
deterministic algorithms, but it will not be true in general for randomised algorithms. The
authors circumvent this problem by using sharp bounds on the probability of deviating from
the expected times. Finally, they developed a method to recycle expected optimisation times
to derive fixed budget results.

In this section, we consider the inverse approach i.e. deriving optimisation times from
fixed budget results. Again, inverting the function E [Xt] = f (n, t) for the time will not give
in general the correct answer. However, we do not aim for a rigorous translation tool as
achieved by Doerr et al. (2013). Our purpose is to obtain some time measurement that can be
compared with the runtime literature (up to Landau’s notation, Definition 2.8).

Additive Drift

Before jumping into conclusions for the studied algorithms, let us consider an additive
process. This is, a collection of stochastic variables in time Xt≥0 ∈ R whose expected
change remains constant E [Xt−Xt−1 | Xt] = b. When b is positive, the expectation E [Xt] is
constantly being increased and E [Xt] always reaches any finite target value x (given enough,
but finite time). Let us recall that this will not be the case for EAs reaching the optimum xopt

of a fitness function, here Xt ≤ xopt and therefore Prob(Xt = xopt) = 1 is required in order
for E [Xt] = xopt. We will consider first a pure additive process and afterwards we will relate
it with RLS and the (1+1) EA optimising LEADINGONES.

We mentioned before that computing the inverse function of E [Xt] for the time t will not
yield, in general, the correct result. However, this approach is correct for an additive drift
process. Here, we can solve E [Xt] = f (n, t) for the time, obtaining a function of the form
t = f (E [X] ,n). Finally, if we introduce any target value for E [X], it will yield the time when
the expectation reaches the target value.

Theorem 8.8. Consider a stochastic process Xt≥0 ∈ R that follows an Additive Drift i.e.
E [Xt−Xt−1 | Xt] = b for some constant b > 0. The time τ(x) is defined as the time when the
expectation E [Xt] reaches a value of x and is given by τ(x) = (x−E [X0])/b.

Proof. By using the additive drift condition, we can compute E [Xt | X0] as follows

E [Xt | X0] = X0 +
t

∑
i=0

E [Xi+1−Xi | Xi] = X0 +
t

∑
i=0

b = X0 +bt.

8.5 Validation of the Diffusion Approximation 195

Using the law of total expectation, we obtain E [Xt] = E [X0]+bt. Introducing E [Xt] = x and
t = τ leads to x = E [X0]+bτ , which solving for τ yields the claimed statement.

It is straightforward to notice that this theorem is not applicable for optimisation algo-
rithms. If Xt describes the fitness of the EA, we observe that the boundary condition Xt ≤ xopt

breaks the additive requirement: E
[
Xt−Xt−1 | Xt = xopt

]
≤ 0 ̸= b. As we mentioned earlier,

we do not aim for a rigorous translation tool. However, as shown in Subsection 8.4.1 we can
approximate the optimisation process of some algorithms on LEADINGONES with additive
drift processes.

In Applications 8.1 and 8.2, we found additive drift bounds for the real drift of RLS and
the (1+1) EA on LEADINGONES respectively. By introducing x = n (the optimal fitness of
LEADINGONES) in Theorem 8.8, we will compare, in a non-rigorous way, the τ(n)-times
for these processes with the runtimes from the literature. The following table presents these
results showing a high agreement, up to smaller terms, of the SDE method with the literature.
Since we used bounds for the drift coefficient b, the following table includes and upper τu

and a lower τℓ bound for the time τ(n).

LEADINGONES RLS (1+1) EA

bℓ 1/n 1/en

bu 2/n 2/n

τℓ(n) n2/2 n2/2

τu(n) n2 en2

E [T] Θ(n2) Θ(n2)

Table 8.4 Expected optimisation times E [T] from the literature (see e.g. Oliveto and Yao,
2011) and bounds on τ(n) from Theorem 8.8 for LEADINGONES. The bounds on the drift
bu,ℓ are taken from Equation (8.13) (RLS) and Equations (8.15) and (8.14) (lower and upper
bound of the (1+1) EA respectively). Initialisation at 0n.

Multiplicative Drift

In the case of the multiplicative drift (Theorems 8.5 and 8.6) if we were to perform the same
sanity check we would obtain an infinite time. This is due to the exponential decay of E [Xt]

through the term e−t . However, we can circumvent this problem by recurring to the concept
of half-life from exponential decaying radioactive processes (see e.g. Krane, 1987). The

196 Modelling Evolutionary Algorithms with Stochastic Differential Equations

half-life is defined as the time taken until half of the atoms from a radionuclide have followed
a decay process. In the same spirit, the following definition introduces the notion of δ -life.

Definition 8.2 (δ -life). Consider a stochastic process Xt > 0 whose expectation follows an
exponential decay i.e. dE [Xt]/dt =−aE [Xt] for a ∈ R+. The δ -life namely τδ is defined as
the time when E [Xt]/E [X0] = δ and has a value of

τδ =
ln(1/δ)

a
.

As used in Section 8.4, we will focus on the number of 1-bits on linear functions, then
we establish our satisfiability criterion as δ = 1/n. This implies that in the worst case, where
the system starts at a distance n from the long term expectation we will be satisfied when
there is only a difference of one 1-bit.

Theorem 8.9. The 1/n-life of the Non-Elitist Multiplicative Drift (Theorem 8.6) is given by

τ1/n ≤
n lnn

p↑
.

Proof. The result for the expectation from Theorem 8.6 can be rewritten as E [Xt]− b =

(E [X0]−b) ·e−at . It is straightforward to see that the process E [Xt]−b follows an exponential
decay, then using Definition 8.2 for δ = 1/n leads to

τ1/n =
lnn
a

=
n lnn

p↑+ p↓
≤ n lnn

p↑
,

where we have introduced the a coefficient from Equation (8.16).

The following table includes the 1/n-lives (τ1/n) derived from the SDE method with the
above expression and expected optimisation times E [T] from the literature. Before making
the comparison let us remember that optimisation times refer to hitting the optimum whereas
the 1/n-life refers to approaching equilibrium. If the parameters of the algorithm allow the
stationary distribution, to be close enough to the optimum this will be a fair comparison. This
is the reason why the results for the RW highly differ in the table, a RW can not optimise
ONEMAX in polynomial time but can reach its stationary distribution. On the other hand
the results for the three other algorithms are in high concordance with the literature (up to
smaller terms).

8.5 Validation of the Diffusion Approximation 197

ONEMAX RLS RW MA SSWM

p↑ 1 1 1 1−e−2β

1−e−2Nβ

τ1/n n lnn n lnn n lnn n lnn
p↑

E [T] n lnn+O(n) Ω(2n) n lnn+O(n) n lnn
p↑ +O(n)

γ - - ≥ lnn ≥ lnn

Table 8.5 τ1/n from Theorem 8.9 and expected optimisation times E [T] on ONEMAX (RLS-
e.g. Oliveto and Yao (2011), RW-Garnier et al. (1999), MA-Jansen (2007) and SSWM-
Theorem 5.1). Where p↑ = pacc(1), γ = α for MA and γ = 2β (N−1) for SSWM.

8.5.4 Simulations

Another sanity-check that we have considered to validate Hypothesis 8.1 is to perform
numerical simulations. We built several graphical representations where the experimental
results are represented by: coloured dots for the expectation and a wrinkled shadowed region
that includes one standard deviation around the expectation. On the other hand, theoretical
results are represented by dashed black lines. All experiments have a problem size of n = 100
and the results were averaged over 100 independent runs. The parameters of the algorithms
also remained constant for each figure with α = 1 for MA and (β ,N) = (1,2) for SSWM.
For aesthetics reasons we have not included the variance estimations in the figures.

Firstly, the left graph from Figure 8.1 shows the application of the additive drift for
LEADINGONES. We can observe that for RLS this approach is very precise until the last part
of the optimisation process. Whereas for the (1+1) EA there is a large gap, nevertheless the
method properly represents the evolution of the (1+1) EA’s fitness on this problem. In our
opinion, the discrepancy gap is mainly due to two reasons:

• choosing an additive drift approach for a process whose drift varies depending on the
state

• pessimistic estimations for the additive constant b (see Theorem 8.4 and Applica-
tions 8.1 and 8.2).

This deviation from additivity can be seen at the end of the simulation when the experimental
lines start curving, whereas the theoretical lines remain straight until they hit the optimum.

Secondly, the right graph from Figure 8.1 compares RLS and the (1+1) EA on the
ONEMAX problem. The comparison between experiments and theory for RLS is excellent,

198 Modelling Evolutionary Algorithms with Stochastic Differential Equations

even better than in LEADINGONES due to the absence of the boundary condition. Again for
the (1+1) EA the theory collects the exponential decrease of the process. However there is
still a gap which, in our opinion, is mainly due to equivalent reasons:

• using a multiplicative drift when the drift is not exactly multiplicative

• pessimistic estimations for the multiplicative constant b (see Theorem 8.5 and Applica-
tion 8.4).

0

25

50

75

100

0 2500 5000 7500 10000
Time [Generations]

Fit
ne

ss

0

25

50

75

100

0 250 500 750 1000
Time [Generations]

Fit
ne

ss

Fig. 8.1 Comparison of results for LEADINGONES (left) and ONEMAX (right). Solid lines
represent the experimental results (RLS - red and (1+1) EA- blue). Dashed lines represent
the theoretical results (RLS - black and (1+1) EA- blue). For LEADINGONES, the theoretical
upper bound is shared for both algorithms and the lower bound for RLS is shown in red.
Initialisation at 0n. Problem size n = 100. Time budget 10000 (LEADINGONES) and 1000
(ONEMAX). Results were averaged over 100 runs and the shadowed zones include one
standard deviation around the expectation.

The following figures show the application of the non-elitist drift for ONEMAX. The left
graph from Figure 8.2 shows an excellent match between theoretical and experimental results
for all the algorithms, describing the dynamics of these processes even when they are not
able to optimise the problem. With the same accuracy the right graph of Figure 8.2 shows a
case study where two algorithms (MA and RW) started in between their stationary expected
value and the optimum but due to their weak selection strength they move away the optimum
but towards the equilibrium’s value.

8.5 Validation of the Diffusion Approximation 199

0

25

50

75

100

0 250 500 750 1000
Time [Generations]

Fit
ne

ss

60

80

100

0 250 500 750 1000
Time [Generations]

Fit
ne

ss

Fig. 8.2 Theoretical (dashed black lines) and experimental results (RLS - red, RW - green,
MA - blue and SSWM - pink) on ONEMAX. Initialisation at 0n (left) and 020180 (right).
Problem size n = 100. Time budget 1000. Algorithms’ parameters: α = 1 for MA and
(β ,N) = (1,2) for SSWM. Results were averaged over 100 runs and the shadowed zone
includes one standard deviation around the expectation.

We would like to point out that our applications were just study cases to motivate the use
of SDEs as an analysis tool for EAs. If we were aiming for precision we could have recycled
already known and better bounds for the drift such us b(Zt)≤− Zt

en

(
1+ 16Zt

n

)
from Doerr

et al. (2011), but then it would become a variable drift process (Theorem 2.11).

8.5.5 Experimental Error

The previous sanity-check was based on a visual representation of experimental and theoreti-
cal results. However, graphical representations can sometimes be misleading and we have
to be sure that the results obtained were not just an aesthetic effect. In order to objectively
validate the SDE method (Hypothesis 8.1) we perform an experimental measurement of the
error. We will use the widely used concepts of mean absolute percentage error (MAPE) and
root mean squared error (RMSE) (see e.g. Hyndman and Koehler, 2006).

Definition 8.3. Let Yi=1,2,...,n be the vector of observed values and Y i=1,2,...,n the vector of
predicted values. Then, the mean absolute percentage error (MAPE) and the root mean
squared error (RMSE) are given by

MAPE(Yi) =
100%

n

n

∑
i=1

∣∣∣∣Yi−Yi

Yi

∣∣∣∣ , RMSE(Yi) =

√
1
n

n

∑
i=1

(
Yi−Yi

)2
.

200 Modelling Evolutionary Algorithms with Stochastic Differential Equations

ONEMAX MAPE(E [Xt]) RMSE(Var [Xt])

RLS 0.15% 0.41

(1+1) EA lower bound 16.34% 0.71

(1+1) EA upper bound 22.18% 1.30

RW 0.88% 0.42

MA 0.62% 0.44

SSWM 0.45% 0.37

Table 8.6 Experimental errors for the expectation and variance of the five studied algorithms
on ONEMAX. The observed values are obtained from experiments. The predicted values are
those derived in applications 8.3, 8.4 and 8.5. Algorithms’ parameters: α = 1 for MA and
(β ,N) = (1,2) for SSWM. Initialisation at 0n. Problem size n = 100. Time budget 1000.

The advantage of the MAPE is that it takes into consideration the magnitude of the
observed values. It produces a result in the form of a percentage that is interpreted as the
magnitude of the deviation with reality. However, for small values of the observed values
this measurement is not appropriate due to the singularity at Yi = 0. This is a problem
for measuring the error of the variance due to the deterministic initialisation used in the
experiments and the concentration of the independent runs towards the same fitness value
at the end of the simulation. For this reason, we have decided to use the MAPE for the
expectations and the RMSE for the variance.

The following tables show agreement with Figures 8.1 and 8.2. The results for all the
algorithms with local mutations, i.e. all but the (1+1) EA, are excellent on ONEMAX. With
MAPE of the expectation being even smaller than 1%. Only for the (1+1) EA we can see a
significant difference, due to the reasons explained in the previous section.

Finally, the comparison against LEADINGONES (Table 8.7) is not as successful as in the
previous case. Here, the errors are quite large as shown in the left graph of Figure 8.1. But
again, the reasons for the discrepancy are not intrinsic to using SDEs, they are due to the
chosen drift technique.

8.6 Conclusions

For the last decade rigorous runtime analysis has become immensely popular, in part due
to the emergence of the so-called “drift theorems” that inform about the time to reach a
particular state or set of states. However, these results are not directly translatable for fixed

8.6 Conclusions 201

LEADINGONES MAPE(E [Xt]) RMSE(Var [Xt])

RLS lower bound 47.90% 7.82

RLS upper bound 3.39% 7.73

(1+1) EA lower bound 72.27% 8.03

(1+1) EA upper bound 23.74% 7.93

Table 8.7 Experimental errors for the expectation and variance of RLS and the (1+1) EA on
LEADINGONES. The observed values are obtained from experiments. The predicted values
are those derived in applications 8.1 and 8.2. Initialisation at 0n. Problem size n = 100. Time
budget 10000.

budget scenarios which ask about the opposite question: how much improvement can be
obtained in a fixed number of fitness evaluations. This problem is relevant in practice: in real
problems it is usually impossible to know whether the optimum has been found. In this case,
it is arguably more useful to know how much improvement an algorithm can achieve in a
fixed number of steps.

Here, we have introduced the use of SDEs to the study of EAs which seem particularly
suited to obtain results for fixed budget scenarios. Even though SDEs are approximations of
the dynamics of EAs, they can produce analytical insight which is not possible with other
tools, such as Markov chains. At the same time, SDEs do not discard the stochasticity of the
dynamics and allow for the estimation of the variance of relevant quantities, such as the state
at which the algorithm will find itself after t iterations.

Here we made a simple preliminary exploration of the potential of these tools for the
study of EAs. We did not make use of other techniques for the study of SDEs that allow for
greater insight into the dynamics of a stochastic process. For example, the Fokker-Planck
equation associated with a SDE can be used to track the full probability distribution of the
process. Even though this is, in many instances, impossible to solve analytically it can reveal
what are the crucial parameters of a stochastic process. Furthermore, it is often solvable for
the steady state, allowing for the characterisation of the stationary distribution of the process.
In fact, these techniques are commonly used in the related field of population genetics where
they have been used to provide foundational results. The results we presented here are in
themselves interesting, especially when applied to fixed budget analysis, but they also hold
the promise that SDEs can become a standard tool in EC.

We believe there is plenty of room for future work by considering more complex functions
or more elaborated heuristics. But the main challenge would be a rigorous translation of the
SDE method presented here.

Part IV

Conclusions and Outlook

Chapter 9

Conclusions

This PhD thesis has focused on bridging population genetics and evolutionary computation.
Our work has substantially contributed to breaking down the walls between both communities,
exploiting the unexplored intersection between both fields. We made use of the methods
and techniques independently derived by PG and EC to study open problems from a new
perspective.

By successfully quantifying the complexity of adaptive walks on many landscapes, we
showed that theoretical biology can highly benefit from the tools used for the runtime analysis
of evolutionary algorithms. In addition, EC also profits from this synergetic relationship.
Although the theoretical study of non-elitist algorithms is still in its early days, it is a well
studied characteristic of natural evolution. Apart from the direct gain from the runtime
analysis of the SSWM algorithm, we used diffusion theory (one of the favourite tools
amongst theoretical geneticists) to derive the first fixed budget result for non-elitist algorithms.
Overall, we have derived plenty of meaningful results for both communities, showing that
this interdisciplinary approach is effective and relevant. Proof of this is that our work has
been published in high rated conferences and top journals from both fields (see Section 1.1).

In Chapter 1 we motivated not only the importance of studying both fields independently,
but also their highly unexplored intersection. Then, we introduced the reader to the fields
of Evolutionary Algorithms (Chapter 2) and Population Genetics (Chapter 3), specially to
the mathematical techniques for the runtime analysis of randomised heuristics (Section 2.3)
and to the derivation of the so-called Strong Selection Weak Mutation evolutionary regime
(Subsection 3.2.3). In Chapter 4 we explained the importance of measuring the time that
natural populations need to evolve complex adaptations. We described the state of the art for
such analysis and how our proposed approach based on the runtime analysis of randomised
algorithms could succeed.

206 Conclusions

In Chapter 5 we analysed hill-climbing problems. We saw that for additive fitness land-
scapes, it is sufficient that the selection strength is above a certain threshold for populations
to be able to efficiently climb to the fitness peak. However, when considering a class of
epistatic landscapes characterised by a single mutational path of strictly increasing fitness,
we found that this limit no longer applies and that a constant selection strength will enable a
population to climb to the optimum, albeit at a slower rate than in an additive landscapes.
From a computational perspective, we showed that SSWM can take advantage of information
about the steepest gradient, outperforming classical evolutionary algorithms such as the
(1+1) EA.

In Chapter 6 we presented an analysis of randomised search heuristics for crossing fitness
valleys where no mutational bias exists. Our focus was to highlight characteristics of valleys
where an elitist selection strategy should be preferred to a non-elitist one and vice-versa.
We rigorously proved that while the (1+1) EA is efficient for valleys and valley paths up to
moderate lengths, both SSWM and MA are efficient when the valleys and valley paths are not
too deep. Finally, we considered a version of SSWM that effectively combines non-elitism
with global mutations to tunnel through sharp valleys.

In Chapter 7 we investigated SSWM and MA with the goal of identifying function
characteristics where rejecting improvements is beneficial. We found a starting hurdle, both
algorithms have the same stationary distribution. Hence, they may only have considerably
different performance on optimisation functions where the mixing time is large. Our analysis
on a 3 state model highlights that a simple function with a local optimum of low fitness and a
global optimum of high fitness does not allow the required large mixing times. The reason
is that, although MA initially chooses the local optimum more often than SSWM, it still
escapes quickly. As a result we designed a 5 state model which “locks” the algorithms to
their initial choices. By amplifying the function to contain several copies of the 5 state model
we achieve our goal of defining a composite function where SSWM is efficient while MA
requires exponential time with overwhelming probability, independent from its temperature
parameter. Furthermore, we presented a further comparison with exploiting algorithms such
as BILS, FILS and a (1,λ) RLS. While BILS excelled, experiments have shown that the
(1,λ) RLS is efficient only for enough large values of λ .

Finally, we considered if the techniques from Population Genetics could be applied for
the analysis of evolutionary algorithms. In Chapter 8, we introduced the use of stochastic
differential equations to the study of evolutionary algorithms. This approach was based on
the diffusion theory used by geneticists to track the change in the allele frequencies of a
population (Section 3.2). Although we made a simple preliminary exploration of the potential
of these tools for the study of EAs, we managed to derived several drift theorems for a fixed

207

budget analysis. We claim that our results can be the starting point of a new tool for the
theoretical analysis of randomised search heuristics.

As general overview, this thesis has yielded many contributions for both PG and EC. The
main contribution of this thesis was the plethora of results derived for the SSWM algorithm.
We showed that SSWM is not only relevant for biology but that, as an optimisation algorithm,
it can outperform many optimisers such as the (1+1) EA or MA. Although our main focus
was SSWM, we did not lose generality in our analysis. We worked using general frameworks
that made our results applicable not only for SSWM but also for MA (Chapter 6) or even
for a broader family of trajectory-based algorithms (Chapters 7 and 8). In addition, we have
improved some of the already existing analysis tools like our extension of the Gambler’s Ruin
problem for non-elitist algorithms (Theorem 6.2 and Lemmas 6.6 and 6.7). Furthermore,
in Chapter 8 we developed a new method for the analysis of randomised search heuristics
within the new perspective of fixed-budget.

Future Work

Although we have a presented a substantial amount of novel results, there are still many
open questions in biology where runtime analysis can yield interesting results. For example
runtime analysis can pave the way for a rigorous translation of the highly debated Wright’s
shifting balance theory (Wright, 1932). As described in Chapter 6, this theory states that
on fitness landscapes with multiple peaks where isolated populations might fail, parallel
populations can cooperate to effectively adapt on such landscapes.

Another problem candidate is to analyse the SSWM regime on the stabilising selection
model. Here each bit xi is assigned a weight wi and the mathematical problem is to minimise
the distance W −∑

n
i=1 xi ·wi to a predefined target W . It is straightforward to notice that this

scenario can be related to some well known problems in EC (SUBSETSUM, KNAPSACK and
PARTITION) from where there are already results for the (1+1) EA (Sudholt, 2011a; Witt,
2005; Zhou et al., 2007).

From a computational perspective, we would like to study other evolutionary regimes that
correspond to more elaborated EAs. In particular, we think it would be interesting to include
crossover and try to shed some light on the open question of the role of recombination in
biology (Barton and Charlesworth, 1998). In addition, we have mainly considered the SSWM
regime which is well described by a trajectory-based algorithm. However, other population-
based evolutionary regimes might not be able to be cast as a trajectory algorithm. Hence an
important direction for future work would be extending our analysis for population-based
algorithms.

208 Conclusions

Last but not least, we think that the approach presented on Chapter 8 is very promising
and has opened the door for many research directions. An extension for parallel algorithms
seems natural since there exist work on systems of SDEs (see e.g. Øksendal, 2003). We
also have not considered dynamical problems, however SDEs would allow to model time
dependencies (recall that initially the drift b(Xt , t) and diffusion σ(Xt , t) coefficients were
time dependent).

The method presented in Chapter 8 provides fixed-budget results, which, as argued
in Section 2.4, can yield more insight on the optimisation process and it is closer to the
experimental application than the traditional runtime analysis. In contrast with other fixed-
budget approaches, our method allows to derive (with little extra cost) an expression for the
variance. This way we not only know the expected behaviour of the algorithm but also how
much the EA deviates from this expectation.

References

Aita, T., Uchiyama, H., Inaoka, T., Nakajima, M., Kokubo, T., and Husimi, Y. (2000).
Analysis of a local fitness landscape with a model of the rough Mt. Fuji-type landscape:
Application to prolyl endopeptidase and thermolysin. Biopolymers, 54(1):64–79.

Akimoto, Y., Auger, A., and Hansen, N. (2012). Convergence of the continuous time trajec-
tories of isotropic evolution strategies on monotonic C 2-composite functions. In Parallel
Problem Solving from Nature - PPSN XII: 12th International Conference, Taormina, Italy,
September 1-5, 2012, Proceedings, Part I, pages 42–51. Springer Berlin Heidelberg.

Aldous, D. and Fill, J. (2017). Reversible Markov Chains and Random Walks on Graphs.
Monograph in preparation.

Altenberg, L. (1994). The schema theorem and price’s theorem. In Proceedings of the Third
Workshop on Foundations of Genetic Algorithms. Estes Park, Colorado, USA, July 31 -
August 2 1994, pages 23–49.

Auger, A. and Doerr, B., editors (2011). Theory of Randomized Search Heuristics. World
Scientific.

Barnard, C. and Simon, H. A. (1947). Administrative behavior. A study of decision-making
processes in administrative organization. Macmillan, New York.

Barton, N., Briggs, D. E. G., Eisen, J., Goldstein, D., and Patel, N. (2007). Evolution. Cold
Spring Harbor Laboratory Press.

Barton, N. H. and Charlesworth, B. (1998). Why Sex and Recombination? Science,
281(5385):1986–1990.

Beyer, H. (2001). The Theory of Evolution Strategies. Natural Computing Series. Springer.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3):637–654.

Boese, K. D., Kahng, A. B., and Muddu, S. (1994). A new adaptive multi-start technique for
combinatorial global optimizations. Operations Research Letters, 16(2):101–113.

Chastain, E., Livnat, A., Papadimitriou, C., and Vazirani, U. (2014). Algorithms, games, and
evolution. Proceedings of the National Academy of Sciences, 111(29):10620–10623.

Chatterjee, K., Pavlogiannis, A., Adlam, B., and Nowak, M. A. (2014). The time scale of
evolutionary innovation. PLoS Computational Biology, 10(9).

210 References

Chen, G.-Y. and Saloff-Coste, L. (2013). On the mixing time and spectral gap for birth
and death chains. Latin American Journal of Probability and Mathematical Statistics,
X:293–321.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction To Algorithms. MIT
Press.

Corus, D., Dang, D.-C., Eremeev, A. V., and Lehre, P. K. (2014). Level-based analysis of
genetic algorithms and other search processes. In Parallel Problem Solving from Nature
(PPSN), pages 912–921. Springer.

Corus, D., He, J., Jansen, T., Oliveto, P. S., Sudholt, D., and Zarges, C. (2017). On easiest
functions for mutation operators in bio-inspired optimisation. Algorithmica, 78(2):714–
740.

Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A Theory of the Term Structure of Interest
Rates. Econometrica, 53(2):385–407.

Coyne, J. A., Barton, N. H., and Turelli, M. (2000). Is wright’s shifting balance process
important in evolution? Evolution, 54(1):306–317.

Crow, J. and Kimura, M. (2009). An Introduction to Population Genetics Theory. Blackburn
Press.

Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., Sudholt, D.,
and Sutton, A. M. (2017). Escaping local optima using crossover with emergent diversity.
IEEE Transactions on Evolutionary Computation. To appear.

Darwin, C. (1859). The Origin of Species. John Murray.

Desai, M. M., Fisher, D. S., and Murray, A. W. (2007). The Speed of Evolution and
Maintenance of Variation in Asexual Populations. Current Biology, 17(5):385–394.

Doerr, B. (2011). Analyzing randomized search heuristics: Tools from probability theory. In
Auger and Doerr (2011), pages 1–20. World Scientific.

Doerr, B., Doerr, C., and Yang, J. (2016). Optimal parameter choices via precise black-box
analysis. In Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO ’16, pages 1123–1130, New York, NY, USA. ACM.

Doerr, B., Fouz, M., and Witt, C. (2011). Sharp bounds by probability-generating func-
tions and variable drift. In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’11, pages 2083–2090, New York, NY, USA. ACM.

Doerr, B. and Goldberg, L. A. (2010). Drift analysis with tail bounds. In Proceedings of the
11th International Conference on Parallel Problem Solving from Nature: Part I, PPSN’10,
pages 174–183, Berlin, Heidelberg. Springer-Verlag.

Doerr, B., Jansen, T., Witt, C., and Zarges, C. (2013). A method to derive fixed budget results
from expected optimisation times. In Proceeding of the fifteenth annual conference on
Genetic and evolutionary computation (GECCO ’13), pages 1581–1588. ACM.

References 211

Doerr, B., Johannsen, D., and Winzen, C. (2012). Multiplicative drift analysis. Algorithmica,
64(4):673–697.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276:51–81.

Droste, S., Jansen, T., and Wegener, I. (2006). Upper and lower bounds for randomized
search heuristics in black-box optimization. Theory Computing Systems, 39(4):525–544.

Eiben, A. E. and Smith, J. E. (2015). Introduction to Evolutionary Computing. Springer, 2nd
edition.

Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik,
322(8):549–560.

Euler, L. (1744). Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes,
sive solutio problematis isoperimetrici lattissimo sensu accepti. apud Marcum-Michaelem
Bousquet et socios.

Ewens, W. (2004). Mathematical Population Genetics 1: Theoretical Introduction. Interdis-
ciplinary Applied Mathematics. Springer New York.

Eyre-Walker, A. and Keightley, P. D. (2007). The distribution of fitness effects of new
mutations. Nature Review Genetics, 8(8):610–618.

Feller, W. (1949). On the theory of stochastic processes, with particular reference to
applications. In Proceedings of the [First] Berkeley Symposium on Mathematical Statistics
and Probability, pages 403–432, Berkeley, Calif. University of California Press.

Feller, W. (1968). An introduction to probability theory and its applications. Wiley.

Fisher, R. A. (1930). The genetical theory of natural selection. Oxford Clarendon Press.

Fogel, L. J., Owens, A. L., and Walsh, M. L. (1965). Artificial intelligence through simulation
of evolution. In Biophysics and Cybernetic Systems, pages 131–156. Spartan, Washington.

Fogle, C. A., Nagle, J. L., and Desai, M. M. (2008). Clonal Interference, Multiple Mutations
and Adaptation in Large Asexual Populations. Genetics, 180(4):2163–2173.

Friedrich, T., Kötzing, T., and Wagner, M. (2017). A generic bet-and-run strategy for
speeding up stochastic local search. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA., pages
801–807.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for binary
mutations.

Gerrish, P. and Lenski, R. (1998). The fate of competing beneficial mutations in an asexual
population. Genetica, 102-103:127–144.

212 References

Gießen, C. (2013). Hybridizing evolutionary algorithms with opportunistic local search. In
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’13), pages 797–804. ACM.

Gillespie, J. H. (1983). Some properties of finite populations experiencing strong selection
and weak mutation. The American Naturalist, 121(5):691–708.

Gillespie, J. H. (1984). Molecular evolution over the mutational landscape. Evolution,
38(5):1116–1129.

Gillespie, J. H. (1989). When Not to Use Diffusion Processes in Population Genetics, pages
57–70. Princeton University Press.

Goldberg, D. (1987). Simple genetic algorithms and the minimal, deceptive problem. In
Davis, L., editor, Genetic algorithms and simulated annealing, pages 74–88. Pitman.

Goodnight, C. J. and Wade, M. J. (2000). The ongoing synthesis: a reply to coyne, barton,
and turelli. Evolution, 54(1):317–324.

Grafen, A. (2014). The formal darwinism project in outline. Biology & Philosophy, 29(2):155.

Grant, V. and Flake, R. H. (1974). Solutions to the Cost-of-Selection Dilemma. Proceedings
of the National Academy of Sciences of the United States of America, 71(10):3863–3865.

Hajek, B. (1982). Hitting-time and occupation-time bounds implied by drift analysis with
applications. Advances in Applied Probability, 14(3):502–525.

Haldane, J. B. S. (1957). The cost of natural selection. J. Genet., 55:511–524.

Haldane, J. B. S. (1990). A mathematical theory of natural and artificial selection—i. Bulletin
of Mathematical Biology, 52(1):209–240.

Hardy, G. H. (1908). Mendelian proportions in a mixed population. Journal of Biology and
Medicine, 2(76):79—80.

He, J. and Yao, X. (2001). Drift analysis and average time complexity of evolutionary
algorithms. Artificial Intelligence, 127:57–85.

He, J. and Yao, X. (2003). Towards an analytic framework for analysing the computation
time of evolutionary algorithms. Artificial Intelligence, 145(1):59 – 97.

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Jounral
on Computing, 2:88–105.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge,
MA, USA. Reprint edition 1992 (originally published in 1975).

Horn, J., Goldberg, D. E., and Deb, K. (1994). Long path problems. In Parallel Problem
Solving from Nature (PPSN III), volume 866 of LNCS, pages 149–158.

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679 – 688.

References 213

Itô, K. (1944). Stochastic integral. In Proceedings of the Imperial Academy.

Itô, K. (1946). On a stochastic integral equation. In Proceedings of the Japan Academy.

Itô, K. (1950). Stochastic differential equations in a differentiable manifold. Nagoya
Mathematical Journal.

Itô, K. (1951). Diffusion processes and their sample paths. Nagoya Mathematical Journal.

Jägersküpper, J. and Storch, T. (2007). When the plus strategy outperforms the comma
strategyand when not. In 2007 IEEE Symposium on Foundations of Computational
Intelligence, pages 25–32.

Jansen, T. (2007). On the brittleness of evolutionary algorithms. In Foundations of Genetic
Algorithms: 9th International Workshop, FOGA 2007, Mexico City, Mexico, January
8-11, 2007, Revised Selected Papers, pages 54–69, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Jansen, T. (2013). Analyzing Evolutionary Algorithms. Springer-Verlag Berlin Heidelberg.

Jansen, T. and Wegener, I. (2002). The analysis of evolutionary algorithms - A proof that
crossover really can help. Algorithmica, 34(1):47–66.

Jansen, T. and Wegener, I. (2007). A comparison of simulated annealing with a simple
evolutionary algorithm on pseudo-Boolean functions of unitation. Theoretical Computer
Science, 386(1-2):73–93.

Jansen, T. and Zarges, C. (2012). Fixed budget computations: a different perspective on run
time analysis. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’12), pages 1325–1332. ACM.

Jerrum, M. and Sinclair, A. (1996). The Markov chain Monte Carlo method: an approach to
approximate counting and integration. In Approximation Algorithms for NP-hard Problems,
pages 482–520. PWS Publishing.

Johannsen, D. (2010). Random Combinatorial Structures and Randomized Search Heuristics.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany and the Max-Planck-Institut
für Informatik.

Karlin, S. and McGregor, J. (1964). On some stochastic model in population genetics, pages
245–278. University of Wisconsin Press.

Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes. Academic
Press, New York, 1 edition edition.

Kauffman, S. and Levin, S. (1987). Towards a general theory of adaptive walks on rugged
landscapes. Journal of Theoretical Biology, 128(1):11–45.

Kauffman, S. A. and Weinberger, E. D. (1989). The NK model of rugged fitness landscapes
and its application to maturation of the immune response. Journal Theoretical Biology,
141(2):211–245.

214 References

Kim, Y. and Orr, H. A. (2005). Adaptation in sexuals vs. asexuals: clonal interference and
the Fisher-Muller model. Genetics, 171(3):1377–86.

Kimura, M. (1957). Some Problems of Stochastic Processes in Genetics. The Annals of
Mathematical Statistics, 28(4):882–901.

Kimura, M. (1961). Natural selection as the process of accumulating genetic information in
adaptive evolution. Genetics Research, 2(01):127–140.

Kimura, M. (1962). On the probability of fixation of mutant genes in a population. Genetics,
47(6):713–719.

Kimura, M. (1964). Diffusion Models in Population Genetics. Journal of Applied Probabilitiy,
1(2):177–232.

Kimura, M. (1968). Genetic Variability Maintained in a Finite Population Due to Mutational
Production of Neutral and Nearly Neutral Isoalleles. Genetics Research, 11(03):247–270.

Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University
Press.

Kingman, J. F. C. (1978). A Simple Model for the Balance between Selection and Mutation.
Journal of Applied Probability, 15(1):1–12.

Kondrashov, F. A. and Kondrashov, A. S. (2001). Multidimensional epistasis and the
disadvantage of sex. Proceedings of the National Academy of Sciences of the United States
of America, 98(21):12089–92.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA.

Krane, K. S. (1987). Introductory nuclear physics. Wiley, New York.

Kryazhimskiy, S., Tkacik, G., and Plotkin, J. B. (2009). The dynamics of adaptation on
correlated fitness landscapes. Proceedings of the National Academy of Sciences of the
United States of America, 106(44):18638–18643.

Lamarck, J.-B. (1809). Philosophie Zoologique. Museum d’Histoire Naturelle.

Lehre, P. K. and Witt, C. (2012a). Black-box search by unbiased variation. Algorithmica,
64(4):623–642.

Lehre, P. K. and Witt, C. (2012b). Black-box search by unbiased variation. Algorithmica,
64(4):623–642.

Lengler, J. and Spooner, N. (2015). Fixed budget performance of the (1+1) EA on linear
functions. In Proceedings of the 2015 ACM Conference on Foundations of Genetic
Algorithms XIII, FOGA ’15, pages 52–61, New York, NY, USA. ACM.

Levin, D. A., Peres, Y., and Wilmer, E. L. (2008). Markov Chains and Mixing Times.
American Mathematical Society.

References 215

Luque, G. and Alba, E. (2011). Parallel Genetic Algorithms. Theory and Real World
Applications. Springer-Verlag.

Maghsoodi, Y. (1996). Solution of the Extended Cir Term Structure and Bond Option
Valuation. Mathematical Finance, 6(1):89–109.

Malthus, T. R. (1798). An Essay on the Principle of Population. J. Johnson, London.

Mendel, G. (1866). Experiments on plant hybridization. Proceedings of the Natural History
Society of Brünn.

Merz, P. and Freisleben, B. (1998). Memetic algorithms and the fitness landscape of the
graph bi-partitioning problem. In Parallel Problem Solving from Nature (PPSN V), pages
765–774. Springer Berlin Heidelberg.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092.

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press.

Moran, P. (1963). On the nonexistence of adaptive topographies. Annals of human genetics,
27(4):383–393.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge International
Series on Parallel Computation. Cambridge University Press.

Mühlenbein, H. (2009). Evolutionary computation: Centralized, parallel or collaborative.
Computational Intelligence, pages 561–595.

Muhlenbein, H. and Mahnig, T. (2002). Evolutionary computation and wright’s equation.
Theoretical Computer Science, 287(1):145–165.

Mühlenbein, H. and Schlierkamp-Voosen, D. (1993). Predictive models for the breeder ge-
netic algorithm i. continuous parameter optimization. Evolutionary computation, 1(1):25–
49.

Nallaperuma, S., Neumann, F., and Sudholt, D. (2017a). Expected fitness gains of randomized
search heuristics for the traveling salesperson problem. Evolutionary Computation. To
appear.

Nallaperuma, S., Oliveto, P. S., Pérez Heredia, J., and Sudholt, D. (2017b). On the analysis
of trajectory-based search algorithms: When is it beneficial to reject improvements or to
exploit? Algorithmica. Submitted to.

Nallaperuma, S., Oliveto, P. S., Pérez Heredia, J., and Sudholt, D. (2017c). When is it
beneficial to reject improvements? In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, pages 1391–1398, New York, NY, USA. ACM.

Neumann, F., Oliveto, P. S., and Witt, C. (2009). Theoretical analysis of fitness-proportional
selection: landscapes and efficiency. In Proceedings of the 2009 Genetic and Evolutionary
Computation Conference (GECCO ’09), pages 835–842. ACM Press.

216 References

Neumann, F. and Witt, C. (2010). Bioinspired Computation in Combinatorial optimization.
Springer.

Nowak, M. A. (2006). Evolutionary Dynamics. Harvard University Press.

Ochoa, G. and Veerapen, N. (2016). Deconstructing the big valley search space hypoth-
esis. In Proceedings of the 16th European Conference on Evolutionary Computation
in Combinatorial Optimization (EvoCOP 2016), pages 58–73. Springer International
Publishing.

Øksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications.
University of Michigan Press.

Oliveto, P. S., Lehre, P. K., and Neumann, F. (2009). Theoretical analysis of rank-based
mutation - combining exploration and exploitation. In Proceedings of the 2009 IEEE
Congress on Evolutionary Computation (CEC ’09), pages 1455–1462. IEEE Press.

Oliveto, P. S., Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2016). When
non-elitism outperforms elitism for crossing fitness valleys. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016, GECCO ’16, pages 1163–1170, New
York, NY, USA. ACM.

Oliveto, P. S., Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017). How
to escape local optima in black box optimisation: When non-elitism outperforms elitism.
Algorithmica. To appear.

Oliveto, P. S. and Sudholt, D. (2014). On the runtime analysis of stochastic ageing mecha-
nisms. In Proceedings of the 2014 Genetic and Evolutionary Computation Conference
(GECCO ’14), pages 113–120. ACM Press.

Oliveto, P. S. and Witt, C. (2008). Simplified drift analysis for proving lower bounds in
evolutionary computation. In Proceedings of the 10th International Conference on Parallel
Problem Solving from Nature: PPSN X, pages 82–91, Berlin, Heidelberg. Springer-Verlag.

Oliveto, P. S. and Witt, C. (2011). Simplified drift analysis for proving lower bounds
in evolutionary computation. Algorithmica, 59(3):369–386.

Oliveto, P. S. and Witt, C. (2012). Erratum: Simplified drift analysis for proving lower
bounds in evolutionary computation. ArXiv e-prints.

Oliveto, P. S. and Witt, C. (2014). On the runtime analysis of the simple genetic algorithm.
Theoretical Computer Science, 545:2–19.

Oliveto, P. S. and Yao, X. (2011). Runtime analysis of evolutionary algorithms for discrete
optimization. In Auger and Doerr (2011), Series on Theoretical Computer Science. World
Scientific.

Orr, H. A. (1995). The population genetics of speciation: the evolution of hybrid incompati-
bilities. Genetics, 139:1805–1813.

Orr, H. A. (2000). The rate of adaptation in asexuals. Genetics, 155(2):961–968.

References 217

Orr, H. A. (2002). The population genetics of adaptation: The adaptation of DNA sequences.
Evolution, 56(7):1317–1330.

Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Review Genetics,
6(2):119–127.

Orr, H. A. (2006). The Population Genetics of Adaptation on Correlated Fitness Landscapes:
The Block Model. Evolution, 60(6):1113–1124.

Paixão, T., Badkobeh, G., Barton, N., Corus, D., Dang, D.-C., Friedrich, T., Lehre, P. K.,
Sudholt, D., Sutton, A. M., and Trubenová, B. (2015). Toward a unifying framework for
evolutionary processes. Journal of Theoretical Biology, 383:28–43.

Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2015). First steps towards a
runtime comparison of natural and artificial evolution. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, GECCO ’15, pages 1455–1462,
New York, NY, USA. ACM.

Paixão, T. and Pérez Heredia, J. (2017). An application of stochastic differential equations
to evolutionary algorithms. In Proceedings of the 14th ACM/SIGEVO Conference on
Foundations of Genetic Algorithms, FOGA ’17, pages 3–11, New York, NY, USA. ACM.

Paixão, T., Pérez Heredia, J., Sudholt, D., and Trubenová, B. (2017). Towards a runtime
comparison of natural and artificial evolution. Algorithmica, 78(2):681–713.

Park, S.-C., Neidhart, J., and Krug, J. (2016). Greedy adaptive walks on a correlated fitness
landscape. Journal of Theoretical Biology, 397:89–102.

Pérez Heredia, J. (2017). Modelling evolutionary algorithms with stochastic differential
equations. Evolutionary Computation. To appear.

Pérez Heredia, J., Trubenová, B., Sudholt, D., and Paixão, T. (2017). Selection limits to
adaptive walks on correlated landscapes. Genetics, 205(2):803–825.

Phillips, P. C. (2008). Epistasis–the essential role of gene interactions in the structure and
evolution of genetic systems. Nature Review Genetics, 9(11):855–67.

Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M., and Tans, S. J. (2007). Empirical fitness
landscapes reveal accessible evolutionary paths. Nature, 445(7126):383–6.

Prügel-Bennett, A. (1997). Modelling evolving populations. Journal of Theoretical Biology,
185(1):81–95.

Prügel-Bennett, A. and Shapiro, J. L. (1994). Analysis of genetic algorithms using statistical
mechanics. Physical Review Letters, 72(9):1305.

Rechenberg, I. (1973). Evolutionsstrategie: optimierung technischer systeme nach prinzipien
der biologischen evolution. Frommann-Holzboog.

Reeves, C. (1999). Landscapes, operators and heuristic search. Annals of Operations
Research, 86(0):473–490.

218 References

Rice, S. (2004). Evolutionary Theory: Mathematical and Conceptual Foundations. Sinauer.

Rohlfshagen, P., Lehre, P. K., and Yao, X. (2009). Dynamic evolutionary optimisation: an
analysis of frequency and magnitude of change. In Proceedings of the 2009 Genetic and
Evolutionary Computation Conference (GECCO ’09), pages 1713–1720. ACM Press.

Ross, S. (1996). Stochastic Processes. John Wiley & Sons.

Rowe, J. E. and Sudholt, D. (2014). The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theoretical Computer Science, 545:20–38.

Rudolph, G. (1997a). Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovač.

Rudolph, G. (1997b). How mutation and selection solve long-path problems in polynomial
expected time. Evolutionary Computation, 4(2):195–205.

Rudolph, G. (1998). Finite markov chain results in evolutionary computation: A tour
d’horizon. Fundamenta Informaticae, 35(1-4):67–89.

Sarker, R., Mohammadian, M., and Yao, X. (2002). Evolutionary optimization, volume 48.
Springer Science & Business Media.

Sasaki, G. H. and Hajek, B. (1988). The time complexity of maximum matching by simulated
annealing. Journal of the ACM, 35:387–403.

Schaul, T. (2012). Natural evolution strategies converge on sphere functions. In Proceedings
of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO ’12,
pages 329–336, New York, NY, USA. ACM.

Schwefel, H.-P. P. (1993). Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc., New York, NY, USA.

Sella, G. and Hirsh, A. E. (2005). The application of statistical physics to evolutionary
biology. Proceedings of the National Academy of Sciences of the United States of America,
102(27):9541–9546.

Smith, J. E. (2007). Coevolving memetic algorithms: A review and progress report. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1):6–17.

Stieltjes, T.-J. (1894). Recherches sur les fractions continues. Annales de la Faculté des
sciences de Toulouse : Mathématiques, 8(4):J1–J122.

Stratonovich, R. (1966). A new representation for stochastic integrals and equations. SIAM
Journal on Control.

Sudholt, D. (2008). Computational complexity of evolutionary algorithms, hybridizations,
and swarm intelligence. PhD thesis.

Sudholt, D. (2009). The impact of parametrization in memetic evolutionary algorithms.
Theoretical Computer Science, 410(26):2511–2528.

Sudholt, D. (2011a). Hybridizing evolutionary algorithms with variable-depth search to
overcome local optima. Algorithmica, 59(3):343–368.

References 219

Sudholt, D. (2011b). Using markov-chain mixing time estimates for the analysis of ant
colony optimization. In Proceedings of the 11th Workshop Proceedings on Foundations of
Genetic Algorithms, FOGA ’11, pages 139–150, New York, NY, USA. ACM.

Sudholt, D. (2013). A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 17(3):418–435.

Turing, A. (1948). Intelligent machinery. In Collected Works of A.M. Turing: Mechanical
Intelligence. Elsevier Science, 1992.

Unckless, R. L. and Orr, H. A. (2009). Dobzhansky-muller incompatibilities and adaptation
to a shared environment. Heredity, 102(3):214–217.

Valiant, L. (2013). Probably Approximately Correct: Nature’s Algorithms for Learning and
Prospering in a Complex World. Basic Books, New York, first edition.

Valiant, L. G. (2009). Evolvability. Journal of the ACM, 56(1):3:1–3:21.

Vose, M. D. (1995). Modeling simple genetic algorithms. Evolutionary Computation,
3(4):453–472.

Wallace, A. R. (1855). On the law which has regulated the introduction of new species.
Annals And Magazine of Natural History, 16:184–196.

Wegener, I. (2003). Methods for the analysis of evolutionary algorithms on pseudo-boolean
functions. In Sarker, R., Mohammadian, M., and Yao, X., editors, Evolutionary Optimiza-
tion, volume 48 of International Series in Operations Research & Management Science,
chapter 14, pages 349–369. Kluwer Academic Publishers.

Wegener, I. (2005). Simulated annealing beats Metropolis in combinatorial optimization. In
Proceedings of the 32nd International Colloquium on Automata, Languages and Program-
ming (ICALP ’05), volume 3580 of LNCS, pages 589–601.

Wei, K. and Dinneen, M. J. (2014). Runtime analysis to compare best-improvement and
first-improvement in memetic algorithms. In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation (GECCO ’14), pages 1439–1446. ACM.

Weinberg, W. (1908). Über den Nachweis der Vererbung beim Menschen. Jahreshefte des
Vereins für Vaterländische Naturkunde in Württemberg, (64):369—382.

Weinreich, D. M., Watson, R. A., and Chao, L. (2005). Perspective: sign epistasis and genetic
costraint on evolutionary trajectories. Evolution, 59(6):1165–1174.

Whitlock, M. C., Phillips, P. C., Moore, F. B.-G., and Tonsor, S. J. (1995). Multiple Fitness
Peaks and Epistasis. Annual Review of Ecology and Systematics, 26:601–629.

Wilke, C. O. (2004). The Speed of Adaptation in Large Asexual Populations. Genetics,
167(4):2045–2053.

Witt, C. (2005). Worst-case and average-case approximations by simple randomized search
heuristics. In STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer
Science, Stuttgart, Germany, February 24-26, 2005, Proceedings, pages 44–56.

220 References

Witt, C. (2008). Population size versus runtime of a simple evolutionary algorithm. Theoreti-
cal Computer Science, 403(1):104–120.

Wormald, N. C. (1995). Differential equations for random processes and random graphs.
Ann. Appl. Probab., 5(4):1217–1235.

Wright, A. H. and Rowe, J. E. (2001). Continuous dynamical system models of steady-state
genetic algorithms. In Martin, W. N. and Spears, W. M., editors, Foundations of Genetic
Algorithms 6, pages 209 – 225. Morgan Kaufmann, San Francisco.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution.
Proceedings of the Sixth International Congress on Genetics, 1(6):356–366.

Wright, S. (1937). The distribution of gene frequencies in populations. Proceedings of the
National Academy of Sciences of the United States of America, 23(6):307—320.

Wright, S. (1945). The differential equation of the distribution of gene frequencies.
Proceedings of the National Academy of Sciences of the United States of America,
31(12):382—389.

Yin, G., Rudolph, G., and Schwefel, H.-P. (1995). Analyzing (1,λ) evolution strategy via
stochastic approximation methods. Evolutionary Computation, pages 473–489.

Zhou, Y., Guo, Z., and He, J. (2007). On the running time analysis of the (1+1) evolutionary
algorithm or the subset sum problem. In LSMS (1), volume 4688 of Lecture Notes in
Computer Science, pages 73–82. Springer.

Appendix A

Probability Theory

We assume that the reader is familiar with the basic concepts of probability theory. However,
for the sake of completion, we formally introduce in this appendix the concepts used within
this thesis. Some of the statements are freely adapted from Chapter 1 from the textbook
by Ross (1996) and Chapter 2 from the textbook by Mitzenmacher and Upfal (2005).

Definition A.1 (Expectation). Let X be a discrete random variable that takes values x1,x2,
Then, we define the expectation as

E [X] =
∞

∑
i=1

xi ·Pr(X = xi) .

Definition A.2 (Conditional Expectation). Let X and Y be two random variables, we define
the conditional expectation as

E [X | Y = y] = ∑
x

x ·Pr(X = x | Y = y) .

Lemma A.1 (Linearity of Expectation). Let X and Y be two random variables it holds that

E [X +Y] = E [X]+E [Y] .

Lemma A.2 (Law of Total Expectation). Let X and Y be two random variables it holds that

E [X] = E [E [X | Y]] .

Definition A.3 (Bernoulli Trial). A Bernoulli trial is a random process whose outcome has
only two options: success and failure.

222 Probability Theory

Definition A.4 (Geometric Distribution). Let p be the success probability of a Bernoulli
trial. A geometric distribution counts the number of trials X needed to obtain one success

Pr(X = k) = (1− p)k−1 p.

Lemma A.3. The expectation of a geometric random variable with parameter p is 1/p.

Lemma A.4 (Chernoff Bounds). Let X = X1 + . . .+Xn be the sum of independent random
variables with Xi ∈ {0,1} for all 1≤ i≤ n. Then

Pr(X ≥ (1+δ)E [X])<

(
eδ

(1+δ)1+δ

)E[X]

for δ > 0

Pr(X ≤ (1−δ)E [X])≤

(
e−δ

(1−δ)1−δ

)E[X]

for 0 < δ < 1

Pr(X ≥ (1+δ)E [X])≤ e−E[X]δ 2/3 for 0 < δ < 1

Pr(X ≤ (1−δ)E [X])≤ e−E[X]δ 2/2 for 0 < δ < 1.

Appendix B

Diffusion Theory

This appendix contains the derivations of the diffusion equation omitted from Sections 3.2
and 8.2.

B.1 Kolmogorov Forward Equation

The time evolution of the probability density p(x, t) of any stochastic process Xt can be
described by the Chapman-Kolmogorov equation (see e.g. Feller, 1949)

p(x, t +∆t) =
∫

∆(δ | x) · p(x−δ , t) ·dδ , (B.1)

where ∆(δ | x) is the transition probability of reaching x from x− δ . Let us consider the
left-hand term: after performing a first order Taylor expansion around ∆t = 0 we obtain

p(x, t +∆t)≈ p(x, t)+∆t · ∂ p(x, t)
∂ t

(B.2)

and by Taylor’s theorem we know that the error of this approximation will be of order O(∆t).
Similarly, for the right-hand term of (B.1) we can write the second order Taylor expansion of
∆(δ | x)p(x−δ , t) around x−δ = x yielding

∆(δ | x)p(x−δ , t)≈ ∆(δ | x)p(x, t)−δ · ∂

∂x
(∆(δ | x)p(x, t))+

δ 2

2
· ∂ 2

∂x2 (∆(δ | x)p(x, t)) .
(B.3)

224 Diffusion Theory

Again, by Taylor’s theorem we can estimate the error by O(δ 2). Introducing both approxi-
mations in (B.1) and noticing that p no longer depends on δ we can write

p(x, t)+∆t · ∂ p(x, t)
∂ t

≈ p(x, t) ·
∫

∆(δ | x)dδ︸ ︷︷ ︸
1

− ∂

∂x

p(x, t) ·
∫

δ ·∆(δ | x)dδ︸ ︷︷ ︸
E(∆)



+
1
2
· ∂ 2

∂x2

p(x, t) ·
∫

δ
2 ·∆(δ | x)dδ︸ ︷︷ ︸

E(∆2)

 .

As outlined in the equation above, we can identify these integrals with the statistical moments
of ∆ leading to the well-known diffusion or Kolmogorov forward equation

∆t · ∂ p(x, t)
∂ t

≈− ∂

∂x
(p(x, t) ·E [∆])+

1
2
· ∂

∂x2

(
p(x, t) ·E

[
∆

2]) . (B.4)

B.2 Kolmogorov Backward Equation

To derive the Kolmogorov backward equation we follow similar steps as in the previous
section. But first, we have to rewrite Equation (B.1) by taking into consideration the starting
state of the stochastic process of interest X(t = 0) := x0.

p(x, t +∆t | x0) =
∫

∆(δ | x0) · p(x, t | x0 +δ) ·dδ . (B.5)

Let us consider the left-hand term: after performing a first order Taylor expansion around
∆t = 0 we obtain

p(x, t +∆t | x0)≈ p(x, t | x0)+∆t · ∂ p(x, t | x0)

∂ t
. (B.6)

Again, by Taylor’s theorem we know that the error of this approximation will be of order
O(∆t). Similarly, for the right-hand term of (B.5) we can write the second order Taylor

B.2 Kolmogorov Backward Equation 225

expansion of p(x, t | x0 +δ) around δ = 0 yielding

p(x, t | x0 +δ)≈ p(x, t | x0)+δ · ∂ p(x, t | x0)

∂x0
+

δ 2

2
· ∂

2 p(x, t | x0)

∂x2
0

. (B.7)

Again, by Taylor’s theorem we can estimate the error by O(δ 2). Introducing both approxi-
mations in (B.1) and noticing that p no longer depends on δ or we can write

p(x, t | x0)+∆t · ∂ p(x, t | x0)

∂ t
≈ p(x, t | x0) ·

∫
∆(δ | x0)dδ︸ ︷︷ ︸

1

+
∂ p(x, t | x0)

∂x0

∫
δ ·∆(δ | x0)dδ︸ ︷︷ ︸

E(∆)

+
1
2
· ∂

2 p(x, t | x0)

∂x2
0

∫
δ

2 ·∆(δ | x0)dδ︸ ︷︷ ︸
E(∆2)

.

As outlined in the equation above, we can identify these integrals with the statistical moments
of ∆, leading to the well-known diffusion or Kolmogorov backward equation

∆t · ∂ p(x, t | x0)

∂ t
≈ E [∆] · ∂ p(x, t | x0)

∂x0
+

E
[
∆2]
2
· ∂ p(x, t | x0)

∂x2
0

. (B.8)

	Table of contents
	Nomenclature
	I Introduction and Background
	1 Introduction
	1.1 Underlying Publications

	2 Evolutionary Algorithms
	2.1 Fitness Functions
	2.2 Trajectory-Based Algorithms
	2.2.1 Mutation Operator
	2.2.2 Selection Operator
	2.2.3 Popular Trajectory-Based Heuristics

	2.3 Runtime Analysis of Evolutionary Algorithms
	2.3.1 Markov Chains
	2.3.2 Gambler's Ruin Problem
	2.3.3 The Coupon Collector Problem
	2.3.4 Drift Analysis

	2.4 Fixed Budget

	3 Population Genetics
	3.1 Selection, Mutation and Genetic Drift
	3.1.1 Selection
	3.1.2 Mutation
	3.1.3 Genetic Drift

	3.2 Diffusion Theory
	3.2.1 Mutation, Selection and Genetic Drift under Diffusion Theory
	3.2.2 Probability of Fixation
	3.2.3 The Strong Selection Weak Mutation Regime

	II Runtime Analysis of a Natural Evolutionary Regime
	4 Runtime Analysis and the Speed of Adaption
	4.1 SSWM as a Trajectory-Based Algorithm
	4.2 Understanding the Fixation Probability
	4.3 Conclusions

	5 Speed of Adaptation in Additive Landscapes
	5.1 Simple Hill Climbing Tasks
	5.2 Fitness Ridges
	5.3 Adaptation in a General Class of Landscapes
	5.4 Detecting the Steepest Slope
	5.5 Conclusions

	6 When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys
	6.1 Long Paths
	6.2 Crossing Simple Valleys
	6.2.1 Analysis for the (1+1) EA
	6.2.2 A General Framework for Local Search Algorithms
	6.2.3 Application to SSWM
	6.2.4 Application to the Metropolis algorithm

	6.3 Crossing Concatenated Valleys
	6.3.1 Application for SSWM and the Metropolis algorithm

	6.4 Global Mutations Speed-up Sharp Cliff Optimisation
	6.5 Conclusions
	Appendix 6.A Omitted Proofs from Subsection 6.2.2
	Appendix 6.B Omitted Proofs from Subsection 6.2.4
	Appendix 6.C Omitted Proofs from Section 6.4

	7 When is it Beneficial to Reject Improvements?
	7.1 A Common Stationary distribution
	7.2 A 3 State Model
	7.2.1 Experiments

	7.3 A 5 State Model
	7.3.1 An Example Where SSWM Outperforms the Metropolis algorithm
	7.3.2 Experiments

	7.4 When is it Beneficial to Exploit?
	7.4.1 Analysis for the 3 State Model
	7.4.2 Analysis for the 5 State Model
	7.4.3 Experiments

	7.5 Conclusions

	III An Application of Stochastic Differential Equations to Evolutionary Algorithms
	8 Modelling Evolutionary Algorithms with Stochastic Differential Equations
	8.1 Stochastic Differential Equations
	8.2 The Diffusion Approximation
	8.2.1 Are Evolutionary Algorithms Diffusive Processes?

	8.3 Drift Theorems for Fixed Budget Analysis
	8.3.1 Additive Drift
	8.3.2 Multiplicative Drift
	8.3.3 Non-elitist Multiplicative Drift

	8.4 Applications
	8.4.1 Elitist Algorithms on LeadingOnes
	8.4.2 Elitist Algorithms on OneMax
	8.4.3 Non-Elitist Algorithms on OneMax

	8.5 Validation of the Diffusion Approximation
	8.5.1 Comparison with the Literature
	8.5.2 Stationary Distribution
	8.5.3 Reconciling Fixed Budget with Runtime Analysis
	8.5.4 Simulations
	8.5.5 Experimental Error

	8.6 Conclusions

	IV Conclusions and Outlook
	9 Conclusions
	References
	Appendix A Probability Theory
	Appendix B Diffusion Theory
	B.1 Kolmogorov Forward Equation
	B.2 Kolmogorov Backward Equation

