
Allocation and Optimisation of

Mixed Criticality Cyclic Executives

Thomas David Fleming

Doctor Of Philosophy

University Of York

Computer Science

June 2017





3

Abstract

Incorporating applications of differing levels of criticality onto the same platform in

an efficient manner is a challenging problem. Highly critical applications require

stringent verification and certification while lower criticality work may seek to make

greater use of modern processing power with little to no requirement for verifica-

tion. Much study into mixed criticality systems has considered this issue by taking

scheduling paradigms designed to provide good platform utilisation at the expense

of predictability and attempting to provide mechanisms that will allow for the ver-

ification of higher criticality work. In this thesis we take the alternative approach,

we utilise a cyclic executive scheduler. Such schedulers are used extensively in in-

dustrial practice and provide very high levels of determinism making them a strong

choice for applications with strict certification requirements. This work provides a

platform which supports the highly critical work, alongside work of lower criticalities

in a cyclic executive context. The aim being to provide a near-future platform which

is able to support existing legacy highly critical software alongside newer less criti-

cal software which seeks to utilise multi-core architectures. One of the fundamental

challenges of designing a system for a static scheduler is the allocation of applica-

tions/tasks to the cores and, in the case of cyclic executives, minor cycles of the

system. Throughout this work we explore task allocation, we make extensive use

of Linear Programming to model and allocate work. We suggest a limited task split-

ting technique to aid in system design and allocation. Finally, we propose two ways

in which an allocation of work might be optimised to meet some design goal. This

thesis proposes a scheduling policy for mixed criticality multi-core systems using a

cyclic executive scheduler and explores the design, allocation and optimisation of

such a system.
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Chapter 1

Introduction

Real-time applications are becoming increasingly complex due to advancements

in both technology and hardware. The increase in complexity and the available

resources is leading to a demand for more centralised architectures. Previously,

different functionality would often be handled on many different nodes. If some

functionality is deemed more important than another it is physically separated in

hardware. The advent of powerful consolidated architectures creates a situation

where it is desirable to execute applications of multiple levels of importance or

Criticality on the same platform, such a system is known as a Mixed Criticality

(MC) system.

1.1 Mixed Criticality

A mixed criticality system can be defined as: A system which contains applica-

tions of two or more different levels of criticality [81]. Examples of mixed criticality

systems include:

• An Un-manned Aerial Vehicle (UAV). Alongside the highly critical flight con-

trols, such a system must also include navigation and mission systems. This

might even extend to computer vision applications when a camera is em-

ployed for image recognition and/or weapons management. In this scenario

the advantage of mixed criticality is in increasing capability while reducing

space, weight and power requirements.
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• Modern Cars. Modern cars look to reduce the number of processing nodes

and may potentially wish to execute applications which manage the anti-lock

brakes (ABS) alongside less critical applications such as climate control. The

advantage for the automotive domain is reduced hardware cost in mass pro-

duction.

Many real-time applications require certification in order to be deployed, for ex-

ample, systems in the aerospace or automotive domain. A fundamental argument

must be made about the function of an application and its sufficient isolation from

other components in the system. Previously, this was largely achieved by physi-

cally separating functions with different levels of criticality. Criticality levels are of-

ten defined by the industrial domain, aerospace might use DAL (Design Assurance

Levels1) and the automotive industry might use ASIL (Automotive Safety Integrity

Levels2). However, when presented with a situation where all system components

share the same hardware, new mechanisms are required to guarantee suitable

isolation and safety.

The challenges of isolation are pushed further when the architecture of mod-

ern hardware is considered. Increasing the speed of a platform is no longer about

an increase in clock speed, multi-core CPUs are the method of choice to improve

performance. Multiple CPUs introduces the potential for parallel execution of work

which is problematic for real-time applications. Real-time applications often require

strict verification, the addition of multiple cores with many more points of interfer-

ence is challenging. In addition, from the mixed criticality perspective it is important

to ensure that no work of a higher criticality level may suffer interference from that

of a lower level (or at least any interference suffered is strictly bounded).

1.2 Cyclic Executive

Cyclic Executives (CE) are a well established and understood scheduling technique

used extensively in industry. Their popularity is due to their highly deterministic

nature, thus providing a scheduling policy whose execution is easy to verify and

1https://www.rtca.org/, http://www.eurocae.net/
2https://www.iso.org/

https://www.rtca.org/
http://www.eurocae.net/
https://www.iso.org/
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therefore certify. The basic structure of a cyclic executive is as follows:

All execution is contained within a major cycle of length TM . Once completed,

the major cycle repeats execution from the start in a cyclic manner. Within the

major cycle are a number of minor cycles of length T F , typically these are the

same length. This structure imparts some constraints on the cyclic executive:

• Tasks must have periods that are multiples of the minor cycle.

• Tasks must have periods that are no greater than the major cycle.

• Tasks must have deadlines greater than or equal to the minor cycle.

The cyclic executive structure is illustrated in Figure 1.1:

TM

TF TF TF TF

Figure 1.1: An illustration of the Cyclic Executive Structure.

Figure 1.1 illustrates the cyclic executive structure with a major cycle comprised

of four minor cycles. While the requirements for a cyclic executive system are

clearly restrictive, requiring tasks to adhere to a number of constraints, their advan-

tage lies in their high level of determinism. As such, cyclic executives are favoured

in hard real-time scenarios where predictability and the verification of execution are

paramount.

Mixed criticality functionality may be introduced to cyclic executives via the tem-

poral separation of execution of differing criticality levels. This is done such that no

work of one level of criticality may interfere with another. Criticality levels may then

be executed, highest first, until all work has completed. While this complete sep-

aration seems restrictive when compared to more dynamic approaches, it allows

mixed criticality functionality in cyclic executive systems while maintaining their rep-

utation for predictability and determinism.

While cyclic executives are known for a high level of determinism, they are also

notorious for poor overall system utilisation. Key to understanding and tackling this

issue is an effective means of task allocation. Is is clear from the structure of the

cyclic executive that this is an important and difficult problem.
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1.3 Linear Programming

A mixed criticality multi-core cyclic executive presents a complex allocation prob-

lem. Such a problem is akin to the well documented bin-packing problem. A stan-

dard approach might be to consider a heuristic allocation solution such as worst

fit to allocate work to cores and minor cycles. However, given the NP-Hard nature

of MC scheduling [59] a more intensive but optimal approach can be considered.

Linear Programming (LP) [32] is a means of optimising, either maximising or min-

imising some linear function. The origins of the current formulation can be traced

back to WWII where it was primarily used to solve logistical problems. Linear Pro-

gramming may be used to determine an optimal assignment of work to cores and

minor cycles. In this case optimality is defined such that if an allocation exists, the

LP will find it.

An Integer Linear Program (ILP) [32] may be defined and run as a feasibility test

(with no optimisation goal required) in order to determine an optimal allocation of

tasks to minor cycles and CPU cores. Being a feasibility test it becomes an efficient

allocation process. Utilisation of a platform may be increased further from the

initial ILP model by making use of Mixed Linear Programming (MLP). Mixed Linear

Programs use both integer and continuous variables to represent tasks which may

and may not split. Splitting even a small number of tasks can greatly increase

the overall utilisation and schedulability of a system. Finally, we may use linear

programming tools to optimise an allocation toward a certain goal, giving a system

designer freedom to investigate multiple allocations.

1.4 Thesis Hypothesis and Contributions

Mixed Criticality Cyclic Executives provide an attractive platform for highly critical

near-future systems. The challenge of allocating tasks to the platform, providing

support for design and aiding in allocation optimisation can be achieved through

the use of Linear Programming.

The allocation and optimisation of mixed criticality cyclic executives is funda-

mental to the design of such systems. Linear Programming tools can be used to

address this problem. Powerful solvers exist (such as Gurobi [45]) which are able
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to effectively and efficiently solve the allocation problems. The key contributions of

this work are as follows:

• Our work provides a means of supporting mixed criticality workloads on multi-

core platforms scheduled as a cyclic executive. We take a conservative ap-

proach (in-line with industrial practice), completely separating criticality levels

and utilise a barrier in order to achieve improved schedulability. We assume

a simplistic multi-core platform (platform features such as cache, memory,

pipeling and multithreading are not considered), all tasks are assumed to

be independent. Tasks will always execute as allocated (interrupts are not

considered) and any context switching costs are assumed to be negligible.

• In Chapter 3 we consider the allocation of tasks to a multi-core cyclic exec-

utive utilising a number of heuristic approaches and a linear programming

solver. We show that while heuristics are sufficient for a simpler case, the lin-

ear programming solver outperforms them as the complexity of the allocation

is increased.

• Evaluations undertaken in Chapters 3, 4 and 5 illustrate that our Linear Pro-

gramming based allocation approach is effective and reasonably efficient as

an offline tool for system prototyping and design.

• We develop a Linear Programming model to represent our cyclic executive

allocation problem in Chapter 3.

• We extended the Linear Programming model in Chapter 4 to provide limited

task splitting. We show that the splitting of both HI and LO criticality tasks can

improve the overall scheduability of a system. Simply splitting 1 or 2 larger

tasks is shown to have a big impact of the feasibility of a task set.

• In Chapter 5 we propose two possible optimisations and apply them to our

linear programming model. Firstly we show that our model can be used to

maximise the space capacity available during the execution of a particular

criticality level. Secondly we present an optimisation which seeks to reduce

the number of cores utilised by HI criticality tasks with a view to reducing

overheads and the cost of verification and certification.
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• In Chapter 6 we apply the approaches from Chapters 3, 4 and 5 to an indus-

trial case study based on a real avionics system provided by BAE Systems.

We describe and discuss the nature of the case study and illustrate that our

techniques can be successfully and efficiently applied to a real-world exam-

ple.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter Two provides an overview of work related to the subject of the thesis.

A broad understanding of mixed criticality literature is presented alongside

more detailed focus on work more relevant to the thesis.

• Chapter Three begins the technical work by presenting an investigation into

standard task allocation and the development of a Linear Programming model

to facilitate this.

• Chapter Four considers the notion of limited task splitting to aid in system

design. Mixed Linear Programming is utilised, this sees the solver making

decisions about where and how tasks may be split.

• Chapter Five investigates how the optimisation power of Linear Programming

may be used to influence the allocation of tasks to achieve a specific goal.

• Chapter Six applies the techniques developed in chapters three, four and five

to an industrial case study.

• Chapter Seven concludes the thesis.
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Chapter 2

Related Work

A mixed criticality system can be defined as A system with applications of two or

more levels of criticality executing on the same hardware platform [81]. The critical-

ity level of an application depends on the level of rigour required for its verification

and certification. Standards defining levels of rigour are already defined in some

industrial domains. Safety Integrity Levels (SIL) (defined in IEC 615801) are used

across a wide number of domains including; nuclear, railway and automotive. ASIL

(Automotive Safety Integrity Levels) (defined in ISO 262622) are a similar notion

specifically tailored to the automotive domain. Aerospace also makes use of De-

sign Assurance Levels (DAL), similar to other levels specified above, these are

defined in the DO-178B/C3 safety standard. Each of these level definitions provide

4 or 5 different levels defined by failure rates, with the highest level often requiring

a rate of at most 10−9 failures per hour and the lowest level often being best effort.

Criticality levels are a more general term for such standards, they are a notion of

the required isolation and assurance for a particular application. A mixed criticality

system seeks to execute applications of two or more levels on a single platform,

the challenge is to maintain the required level of assurance for each.

Much of the current mixed criticality literature can trace its routes back to the

seminal paper by Vestal [81] in 2007. Vestal presented a mixed criticality task

model which became the backbone for the majority of subsequent work. Vestal’s

task model is based on the assumption that each given level of criticality comes

1http://www.61508.org/
2https://www.iso.org/
3https://www.rtca.org/, http://www.eurocae.net/

http://www.61508.org/
https://www.iso.org/
https://www.rtca.org/
http://www.eurocae.net/
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with its own requirements for verification and analysis. As such, a task may have

a Worst Case Execution Time (WCET) verified at its level of criticality and each

level below. Crucially, Vestal assumes that given two levels of criticality HI and LO

(where HI is a higher criticality level than LO), the WCETs derived at each level

for task τi follow the rule Ci(HI) ≥ Ci(LO). In other words, the WCET of a task

at a higher criticality level is always greater than or equal to the WCET at a lower

criticality level. This relationship is due to increasingly strigent certification and ver-

ification processes applied as the level of criticality is incresed, resulting it a higher

level of pesimmism and larger WCETs. The remainder of Vestal’s work focuses on

a Fixed Priority (FP) model and provides the first mixed criticality analysis. This

analysis however, assumes that all applications in a system are verified to a single

level of criticality, therefore the highest level of criticality. In addition, he notes that

Rate Monotonic [61] and Deadline Monotonic [5] priority orders are not optimal for

the mixed criticality case. Key to the work in this thesis is the definition of the initial

mixed criticality model with the notion of a WCET for each criticality level.

This chapter provides a review of related mixed criticality work. We begin a defi-

nition of the mixed criticality model in Section 2.1. We provide a general overview of

mixed criticality scheduling on uni-processors in 2.2. Moving on to multi-processor

scheduling in Section 2.3. Section 2.4 discusses the use of linear programming

in a mixed criticality context. Section 2.5 discusses the use of cyclic executives,

both in their simple and mixed criticality forms. Section 2.6 discusses the use of a

barrier mechanism. Finally, Section 2.7 summarises the chapter.

2.1 The System Model

This section defines the general mixed criticality model employed by much of the

literature. A mixed criticality system can be defined as a finite set of components

K. Each K is assigned a criticality level, L, and is made up of a finite set of

tasks. Each task, τi, is defined as τi = {Ci, Ti, Di, Li} where Ci is the computation

time, Ti is the period (minimum inter-arrival time), Di is the deadline and Li is the

criticality level. Each task gives rise to an unbounded series of jobs.

Vestal [81] observed an important relationship between the Worst Case Execu-

tion Time (WCET) estimation of a task and its criticality level. He observed that, as
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the criticality level of a task increases so does its assigned WCET. Vestal reasons

that this is due to increased pessimism involved in the analysis at higher critical-

ity levels, resulting in larger WCET values. Burns and Baruah [28] note that it is

also possible for a task to have criticality dependent minimum inter-arrival times

(periods), the shorter the period, the higher the criticality level. This might be due

to a task that is required to execute with increased frequency in a high criticality

environment. This issue has been considered further in [14, 28, 10].

From this we can redefine our model to include vectors of values for both the

WCET and the period, one for each criticality level, τi = {
−→
Ci,
−→
Ti , Di, Li} where

−→
C

and
−→
T are vectors, one value for each criticality level. These vectors conform to

the following, for any two criticality levels L1 & L2:

L1 > L2 =⇒ C(L1) ≥ C(L2)

L1 > L2 =⇒ T (L1) ≤ T (L2)

The possibility of a criticality dependent deadline has also been considered in

[14]. Such a situation might entail a task having a shorter deadline for good quality

of service and a longer safety critical deadline. This relationship would conform to

the following:

L1 > L2 =⇒ D(L1) ≥ D(L2)

A system is able to utilise the model with its vectors of values, by adopting

criticality change functionality. For a system with two criticality levels, L1 & L2

where L1>L2 (dual criticality) its behaviour would be as follows. The system would

begin execution in the lower mode, L2, if any L1 criticality task executes to its L2

WCET budget without signalling completion, a criticality change would occur and

the system would move into the higher criticality mode, L1. What happens to the

L2 tasks when the system is executing in the L1 mode varies between approaches,

but L1 tasks are allowed to execute up to their L1 WCETs, often at the expense of

L2 tasks.

It is worth noting that Vestal’s approach is based upon the assumption that the

system designer’s predictions for the lowest criticality level will be correct and that

the system executing beyond these bounds is highly unlikely. The approach is a
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means of providing the guarantees required by certification authorities while main-

taining good system utilisation. As such only a rise in criticality level is considered.

We note a number of key definitions:

• Criticality Level of a task: This refers to, the criticality level of a particular

task, e.g. X is a HI criticality task.

• Criticality Level of the system: This refers to the current criticality level (or

mode) that the system is executing in, e.g. the system is executing in the LO

criticality mode. In general during execution at criticality level (mode) Li it is

assumed that only tasks of whose criticality level is greater than or equal to

Li are provided guarantees that they will complete by their deadlines.

• Assurance: This is the degree of rigour require to satisfy a certification au-

thority that a task will complete within the WCET provided at a particular

criticality level. In general higher levels of rigour/assurance are required for

higher criticality tasks.

2.1.1 An alternative approach to multiple WCETs

In the main portion of this chapter we described how each criticality level is associ-

ated with a WCET of its own. However, throughout this thesis we assume a slightly

different model. While we permit multiple criticality levels, a task may have only 2

WCET values. One value at its own criticality level Ci(Li) and one at the lowest

level in the system Ci(LO) [29]. We define only two WCET estimates regardless of

the number of distinct criticality levels as we view it as unlikely that a task will have

the verification techniques of each level applied to it. Rather it need only have the

techniques used for its own criticality level and those used for the lowest criticality

level. Further mention and support for this model can be found in [27] and [64].

With the dual WCET model we describe the run-time and mode change func-

tionality of a generic system. Each task has two WCET estimates, one for the

lowest level in the system Ci(LO) and one at its own criticality level Ci(Li). At any

time, a task, τi, is in one of three possible states.

• The criticality level of the system is less than its own, thus it is executing

using its Ci(LO) WCET value.
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• The criticality level of the system is equal to its own, thus it is executing using

its own WCET value Ci(Li).

• The criticality level of the system is greater than its own, thus the task is not

guaranteed to execute.

For example, consider a set of tasks spread across 3 criticality levels, level L1

being the highest and level L3 the lowest. The system begins execution at level

L3, if any level L2 orL1 task exceeds its L3 WCET estimation the system moves

into executing at criticality level L2. Level L2 tasks now execute at the estimation

based on their own criticality level, level L1 tasks continue to execute using the L3

estimation. If any level L1 task exceeds its L3 WCET estimation the system moves

into the highest criticality mode, all work apart from level L1 tasks are suspended,

level L1 tasks may execute to their maximum WCET obtained using verification

techniques required at their own criticality level.

Further discussion on the run-time of our cyclic executive mixed criticality model

can be found in Chapter 3.

2.2 Uni-processor Scheduling

This section will describe the fundamental advances in mixed criticality uni-processor

scheduling. We begin with fixed priority work initially instigated by Vestal [81] and

move later to discuss Earliest Deadline First (EDF) and other policies.

2.2.1 Fixed Priority

The use of fixed priority scheduling in mixed criticality work began with Vestal’s

seminal 2007 work [81]. He defines the model below:

τi = {
−−−−→
Ci(Li), Ti, Di, Li)} (2.1)

Where Ti is the period, Di is the deadline, Li is the criticality level and
−−−−→
Ci(Li)

is a vector of WCET values, one for each criticality level in the system. Vestal

proposes a simple schedulability test based on standard Fixed Priority analysis,

this test is given in equation (2.2):
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Ri = Ci(Li) +
∑

τj∈hp(τi)

⌈
Ri

Tj

⌉
Cj(Li) (2.2)

This equation aims to calculate the response time, Ri, of task τi. If Ri ≤ Di the

task is schedulable. This equation uses τi ∈ hp(τi) to refer to all tasks (τj) with a

higher priority than τi. This equation is solved in a recursive fashion, replacing the

resulting value of Ri back into the equation and re-calculating the result. When two

successive values of Ri are equal iteration ceases and the response time of the

task has been found. In this calculation the interference included for each higher

priority task must use WCET values at the current tasks criticality level. As such,

for a LO criticality task to have a higher priority than a HI criticality task it must be

verified to the same level of assurance.

A fundamental evolution in both the system model and Fixed Priority analysis

came in 2011 with a publication by Baruah et al. [15]. This evolution focused on

the definition of two new FP scheduling schemes.

Static Mixed Criticality

Static Mixed Criticality (SMC) is a scheduling policy designed, in principle, to tackle

the problem of criticality inversion. During the response time analysis proposed by

Vestal [81] shown in equation (2.2) interference is considered from all tasks of

a higher priority. Such tasks might have one of 3 relations depending on their

criticality level.

1. If the criticality levels are equal, eg. Li = Lj . In this case the value Cj(Lj)

may be used as the level of assurance is the same.

2. If the criticality level of the interfering task is greater, Li < Lj . In this case,

the value Cj(Lj) is unnecessary, rather a value at the level of assurance Li

should be used, Cj(Li).

3. If the criticality level of the interfering task is less than the current task, Li >

Lj . Previously, in this situation the lower criticality task must also have a

WCET at the same level of assurance as the task in question, giving Cj(Li).

However verifying tasks to an unnecessary level of criticality is prohibitively
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expensive. As such the WCET of a task is given at its own criticality level,

Cj(Lj), under promise of some assurance at run-time that this value is not

exceeded.

Fundamentally, SMC introduces two new concepts. Firstly, each task need only

be verified to its own level of assurance (criticality level) and those below. If dur-

ing response time analysis the task in question is of a lower level of criticality the

WCET used for the interfering task may be of that criticality level rather than its

own. Secondly, some simplistic run-time monitoring is advantageous as it provides

a guarantee that no task will exceed its WCET at its own criticality level.

SMC has two forms of response time analysis:

• SMC-NO: The first is SMC-NO, or Static Mixed Criticality with No Run-time

Monitoring. SMC-NO is equivalent to Vestal’s original algorithm and is shown

in equation (2.2).

• SMC: The new Static Mixed Criticality algorithm utilises run-time monitoring

to ensure that tasks need only be verified up to their own level of assurance

(criticality level). The response time equation is shown in equation (2.3).

Ri = Ci(Li) +
∑

τj∈hp(τi)

⌈
Ri

Tj

⌉
Cj(min(Li, Lj)) (2.3)

Equation (2.3) uses min(Li, Lj) to indicate that if the τi has a lower criticality

than τj the value Cj(Li) should be used, but if it has a greater criticality level Cj(Lj)

should be used.

Adaptive Mixed Criticality

Adaptive Mixed Criticality (AMC) built upon the notion of using run-time monitoring

in order to better utilise platform resources. For a high criticality task, the WCET

provided is often the result of very stringent analysis and, as such, is typically

very pessimistic. Such pessimism is often driven by safety standards which result

in margins of error being added to the predicted WCETs. While the WCETs at

the highest level are very pessimistic, the execution times may be much lower in
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practice. AMC takes advantage of this pessimism by allowing high criticality tasks

to use the WCETs provided by assurance methods at lower levels of criticality. This

is permitted on the assumption that, if the WCET at the lower criticality levels is

exceeded, the task may still be given enough execution time to allow it to execute

to its WCET at its own high criticality level. This is perhaps best illustrated by

considering the runtime of AMC where there are two criticality levels, LO and HI

(where HI > LO and thus C(HI) ≥ C(LO):

• The system begins execution in the LO criticality mode.

• If all tasks execute within their C(LO) execution times, the system remains

in the LO mode.

• If a HI criticality task executes up to its C(LO) WCET without signalling that

it has completed, a criticality change occurs from LO to HI.

• With the system in the HI criticality mode, LO criticality work is suspended

(although LO criticality work currently pre-empted is allowed to complete)

and HI criticality work is permitted to execute up to its maximum HI WCET

(C(HI).

Two schedulability tests were proposed for AMC [15], however, both share the

same general principles as to which parts of the execution must be analysed. A

three phase approach is required when considering a dual criticality system (HI /

LO):

• Assess the schedulability of the LO criticality mode during which all tasks

execute.

• Assess the schedulability of the HI criticality mode with only the HI criticality

tasks executing.

• Assess the schedulability of the criticality change.

We begin by describing the first method, AMCrtb [15].
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AMC-rtb

Adaptive Mixed Criticality - response time bound (AMCrtb) is a schedulability test

for AMC systems. As stated above, three phases must be assessed. Phases one

and two are stable (no mode change) and thus use analysis similar to that seen in

equations (2.2) & (2.3):

Phase One: Check the schedulability tasks in the LO criticality mode.

Ri(LO) = Ci(LO) +
∑

τj∈hp(τi)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (2.4)

Where hp is the set of higher priority tasks.

Phase Two: Check the schedulability of tasks in the HI criticality mode.

Ri(HI) = Ci(HI) +
∑

τj∈hpH(τi)

⌈
Ri(HI)

Tj

⌉
Cj(HI) (2.5)

Where hpH is the set of higher priority, higher criticality tasks.

Phase Three: Finally, phase three must establish the schedulability of the criticality

change itself, the response time (Ri(LO) calculated in equation (2.4) is required.

R∗i (HI) = Ci(HI) +
∑

τj∈hpH(τi)

⌈
R∗i (HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(τi)

⌈
Ri(LO)

Tk

⌉
Ck(LO)

(2.6)

Where hpH is the set of higher priority higher criticality tasks and hpL is the set

of higher priority lower criticality tasks. The static value Ri(LO) calculated earlier

in equation (2.4) is used to bound the potential interference from LO criticality tasks

during a criticality change as after the criticality change, all LO criticality tasks are

suspended.

AMCmax

Adaptive Mixed Criticality - max (AMCmax) is an alternative approach for testing

AMC schedulability which slightly outperforms AMCrtb at the cost of efficiency. The
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premise of AMCmax is based on the idea that the criticality change can only occur

at a finite number of points. In our model these points are when a task finishes its

execution at the LO criticality level without signalling completion. AMCmax consid-

ers each of these points, searching for the worst case point of criticality change.

Given an allocation of tasks one may identify each completion time of a task

in the low criticality mode. A point where a criticality change could occur is noted

as time s. Given that there are a finite number of points of s, the number of points

considered as possible change locations may be reduced to some time between

time 0 and the LO response time of the given task (Ri(LO)). Figure 2.1 illustrates

the points of s showing which points we must consider.

Low Execution

High Execution

Time s

Ri(LO)

Ri(HI)

IL(s)

IH(s)

Figure 2.1: An illustration of the workings of AMCmax.

Figure 2.1 also illustrates the two segments of interference which must be ac-

counted for, once a point of s has been selected. IL(s) is the interference during

the LO criticality mode execution and IH(s) is the interference during the HI criti-

cality mode execution. As such the response time of a given HI criticality task is

given by equation (2.7):

Rs
i (HI) = Ci(HI) + IL(s) + IH(s) (2.7)

Firstly, the low interference given in IL(s) is calculated using the algorithm

shown in equation (2.8).

IL(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO) (2.8)
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This uses standard response time analysis techniques, differing slightly by mak-

ing use of floor + 1 rather than ceiling. Floor + 1 is used to ensure that all tasks are

accounted for, even those just released. This algorithm is also used for all tasks to

assess their LO criticality response times, in this case Ri(LO) is substituted for s

and IL(s).

Calculating the HI criticality interference IH(s) is more involved. The HI critical-

ity execution is considered as an interval of length ts (where t > s). t represents

the response time of the task and is the value updated over each iteration of the

algorithm. They begin by calculating the number of releases during the interval ts.

⌈
t− s− (Tk −Dk)

Tk

⌉
+ 1

A function M is defined to calculate the HI criticality interference. Three input

parameters are given, k - the task, s - time and t - the response time. The function

is shown in equation (2.9):

M(k, s, t) = min

{⌈
t− s− (Tk −Dk)

Tk

⌉
+ 1,

⌈
t

Tk

⌉}
(2.9)

Ceiling + 1 is used to ensure all tasks are accounted for, despite a slight in-

crease in pessimism. Given the value returned by M the LO criticality interference

can be established.

(⌈
t

Tk

⌉
−M(k, s, t)

)
Ck(LO)

As such IH(s) is given in equation (2.10):

IH(s) =
∑

k∈hpH(i)

{
(M(k, s, t)Ck(HI))+

((⌈
t

Tk

⌉
−M(k, s, t)

)
Ck(LO)

)}
(2.10)

Finally, they declare the full calculation calculating both LO and HI criticality
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interference, shown in equation (2.11):

Rs
i =

∑
j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)+

∑
k∈hpH(i)

{
(M(k, s, Rs

i )Ck(HI))+((⌈
Rs
i

Tk

⌉
−M(k, s, Rs

i )

)
Ck(LO)

)} (2.11)

With:

Ri = max(Rs
i )∀s

It is clear that AMC-max is a much more intensive schedulability solution and is

considered intractable due to scalability issues.

AMC - extension to multiple criticality levels

AMC has been extended to include greater than two levels of criticality by Fleming

and Burns [38]4. They extend both AMC techniques, AMCrtb and AMCmax as well

as adapting several other well known prior approaches such as, SMC and Period

Transformation (PT). Below we show, in detail, the extension for AMCrtb and briefly

cover the extension to AMCmax.

Where the analysis for AMCrtb (described above) for a dual criticality system

is a three stage process, the extension on n criticality levels can be defined in two

stages.

- Stage 1: The test must consider whether the task set is schedulable when

executing at each criticality level in the system. In a system with 5 criticality levels,

where L1 > L5, each criticality level must be checked. It is possible to illustrate

this by showing the complete process for calculating the interference suffered by

an L5 task, this is shown in equation (2.12).

4This work is referenced as while it was undertaken by the author of this thesis, it was included
as part of a prior degree.
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Ri(L5) = Ci(L5)+
∑

j∈hp(i)|Lj=L4

⌈
Ri(L5)

Tj

⌉
Cj(L5) +

∑
k∈hp(i)|Lk=L3

⌈
Ri(L5)

Tk

⌉
Ck(L5) +

∑
l∈hp(i)|Ll=L2

⌈
Ri(L5)

Tl

⌉
Cl(L5) +

∑
m∈hp(i)|Lm=L1

⌈
Ri(L5)

Tm

⌉
Cm(L5)

(2.12)

The interference of all higher priority tasks is considered with interfering tasks

executing to their L5 execution times. This test is then repeated for each criticality

level. Fleming and Burns [38] generalise this equation to account for n possible

criticality levels.

For each criticality level:

∀L ∈ 1 . . . n

For all tasks where the criticality level is greater than or equal to L:

∀τi|Li ≥ L

Calculate the response times for that level.

Ri(L) = Ci(L) +
∑

j∈hp(i)|Lj≥L

⌈
Ri(L)

Tj

⌉
Cj(L) (2.13)

Equation (2.13) shows the generalised equation considering the interference

suffered by τi at criticality level L. This test is carried out for each criticality level. If

any level fails this test, the system is considered unschedulable.

- Stage 2: This stage is equivalent to Stage 3 of the dual criticality analysis

as it considers the criticality change. Two segments of interference are identified;

interference from higher priority tasks with a criticality level greater than or equal to

the current level and interference from higher priority but lower criticality tasks. The

first segment of interference can be calculated in the same way as each criticality

level was calculated. The latter form of interference will have a bounded impact
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on the overall response time of the task in question due to AMC suspending lower

criticality tasks when a criticality change occurs.

Fleming and Burns [38] show the effect of higher priority but lower criticality

tasks. They consider the effect on τi from a lower criticality but higher priority task

τk.

∑
k∈hp(i)|Lk<Li

⌈
Ri(Lk)

Tk

⌉
Ck(Lk)

A static value, τi’s response time at criticality level Lk, is used to bound the

possible interference caused by τk before it is dropped due to the criticality change.

Fleming and Burns [38] then present the complete analysis for the interference

suffered during a criticality change with n possible levels of criticality, this is shown

in equation (2.14).

For each criticality level:

∀L ∈ 1 . . . n

For all tasks where the criticality level is greater than or equal to L:

∀τi|Li ≥ L

Beginning at the lowest criticality level, calculate the schedulability of each criticality

change.

R∗i (L) = Ci(L) +
∑

j∈hp(i)|Lj≥L

⌈
R∗i (L)

Tj

⌉
Cj(L) +

∑
k∈hp(i)|Lk<Li

⌈
Ri(Lk)

Tk

⌉
Ck(Lk)

(2.14)

AMCmax is also extended to facilitate n possible criticality levels. The approach

is conceptually fairly simple, for each of the original points (s1) that a criticality

change could occur, there are a number of additional points at which the next

criticality change might take place. This is illustrated in Figure 2.2.
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Time s1

A Execution

B Execution

Ri(A)

Ri(B)

Time s2

C Execution

Ri(C)

Figure 2.2: The system with modes A and B with an additional level, C added.

Figure 2.2 shows three criticality levels A, B and C (where A < B < C).

Much like the example shown in Figure 2.1 this demonstrates the possible points

that a criticality change might occur. When compared with Figure 2.1 it is possi-

ble to see how another set of points must be searched in order to determine the

points of change that will cause the worst case response time. With the addition of

these points it is also clear that the problem of searching each point becomes very

computationally intensive as criticality levels are added. For each original point of

change there might be a large number of points to check for subsequent changes.

As such, Fleming and Burns [38] conclude that while AMCmax dominates AMCrtb,

its improvement is not significant enough to warrant the intensity of its search.

Zhao et al. [83] extend AMC to incorporate preemption thresholds. Their results

show PT-AMC provides a slight improvement over AMC-rtb and AMC-max. Baruah

and Chattopadhyay [16] extended AMC to account for varying periods. Burns and

Davis [30] also consider criticality dependent frequency.

AMC-IA vs AMCmax

Huang et al. [47] aim to provide a comparison between many different mixed crit-

icality scheduling approaches for the sporadic task model. As part of this work

they examine the scheduling policies proposed by Baruah et al. [15], AMCrtb and

AMCmax. In addition they propose their own approach, AMC-IA which claims to

outperform both previous approaches. They show that their algorithm is extendable

to n possible criticality levels. In the discussion below we consider a comparison of

AMCmax and AMC-IA based on their dual criticality analysis.
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The original AMCmax algorithm is described below. The technique works on

the premise that there are a finite number of points in which a criticality change

could occur. These points, s, are bounded by 0 < s < Ri(LO). Figure (2.3) (also

shown in 2.2.3, repeated here for convenience) shows a set of such points:

Low Execution

High Execution

Time s

Ri(LO)

Ri(HI)

IL(s)

IH(s)

Figure 2.3: Example AMCmax criticality change.

Figure (2.3) also shows the two segments of interference we are interested in,

IL(s) and IH(s). IL(s) represents the interference suffered by all tasks in the LO

mode, IH(s) represents the interference suffered by HI criticality tasks after the

criticality change at time s. The full equation for AMCmax is shown in equation

(2.15):

Rs
i = Ci(HI) +

∑
j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO)+

∑
k∈hpH(i)

{
(M(k, s, Rs

i )Ck(HI))+((⌈
Rs
i

Tk

⌉
−M(k, s, Rs

i )

)
Ck(LO)

)} (2.15)

And:

Ri = max(Rs
i )∀s

Where hpL considers the set of higher priority, LO criticality tasks and hpH con-

siders the set of higher priority, HI criticality tasks. Function M is used to calculate
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the interference suffered by a HI criticality task in the HI criticality mode.

M(k, s, t) = min

{⌈
t− s− (Tk −Dk)

Tk

⌉
+ 1,

⌈
t

Tk

⌉}
(2.16)

Finally, Baruah et al. [15] note that a point of s may be only on the release of a

LO criticality task.

Haung et al.’s [47] approach5 uses the same notion of a number of points of s at

which a criticality change could occur. They define two methods of calculating the

LO criticality interference. One for the interference suffered from all higher priority

tasks in the LO mode, shown in equation (2.17):

nj(s) =

⌈
s

Tj

⌉
(2.17)

And one to calculate the interference of the higher priority, HI criticality tasks

during their LO criticality execution, shown in equation (2.18):

nk(s) = max

(⌊
s−Dk

Tk

⌋
+ 1, 0

)
(2.18)

It should be noted that both equations appear to be the same function, n, they

are different functions differentiated by subscript j and k.

The completed algorithm for AMC-IA can be seen in equation (2.19):

Rs
i = Ci(LO) +

∑
τj∈hp(i)

nj(s)Cj(LO) +
∑

τj∈hpH(i)

(⌈
Rs
i

Tk

⌉
− nk(s)

)
Ck(HI) (2.19)

And:

R∗i = max

{
R∗i |∀τj , s ∈

[
Dj, ...,

⌈
Ri(LO)

Tj

⌉
Tj +Dj

]}

There are several issues with the presentation of this algorithm. Firstly, it seems

clear that as equation(2.19) is calculating the response time of a HI criticality task,

Ci(HI)+ should be used rather than Ci(LO)+. Secondly, the use of the letter n to

represent two functions causes some confusion, we might re-write equation (2.18)

5We alter their notation to be comparable with AMCmax.
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as a function m:

mk(s) = max

(⌊
s−Dk

Tk

⌋
+ 1, 0

)
(2.20)

And therefore the complete equation:

Rs
i = Ci(HI) +

∑
j∈hpL(i)

nj(s)Cj(LO)+

∑
k∈hpH(i)

mk(s)Ck(LO))+((⌈
Rs
i

Tk

⌉
−mk(s)

)
Ck(HI)

) (2.21)

The key difference between these two algorithms is the way in which they cal-

culate the areas of interference in the LO and HI mode. AMCmax uses the function

M , as seen in equation (2.16), in order to determine the interference suffered in

the HI criticality mode by higher priority HI criticality tasks. The LO criticality in-

terference for these HI tasks is calculated by removing the value of M from the

total:

⌈
Rs
i

Tk

⌉
−M(k, s, Rs

i )

The interference suffered by higher priority, LO criticality tasks for AMC-MAX is

calculated using:

⌊
s

Tk

⌋
+ 1

AMC-IA differs by using the first segment of the algorithm to calculate the LO

interference of all tasks, this is done using the functions nj(s) and mk(s) seen

in Equations (2.17, 2.19). The approach then uses the value derived from mk(s)

for the HI criticality, higher priority tasks to calculate their HI mode interference by

removing it from the total number of releases:

⌈
Rs
i

Tk

⌉
−mk(s)

Essentially, AMCmax calculates the HI interference and removes it from the
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total find the LO interference and AMC-IA calculates the LO interference and re-

moves it from the total to find the HI interference.

The majority of the time, AMCmax and AMC-IA will produce the same results.

However, there is a scenario where AMC-IA will schedule a task set which is, in

reality unschedulable. Such a situation might occur when all tasks are not released

at time 0, thus causing a greater level of HI criticality interference than AMC-IA

accounts for.

We have found an ordering of tasks which, although claimed schedulable by

AMC-IA, is in reality not feasible6. Consider the task set shown in Table (2.1):

C(LO) C(HI) T/D L P
τ1 2 - 10 LO 1
τ2 4 6 10 HI 2
τ3 10 15 40 HI 3

Table 2.1: AMC-IA, problematic example.

The LO response time of τ3 can be calculated:

R3(LO) = 10 +

⌈
28

10

⌉
2 +

⌈
28

10

⌉
2

Giving the result of 28.

Based on the assumption made by Haung et al. [47] that points of s must

correspond to task deadlines, there are only two possible points of s at time 10

and at time 20. s = 10 results in the worst case response time for AMC-IA and

AMCmax; we will now consider the calculation using both algorithms.

The calculation for AMC-IA is as follows:

R10
3 = 15 +

⌈
10

10

⌉
2 +

(⌊
10− 10

10

⌋
+ 1

)
4 +

(⌈
39

10

⌉
−
(⌊

10− 10

10

⌋
+ 1

))
6

A result of 39 (as 39 < 40) shows that AMC-IA claims to be able to schedule τ3

at the lowest priority.

We now show the calculation for AMCmax:

6This example was produced by the author of the thesis as part of the corrections to AMC-IA
published in [39].
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R10
3 = 15+

(⌊
10

10

⌋
+1

)
2+

(⌈
49− 10

10

⌉
+1

)
6+

(⌈
49

10

⌉
−
(⌈

49− 10

10

⌉
+1

))
4

With a results of 49, AMCmax clearly shows τ3 as being unschedulable at pri-

ority 3.

In this situation AMC-IA does not account for all possible scenarios. Consider

the example shown in Figure (2.4):

s

0

7

10 20 30 40

17 27 37 39

Figure 2.4: Example execution with τ2 release at time 7.

If τ2 was released at time 7, its execution would continue into the HI mode.

τ2 could execute again at times 17, 27 and 37, each constituting an execution of

C2(HI). However AMC-IA accounts for only 3 possible HI executions and as such

is not a sufficient test in this situation. This flaw in AMC-IA accounts for the small

number of task sets it claims to be able to schedule that AMCmax cannot.

2.2.2 EDF

The first work to consider EDF for mixed criticality was completed in 2008 by

Baruah and Vestal [21]. In this work they note that EDF in its current form is not

optimal for mixed criticality systems, unlike normal (non mixed criticality) systems.

They also extend Vestal’s original model [81] to include sporadic tasks.

Park and Kim [66] develop a technique known as Criticality Based Earliest

Deadline First (CBEDF). CBEDF utilises slack in the system and dynamically re-

allocates this to LO criticality tasks. This includes slack generated by tasks com-

pleting early (remaining slack) and any remaining execution time if all HI tasks are

executing to their allocated time (empty slack). CBEDF is then compared to Own

Criticality Based Priorities (OCBP), a scheduling approach proposed in [20], their

experimental results show that CBEDF dominates OCBP.
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Baruah et al. [13, 12] propose an EDF technique known as Earliest Deadline

First with Virtual Deadlines (EDF-VD). EDF-VD (in a dual criticality system) allows

for HI criticality deadlines to be artificially reduced during system execution in the

LO mode. Deadlines are reduced to ensure that, if a criticality change occurs, HI

criticality tasks would have time remaining to complete before their deadline. If a

criticality change occurs, LO criticality tasks are dropped. EDF-VD is extended for

multi-processor systems in [60, 17].

Ekberg and Yi [35] build upon the work undertaken by Baruah et al. [13] on

EDF-VD. They propose the use of two relative deadlines for a task, one being the

actual deadline and another is an earlier artificial deadline which may be tuned to

allow HI criticality tasks to execute before LO. They utilise demand bound functions

to tune these artificial deadlines.Their experimental work compares well known ap-

proaches such as Vestal’s algorithm [81], OCBP [20] and EDF-VD. Their results

show a performance improvement over previous approaches, crucially this repre-

sents a case where an EDF based approach out-performs previous fixed priority

work such as AMCmax [15] or OCBP. Their work is extended in [36] to allow all task

parameters to vary with the criticality level. Easwaran [34] presents a new demand

bound function shown to strictly dominate those in [35].

Huang et al. [48] note that simply dropping LO criticality tasks when a criticality

change occurs is not acceptable. Their approach builds from EDF-VD but looks

to guarantee a level of degraded service to LO criticality tasks when a criticality

change occurs. Their work is based around providing functionality for an industrial

Flight Management System, as part of this they suggest an approach which allows

the system to be reset and provide analysis to quantify the time this would take.

2.2.3 Period Transformation

Vestal [81] suggests that an adapted form of period transformation could be applied

to mixed criticality task sets. Rather than aiming to create harmonic task sets, the

aim is to allow for a criticality monotonic priority ordering, thus avoiding the problem

of criticality inversion7. As the aim is to ensure a criticality monotonic ordering

7A high priority LO criticality task can preempt a low priority HI criticality task potentially causing
a deadline miss.
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only certain tasks must be transformed. LO criticality tasks do not need to be

transformed, HI criticality tasks with a period shorter than the shortest LO period

need not be transformed, HI criticality tasks with a period greater than the shortest

LO period must be transformed.

Fleming and Burns [38] consider Vestal’s technique and complete the analysis.

The analysis for HI criticality tasks running in the HI mode is done via standard

response time techniques [4]. For the LO mode, HI criticality tasks requiring trans-

formation are transformed by a factor, m:

m =

⌈
Tj
Tl

⌉
Where τl is the LO criticality task with the shortest period and τj is a HI criticality

task that must be transformed.

The runtime behaviour of a transformed mixed criticality system differs slightly

from the norm. The system begins execution in the LO criticality mode, trans-

formed tasks execute for their Cj(HI)/m until they execute up to their untrans-

formed Cj(LO). Only at this point can we say that a task has overrun its budget

and a criticality change must occur.

It is possible to calculate the number of transformed executions of τj that might

interfere with τi.

⌈
Ri

Tj/m

⌉
The value produced from the above calculation will include several complete ex-

ecutions of Cj(LO) and some remaining transformed executions, Cj(HI)/m which

do not make up a complete execution of Cj(LO). Those values which constitute a

complete Cj(LO) can be calculated as shown:

⌊
Ri

Tj

⌋
Cj(LO)

Vestal [81] introduces additional pessimism by stating that the remaining trans-

formed executions must be less than Cj(LO), as such he assumes this value as

the worst case.
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⌊
Ri

Tj

⌋
Cj(LO) + Cj(LO)

In many cases this may be overly pessimistic. Fleming and Burns [38] define a

way of calculating the interference suffered from the spare transformed executions.

The size of the remaining interval, P, can be calculated:

P = Ri −
⌊
Ri

Tj

⌋
Tj

We can use this interval to determine the number of transformed executions, x:

x =

⌈
P

Tj/m

⌉
Cj(HI)

m

This can be included in the equation which also considers complete executions

of Cj(LO), see equation (2.22):

min{x,Cj(LO)}+
⌊
Ri

Tj

⌋
Cj(LO) (2.22)

The use of min ensure that there is no potential for undue pessimism from the

calculation of the untransformed tasks.

Although not all tasks are transformed, period transformation still suffers from

the problem of high overheads. Fleming and Burns [38] state that, although it is

possible to adapt period transformation to schedule mixed criticality systems, its

performance would be poor if its high overheads were accounted for.

2.3 Multi-Processor Scheduling

In 2009 Anderson et al. [3] undertook the initial work into mixed criticality sys-

tems on multi-core platforms. As with historical multi-processor/core work [33],

mixed criticality implementations face the same challenges. Current research has

focused upon two key approaches, either Partitioned in which tasks are statically

assigned to a processor, or Global where tasks can migrate at run time depending

on demand and available slack. Some work provides example frameworks while

others provide more analytical scheduling approaches.
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2.3.1 Partitioned

Partitioned multi-core systems use servers (containers) to schedule applications

of different criticality levels while maintaining the isolation required and potentially

allowing servers to migrate from one core to another. There are two key topics

in partitioned scheduling, task allocation and scheduling approaches within each

partition. Task allocation is the process of assigning tasks to different partitions or

processors. Once tasks or partitions are assigned a processor/s, it is important to

consider how such tasks might be scheduled.

Bastoni et al. [23] present a comparison between global, partitioned and clus-

tered EDF scheduling. Their results show that G-EDF (Global EDF) is never prefer-

able for Hard Real Time Tasks with P-EDF (Partitioned EDF) performing the best.

C-EDF (Clustered EDF) is a technique that aims to provide a mid ground between

a fully global scheduling approach and a fully partitioned one, this involves clus-

tering the platform into groups of cores which share a cache. A key aspect of

this investigation is that, somewhat unusually, run time overheads were explicitly

considered.

Lakshmanan et al. [55] address the need for a bin packing scheme in par-

titioned multi-core systems by suggesting their, Compress-on-Overload Packing

(COP) scheme. The scheme aims to increase high-criticality tasks’ tolerance to

overload conditions. They examine the effectiveness of their scheme using a met-

ric to determine a system’s reliance to overload. A system is considered highly

ductile if HI criticality tasks are able to continue to meet their deadline at the ex-

pense of LO criticality execution. COP is compared to another allocation approach,

Worst-Fit Decreasing (WFD) and show that COP dominates WFD.

Kelly et al. [53] present a comparison between two priority assignment tech-

niques, Rate Monotonic (RM) and Audsley’s Algorithm [6], used in conjunction with

two partitioning schemes, Decreasing Utilisation (DU) and Decreasing Criticality

(DC). They then compare DC-Audsley, DU-Audsley, DC-R and DU-RM. They show

that Audsley’s algorithm out performs RM and that DC out performs DU, but suffers

as the number of tasks per CPU is increased.

Tamas-Selican and Pop [72, 73] consider the issue of mapping mixed critical-

ity applications on distributed platforms. In order to do this they use a simulated
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annealing based approach to optimise task mapping using time-partitions.

2.3.2 Global

Li and Baruah [60] extend EDF-VD [11] to multiprocessor systems. This is done by

applying a known global scheduling scheme, fpEDF [9] to EDF-VD. In 2013 Baruah

et al. [17] consider EDF-VD for multi-core and explore global and partitioned ap-

proaches. They conclude, through experimental results and observation that par-

titioned approaches are more practical, although advances in global scheduling

could be made.

Pathan et al. [67] present a Global scheme known as Mixed-criticality Schedul-

ing on Multiprocessors (MSM). This algorithm is based upon previously uni-processor

techniques such as AMC. They compare their technique with priorities assigned

via Audsley’s algorithm [6], deadline monotonic and criticality monotonic orderings.

They show that Audsley’s algorithm outperforms the other two approaches and

claim extendability to more than two criticality levels.

Saraswat et al. [69] present a Tabu Search [43] approach, utilising EDF schedul-

ing and the Constant Bandwidth Server (CBS) technique [1] to enforce temporal

isolation where required.

2.3.3 Other Approaches

Mollison et al. [63] extend the multi-processor scheduling platform known as MC2,

originally presented in [3]. The technique uses both global and partitioned ap-

proaches depending on the criticality level of the application in question. Higher

criticality levels are assigned to a processor (partitioned) and run under cyclic exec-

utive or EDF policies, such tasks may not migrate to another core. Lower criticality

applications are scheduled via a global approach using either G-EDF (Global-EDF)

or a best effort scheme, such tasks are allowed to migrate between cores at run-

time.

Herman et al. [46] make use of MC2 addressing implementation issues. They

implement MC2 on the linux based, LITMUSRT [26] platform and show that an

implementation is possible while maintaining a suitable level of isolation for HI crit-
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icality tasks and keeping system overheads relatively low.

2.4 Linear Programming

Linear Programming (LP) developed from the study of linear inequalities. Most

modern applications began with Kantorovich [52] in 1939, but remained unknown

and unnoticed. During and just after World War II Linear Programming became

a popular tool for dealing with complex planning or scheduling problems. The

process of defining such models is described as “(We shall use) the term model

building to express the process of putting together symbols representing objects

according to certain rules” [32]. The models produced aim to describe a scenario,

its constraints and possible solutions, these building blocks “often result(s) in a

system of linear inequalities and equations; when this is so, it is called a linear

programming model”. Linear Programming may be defined as “(...) the optimiza-

tion of a linear function over a feasible set defined by linear inequalities” [77], in

short, Linear Programming is the process of maximising or minimising some lin-

ear function based on a set of variables with a number of linear constraints. The

Introduction of the Simplex Method in 1947 by Danzig [32] helped popularise LP.

The Simplex Method allowed for Linear Programming formulations to be solved ef-

ficiently. There is a huge amount of work on Linear Programming and its solutions

[80], however, this thesis focuses on its modern and practical applications for mixed

criticality systems.

Modern use of Linear Programming makes use of powerful solvers able to de-

liver solutions to complex problems in reasonable timeframes. Common commer-

cial solvers include the likes of Gurobi [45] and CPLEX [49], while open source

alternatives, such as LP_Solve [24], also exist. Typically these tools are treated in

a black box fashion, a model is input and a result is output, little detail is gained

about the exact process taken to reach the result. This is particularly true in the

case of the proprietary commercial solvers and is true to a lesser extent in the case

of open source alternatives. Commercial solvers tend to benefit from a greater in-

vestment toward speed and efficiency, while open source alternatives provide a

more transparent tool.
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Two common forms of Linear Programming are commonly used in a real-time

mixed criticality context: Integer Linear Programming (ILP) and Mixed Linear Pro-

gramming (MLP). An ILP model is a Linear Programming model defined using only

integer variables. Similarly, a MLP model is a Linear Programming model defined

using a mixture of integer and continuous variables. The use of integer variables for

real-time problems is often dictated by the notion of time as a discrete integer value.

The most typical real-time mixed criticality application for Linear Programming (and

its subsets ILP, MLP) is some form of allocation problem. Such a problem might

be anything from priority assignment to resource allocation. Each allocation is typ-

ically performed with an optimisation goal in mind, some examples of allocations

with a variety of optimisation goals are described below:

• Fault Tolerance: This might take the form of allocating CAN message prior-

ities [7] which even accounts for a situation where parts of a message are

given different priorities. The solution is optimised to reduce the total number

of priorities required. An allocation problem may simply tackle task priority

assignment [76]. Task re-execution is considered which may be required to

occur on different processors. The goal is to find a suitable priority assign-

ment while minimising the number of processors used. Linear Programming

may even be utilised to find allocations which may account for permanent

processor failures [2].

• Reduced Power Consumption: A common goal when optimising an allocation

on a real-time platform is to reduce the power consumption. Work such as

[58, 57, 56] tackles this issue using linear programming to allocate tasks in

a power aware manner. These linear programs are optimised to reduce the

static power consumption.

• Resource Access: Some optimisation problems seek to allocate work with a

specific focus on resource access. In the case of [65] a multi-core allocation

is considered where the allocation is optimised to reduce the Worst Case

Resource Access.

• Security: Allocation problems may also feature security issues. Work in [82]

uses Mixed Linear Programming to optimise the tradeoff of maximising band-
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width utilisation while maintaining real-time and security guarantees on a

CAN network. The approach uses a MAC based security system to defend

CAN against attacks.

• Other: Other uses look to provide graceful degradation [54], schedule an En-

gine Control Unit (ECU) and bus toward the goal of system stability and over-

all performance[44], calculate stretching factors for LO criticality tasks [51],

allocate criticality aware Last Level Caches [31] or simply construct schedul-

ing tables [19].

2.5 Cyclic Executives

The Cyclic Executive scheduling policy [8] is a highly deterministic scheme which

has been well adopted in industry. The CE schedule is made up of two key com-

ponents:

• The Major Cycle: described as ”the sequence of actions to be performed

during some fixed period of time“ [8]. The work executed in the major cycle

is repeated upon completion of the cycle.

• The Minor Cycle: a number of minor cycles (also referred to as frames) make

up a major cycle and are allocated work. Minor cycles are restricted such that

“no frame may be longer than the shortest period (of a task) ” [8]. In addition,

while it is not strictly required, common practice is to make all minor cycles

of equal length.

All work is statically allocated offline to minor cycles. The static nature of the

cyclic executive lends itself greatly to applications where detailed knowledge of

the execution is desirable. Safety critical applications require stringent verification,

which is eased significantly when the chosen scheduling policy is simple and highly

deterministic.

The cyclic executive structure is illustrated in the introduction, see Figure 1.1.

In this diagram, TM is used to represent the length of the minor cycle, shown with a

line across the top encompassing all execution. The notation T F is used to indicate

the minor cycle length, shown by each of the boxes that make up a major cycle.
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While the determinism of a cyclic executive is valuable, they are restrictive in

terms of the parameters of the work they can schedule. The key requirements on

task parameters are as follows:

• Tasks must have periods that are multiples of the minor cycle.

• Tasks must have periods that are no greater than the major cycle.

• Tasks must have deadlines greater than or equal to the minor cycle.

As the periods of tasks and the minor cycle length are so closely coupled, the

design of the cyclic executive scheduler must be performed alongside the devel-

opment of tasks. Applications designed for cyclic executive execution are often

designed with these restrictions in mind, the trade-off being a highly deterministic

and predictable platform to aid certification.

To this point, the primary use of cyclic executives in the mixed criticality context

is as a means of scheduling only the highest criticality tasks. The use of a cyclic

executive policy for the highest criticality levels in a partitioned MC system was

proposed in [3] and further expanded in [63]. In this case a cyclic executive policy is

used for only the highest level of criticality due to its high determinism. Its relatively

poor resource utilisation prohibits its use at other criticality levels. Implementation

issues of the approach are investigated in [46] and optimisation and allocation

issues are discussed in [31].

Other uses for cyclic executives in the context of mixed criticality include the use

of CE scheduling by a hypervisor responsible for mixed criticality partitions [78].

2.5.1 Time Triggered

Time Triggered (TT) scheduling is, in some sense, the superset of cyclic executive

scheduling. It requires tasks to execute at precomputed times as specified by a

scheduling table. The first to consider the TT paradigm in the mixed criticality con-

text were [18], their work focused on a TT set-up where multiple scheduling tables

were specified, one for each criticality mode. The problem of generating permis-

sible scheduling tables has been tackled using heuristic techniques in [75] and by

using Linear Programming tools in [44][50]. The work of [70] and [71] consider how
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Fixed Priority (FP) or Fixed Priority per Mode (FPM) can be transformed into suit-

able scheduling tables for a mixed criticality platform. This TT approach utilises the

so called Single Time Table per Mode (STTM) paradigm. Finally, the incorporation

of legacy scheduling tables into modern mixed criticality systems is addressed in

[74].

2.6 Barrier Protocol

Barrier synchronisation is a fundamental concept to multi-processor computing.

Initially proposed by Valiant [79] as part of the Bulk Synchronous Parallelism (BSP)

paradigm which provides a mechanism for the synchronisation of parallel work-

loads on multi-processor platforms. BSP centred around the notion of supersteps,

during each superstep a processor can perform computation and send and receive

messages, all work and communication must complete within each superstep. At

the end of the superstep barrier synchronisation is employed to check if all proces-

sors have completed their allocated work, if they have the next superstep begins

execution, if they have not, the execution time that that would have been used by

the next superstep is provided to allow all processors to complete execution.

The notion of utilising barrier synchronisation to ensure that processors are in

a consistent state before beginning a new set of tasks is useful in a mixed criticality

context. A big challenge when scheduling mixed criticality workloads is managing

the required level of isolation between tasks of differing criticality levels. This ex-

tends beyond execution to include potential interference of resources. The work of

Giannopoulou et al. [42, 41] addresses this problem by utilising a Time Triggered

approach.

In their work, tasks are isolated such that only a statically known number of

tasks may contest resources at any given time. To achieve this a barrier protocol

is used. The barrier provides a point of system-wide synchronisation (across all

cores) allowing the system to ensure only tasks of a particular criticality level are

permitted to execute within a given time.

Consider the situation where a system contains 3 levels of criticality and 2 pro-

cessing cores. Figure 2.5 illustrates how a potential schedule might look.
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C1

C2

HI

Barrier Invocations

MED

LO

Figure 2.5: An example schedule illustrating the usage of a barrier protocol.

The coloured areas represent execution of a task with tasks being coloured red,

yellow and blue to correspond to HI, MED and LO criticality modes respectively

(HI>MED>LO). Each dashed vertical line indicates a point at which both cores si-

multaneously move to the next execution phase and allow the next criticality level to

execute. The system begins executing the highest level and continues to the lowest

with a barrier separating each level. The points illustrated in Figure 2.5 are found

offline using the WCET of each task. However, at runtime the barrier is a dynamic

protocol, the change from the execution of one criticality level to the next occurs

when work has completed across all cores, thus providing good system utilisation.

This approach aims to provide a level of dynamic behaviour which is acceptable for

high criticality applications while providing improved system utilisation.

2.7 Summary

This chapter has provided an overview of the mixed criticality literature relevant to

this thesis. The development of the mixed criticality task model was described and

some early work on mixed criticality scheduling was covered. Mixed criticality liter-

ature that makes use of linear programming was discussed. Finally, work focusing

on cyclic executive and time triggered platforms in a mixed criticality context was

examined.

The field of mixed criticality was and still is developing rapidly. While a large

amount of work has focused on more progressive and dynamic approaches to this

difficult scheduling problem, it is clear from this review that a number of authors are

still taking a more static approach. In this thesis we consider the design and allo-

cation of real-time mixed criticality systems on multi-core platforms utilising cyclic
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executive architecture. We aim to provide a balance between predictability, isola-

tion, legacy support and good system utilisation.



CHAPTER 3. TASK ALLOCATION 59

Chapter 3

Task Allocation

This chapter deals with the fundamentals of finding feasible task allocations for

mixed criticality cyclic executives on multi-core processors. The problem of con-

structing cyclic executive schedules is well known to be NP-hard [8] even for a

single processor. The allocation of tasks to a cyclic executive is considered similar

to the well known bin packing problem [40]. The schedulability of a standard (non-

mixed criticality) cyclic executive can be determined simply by construction, if it is

possible to create a schedule, then by definition that allocation is schedulable.

We choose a Cyclic Executive scheduler to remain in-line with industrial prac-

tice, Cyclic Executive schedulers are widely used in safety criticality systems. In-

dustrial partners such as BAE Systems1 influenced our decision to use a Cyclic

Executive. Its use allowed our work to be more relevant and relatable to industrial

partners.

In the mixed criticality case, we provide the isolation required by each criticality

level by completely separating the execution, this is in-line with the state of the art

[41, 42]. Tasks of the highest criticality level are always executed first, followed

by each level below, with the system only ever executing tasks of any one level

of criticality. From the perspective of a certification authority, a task at the highest

criticality level need only be concerned with executing alongside other tasks of the

same level (as any task that can affect the execution must also be verified to the

same level of assurance). Any potential interference based on factors such as

communication or shared resource access can only occur from another task at the

1http://www.baesystems.com

http://www.baesystems.com
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same level of criticality. All other levels execute after and are completely temporally

separated, no lower criticality tasks can have impact on higher criticality tasks. As

this is a mixed criticality system, we consider the expected execution to occur when

all work executes to their WCETs calculated using the assurance of the lowest

criticality level in the system. During normal execution the highest level will begin

executing to the lowest assurance, if execution at the highest level fails to complete

by its LO assurance prediction, we adopt the standard model which assumes all

other work is dropped (or not guaranteed) and the highest criticality level is given

time to execute to its most pessimistic WCET. We adopt the dual WCET model as

described in Section 2.1.1, such that each task has only two WCET values, one

verified to the required standard for its own criticality level and one verified to the

standard of the lowest criticality level in the system.

In this chapter we focus on a dual criticality model for simplicity. A task’s τi

WCETs are Ci(LO) & Ci(HI) where Ci(LO) ≤ Ci(HI). The cause of such a sys-

tem to move from the standard (LO) execution mode to the HI (where all LO work is

not guaranteed) is when all HI criticality work does not complete by a pre-computed

point. This point is constant across all cores in the system and is denoted by Smax.

This distinction deviates from the more common model assumed by Vestal [81] and

others which assumes that the criticality change occurs if any one particular task

executes for greater than its C(LO) execution time. Smax is the synchronised point

of switching across all cores.

More formally, let S(i, j) denote the latest instant at which a core i signals

completion of HI work in minor cycle j. Let Smax(j) denote the instant at which LO

work may commence across the entire system. Schedulability of a dual criticality

cyclic executive can be calculated as follows (where HI(i, j) and LO(i, j) denote

respectively the sets of HI-criticality and LO-criticality tasks scheduled on core i,

minor cycle j):

1. Check the schedulability of HI criticality tasks:

∀i and j,
∑

k∈HI(i,j)

Ck(HI) ≤ T F
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2. The value of S(i, j) can be calculated for each core:

S(i, j) =
∑

k∈HI(i,j)

Ck(LO)

3. The value of Smax(j) used across all cores is:

Smax(j) = max(S(i, j))

4. LO criticality jobs must fit within the time between Smax(j) and the end of the

minor cycle:

∀i and j,
∑

k∈LO(i,j)

Ck(LO) ≤ T F − Smax(j)

We may now describe the runtime of a dual criticality cyclic executive on a

multi-core platform.

• HI criticality begins execution.

• If all HI criticality work completes by time Smax(j), LO criticality work begins

execution.

• If all HI criticality work does not complete by time Smax(j), HI criticality tasks

are given up to their C(HI) execution times to complete2.

The nature of the synchronised criticality switching point, Smax(j), may be con-

sidered in multiple ways. Our offline analysis treats this as a pre-computed point,

at which an interrupt is fired either starting the execution of LO criticality tasks, or

prolonging the execution of HI criticality tasks. This is the most simplistic scenario

and relates directly to the analysis, however, if the level of pessimism is still high

for the C(LO) execution times this approach may lead to a significant amount of

CPU idle time. In addition, LO criticality tasks are suspended for any deviation

over Smax(j), no matter how small. Such a deviation might be tolerable, but the

static nature of the implementation assumes LO criticality tasks are dropped. An

approach, which could be implemented to maintain the guarantees of the offline

analysis but provide a more flexible run-time implementation, is the barrier protocol
2Any execution beyond C(HI) values is considered erroneous behaviour.
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[41], as introduced in Section 2.6. A barrier could be used in this scenario by wait-

ing for all cores to signal completion of execution for the HI criticality mode, once

done the barrier may release the LO criticality work for execution. While the offline

analysis is still conducted to assure overall schedulability both in the standard and

HI criticality modes, the barrier allows an element of dynamicism. HI criticality work

can finish execution at any time, either before or after Smax(j), and the barrier will

still release LO work. Clearly LO criticality work is not guaranteed to complete if

the barrier invocation is after Smax(j). However, as C(HI) predictions are often

overly pessimistic, there may well be cases where Smax(j) is only exceeded by a

small amount giving plenty of remaining execution time for LO criticality work to

also complete. In the remainder of this work, we discuss the use of the barrier,

however, both the static and barrier approaches are applicable.

We begin by investigating the allocation problem using heuristics on a simpli-

fied allocation problem. We assume that the minor cycle is equal to the major cycle

(T F = TM ), thus removing a dimension of allocation. The heuristics are compared

to an optimal ILP based allocation technique (optimal in the sense that if a permis-

sible allocation exists, it will be found). The later half of this chapter removes the

minor cycle restriction and considers the allocation of a full mixed criticality cyclic

executive with multiple cores and minor cycles.

3.1 Single Minor Cycle

As the allocation problem presented by a mixed criticality cyclic executive with

many minor cycles and criticality levels is complex, we simplify our initial inves-

tigation to consider only a single minor cycle. In this case the minor cycle is equal

to the major cycle T F = TM , however, we still consider a multi-core platform, thus

allocation is across cores only. We illustrate this restriction in Figure 3.1 which

illustrates single minor cycle but multiple cores (shown as C1 and C2).

With this simplification comes a number of additional assumptions:

• We assume that all task periods are equal to the length of the minor cycle,

Ti = T F .
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C1

TM

C2

TF

Figure 3.1: A CE where T F = TM .

• We assume that all work of any task must complete within the minor cycle

T F . As T F = TM each cycle is independent of each other and provides a

fresh start.

We begin investigating task allocation to the single cycle model by considering

some heuristic allocation techniques.

3.1.1 Task Allocation: Heuristics

Given the task allocation problem is known to be NP-hard for even a single proces-

sor [8], heuristic allocation techniques are often considered. This work considers a

number of heuristic allocation techniques, the aim was to investigate the impact of

using the barrier protocol on a multi-core, single minor cycle, cyclic executive. We

considered three allocation techniques:

1. First Fit (FF): A common heuristic which attempts to allocate work onto the

first core with available capacity. Starting at the highest criticality level, each

task is allocated to the first core with enough spare capacity. The cores are

numbered 1...x, this ordering is used by the heuristic.

2. Worst Fit (WF): Another well-known heuristic, worst fit attempts to allocate

work to the core with the largest spare capacity. Starting again at the highest

criticality level, each task is allocated to the core with greatest spare capacity.

3. First Fit with Branch & Bound (FFBB): A combination of the common First

Fit heuristic and a Branch & Bound search. The aim of this technique is to

reduce the point Smax such that cores are idle for as little time as possible

while waiting to execute the next criticality level. An initial allocation of First Fit

is performed and the largest and smallest points of S(i) (where i is the core)
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are found. These points of S(i) are used to create a goal Smax, the First Fit

allocation is re-run with this goal as its limitation. If successful the point of

Smax is reduced and if unsuccessful it is increased. A branch & bound search

is performed to locate the minimum Smax value, thus discovering the earliest

possible criticality switching point.

We undertook an experimental investigation to understand the effectiveness of

each heuristic.

3.1.2 Experiment: Investigating the Impact of the synchronised

criticality switching (Barrier Protocol)

These initial experiments are designed to assess the effectiveness of our allocation

heuristics and to consider the impact of execution strictly separated by criticality

level. We generate sets of random tasks with a variety of parameters to explore

the impact. The general setup of all experiments is described below:

Setup

The experiments were undertaken on a large number of synthetically generated

task sets. Per 5% utilisation increase, 1000 different task sets were generated.

Matlab [62] was used to generate the tasks and to implement the heuristic alloca-

tion techniques, details of the setup are as follows:

• Task utilisations were generated using UUniFast, an algorithm presented in

[25] which provides an unbiased distribution of utilisation values, following

standard practice in synthetic task set generation.

• Task periods were set equal to the minor cycle length, in this case 25, T =

T F = 25. (In reality 25 might equal 2500 in the implementation, typically this

reduces the chance of a low utilisation value producing a very small execution

time)

• Deadlines were set equal to periods. Di = Ti.

• The LO execution times of each task were produced as follows: Ci(LO) =

Ui/Ti
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• For tasks with a criticality greater than the lowest, their HI execution times

were determined by Ci(Li) = Ci(LO) ∗ CF - CF is the criticality factor, a

random value between 1.2 and 2.

In these experiments (and others in this thesis) we make use of a metric called

Weighted Schedulability [22]. This metric provides a single comparative value of

schedulability allowing for the variation of more factors to investigate scalability, in

essence we may present a three dimensional graph in two dimensions making the

data easier to digest. An entire standard schedulability plot with increasing utili-

sation is summarised as a single weighted schedulability value allowing multiple

experiments to be run while changing parameters such as the number of tasks or

cores. We utilise the notation presented by [15] to describe Weighted Schedulabil-

ity.

Weighted Schedulability3: Wy(p) is the weighted schedulability of schedulability

test y as a function of parameter p. For each p, we combine the results of all the

tasksets τ generated for all of a set of equally spaced utilisation intervals. Sy(τ, p)

is the binary result of schedulability test y for taskset τ with parameter p.

Wy(p) = (
∑
∀τ

u(τ) · Sy(τ, p)/
∑
∀τ

u(τ) (3.1)

Results

A number of different experiments were undertaken, these are described in the

following:

Experiment One

Parameters:

• 20 tasks were generated per task-set.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

3As described by [15].
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Figure 3.2: An illustration of the performance of FF and WF with no barrier protocol.
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Figure 3.3: The impact of the barrier protocol on WF.
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This initial experiment is designed to investigate the impact of using the bar-

rier protocol. We begin by comparing FF and WF with no barrier protocol active

(FFBB can’t be included in this plot as the barrier is intrinsic to its function). This

comparison is illustrated in Figure 3.2.We illustrate that both FF and WF are able

to schedule a high percentage of the total task sets FF out-performs WF slightly.

Not un-expectedly we observe good allocation performance with no barrier require-

ments. We now compare WF with and without the barrier in Figure 3.3.

We observe very little impact to schedulability as a result of the barrier. This

is likely due to the even distribution of task sets produced by WF, as such, when

all HI work is allocated, the difference in barrier invocation points across all cores

is likely to be very small. Therefore only a very small impact is observed with the

introduction of the barrier.

The same comparison between barrier and no barrier is performed for FF, the

plot is presented in Figure 3.4.
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Figure 3.4: The impact of the barrier protocol on FF.

It is immediately clear that FF is heavily impacted by the introduction of a barrier.

This is due to the way in which FF will allocate all HI work to a single core, pushing
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the invocation of the barrier later causing a significant amount of lost utilisation on

other cores. A solution to FFs performance is to introduce FFBB which performs

an initial pass of FF then uses a branch & bound search to minimise the barrier

invocation. We observe that FFBB performs very well and remains close to the

performance of FF without the barrier implementation.

Finally, we plot WF and FFBB, the best performing approaches when the barrier

is introduced. This is illustrated in Figure 3.5.
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Figure 3.5: WF compared with FFBB.

We see very good performance from both approaches with FFBB taking a slight

edge in schedulability at the higher utilisations.

Experiment Two

Parameters:

• Multiple experimental runs were performed, each increasing the number of

tasks per set in increments of 20, from 20 to 100.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

This experiment scales the number of tasks and investigates any change in the
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allocation performance. The results of this plot can be seen in Figure 3.6. This

plot uses Weighted Schedulability to present the change in relative overall schedu-

lability as the number of tasks is increased. We compare WF with FFBB as these

heuristics perform the best with the barrier implemented. The results are shown in

Figure 3.6.We see little change in schedulability, with both approaches performing

well.
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Figure 3.6: A plot illustrating the performance of WF and FFBB as the number of
tasks is increased.

Experiment Three

Parameters:

• Multiple experimental runs were performed, each increasing the number of

cores per set in increments of 2, from 2 to 8.

• 20 tasks were generated per task-set.

• Tasks were evenly distributed over two criticality levels.

Experiment three investigates scalability by cores. We present the results in Figure

3.7. Again we see both FFBB and WF with similar success. This plot illustrates

a rapid decline in schedulability as the number of cores available increases. This

is down to each task set only containing 20 tasks, with an increasing core count,
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Figure 3.7: A plot illustrating the performance of each technique as the number of
cores is increased.

these task sets must be generated at even greater utilisations. As the number of

tasks is not high, some of these generated tasks may be given very large WCETs,

to the extent that task sets become unschedulable rather quickly when compared to

the 2 core plot. It should be noted that weighted schedulability gives a comparable

measure of performance, a 4 core platform is still able to schedule more work than

a 2 core, but uses proportionally less of its available platform.

To investigate this further we considered a number of scenarios with different

numbers of cores and tasks. These were as follows:

• 20 tasks, 2 cores

• 20 tasks, 8 cores

• 50 tasks 8 cores

• 100 tasks, 8 cores

All experiments contained two levels of criticality. As these values do not follow on

logically from each other, they are not plotted in the typical graph. Again the results

are presented as weighted schedulability values and are presented in Table 3.1
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Figure 3.8: A plot illustrating the platform utilisation improvement when the number
of tasks is increased alongside the number of cores.

Experiment WF FFBB
20 Tasks 2 Cores 0.87 0.87
20 Tasks 8 Cores 0.19 0.19
50 Tasks 8 Cores 0.63 0.64
100 Tasks 8 Cores 0.89 0.89

Table 3.1: Weighted Schedulability Results.

It is clear that a higher core count platform benefits greatly from greater granu-

larity in the number of tasks to make best use of its increased processing potential.

The weighted schedulability value for 8 cores and 20 tasks is 0.19 for FFBB, this

increases dramatically to 0.77 when the number of tasks is increased to 100. This

case is illustrated as a standard utilisation X schedulability plot in Figure 3.8.

Summary

These experiments have illustrated that the impact of introducing a barrier synchro-

nisation mechanism is relatively low. We examined the effectiveness of WF, FF and

FFBB:
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• Worst fit suffers little impact with the introduction of synchronised criticality

switching, due to its intrinsic desire to evenly distribute tasks across cores.

• While first fit is greatly impacted by synchronised criticality switching, the loss

in schedulability can be mitigated through the implementation of FFBB.

• FFBB did not prove any more effective than WF. Given that WF a common

and well known heuristic we chose to use it in later experiments in this Chap-

ter.

Overall while we observe some impact involved with the synchronised criticality

switching of criticality levels, the loss in schedulability is relatively minor. From this

minor loss in schedulability we gain the separation, robustness and dynamicism

which are fundamental to our approach.

3.1.3 Task Allocation: Integer Linear Programming

The use of Linear Programming in this early stage of work was driven by the ques-

tion: How well do our heuristic allocation methods perform in comparison to an

optimal allocation technique? Integer Linear Programming provides such an opti-

mal solution, such that if a feasible allocation of tasks to cores exists, the solver

will find it. In addition we sought to understand whether it was feasible to utilise a

Linear Programming solver efficiently for this allocation problem. The Linear Pro-

gramming solver Gurobi [45] was used throughout this work. The structure of our

initial ILP models will be defined using Gurobi’s ’.lp’ format, a more human readable

format in comparison to the widely used ’.mps’. Each section of the model will be

described along with example constraints to illustrate functionality.

Objective Function (Maximise/Minimise)

The objective function describes the aim of any optimisation to be performed by the

model. This takes the form of a statement which must be minimised or maximised.

However, in this case the objective function is left empty, as such our models are

feasibility tests rather than optimisations. We are only concerned with discovering
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whether or not a feasible allocation of tasks exists, rather than attempting to opti-

mise a particular feature. To be consistent in illustrating the structure of the model

we include a block as part of our abstract model representation, see Figure 3.9:

Objective

Figure 3.9: Abstract Diagram: Objective.

Constraints (Subject To)

Constraints make up the fundamental description of the problem which the Linear

Programming solver uses to produce a solution. These take the form of linear in-

equalities. In our models the constraints section defines how all tasks in a given

system may be allocated. To illustrate this section we must describe how the pos-

sible allocations of tasks are represented in our models.

We define a binary variable for each task at each possible location to which it

may be allocated. This provides a basis for the construction of constraints to re-

strict the number of variables set to 1. When a location variable is set to 1 in our

models, this indicates that the task is allocated to execute at that particular location

in the system, if set to 0 the task is not allocated in that location. Our variables may

be described as follows:

Q[taskNumber]_[core]

For an example task, τ1, the variables required to represent its possible schedu-

lable locations of a 4 core platform are:

Q1_1 , Q1_2 , Q1_3 , Q1_4

One Q variable is included for τ1 for each core in the system. These same vari-

ables are shown in Figure 3.10 to better illustrate which location each represents.
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Figure 3.10: Location variables in the locations they represent.

Clearly the task may only be scheduled on one of the four available cores, this

leads into the first set of constraints. Such constraints are concerned with ensuring

that a task may only be scheduled once on one of the available cores. Consider

the following constraint for our example τ1:

Q1_1 + Q1_2 + Q1_3 + Q1_4 = 1

This constraint ensures that the sum of those binary variables must be equal to

one, thus the task must be scheduled only on a single core as just one variable may

be set equal to 1. We include such constraints as a sub-block of the constraints

named ’TaskLocation’, this is shown in Figure 3.11:

Objective

TaskLocation

Constraints

Figure 3.11: Abstract Diagram: Objective, Constraints.

The second fundamental set of constraints is implemented to ensure that if

a task is allocated on a particular core, it is schedulable. There are three parts

to these constraints: Firstly HI criticality tasks have each of their binary variables
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multiplied by their C(HI) WCETs, if a binary is set to 1 the WCET is included in

the calculation, if 0 it is not. In this way one constraint is defined for each CPU core.

Given 2 HI criticality tasks τ1 & τ2 and the same 4 core platform, the constraints

look as follows:

C1(HI)×Q1_1 + C2(HI)×Q2_1 ≤ T F

C1(HI)×Q1_2 + C2(HI)×Q2_2 ≤ T F

C1(HI)×Q1_3 + C2(HI)×Q2_3 ≤ T F

C1(HI)×Q1_4 + C2(HI)×Q2_4 ≤ T F

These constraints ensure that in the worst case HI criticality tasks are able to

execute to their HI WCET values on the core tha they are scheduled. The second

set of constraints looks similar but uses the LO WCET values for the HI criticality

tasks in order to calculate the synchronised switching point.

C1(LO)×Q1_1 + C2(LO)×Q2_1 +X ≤ T F

C1(LO)×Q1_2 + C2(LO)×Q2_2 +X ≤ T F

C1(LO)×Q1_3 + C2(LO)×Q2_3 +X ≤ T F

C1(LO)×Q1_4 + C2(LO)×Q2_4 +X ≤ T F

The variable X is used to represent the spare capacity of each core which LO

criticality tasks may be scheduled in. Using the same X variable for each calcu-

lation provides an implementation of the barrier protocol ensuring that the spare

capacity, and thus the switching point (Smax), is the same across all cores. The

third set of WCET constraints checks the schedulability of all LO criticality tasks.

The constraints for LO criticality tasks τ3 & τ4 would be as follows:
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C3(LO)×Q3_1 + C4(LO)×Q4_1−X ≤ 0

C3(LO)×Q3_2 + C4(LO)×Q4_2−X ≤ 0

C3(LO)×Q3_3 + C4(LO)×Q4_3−X ≤ 0

C3(LO)×Q3_4 + C4(LO)×Q4_4−X ≤ 0

In this way LO tasks are required to execute in the time after the barrier protocol

has triggered. This time is represented by variable X, thus if the sum of the LO

execution is less than or equal to X it is schedulable. The three sections presented

above are the WCETConstraints illustrated in Figure 3.12:

Objective

TaskLocation

WCET_1

WCET_2

WCET_3

W
C
ETC
onstra ints

Constraints

Figure 3.12: Abstract Diagram: Objective, all constraints.

Bounds

The bounds section for these models is simple, as all of the task location variables

are binaries, the only integer variable is X. X is constrained as so:
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X <= T F

A lower bound of 0 is implicitly included.

Variables (Binaries/Integers)

The final section of a ’.lp’ model defines the variables based on their type, all task

variables are defined as binaries and X is defined as an Integer. For example, τ1 &

τ2 and X are defined as follows:

B ina r i es

Q1_1 Q1_2 Q1_3 Q1_4 Q2_1 Q2_2 Q2_3 Q2_4

In tege rs

X

End

Model Overview

With the constraints described, Figure 3.13 shows an overview of a typical ILP

model describing a set of tasks seeking schedulability of a single cycle mixed criti-

cality multi-core cyclic executive.

3.1.4 Experiment: Heuristics vs ILP

The purpose of this experiment was to investigate how well the heuristics per-

formed in comparison to the optimal ILP. This time we compared all approaches

utilising the synchronised switching mechanism (barrier protocol). While we recorded

execution timing data, this is discussed in Section 3.2.2. We begin by describing

the experimental setup.

Setup

Both the heuristic techniques and an ILP model generator were implemented in

Matlab. ILP models may be generated and evaluated while within the Matlab envi-

ronment using the Gurobi integration tools. We generated 1000 task sets per 5%

increase in utilisation. The setup of this experimentation is detailed below:
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Figure 3.13: Abstract Diagram: Full (single-cycle).

• Task utilisations were generated using UUniFast, an algorithm presented in

[25] which provides an unbiased distribution of utilisation values, following

standard practice in synthetic task set generation.

• Task periods were set equal to the minor cycle length, in this case 25, T =

T F = 25. (In reality 25 might equal 2500 in the implementation, typically this

reduces the chance of a low utilisation value producing a very small execution

time)

• Deadlines were set equal to periods. Di = Ti.

• The LO execution times of each task were produced as follows: Ci(LO) =

Ui/Ti

• For tasks with a criticality greater than the lowest, their HI execution times

were determined by Ci(Li) = Ci(LO) ∗ CF - CF is the criticality factor, a

random value between 1.2 and 2.
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• Timing data was recorded to find the average time each heuristic took to find

a solution. (detailed analysis of timing data conducted in Section 3.2.2).

• The barrier protocol was implemented for all allocation techniques.

Results

The experimental results consist of a standard schedulability plot and a number of

plots investigating the scalability of each approach using the Weighted Schedula-

bility metric.

Experiment One

Parameters:

• 20 tasks were generated per task-set.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

The first experiment was performed to provide the standard plot of utilisation vs

schedulability. The result of this experiment is shown in Figure 3.14. As expected

FF is the worst performing herustic, as expected due to its tendency to fill up a

single core with HI criticality work. Both WF and FFBB perform very close to the

optimal ILP allocation providing a very good approximation.

Experiment Two

Parameters:

• Multiple experimental runs were performed, each increasing the number of

tasks per set in increments of 20, from 20 to 100.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

The second experiment explores the impact that increasing the number of tasks

per set has on schedulability. Weighted schedulability is used to gauge the impact

by summarising each individual experiment undertaken with varying task set sizes.

The results of this experiment are shown in Figure 3.15.
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Figure 3.14: A graph illustrating the performance of the heuristic approaches com-
pared to ILP where T F = TM .
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Figure 3.15: A graph illustrating the effect of increasing the number of tasks in each
set.
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This plot illustrates strong performance from FFBB and WF, however they do

lose a small amount of schedulability when compared to the ILP approach. Given

the greater granularity of tasks to allocate to 2 cores, ILP is able to schedule task

sets even when the utilisation is equal to 2, while the heuristics cannot. The slight

gain in schedulability for the ILP approach is entirely down to being able to sched-

ule these task sets with very high overall utilisation.
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Figure 3.16: A graph illustrating the effect of increasing the number of cores to
allocate to.

Experiment Three

Parameters:

• Multiple experimental runs were performed, each increasing the number of

cores per set in increments of 2, from 2 to 8.

• 20 tasks were generated per task-set.

• Tasks were evenly distributed over two criticality levels.

Experiment three investigates the effect of increasing the number of cores on

schedulability. The task set size is fixed at 20 and the number of criticality levels

at 2. The results of this experiment use weighted schedulability and are presented
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in Figure 3.16. As we saw previously (see Figure 3.7) increasing the number of

cores without increasing the number of tasks to allocate has a negative impact on

weighted schedulability. FF is clearly the worst performer, FFBB and WF are close

to each other while ILP outperforms all approaches by a small margin. Otherwise

the reduction in weighted schedulability is similar for each approach. Increasing

the number of tasks would greatly improve this performance (as shown before in

Figure 3.8).

Summary

In summary, the heuristics WF and FFBB are good approximations of the ILP so-

lution while FF performs poorly. The poor performance of FF is intrinsic to its

allocation policy, while WF and FFBB are reasonably close to the schedulabiliity

of the optimal ILP approach. Given this result we move on to extend the model to

include multiple minor cycles and investigate the performance.

3.2 Multiple Minor Cycles

A natural extension from the single cycle model is to introduce multiple minor cy-

cles. This section builds upon the lessons learned when allocating single cycle

cyclic executive and applies them to the multi cycle case. We extend the Inte-

ger Linear Programming model to support multiple minor cycles and compare its

performance with the worst fit heuristic.

3.2.1 The Extended Model

The multi-cycle model assumes more than one minor cycle per major cycle. We

assume that all minor cycles are of equal length, Figure 3.17 presents an overview:

TM

TF TF TF TF

Figure 3.17: A cyclic executive with 4 minor cycles per major cycle.
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τ C(LO) C(HI) T Li
τ1 5 10 25 HI
τ2 5 10 25 HI
τ3 10 15 50 HI
τ4 15 20 100 HI
τ5 5 - 25 LO
τ6 5 - 25 LO
τ7 10 - 50 LO
τ8 10 - 100 LO

Table 3.2: Task Allocation: Example.

It is clear from Figure 3.17, that multiple T F are present within TM . While

conceptually this extension is simple, some considerations must be made.

Tasks where T > T F

Given multiple minor cycles, tasks are now permitted to have periods greater than

the major cycle, however, they must follow the standard cyclic executive constraints

and be a multiple of the minor cycle. In addition, each task, regardless of its period

(whether it is equal to T F or TM ), must complete its execution within a single minor

cycle. Consider the task set in Table 3.2

These tasks have periods ranging from the minor cycle length T F = 25 to the

major cycle TM = 100. The execution times for all tasks are ≤ T F (25) and thus

may complete within a single minor cycle. Figure 3.18 shows an example allocation

of the task set from Table 3.2

This schedule illustrates how tasks of differing periods may be scheduled, some

executing once every minor cycle, while some execute as little as once every major

cycle. The periods utilised in this example are specifically chosen to allow for

a cyclic executive schedule with a major cycle of 100 and a minor cycle of 25.

This mimics common development practice, where such complimentary periods

are enforced to ease the task allocation problem.

Extensions to the ILP Model

In order to support multiple minor cycles, a number of changes must be made to

the constraints of an ILP model. We build upon the single cycle model described
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Figure 3.18: An example schedule (of Table 3.2) on a 2 core (C1, C2), 4 minor cycle
(M1...M4) platform.
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earlier in the chapter and explain these extensions.

Notation Change

To begin we must clarify a change in the notation to account for multiple minor

cycles. As the binary variables representing each possible task location must now

account for multiple minor cycles, their structure is altered accordingly. Each pos-

sible location that a task may be scheduled in is now represented by:

Q{taskNumber}_{CPU_core}{MinorCycle}

Thus, for task τ1 on core 1 minor cycle 1 the variable would read:

Q1_11

As before, we may illustrate the locations each variable represents using an ex-

tended version of Figure 3.10, this is shown in Figure 3.19:

C1

TF

C2

C3

C4

Q1_11

Q1_21

Q1_31

Q1_41

TF

Q1_12

Q1_22

Q1_32

Q1_42

TF

Q1_14

Q1_24

Q1_34

Q1_44

TF

Q1_13

Q1_23

Q1_33

Q1_43

Figure 3.19: Location variables in the locations they represent extended to multiple
minor cycles.

Task Location/Periodicity constraints

The first set of constraints presented, termed Task Location constraints earlier

in the chapter, are now called periodicity constraints, as they seek to ensure each

task executes at the correct frequency as well as indicating which core. To illustrate

these possible constraints we will show how a generic task τi may be constrained

in a system with 4 minor cycles per TM .

• Where Ti = T F : In this case one instance of τi must execute during every
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minor cycle on one of the available cores. On a platform with 2 cores these

statements would read:

Qi_11 +Qi_21 = 1

Qi_12 +Qi_22 = 1

Qi_13 +Qi_23 = 1

Qi_14 +Qi_24 = 1

• Where Ti = TM/2: Here the task must execute once in the first two minor

cycles and once in the second.

Qi_11 +Qi_21 +Qi_12 +Qi_22 = 1

Qi_13 +Qi_23 +Qi_14 +Qi_24 = 1

• Where Ti = TM : Finally this task must only execute once every TM :

Qi_11 +Qi_21 +Qi_12 +Qi_22 +Qi_13 +Qi_23 +Qi_14 +Qi_24 = 1

WCETConstraints:

Fundamentally little changes in this section, it is simply extended to account for

an increase in the number of locations. Up to this point it has been reasonable to

present the raw constraints, however as the number of tasks, cores or minor cycles

involved increases, this becomes unwieldy very quickly. As such we define m to

represent the minor cycle and c to represent the core.

• WCET_1: These constraints are repeated for each possible combination of

m and c (for all cores in each minor cycle).

∀i
∑
i∈hct

Ci(HI)×Qi_cm ≤ T F

Where hct is the set of high criticality tasks. To clarify for core 1 minor cycle
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1 (c = 1,m = 1) the constraints for two HI criticality tasks, τi&τl, would read:

Ci(HI)×Qi_11 + Cl(HI)×Ql_11 ≤ T F

• WCET_2: In this step, multiple X variables are now used to model the action

of the barrier protocol during each minor cycle. Again the constraints are

repeated for each possible combination of m and c.

∀i
∑
i∈hct

Ci(LO)×Qi_cm+Xm ≤ T F

Thus the raw constraints where c = 1 and m = 1 are:

Ci(LO)×Qi_11 + Cl(LO)×Ql_11 +X1 ≤ T F

• WCET_3: Finally LO criticality tasks must fit after the HI criticality work within

the space in the X variable.

∀i
∑
i∈lct

Ci(LO)×Qi_cm−Xm ≤ 0

Where lct is the set of LO criticality tasks. Again the constraints for two LO

criticality tasks τz&τx where c = 1 and m = 1 are:

Cz(LO)×Qz_11 + Cx(LO)×Qx_11−X1 ≤ 0

While the structure of the model has not fundamentally changed, the overview is

repeated below with minor updates in Figure 3.20:
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Figure 3.20: Abstract Diagram: Full (multi-cycle).

3.2.2 Experiment: Heuristics vs ILP - multi-cycle

With the model extended to multiple minor cycles some more experiments were

performed to assess the performance of the Worst Fit when compared with the

ILP model. The aim of this experiment is simply to assess the performance of all

WF and ILP when allocating to multiple minor cycles. In addition, timing data is

presented considering the time taken by each approach to find a solution.

Setup

A larger number of synthetically generated task sets were produced. 1000 task

sets were generated per 5% utilisation increment. The standard features of the

experimental setup are described below:

• Task utilisations were generated using UUniFast, an algorithm presented in
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[25] which provides an unbiased distribution of utilisation values, following

standard practice in synthetic task set generation.

• The minor cycle length was set at 25, with the major cycle length set at 100

(T F = 25, TM = 100)

• Task periods were selected at random from either 25, 50 or 100.

• Deadlines were set equal to periods. Di = Ti.

• The LO execution times of each task were produced as follows: Ci(LO) =

Ui/Ti

• For tasks with a criticality greater than the lowest, their HI execution times

were determined by Ci(Li) = Ci(LO) ∗ CF - CF is the criticality factor, a

random value between 1.2 and 2.

• Timing data was recorded to find the average time each heuristic took to find

a solution. All timing data was recorded on a 4 core Intel i7 4790K.

• The barrier protocol was implemented for all allocation techniques.

Additionally, we extended Worst Fit to be able to account for multiple minor cy-

cles. Allocation begins at the highest criticality level, tasks are allocated to the core

with the greatest available capacity, the range of cores available for this allocation

is determined by the period of the task. If TM = 100 and T F = 25, a task with

a period of 50 will be allocated to the core with the most spare capacity in the

first two minor cycles and the same in the second two. Once the highest criticality

level is allocated a value of Smax is found for each minor cycle, allocation of the next

criticality level then begins and repeats the same process until all work is allocated.
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Results

Experiment One

Parameters:

• 20 tasks were generated per task-set.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

• 4 minor cycles were included per major cycle.

The first experiment is presented as a standard schedulability plot detailing the

performance of both techniques. The results are shown in Figure 3.21:
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Figure 3.21: A comparison of the performance of all allocation approaches.

We observe WF performing significantly worse than in the single-cycle case.

This result was expected as WF allocates tasks in order, an allocation for the pre-

vious criticality level may be undesirable for the next, the heuristic is not able to

re-allocate. However the ILP approach does not rely on a sequential allocation of

tasks, as such it is able to allocate tasks at all criticality levels in the most optimal

fashion.
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Experiment Two

Parameters:

• Multiple experimental runs were performed, each increasing the number of

tasks per set in increments of 20, from 20 to 100.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

• 4 minor cycles were included per major cycle.

This experiment investigates the effect of scaling the number of tasks from 20 per

set to 100. We present the results in 3.22.
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Figure 3.22: A plot illustrating the performance as the number of tasks per set is
increased.

Figure 3.22 illustrates that scaling the number of tasks provides a significant

boost in schedulability for both ILP and WF. While ILP always out performs WF,

we see the results narrowing as the number of tasks is increased. The general

increase is due to an increased granularity in the allocation, the utilisation of each

task set at each set is the same regardless of the number of tasks, thus the exe-

cution time of a task in a task-set of size 100 is likely to be relatively small. This

results in task sets which are easier to allocate, this ease of allocation explains the

gains made by WF and the overall gains made by both approaches.
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Experiment Three

Parameters:

• Multiple experimental runs were performed, each increasing the number of

cores per set in increments of 2, from 2 to 8.

• All task sets contained 20 tasks.

• Tasks were evenly distributed over two criticality levels.

• 4 minor cycles were included per major cycle.

We then investigated the performance when the number of cores are scaled.

The results are shown in Figure 3.23.
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Figure 3.23: A plot illustrating the performance as the number of cores is increased.

As we have observed previously (see Section 3.1.2) if the number of cores is

scaled up without an increase in the number of tasks a significant loss in schedu-

lability is observed. We illustrate this with two plots in Figure 3.24. These results

again illustrate how additional locations for allocation, created by increasing the

core count, require a suitably large number of tasks in order to be efficiently allo-

cated.
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Figure 3.24: A plot illustrating the improved Schedulability on an 8 core platform
when the number of tasks is also increased.

Experiment Four

Parameters:

• Multiple experimental runs were performed, each increasing the number of

criticality levels by 1, from 2 to 5.

• 20 tasks were generated per task-set.

• Allocation was made to a 2 core platform.

• 4 minor cycles were included per major cycle.

Experiment four scales the number of criticality levels. The results of this experi-

ment are shown in Figure 3.25. In this figure we observe the greatest weakness of

WF, it scales poorly as the number of criticality levels is increased. A steady drop

in schedulability may also be observed from ILP. A general decrease in schedula-

bility is expected as for each criticality level an additional barrier (point of Smax) is

required, which will cause some degree of schedulability loss.
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Figure 3.25: A plot illustrating the performance as the number of criticality levels is
increased.

Experiment Five

Parameters:

• Multiple experimental runs were performed, each increasing the number of

minor cycles from 4 to 16 in increments of 4.

• 20 tasks were generated per task-set.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

Finally, we investigate the performance as the number of minor cycles is increased.

The periods of tasks remain fixed at 25, 50 or 100. Thus we increase the number

of minor cycles from 4 to 8, 12 and 16. The results are shown in Figure 3.26. The

results here show little change across all techniques. This is likely to be due to

the same periods being used for each number of minor cycles. Thus if a set is

schedulable on 4 minor cycles, it is also schedulable on 8 if the largest period of

any task is equal to the length of 4 minor cycles.
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Figure 3.26: A plot illustrating the performance as the number of minor cycles is
increased.

Timing

The schedulability results required further investigation. In short the question be-

comes: How efficient is ILP in comparison to Worst Fit? Timing data was taken for

both the ILP solver and the WF implementation. While Gurobi does record the time

taken to solve the model, we used Matlab’s basic timing tools to take a reading for

both the heuristic and the ILP solver to remain consistent. We took execution time

data taken from the results shown in Experiment One is presented in Table 3.3:

WF ILP
Average 0.0058 0.0064
Median 0.0058 0.0017
Max 0.0185 58.618

Table 3.3: The average, median and max execution times of WF and ILP (in sec-
onds).
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The timing data in Table 3.3 illustrate that WF maintains a very low average,

median and maximum execution times. All heuristic approaches allocate task sets

within a fraction of a second. The ILP approach has an average execution time

only slightly higher than the heuristic and a median execution time well below. A

small number of outliers push the average execution time of ILP well above the

median. However given than the median is very low it is clear that the vast majority

of task sets are allocated very quickly within a fraction of a second. We observed

the timing outliers at utilisations where task sets are borderline schedulable. While

we included no timing cut-off for the ILP solver in Experiment One, we included a

cut-off of 60 seconds for the scalability investigation. We observed only 0.3% of

models generated reaching this limit over all of the timing data presented. This

is a practical consideration as a large number of different experimental runs are

required to scale all parameters. We accept that a number of outliers will occur

but again observe a consistently low median execution time indicating that the vast

majority of task sets are allocated very quickly.

We scaled the size of the task set, the number of cores, the number of criticality

levels and the number of minor cycles and considered the execution time increase.

We utilised box plots to present the resulting execution time data, the red centre

line in each box is the median execution time, with the bottom and top whiskers

being the 25th and 75 percentiles respectively. While a number of outliers exsist,

this experiment illustrates that the majority of task sets are allocated very quickly.

The data is presented in Figures 3.27, 3.28, 3.29 and 3.30 respectively.

It is clear from the average execution times and the box plot data that all ap-

proaches, no matter the scaling, take little time to execute for the vast majority of

cases. However, we observe that the ILP based approach proves to be quicker

to execute in all cases of comparable scale. As all timing values are taken using

Matlab’s in-built timing tools, the run-time recorded for ILP accounts for creation of

the ILP model and its time running in the solver. The creation of the model is ex-

tensive but not exceedingly time consuming, it largely revolves around constructing

a sparse matrix to represent the constraints.
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Figure 3.27: A box plot illustrating the range of execution times taken for each
approach as the number of tasks is increased.
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Figure 3.28: A box plot illustrating the range of execution times taken for each
approach as the number of cores is increased.
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Figure 3.29: A box plot illustrating the range of execution times taken for each
approach as the number of criticality levels is increased.
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Figure 3.30: A box plot illustrating the range of execution times taken for each
approach as the number of minor cycles is increased.
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As our ILP models have no optimisation function, the solver is able to quickly

find a solution and thus the overall runtime is very low (See the below ’Feasibility

vs Optimisation’ section for more insight). On the other hand, worst fit relies solely

on a large number of iterations to find suitable allocations, as such its execution

time is slightly larger than the ILP solution in this case.

We have shown that scaling the number of tasks, cores, criticality levels and

minor cycles does have an impact on the execution time. However, the time taken

to find feasible solutions remains extremely fast. In addition, given that this multiple

minor cycle case is more complex than the single cycle, the results illustrating

very fast performance also apply to the prior experiments in this chapter. Timing

data was recorded for the experiment in Section 3.1.4, it shows extremely fast

performance across all techniques, we included the details in Appendix A.

Summary

To conclude we summarise the results of the experiment, both the schedulability

result and the timing result.

• Firstly: Our ILP implementation outperforms Worst Fit by a significant margin,

particularly when scalability via the number of criticality levels is taken into

account. This makes ILP an more effective candidate for allocation.

• Secondly: The timing data illustrates that, in this case our ILP approach ac-

tually out-performs WF in terms of execution time. This is likely down to

implementation, ILP models are generated and run as feasibility tests using

Gurobi[45], WF must undergo a large number of iterations in Matlab in order

to find successful allocations. It may be possible to produce a faster imple-

mentation of worst fit, however both approaches are equally fast with a very

small number of outliers.

While we do not claim that no better heuristic might exist, with the increase in

schedulability offered by ILP and the very low execution times the logical choice is

to make use of the optimal solver.
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Feasibility vs Optimisation

They key reason for the efficient run-time of our ILP models, is their lack of an

optimisation function. In effect these become feasibility tests rather than optimisa-

tions, the question becomes ’is there a search space?’ rather than ’which point

maximises a particular function?’. In these cases we are interested in constraint

satisfaction rather than optimisation. The ability to generate models using tools

such as Matlab makes ILP a compelling option when investigating the feasibility of

a given task set on a mixed criticality cyclic executive. Model generation tools allow

for the rapid development of system models which provide a system designer with

a means of investigating possible task allocations during all stages of the design

and development process.

Task Ordering With Criticality Level

During task allocation, tasks are allocated to the appropriate number of minor cy-

cles, and within these to a core. Within this, each minor cycle on each core, is

split via the barrier separating the execution of each criticality level. The ordering

of execution within tasks of the same criticality level is not explicit, schedulability

simply requires the tasks to fit in some order. As the barrier is a dynamic structure,

even if a criticality change occurs, the barrier will still be invoked and some work

of the following criticality level will execute. In a dual criticality context, logically,

work scheduled later in the LO criticality execution is more likely to be effected by

a criticality change (HI work overrunning the pre-computed point S). If a critical-

ity change occurs, HI work overruns the pre-computed S point by some amount,

once that work completes LO work begins execution. Work scheduled first in the

LO mode is less likely to suffer during a criticality change. The notion of Impor-

tance could be used as a means of ordering tasks within a criticality level. Such

an ordering could be applied to any criticality levels below the highest, with tasks

assigned a higher importance executing earlier in the schedule. Ordering these

tasks is simple, as the schedule is viable no matter which order the tasks execute.

In addition to simply ordering tasks once a schedule has been established,

importance could be used as a factor for optimisation. The solver could be tasked

with ensuring that where possible, higher importance tasks execute before lower
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importance. This could either be modelled as firm constraints, where such an

order is mandatory or as a desired order which might suffer if the only schedulable

solution breaks it. It is worth noting that if modelled as firm constraints optimality is

lost (in that it may not find a feasibility schedule, even if one exsists).We return to

the issue of optimisation in Chapter 5.

3.3 Summary

In this chapter we have studied task allocation. We began at the single cycle

level investigating how heuristics may be used to find correct schedules. Experi-

mental results illustrated the effectiveness of the heuristics and the impact of the

barrier separation technique. The use of ILP was considered as an optimal solver,

its performance was compared against the heuristic techniques outperforming the

heuristics by a small margin (aside from FF). We extended the model to consider

multiple minor cycles and once again compared the heuristic against ILP. The re-

sults showed a significant improvement in schedulability with relatively low solution

execution times.

In short, the main results of this chapter can be summarised as:

• Heuristic allocation techniques are effective for the single minor cycle alloca-

tion problem.

• Worst fit performs poorly in the multi-cycle scenario.

• ILP is effective at producing both single and multi-cycle schedules.

• ILP is efficient with very low runtime per solution.

This chapter illustrates that while for simpler cases heuristic allocation methods

can be applied effectively, given the flexibility (in terms of increasing the problem

size, more minor cycles, cores) and relatively low execution costs ILP is an excel-

lent tool for mixed criticality cyclic executive task allocation.
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Chapter 4

Task Splitting

One of the well documented drawbacks of Cyclic Executive platforms is their typ-

ically poor overall system utilisation. In the Mixed Criticality case this utilisation is

hampered further by the introduction of a barrier protocol separating the execution

of tasks with differing criticality levels. To address the issues surrounding utilisation

this chapter investigates the use of task splitting to improve cyclic executive plat-

form utilisation. The task splitting described is designed to be used in a limited way

to help release any spare system utilisation.

Splitting in this chapter implies the suspension of execution after a given amount

of time indicated by the length of the split. Splitting via pre-emption does introduce

context switching overheads, a careful balance must be struck in order to find a gain

in overall system utilisation. While we assume splitting via pre-emption, the work

might also be considered in the context of physical code separation. This might

create a situation where the system designer splits code manually to increase the

available system utilisation on the advice of the solver.

When considering task splitting we make a key assumption. We assume that

tasks may only be split across minor cycles and not CPU cores. This decision was

made mainly to reduce the problem and ILP model complexity. In addition, cross

core splitting requires suitable assurance that portions of the same task will not

execute concurrently. Cross core splitting was dealt with in a mixed criticality cyclic

executive context in [29]. While we do not claim that additional utilisation could not

be gained by splitting across cores we focus on minor cycle splitting only.

This chapter will describe the splitting of mixed criticality tasks in two stages: the
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first stage will discuss the splitting of LO criticality tasks and the second discusses

the splitting of HI criticality tasks. While we restrict ourselves to two criticality levels,

the observations and implementations apply to more than two levels, the LO split-

ting always applies to the lowest criticality and the HI splitting to all those criticality

levels above the lowest.

4.1 Low Criticality Splitting

The splitting of the lowest criticality tasks is the simplest of the two stages. Con-

ceptually, the act of splitting such tasks is simple, each task has only a Ci(LO) to

split, and thus may be split across minor cycles as desired. This is best clarified

with an example task set and allocation. Consider the task set shown in Table 4.1

τ C(LO) C(HI) T Li
τ1 5 10 25 HI
τ2 5 15 25 HI
τ3 20 25 50 HI
τ4 5 - 25 LO
τ5 15 - 50 LO
τ6 15 - 100 LO
τ7 35 - 100 LO

Table 4.1: Task Splitting: An example task set to illustrate LO criticality splitting.

This task set assumes a 2 core system with 4 minor cycles where T F = 25

and TM = 100. It is clear that the C7(LO) of τ7 is greater than the minor cycle

length C7(LO) > T F , and thus for the system to be schedulable τ7 must be split.

A potential allocation for this task set is shown in Figure 4.1.

Each minor cycle is annotated as Mx where x is the minor cycle number, each

core is indicated as Cy where y is the core number and each predicted barrier

invocation is marked as SMAX(m). This allocation illustrates a potential split for τ7

with 5 units of execution time in M1, 20 in M2 and 5 in M3 and M4. Splitting LO

criticality tasks simply requires the solver to be provided with suitable variables and

constraints, from there it will choose the task split.



CHAPTER 4. TASK SPLITTING 105

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

C
1

C
2

M
1

M
2

M
3

M
4

S
M
A
X
(1
)

S
M
A
X
(2
)

S
M
A
X
(3
)

S
M
A
X
(4
)

Figure 4.1: A schedule illustrating LO criticality splitting.
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4.1.1 An MLP Model

While the splitting of LO tasks is conceptually simple, additional constraints and

variables are required in our LP model to express the new allocation functionality.

The most fundamental of these is the introduction of continuous variables, as such

we move from Integer Linear Programming, to Mixed Linear Programming (MLP)

(a combination of integer and continuous variables).

Continuous variables may be used to model task locations in a similar way

to the binary variables we are already familiar with. If the continuous variable is

constrained to be ≥ 0 and ≤ 1, then it may replace the binary variables for any LO

criticality tasks that must be split. With a continuous variable, rather than requiring

the task to be located in a single location, part of the task may be allocated to

multiple locations. With these new variable types come some additional constraints

to ensure the splitting performs as desired, we describe these below.

Minor Cycle Splitting

It is clear that if we constrain splitting to purely minor cycles, we require constraints

to ensure that this is indeed the case. In order to achieve this we introduce a new

set of binary variables, Y variables. For each split task there is a Y variable for

each core. If a Y variable is set to 0, it indicates that no work is scheduled on that

core. By constraining all the Y variables such that only one may equal 1, we ensure

that tasks are split across minor cycles only. These constraints for a generic LO

criticality task τz are as follows:

Qz_11 +Qz_12 +Qz_13 +Qz_14− Y1 = 0

Qz_21 +Qz_22 +Qz_23 +Qz_24− Y2 = 0

Y1 + Y2 = 1

The Y variables are included in the constraint alongside the task location variables.

In order for the constraints to be met, either no work can be scheduled (all Q

variables equal 0 and the Y variable equals 0) or all work exists (and a complete

task is scheduled across a single core, with the Q variables adding up to 1), the Y

variable equals 1 and thus the sum of the Q variables must equal 1 for the constraint
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to satisfy its = 0 condition. The Y variables are then subject to a constraint which

allows only one of them to equal 1, thus ensuring that a task is split only across

minor cycles and not cores.

Thus following the same format, the variables for τ7 are as follows:

Q7_11 + Q7_12 + Q7_13 + Q7_14 − Y1 = 0

Q7_21 + Q7_22 + Q7_23 + Q7_24 − Y2 = 0

Y1 + Y2 = 1

If an example allocation splits τ7 in half with Q7_11 = 0.5 and Q7_14 = 0.5, the

actual values of the constraint above would be.

0.5 + 0 + 0 + 0.5− 1 = 0

0 + 0 + 0 + 0− 0 = 0

1 + 0 = 1

It is clear that by allowing only a single Y variable to equal 1, we restrict a task to

splitting across a single core. This constraint is repeated for each split task with a

new Y variable defined for each core on every split task.

Maintaining Discrete Time

When introducing continuous variables we must account for the potential splits

of WCETs produced. As the WCET constraints section multiplies the location vari-

able(Q) by the WCET of the task, if that location variable is not properly constrained

a task may result in providing a WCET which does not abide by integer units of time.

For example, if τ7 had a split variable with the value 0.38, the result of the

calculation to work out the WCET value schedule in that location would be, 35 ×

0.38 = 13.3. The result is not permissible as WCETs must remain integer values.

In order to prevent this and constrain the model a constraint is required for each

continuous variable, these are as follows:
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For a generic LO criticality task τz:

Cz(LO)×Qz_11 + J1 = TM

Cz(LO)×Qz_21 + J2 = TM

Cz(LO)×Qz_12 + J3 = TM

Cz(LO)×Qz_22 + J4 = TM

Cz(LO)×Qz_13 + J5 = TM

Cz(LO)×Qz_23 + J6 = TM

Cz(LO)×Qz_14 + J7 = TM

Cz(LO)×Qz_24 + J8 = TM

The Jx variables are integers with an upper bound of TM (although in reality this

just needs to be suitably large, TM is not required). By adding the split WCET (the

location variable multiplied by the WCET) with an integer variable and requiring the

result of the constraint to be integer, we ensure that any split task does not violate

the notion of discrete units of time.

For example, given τ7 (from Table 4.1), we established above that if one of its

variables, say Q7_11 (core 1, minor cycle 1) contained the value 0.38 the resulting

multiplication with its WCET would not result in an integer(the actual result is 13.3).

Thus if that split is constrained as follows it would not satisfy the constraint.

C7(LO)×Q7_11 + J1 = TM

Or

35× 0.38 + J1 = 100

As J1 is an integer there is no value it can take to satisfy the constraint. However,

if Q7_11 = 0.4 then 35× 0.4 = 14 thus J1 = 86:

35× 0.4 + 86 = 100
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Now the resulting split results in an integer WCET the constraint may be satisfied.

Given that J1 is an integer constrained 0 ≤ J1 ≤ TM , the result of C7(LO) ×

Q7_11 must also result in an integer for the constraint to hold. Every variable is

constrained in this way where splitting is permitted.

For τ7:

20 Q7_11 + C1 = 100

20 Q7_21 + C2 = 100

20 Q7_12 + C3 = 100

20 Q7_22 + C4 = 100

20 Q7_13 + C5 = 100

20 Q7_23 + C6 = 100

20 Q7_14 + C7 = 100

20 Q7_24 + C8 = 100

Clearly in addition to these constraints, any variables which have changed from

binary to continuous must be declared as such at the bottom of the model. With

these two additional sets of constraints in mind the model overview can be updated

and is shown again in Figure 4.2.

4.1.2 Splitting when required

Our MLP model at this stage maintains a desirable property: regardless of which

tasks are permitted to split, if an ILP (non-splitting) solution exists, the model will

find it. This allows a system designer to specify a number of tasks for splitting while

being sure that if splitting is not required, the integer solution will be found.

To this point, our ILP and MLP models all lack an objective function. While the

location of an objective function is included in all model overviews (such as Figure

4.2), this section of the model remains empty. This causes the LP solver to seek

the initial feasible solution, rather than optimise some value. Essentially, the solver

simply seeks to determine if a search space exists. The fact that our LP models

are, to this point, feasibility tests has important repercussions.

• The very fast performance of our ILP models can be largely attributed to be-
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Figure 4.2: Abstract Diagram: Full (Splitting)

ing feasibility tests rather than optimisations. The solver will halt on discovery

of the initial feasible solution (e.g. it confirms a search space exists).

• Ceasing at the initial feasible solution explains why our MLP models produce

an ILP solution where possible. As our solver (Gurobi [45]) seeks an initial

feasible solution via the simplex algorithm [32], the variables are initiated

using the bounds placed upon the constraints. Therefore, if the constraint is

bound with an integer value, the initial values the solver attempts to assign

to each variable will be that same integer. In this way our MLP models split

only when non of the initial integer assignments are valid.

The following section discusses how HI criticality tasks may be split. Detailed

evaluations of both LO and HI criticality splitting are presented in Section 4.3 at the

end of the chapter.
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4.2 HI Criticality Splitting

The splitting of tasks where the criticality level is greater than the lowest becomes

more complicated. This complexity is due to a task being assigned multiple WCET

predictions (in this work, two WCETs), thus we must consider how the splitting of

tasks is handled during all criticality modes. While this applies to any criticality

level greater than the lowest, we stick to a dual criticality system (LO and HI where

LO < HI) and thus consider the splitting of tasks in the HI criticality mode.

4.2.1 Period Transformation

When considering how HI criticality splitting is handled we return to the work of

Vestal [81] and its follow-ups [38]1. We have covered Period Transformation in

Chapter 2.2.3, however we revisit it here highlighting the key features relevant to

this section. Period Transformation was used in this context to allow any HI criti-

cality tasks with periods greater than the shortest period of any LO criticality task

to be transformed. In this way a criticality monotonic ordering could be created

removing any chance of criticality inversion (where a LO criticality task pre-empts

a HI). To do this tasks were transformed by some factor termed m:

m =
Ti
Tl

Where Ti is the HI criticality task being transformed and Tl is the LO criticality

task with the shortest period.

Crucially, [38]2 found that a split HI task must execute in segments of Ci(HI)/m

until it reaches its untransformed Ci(LO) value. This is because it is only at this

point that the system is able to determine whether a task will overrun and a critical-

ity change is needed. Up to this point, execution must be performed in such a way

that if an overrun occurs, the maximum execution time can be provided. While this

approach is not directly applicable in the Cyclic Executive context as we consider

only the splitting of WCETs (periods are fixed), it provides the inspiration for the

following approach.

1While the work was undertaken by this author it was part of an earlier degree [37]
2Work of this author as part of a prior degree
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4.2.2 Containers

In order to split HI criticality tasks we reconsider the structure of a task with mul-

tiple execution times. Up to this point we considered a HI criticality task, τi, with

two execution times, one for the LO criticality Ci(LO) and one for the HI Ci(HI).

Instead such a task might be seen to have again a LO criticality value Ci(LO) but

in addition a value Ci(EX) which represents the additional execution time required

to reach a full Ci(HI) value. In other words:

Ci(EX) = Ci(HI)− Ci(LO)

When we define our models with HI criticality task τi permitted to split, we create

containers for Cti(LO) & Cti(EX). These containers are constrained in such a

way that we allow the solver to allocate additional work to the LO container and

thus for execution in the LO criticality mode if desired, this balance is decided by

the solver. For clarity the containers must be constrained as follows:

• Ci(LO) ≤ Cti(LO) ≤ Ci(HI)

• 0 ≤ Cti(EX) ≤ (Ci(HI)− Ci(LO))

• Cti(LO) + Cti(EX) = Ci(HI)

Once a distribution between the two containers is allocated, the task may then be

split as desired. Cti(LO) may be split into any number of minor cycles, however

Cti(EX), or split instances of, must be allocated only to the final minor cycle to

which Cti(LO) is allocated and any after. This is logical as the EX execution, or

the HI criticality mode execution, only may occur once the LO work has completed.

The process of allocation is described below:

• The LO container, Cti(LO), is allocated execution time of the task such that

Ci(LO) ≤ Cti(LO) ≤ Ci(HI).

• The EX container, Cti(EX), is allocated the remaining execution time for the

HI criticality mode. Cti(EX) = Ci(HI)− Cti(LO).

The task is now represented such that Cti(LO) + Cti(EX) = Ci(HI).
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• Cti(LO) may now be split across a number of minor cycles, each split in-

stance of Cti(LO) is represented by Ctij(LO) where j is the minor cycle.

Cti(LO) =
∑
j∈TM

Ctij(LO)

Each instance of Ctij(LO) may be of differing lengths, such an allocation is

illustrated in Figure 4.3.

Ct
i1
(LO) Ct

i2
(LO) Ct

i3
(LO)

Figure 4.3: A split LO container.

• Following the allocation of Cti(LO), Cti(EX) must be allocated. Each in-

stance is again described as Ctij(EX) where j is the minor cycle.

Cti(EX) =
∑
j∈TM

Ctij(EX)

Split instances of Cti(EX) may only be allocated the minor cycle, and all

those following the final allocation of Cti(LO). Figure 4.4 displays the final

allocation.

Ct
i4
(EX)Ct

i3
(EX)Ct

i1
(LO) Ct

i2
(LO) Ct

i3
(LO)

Figure 4.4: Split LO and EX containers.

While it is unlikely that without an optimisation, work will be moved fromCti(EX)

to Cti(LO) the capability is there. The reasoning behind this ability is that if more

work is considered LO, then there will be a reduced chance of a criticality change

occurring which would affect the entire system.

To illustrate, consider the task set in Table 4.2, an extension of Table 4.1 which

includes an additional task, τ8 and τ7 has a lower WCET value of 20.

We now consider the scenario where τ3 is allowed to split. A potential allocation

of this task set is shown in Figure 4.5. This scenario illustrates how τ3 is split over

minor cycles 1 and 2, but is not split over cycles 3 and 4. The solver only splits

tasks where it is required.
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Figure 4.5: A schedule illustrating HI criticality splitting.
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τ C(LO) C(HI) T Li
τ1 5 10 25 HI
τ2 5 15 25 HI
τ3 20 25 50 HI
τ4 5 - 25 LO
τ5 15 - 50 LO
τ6 15 - 100 LO
τ7 20 - 100 LO
τ8 10 - 100 LO

Table 4.2: Task Splitting: An example task set to illustrate HI criticality splitting.

4.2.3 Updated MLP model

As with splitting LO criticality tasks, a number of additional constraints are required

for the MLP model to include the new features. In addition, the model must be

adapted to suit the new container based approach.

Periodicity Constraints

Previously we made use of separated LO WCET and HI WCET values for each

task in the system. These values are multiplied by binary variables in the case of

ILP and potentially continuous variables in the MLP models for LO criticality task

splitting. However, given the new situation, where work may be migrated into the

LO container if required, we must calculate the WCET relevant for each container.

This begins with the initial set of periodicity constraints, if τi is a HI criticality task,

in the situation where splitting is not required the constraints would be as follows3:

Qi_11 +Qi_21 +Qi_12 +Qi_22 = 1

Qi_13 +Qi_23 +Qi_14 +Qi_24 = 1

Whereas the statement differs significantly if the task must be split:

3for a system for 2 cores and 4 minor cycles where τi has Ti = TM/2
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Qi_11 +Qi_21 +Qi_12 +Qi_22+

Qi_11EX +Qi_21EX +Qi_12EX +Qi_22EX = n

Qi_13 +Qi_23 +Qi_14 +Qi_24+

Qi_13EX +Qi_23EX +Qi_14EX +Qi_24EX = n

Firstly, it is clear that the standard variables, Qi_11, represent Cti(LO) and

additional variables, Qi_11EX, are introduced to represent Cti(EX). In addition,

it follows that as the whole task is represented by these variables, the sum of all

must be used to enforce periodicity constraints. Finally, rather than requiring that

the variables be equal to 1, eg a whole task, we require them to be equal to n. The

value n is found by n = C(HI)/C(LO), rather than a task’s components being

equal to 1, or having a split portion of 1, they are equal to or contain a split portion

of n. Thus only a single LO WCET must be fed into the model in order to calculate

what portion of the WCET of the task is assigned to a location, the HI WCET is

represented by n× C(LO). To illustrate this, if τ3 from Table 4.2 must be split, the

constraints would be as follows:

Q3_11 + Q3_21 + Q3_12 + Q3_22 + Q3_11EX + Q3_21EX

+ Q3_12EX + Q3_22EX = 1.25

Q3_13 + Q3_23 + Q3_14 + Q3_24 + Q3_13EX + Q3_23EX

+ Q3_14EX + Q3_24EX = 1.25

As C3(LO) = 20 and C3(HI) = 25, n = 25/20, thus an entire task is scheduled

by including 1.25 in some way across the given variables.

An additional constraint is required to ensure that Cti(LO) ≥ Ci(LO) holds,

this constraint reads:

Qi_11 +Qi_21 +Qi_12 +Qi_22 ≥ 1

Qi_13 +Qi_23 +Qi_14 +Qi_24 ≥ 1

And for τ3:
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Q3_11 + Q3_21 + Q3_12 + Q3_22 >= 1

Q3_13 + Q3_23 + Q3_14 + Q3_24 >= 1

These are included as part of the periodicity constraints as they dictate, where and

how frequently a task may be allocated.

WCET Constraints

As we have both introduced new variables and altered the way split HI tasks calcu-

late the WCET of splits we must update the WCET constraints section to illustrate

the new functionality. The WCET constraints read as follows and is repeated for all

combos of c and m.

∀i,
∑
i∈hctS

Ci(LO)×Qi_cm+ Ci(LO)×Qi_cmEX +
∑
i∈hct

Ci(HI)×Qi_cm ≤ T F

Where hctS is the set of high criticality tasks that are permitted to split and hct is

the set of non-splitting high criticality tasks.

Given 3 HI criticality tasks, (τi, τl,τj), τi is allowed to split, the WCET calculation

for the HI mode (WCET 1) in core 1 minor cycle 1 (c = 1,m = 1):

Ci(LO)× Ti_11 + Ci(LO)× Ti_11EX + Cl(HI)× Tl_11 + Cj(HI)× Tj_11 ≤ T F

The example shows how both the Cti(LO) and Cti(EX) containers are included,

only multiplying both by Ci(LO) as the sum of each set of variables are constrained

above to be equal to n based on their periodicity. The example constraint for τ1,

τ2 & τ3 from Table 4.2 where τ3 is allowed to split is shown below for core 1 minor

cycle 1:

10 Q1_11 + 15 Q2_11 + 20 Q3_11 + 20 Q3_11EX <= 25

In the second set of WCET constraints (WCET_2) only Ct(LO) values are in-

cluded as they represent the LO criticality execution of the task. The WCET_2 and

WCET_3 constraints remain the same as those presented in Chapter 3, Section

3.2.
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Minor Cycle Splitting

The constraints which control splitting to ensure it is over minor cycles only need

minor adjustments to account for the new functionality. We use 10× Y rather than

just Y as a binary variable, as n > 1, and the value provided by the Y variable

must be able to satisfy the constraint on its own. The constraint is also required to

be greater than or equal to n, thus either the location variables contain a complete

split task, or the Y variable is used to satisfy the constraint. The constraints for HI

task τi are as follows:

Qi_11 +Qi_12 +Qi_11EX +Qi_12EX + 10× Y1 ≥ m

Qi_21 +Qi_22 +Qi_21EX +Qi_22EX + 10× Y2 ≥ m

Qi_13 +Qi_14 +Qi_13EX +Qi_14EX + 10× Y3 ≥ m

Qi_23 +Qi_24 +Qi_23EX +Qi_24EX + 10× Y4 ≥ m

10× Y1 + 10× Y2 = 10

10× Y3 + 10× Y4 = 10

And thus, for τ3 the constraints read:

Q3_11 + Q3_12 + Q3_11EX + Q3_12EX + 10 Y1 >= 1.25

Q3_21 + Q3_22 + Q3_21EX + Q3_22EX + 10 Y2 >= 1.25

Q3_13 + Q3_14 + Q3_13EX + Q3_14EX + 10 Y3 >= 1.25

Q3_23 + Q3_24 + Q3_23EX + Q3_24EX + 10 Y4 >= 1.25

10 Y1 + 10 Y2 = 10

10 Y3 + 10 Y4 = 10

As τ3 has a period T3 = 50 this constraint ensures that the task is allocated

across the same core during minor cycle 1 and 2 and the same core across minor

cycle 3 and 4. One of the first two Y variables, Y 1 & Y 2, must equal 10, thus

requiring no work be allocated across a particular core during the interval they

represent.
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No Time Violations

Finally, this section requires only a minor update to ensure all EX variables are

also checked to ensure that no integer time violations are permitted. The EX vari-

ables are simply included alongside the standard variables as illustrated in Section

4.1.1.

4.3 Experiment: MLP Schedulability Gains from Task

Splitting

These experiments are designed to assess the improvements in schedulability

gained from limited task splitting. We investigate how schedulability is related to the

number of tasks split in both the LO and HI modes. The scalability of the splitting

approach is considered by varying the number of tasks, cores, criticality levels and

minor cycles. Finally we consider how including limited splitting and the change to

MLP models affects the execution time.

Setup

• We Generated 1000 task sets per 5% increase in utilisation.

• Task utilisations were generated using UUniFast, an algorithm presented in

[25] which provides an unbiased distribution of utilisation values, following

standard practice in synthetic task set generation.

• The minor cycle length was set at 25, with the major cycle length set at 100

(T F = 25, TM = 100)

• Task periods were selected at random from either 25, 50 or 100.

• Deadlines were set equal to periods. Di = Ti.

• The LO execution times of each task were produced as follows: Ci(LO) =

Ui/Ti
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• For tasks with a criticality greater than the lowest, their HI execution times

were determined by Ci(Li) = Ci(LO) ∗ CF - CF is the criticality factor, a

random value between 1.2 and 2.

• Timing data was recorded to find the average time each approach took to

find a solution. All timing data was recorded on a 4 core Intel i7 4790K.

• The barrier protocol was implemented for all allocation techniques.

• Only tasks of periods 50 or 100 were split (as splitting is only permitted over

minor cycles).

Results

Experiment One

Parameters:

• 20 tasks were generated per task-set.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

• 4 minor cycles were included per major cycle.

Experiment one consists of a number of plots investigating the impact of splitting

different numbers of tasks. We begin by investigating the impact in schedulability of

splitting in the extreme case where all tasks which are able to split (those with peri-

ods greater than 25) are split. The fully split approach is compared with a standard

(no splitting) ILP allocation. The results are shown in Figure 4.6. Somewhat un-

surprisingly this plot illustrates a significant increase in schedulability if all possible

tasks are split. The main result from this experiment is to illustrate the maximum

potential schedulability gain which can be provided by splitting. In reality, allowing

all tasks to split would result in the solver splitting tasks in very unpredictable ways,

particularly as the utilisation of task sets increases. From our observations this

creates a large number of split tasks, which may be counter productive if context

switching costs were introduced.

With this maximum in mind we constructed an experiment investigating the

schedulability gain in splitting all possible LO criticality tasks and all possible HI

criticality tasks. Again we compare the result with a standard ILP allocation. The

results are shown in Figure 4.7:



CHAPTER 4. TASK SPLITTING 121

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Utilisation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sc
he
du
la
bi
lit
y

SPLIT_ALL
ILP

Figure 4.6: A graph illustrating the performance in schedulability where all and no
tasks are split.
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Figure 4.7: A graph illustrating the performance in schedulability where all LO, HI
and no tasks are split.
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Here we see a schedulability gain when splitting both the LO and HI criticality

tasks. While the plot which splits all HI criticality tasks performs significantly better

than the LO splitting and ILP plots, these lines will be subject to change based on

the parameters of the task generation. The balance of LO and HI criticality tasks

alongside their relative utilisations in the task set will affect these results. Regard-

less, any degree of splitting appears to have a significant impact on schedulability.

To investigate further we compare the approaches splitting all possible LO and

HI tasks, with approaches just splitting the LO criticality task with the largest WCET

and the HI criticality task with the largest WCET. The results are illustrated in Figure

4.8. In the LO criticality case the model splitting just a single task performs almost

as well as the model which splits all of them. Meanwhile, the HI criticality model

splitting the HI criticality task with the largest WCET performs very well, improves

schedulability greatly and comes close to the the model where all HI criticality tasks

are split. This illustrates a very interesting feature, splitting only a single task can

have a large impact on the overall schedulability. Thus our notion of limited splitting

has merit, as splitting only a small number of tasks can have a large impact on

schedulability. From these results, the fact that the single split tasks are those with

the largest WCETs and our own observations it becomes clear that often simply

splitting a single task effectively unblocks the allocation problem. The freedom to

split just a single high WCET task has a large impact on overall schedulability as it

seems to give the solver many more options when seeking a suitable allocation.

Finally, for a somewhat more realistic example, we compare an approach which

permits tasks to split only if their WCET is greater than a certain threshold. In this

case the threshold is 20 (as T F = 25 , the actual values are multiplied to help

maintain integer time units), the results are presented in Figure 4.9. The resulting

plot illustrates that such an approach to splitting can have a significant impact in

the overall schedulability. Of course, the threshold of 20 is used here simply as

an example, any value could be implemented depending upon the requirements of

the system. Overall, we wish to illustrate that splitting can be controlled in some

smart way such that it is only permitted for a small number of tasks with extreme

parameters.
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Figure 4.8: A graph illustrating the impact of splitting just a single task compared
to splitting all within a criticality level.
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Figure 4.9: A graph illustrating the impact of splitting only those tasks with WCETs
over a certain threshold.
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Experiment Two

Parameters:

• Multiple experimental runs were performed, each increasing the number of

tasks per set in increments of 20, from 20 to 100.

• Allocation was made to a 2 core platform.

• Tasks were evenly distributed over two criticality levels.

• 4 minor cycles were included per major cycle.

As we have done in previous experiments, we investigated the scalability of the

approach. To achieve this we continued investigating the approach where all pos-

sible tasks are split compared to ILP. We chose the SplitAll approach over any of

the single split alternatives as it illustrates the extreme case vs absolutely zero

splitting. It is likely that the results of these experiments are directly relevant to ap-

proaches splitting a small number of tasks, with the same scalability results holding

true while the schedulability would be reduced by some degree relative to what we

saw in Experiment One.

The results are shown in Figure 4.10. As the number of tasks per set increases

so does the schedulability. This is due to an increased granularity in allocation giv-

ing the solver more options to allocate around the synchronised criticality switching

reducing wasted utilisation. Curiously, it can be noted here that the ILP approach

improves schedulability quickly as the number of tasks per set is increased when

compared to the SplitAll approach. While ILP does not reach the same level of per-

formance, it may be the case that for systems with a very large number of tasks,

splitting may not have as much benefit. However, these are synthetic task sets, as

such as the number of tasks increases, the chance of any one task having a partic-

ularly large WCET decreases, and thus the advantage gained from task splitting is

reduced. As this experiment limits the number of cores to 2, the size of each of the

100 tasks is likely to be very small. A real world system may have a large number

of tasks and include some tasks with very large WCETs, in this case task splitting

may well be beneficial.
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Figure 4.10: A graph utilising weighted schedulability as a metric to determine the
performance of both approaches as the number of tasks is scaled up.

2 4 6 8
Number Of Cores

0

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

SPLIT_ALL
ILP

Figure 4.11: A graph utilising weighted schedulability as a metric to determine the
performance of both approaches as the number of cores is scaled up.
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Experiment Three

Parameters:

• Multiple experimental runs were performed, each increasing the number of

cores per set in increments of 2, from 2 to 8.

• Task set size was fixed at 20.

• Tasks were evenly distributed over two criticality levels.

• 4 minor cycles were included per major cycle.

This plot illustrates the impact of scaling the number of cores, the results are shown

in Figure 4.11. As we observed in prior experiments, an increase in number of

cores, without an increase in number of tasks results in a reduction in WCET. We

observe this trend in both the ILP and splitting based approach with the splitting

based approach performing better as expected.

Experiment Four

Parameters:

• Multiple experimental runs were performed, each increasing the number of

criticality levels by 1, from 2 to 5.

• Allocation was made to a 2 core platform.

• Task set size was fixed at 20.

• 4 minor cycles were included per major cycle.

We illustrate the impact of scaling the number of criticality levels from 2 to 5. The

results are shown in Figure 4.12. We observe a slight loss in schedulability as the

number of criticality levels is increased, this is due to a new synchronised criticality

switching point being added with each additional criticality level. While the split-

ting approach performs consistently better than ILP, the trend we have observed

through multiple experiments of decreasing schedulability as the number of criti-

cality levels is increased holds true.
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Figure 4.12: A graph utilising weighted schedulability as a metric to determine the
performance of both approaches as the number of criticality levels is scaled up.
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Figure 4.13: A graph utilising weighted schedulability as a metric to determine the
performance of both approaches as the number of minor cycles is scaled up.
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Experiment Five

Parameters:

• Multiple experimental runs were performed, each increasing the number mi-

nor cycles by 4, from 4 to 16.

• Allocation was made to a 2 core platform.

• Task set size was fixed at 20.

• Tasks were evenly distributed over criticality levels.

Finally, this plot illustrates the impact of scaling the number of minor cycles from

4 to 16 per major cycle The results are shown in Figure 4.13. We observe little

change in schedulability as the number of minor cycles is increased. This is likely

to be due to no change in the periods of tasks, thus if schedulable over 4 minor

cycles, the same schedule is copied to the other sets of 4.

Timing

Finally, we report the timing data taken for the Split All and ILP approaches. As we

established in Chapter 3, a number of outliers are likely to appear with significantly

larger execution times. We report the average, median and maximum recorded

execution times for the SplitAll and ILP approaches in Table 4.3. We placed a 60

second limit on the maximum execution time to allow our experiments to complete

within a reasonable time.

ILP SplitAll
Average 0.0089 1.0206
Median 0.002 0.0098
Max 41.613 60.223

Table 4.3: The average, median and max execution times of the Limited and Un-
limited ILP and SplitAll allocation approaches(in seconds).

We see that the median execution time remains low across all approaches.

We recorded only 1.5% of task sets having an execution time of greater than 60

seconds. It is clear that these larger outliers exist, however they are the minority

of cases. These long execution times prove more of a challenge for experimental

work generating large numbers of task sets, rather than a practical implementation
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which may focus on only one or two task sets.

In addition to the data in table 4.3, we explored the effect of scaling task set

parameters has on execution times. The results of this are reported in Figures

4.14,4.15, 4.16 and 4.17.

Two main points can be drawn from this data:

1. The scaled up approaches tend to require more execution time to find a so-

lution. This is a logical result, as with scaled parameters comes a more

complex allocation and models with an increased number of variables.

2. The split approaches tend to require more execution time than the standard

ILP. This is due to there being a greater degree of freedom for the solver to

find a solution. In addition, to maintain the property of only splitting tasks

when required, for HI criticality tasks a simplistic optimisation is used.

Overall we still observe very low execution times per task set across all alloca-

tion techniques scaled to all values.
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Figure 4.14: A box plot illustrating the execution time as the number of tasks are
scaled.
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Figure 4.15: A box plot illustrating the execution time as the number of cores are
scaled.
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Figure 4.16: A box plot illustrating the execution time as the number of criticality
levels are scaled.
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Figure 4.17: A box plot illustrating the execution time as the number of minor cycles
are scaled.

Summary

We may draw three key conclusions from these experiments:

• Firstly, It is clear that task splitting does lead to significant increases in schedu-

lability over the base ILP allocation. We illustrated that this improvement

holds true when scaled by a number of factors.

• Secondly, we have illustrated that even allowing only a single task to split, can

have a significant impact on schedulability. We show that splitting just one

task with a high WCET can free up a schedule providing a significant boost

in overall schedulability. In fact it seems that the largest impact observed

during our experiments was found by splitting just one task with diminishing

returns on schedulability for each additional task split. In Figure 4.8, from

utilisation intervals 1.3 to 2, splitting a single LO criticality task resulted in an

average increase in schedulability of 0.14 and splitting a single HI criticality

task resulted in an average increase of 0.15.
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• Finally, we illustrated that while the splitting approach does take longer to

execute when compared with standard ILP, both approaches complete rela-

tively quickly. Allocations such as this are intended as a system design tool to

be utilised during development (offline). Given this use case our techniques

complete within a very reasonable time frame (typically less than 0.45 sec-

onds).

In all, we have illustrated that not only is splitting effective, but the selected

splitting of just a few tasks can have a significant impact.

4.4 Summary

In summary, this chapter has presented an approach to allow limited task splitting

in mixed criticality cyclic executives. An overview of the results of this chapter is

provided in the following points:

• We have illustrated how LO criticality splitting is possible by simply allowing

the variables defining LO criticality task locations to be continuous rather

than integer. The constraints on these variables remain the same, requiring

a whole task to be scheduled somewhere across all the variables but allowing

the solver to decide on how it is split. We limit splitting to be across minor

cycles only.

• Furthermore, we developed a container based approach for splitting HI criti-

cality tasks. We re-envision a HI criticality task as having LO and EX execu-

tion times (where EX is the execution time required to go from LO to HI). A

container is defined for each and these containers are permitted to split. In

addition work allocated to the EX (HI criticality mode) may be allocated to the

LO container, the solver decides when this is done.

• Finally, we present some experimental results illustrating the improved schedu-

lability possible with splitting and the notion that only a small number of tasks

need be split to gain a significant amount of additional utilisation.

An emphasis should be placed upon the ’limited’ aspect of the splitting proposed

in this chapter. In some way, this ability to split tasks as described is a schedule
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design tool, allowing a system designer to ask ’what if this task was split?’. As

illustrated in the experimental results, typically splitting only one or two tasks can

lead to large gains in overall system utilisation.
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Chapter 5

Optimisations

To this point, we have established a flexible mixed criticality cyclic executive model

allocated using forms of Linear Programming (ILP/MLP). However, we have yet to

consider how these models may be used to optimise features of the system. This

chapter considers two possible optimisations: the first to reduce the number of

cores utilised by HI criticality tasks and the second to maximise the spare capacity

within a given criticality level.

5.1 Reducing the number of HI criticality cores

Typically, real-time applications of a high criticality level have remained in the sin-

gle processor domain. Many of these applications are highly sequential and do not

extend easily to multi-core platforms. The drive toward integrated mixed criticality

architectures may require these, now legacy, sequential applications to be sched-

uled on modern multi-core platforms. In contrast, newer applications often seek

more complex functionality due to the additional resources provided by the new

hardware. Such functionality may be highly parallelised, for example image recog-

nition may be a requirement for a number of applications, from targeting assistance

in a UAV, to collision avoidance systems in autonomous or semi-autonomous cars.

Broadly speaking we may consider two criticality levels in this scenario. On the

one hand, we have HI criticality (often hard real-time) legacy or highly sequential

applications. Meanwhile, the platform must also support the LO criticality compar-

atively complex applications which make use of multi-core architectures. The se-
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quential and to some extent, simplistic, nature of the HI criticality work is a product

of the verification required to ensure its safety. For those applications requiring very

stringent analysis to guarantee safety, their design remains simplistic and sequen-

tial, focusing on predictable execution on one core. Scheduling these applications

on multi-core platforms is problematic due to uncertain behaviour, as such currently

a large degree of pessimism is introduced. The extreme case might provide such

pessimistic predictions for a two core platform that only one core must be used.

The LO criticality applications are not faced by these restrictions and may often be

designed for execution on multi-core hardware.

This section makes the assumption that by reducing the number of cores HI crit-

icality work must execute on, we may reduce the pessimism added to their WCET

estimates. The premise is simple, assuming the same cyclic executive platform

utilising the barrier protocol for isolation, HI criticality work is executed first on as

few cores as possible, (assuming no criticality change) once completed LO criti-

cality work executes on all available cores in the system. As a result of executing

HI criticality work on fewer cores we not only reduce the WCET estimates but by

proxy reduce the complexity and cost of the analysis.

The proposed model does not represent what is perhaps the long term goal

of multi-core real-time platforms, full integration and use of parallelism regardless

of criticality level. However, it does propose a mid-ground for near future appli-

cations where redevelopment of legacy applications is undesirable, but modern

parallelised functionality is required. In addition, the above assumptions are in-line

with the thinking of our industrial partners. Crucially multi-core architectures are

unavoidable, thus schemes such as this provide a middle way between switching

off all but one core, and running all applications in a highly parallel manner.

5.1.1 Quick clarifying examples

Example 1

For clarity the proposed scheme is outlined in this section using an abstract exam-

ple. Consider the task set shown in Table 5.1.

It contains a mixture of HI and LO criticality tasks to be scheduled on a 3 core
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τ C(LO) C(HI) T Li
τ1 5 10 25 HI
τ2 5 10 25 HI
τ3 5 10 25 HI
τ4 10 15 50 HI
τ5 15 20 100 HI
τ6 5 - 25 LO
τ7 5 - 25 LO
τ8 5 - 25 LO
τ9 10 - 50 LO
τ10 10 - 100 LO

Table 5.1: Optimisation: Example 1.

platform with 4 minor cycles (where T F = 25 & TM = 100). The initial schedule

(with no optimisation) produced by our standard ILP model is shown in Figure 5.1a.

In this figure we can see a mixture of HI and LO criticality work being sched-

uled across all minor cycles and cores. It is also clear that there is a significant

amount of spare capacity (white space), this optimisation aims to use this capacity

to tighten the HI criticality schedule. We optimise the model to reduce the number

of cores utilised by HI criticality tasks, the resulting schedule is illustrated in Figure

5.1b.

The solver has been able to remove all HI criticality execution from core 1, this

has been achieved by relocating much of the slack and, in some minor cycles,

postponing the predicted barrier invocation. While we use a 3 core platform in this

example, we envision the use of this technique on platforms with a significantly

larger number of cores. In such a scenario while the criticality switching point is

delayed, the LO criticality tasks would have access to many cores. This provides

a platform which might potentially facilitate parallelised applications alongside HI

criticality sequential work. This example serves as an illustration of one of the two

aspects of this optimisation. It shows how the number of cores for HI work can

be reduced, but does not illustrate the effect of the reduction on HI criticality task’s

WCETs.

Example 2

We now illustrate how the reduction in WCETs for HI criticality tasks when the

number of cores used to execute is reduced, can impact the schedulability of a set

of tasks on a particular number of cores. Consider the task set in Table 5.2 which
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contains two additional HI criticality tasks, τ11 and τ12.
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(b) An allocation, optimised to minimise
the number of cores for HI criticality tasks.

Figure 5.1: 3 Core example schedules.
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τ C(LO) C(HI) T Li
τ1 5 10 25 HI
τ2 5 10 25 HI
τ3 5 10 25 HI
τ4 10 15 50 HI
τ5 15 20 100 HI
τ6 5 - 25 LO
τ7 5 - 25 LO
τ8 5 - 25 LO
τ9 10 - 50 LO
τ10 10 - 100 LO
τ11 5 10 25 HI
τ12 2 3 25 HI

Table 5.2: Optimisation: Example 2.

Given a 3 core platform, this task set may be scheduled such that only 2 cores

are used for HI criticality tasks. As the number of cores used by HI criticality tasks

has been reduced by 1, we reduce all HI WCETs by 10%. The resulting schedule is

shown in Figure 5.2a. This is a compact schedule where only τ8 executes on core

2, all other tasks are scheduled on cores 1 and 3. No optimisation or constraints

have been placed on the LO allocation, more LO tasks may have been allocated to

core 2, however they were not in the schedule produced.

If the same schedule is considered, but the 10% reduction is not applied, the

following partial schedule is produced, see Figure 5.2b. While during minor cycle

1, we may allocate τ11 to core 1 to ensure the schedulability of the minor cycle, in

all other minor cycles there is no feasible schedule which limits HI criticality work

to 2 cores. In minor cycle 2, τ12 prevents τ7 and τ10 from fitting. In minor cycle 3

τ12 or τ1 may be re-allocated to core 1 to make the cycle schedulable. However,

minor cycle 4 much like 2, is not able to schedule all HI criticality work on only 2

cores and provide the capacity for all LO criticality tasks. To ensure no other valid

schedule existed where a reduction was not made, but schedulability was possible

with HI work on 2 cores, we produced the same task set with all WCET values

increased by 10%. If a 2 core allocation of this new task set were possible, all

WCETs would be reduced by 10%, thus using the real WCETs. Therefore the task

set is not schedulable with all HI work on 2 cores at its original WCET values, they

must be reduced by 10% in order to fit all HI tasks within 2 cores.
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(a) An optimised schedule of the task set
in Table 5.2 with 10% WCET reduction per
core.
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(b) An optimised schedule of the task set in
Table 5.2 without the 10% WCET reduction
per core.

Figure 5.2: Example schedules illustrating WCET reduction.
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5.1.2 Optimisation via ILP

In order to investigate the application of this optimisation we implemented it within

our ILP model. This section will detail the additional constraints required. Gener-

ally, the optimisation may be split into two components, the first is to minimise the

number of cores used by HI criticality tasks, and the second is to model a reduction

in verification difficulty by a reduction in HI criticality task WCETs.

Initially, the first requirement was considered. To begin with we defined a binary

variable Pz where z is the core. When Pz is set to 1, there is no HI criticality

work on that core (during any minor cycle), when it is set to 0 there is HI criticality

work. Naturally, additional constraints are required to support this, however, our

optimisation becomes simply to maximise
∑
∀z Pz.

The key constraint required to implement the P variables will be explained be-

low. For two HI criticality tasks τi & τl on a 2 core platform with 4 minor cycles the

constraints would be:

Ti_11 + Ti_12 + Ti_13 + Ti_14+

Tl_11 + Tl_12 + Tl_13 + Tl_14 + 8× P1 ≤ 8

Ti_21 + Ti_22 + Ti_23 + Ti_24+

Tl_21 + Tl_22 + Tl_23 + Tl_24 + 8× P2 ≤ 8

The value 8 is used to both multiply the P variables and constrain the inequal-

ities as 8 is equal to the number of variables other than P in the constraint. It is

possible that all variables will be set to 1 (a task with a period equal to the minor

cycle), this must be permitted. Crucially if a P variable is to be set to 1, this indicate

that no HI criticality work is executing on that core, then it must be multiplied by 8,

leaving no space in the inequality for any of the binary location variables to be set

to 1. Conversely, if any variable is set to 1 (indicating a task is scheduled on that

core) there will be no room for the P variable to be set to 1.

The constraints above represent the basic way, and indeed the first method we

implemented, to minimise the number of HI criticality cores. However, it does not

support a method for modelling a reduction in WCET. This proved more challeng-
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ing requiring significant changes to the model. We detail this technique and its

constraints below.

In our model, reducing the number of cores HI criticality work is executing on

results in a fixed reduction in all HI criticality WCETs. In this work a value of 10%

was chosen simply as an example. We do not claim insight into what the actual

value may be and it is likely to be system/platform dependent. To model this we

altered the binary location variables making them integers. These integers must be

greater than or equal to 0 and less than or equal to 10, for example 0 ≤ Ti_11 ≤ 10.

As with the binary variables, setting the variable to equal 0 still indicates that the

task is not scheduled in that location, any value from 1 to 10 indicates the task is

scheduled. A value of 10 indicates that task is scheduled in that location and that

all cores in the system are utilised by HI criticality work, a value of 9 indicates that

one core is not used by any HI criticality tasks.

As our variables are between 0 and 10, we must adjust the WCET constraints to

account for the correct amount of execution. As such in these constraints we divide

the WCET for each HI criticality task by 10 (WCET / 10). Thus when multiplied by

a location variable, if that variable is equal to 10 (meaning all cores are executing

HI criticality work) then the full WCET will be included. However, if one core is

executing no HI criticality work, then the WCET/10 will be multiplied by 9, providing

a 10% reduction in WCET (9×WCET/10). Prior to the variable change the WCET

constraint for Ti_11 was:

Ci(HI)× Ti_11

It now becomes:

Ci(HI)

10
× Ti_11

To ensure the correct value is included in the location variable depending on the

number of cores used by HI criticality tasks we introduce a new set of constraints.

Given two variables Ti_11 & Ti_21, if a task must be scheduled in one variable, the

constraint would read as follows:
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Ti_11 + Ti_21 + P1 + P2 = 10

We again assume, for illustration, a dual core setup and thus two processor

variables P_1 & P_2 are included. The sum of these variables must equal 10, as

the P variables are only set to 1 if no HI criticality work is present on that processor,

the value of the location variable will only be reduced from 10 if a core has no HI

criticality execution. For example if Ti_11 contained the task, and core 1 had no HI

criticality execution, P_1 = 1 thus Ti_11 = 9, therefore the resulting WCET of the

task will be reduced by 10%.

To complete the picture we must also update the constraints defined previously

to set the Pz variables according to the HI criticality work scheduled on their core.

Given two HI criticality tasks τi & τl we have the following constraints:

Ti_11 + Ti_12 + Ti_13 + Ti_14+

Tl_11 + Tl_12 + Tl_13 + Tl_14 + 80× P1 ≤ 80

Ti_21 + Ti_22 + Ti_23 + Ti_24+

Tl_21 + Tl_22 + Tl_23 + Tl_24 + 80× P2 ≤ 80

The difference is that the value 80 is used rather than 8, 80 is now calculated

by the sum of all variables in the constraint, excluding Pz, multiplied by 10. We

multiply by 10 to account for our new integer location variables. The constraints

function in the same manner, in the extreme case work may be allocated to all

location variables on a particular core and still satisfy the constraint. However, the

P variables may only be set equal to 1 if no HI criticality work is scheduled on that

core.

Constraint updates

Periodicity Constraints

As we now make use of integer location variables our periodicity constraints
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must be adapted. Making use of a familiar trick, we require a task + a binary

variable ×10 to be less than or equal to 10. We then require a number of those

binary variables to equal 1 depending on the period of the task, we use B for these

variables. Given two location variables:

Ti_11

Ti_21

Two constraints are defined:

Ti_11 + 10×B1 ≤ 10

Ti_21 + 10×B2 ≤ 10

As this task’s period is equal to the minor cycle, we require the task to be scheduled

in one of the two locations (core 1 or core 2 during minor cycle 1):

B1 +B2 = 1

As we require one of the B variables to equal 1, only one of the location vari-

ables may contain a task. Later constraints ensure that the variable is set to an

appropriate value (indicated as BVarConstraints in Figure 5.3). A complete set of

constraints for τi where Ti = T F is shown:

Ti_11 + 10×B1 ≤ 10

...

Ti_24 + 10×B8 ≤ 10

B1 +B2 = 1

B3 +B4 = 1

B5 +B6 = 1

B7 +B8 = 1
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WCET Constraints

As mentioned the WCET constraints must be updated to multiply the location

variables by the WCET/10, this allows the model to make 10% reductions in

WCET for each core with no HI criticality execution. This update is required for

Stages 1 and 2 (not stage 3 as it concerns only LO criticality tasks).

For Stage 1 (HI criticality WCETs):

Ci(HI)

10
× Ti_11 +

Cl(HI)

10
× Tl_11 ≤ T F

Ci(HI)

10
× Ti_21 +

Cl(HI)

10
× Tl_21 ≤ T F

And for stage 2 (LO WCETs of HI criticality tasks):

Ci(LO)

10
× Ti_11 +

Cl(LO)

10
× Tl_11 +X1 ≤ T F

Ci(LO)

10
× Ti_21 +

Cl(LO)

10
× Tl_21 +X1 ≤ T F

Additional Constraints

Finally, we define our additional constraints. The first ensures that the Pz vari-

ables are set equal to 1 if no HI criticality execution exists on its corresponding core

(shown as PVarConstraints in Figure 5.3). While these constraints are mentioned

above they are repeated again for convenience:

Ti_11 + Ti_12 + Ti_13 + Ti_14+

Tl_11 + Tl_12 + Tl_13 + Tl_14 + 80× P1 ≤ 80

Ti_21 + Ti_22 + Ti_23 + Ti_24+

Tl_21 + Tl_22 + Tl_23 + Tl_24 + 80× P2 ≤ 80

The second set of additional constraints provides a means of reducing the HI

criticality WCET of a task by 10% for each core not used by HI criticality tasks. We



146 CHAPTER 5. OPTIMISATIONS

list these constraints for τi firstly where Ti = TM :

Ti_11 + Ti_21 + Ti_12 + Ti_22+

Ti_13 + Ti_23 + Ti_14 + Ti_24 + P1 + P2 = 10

And where Ti = T F :

Ti_11 + Ti_21 + P1 + P2 = 10

Ti_12 + Ti_22 + P1 + P2 = 10

Ti_13 + Ti_23 + P1 + P2 = 10

Ti_14 + Ti_24 + P1 + P2 = 10

Model Updates - Overview

We present an updated model overview in Figure 5.3:

Objective

PeriodConstraints

WCET_1

WCET_2

WCET_3

Bounds

Variables

W
C
ETC
onstra ints

Constraints

BVarConstraints

PVarConstraints

BVarConstraints

Figure 5.3: Abstract Diagram: Optimisation Constraints.
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5.1.3 Experiment: An optimisation to reduce the number of

cores utilised by HI criticality tasks

These experiments are designed to investigate the impact this optimisation can

have on the number of cores used by HI criticality tasks in comparison to non-

optimised allocations. Two experiments are performed, the first seeks to under-

stand how the number of cores used by HI criticality work can be reduced and

the second investigates any improvement in schedulability due to reductions in HI

criticality task’s WCETs when scheduled on fewer cores. In the case of both exper-

iments we consider both a standard and scaled up set of parameters to explore the

effect. Finally, as we have moved to performing optimisations we present timing

data detailing the run-time of the approach.

Setup

The setup for these experiments was as follows:

• 1000 task sets were generated per 5% utilisation increase.

• Our standard set of tasks included 40 per set, with a scaled up version using

50.

• The standard experiments utilised 4 cores and the scaled up experiments

utilised 8.

• We used 2 criticality levels for all experiments.

• Task utilisations were generated using UUniFast, an algorithm presented in

[25] which provides an unbiased distribution of utilisation values, following

standard practice in synthetic task set generation.

• The minor cycle length was set at 25, with the major cycle length set at 100

(T F = 25, TM = 100)

• Task periods were selected at random from either 25, 50 or 100.

• Deadlines were set equal to periods. Di = Ti.
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• The LO execution times of each task were produced as follows: Ci(LO) =

Ui/Ti

• For tasks with a criticality greater than the lowest, their HI execution times

were determined by Ci(Li) = Ci(LO) ∗ CF - CF is the criticality factor, a

random value between 1.2 and 2.

• Timing data was recorded to find the average time each approach took to

find a solution.

• The barrier protocol was implemented for all allocation techniques.

• A reduction in WCET, of 10% per core that HI criticality work does not execute

on, is included to simulate a decrease in pessimism when fewer cores are

used.

Results

These results are split into two experiments. The first illustrates the reduction in

the number of cores utilised by HI criticality tasks as a result of this optimisation.

The second investigates the schedulability improvement due to reduced WCETs.

Experiment One

This experiment explores the number of cores used by HI criticality tasks as

the utilisation of the task sets generated is increased. We compared the optimised

and non-optimised models. Our first plot in Figure 5.4 illustrates how optimising to

reduce HI criticality cores has significant impact in comparison to the non-optimised

models which utilised all cores for HI criticality work right from the lowest utilisation

value. Figure 5.5 illustrates the same effect but on a system where the number of

tasks was equal to 50 per set and the number of cores equal to 8. This plot shows

our optimised model utilising at most 5 cores for HI criticality tasks whereas the

non-optimised approach again uses all cores for HI criticality work right from the

lowest utilisation.
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Figure 5.4: A plot showing the average number of cores used by HI criticality tasks
at each given utilisation (A lower line = better performance).
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Figure 5.5: A plot showing the average number of cores used by HI criticality tasks
at each given utilisation on a scaled up system (A lower line = better performance).
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Experiment Two

Experiment two considers the impact on schedulability as a result of the 10%

WCET reduction for HI criticality tasks. We first consider the schedulability of our

standard configuration with 40 tasks and 4 cores, this is shown in Figure 5.6. We

can see here that our optimised approach boasts a slightly improved schedulability

over the non-optimised due to the WCET reductions when using fewer cores for

HI criticality work. We also investigated the scaled up experiment with 50 tasks

and 8 cores, the results are shown in Figure 5.7. Here we see an even greater

improvement in schedulability due to WCET reductions, perhaps due to the larger

number of cores and the maximum of 5 used for HI criticality tasks as shown in

Figure 5.5.

0 0.5 1 1.5 2 2.5 3 3.5 4
Utilisation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sc
he
du
la
bi
lit
y

ILP-OPT
ILP-NOOPT

Figure 5.6: A standard schedulability plot illustrating the difference between the
optimised and non-optimised ILP models.
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Figure 5.7: A standard schedulability plot illustrating the difference between the
optimised and non-optimised ILP models on our scaled up system.

Timing

As we are now performing an optimisation, we re-visit the investigation into the run-

time of our LP models. As we have done before, we recoded the average, median

and maximum observed execution times. All approaches have an execution time

limit of 60 seconds per task set, we observe only 0.19% and 1.33% of the standard

and scaled task sets (respectively) reach this limit. We exclude these values from

the box plot as they dilute the result. These are presented in Table 5.3:

ILP-NOOPT ILP-NOOPT(Scaled) ILP-OPT ILP-OPT(Scaled)
Average 0.0026 0.0114 0.1685 1.1606
Median 0.0026 0.0109 0.0067 0.0686
Max 0.0724 0.0744 60.132 60.222

Table 5.3: The average, median and max execution times of the optimised and non
optimised allocations (in seconds).

We observe that, while the optimisation does increase the execution time, the

average and median times remain very low for both the standard and scaled ap-

proach. As mentioned, only a very small percentage of tasks each the execution

time limit.
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In addition we present a box plot illustrating the difference between the standard

and scaled allocation approaches. The box plot in Figure 5.8 shows that while

execution times have increase substantially with a good number of models taking

over 1 second to solve, overall our ILP models solve within very reasonable time

frames.
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Figure 5.8: A box plot illustrating the timing requirements for this optimisation.

Summary

These experiments illustrate firstly that in a large number of cases, the number

of cores use by HI criticality work can be significantly reduced. Secondly we show

how the reduced number of cores used by HI work, resulting in reductions in WCET

estimates can improve the schedulability of the system over a larger number of task

sets.
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5.2 Maximising Capacity on Either Side of the Bar-

rier

In this section we consider a simple but potentially valuable optimisation. This op-

timisation seeks to maximise the capacity on either side of the barrier, LO or HI.

While we consider the dual criticality case, this principle is applicable to multiple

levels of criticality. We describe the maximisation of the LO and HI capacity sepa-

rately, following up with some experimentation illustrating the effect of both.

5.2.1 Maximising LO capacity

The aim of this optimisation is to maximise the LO criticality capacity in the system.

In other words, in a dual criticality system, we aim to maximise the capacity to the

right of the barrier invocation. We illustrate this in Figure 5.9 for clarity, the hatched

space is the space we seek to maximise.

C1

M1
SMAX(1)

Figure 5.9: A single minor cycle illustrating where the LO capacity is located.

Maximising such capacity has multiple benefits. Firstly, and perhaps most

clearly, with additional LO capacity, it is possible and easy to see how additional

LO criticality tasks may be scheduled, and what parameters such tasks may take.

Secondly, the LO criticality tasks themselves may become more tolerant to a later

invocation of the barrier than was pre-computed offline. Even if HI criticality work

executes beyond the predicted barrier invocation (thus changing the criticality level

of the system) the spare capacity created on the LO side of the barrier may make

these tasks more resilient. Finally, as motivated by an industrial example (see

Chapter 6) a situation may occur where tasks have potentially unbounded execu-

tion times, in this scenario, any capacity moved to the LO criticality mode can be

used to enhance their quality of service.
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We will explore how the creation of additional LO capacity can aid in the intro-

duction of new LO criticality tasks using the task set shown in Table 5.4:

τ C(LO) C(HI) T Li
τ1 5 10 25 HI
τ2 5 10 25 HI
τ3 5 10 25 HI
τ4 10 15 50 HI
τ5 15 20 100 HI
τ6 5 - 25 LO
τ7 5 - 25 LO
τ8 5 - 25 LO
τ9 10 - 50 LO
τ10 10 - 100 LO

Table 5.4: Optimisation: Max LO Example.

This set of tasks is designed to execute on an 3 core platform and is the same

set as seen in Figure 5.1. The schedule generated when the task set is formulated

as an ILP model with no optimisation goal is shown in Figure 5.10a.

It is clear from the significant sections of ’white space’ both to the left and right

of the predicted barrier invocations that there is a large amount of spare capacity.

With our optimisation we aim to move this capacity from the left to the right hand

side as much as possible. Consider the case where we, as system designers, are

tasked by a client to introduce two additional LO criticality tasks with significant

computational requirements. We may use such an optimisation to understand the

capacity available to us which can help influence the design of the tasks. The

schedule where the ILP solver maximises the LO criticality capacity is shown in

Figure 5.10b.

Given that we represent the capacity for LO criticality tasks using a variable, X

(one for each minor cycle, see Chapter 3), we must simply maximise the sum of

the X variables to effectively maximise the LO criticality capacity. A caveat to this is

that there is no requirement for any of the spare capacity to be distributed in some

fair manner across minor cycles. The solver simply seeks to find the allocation with

the maximum spare capacity. The objective function required is listed below for a

system with 4 minor cycles:

Maximise

X1 +X2 +X3 +X4
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(b) A schedule from the task set in Table
5.4 optimised to maximise the LO criticality
capacity.

Figure 5.10: Schedules investigating LO criticality spare capacity maximisation.
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5.2.2 Maximising HI capacity

While maximising the HI criticality capacity is a similar process to that of maximising

LO some additional motivation and points may be discussed. Firstly, for clarity, we

are interested in maximising the spare capacity to the left of the barrier, see Figure

5.11 for an illustration:

C1

M1
SMAX(1)

Figure 5.11: A single minor cycle illustrating where the HI capacity is located.

The motivation regarding the addition of new, this time HI criticality tasks, re-

mains the same as discussed for the LO case. However, we also consider the

implication of using the spare capacity to offset the statically pre-computed (of-

fline) points at which under normal execution the barrier protocol is expected to

trigger. By artificially increasing this value, we reduce the likelihood of the system

changing its criticality level due to an overrun of the predicted barrier invocation.

Consider Figure 5.12, this shows a schedule from the tasks in Table 5.4, optimised

to maximise HI criticality capacity. It is clear that a large amount of the available

spare capacity has been moved into the HI criticality mode (indicated by the white

space to the left of each barrier).

Implementing this optimisation is a simple case of reversing the ILP objective

statement from the LO case. Rather than maximising the X variables, we seek

to minimise them, and thus include spare capacity on the HI criticality side of the

barrier. The constraints are defined below:

Minimise

X1 +X2 +X3 +X4
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Figure 5.12: A schedule from the task set in Table 5.4 optimised to maximise the
HI criticality capacity.
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5.2.3 Multiple Criticality Levels

As mention our approach is also applicable to task sets with greater than 2 levels of

criticality. Very little changes, the optimisation still seeks to maximise the capacity

during a single criticality level. The solver would ensure that the allocation of the

other criticality levels (those not being maximised) was as tight as possible. This is

the same principle as that seen above (in section 5.2.1), if the LO criticality capacity

is maximised, the HI criticality tasks are packed as tightly as possible. Practically

this involves maximising (or minimising if the highest criticality level) the appropriate

X variables for the criticality level whose capacity is to be maximised.

5.2.4 Experiment: HI & LO Capacity Gains

The purpose of this experiment was to investigate how much spare capacity can be

gained by optimising the HI or LO capacity either side of the barrier. We investigate

maximising LO capacity and maximising HI capacity separately, a non-optimised

model is also measured to understand the gains in spare capacity.

Setup

The setup for these experiments was as follows:

• Our standard set of tasks included 20 per set.

• The standard experiments utilised 2 cores.

• We used 2 criticality levels for all experiments.

• Task utilisations were generated using UUniFast, an algorithm presented in

[25] which provides an unbiased distribution of utilisation values, following

standard practice in synthetic task set generation.

• The minor cycle length was set at 25, with the major cycle length set at 100

(T F = 25, TM = 100)

• Task periods were selected at random from either 25, 50 or 100.

• Deadlines were set equal to periods. Di = Ti.
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• The LO execution times of each task were produced as follows: Ci(LO) =

Ui/Ti

• For tasks with a criticality greater than the lowest, their HI execution times

were determined by Ci(Li) = Ci(LO) ∗ CF - CF is the criticality factor, a

random value between 1.2 and 2.

• Timing data was recorded to find the average time each approach took to

find a solution.

• The barrier protocol was implemented for all allocation techniques.

• Tasks were evenly distributed across criticality levels.

Results

Experiment One

Parameters:

• To produce a suitable example curve 1000 task sets were generated per 5%

utilisation increase.

Initially we simply plot the schedulability result of this experiment using a standard

schedulability X utilisation graph. We do this to illustrate the performance we ex-

pect and to show when the solver fails to find any feasible allocations. The plot is

shown in Figure 5.13.

Experiment Two

Parameters:

• A smaller sample of 50 task sets were generated per 5% utilisation increase.

Next we begin by demonstrating the spare LO criticality capacity of the optimised

and non-optimised approaches. We plot the average spare capacity at each utilisa-

tion point for both the optimised and non-optimised model. The results are shown

in Figure 5.14. We can see clearly that as the utilisation is increased, the spare

capacity available to the scheduled produced by our optimised model gradually

reduces as the system is greater utilised. In addition, we see the non-optimised

model following no particular pattern and remaining consistently low.
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Figure 5.13: A standard schedulability plot illustrating performance.

We performed the same experiment but this time the aim is to maximise the HI

criticality capacity. The results in Figure 5.15 differ slightly, while we do observe

the same gradual decline in the % of spare HI criticality capacity as we did with the

LO, the standard approach actually allocates a good deal of spare capacity to the

HI mode. The non-optimised approach does not perform as well as the optimised,

however there appears to be some feature of the model which causes the natural

allocation to favour increasing HI criticality capacity.

Experiment Three

Parameters:

• A smaller sample of 50 task sets were generated per 5% utilisation increase.

• Tasks were allocated across 2 cores giving a maximum possible spare ca-

pacity of 200.

The final experiment seeks to further investigate the performance of our optimisa-

tion. To do this we plot the raw data for the LO and HI capacity in the optimised

and non-optimised cases. The result for the LO criticality optimisation is shown in

Figure 5.16.
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Figure 5.14: A plot showing the spare LO criticality capacity available as the utili-
sation is increased (higher is better).
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Figure 5.15: A plot showing the spare HI criticality capacity available as the utilisa-
tion is increased (higher is better).
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Figure 5.16: A plot illustrating the result of each task-set optimised to maximise LO
criticality spare capacity, numbered in the order generated.
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Figure 5.17: A plot illustrating the results of each task-set optimised to maximise
HI criticality spare capacity, numbered in the order generated.
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We may make two key observations. Firstly, it is clear that there is no particular

pattern to the allocation of spare capacity in the non-optimised case. This is to be

expected given that it has no optimisation goal. Secondly, the clustered optimised

points illustrate that for each of the task sets tested, we optimised most sets to

contain a very similar amount of spare LO capacity. Each step down shown by the

optimised result illustrates a step up in utilisation. In this plot we can clearly see the

optimisation performing well and managing a mush more consistent result across

all sets optimised.

We plot the same graph for the optimisation to maximise HI criticality capacity.

This is shown in Figure 5.17.

This plot illustrates the same result for the optimised model. We see clear steps

down in spare capacity as the utilisation is increased and again we see that almost

all of the sets optimised perform close to this maximum spare capacity found at

each step. The non-optimised approach differed here slightly, it is clear that there is

some tendency to allocate spare capacity to the HI criticality mode, but the results

are variable and represent no particular pattern.

Timing

Finally, we observe the execution time required for this optimisation. The results

of the timing taken from both optimised approaches and the non-optimised ILP is

shown in Table 5.5.

ILP ILP-LOOPT ILP-HIOPT
Average 0.042 5.8 7.909
Median 0.002 0.45 0.533
Max 38.296 451.65 1902

Table 5.5: Timing results for the experiment to maximise LO/HI capacity (in sec-
onds).

The timing results for this optimisation are curious for a number of reasons.

Firstly, we observe that the average execution time does increase significantly from

what we have seen previously for both optimised approaches. However, we do ob-

serve that the median execution time for all approaches is relatively low, drawing
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the conclusion that a number of significant outliers must be behind the higher aver-

ages seen for the optimised models. Infact, while we did not implement an execu-

tion time cutoff, if we assume a value of 60 seconds, only 1.8% of ILP-LOOPT and

1.7% of ILP-HIOPT execution times exceeded 60 seconds. While these outliers

are high, overall the approach is able to perform the optimisation quickly on the

vast majority of task sets. The removal of the 60 second cap is likely to significantly

increase the Max value recorded in Table 5.5. In some way we are observing an

expected increase in execution cost as we move from feasibility tests to models

with an optimisation function.

Summary

We summarise the conclusions to this experimentation in a number of points.

• Firstly, we have illustrated that our optimised models perform well and are

able to effectively maximise the spare LO and HI criticality capacity of a given

task set.

• Secondly, we illustrated that this optimisation manages to optimise each

model to provide a similar level of spare capacity within each utilisation step.

• Finally, we have illustrated an increase in execution cost for this optimisation.

While the increase is significant, it was to be expected as we move away from

feasibility tests and into more complex optimisations.

In conclusion we have illustrated how this optimisation can better provide and

inform on the spare capacity in a particular criticality mode. We illustrated the

improved capacity over standard ILP and explored how the raw results of each of

the optimised models cluster to a stepping effect at each utilisation interval.

5.3 A Note on Model Generation

Throughout the prior chapters we have discussed the use of a tool to generate

ILP/MLP models and execute them to find feasible task to core/minor cycle alloca-

tions. In this section, we discuss how this model generation functions and provide
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an overview of what is required. Up to this point, this thesis has described ILP/MLP

models using the .lp format supported by Gurobi[45]. However, this format is used

purely for illustration, in reality models are created and executed within Matlab [62]

using the Gurobi API[45].

Within Matlab we define an object called Model, this is used to contain all the

information required by the solver to understand and solve the allocation.

Model

Figure 5.18: The empty model object.

Model generation begins with the creation of a sparse matrix, a matrix com-

posed of mostly 0 values. This matrix specifies both the variables and the con-

straints placed on those variables. Each additional column introduces a new vari-

able while each additional row defines a new constraint. We present a matrix below

which defines four variables and two constraints (such a matrix is defined in Matlab

and converted to a sparse matrix).

1 1 0 0

0 0 1 1

Given the information in this matrix, we understand the following (presented in the

.lp format):

• Our model contains 4 variables, Q1, Q2, Q3, Q4.

• Our model contains 2 constraints

1. 1×Q1 + 1×Q2 (<,>,≤,≥,=) N

2. 1×Q3 + 1×Q4 (<,>,≤,≥,=) N

Where N is the value which constrains the variables.

By changing the values from 1 to another number, we alter the value which

the variable is multiplied by in that particular constraint. We represent this sparse

matrix as part of the model object as .sparesM .

Following the definition of our sparse matrix, we provide a vector of values, one

for each row in the matrix, which define the value N , on the right-hand side of each

inequality. In this case, we define a vector:
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1 1

Thus our constraints now read:

1×Q1 + 1×Q2(<,>,≤,≥,=)1

1×Q3 + 1×Q4(<,>,≤,≥,=)1

This vector of constraint values is recorded in the model as .rhs.

To complete the definition of these constraints an additional vector is defined

containing <,>,≤,≥ or =. We define such a vector for our model:

> >

This is added to the model as the vector .sense.

Next we provide vectors, this time one value for each column (variable) which

define upper and lower bounds respectively.

• Upper Bound:

1 1 1 1

• Lower Bound

0 0 0 0

We add these vectors to the model object as .ub and .lb.

Similarly, a vector is defined with a value for each column, which specifies the

variable type. Such types can include I for integer, s for continuous and b for binary.

We define our vector:

I I I I

This vector is included in the model object as .vtype.

We must define our .obj vector which contains one value for each column. This

vector specifies the minimise or maximise constraint placed on the model (a vector

of all 0s produces no objective function and thus creates a feasibility test). We

present an example where our objective function might be to maximise:

2×Q1 + 1×Q
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Thus the .obj vector reads:

2 1 0 0

In addition, a single variable .ModelSense is included to indicate if a model is

to maximised or minimised, in our case:

’max ’

Thus we present a complete overview of the required components of an ILP/MLP

model generated in Matlab using the Gurobi API.

Model .sparseM
.rhs
.sense
.ub
.lb
.vtype
.obj
.ModelSense

Figure 5.19: The model including all mandatory vectors and matrices.

Additionally we list the simple model which can be produced from the matrices and

vectors defined above.

Maximize

2 Q1 + Q2

Subject To

Q1 + Q2 >= 1

Q3 + Q4 >= 1

Bounds

Q1 <= 1

Q2 <= 1

Q3 <= 1

Q4 <= 1
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Generals

Q1 Q2 Q3 Q4

End

There are a number of additional features which may be added, such as a

vector specifying variable names if presentable model output is required. Typically,

this model is executed from Matlab passing the constraints directly to the Gurobi

solver. The result is returned, if successful the schedule is returned, along with run-

time data and additional information. In Appendix B we attach a ILP model based

on the standard multi-cycle model generation presented in Chapter 3. This model

is presented in the .lp format, it is based on a task set of size 40 to be scheduled

on 4 cores over 4 minor cycles. To give an indication of scale the sparse matrix

required to represent this problem is 126 by 644 cells, with the additional vectors

we described above being of length 644 or 126 depending on if they scale by the

number of variables or number of constraints.

5.3.1 Model Generation Facilitating Further Optimisation

The model generation described above allows for the rapid production of ILP mod-

els and the easy introduction of new optimisation goals. If a new optimisation

requires no new variables, then simply altering the obj vector to include the cor-

rect values would suffice. Additional constraints and even new variables can easily

be added to facilitate optimisations which require them. Once updated, the model

generation tool is capable of rapidly re-producing the same constraints for task sets

with different parameters.

While the number of possible optimisations is vast, a few examples could in-

clude:

• An optimisation which seeks to maximise the minimum spare capacity avail-

able on each core during each minor cycle. Our current optimisation in Sec-

tion 5.2 seeks to maximise capacity in a simplistic way, not dictating where

this capacity is required. A more complex version of this optimisation could

seek to ensure that a minimum amount of spare capacity is guaranteed in all

locations.
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• Optimisation could be implemented alongside the task splitting approach

from Chapter 4. The model may be extended to include a means of ac-

counting for context switching overheads. The optimisation might then be

to maximise capacity in a particular criticality level while ensuring that any

overheads of splitting tasks do not mitigate the gains in schedulability.

• Following from the note on task ordering in Section 3.2.2 an optimisation

could be performed to, where possible, ensure that higher importance tasks

are scheduled earlier in a minor cycle. The aim is to reduce the likelihood of

the higher importance tasks not executing in the case of a criticality overrun.

The automated production of ILP/MLP models allows for system parameters to

be tweaked and allocations tested in a convenient manner.

5.3.2 Scalability

While our experiments across chapters 3 4 and 5 scale up parameters to 100

tasks, 12 cores, 5 criticality levels, these values do not represent the maximum

values that the solver can scale too and solve within a reasonable time. These

limits were chosen due to the increase in cost of generating the task sets, rather

than actually running them. During the setup and testing of the feasibility tests in

Chapters 3 and 4, initial investigations suggest that task sets with 500 or more tasks

scheduled on 32 cores over 5+ criticality levels solved in less than 1 second. The

performance when optimisation is taken into account is less predictable, however

initial investigation did indicate parameters could be increased without a significant

increase in the solvers execution time. In all, our scalability experiments across all

Chapters 3, 4 and 5 were limited by the time taken to generate a sufficient number

of sample task sets, rather than any limits found with the solver.

5.3.3 Unexpected Timing Behaviour

One of the downsides to utilising a commercial Linear Programming solver is the

multitude of methods it may employ and their unpredictability. For example, one

task set (containing 20 tasks, 2 criticality levels over 4 cores) took well over 1

minute to solve when the solver was provided with 8 cores. However, when given
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4 cores it came to a solution in just a fraction of a second. In addition, any tweaks

to the model itself, be it criticality levels, tasks, cores, distribution of criticality levels

amongst tasks or the difference between WCETs are each criticality level can have

an impact (positive or negative) on the run-time of the model. In general our mod-

els solve extremely quickly, however there remains an element of unpredictability

largely down to the black box solver and the large number of parameters.

5.4 Summary

This chapter has illustrated how a mixed criticality cyclic executive schedule may be

optimised to suit a particular need or design goal. We investigated how the number

of cores utilised by HI criticality tasks may be reduced to minimise verification costs.

In addition we considered how the capacity either side of the barrier, both the HI

and LO modes, may be maximised to aid design, schedule additional tasks or to

account for tasks with potentially unbounded WCETs.

In this chapter we have explored how optimisation can be used as part of our

ILP/MLP based modelling. We illustrated two different optimisations and evaluated

their effectiveness:

1. The first optimisation attempts to schedule HI criticality tasks on as few cores

as possible in order to reduce the verification and certification costs asso-

ciated with verifying a multi-core application. We then allow lower criticality

work to make use of the entire platform. This optimisation hopes to find a

means of supporting near future mixed criticality systems where verifying HI

criticality work on a large number of cores is not feasible1.

2. Our second optimisation draws on the notion that some tasks may have po-

tentially unbounded execution times. As such, if we can maximise the spare

capacity within their criticality level, that task may be able to provide an in-

creased quality of service. In addition, in the LO criticality case increasing the

spare capacity may help reduce the likelihood of tasks being suspended after

1It might not be feasible if you are limited by platform resources and the increased pessimism of
scheduling HI criticality work on multiple cores is very large.
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a criticality change. In the HI criticality case additional spare capacity effec-

tively increases the time at which the synchronised criticality switch occurs,

this will reduce the chance of an overrun being triggered if a task executes a

little beyond its LO WCET prediction.

Overall, we aim to illustrate that there are many possible optimisations that

could be applied to our model. These examples are intended to demonstrate some

of the aspects that could be targeted for optimisation.
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Chapter 6

Case Study

While randomly generated task sets are able to reasonably capture and assess

the performance of our techniques, the application of a real world benchmark is a

valuable addition. The generated task sets are based on our assumptions of how a

mixed criticality system is composed and what requirements it might have. During

the course of this work we were provided with an example model by an industrial

partner, BAE Systems1. This model provides a representative industrial case study,

based on an avionics system, allowing us to investigate the performance of our

allocation technique on a real world example. This chapter focuses on applying

much of the work in the prior chapters to this one specific example. We begin by

examining the set of tasks provided, and discuss its significant features and how it

is adapted slightly to suit our needs. We apply our ILP task allocation and MLP task

splitting and optimisation techniques and discuss the resulting schedules. Finally,

we describe some initial work performed with the case study which applies speed-

up factor theory to investigate its schedulability on a uni-processor platform.

6.1 Case Study Overview

The model provided contains information on a system with varying levels of criti-

cality in the avionics domain. While the model was obfuscated away from the real

system, it remained representative. The model we were provided with contained

20 tasks, these are shown in Table 6.1.

1http://www.baesystems.com

http://www.baesystems.com
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C(LO) C(HI) T/D L
I/O_1 3.6 4.5 20 HI
I/O_2 0.8 1 20 HI
I/O_3 0.8 1 20 HI
I/O_4 4.8 6 40 HI
I/O_5 4.8 6 40 HI
I/O_6 4.8 6 40 HI
I/O_7 1.6 2 20 HI
I/O_8 0.4 0.5 40 HI
I/O_9 0.2 0.25 80 HI
P_1 1.2 1.5 20 HI
P_2 0.4 0.5 20 HI
P_3 0.8 1 20 HI
P_4 3.2 4 20 HI
P_5 1.6 2 20 HI
P_6 2.4 3 20 HI
PL_1 6 6 20 LO
PL_2 3 3 20 LO
PL_3 20 20 80 LO
I/OL_1 17 17 40 LO
SYS 0.25 0.25 40 LO

Table 6.1: Case Study: Complete task set.

The periods that were initially in Hz have been converted to ms. In addition, the

period of I/O_9 was originally equal to 100, however, we reduced this to 80 to fit

our cyclic executive structure. This reduction ensures the task executes once per

major cycle and given its very small execution times will have little to no impact on

overall schedulability. There are a number of points to note about the model:

• The initial task set, while assigned HI and LO criticality levels, did not have

a WCET for each criticality level (C(LO)/C(HI)). After discussion with the

industrial partner we concluded that the initial given values would be used for

C(HI), while the LO values were derived by C(LO) = C(HI)× 0.8.

• The HI and LO criticality levels can be considered equivalent to DAL levels

(Design Assurance Levels2) B and D respectively.

• While the task set contains a large number of HI criticality tasks, the LO

criticality tasks have some of the largest WCETs.

2https://www.rtca.org/, http://www.eurocae.net/

https://www.rtca.org/
http://www.eurocae.net/
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• The SYS is a system management task designed to monitor all tasks in the

system.

• As evident from its overall utilisation, the system was designed to run on a 3

core platform. The use of such an architecture is consistent with other safety

critical domains which might execute on TriCore platforms such as Infineon3.

• We observe two way communication between LO and HI criticality tasks with

the data values being transmitted represented in bytes.

• The platform was designed to execute on a cyclic executive based scheduler,

this is also clear from the harmonic periods 20, 40 and 80 making cyclic

executive scheduling easier.

• Tasks PL_3 & I/O_1 represent a subsystem which may improve its qual-

ity of service with any additional computational capacity. This provided the

inspiration for the work in Chapter 5.2.

In addition to the task set in Table 6.1, we present a diagram detailing the

system in Figure 6.1. This diagram represents each task from Table 6.1, as a circle

where its name, period and WCET are listed. In addition, the diagram illustrates the

communication between tasks, the values on each arc indicate the size of the data

transmission in bytes. While information is provided regarding communication, for

our work we consider each task as independent. HI criticality tasks are indicated

by the circles filled in green, while LO are left empty.

We apply the techniques developed in Chapters 3,4 and 5 to this case study in

the following section.

3https://www.infineon.com

https://www.infineon.com
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Figure 6.1: A representation of the system model provided by BAE Systems.
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6.2 Modelling using Linear Programming

In order to allocate the case study to our mixed criticality cyclic executive model

we must define the parameters of the CE. Conveniently, the case study was based

on a cyclic executive type architecture, thus all periods are harmonic and it is easy

to define the minor and major cycle length. The minor cycle length was set at 20,

T F = 20, and the major cycle length was set at 80, TM = 80, giving a system

where four different minor cycles run per major cycle. Tasks have periods of either

20, 40 or 80 running 4 times, twice, or once per major cycle respectively.

We applied the ILP/MLP modelling and allocation techniques to the model. At

first glance, it is very clear that while the original system was designed to execute

on 3 cores, our platform, which makes use of synchronised criticality switching,

would not be able to achieve this. This is due to tasks PL_3 and I/OL_1, both

having WCETs equal to, or very close to the duration of the minor cycle, as some HI

criticality work must execute every cycle, there is no platform that could schedule

these tasks. As such we immediately turn to the work in Chapter 4 and allow

tasks PL_3 and I/OL_1 to split, the resulting schedule easily fits on 3 cores and

is illustrated in Figure 6.2a. This illustrates a schedule which splits I/OL_1 over

all 4 minor cycles (as it executes once every two cycles) and PL_3 over minor

cycles 1 and 3 (splitting is illustrated by the hatched area). Each ’box’ separated by

the longer solid vertical lines represents a core within a minor cycle. Within each

minor cycle is a dashed line mid cycle running across all cores, this represents the

predicted invocation of the barrier protocol. Beyond these necessary splits, we see

a good deal of spare capacity, indicated in the schedule as the empty ’white’ space.

Following discussion with the industrial partner we established that some tasks,

in particular the LO criticality tasks with the large WCET values may benefit from

any spare capacity and have potentially unbounded execution times. These tasks

are able to continue execution where possible to provide an improved quality of

service for the application, an example might be an increased refresh rate for a

display. This motivated the optimisation presented in Chapter 5 which seeks to

maximise the potential spare capacity in a given criticality level. In Figure 6.2b we

apply this technique to the current model and seek to maximise the LO criticality

capacity to benefit the tasks with potentially unbounded execution times.
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(b) The Case Study on a 3 core platform
with PL_3 & I/O_1 split by the solver
and the schedule is optimised to maximise
spare LO criticality capacity.

Figure 6.2: 3 core, LO capacity maximisation with LO criticality task splitting.
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It is visibly clear that very little spare capacity (white space) exists to the left of

the barrier in the optimised schedule (Figure 6.3b) when compared to the unopti-

mised Figure 6.2a.

In keeping with the work on task splitting, we also present a schedule where

HI criticality task I/O_4 is allowed to split. The non-optimised schedule is shown

in Figure 6.3a and the optimised schedule (to maximise LO criticality capacity) is

illustrated in Figure 6.3b. Crucially here, although I/O_4 is permitted to split, it

does not, as the solver does not need it to split to become schedulable and no

additional capacity can be gained. However, the resulting schedule differs from

that in Figures 6.2a and 6.2b, this highlights how even if additional constraints

do not split tasks, they influence the solver in some way, both however, provide

valid schedules. This is indicative of the behaviour of the solver, different sets of

constraints often lead to the creation of different initial solutions, these different

initial solutions follow alternative iterations toward the optimised goal. It is always

possible, or even likely, that multiple optimised solutions exist.

One of the features of HI criticality task splitting is the ability for the solver

to allocate some of the HI criticality execution to the LO mode with the goal of

reducing the likelihood of a criticality change where additional capacity is avail-

able. The non-optimised schedule shows I/O_4 doing just that in minor cycle

2, the horizontally hatched area representing an extension to the LO WCET (an-

gled hatching represents split tasks). Given I/O_4 has a WCET made up of two

containers CI/O_4(LO) and CI/O_4(EX) and has a LO execution time equal to

C(LO) = 4.8 4 and a HI execution time equal to C(HI) = 6, thus the EX time

required to go from C(LO) to C(HI) is C(EX) = 1.2. As such, a standard distri-

bution of execution time between LO and EX could expect to be CI/O_4(LO) = 4.8

and CI/O_4(EX) = 1.2. However, in the schedule in Figure 6.3b CI/O_4(LO) = 6

and CI/O_4(EX) = 0. This movement of execution time was performed by the

solver in order to better meet the optimisation goal. In addition, this functionality

may become the goal of optimisation itself, as the solver may seek to maximise

the amount of EX execution time allocated to the LO containers, thus, in theory,

reducing the likelihood of a criticality overrun.

4While the time here is in decimal form, when implemented in the model all execution times are
multiplied such that non are decimal in order to maintain integer units of time.
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(a) The Case Study on a 3 core platform
with PL_3, I/O_1 & I/O4 split by the
solver.
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(b) The Case Study on a 3 core platform
with PL_3, I/O_1 & I/O4 split by the
solver and the schedule is optimised to
maximise spare LO criticality capacity.

Figure 6.3: 3 core, LO capacity maximisation with LO & HI criticality task splitting.
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We then applied the first optimisation presented in Chapter 5 to the case study.

This optimisation seeks to minimise the number of cores used by the HI criticality

tasks. Given the large number of HI criticality tasks this appeared to be a chal-

lenging optimisation to illustrate properly with this model. While we observe spare

capacity, the large number of HI criticality tasks makes it difficult to see how the

number of cores used by HI criticality work could be reduced (on the current 3 core

platform). However, we begin with the 3 core example to investigate the schedules

the solver would produce.

When optimising we do not permit task splitting, this was limited to the investi-

gation in Chapter 4. Thus to make the set schedulable we altered tasks PL_3 and

I/OL_1 as these tasks have prohibitively large WCETs. We statically split tasks

PL_3 and I/OL_1 to provide a schedulable system without needing the tool to

find a suitable split. The additional tasks are listed in Table 6.2 which works as an

addition to Table 6.1 replacing tasks PL_3 and I/OL_1.

C(LO) C(HI) T/D L
PL_31 10 10 80 LO
PL_32 10 10 80 LO
I/OL_11 8.5 8.5 40 LO
I/OL_12 8.5 8.5 40 LO

Table 6.2: Case Study: Extensions to 6.1.

Firstly, with a static split, we may perform a simple allocation of tasks on a 3

core system, with no optimisation or tool based splitting. The resulting allocation

is shown in Figure 6.4a. As we have split PL_3 and I/OL_1 into manageable

sub tasks this allocation was easy for the solver to perform using a standard ILP

allocation model. The schedule illustrates a reasonable amount of spare capacity,

however it seems unlikely that the number of cores used by HI criticality tasks could

be reduced.

We then implemented the optimisation to minimise the number of cores used by

high criticality tasks, the schedule is shown in Figure 6.4b. Firstly, it is immediately

clear that the solver has not managed to reduce the number of cores used. We

again observe a different schedule from that in Figure 6.4a as when the solver has

a different goal, different solutions are produced.
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(a) The Case Study on 3 cores with stati-
cally split tasks.
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(b) The Case Study on 3 cores with stat-
ically split tasks, optimised to reduce the
number of cores used by HI criticality
tasks.

Figure 6.4: 3 core, statically split with HI criticality capacity maximised.



CHAPTER 6. CASE STUDY 183

It is clear from Figure 6.4b that while some spare capacity exists, it is not

enough to allow HI criticality tasks to execute on only 2 cores. With this in mind

we move to a 4 core platform, the non-optimised ’standard’ allocation is shown in

Figure 6.5a. It is immediately apparent that there is a large amount of spare capac-

ity. This step is designed to illustrate how the optimisation can be applied to this

model. It follows that, as we already know the system is schedulable on 3 cores, it

must be possible to schedule it on 4. In addition, we know that if it is schedulable

on 3 cores, then adding an additional core and optimising to reduce the number of

cores should return the schedule to a 3 core setup. With this in mind, we use this

example as an illustration of functionality.

Again, we optimise to reduce the number of cores used by HI criticality tasks.

Figure 6.5b illustrates how core 2 is not required by HI criticality, or any tasks in

the system (as expected). Thus in the optimised schedule, no task is scheduled

upon it. The resulting schedule follows the model used in Chapter 5 which allows

for a 10% reduction in a HI criticality task’s WCET for each core not used by any

HI criticality task. Again, we know that the system is 3 core schedulable, and there

will be no schedulability gain by reducing the WCETs by 10%, we simply perform

this step to illustrate how these techniques can be applied to the case study.

Task splitting in some form, static or dynamic (by the solver), was required

in order to schedule the task set on its original 3 cores. The first optimisation was

inspired by the case study and its tasks with potentially unbounded execution times.

We illustrated how this optimisation can be applied to the example system. Finally,

we applied the optimisation to reduce the number of cores HI criticality work is

executing upon. While this optimisation was not directly applicable to the example,

due to the overall utilisation of the task set and the balance of HI and LO criticality

tasks, we were still able to illustrate its use and the resulting schedules produced.

Overall, it is clear that while we are able to illustrate the performance and im-

plementation of our allocation techniques, they are not necessarily valuable as this

is a completed system. A more applicable use of our ILP/MLP models might be

the addition of new functionality in the form of an additional task, the task could be

added and the schedulability and possible allocation/s investigated.
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(a) The Case Study on 4 cores with stati-
cally split tasks.
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(b) The Case Study on 4 cores with stat-
ically split tasks, optimised to reduce the
number of cores used by HI criticality
tasks.

Figure 6.5: 4 core, statically split with the number of cores utilised by HI criticality
tasks minimised.
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6.3 Speedup Factor

In addition to applying the ILP based task allocation approaches we considered

how the requirements of the case study measure up in a uni-processor fixed priority

context. We began by considering the number of cores required for its execution

and how this can be investigated using speed-up factors. Speedup, also known

as Amdahl’s argument [68], is a means of assessing how fast a single processor

would need to be in order to schedule a set of tasks designed for a multi-core. This

section describes how this initial work developed.

We considered the example system model as the task set shown in Table 6.3,

which represents the original values provided, with no C(LO) or C(HI) differenti-

ation.

C T/D L
I/O_1 4.5 20 HI
I/O_2 1 20 HI
I/O_3 1 20 HI
I/O_4 6 40 HI
I/O_5 6 40 HI
I/O_6 6 40 HI
I/O_7 2 20 HI
I/O_8 0.5 40 HI
I/O_9 0.25 80 HI
P_1 1.5 20 HI
P_2 0.5 20 HI
P_3 1 20 HI
P_4 4 20 HI
P_5 2 20 HI
P_6 3 20 HI
PL_1 6 20 LO
PL_2 3 20 LO
PL_3 20 80 LO
I/OL_1 17 40 LO
SYS 0.25 40 LO

Table 6.3: Case Study: Original Model (no criticality levels).

This initial task set does not include differing values for LO WCETs of HI criti-

cality tasks. We ran this task set through the AMCrtb [15] schedulability test and

reduced the original WCET values until schedulable to determine the speed-up

factor.
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S =
C(Old)

C(New)
(6.1)

S(I/O_1) =
4.5

1.71
(6.2)

The speedup factor S is calculated by dividing the Old WCET (originally from

Table 6.3) by a new reduced value. All tasks are reduced by the same % until

schedulable, once schedulable the speedup factor can be determined. The result

is a speed-up factor of 2.63, given that this system is designed to run on three

1.2 Ghz CPUs we can calculate the frequency required of a single core to run the

system.

1.2× 2.63 = 3.156 (6.3)

In this case the system would require a CPU running at 3.16 Ghz to schedule

on a single processor.

As we are dealing with a mixed criticality system, the HI criticality tasks should

be given a LO WCET derived from the provided HI WCETs. As this reduction was

not defined for us (although an estimate of 80% was confirmed to be reasonable)

we began investigating the impact of reducing the LO WCET as a % of the HI

to attempt to reduce the speedup factor. Given the task set in Table 6.1 which

provides LO WCET values for HI criticality tasks calculated as 80% of their HI

WCETs, we apply the same speedup factor technique. We reduce the WCETs

(both LO and HI) of each task by the same % until the system is schedulable.

The resulting speedup factor is 2.33 which required a 2.79Ghz uni-processor to

schedule all tasks.

As well as considering the case above, we also considered the speedup factor

when the LO tasks were assumed to be 90%, 70% , 60% and 50% of the origi-

nal WCET. The resulting speedup factors and the required speed of the CPU to

schedule the task set are shown in Table 6.4.
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LO % of HI 100% 90% 80% 70% 60% 50%
Speedup Factor 2.63 2.5 2.33 2.17 2.04 1.89
Req CPU Speed (GHz) 3.16 3 2.79 2.61 2.45 2.26

Table 6.4: Case Study: Speedup Factors.

In addition, the results from Table 6.4 as plotted in Figure 6.6:
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Figure 6.6: Speedup Graph.

We illustrate here how mixed criticality functionality makes a big difference in

the overall average system load.

This analysis presents a simplified look at the schedulability of the system on

a single processor. We can make two main points. Firstly, this work shows that by

providing smaller LO criticality WCETs for HI criticality tasks it is possible to reduce

the speedup factor by a significant amount (0.3 from 100% to 80%). Secondly, it

is clear that the clock speed required makes it infeasible to schedule this system

on a single processor in an embedded real-time scenario. Such frequencies are

beyond those provided by typical embedded hardware due to high power draw and
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thermal output. As such we concluded that a multi-processor approach is required.

6.4 Summary

This chapter has described and examined the mixed criticality case study provided

by BAE Systems5. We have discussed its features and how they are both similar

and different from our perception of a mixed criticality system. We have applied our

ILP/MLP based task allocation techniques to schedule the case study on a multi-

core cyclic executive platform. We applied task splitting to overcome a number

of tasks with very large execution times. Additionally, we coupled this with two

optimisations; we optimised the task set to maximise the spare capacity within the

LO criticality mode and we optimised the system to reduce the number of cores

used by HI criticality tasks. Finally, we make brief mention of some initial work

investigating how speedup factor can be used to gauge the requirements of this

system if it were scheduled on a uni-processor platform.

The ability to apply our tools and techniques to a real world example case

study is an invaluable step. Not only do we establish how our tools perform given

genuine task data, but we also gain understanding as to how they may be best

used to support future expansion of the system.

5http://www.baesystems.com

http://www.baesystems.com
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Chapter 7

Conclusion

7.1 A return to the thesis hypothesis

We return to the thesis hypothesis:

Mixed Criticality Cyclic Executives provide an attractive platform for highly criti-

cal near-future systems. The challenge of allocating tasks to the platform, providing

support for design and aiding in allocation optimisation can be achieved through the

use of Linear Programming.

We have illustrated how merging the deterministic Cyclic Executive with the

flexibility of mixed criticality functionality provides an attractive platform for near fu-

ture mixed criticality applications. Fundamentally, we retain a familiar scheduling

paradigm and extend it to encompass additional functionality, rather than starting

from scratch. As such legacy applications designed to run on cyclic executive

systems could be ported to a mixed criticality cyclic executive with minimal diffi-

culty. Meanwhile, newer applications, perhaps those able to utilise multi-threaded

workloads, are able to execute alongside due to the complete separation provided

between criticality levels. Proving the isolation of higher criticality work is simple as

it always executes before lower criticality work. While the classic problems of cyclic

executives are not removed with this work, the mixed criticality approach allows for

greater leverage of the platform resources under typical execution.

Throughout this work we made extensive use of linear programming tools to aid
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in the allocation of tasks to mixed criticality cyclic executives. The tools provided

in both the standard allocation and the more complex splitting and optimisation

functionality are intended as a means to aid system design. It may be best used

as part of a design process, allowing the system designer to quickly discover how

to adjust the parameters of their system, or to discover where additional capacity

might lie to introduce more functionality. Linear Programming optimisation provides

a large number of parameters which may be adjusted to allow the system designer

to ask questions about the allocation and design of their system.

7.2 Results of this thesis

The main results reported in this thesis are summarised as follows:

1. In Chapter 3 we describe the process of allocating tasks to a mixed critical-

ity cyclic executive on multiple cores. We began by describing how heuristic

based approaches could be applied to a simplified single cycle (T F = TM )

case. Furthermore, we compared these heuristics against an optimal (in

the sense that if a feasible schedule exists it will find it) Integer Linear Pro-

gramming formulation. The fundamental result of this section is that for the

limited single cycle case, WF (Worst Fit) and FFBB (First Fit with Branch &

Bound) perform well when compared with the optimal ILP model in terms of

schedulability (First Fit performs poorly due to a clash between its allocation

technique and the use of the barrier).

2. The second half of Chapter 3 extends the limited single cycle model from the

first half to a full cyclic executive with multiple minor cycles per major cycle.

The work describes adaptations and additions to the ILP models required to

support multiple minor cycles. The heuristic Worst Fit is shown to perform

poorly in this case when compared with the optimal ILP formulation. In addi-

tion, experimental timing data illustrates how the ILP models find a feasible

solution in a relatively short amount of time. This leads to the conclusion

that when allocating a mixed criticality cyclic executive, there seems to be no

reason not to apply an optimal Integer Linear Programming based approach.
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3. Chapter 4 describes the process and provisions for allowing solver-driven

task splitting. The first half discusses the splitting of the LO criticality tasks.

We describe how splitting can be achieved by changing variables that were

previously defined as integer, to continuous. We also describe additional

constraints required to maintain this splitting and ensure that splitting occurs

across minor cycles, not cores.

4. The second half of Chapter 4 discusses the more complex splitting of HI

criticality tasks. We set out a container-based splitting approach, which tack-

les the problem of splitting a task with multiple WCETs. Constraints for the

ILP/MLP formulation are presented to enforce this technique. The splitting

described in this chapter is emphasised as limited, which tasks are allowed

to split is up to the system designer. It is intended as a tool to facilitate de-

sign, it might allow a task with a WCET close to or greater than T F to be split

and scheduled, or it might even out capacity across all minor cycles to allow

an additional task to be scheduled. An experimental investigation considers

the schedulability gains from task splitting to a variety of degrees and reports

fast solution execution times.

5. In Chapter 5 we consider how optimisation can be used to influence the al-

location of tasks to mixed criticality cyclic executives. The first optimisation

presented aims to minimise the number of cores utilised by HI criticality tasks.

This stems from the notion that certification and verification on multiple cores

adds increasingly extreme levels of pessimism. The fewer cores used by

tasks which required stringent verification the better. We illustrate the result

in this reduction of cores by reducing the WCET of each task by 10% for

each core unused by all HI criticality tasks. This, perhaps pessimistically,

is designed to model the reduced complexity in verification and thus the re-

duction in overall pessimism. Examples are used to illustrate the approach

and experimental results show a slight gain in schedulability due to the 10%

WCET reductions applied when a core is not used by HI criticality tasks.

6. The second half of Chapter 5 presents an optimisation which seeks to max-

imise the capacity either side of the barrier, in a particular criticality level. The
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motivation for this optimisation comes from an industrial partner noting that

some of their tasks have potentially unbounded execution times. As such,

given additional processing capacity these tasks are able to continue execut-

ing to improve the quality of service provided by the application. Additionally

this optimisation may be used to maximise the spare LO criticality capacity

which in turn may help reduce the likelihood of these tasks not being exe-

cuted.

7. In Chapter 6 we apply each of the techniques set out in the thesis to an ex-

ample mission system case study provided by BAE Systems. We discuss the

features of the given task set and what adjustments/assumptions we make

to fit within our work. We apply standard task allocation, task splitting to deal

with some particularly large LO criticality WCETs and finally optimisation to

illustrate their effect on a real-world example. In addition we consider how

the case study might be scheduled on a single processor with fixed priority

scheduling via the speedup factor metric.

7.3 Future Work

A number of clear paths for future work present themselves:

• The Linear Programming model may be extended to consider additional sys-

tem features such as communication and inter-task dependency.

• While the tools used in this thesis served their purpose experimentally, a fully

featured tool could be developed to rapidly produce and execute LP models.

This tool could be used during system design, making rapid prototyping of

new allocations simple.

• Future work might also extend the splitting functionality described in this the-

sis to allow splitting across cores and minor cycles. Cross-core splitting

would need to provide constraints which ensure split sections of the same

task always execute sequentially regardless of the core they are allocated to.
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7.4 Final Thoughts

Throughout this work we have strongly advocated for the use of Linear Program-

ming tools in task allocation and the desire to find scheduling policies which find

a mid ground between dynamic functionality and supporting legacy software and

verification processes. Linear Programming tools are often dismissed due to po-

tentially exponential runtime costs. In reality, for the purpose of investigating static

offline schedulability they are highly suitable, especially given the power of mod-

ern solvers and hardware. The ILP/MLP models proposed in this thesis could be

utilised as part of a rapid design/prototyping tool which is able to regenerate a

model with any changes required by the designer.
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Appendix A

Timing data for the single cycle case

We present the timing data recorded for the single cycle experiments, Figures A.1

and A.2 show data where the number of tasks and cores are scaled respectively.
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Figure A.1: A box plot illustrating the range of execution times taken for each ap-
proach as the number of tasks is increased (single cycle).
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Figure A.2: A box plot illustrating the range of execution times taken for each ap-
proach as the number of cores is increased (single cycle).

We observe very fast performance in all cases, any observed variation is minor

considering all approaches find solutions within a fraction of a second.



APPENDIX B. FULL ILP MODEL LISTING (USING THE .LP FORMAT) 197

Appendix B

Full ILP model listing (using the .lp

format)

Maximize

Subject To

Q1_11 + Q1_21 + Q1_31 + Q1_41 + Q1_12 + Q1_22 + Q1_32 + Q1_42 +

Q1_13 + Q1_23 + Q1_33 + Q1_43 + Q1_14 + Q1_24 + Q1_34 + Q1_44 = 1

Q2_11 + Q2_21 + Q2_31 + Q2_41 + Q2_12 + Q2_22 + Q2_32 + Q2_42 +

Q2_13 + Q2_23 + Q2_33 + Q2_43 + Q2_14 + Q2_24 + Q2_34 + Q2_44 = 1

Q3_11 + Q3_21 + Q3_31 + Q3_41 + Q3_12 + Q3_22 + Q3_32 + Q3_42 +

Q3_13 + Q3_23 + Q3_33 + Q3_43 + Q3_14 + Q3_24 + Q3_34 + Q3_44 = 1

Q4_11 + Q4_21 + Q4_31 + Q4_41 + Q4_12 + Q4_22 + Q4_32 + Q4_42 = 1

Q4_13 + Q4_23 + Q4_33 + Q4_43 + Q4_14 + Q4_24 + Q4_34 + Q4_44 = 1

Q5_11 + Q5_21 + Q5_31 + Q5_41 + Q5_12 + Q5_22 + Q5_32 + Q5_42 = 1

Q5_13 + Q5_23 + Q5_33 + Q5_43 + Q5_14 + Q5_24 + Q5_34 + Q5_44 = 1

Q6_11 + Q6_21 + Q6_31 + Q6_41 + Q6_12 + Q6_22 + Q6_32 + Q6_42 = 1

Q6_13 + Q6_23 + Q6_33 + Q6_43 + Q6_14 + Q6_24 + Q6_34 + Q6_44 = 1

Q7_11 + Q7_21 + Q7_31 + Q7_41 = 1

Q7_12 + Q7_22 + Q7_32 + Q7_42 = 1

Q7_13 + Q7_23 + Q7_33 + Q7_43 = 1

Q7_14 + Q7_24 + Q7_34 + Q7_44 = 1

Q8_11 + Q8_21 + Q8_31 + Q8_41 + Q8_12 + Q8_22 + Q8_32 + Q8_42 = 1

Q8_13 + Q8_23 + Q8_33 + Q8_43 + Q8_14 + Q8_24 + Q8_34 + Q8_44 = 1

Q9_11 + Q9_21 + Q9_31 + Q9_41 + Q9_12 + Q9_22 + Q9_32 + Q9_42 = 1

Q9_13 + Q9_23 + Q9_33 + Q9_43 + Q9_14 + Q9_24 + Q9_34 + Q9_44 = 1

Q10_11 + Q10_21 + Q10_31 + Q10_41 + Q10_12 + Q10_22 + Q10_32 + Q10_42 = 1
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Q10_13 + Q10_23 + Q10_33 + Q10_43 + Q10_14 + Q10_24 + Q10_34 + Q10_44 = 1

Q11_11 + Q11_21 + Q11_31 + Q11_41 + Q11_12 + Q11_22 + Q11_32 +

Q11_42 + Q11_13 + Q11_23 + Q11_33 + Q11_43 + Q11_14 + Q11_24 + Q11_34 + Q11_44 = 1

Q12_11 + Q12_21 + Q12_31 + Q12_41 = 1

Q12_12 + Q12_22 + Q12_32 + Q12_42 = 1

Q12_13 + Q12_23 + Q12_33 + Q12_43 = 1

Q12_14 + Q12_24 + Q12_34 + Q12_44 = 1

Q13_11 + Q13_21 + Q13_31 + Q13_41 = 1

Q13_12 + Q13_22 + Q13_32 + Q13_42 = 1

Q13_13 + Q13_23 + Q13_33 + Q13_43 = 1

Q13_14 + Q13_24 + Q13_34 + Q13_44 = 1

Q14_11 + Q14_21 + Q14_31 + Q14_41 + Q14_12 + Q14_22 + Q14_32 + Q14_42 +

Q14_13 + Q14_23 + Q14_33 + Q14_43 + Q14_14 + Q14_24 + Q14_34 + Q14_44 = 1

Q15_11 + Q15_21 + Q15_31 + Q15_41 + Q15_12 + Q15_22 + Q15_32 + Q15_42 +

Q15_13 + Q15_23 + Q15_33 + Q15_43 + Q15_14 + Q15_24 + Q15_34 + Q15_44 = 1

Q16_11 + Q16_21 + Q16_31 + Q16_41 + Q16_12 + Q16_22 + Q16_32 + Q16_42 = 1

Q16_13 + Q16_23 + Q16_33 + Q16_43 + Q16_14 + Q16_24 + Q16_34 + Q16_44 = 1

Q17_11 + Q17_21 + Q17_31 + Q17_41 + Q17_12 + Q17_22 + Q17_32 + Q17_42 +

Q17_13 + Q17_23 + Q17_33 + Q17_43 + Q17_14 + Q17_24 + Q17_34 + Q17_44 = 1

Q18_11 + Q18_21 + Q18_31 + Q18_41 + Q18_12 + Q18_22 + Q18_32 + Q18_42 = 1

Q18_13 + Q18_23 + Q18_33 + Q18_43 + Q18_14 + Q18_24 + Q18_34 + Q18_44 = 1

Q19_11 + Q19_21 + Q19_31 + Q19_41 + Q19_12 + Q19_22 + Q19_32 + Q19_42 = 1

Q19_13 + Q19_23 + Q19_33 + Q19_43 + Q19_14 + Q19_24 + Q19_34 + Q19_44 = 1

Q20_11 + Q20_21 + Q20_31 + Q20_41 + Q20_12 + Q20_22 + Q20_32 + Q20_42 +

Q20_13 + Q20_23 + Q20_33 + Q20_43 + Q20_14 + Q20_24 + Q20_34 + Q20_44 = 1

Q21_11 + Q21_21 + Q21_31 + Q21_41 + Q21_12 + Q21_22 + Q21_32 + Q21_42 +

Q21_13 + Q21_23 + Q21_33 + Q21_43 + Q21_14 + Q21_24 + Q21_34 + Q21_44 = 1

Q22_11 + Q22_21 + Q22_31 + Q22_41 + Q22_12 + Q22_22 + Q22_32 + Q22_42 +

Q22_13 + Q22_23 + Q22_33 + Q22_43 + Q22_14 + Q22_24 + Q22_34 + Q22_44 = 1

Q23_11 + Q23_21 + Q23_31 + Q23_41 + Q23_12 + Q23_22 + Q23_32 + Q23_42 +

Q23_13 + Q23_23 + Q23_33 + Q23_43 + Q23_14 + Q23_24 + Q23_34 + Q23_44 = 1

Q24_11 + Q24_21 + Q24_31 + Q24_41 + Q24_12 + Q24_22 + Q24_32 + Q24_42 = 1

Q24_13 + Q24_23 + Q24_33 + Q24_43 + Q24_14 + Q24_24 + Q24_34 + Q24_44 = 1

Q25_11 + Q25_21 + Q25_31 + Q25_41 + Q25_12 + Q25_22 + Q25_32 + Q25_42 +

Q25_13 + Q25_23 + Q25_33 + Q25_43 + Q25_14 + Q25_24 + Q25_34 + Q25_44 = 1

Q26_11 + Q26_21 + Q26_31 + Q26_41 + Q26_12 + Q26_22 + Q26_32 + Q26_42 +

Q26_13 + Q26_23 + Q26_33 + Q26_43 + Q26_14 + Q26_24 + Q26_34 + Q26_44 = 1

Q27_11 + Q27_21 + Q27_31 + Q27_41 + Q27_12 + Q27_22 + Q27_32 + Q27_42 +

Q27_13 + Q27_23 + Q27_33 + Q27_43 + Q27_14 + Q27_24 + Q27_34 + Q27_44 = 1
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Q28_11 + Q28_21 + Q28_31 + Q28_41 + Q28_12 + Q28_22 + Q28_32 + Q28_42 +

Q28_13 + Q28_23 + Q28_33 + Q28_43 + Q28_14 + Q28_24 + Q28_34 + Q28_44 = 1

Q29_11 + Q29_21 + Q29_31 + Q29_41 + Q29_12 + Q29_22 + Q29_32 + Q29_42 +

Q29_13 + Q29_23 + Q29_33 + Q29_43 + Q29_14 + Q29_24 + Q29_34 + Q29_44 = 1

Q30_11 + Q30_21 + Q30_31 + Q30_41 + Q30_12 + Q30_22 + Q30_32 + Q30_42 = 1

Q30_13 + Q30_23 + Q30_33 + Q30_43 + Q30_14 + Q30_24 + Q30_34 + Q30_44 = 1

Q31_11 + Q31_21 + Q31_31 + Q31_41 = 1

Q31_12 + Q31_22 + Q31_32 + Q31_42 = 1

Q31_13 + Q31_23 + Q31_33 + Q31_43 = 1

Q31_14 + Q31_24 + Q31_34 + Q31_44 = 1

Q32_11 + Q32_21 + Q32_31 + Q32_41 = 1

Q32_12 + Q32_22 + Q32_32 + Q32_42 = 1

Q32_13 + Q32_23 + Q32_33 + Q32_43 = 1

Q32_14 + Q32_24 + Q32_34 + Q32_44 = 1

Q33_11 + Q33_21 + Q33_31 + Q33_41 + Q33_12 + Q33_22 + Q33_32 + Q33_42 = 1

Q33_13 + Q33_23 + Q33_33 + Q33_43 + Q33_14 + Q33_24 + Q33_34 + Q33_44 = 1

Q34_11 + Q34_21 + Q34_31 + Q34_41 + Q34_12 + Q34_22 + Q34_32 + Q34_42 = 1

Q34_13 + Q34_23 + Q34_33 + Q34_43 + Q34_14 + Q34_24 + Q34_34 + Q34_44 = 1

Q35_11 + Q35_21 + Q35_31 + Q35_41 + Q35_12 + Q35_22 + Q35_32 + Q35_42 +

Q35_13 + Q35_23 + Q35_33 + Q35_43 + Q35_14 + Q35_24 + Q35_34 + Q35_44 = 1

Q36_11 + Q36_21 + Q36_31 + Q36_41 = 1

Q36_12 + Q36_22 + Q36_32 + Q36_42 = 1

Q36_13 + Q36_23 + Q36_33 + Q36_43 = 1

Q36_14 + Q36_24 + Q36_34 + Q36_44 = 1

Q37_11 + Q37_21 + Q37_31 + Q37_41 + Q37_12 + Q37_22 + Q37_32 + Q37_42 = 1

Q37_13 + Q37_23 + Q37_33 + Q37_43 + Q37_14 + Q37_24 + Q37_34 + Q37_44 = 1

Q38_11 + Q38_21 + Q38_31 + Q38_41 = 1

Q38_12 + Q38_22 + Q38_32 + Q38_42 = 1

Q38_13 + Q38_23 + Q38_33 + Q38_43 = 1

Q38_14 + Q38_24 + Q38_34 + Q38_44 = 1

Q39_11 + Q39_21 + Q39_31 + Q39_41 = 1

Q39_12 + Q39_22 + Q39_32 + Q39_42 = 1

Q39_13 + Q39_23 + Q39_33 + Q39_43 = 1

Q39_14 + Q39_24 + Q39_34 + Q39_44 = 1

Q40_11 + Q40_21 + Q40_31 + Q40_41 + Q40_12 + Q40_22 + Q40_32 + Q40_42 +

Q40_13 + Q40_23 + Q40_33 + Q40_43 + Q40_14 + Q40_24 + Q40_34 + Q40_44 = 1

98833 Q1_11 + 90526 Q2_11 + 61888 Q3_11 + 44370 Q4_11 + 23066 Q5_11

+ 18824 Q6_11 + 17037 Q7_11 + 11403 Q8_11 + 10387 Q9_11 + 10330 Q10_11

+ 5961 Q11_11 + 5538 Q12_11 + 3761 Q13_11 + 3008 Q14_11 + 2944 Q15_11
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+ 2871 Q16_11 + 2238 Q17_11 + 2083 Q18_11 + 1139 Q19_11 + 757 Q20_11

+ X1 <= 250000

98833 Q1_21 + 90526 Q2_21 + 61888 Q3_21 + 44370 Q4_21 + 23066 Q5_21

+ 18824 Q6_21 + 17037 Q7_21 + 11403 Q8_21 + 10387 Q9_21 + 10330 Q10_21

+ 5961 Q11_21 + 5538 Q12_21 + 3761 Q13_21 + 3008 Q14_21 + 2944 Q15_21

+ 2871 Q16_21 + 2238 Q17_21 + 2083 Q18_21 + 1139 Q19_21 + 757 Q20_21

+ X1 <= 250000

98833 Q1_31 + 90526 Q2_31 + 61888 Q3_31 + 44370 Q4_31 + 23066 Q5_31

+ 18824 Q6_31 + 17037 Q7_31 + 11403 Q8_31 + 10387 Q9_31 + 10330 Q10_31

+ 5961 Q11_31 + 5538 Q12_31 + 3761 Q13_31 + 3008 Q14_31 + 2944 Q15_31

+ 2871 Q16_31 + 2238 Q17_31 + 2083 Q18_31 + 1139 Q19_31 + 757 Q20_31

+ X1 <= 250000

98833 Q1_41 + 90526 Q2_41 + 61888 Q3_41 + 44370 Q4_41 + 23066 Q5_41

+ 18824 Q6_41 + 17037 Q7_41 + 11403 Q8_41 + 10387 Q9_41 + 10330 Q10_41

+ 5961 Q11_41 + 5538 Q12_41 + 3761 Q13_41 + 3008 Q14_41 + 2944 Q15_41

+ 2871 Q16_41 + 2238 Q17_41 + 2083 Q18_41 + 1139 Q19_41 + 757 Q20_41

+ X1 <= 250000

98833 Q1_12 + 90526 Q2_12 + 61888 Q3_12 + 44370 Q4_12 + 23066 Q5_12

+ 18824 Q6_12 + 17037 Q7_12 + 11403 Q8_12 + 10387 Q9_12 + 10330 Q10_12

+ 5961 Q11_12 + 5538 Q12_12 + 3761 Q13_12 + 3008 Q14_12 + 2944 Q15_12

+ 2871 Q16_12 + 2238 Q17_12 + 2083 Q18_12 + 1139 Q19_12 + 757 Q20_12

+ X2 <= 250000

98833 Q1_22 + 90526 Q2_22 + 61888 Q3_22 + 44370 Q4_22 + 23066 Q5_22

+ 18824 Q6_22 + 17037 Q7_22 + 11403 Q8_22 + 10387 Q9_22 + 10330 Q10_22

+ 5961 Q11_22 + 5538 Q12_22 + 3761 Q13_22 + 3008 Q14_22 + 2944 Q15_22

+ 2871 Q16_22 + 2238 Q17_22 + 2083 Q18_22 + 1139 Q19_22 + 757 Q20_22

+ X2 <= 250000

98833 Q1_32 + 90526 Q2_32 + 61888 Q3_32 + 44370 Q4_32 + 23066 Q5_32

+ 18824 Q6_32 + 17037 Q7_32 + 11403 Q8_32 + 10387 Q9_32 + 10330 Q10_32

+ 5961 Q11_32 + 5538 Q12_32 + 3761 Q13_32 + 3008 Q14_32 + 2944 Q15_32

+ 2871 Q16_32 + 2238 Q17_32 + 2083 Q18_32 + 1139 Q19_32 + 757 Q20_32

+ X2 <= 250000

98833 Q1_42 + 90526 Q2_42 + 61888 Q3_42 + 44370 Q4_42 + 23066 Q5_42

+ 18824 Q6_42 + 17037 Q7_42 + 11403 Q8_42 + 10387 Q9_42 + 10330 Q10_42

+ 5961 Q11_42 + 5538 Q12_42 + 3761 Q13_42 + 3008 Q14_42 + 2944 Q15_42

+ 2871 Q16_42 + 2238 Q17_42 + 2083 Q18_42 + 1139 Q19_42 + 757 Q20_42

+ X2 <= 250000

98833 Q1_13 + 90526 Q2_13 + 61888 Q3_13 + 44370 Q4_13 + 23066 Q5_13

+ 18824 Q6_13 + 17037 Q7_13 + 11403 Q8_13 + 10387 Q9_13 + 10330 Q10_13
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+ 5961 Q11_13 + 5538 Q12_13 + 3761 Q13_13 + 3008 Q14_13 + 2944 Q15_13

+ 2871 Q16_13 + 2238 Q17_13 + 2083 Q18_13 + 1139 Q19_13 + 757 Q20_13

+ X3 <= 250000

98833 Q1_23 + 90526 Q2_23 + 61888 Q3_23 + 44370 Q4_23 + 23066 Q5_23

+ 18824 Q6_23 + 17037 Q7_23 + 11403 Q8_23 + 10387 Q9_23 + 10330 Q10_23

+ 5961 Q11_23 + 5538 Q12_23 + 3761 Q13_23 + 3008 Q14_23 + 2944 Q15_23

+ 2871 Q16_23 + 2238 Q17_23 + 2083 Q18_23 + 1139 Q19_23 + 757 Q20_23

+ X3 <= 250000

98833 Q1_33 + 90526 Q2_33 + 61888 Q3_33 + 44370 Q4_33 + 23066 Q5_33

+ 18824 Q6_33 + 17037 Q7_33 + 11403 Q8_33 + 10387 Q9_33 + 10330 Q10_33

+ 5961 Q11_33 + 5538 Q12_33 + 3761 Q13_33 + 3008 Q14_33 + 2944 Q15_33

+ 2871 Q16_33 + 2238 Q17_33 + 2083 Q18_33 + 1139 Q19_33 + 757 Q20_33

+ X3 <= 250000

98833 Q1_43 + 90526 Q2_43 + 61888 Q3_43 + 44370 Q4_43 + 23066 Q5_43

+ 18824 Q6_43 + 17037 Q7_43 + 11403 Q8_43 + 10387 Q9_43 + 10330 Q10_43

+ 5961 Q11_43 + 5538 Q12_43 + 3761 Q13_43 + 3008 Q14_43 + 2944 Q15_43

+ 2871 Q16_43 + 2238 Q17_43 + 2083 Q18_43 + 1139 Q19_43 + 757 Q20_43

+ X3 <= 250000

98833 Q1_14 + 90526 Q2_14 + 61888 Q3_14 + 44370 Q4_14 + 23066 Q5_14

+ 18824 Q6_14 + 17037 Q7_14 + 11403 Q8_14 + 10387 Q9_14 + 10330 Q10_14

+ 5961 Q11_14 + 5538 Q12_14 + 3761 Q13_14 + 3008 Q14_14 + 2944 Q15_14

+ 2871 Q16_14 + 2238 Q17_14 + 2083 Q18_14 + 1139 Q19_14 + 757 Q20_14

+ X4 <= 250000

98833 Q1_24 + 90526 Q2_24 + 61888 Q3_24 + 44370 Q4_24 + 23066 Q5_24

+ 18824 Q6_24 + 17037 Q7_24 + 11403 Q8_24 + 10387 Q9_24 + 10330 Q10_24

+ 5961 Q11_24 + 5538 Q12_24 + 3761 Q13_24 + 3008 Q14_24 + 2944 Q15_24

+ 2871 Q16_24 + 2238 Q17_24 + 2083 Q18_24 + 1139 Q19_24 + 757 Q20_24

+ X4 <= 250000

98833 Q1_34 + 90526 Q2_34 + 61888 Q3_34 + 44370 Q4_34 + 23066 Q5_34

+ 18824 Q6_34 + 17037 Q7_34 + 11403 Q8_34 + 10387 Q9_34 + 10330 Q10_34

+ 5961 Q11_34 + 5538 Q12_34 + 3761 Q13_34 + 3008 Q14_34 + 2944 Q15_34

+ 2871 Q16_34 + 2238 Q17_34 + 2083 Q18_34 + 1139 Q19_34 + 757 Q20_34

+ X4 <= 250000

98833 Q1_44 + 90526 Q2_44 + 61888 Q3_44 + 44370 Q4_44 + 23066 Q5_44

+ 18824 Q6_44 + 17037 Q7_44 + 11403 Q8_44 + 10387 Q9_44 + 10330 Q10_44

+ 5961 Q11_44 + 5538 Q12_44 + 3761 Q13_44 + 3008 Q14_44 + 2944 Q15_44

+ 2871 Q16_44 + 2238 Q17_44 + 2083 Q18_44 + 1139 Q19_44 + 757 Q20_44

+ X4 <= 250000

157799 Q1_11 + 144536 Q2_11 + 98812 Q3_11 + 70842 Q4_11 + 36828 Q5_11
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+ 30055 Q6_11 + 27202 Q7_11 + 18206 Q8_11 + 16584 Q9_11 + 16493 Q10_11

+ 9517 Q11_11 + 8842 Q12_11 + 6005 Q13_11 + 4803 Q14_11 + 4700 Q15_11

+ 4584 Q16_11 + 3573 Q17_11 + 3326 Q18_11 + 1819 Q19_11 + 1209 Q20_11

<= 250000

157799 Q1_21 + 144536 Q2_21 + 98812 Q3_21 + 70842 Q4_21 + 36828 Q5_21

+ 30055 Q6_21 + 27202 Q7_21 + 18206 Q8_21 + 16584 Q9_21 + 16493 Q10_21

+ 9517 Q11_21 + 8842 Q12_21 + 6005 Q13_21 + 4803 Q14_21 + 4700 Q15_21

+ 4584 Q16_21 + 3573 Q17_21 + 3326 Q18_21 + 1819 Q19_21 + 1209 Q20_21

<= 250000

157799 Q1_31 + 144536 Q2_31 + 98812 Q3_31 + 70842 Q4_31 + 36828 Q5_31

+ 30055 Q6_31 + 27202 Q7_31 + 18206 Q8_31 + 16584 Q9_31 + 16493 Q10_31

+ 9517 Q11_31 + 8842 Q12_31 + 6005 Q13_31 + 4803 Q14_31 + 4700 Q15_31

+ 4584 Q16_31 + 3573 Q17_31 + 3326 Q18_31 + 1819 Q19_31 + 1209 Q20_31

<= 250000

157799 Q1_41 + 144536 Q2_41 + 98812 Q3_41 + 70842 Q4_41 + 36828 Q5_41

+ 30055 Q6_41 + 27202 Q7_41 + 18206 Q8_41 + 16584 Q9_41 + 16493 Q10_41

+ 9517 Q11_41 + 8842 Q12_41 + 6005 Q13_41 + 4803 Q14_41 + 4700 Q15_41

+ 4584 Q16_41 + 3573 Q17_41 + 3326 Q18_41 + 1819 Q19_41 + 1209 Q20_41

<= 250000

157799 Q1_12 + 144536 Q2_12 + 98812 Q3_12 + 70842 Q4_12 + 36828 Q5_12

+ 30055 Q6_12 + 27202 Q7_12 + 18206 Q8_12 + 16584 Q9_12 + 16493 Q10_12

+ 9517 Q11_12 + 8842 Q12_12 + 6005 Q13_12 + 4803 Q14_12 + 4700 Q15_12

+ 4584 Q16_12 + 3573 Q17_12 + 3326 Q18_12 + 1819 Q19_12 + 1209 Q20_12

<= 250000

157799 Q1_22 + 144536 Q2_22 + 98812 Q3_22 + 70842 Q4_22 + 36828 Q5_22

+ 30055 Q6_22 + 27202 Q7_22 + 18206 Q8_22 + 16584 Q9_22 + 16493 Q10_22

+ 9517 Q11_22 + 8842 Q12_22 + 6005 Q13_22 + 4803 Q14_22 + 4700 Q15_22

+ 4584 Q16_22 + 3573 Q17_22 + 3326 Q18_22 + 1819 Q19_22 + 1209 Q20_22

<= 250000

157799 Q1_32 + 144536 Q2_32 + 98812 Q3_32 + 70842 Q4_32

+ 36828 Q5_32 + 30055 Q6_32 + 27202 Q7_32 + 18206 Q8_32 + 16584 Q9_32

+ 16493 Q10_32 + 9517 Q11_32 + 8842 Q12_32 + 6005 Q13_32 + 4803 Q14_32

+ 4700 Q15_32 + 4584 Q16_32 + 3573 Q17_32 + 3326 Q18_32 + 1819 Q19_32

+ 1209 Q20_32 <= 250000

157799 Q1_42 + 144536 Q2_42 + 98812 Q3_42 + 70842 Q4_42

+ 36828 Q5_42 + 30055 Q6_42 + 27202 Q7_42 + 18206 Q8_42 + 16584 Q9_42

+ 16493 Q10_42 + 9517 Q11_42 + 8842 Q12_42 + 6005 Q13_42 + 4803 Q14_42

+ 4700 Q15_42 + 4584 Q16_42 + 3573 Q17_42 + 3326 Q18_42 + 1819 Q19_42

+ 1209 Q20_42 <= 250000
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157799 Q1_13 + 144536 Q2_13 + 98812 Q3_13 + 70842 Q4_13

+ 36828 Q5_13 + 30055 Q6_13 + 27202 Q7_13 + 18206 Q8_13 + 16584 Q9_13

+ 16493 Q10_13 + 9517 Q11_13 + 8842 Q12_13 + 6005 Q13_13 + 4803 Q14_13

+ 4700 Q15_13 + 4584 Q16_13 + 3573 Q17_13 + 3326 Q18_13 + 1819 Q19_13

+ 1209 Q20_13 <= 250000

157799 Q1_23 + 144536 Q2_23 + 98812 Q3_23 + 70842 Q4_23

+ 36828 Q5_23 + 30055 Q6_23 + 27202 Q7_23 + 18206 Q8_23 + 16584 Q9_23

+ 16493 Q10_23 + 9517 Q11_23 + 8842 Q12_23 + 6005 Q13_23 + 4803 Q14_23

+ 4700 Q15_23 + 4584 Q16_23 + 3573 Q17_23 + 3326 Q18_23 + 1819 Q19_23

+ 1209 Q20_23 <= 250000

157799 Q1_33 + 144536 Q2_33 + 98812 Q3_33 + 70842 Q4_33

+ 36828 Q5_33 + 30055 Q6_33 + 27202 Q7_33 + 18206 Q8_33 + 16584 Q9_33

+ 16493 Q10_33 + 9517 Q11_33 + 8842 Q12_33 + 6005 Q13_33 + 4803 Q14_33

+ 4700 Q15_33 + 4584 Q16_33 + 3573 Q17_33 + 3326 Q18_33 + 1819 Q19_33

+ 1209 Q20_33 <= 250000

157799 Q1_43 + 144536 Q2_43 + 98812 Q3_43 + 70842 Q4_43

+ 36828 Q5_43 + 30055 Q6_43 + 27202 Q7_43 + 18206 Q8_43 + 16584 Q9_43

+ 16493 Q10_43 + 9517 Q11_43 + 8842 Q12_43 + 6005 Q13_43 + 4803 Q14_43

+ 4700 Q15_43 + 4584 Q16_43 + 3573 Q17_43 + 3326 Q18_43 + 1819 Q19_43

+ 1209 Q20_43 <= 250000

157799 Q1_14 + 144536 Q2_14 + 98812 Q3_14 + 70842 Q4_14

+ 36828 Q5_14 + 30055 Q6_14 + 27202 Q7_14 + 18206 Q8_14 + 16584 Q9_14

+ 16493 Q10_14 + 9517 Q11_14 + 8842 Q12_14 + 6005 Q13_14 + 4803 Q14_14

+ 4700 Q15_14 + 4584 Q16_14 + 3573 Q17_14 + 3326 Q18_14 + 1819 Q19_14

+ 1209 Q20_14 <= 250000

157799 Q1_24 + 144536 Q2_24 + 98812 Q3_24 + 70842 Q4_24

+ 36828 Q5_24 + 30055 Q6_24 + 27202 Q7_24 + 18206 Q8_24 + 16584 Q9_24

+ 16493 Q10_24 + 9517 Q11_24 + 8842 Q12_24 + 6005 Q13_24 + 4803 Q14_24

+ 4700 Q15_24 + 4584 Q16_24 + 3573 Q17_24 + 3326 Q18_24 + 1819 Q19_24

+ 1209 Q20_24 <= 250000

157799 Q1_34 + 144536 Q2_34 + 98812 Q3_34 + 70842 Q4_34

+ 36828 Q5_34 + 30055 Q6_34 + 27202 Q7_34 + 18206 Q8_34 + 16584 Q9_34

+ 16493 Q10_34 + 9517 Q11_34 + 8842 Q12_34 + 6005 Q13_34 + 4803 Q14_34

+ 4700 Q15_34 + 4584 Q16_34 + 3573 Q17_34 + 3326 Q18_34 + 1819 Q19_34

+ 1209 Q20_34 <= 250000

157799 Q1_44 + 144536 Q2_44 + 98812 Q3_44 + 70842 Q4_44

+ 36828 Q5_44 + 30055 Q6_44 + 27202 Q7_44 + 18206 Q8_44 + 16584 Q9_44

+ 16493 Q10_44 + 9517 Q11_44 + 8842 Q12_44 + 6005 Q13_44 + 4803 Q14_44

+ 4700 Q15_44 + 4584 Q16_44 + 3573 Q17_44 + 3326 Q18_44 + 1819 Q19_44
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+ 1209 Q20_44 <= 250000

204813 Q21_11 + 203930 Q22_11 + 94158 Q23_11 + 71116 Q24_11

+ 70599 Q25_11 + 70393 Q26_11 + 55040 Q27_11 + 54002 Q28_11

+ 43197 Q29_11 + 41199 Q30_11 + 28041 Q31_11 + 18510 Q32_11

+ 18293 Q33_11 + 14854 Q34_11 + 12276 Q35_11 + 8152 Q36_11 + 7047 Q37_11

+ 6310 Q38_11 + 5033 Q39_11 + 1945 Q40_11 − X1 <= 0

204813 Q21_21 + 203930 Q22_21 + 94158 Q23_21 + 71116 Q24_21

+ 70599 Q25_21 + 70393 Q26_21 + 55040 Q27_21 + 54002 Q28_21

+ 43197 Q29_21 + 41199 Q30_21 + 28041 Q31_21 + 18510 Q32_21

+ 18293 Q33_21 + 14854 Q34_21 + 12276 Q35_21 + 8152 Q36_21 + 7047 Q37_21

+ 6310 Q38_21 + 5033 Q39_21 + 1945 Q40_21 − X1 <= 0

204813 Q21_31 + 203930 Q22_31 + 94158 Q23_31 + 71116 Q24_31

+ 70599 Q25_31 + 70393 Q26_31 + 55040 Q27_31 + 54002 Q28_31

+ 43197 Q29_31 + 41199 Q30_31 + 28041 Q31_31 + 18510 Q32_31

+ 18293 Q33_31 + 14854 Q34_31 + 12276 Q35_31 + 8152 Q36_31 + 7047 Q37_31

+ 6310 Q38_31 + 5033 Q39_31 + 1945 Q40_31 − X1 <= 0

204813 Q21_41 + 203930 Q22_41 + 94158 Q23_41 + 71116 Q24_41

+ 70599 Q25_41 + 70393 Q26_41 + 55040 Q27_41 + 54002 Q28_41

+ 43197 Q29_41 + 41199 Q30_41 + 28041 Q31_41 + 18510 Q32_41

+ 18293 Q33_41 + 14854 Q34_41 + 12276 Q35_41 + 8152 Q36_41 + 7047 Q37_41

+ 6310 Q38_41 + 5033 Q39_41 + 1945 Q40_41 − X1 <= 0

204813 Q21_12 + 203930 Q22_12 + 94158 Q23_12 + 71116 Q24_12

+ 70599 Q25_12 + 70393 Q26_12 + 55040 Q27_12 + 54002 Q28_12

+ 43197 Q29_12 + 41199 Q30_12 + 28041 Q31_12 + 18510 Q32_12

+ 18293 Q33_12 + 14854 Q34_12 + 12276 Q35_12 + 8152 Q36_12 + 7047 Q37_12

+ 6310 Q38_12 + 5033 Q39_12 + 1945 Q40_12 − X2 <= 0

204813 Q21_22 + 203930 Q22_22 + 94158 Q23_22 + 71116 Q24_22

+ 70599 Q25_22 + 70393 Q26_22 + 55040 Q27_22 + 54002 Q28_22

+ 43197 Q29_22 + 41199 Q30_22 + 28041 Q31_22 + 18510 Q32_22

+ 18293 Q33_22 + 14854 Q34_22 + 12276 Q35_22 + 8152 Q36_22 + 7047 Q37_22

+ 6310 Q38_22 + 5033 Q39_22 + 1945 Q40_22 − X2 <= 0

204813 Q21_32 + 203930 Q22_32 + 94158 Q23_32 + 71116 Q24_32

+ 70599 Q25_32 + 70393 Q26_32 + 55040 Q27_32 + 54002 Q28_32

+ 43197 Q29_32 + 41199 Q30_32 + 28041 Q31_32 + 18510 Q32_32

+ 18293 Q33_32 + 14854 Q34_32 + 12276 Q35_32 + 8152 Q36_32 + 7047 Q37_32

+ 6310 Q38_32 + 5033 Q39_32 + 1945 Q40_32 − X2 <= 0

204813 Q21_42 + 203930 Q22_42 + 94158 Q23_42 + 71116 Q24_42

+ 70599 Q25_42 + 70393 Q26_42 + 55040 Q27_42 + 54002 Q28_42

+ 43197 Q29_42 + 41199 Q30_42 + 28041 Q31_42 + 18510 Q32_42
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+ 18293 Q33_42 + 14854 Q34_42 + 12276 Q35_42 + 8152 Q36_42 + 7047 Q37_42

+ 6310 Q38_42 + 5033 Q39_42 + 1945 Q40_42 − X2 <= 0

204813 Q21_13 + 203930 Q22_13 + 94158 Q23_13 + 71116 Q24_13

+ 70599 Q25_13 + 70393 Q26_13 + 55040 Q27_13 + 54002 Q28_13

+ 43197 Q29_13 + 41199 Q30_13 + 28041 Q31_13 + 18510 Q32_13

+ 18293 Q33_13 + 14854 Q34_13 + 12276 Q35_13 + 8152 Q36_13 + 7047 Q37_13

+ 6310 Q38_13 + 5033 Q39_13 + 1945 Q40_13 − X3 <= 0

204813 Q21_23 + 203930 Q22_23 + 94158 Q23_23 + 71116 Q24_23

+ 70599 Q25_23 + 70393 Q26_23 + 55040 Q27_23 + 54002 Q28_23

+ 43197 Q29_23 + 41199 Q30_23 + 28041 Q31_23 + 18510 Q32_23

+ 18293 Q33_23 + 14854 Q34_23 + 12276 Q35_23 + 8152 Q36_23 + 7047 Q37_23

+ 6310 Q38_23 + 5033 Q39_23 + 1945 Q40_23 − X3 <= 0

204813 Q21_33 + 203930 Q22_33 + 94158 Q23_33 + 71116 Q24_33

+ 70599 Q25_33 + 70393 Q26_33 + 55040 Q27_33 + 54002 Q28_33

+ 43197 Q29_33 + 41199 Q30_33 + 28041 Q31_33 + 18510 Q32_33

+ 18293 Q33_33 + 14854 Q34_33 + 12276 Q35_33 + 8152 Q36_33 + 7047 Q37_33

+ 6310 Q38_33 + 5033 Q39_33 + 1945 Q40_33 − X3 <= 0

204813 Q21_43 + 203930 Q22_43 + 94158 Q23_43 + 71116 Q24_43

+ 70599 Q25_43 + 70393 Q26_43 + 55040 Q27_43 + 54002 Q28_43

+ 43197 Q29_43 + 41199 Q30_43 + 28041 Q31_43 + 18510 Q32_43

+ 18293 Q33_43 + 14854 Q34_43 + 12276 Q35_43 + 8152 Q36_43 + 7047 Q37_43

+ 6310 Q38_43 + 5033 Q39_43 + 1945 Q40_43 − X3 <= 0

204813 Q21_14 + 203930 Q22_14 + 94158 Q23_14 + 71116 Q24_14

+ 70599 Q25_14 + 70393 Q26_14 + 55040 Q27_14 + 54002 Q28_14

+ 43197 Q29_14 + 41199 Q30_14 + 28041 Q31_14 + 18510 Q32_14

+ 18293 Q33_14 + 14854 Q34_14 + 12276 Q35_14 + 8152 Q36_14 + 7047 Q37_14

+ 6310 Q38_14 + 5033 Q39_14 + 1945 Q40_14 − X4 <= 0

204813 Q21_24 + 203930 Q22_24 + 94158 Q23_24 + 71116 Q24_24

+ 70599 Q25_24 + 70393 Q26_24 + 55040 Q27_24 + 54002 Q28_24

+ 43197 Q29_24 + 41199 Q30_24 + 28041 Q31_24 + 18510 Q32_24

+ 18293 Q33_24 + 14854 Q34_24 + 12276 Q35_24 + 8152 Q36_24 + 7047 Q37_24

+ 6310 Q38_24 + 5033 Q39_24 + 1945 Q40_24 − X4 <= 0

204813 Q21_34 + 203930 Q22_34 + 94158 Q23_34 + 71116 Q24_34

+ 70599 Q25_34 + 70393 Q26_34 + 55040 Q27_34 + 54002 Q28_34

+ 43197 Q29_34 + 41199 Q30_34 + 28041 Q31_34 + 18510 Q32_34

+ 18293 Q33_34 + 14854 Q34_34 + 12276 Q35_34 + 8152 Q36_34 + 7047 Q37_34

+ 6310 Q38_34 + 5033 Q39_34 + 1945 Q40_34 − X4 <= 0

204813 Q21_44 + 203930 Q22_44 + 94158 Q23_44 + 71116 Q24_44

+ 70599 Q25_44 + 70393 Q26_44 + 55040 Q27_44 + 54002 Q28_44
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+ 43197 Q29_44 + 41199 Q30_44 + 28041 Q31_44 + 18510 Q32_44

+ 18293 Q33_44 + 14854 Q34_44 + 12276 Q35_44 + 8152 Q36_44 + 7047 Q37_44

+ 6310 Q38_44 + 5033 Q39_44 + 1945 Q40_44 − X4 <= 0

Bounds

X1 <= 250000

X2 <= 250000

X3 <= 250000

X4 <= 250000

B ina r ies

Q1_11 Q1_21 Q1_31 Q1_41 Q1_12 Q1_22 Q1_32 Q1_42 Q1_13 Q1_23 Q1_33 Q1_43

Q1_14 Q1_24 Q1_34 Q1_44 Q2_11 Q2_21 Q2_31 Q2_41 Q2_12 Q2_22 Q2_32 Q2_42

Q2_13 Q2_23 Q2_33 Q2_43 Q2_14 Q2_24 Q2_34 Q2_44 Q3_11 Q3_21 Q3_31 Q3_41

Q3_12 Q3_22 Q3_32 Q3_42 Q3_13 Q3_23 Q3_33 Q3_43 Q3_14 Q3_24 Q3_34 Q3_44

Q4_11 Q4_21 Q4_31 Q4_41 Q4_12 Q4_22 Q4_32 Q4_42 Q4_13 Q4_23 Q4_33 Q4_43

Q4_14 Q4_24 Q4_34 Q4_44 Q5_11 Q5_21 Q5_31 Q5_41 Q5_12 Q5_22 Q5_32 Q5_42

Q5_13 Q5_23 Q5_33 Q5_43 Q5_14 Q5_24 Q5_34 Q5_44 Q6_11 Q6_21 Q6_31 Q6_41

Q6_12 Q6_22 Q6_32 Q6_42 Q6_13 Q6_23 Q6_33 Q6_43 Q6_14 Q6_24 Q6_34 Q6_44

Q7_11 Q7_21 Q7_31 Q7_41 Q7_12 Q7_22 Q7_32 Q7_42 Q7_13 Q7_23 Q7_33 Q7_43

Q7_14 Q7_24 Q7_34 Q7_44 Q8_11 Q8_21 Q8_31 Q8_41 Q8_12 Q8_22 Q8_32 Q8_42

Q8_13 Q8_23 Q8_33 Q8_43 Q8_14 Q8_24 Q8_34 Q8_44 Q9_11 Q9_21 Q9_31 Q9_41

Q9_12 Q9_22 Q9_32 Q9_42 Q9_13 Q9_23 Q9_33 Q9_43 Q9_14 Q9_24 Q9_34 Q9_44

Q10_11 Q10_21 Q10_31 Q10_41 Q10_12 Q10_22 Q10_32 Q10_42 Q10_13 Q10_23

Q10_33 Q10_43 Q10_14 Q10_24 Q10_34 Q10_44 Q11_11 Q11_21 Q11_31 Q11_41

Q11_12 Q11_22 Q11_32 Q11_42 Q11_13 Q11_23 Q11_33 Q11_43 Q11_14 Q11_24

Q11_34 Q11_44 Q12_11 Q12_21 Q12_31 Q12_41 Q12_12 Q12_22 Q12_32 Q12_42

Q12_13 Q12_23 Q12_33 Q12_43 Q12_14 Q12_24 Q12_34 Q12_44 Q13_11 Q13_21

Q13_31 Q13_41 Q13_12 Q13_22 Q13_32 Q13_42 Q13_13 Q13_23 Q13_33 Q13_43

Q13_14 Q13_24 Q13_34 Q13_44 Q14_11 Q14_21 Q14_31 Q14_41 Q14_12 Q14_22

Q14_32 Q14_42 Q14_13 Q14_23 Q14_33 Q14_43 Q14_14 Q14_24 Q14_34 Q14_44

Q15_11 Q15_21 Q15_31 Q15_41 Q15_12 Q15_22 Q15_32 Q15_42 Q15_13 Q15_23

Q15_33 Q15_43 Q15_14 Q15_24 Q15_34 Q15_44 Q16_11 Q16_21 Q16_31 Q16_41

Q16_12 Q16_22 Q16_32 Q16_42 Q16_13 Q16_23 Q16_33 Q16_43 Q16_14 Q16_24

Q16_34 Q16_44 Q17_11 Q17_21 Q17_31 Q17_41 Q17_12 Q17_22 Q17_32 Q17_42

Q17_13 Q17_23 Q17_33 Q17_43 Q17_14 Q17_24 Q17_34 Q17_44 Q18_11 Q18_21

Q18_31 Q18_41 Q18_12 Q18_22 Q18_32 Q18_42 Q18_13 Q18_23 Q18_33 Q18_43

Q18_14 Q18_24 Q18_34 Q18_44 Q19_11 Q19_21 Q19_31 Q19_41 Q19_12 Q19_22

Q19_32 Q19_42 Q19_13 Q19_23 Q19_33 Q19_43 Q19_14 Q19_24 Q19_34 Q19_44

Q20_11 Q20_21 Q20_31 Q20_41 Q20_12 Q20_22 Q20_32 Q20_42 Q20_13 Q20_23

Q20_33 Q20_43 Q20_14 Q20_24 Q20_34 Q20_44 Q21_11 Q21_21 Q21_31 Q21_41
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Q21_12 Q21_22 Q21_32 Q21_42 Q21_13 Q21_23 Q21_33 Q21_43 Q21_14 Q21_24

Q21_34 Q21_44 Q22_11 Q22_21 Q22_31 Q22_41 Q22_12 Q22_22 Q22_32 Q22_42

Q22_13 Q22_23 Q22_33 Q22_43 Q22_14 Q22_24 Q22_34 Q22_44 Q23_11 Q23_21

Q23_31 Q23_41 Q23_12 Q23_22 Q23_32 Q23_42 Q23_13 Q23_23 Q23_33 Q23_43

Q23_14 Q23_24 Q23_34 Q23_44 Q24_11 Q24_21 Q24_31 Q24_41 Q24_12 Q24_22

Q24_32 Q24_42 Q24_13 Q24_23 Q24_33 Q24_43 Q24_14 Q24_24 Q24_34 Q24_44

Q25_11 Q25_21 Q25_31 Q25_41 Q25_12 Q25_22 Q25_32 Q25_42 Q25_13 Q25_23

Q25_33 Q25_43 Q25_14 Q25_24 Q25_34 Q25_44 Q26_11 Q26_21 Q26_31 Q26_41

Q26_12 Q26_22 Q26_32 Q26_42 Q26_13 Q26_23 Q26_33 Q26_43 Q26_14 Q26_24

Q26_34 Q26_44 Q27_11 Q27_21 Q27_31 Q27_41 Q27_12 Q27_22 Q27_32 Q27_42

Q27_13 Q27_23 Q27_33 Q27_43 Q27_14 Q27_24 Q27_34 Q27_44 Q28_11 Q28_21

Q28_31 Q28_41 Q28_12 Q28_22 Q28_32 Q28_42 Q28_13 Q28_23 Q28_33 Q28_43

Q28_14 Q28_24 Q28_34 Q28_44 Q29_11 Q29_21 Q29_31 Q29_41 Q29_12 Q29_22

Q29_32 Q29_42 Q29_13 Q29_23 Q29_33 Q29_43 Q29_14 Q29_24 Q29_34 Q29_44

Q30_11 Q30_21 Q30_31 Q30_41 Q30_12 Q30_22 Q30_32 Q30_42 Q30_13 Q30_23

Q30_33 Q30_43 Q30_14 Q30_24 Q30_34 Q30_44 Q31_11 Q31_21 Q31_31 Q31_41

Q31_12 Q31_22 Q31_32 Q31_42 Q31_13 Q31_23 Q31_33 Q31_43 Q31_14 Q31_24

Q31_34 Q31_44 Q32_11 Q32_21 Q32_31 Q32_41 Q32_12 Q32_22 Q32_32 Q32_42

Q32_13 Q32_23 Q32_33 Q32_43 Q32_14 Q32_24 Q32_34 Q32_44 Q33_11 Q33_21

Q33_31 Q33_41 Q33_12 Q33_22 Q33_32 Q33_42 Q33_13 Q33_23 Q33_33 Q33_43

Q33_14 Q33_24 Q33_34 Q33_44 Q34_11 Q34_21 Q34_31 Q34_41 Q34_12 Q34_22

Q34_32 Q34_42 Q34_13 Q34_23 Q34_33 Q34_43 Q34_14 Q34_24 Q34_34 Q34_44

Q35_11 Q35_21 Q35_31 Q35_41 Q35_12 Q35_22 Q35_32 Q35_42 Q35_13 Q35_23

Q35_33 Q35_43 Q35_14 Q35_24 Q35_34 Q35_44 Q36_11 Q36_21 Q36_31 Q36_41

Q36_12 Q36_22 Q36_32 Q36_42 Q36_13 Q36_23 Q36_33 Q36_43 Q36_14 Q36_24

Q36_34 Q36_44 Q37_11 Q37_21 Q37_31 Q37_41 Q37_12 Q37_22 Q37_32 Q37_42

Q37_13 Q37_23 Q37_33 Q37_43 Q37_14 Q37_24 Q37_34 Q37_44 Q38_11 Q38_21

Q38_31 Q38_41 Q38_12 Q38_22 Q38_32 Q38_42 Q38_13 Q38_23 Q38_33 Q38_43

Q38_14 Q38_24 Q38_34 Q38_44 Q39_11 Q39_21 Q39_31 Q39_41 Q39_12 Q39_22

Q39_32 Q39_42 Q39_13 Q39_23 Q39_33 Q39_43 Q39_14 Q39_24 Q39_34 Q39_44

Q40_11 Q40_21 Q40_31 Q40_41 Q40_12 Q40_22 Q40_32 Q40_42 Q40_13 Q40_23

Q40_33 Q40_43 Q40_14 Q40_24 Q40_34 Q40_44

Generals

X1 X2 X3 X4

End
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