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Abstract 

Parkinson’s disease (PD) is the second most common neurodegenerative 

disease. The pathological hallmark of PD is the loss of dopaminergic neurons in the 

substantia nigra pars compacta (SNpc). Common identifiable genetic causes of early 

onset PD (EOPD) are Parkin and PINK1 mutations. Tigarb, the orthologue of human 

TIGAR (TP53–Induced Glycolysis and Apoptosis Regulator), up-regulation was 

demonstrated in a zebrafish pink1-/- model along with dopaminergic cell loss and 

mitochondrial dysfunction (Flinn et al., 2013). Tigarb knockdown rescued the 

dopaminergic neurons and mitochondrial dysfunction. Here, tigarb upregulation 

suggests an involvement in PD neuropathology. Therefore, we investigated whether 

TIGAR is present in the human brain and elucidate its relationship between TIGAR 

protein and the Lewy body pathology. TIGAR was found in the Lewy Bodies and 

Neurites in SNpc of sporadic PD and Dementia with Lewy bodies patients. TIGAR 

protein was not found in the ubiquitylated inclusions of motor neurone disease or 

multiple system atrophy, suggesting a degree of disease specificity. TIGAR role was 

investigated in fibroblasts from PD patients and controls. TIGAR is expressed and 

translated in human fibroblasts. TIGAR gene expression and protein level between 

controls and parkin-mutant fibroblasts was not significantly different. TIGAR cellular 

localisation was not affected in parkin mutant fibroblasts after rotenone toxic and 

cellular stress exposure. TIGAR involvement in autophagy was not found in sporadic 

PD patients. RNAi methods for efficient TIGAR and PINK1 knockdown were 

designed in using HEK 293T cells as host line, where TIGAR and PINK1 deficiency 

showed no significant effect in the ATP production and mitochondrial morphology. 

CRISPR/Cas9 and microRNAs mediated knockdown were investigated to assess 

gene function and to select the best approach with reproducible and reliable results. 
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1. General introduction 

Parkinson’s disease (PD) is a common, progressive neurodegenerative 

disorder. The pathological hallmark of the disease is loss of dopaminergic neurons in 

the pars compacta of the substantia nigra (SN), resulting in the typical clinical PD 

triad of tremor, akinesia and rigidity. The majority of PD cases are sporadic: in most 

populations only ~5-10% of cases are inherited (Pan and Yue, 2014). The exact 

mechanisms leading to the loss of dopaminergic neurons remain obscure, but new 

insights into genetic and molecular pathways will provide us with the required 

knowledge to design disease-modifying therapy for this and, possibly other 

neurodegenerative disorders.   

1.1 Clinical and pathological features 
PD patients usually present with a continuum of motor and non-motor 

symptoms. The age of onset is usually between 5th and 7th decade of life. Clinical 

criteria to diagnose PD include bradykinesia, pronounced muscular rigidity, tremor at 

rest, postural instability and hypomimia (Emre et al., 2007; Palma and Kaufmann, 

2014; Poewe and Wenning, 2002).  

 

At presentation, 50-70% of dopaminergic neurons in the substantia nigra pars 

compacta (SNpc) will have already been lost and the remaining neurons may contain 

Lewy bodies that may be accompanied by thread-like Lewy neurites in the neuropil. 

Lewy bodies and neurites are cytoplasmic protein aggregates composed 

predominantly of alpha-synuclein and are a pathological hallmark in PD (Baba et al., 

1998; Orth and Schapira, 2001). While these inclusions are predominantly found in 

the pigmented nuclei of the brainstem, Lewy bodies can be found in multiple 

subtentorial brain areas and also non-neuronal tissue (Braak et al., 2003) including 
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the cortex, spinal cord, gastrointestinal tract and endocrine organs (Lee et al., 2017; 

Palma and Kaufmann, 2014). The precise location in the brain where these 

inclusions are initially formed remains elusive, both single and multifocal initiation 

sites have been suggested (Freundt et al., 2012; Visanji et al., 2013).  

1.2 Etiology of PD 
1.2.1  Genetics of PD 

PD is a multifactorial disorder: diverse genetic and environmental factors 

contribute to the development of the disease. Most cases are sporadic, but the 

identification of monogenic inherited PD genes has significantly contributed to our 

understanding of PD (Exner et al., 2012). 

 

Studies of genome-wide linkage analysis in PD families have identified a 

number of chromosomal location of genes (loci) associated with PD. These PD loci 

are known as PARK loci, and a number is consecutively assigned for each new 

identified locus (Chung et al., 2011). 

1.2.1.1 Monogenic forms 

Dominant  

The alpha-synuclein (SNCA) gene, encoding the alpha-synuclein protein, was 

the first gene identified as a cause of PD (PARK1 and PARK4) (Farrer et al., 1999; 

Polymeropoulos, 1997; Polymeropoulos et al., 1996; Singleton et al., 2003a). 

However, mutations in this gene are very rare (<1%) (Hoffman-Zacharska et al., 

2013; Lohmann and Klein, 2008; Markopoulou et al., 2008). Mutations in the 

Leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of 

PD (PARK8) (Paisán-Ruíz et al., 2004; Zimprich et al., 2004). The 

Glucocerebrosidase (GBA) gene encodes the β-glucocerebrosidase lysosomal 
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enzyme, homozygous and compound heterozygous mutations which cause of 

Gaucher disease (GD). Heterozygous GBA mutations have been identified as a 

strong risk factor for PD (Aharon-Peretz et al., 2004; Lesage et al., 2011; Neumann 

et al., 2009; Sidransky et al., 2009). The neuropathology from people with PD and 

mutations in GBA is comparable to that of classical, sporadic PD (Aharon-Peretz et 

al., 2004; Ma et al., 2013; Sidransky et al., 2009).  

Recessive  

The Parkin (PARKN) gene is the most common cause of autosomal 

recessively inherited PD with early onset PD (EOPD) (Asakawa et al., 2001; Kitada 

et al., 1998) representing ~50% of mutations occurring in EOPD (Lohmann et al., 

2003; Lücking et al., 2000; Pramstaller et al., 2005). The PTEN-induced putative 

kinase 1 (PINK1; PARK6) gene is the second most common cause (1-7%) of EOPD 

(Valente et al., 2001, 2004). Mutations in DJ-1 (PARK7) are rare and account for 

<1% of PD cases (Alcalay et al., 2010; Bonifati et al., 2004). 

Sporadic 

 PD etiopathology is mainly sporadic (~90%), where no evidence of familial 

history can be found. However, there is a 2-14 fold increased risk for PD for first-

degree relatives of an affected PD patient compared to the general population.  It is 

a complex disorder where a number of factors interact and contribute to the 

development of the disease. One of these factors are genetic variations, with ~28 

independent risk significant loci identified (Nalls, 2014). The majority of the candidate 

risk-related genes and loci have been found by linkage analysis and genome wide 

association studies (GWAS). Some of these candidate genes had been 

demonstrated to be relevant for the disease across different populations and models. 

Here, we will focus in the main candidate genes with strong risk association for PD. 
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Variations within the SNCA gene have been established as one of the main 

susceptibility genes for PD. SNCA mutations in familial PD support its role as a risk 

factor and susceptibility for the disease. More than 800 variations with positive SNCA 

risk association for PD have been reported up to date. Reported SNCA variations 

are: a) single nucleotide polymorphisms (SNP) analysis, which revealed a positive 

association between SNPs within promoter region (REP1), the 3’UTR region (e.g. 

rs356165), 3’ end (e.g. rs356219) and intronic region (e.g. rs2736990) of the gene 

and increased risk for PD across different populations; b) locus duplications and 

triplications and; c) point mutations in the amino-terminal region. The rs256220 SNP 

is the variation that showed the highest reproducibility across different studies 

(Redenšek et al., 2017). Some of the SNPs were reported to have a significant 

impact the SNCA levels in blood, serum, plasma and brain samples. The suggested 

biological effect might be by modifying SNCA expression at transcriptional levels and 

protein aggregation. Few studies investigated the association of SNPs in the clinical 

phenotype (severity and outcome) with inconclusive results. Increased levels of 

SNCA had been associated with increased risk for PD, whereas decreased levels 

were described as protective from the disease (Loureiro and Silva, 2017).  

 

In 1-10% of sporadic PD cases, LRRK2 variations have been associated in 

different populations. LRRK2 variants include from rare high penetrant variants to 

common variants with decreased effect confirmed as a susceptibility gene. The 

biological effect of the reported variants involved endo-lysosomal pathways, 

autophagy and mitochondrial function by affecting LRRK2 function, interaction and 

phosphorylation with binding proteins (Redenšek et al., 2017). The most common 
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reported variation is p.Gly2019Ser (rs34637584), where LRRK2 increased activity 

has been associated with increased risk for PD (Wallings et al., 2015).  

 

MAPT, commonly known as tau, is a protein ubiquitously expressed in the 

neurons and involved in cellular maintenance and organisation. Pathologic 

aggregations have been described in a number of neurodegenerative disorders, 

such as Alzheimer’s Disease (AD), Pick’s disease, and other parkinsonian disorders. 

Tau pathology has been described in PD cases, mostly with LRRK2 mutations (Soto-

ortolaza et al., 2013). It has been confirmed by different studies as a risk factor for 

PD, with up to 40 mutations described. However, variants reported have not been 

replicated. The SNP rs393152 and the inversion locus polymorphism on 

chromosome 17 (900 kb) including several genes besides MAPT, are the ones 

consistently reported with associated risk for PD. Two haplotypes of this locus have 

been described: H1 and H2, where H1 increased MAPT transcription and H2 

decreases it (Peeraully and Tan, 2012). The biological effect has been suggested to 

occur alongside SNCA and hyperphosphorylation of the protein, leading to 

impairment of the microtubule organization, altered cytoskeleton, defective axonal 

transport and impaired autophagy with protein aggregation (Pascale et al., 2016). 

 

The GBA gene was confirmed as a genetic risk factor for PD. Heterozygote 

mutations have been reported to increase the risk for PD in many populations (Li et 

al., 2013). The encoded enzyme is located in the lysosomal membrane, where 

ceramide and glucose are produced after glucocerebrosides had been cleaved. GBA 

mutations decrease the enzymatic activity. 
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Although the GWAS and statistic analysis reported strong association 

between the different genes and the risk for PD, their contribution for the disease 

remains low. The candidate genes and with the highest association are: SNCA, 

MAPT, LRRK2, GBA, Bone marrow stromal cell antigen 1 (BST1), CCDCC2/HIP1R, 

cyclin G association kinase (GAK), diacylglycerol kinase theta (DGKQ), serine 

threonine kinase 39 (STK39) and synaptotagmin XI (SYT11) (Ferreira and Massano, 

2017). 

Environmental factors  

 Some environmental factors have been described as exogenous risk factors 

for sporadic PD. It is suggested that the complex interplay between these and 

susceptibility genes might trigger for the disorder. Epidemiological studies showed 

positive associations between PD and pesticides, including toxins such as paraquat, 

rotenone, organophosphates and organochlorines. Paraquat is a mitochondrial 

Complex I (CI) inhibitor, which also promotes cytosolic oxidative stress and 

apoptosis mediated by caspase-3. Rotenone, also induce mitochondrial dysfunction 

via CI inhibition. Both reagents have been used to study PD-related mechanisms in 

cellular and animal models (Fleming, 2017). 

 

Heavy metals have been also associated with PD development and other 

neurodegenerative disorders. These include iron and manganese as the main 

culprits. Excessive exposure to pesticides and heavy metals lead to PD symptoms 

and cognitive impairment, due to accumulation within the basal ganglia and SN 

mainly (Kwakye et al., 2015; Wang et al., 2016c). Their toxic mechanism remains 

unknown, but it has been suggested to be secondary to oxidative stress, 

mitochondrial dysfunction and impaired protein clearance leading to apoptosis.  
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 Currently, the list of suspected environmental factors is growing, however, 

their role as risk factors remain to be verified. Amongst these are newer pesticides. 

Protective factors such as, smoking and caffeine, have also been reported. However, 

the mechanisms underpinning the apparent protective effect remain to be 

determined (Hernán et al., 2002).  

1.3 Pathogenesis in PD 
1.3.1  Mitochondrial dysfunction in PD 

 There is strong evidence that mitochondrial function plays a key role in the 

disease process. The main mitochondrial functions involved are defects in the 

respiratory chain complexes. The first evidence was found during the 80’s decade in 

drug users in California. They developed parkinsonian symptoms after self-

administration of the synthetic heroin analogue 1 methyl-4-phenyl-1,2,3,6-

tetrahydropiridine (MPTP). Post-mortem studies performed in these people revealed 

dopaminergic neuronal damage within the SN (Langston et al., 1983). Later, it was 

found that MPTP crosses the blood brain barrier, enter to the astrocytes where is 

oxidised to 1-methyl 1-4-phenylpyridinium (MPP+). MPP+ was found to be a 

dopamine receptor substrate. Therefore, when MPP+ is released, it enters the 

dopaminergic neuron. Mitochondrial dysfunction follows when CI is inhibited, leading 

to neuronal death (Langston et al., 1984; Ransom et al., 1987). Further evidence 

was found in the brains of sporadic PD patients, in which CI deficiency was reported 

in the SN and other brain regions (Mann et al., 1992; Mizuno et al., 1989; Navarro et 

al., 2009; Parker et al., 2008; Schapira et al., 1989). Furthermore, CI inhibitors, such 

as MPTP, rotenone and paraquat, recapitulate PD pathology in cells and animal 

models featuring dopaminergic neuronal loss, as well as clinical signs of PD 

(Cochemé and Murphy, 2008; Corona et al., 2010; Decressac et al., 2012; Gille et al., 
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2004; Irwin and William Langston, 1985; Langston et al., 1984; Qureshi and Paudel, 

2011; Sallinen et al., 2010; Sharma and Nehru, 2013; Tanner et al., 2011; Wu et al., 

2011; Yong-Kee et al., 2012). CI deficiency has been consistently demonstrated in 

PD tissue such as human fibroblasts, platelets and lymphoid cells (Krige et al., 1992; 

Mann et al., 1992; Mortiboys et al., 2008, 2013; Parker et al., 1989; Rh et al., 1995; 

Yoshino et al., 1992).  

 

CI inhibition leads to increased reactive oxygen species (ROS) mitochondrial 

production and reduced ATP production, which results in cellular neuronal damage 

and death. Furthermore, CI deficiency induces Ubiquitin proteasome system (UPS) 

impairment, followed by accumulation of misfolded proteins (Reeve et al., 2015). 

Mutant SNCA (Braidy et al., 2013; Chinta et al., 2010; Choubey et al., 2011; Hsu et 

al., 2000; Kamp et al., 2010), PINK1 (Chung et al., 2016; Exner et al., 2007; Hilker et 

al., 2012; Lutz et al., 2009; Morais et al., 2014; Park et al., 2006; Priyadarshini et al., 

2013; Rakovic et al., 2011) and Parkin (Flinn et al., 2009; Grünewald et al., 2010; 

Haylett et al., 2016; Hoshino et al., 2013; Mortiboys et al., 2008, 2013; Müftüoglu et 

al., 2004; Palacino et al., 2004; Rakovic et al., 2010; Seibler et al., 2011; Sethi and 

Kang, 2011; Vergara et al., 2014) deficiency are related to impaired mitochondrial 

morphology, CI dysfunction, increased ROS production and altered bioenergetics 

status of the cell. LRRK2 mutations also lead to increased ROS and oxidative stress, 

CI, II and IV deficiency, altered mitochondrial morphology and mitochondrial 

dynamics by affecting the function of uncoupling and mitochondrial fission proteins 

(Grunewald et al., 2013; Mortiboys et al., 2010a, 2015; Papkovskaia et al., 2012).   
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1.3.2  Autophagy and mitophagy in PD 
Autophagy is the cellular process by which all the damaged/dysfunctional 

organelles and proteins are cleared from the cell. Autophagy is usually triggered by 

different cellular stimuli and can be divided into 3 types depending on the structures 

processed into the lysosomes: macroautophagy, chaperone-mediated autophagy 

(CMA) and microautophagy. The formation of the autophagic vesicle follows 5 steps: 

initiation, nucleation, elongation, fusion and degradation. Macroautophagy is the 

most studied process of all (Yoshii and Mizushima, 2017). 

 

In macroautophagy, the components are sequestered in double-membrane 

vesicles, forming the autophagosome, which fuses the lysosome for degradation. In 

microautophagy, lysosomes are in charge of the uptake and degradation of 

cytoplasmic contents directly without forming the autophagosome. In CMA, the 

process requires the presence of the KFERQ (LysPheGluArgGln) peptide in the 

substrate protein. This substrate protein is then recognised by the chaperone heat 

shock proteins (Hsp70), and brings it to the lysosomal receptor, where it is 

translocated by LAMP2A. The substrate is unfolded and degraded in the lysosome.  

 

Autophagy is a highly regulated process, where a number of molecules are 

required upon stimulation (eg. Nutrient starvation and oxidative stress). Specific 

adaptor proteins p62/SQSTM1 are required for recognition of ubiquilated proteins. 

The autophagy related genes (ATG) are necessary to form the autophagic vesicles 

and autophagosomes. The ATG genes are regulated by: a) the mammalian target of 

rapamycin (mTOR), which inhibits autophagy under physiological conditions; b) 

beclin complex and; c) LC3 lipidation process. LC3-I (cytosolic protein) conversion to 

LC3-II (recruited to the autophagosome membrane) is a hallmark marker of 
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autophagy. Mitophagy is the process in which damaged mitochondria are removed 

and cleared from the cell. This regulated process to maintain the right pool and 

quality mitochondria upon metabolic stress. 

 

Autophagy and mitophagy have been demonstrated to be one of the main 

cellular pathways that might be impaired in PD and contribute to neurodegeneration 

(Redenšek et al., 2017).   

1.3.2.1 The PINK/Parkin Pathway 
Parkin and PINK1 have roles in the same mitochondrial pathway (Pickrell and 

Youle, 2017). Both have been found to be involved in the dynamics and homeostasis 

of mitochondrial function, energy production (ATP), modulation on proteasome 

degradation and clearance of damaged mitochondria (Geisler et al., 2010a, 2010b; 

Ryan et al., 2015; Wild and Dikic, 2010). 

 

It was recently found that PINK1 has a role as an ubiquitin kinase and after 

the mitochondrial membrane potential is lost, it phosphorylates ubiquitin and the 

Parkin ubiquitin-like domain on S65. These events were reported to be required for 

Parkin activation (Aguirre et al., 2017; Schubert et al., 2017). Therefore, when PINK1 

is stabilised on the mitochondrial outer membrane (OMM), it enables Parkin 

translocation to the mitochondria (Wild and Dikic, 2010). In response to 

mitochondrial depolarisation, PINK1 binds, translocates, phosphorylates and 

activates E3 ligase Parkin. PINK1 mutations impede PINK1 importation and 

stabilisation and thus inhibit Parkin binding and translocation to the mitochondria 

(Geisler et al., 2010a, 2010b), as well as PINK1/PARL processing.  
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Following activation and mitochondrial translocation, Parkin polyubiquitinates 

itself and the outer mitochondrial proteins (mitofusins and VDAC) to recruit the 

autophagy adaptor p62 and induce the proteasome/phagophore formation by binding 

Agt8/LC3 to promote autophagy (Geisler et al., 2010a, 2010b). PINK1 is imported to 

the mitochondria and cleaved in presence of a normal mitochondrial membrane 

potential; this enables PINK1 to recruit and translocate Parkin to the mitochondria. 

Activated Parkin can ubiquitinate the proteins of the MOM, voltage dependent anion 

selective channel 1 (VDAC) and p62, which binds LC3. The autophagophore is 

formed promoting autophagy (Wild and Dikic, 2010). Recently, Wang et al. 2017, 

found that LRRK2 is also recruited to the depolarised mitochondria alongside PINK1 

and Parkin. They suggested that the three PD proteins remove RHOT1/Miro (an 

outer mitochondrial membrane protein) to be degraded by the proteasome. This 

leads to mitophagy after the targeted mitochondria is arrested. (Wang, 2017) (Figure 

1.1). 
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Figure 1.1 Schematic representation of the PINK/Parkin pathway. PINK1 is imported to the 

mitochondria and cleaved in presence of a normal mitochondrial membrane potential (MMP). PINK1 

phosphorylates ubiquitin and Parkin ubiquitin-like (Ubl) domain. This enables PINK1 to recruit and translocate 

Parkin to the mitochondria. Activated Parkin can ubiquitinate the proteins of the outer membrane (OMM) VDAC 

and p62, which binds LC3. The autophagophore is formed promoting mitophagy (Aguirre et al., 2017; Schubert et 

al., 2017; Wild and Dikic, 2010).  

Further research has suggested a physical interaction between the Parkin 

RING 1 domain and the p53 (TP53) promoter region. Parkin seems to be a P53 

target gene under both stress and non-stress conditions (Alves da Costa and 

Checler, 2010; da Costa et al., 2009; Zhang et al., 2011). Protein-protein interaction 

between cytosolic p53 and Parkin inhibits Parkin translocation and mitophagy in 

cardiac myocytes from mice (Hoshino et al., 2013). Furthermore, Parkin may act as 
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a p53 target to maintain genome stability by regulating ROS levels (Zhang et al., 

2011).  

1.3.3  Neuroinflamation 
 Neuroinflammation is a further characteristic of PD pathology. However, it is 

unknown whether it is cause or consequence of the disease process. Post-mortem 

studies of brains of PD cases and animal models have shown that pro-inflammatory 

factor levels are increased. One of the main mediators involved in inflammation are 

activated microglia resulting in chronic exposure to ROS and production of cytokines 

within the brain. Mutant SNCA can be recognised as a pathogen by toll-like 

receptors (i.e. TLR2, TLR4), which triggers inflammation through NF-Kb 

translocation and cytokine production, activation and expression. The immune 

response may depend of the conformation of SNCA, where β-sheet conformations 

showed higher sensitivity. Protein aggregates and misfolded SNCA activate 

microglia, which also triggers the production of inflammatory cytokines (TNF-α and 

IL-1β) leading to neurotoxicity and neuronal death (Austin et al., 2011; Béraud et al., 

2011). Despite this, recent findings have demonstrated that microglia can also have 

protective effects by clearing damaged neurons as a result of neurotoxic exposure 

(Gomez-Nicola and Perry, 2014).  

1.3.4  Alpha-synuclein (SNCA) pathology 
As mentioned above, SNCA was the first gene described as a genetic cause 

for familial PD. Subsequently, alpha-synuclein was discovered to be the main 

component of the Lewy bodies and glial cytoplasmic inclusions in PD and related 

alpha-synucleinopathies. Despite this, how SNCA promotes PD pathology and the 

exact physiological function are still unknown (De Franceschi et al., 2017). Alpha-

synuclein is composed of 140 amino acids and expressed in neuronal synaptic 



29 
 

terminals (Sengupta et al., 2015). Alpha-synuclein is important for normal synaptic 

function, vesicle trafficking, release and recycling, as well as a regulator of dopamine 

metabolism (release and uptake) (Lautenschläger et al., 2017; Nakata et al., 2012; 

Pelkonen et al., 2013). Several mechanisms for SNCA PD-related pathology have 

been reported, mostly related to toxic effects. Duplications, triplication, gene 

mutations and posttranslational modifications in SNCA inducing its overexpression 

have been related to increased protein aggregation within the neurons in in vitro an 

in vivo models (Bezard et al., 2013). Protein aggregates are resistant to degradation 

due to impaired autophagy, leading to cellular death. Overexpressing SNCA (Wild 

type and mutant) can impair autophagy through different mechanisms: by inhibition 

of the chaperone-mediated autophagy; compromising the synthesis and clearance of 

the autophagosome and UPS pathway; attaching to lysosome receptor LAMP2A, 

preventing its internalisation to the lysosome; and inhibition of lysosomal enzymes, 

such as GBA (Gan-Or et al., 2015). Mitophagy might be also impaired by mutant 

SNCA, due to increased protein aggregation with increased ROS levels. As a result, 

increased levels of oxidative stress promote mitochondrial fragmentation and 

dysfunction, affects MMP and permeability. This entire cascade of events leads to 

impaired mitophagy and clearance (Redenšek et al., 2017; Wang et al., 2016a). 

 

Others suggested that increased levels of alpha-synuclein might impair the 

dynamics and recycling of the synaptic vesicles (Mazzulli et al., 2016). They can also 

impair the interaction with dopamine, induce a conformational change and inhibit the 

degradation of alpha-synuclein through the CMA (Chinta et al., 2010). Additional 

toxic mechanisms include impaired Ca2+ homeostasis; tyrosine hydrolase 

phosphorylation and function. Alpha-synuclein aggregates also lead to increased 
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neuroinflammation in the microglia induced by proteins of the immune response (i.e. 

Major histocompatibility complex and TLR) (Gustot et al., 2015; Luth et al., 2014; 

Venda et al., 2017).  

1.4 TIGAR  
TIGAR (TP53-Induced Glycolysis and Apoptosis Regulator; also known as 

C12orf5) was identified by Bensaad, et al. 2006. The TIGAR locus is on 

chromosome 12p13-3. It has 6 coding exons and two p53 binding sites known as 

BS1 (intron 1) and BS2 (intron 2). It is characterised by a structural and protein 

similarity to the biphosphatase domain of the enzyme 6-phosphofructose-2-

kinase/fructose-2,6-biphophatase (PFK-2/FBPase-2). Both FBPase-2 and TIGAR, 

decrease Fructose-2,6-Biphosphate (Fru-2,6 P2) levels. Fru-2,6 P2 is the substrate of 

Phosphofructokinase-1 (PFK-1), the key enzyme in the glycolytic pathway. By 

lowering the Fru-2,6 P2 levels, TIGAR inhibits the glycolytic pathway and promotes 

the Pentose Phosphate Pathway (PPP). This, in turn, reduces reactive oxygen 

species (ROS) by increasing the production of NADPH and reduced glutathione 

(GSH) (Figure 1.2) (Bensaad et al., 2006).  

Li and Jogl (2009) reported that TIGAR protein also has a similarity to the 

catalytic unit of the Fru-1,6-P2 and F26BPase enzymes. F26BPase is the key 

metabolic activator enzyme of glycolysis and Fru-1,6-P2 is a glycolytic intermediate. 

Due to the shared homology, TIGAR binds the catalytic unit of the F26BPase 

enzyme. Following this event, inhibition of glycolysis occurs due to down-regulation 

of the F26BPase and removal of the Fru-1,6-P2 enzymes. The closest structural 

relation exists between TIGAR and the PhoE phoshphatase (PhoEP) enzyme, 

whose unknown activity might have an additional underlying role in glycolysis (Li and 

Jogl, 2009).  
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Furthermore, Gerin et al., 2014; found that the 2,3-Biphosphoglycerate 

(23BPG), cofactor of the Phosphoglycerate mutase enzyme (PGAM), has a higher 

affinity (~400-fold) for TIGAR compared to F26BP. This suggests an added action of 

TIGAR as a phosphatase, on the grounds of a shared distant homology with the 

histidine phosphatase family (PhoEP) and substrate specificity. However, 23BPG 

has been reported as present and active only in erythrocytes (where it is important 

for oxygen binding to haemoglobin) without any other known functional relevance in 

other cell types (Gerin et al., 2014).  

 

               

Figure 1.2 TIGAR function in the glycolytic and Pentose Phosphate pathway. TIGAR has a shared 

homology to the biphosphatase domain of the PFK-2/FBPase-2 enzyme. Therefore, TIGAR acts by inhibiting the 

glycolytic enzyme PFK1, lowering the F2,6 P2 and F1,6 P2 levels. 3, Phosphoglycerate; G6P (G3P) Glucose-6-

phosphate; Gluthathione (GSH); Hexokinase (HK); 6-Phosphofructo-1-kinase (PFK1); Phosphoglycerate Mutase 

(PGM); Tricarboxylic Acid Cycle (TCA) (Maddocks and Vousden, 2011; Riganti et al., 2012). 
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1.4.1 TIGAR regulators  
The type of TIGAR response (glycolysis and metabolic regulation, ROS 

scavenging, cellular survival and autophagy) within a cell depends on several 

different factors, including stress due to ischaemia or hypoxia; as well as the cell 

type (Bensaad et al., 2009; Cheung et al., 2012; Sun et al., 2015; Zou et al., 2012).    

 

p53. The first identified protein acting as an upstream regulator of TIGAR is 

p53. P53 is a transcription factor that induces different cellular responses depending 

on the cellular physiological demand or damage response. Despite the importance of 

p53-regulation of TIGAR, it is now known that there are several other TIGAR-

mediated mechanisms, which are p53-independent. These are important because 

p53 is not essential to maintain TIGAR basal expression levels (Lee et al., 2015). 

 

p63 and p73. Recent findings have described further molecules that regulate 

TIGAR levels and activity. These include p63 and p73, two other genes from the 

same family of transcription factors as p53 and have been suggested to be upstream 

regulators of TIGAR. A p63- and p73-dependent cellular survival function of TIGAR 

has been demonstrated in intestinal crypts. However, the full details of these 

regulatory mechanisms remains unclear and not fully confirmed (Lee et al., 2015). In 

addition, an inverse correlation has been described between TIGAR expression and 

both p63 and p73, within thymic lymphomas. This mechanisms probably involves 

different P63 and P73 isoforms, which would influence the tumour growth rate 

(Venkatanarayan et al., 2016). 

 

SP-1. SP-1 is a common transcription factor that is responsible for the 

activation or repression of several different genes, affecting a diversity of cellular 
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mechanisms, including, cellular metabolism, cellular proliferation and growth, 

chromatin remodelling and apoptosis (Beishline and Azizkhan-Clifford, 2015; Henson 

et al., 1992). SP-1 has been described in a diversity of cell types, including neuronal 

cells, where it provides a role in neuronal modulation and protection in Huntington’s 

Disease (Qiu et al., 2006). SP-1 has also been suggested to play a role in various 

neurodegenerative diseases, mainly tauopathies: In AD, co-localisation of SP-1 has 

been seen with tau protein in neurofibrillary tangles (NFT), dystrophic neurites, 

threads and plaques. Whereas in other tauopathies, such as Pick’s disease and 

progressive supranuclear palsy, SP-1 is present in neurons, astrocytes and 

oligodendrocytes. Moreover, a negative correlation between Lewy pathology and 

SP-1 has been found in PD and dementia with lewy bodies (DLB) (Santpere et al., 

2006). SP-1-mediated regulatory mechanisms of TIGAR were first demonstrated In 

cancer liver cells, where SP-1 positively interacts with the TIGAR promoter, where it 

modulates TIGAR basal transcription (Zou et al., 2012). 

 

CREB. The highly conserved promoter region of TIGAR contains specific 

sites for many DNA binding-motifs of a variety of transcription factors. Recently, a 

CREB box within this region has been described (Zou et al., 2013). CREB is a 

transcription factor from the leucine zipper family. It is responsible for a number of 

transcriptional responses to different stimuli (e.g. growth hormonal and stress 

signals); (Wang et al., 2016e). CREB expression levels correlate with, and are 

indispensable for, TIGAR expression. However, further transcription factors that 

drive TIGAR expression remain to be elucidated (Zou et al., 2013).   
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PI3-AKT-mTOR. The PI3-AKT-mTOR pathway also has been described as 

an upstream regulator of TIGAR in colonic cancer cell lines. This is an important 

signalling pathway for protein translation by activating eIF4F, an initiation factor that 

induces protein translation (Ahmad et al., 2017) 

 

NSD2. The nuclear receptor-binding SET domain-containing 2 (NSD2) protein, 

also known as multiple myeloma SET domain (MMSET) or Wolf-Hirschhorn 

syndrome candidate 1 (WHSC1), is a H3K36 histone methyltransferase. Some of its 

main functions are via epigenetic gene regulation, NF-Κb and cytokine modulation as 

well as driving expression of oestrogen receptor in breast cancer. NSD2 

overexpression can lead to tumour resistance via glycolytic enzymes and PPP 

pathway induction. The proposed mechanism is by direct stimulation of NSD2 

recruited in the promoter of the glycolytic genes TIGAR, HK-II and G6PD (Wang et 

al., 2016b). 

 

ATM. A possible relation between neurodegenerative disease process via 

upregulation of the ATM-p53-TIGAR pathway has been suggested. The Ataxia-

Telagiectasia Mutated gene (ATM) encodes a key protein involved in DNA-damage 

repair (DDR) to double-strand breaks (DSBs). It acts as an upstream regulator by 

promoting several genes related to cellular proliferation, apoptosis and repair, such 

as p53. Recently, the up-regulation of the ATM gene was found to co-occur with a 

progressive decrease of TIGAR protein levels in patients with AD (Katsel et al., 

2013).  
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HK-II. HK-II (hexokinase II) is prevalent in tissues with high energy demand, 

such as skeletal muscle, heart and adipocytes (John et al., 2011). It also has an 

important role in regulating cellular survival and autophagy under glucose deprivation 

conditions or type of cellular damage (Tan and Miyamoto, 2015). Overexpression of 

mitochondrial HK-II may confer neuronal protection and survival in animal and 

cellular models of PD and neurodegeneration (Corona et al., 2010; Gimenez-

Cassina et al., 2009). Under hypoxic conditions, mitochondrial HK-II is important for 

TIGAR mitochondrial translocation, where both proteins form a complex. This results 

in HK-II stabilization and enhanced activity and interaction with TIGAR upon 

presence of glucose and active HIF-1α. 

1.4.2 TIGAR mechanisms 
Cellular protection and DNA repair. One of the main actions described in 

the p53-TIGAR pathway, is the PPP, which protects cells from damage and aid 

survival by reducing levels of reactive oxygen species and providing cells with 

NADPH and GSH (Bensaad et al., 2006).  

 

In hepatocarcinoma, TIGAR has been suggested as providing cellular 

protection by promoting DDR via a number of mechanisms: Firstly, the PPP pathway 

is involved by providing the cell with nucleotide precursors for DNA synthesis, as well 

as reducing agents (e.g. NADPH and G6PD) to protect against reactive oxygen 

species (Xie et al., 2014). Secondly, in response to cellular hypoxia, TIGAR induces 

nuclear translocation of the oxidoreductase enzyme thioredoxin-1 (TRX1), which is 

important in the DDR pathway (Yu et al., 2015; Zhang et al., 2014). Thirdly, recent 

evidence demonstrates that TIGAR is a modulator of Cdk-5, which is known to 

phosphorylate ATM, consequently triggering the pathway for DDR (Yu et al., 2015). 
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TIGAR role cellular protection during embryogenesis was assessed in mice 

embryos. TIGAR is widely expressed in mouse brain, mainly in the cerebellum, 

olfactory bulb and cortex (Li et al., 2014). It has been suggested that TIGAR levels 

are continuously modified during development from the embryonic stage until adult 

stage in the mouse brain. TIGAR showed to have the highest expression during the 

embryonic and young adult stage. The highest expression of TIGAR in the mice 

brains provided neuroprotection from DNA and cellular damage upon oxidative 

stress and injury by shunting the metabolism to the PPP pathway (Cao et al., 2015). 

 

Cancer. Under adverse metabolic conditions, such as cancer, p53-TIGAR 

and the PPP can contribute to cell survival due to its indirect anti-oxidant effect and 

by providing metabolites, such as ribose-5-phosphate, for DNA biosynthesis and 

repair (Bensaad et al., 2006; Wanka et al., 2012). The property of TIGAR as a ROS 

scavenger and induce anabolism by providing metabolites for DNA synthesis and 

cell growth contribute for the tumour development. TIGAR related mechanisms have 

been described in different cancer types enlisted in Table 1.1. 

 

Another function of the p53-TIGAR pathway is by the regulation of important 

cell cycle genes, which is key to involving tumour progression. When there are low 

levels of cellular stress, p53 induces TIGAR to allow cell repair via the following 

cascade of events: modulation of cell-cycle progression genes and synthesis 

inhibition of cyclins lead to de-phosphorylation of RB-protein. As a result, the RB-E21 

complex is stabilised delaying entry to the S phase of the cell cycle. Consequently, 

better combined therapy via TIGAR mediated-cell cycle arrest with anti-proliferative 
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drugs, can be provided in order to provide a better outcome in some cancers  

(Madan et al., 2012).       

 

The glycoprotein Mucin 1 (MUC1) is a component of epithelial apical surfaces. 

MUC1-C (C terminal subunit of MUC1) and TIGAR, both have been shown to be 

overexpressed in colonic cancer (Al-Khayal et al., 2015; Cheung et al., 2013a; Niv, 

2008) and multiple myeloma (Kawano et al., 2008; Yin et al., 2012a). Inhibition of 

MUC1-C also results in TIGAR down regulation. This is due to the role of MUC1-C 

inhibitors by two mechanisms. First, by preventing AKT phosphorylation and 

therefore, inactivation of EIF4A. This causes reduced TIGAR translation and thereby 

impairing cellular growth and survival (Ahmad, R, 2017). Second, TIGAR reduced 

expression lowers the NADPH and GSH levels, leaving vulnerable the cell to ROS 

damage and mediated cellular death (Yin et al., 2012a, 2014). 

 

Cells depend on energy supply for their maintenance and the glucose uptake. 

This depends on the function of key enzymes, such as glycolytic enzymes. The 

Hexokinase family are enzymes that are responsible for the conversion of glucose to 

glucose-6-phosphate (G-6P). This is a crucial step in the glycolytic pathway and the 

PPP. This family contains four different isoforms of the enzyme: HK-I, HK-II, HK-III 

and HK-IV (also known as glucokinase). HK-I is present in all cellular types, but 

especially in the cerebral tissue and blood cells. It has been suggested that HK-I 

specifically shunts the glycolytic pathway (John et al., 2011; Magrì et al., 2016). HK-II 

stabilization induced the mitochondrial membrane potential and reduced ROS 

production upon hypoxia, which might promote cellular survival and likely contribute 

to tumour progression. The HK-I and HK-II are cytoplasmic proteins that have been 
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previously shown to translocate to the mitochondria through interaction with VDAC 

(Cheung et al., 2012).  

 

NSD2 overexpression induces HK-II, G6PD and, predominantly, TIGAR. 

However, p53 expression is unaffected. Taken together, this suggests a p53-

independent TIGAR function, where NSD2 acts as the key regulator and coordinator 

of the enzymes in the PPP pathway. This provides tamoxifen resistance and poor 

survival rates in some patients with breast cancer (Wang et al., 2016b).  

 

Cancer TIGAR related mechanisms 

MM 
MUC1-C (oncoprotein) inhibition led to a p53-independent reduction of TIGAR 
protein levels, without affecting TIGAR mRNA; suggested to be due to a 
posttranscriptional mechanism (Yin et al., 2012b). 

NCC 

Inhibition of the apoptotic and cell survival regulator c-Met, a tyrosine kinase, 
induced cellular death by lowering p53, TIGAR and NADPH levels. Moreover, 
TIGAR overexpression reversed the growth inhibition by c-Met (Lui et al., 2011). 
Therefore, induced down-regulation of TIGAR has a potential antitumour effect (Lui 
et al., 2010).  

CC 

Reduced apoptotic rate in U2OS cells with TIGAR overexpression, with increased 
ROS induced apoptosis when TIGAR is knocked down (Bensaad et al., 2006). 
Upregulation of TIGAR in colorectal cancer, mainly in advanced stages. This 
suggest to be a good biomarker of colorectal cancer as well as a therapeutic target 
(Al-Khayal et al., 2015). 

BC 

Breast cancer tissue samples of patients with primary invasive breast cancer 
revealed high expression of p53 correlated to low expression of TIGAR, SCO2 and 
COX (Won et al., 2012). Downregulation of Cav- 1 promotes the upregulation of 
TIGAR expression in breast cancer cells, resulting in cancer cell proliferation and 
the suppression of cancer cell apoptosis(Shi et al., 2016) 

GB and 
glioma 
cells 

TIGAR overexpression conferred cell survival. TIGAR shared homology with 
TKTL1 enzyme, which is overexpressed in different neoplasias. TKTL1 inhibition 
suppressed the antioxidant protective and starvation effect of TIGAR. Under 
normoxia, a role of TIGAR preventing apoptosis was proposed. Under hypoxia, 
where ATP production by OXPHOS is limited, suggested to be due to a dual 
modulation of energy production and antioxidant production (Wanka et al., 2012). 
In glioblastoma cells, TIGAR knockdown caused early cell senescence and 
inhibitied cell proliferation, followed by increased sensitization to radiation and 
impaired DNA damage repair (Peña-Rico et al., 2011). 

CLL 
TIGAR expression was related to an increased in cell sensitivity response to the 
cytotoxic agent Fludarabine,  by inducing apoptosis in a caspase-3 dependent 
manner (López-Guerra et al., 2008).  

NSCLC 

TIGAR expression was correlated with FDG-PET results as a marker for evaluation 
of clinical outcome in patients with NSCLC. In patients with NSCLC, positive 
expression of TIGAR was correlated with substantially longer survival rate than 
those with a negative expression  (Zhou et al., 2013).  
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HCC  

TIGAR expression is increased after treatment with epirubicin (anti-cancer agent). 
Knock down of TIGAR led to epirubicin induced apoptosis. In addition, ROS 
production is increased. As a result, cancer cells have enhanced chemosensitivity 
to epirrubicin. A prospective role involving mTOR inhibition has been suggested 
and remains to be elucidated (Xie et al., 2014).  

Table 1.1. TIGAR main mechanisms in cancer. Fluorodeoxyglucose positron emission tomography (FDG-PET); 

Transketolase-like 1 (TKTL1); Cytochrome C oxidase assembly protein (SCO2); Cytochrome c oxidase (COX);  

Non-small cell lung carcinoma (NSCLC); Caveolin 1 (Cav-1); Nicotine adenine dinucleotide reduced (NADH); 

oxidative phosphorylation (OXPHOS); Reactive oxidative species (ROS); Multiple Myeloma (MM); 

Hepatocarcinoma (HCC); Non-small cell lung carcinoma (NSCLC); Chronic lymphocityc leukemia (CLL) 

Glioblastoma (GB); Breast cancer (BC), Nasopharyngeal cancer cells (NCC). 

 
 

Ischemia-reperfusion injury. Hypoxia and ischemic reperfusion injury can 

result in apoptosis in a number of cell types including cardiac myocytes. Main 

detrimental effect is by reperfusion with high volume of oxygenated blood, which 

induce inflammation and oxidative stress. Glycolysis has been described to have a 

vital role for myocyte survival and it seems that maintenance and homeostasis of this 

metabolic pathway is regulated by TIGAR and p53. After myocardial infarction, 

TIGAR and p53 expression were significantly increased. In this context, the 

activation of the p53-TIGAR pathway inhibited glycolysis and energy metabolism, 

which result in apoptosis (Kimata et al., 2010).  

 

On the contrary, TIGAR overexpression in the brain leads to protection 

against brain injury such as ischemia, oxidative stress and oxygen glucose 

deprivation (OGD). This is achieved via reducing levels of reactive oxygen species 

and GSH, and increasing levels of NADPH (Cao et al., 2015). SP-1-mediated 

upregulation of TIGAR is greatly influenced by metabolic hormones that regulate 

glucose and reactive oxygen species. This modulates the TIGAR response to 

ischemia/reperfusion injury in brain tissue (Sun et al., 2015). In addition, SP-1 

regulation of TIGAR has been linked to so-called cerebral preconditioning when 

transient changes occur in the brain in response to ischemic or hypoxic injury, 
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providing tolerance against subsequent lethal ischemic or hypoxic insults. SP-1 and 

TIGAR contribute to this tolerance by regulation of cellular apoptosis and ROS 

scavenging (Zhou et al., 2016). 

 

Interestingly, in testicular ischemia reperfusion injury (TIRI) has also been 

related to TIGAR-p53 pathway activation. TIRI is the considered underlying 

pathology behind testicular torsion and detorsion, which can lead to impaired 

spermatogenesis and testicular function, which could translate into infertility. Here, in 

contrast to the brain, increased expression of the p53-TIGAR pathway promotes 

cellular apoptosis in germinal cells (Al-Maghrebi and Renno, 2016).   

 

Autophagy/Mitophagy and apoptosis. TIGAR has been implicated in 

autophagy through diverse range mechanisms. TIGAR can promote apoptosis by 

inhibiting the glycolytic pathway (Bensaad et al., 2006). Here, a relationship between 

reduced levels of ROS and autophagy inhibition has been suggested (Bensaad et al., 

2009; Ye et al., 2013).  

 

This implies an opposing effect and highlights the complexity of the role of 

TIGAR in regulating ROS levels in response to cellular stress involving both 

apoptotic and autophagy pathways (Bensaad et al., 2009). Increased levels of ROS 

induce p53, which in turn activates transcription of TIGAR, consequently reducing 

autophagy within the cytoplasm (Cheung et al., 2012). Resveratrol is an anti-cancer 

agent that acts by a variety of mechanisms. One of these is via induction of ROS-

mediated apoptosis in cancer cells. Resveratrol inhibits TIGAR and, subsequently, 

autophagy increases in a dose-dependent manner (Hsieh et al., 2015; Kumar et al., 
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2015). Moreover, TIGAR knockdown induced caspase-3 elevation, apoptosis and 

enhanced mitochondrial ROS production in mouse brain tissue from a model of 

ischemia/reperfusion injury (Li et al., 2014). Therefore, neuronal protection against 

DNA and mitochondrial damage has been suggested to be a result of the metabolic 

shift from glycolytic pathway to PPP and oxidative stress reduction (Cao et al., 2015; 

Li et al., 2014). However, in contrast to this, while a protective role through Cdk5-

ATM and the PPP pathway has been suggested for TIGAR, there is also evidence 

for TIGAR-mediated toxicity. In glioblastoma, as mentioned above, cells are 

sensitised by ROS and therefore, made responsive to radiation therapy. As a 

consequence, inhibition of TIGAR produces high levels of ROS, which promotes 

DNA damage and cellular death (Yu et al., 2015).  

 

TIGAR modulates autophagy in a p53-independent manner. Upon metabolic 

stress and nutrient starvation, TIGAR can reduce autophagy, by reducing ROS 

levels. TIGAR has been proposed as a target of the mammalian rapamycin complex 

1 (mTORC1)-related pathway. (Bensaad et al., 2009; Tai et al., 2015; Ye et al., 

2013). This was demonstrated when cells were treated with the mTOR inhibitor 

Rapamycin. Rapamycin result in TIGAR downregulation in the treated cancer cells. 

Furthermore, in cancer cells treated with epirubicin, TIGAR knockdown promoted 

autophagy by inhibiting mTOR and increased ROS production. Here, apoptosis was 

induced by treatment with epirubicin and inhibited autophagy. These findings 

suggest a dual function of TIGAR only as a pro-survival molecule but also as a pro-

apoptotic mediator (Xie et al., 2014). Furthermore, Resveratrol treatment in cancer 

cells downregulation of TIGAR expression suggested to be a result of mTOR 
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inhibition (Kumar et al., 2015). However, TIGAR ROS-independent function in 

mTOR-mediated autophagy remains to be investigated. 

Mitophagy plays a crucial role in mitochondrial homeostasis in myocytes. 

p53/TIGAR is involved in the Bnip3-mitophagy pathway independent of the 

PINK1/Parkin Pathway. Increased ROS signalling activate Bnip3 which adopts a 

homodimer form in order to promote autophagy and cellular death under conditions 

of severe oxidative stress. (Hoshino et al., 2012). 

 

Early development and regeneration. The effect of TIGAR in development 

was investigated in a mouse model. It was found that development was not affected 

when TIGAR was deficient in mice. In contrast, regeneration of adult intestinal 

epithelium requires TIGAR, particularly after induced damage in rapidly proliferating 

cell types. A lack of TIGAR in damaged intestinal epithelium results in a failure to 

regenerate, reduced tumour size and progression, which could also be contributing 

to tumour progression in cancer cells (Cheung et al., 2013).  

 

Other mechanisms. A number of other p53-independent pathways outside 

glycolysis and the pentose phosphate shunt have been described.  These include a 

role in the regulation of imprinting of genes in the human placenta, possibly related 

to the implantation process (Hamada, 2016). Further mechanisms involve the 

Transforming growth factor β (TGF-β) and human chorionic gonadotropin (hCG), 

which modulate oxidative stress and homeostasis in glioblastoma, one of the most 

common malignant brain tumours. Both proteins share a structural homology. In 

cancer tissues, they regulate cellular survival and oxidative stress. TGF-β treatment 

causes over expression of hCG-β in glioma cells, while inhibition of hCG-β leads to 
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ROS production, thioredoxin (Trx1) expression and thioredutase activity depletion, 

resulting in TIGAR inhibition. Treatment with TGF-β alongside hCG-β inhibited 

TIGAR expression glioma in treated cells. This has been proposed as a new 

therapeutic target for glioblastoma and related malignancies (Ahmad et al., 2015).  

1.4.3 TIGAR and PD 
In a study conducted in a pink1-deficient zebrafish model, researchers from 

our group found that tigarb (the zebrafish homologue of TIGAR) mRNA was 

upregulated. This zebrafish pink1 model, contrary to the PD mice models, displayed 

PD characteristic phenotype with dopaminergic neuronal as well as mitochondrial 

dysfunction and impaired morphology. Microarray expression analysis performed in 

the RNA extracted from the pink1 model showed a 12-fold up-regulation of of TigarB 

mRNA levels. The TigarB upregulation was subsequently confirmed by qPCR. 

Furthermore, in situ hybridization analysis demonstrated a significant increase of 

TigarB expression in the brains of the pink1 mutant zebrafish, which was particularly 

marked in the brain. Moreover, Tigarb knock down in the pink1 deficient model, 

using the morpholino antisense-mediated approach normalised mitochondrial 

function, with normalisation of CI and CIII activity resulting in rescue of the 

dopaminergic neuronal loss (Flinn et al., 2013). These promising results suggested a 

new mechanism in PD mediated by TIGAR unknown mechanisms. Since this 

exciting discovery was performed in a zebrafish model, a confirmation of TIGAR 

mediated mechanisms in PD needed to be undertaken and investigated in a human 

cellular model and PD brain tissue.   
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1.5 Aims and objectives 
In this study, we aimed to determine TIGAR related mechanisms in three 

different models: post-mortem tissue from the brains of people with PD, fibroblasts 

derived from patients with familial and sporadic PD and, a stable inducible cell line 

with TIGAR and PINK1 knock-down.  

• First, we aimed to identify whether TIGAR is present in human dopaminergic 

neurons in healthy brains as well as in the brains of patients with PD and DLB using 

immunohistochemistry. We further investigated whether TIGAR upstream and 

downstream regulators were associated to TIGAR in this context. TIGAR disease 

specificity was investigated by assessing TIGAR expression in another 

synucleinopathy, namely multiple system atrophy (MSA), and a further 

neurodegenerative disease with ubiquitinated inclusions, namely motor neuron 

disease (MND). 

• Second, we aimed to identify if TIGAR was present in human fibroblasts in 

controls and patients with PD mutations. We then determined whether TIGAR 

knockdown can rescue the mitochondrial dysfunction and morphology in parkin-

mutant fibroblasts. TIGAR role in autophagy was also investigated in fibroblasts from 

sporadic PD patients. We further investigated if TIGAR translocates to the 

mitochondria in the parkin-mutant fibroblasts after toxin exposure.  

• Third, we aimed to silence TIGAR and PINK1 via RNAi methods using a 

microRNAs approach. Then, we generated a stable inducible cell line with TIGAR 

and PINK1 deficiency. We subsequently assessed the effect of TIGAR and PINK1 

knockdown on mitochondrial function and morphology in a stable inducible human 

cellular model with TIGAR and PINK1 deficiency. Finally, we compared gene 
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silencing efficacy and efficiency by comparing RNAi conventional methods with 

newer genome editing techniques, namely CRISPR/Cas9. 

1.6 Hypothesis 
We hypothesised that there would be an increased expression of TIGAR in 

the SN of post mortem brains of people with PD. Consequently, TIGAR protein will 

be present in the Lewy bodies. We also hypothesised that up and down stream 

regulators and targets of TIGAR would be altered in PD in post-mortem brains of 

people with PD. 

 

Since fibroblasts from PD patients with known PD-gene mutations display 

mitochondrial dysfunction, we hypothesised that TIGAR expression will be altered, at 

the gene and protein level. This will confirm the findings in the zebrafish model. 

Therefore, TIGAR knockdown will rescue the mitochondrial function in PD fibroblasts 

with known gene mutations. Moreover, TIGAR related mechanisms will be via 

TIGAR mitochondrial translocation upon toxic exposure in PD fibroblasts with 

mitochondrial defect. Another TIGAR related mechanisms will be through autophagy 

impairment in sporadic PD fibroblasts with mitochondrial defect treated with inducers 

(CCCP) and inhibitors (Bafilomycin) of autophagy. Further confirmation of TIGAR 

related mechanisms and its implication in PD, will be through studying TIGAR 

knockdown in a stable inducible human cellular model with PINK1 deficiency. Here 

the mitochondrial phenotype and function will be rescued. TIGAR might be involved 

in the disease by decreasing the glycolytic pathway and the energy supply, by 

affecting the mitochondrial function and the cellular clearance mechanisms. 
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2. TIGAR neuropathology 

2.1 Introduction 
The neuropathological hallmark of Parkinson’s disease (PD) is the loss of 

dopaminergic neurones in the substantia nigra (SN). Another characteristic of the 

disease is the presence of spherical cytoplasmic inclusions in residual neurones 

called Lewy bodies. 

The histological characteristics of classic Lewy bodies in the SN on 

haematoxylin and eosin staining are an eosinophilic hyaline core with a pale halo 

surrounding it. Lewy bodies in the cortex are more pale and lack a halo. (Spillantini 

et al., 1997). Lewy bodies are composed mainly of neurofilaments and ubiquitylated 

proteins, of which alpha-synuclein has been recognised as the main component. 

Immunohistochemistry for alpha-synuclein also reveals neuritic deposits called Lewy 

neurites as well as more diffuse intracellular aggregates, called pale bodies, that lack 

the classical morphology of Lewy bodies. To date, there are about 300 molecules 

that have been identified in Lewy bodies (Leverenz et al., 2007; Wakabayashi et al., 

2013) .   

2.2 Lewy body diseases 

Since Lewy bodies were first discovered, it has been shown that there is a 

spectrum of diseases that also have these inclusions and related alpha-synuclein 

pathology. These disorders are now called synucleinopathies. They are PD, 

dementia with Lewy bodies (DLB), multiple system atrophy (MSA) and Lewy body 

variant of Alzheimer’s Disease (LBAD). For PD and DLB most deposits can be found 
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in neurons, whereas in MSA they are mainly present in glial cells (Ingelsson, 2016; 

Miraglia et al., 2015). 

2.2.1 Dementia with Lewy bodies (DLB)  

DLB is the second most common alpha-synucleinopathy. Clinically, DLB 

presents predominantly with dementia within one year after the onset of motor 

symptoms (Irwin et al., 2017). However, when dementia and the movement disorder 

are present at the same time, it can be very difficult to distinguish between PD and 

DLB. DLB has considerably more cortical amyloid deposits than PD cases 

(Gomperts et al., 2008; Irwin et al., 2017).  

2.2.2 Multiple system atrophy (MSA) 

The pathological hallmark of MSA is the presence of alpha-synuclein positive 

cytoplasmic inclusions in oligodendroglia (McCann et al., 2014). It is a progressive 

neurodegenerative disease with complex variety of clinical symptoms, such as 

parkinsonism, autonomic dysfunction, pyramidal symptoms, and cerebellar ataxia. It 

is a sporadic disorder, which can be associated with other pathological processes, 

including Alzheimer-type, Lewy pathology and entities with other pathological tau 

deposits. Consequently, more than one neuropathological disorder can be present in 

one patient. A neuropathological consensus criteria for a definite MSA diagnosis 

have been agreed. These require the presence of widespread and numerous CNS 

alpha-synuclein positive glial cytoplasmic inclusions, accompanied by pathological 

changes in the striatonigral or olivopontocerebellar regions (Trojanowski and Revesz, 

2007). 
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2.2.3 Incidental Lewy body disease 

Lewy bodies occur in about 10% of normal brain of people older than 65 years 

old (Gibb and Lees, 1988; Klos et al., 2006). This is called “incidental Lewy body 

disease” and can be associated to a reduction of the neuronal population in the SN. 

Further, the nigrostriatal pathology is of intermittent severity between that seen in the 

population with and without PD. There are suggestions that this could be a 

preclinical stage of either PD or DLB (Caviness et al., 2011; DelleDonne et al., 2008). 

2.2.4 Lewy pathology localisation in the brain 

While Lewy bodies are initially confined to the brainstem pigmented nuclei, 

their appearance tends to progress through the brain in a staged manner. This 

corresponds loosely to the clinical severity of the patient (Braak et al., 2003; Luk and 

Lee, 2014). Lewy bodies are found in almost all sporadic and familial PD cases, 

though there are some exceptions, such as some carriers of Parkin mutations 

(Cornejo-Olivas et al., 2015; Farrer et al., 2001; Gouider-Khouja et al., 2003; 

Pramstaller et al., 2005; Yamamura et al., 1998), Pink1 and some with mutations in 

LRRK2 (Gaig et al., 2007; Kalia et al., 2015; Luk and Lee, 2014).  

2.3 Lewy bodies and PD-related genes neuropathology 

Lewy bodies contain mainly alpha-synuclein. However, a large number of 

different molecules have been identified within these inclusions. Some of these are 

proteins link to PD genes, such as DJ-1, LRRK2, Parkin and PINK1. Alongside these 

molecules, other protein constituents of Lewy bodies include are known to have roles 

in: mitochondrial function, the ubiquitin-proteasome system, aggresome formation 

and autophagy (Velayati et al., 2010; Wakabayashi et al., 2013).  
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The genes most commonly associated with familial PD are: Alpha-synuclein 

(SNCA), Leucine Rich Kinase 2 (LRRK2), PTEN (phosphatase/tensin homolog on 

chromosome 10)-induced putative kinase 1 (PINK1), Parkin and DJ-1 (Bonifati, 

2014). The glucocerebrosidase gene (GBA1) encodes a lysosomal enzyme. 

Homozygous mutations of GBA1 are responsible for the metabolic disorder known 

as Gaucher disease (GD). It is now known that heterozygous mutations in this gene 

are one of the main risk factors for developing PD. GBA1 mutations have also been 

associated with DLB and MSA (Gámez-Valero et al., 2016; Mitsui et al., 2015). The 

neuropathology from people with PD and mutations in GBA1 is comparable to that of 

classical, sporadic PD (Aharon-Peretz et al., 2004; Ma et al., 2013; Sidransky et al., 

2009). The main neuropathological features of individuals with mutations of these 

genes, is described in Table 2.1. 

Gene Mutation/substitutions Neuropathological findings 

 

 

SNCA 

A53T 

Severe neuronal loss in SN, LC and Widespread and diffuse LB, 
LN and thread like depositions, rarely GCI and tangles. Rarely, 
TDP-43-positive inclusions. Occasionally plaques A53T+S167N 
PRKN polymorphism with AGD, FTLD.  (Fujishiro et al., 2013; 
Hoffman-Zacharska et al., 2013; Markopoulou et al., 2008)   

E46K Widespread LB pathology(Fujioka et al., 2014; Zarranz et al., 
2004)  

A29S LB pathology(Fujioka et al., 2014) 
G51D LB and tau pathology, TDP-53 pathology(Fujioka et al., 2014) 

A30P LB, LN, tau pathology and GCI (Fujioka et al., 2014; Seidel et al., 
2010)  

H50Q LB, LN, tau pathology(Fujioka et al., 2014) 

A18T NA (Hoffman-Zacharska et al., 2013) 

A29S LB and LN pathology (Hoffman-Zacharska et al., 2013) 

SNCA locus triplication Widespread LN, some GCI (Singleton et al., 2003b) and  tangles 
(Fujishiro et al., 2013)  

SNCA locus duplication  LB and tau pathology (Fujioka et al., 2014; Konno et al., 2016)  

PINK1 

N451S het Brainstem and neocortical LB in SN and neocortex. Diffuse Aβ 
deposits (Gandhi, 2006). 

Y431H het Severe neuronal loss in SN. LB in SN and neocortex. Sparse 
neurtic plaques (Gandhi, 2006) 

A339T het Severe neuronal loss in SN. LB in SN and neocortex. Diffuse Aβ 
deposits (Gandhi, 2006) 

C575R het Severe neuronal loss in SN. LB in SN and neocortex. Moderate 
neurtic plaques(Gandhi, 2006). 

c.1488+1G>A+delEx7 Severe neuronal loss in SN. LB in SN, brainstem and nucleus 
basalis of Meynert (Samaranch et al., 2010) 
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PARKIN 

R275W, del 40 bp Exon3 Neuronal loss in SN, LB in SN, LC, nBM, amygdala 
parahipocampal region (Farrer et al., 2001),  

Hom del Ex 3 Moderate loss of neurons of SN and LC (Sasaki et al., 2004) 

delExon7, del1072T Severe neuronal loss in SN and LC, few LB in SN and LC  (Mori et 
al., 2003) 

Compound het Ex7 
(C924T) 

Neuronal loss in SN. LB in SN, LC and nbM (Schlossmacher et 
al., 2002) 

Compound het 
(Ex7del+1072del) 

SN, locus ceruleus, VNM and NA: Moderete - severe neuronal 
loss, reactive gliosis, neuritic dystrophy and LB. (Pramstaller et al., 
2005) 

Hom del Ex2+del Ex4 LB and LN in SN and LC, amygloid nucleus, VMN, nbM, striatum, 
anterior cingulate cortex. Tau positive inclusions in ETC 

Compound het: acceptor 
splice site mutation (IVS5-
1G>A) + Ex7del. 

Severe neuronal loss in SN. ETC cortex with NFT and neruritis. 
Negative alpha-synuclein staining and LB no present.(Cornejo-
Olivas et al., 2015; Pramstaller et al., 2005)  

Compound het delEx3/del 
Ex4 

Neuronal loss and presence of LB in SN and LC (Sharp et al., 
2013)  

Hom delEX3/del Ex 7  Severe neuronal loss in SN, less in LC. No LB and LN (Kitada et 
al., 1998)   

Hom delEx4 
Severe neuronal loss in SN, less in LC. No LB and LN. Tau 
inclusions and NFT, thorn shaped astrocytes (Hayashi et al., 
2000; Mori et al., 2003) 

Compound het 
delEx3/Ex6 transversion 

Severe neuronal loss in SN > LC. No LB and LN. Thorn shaped 
astrocytes (van de Warrenburg et al., 2001) 

Comp het delEx6/delEx7 Severe neuronal loss in SN > LC. No LB and LN .(Mori, 2003) 

Hom delEx2 Severe neuronal loss in SN > LC. No LB and LN (Gouider-Khouja 
et al., 2003) 

Het C212Y PSP, neuronal loss in SN, striatum, GP, nbM, STN and Thalamus. 
No LB and LN. (Morales et al., 2002) 

Hom delEx3 
Neuronal loss in SN and LC. No LB. Lewy-like inclusions in the 
anterior horn of the SC, asyn and ubiquitin positive (Sasaki et al., 
2008) 

LRRK2 

G2019S 

Severe-moderate neuronal loss in SN, LC and SI, ETC and VMN. 
LB in SN, LC, SI, amygdala, ETC, VMN, hypothalamus, 
subthalamus, nbM, CG, medulla, BG, transentorhinal and FC. 
Tau-positive inclusions, aggregates of TDP-43 protein, ubiquitin-
only inclusions as well as only dopaminergic neuronal loss without 
inclusions. Mild neuronal loss in SN. α-synuclein negaive LB and 
LN. (Dachsel et al., 2007; Gaig et al., 2007, 2008; Giasson et al., 
2006; Gilks et al., 2005; Gomez and Ferrer, 2010; Rajput et al., 
2006) 

R1441C 
Neuronal loss in SN and degeneration. Diffuse or brainstem LB 
pathology. Tau positive lesions with PSP-like pathology (Wider et 
al., 2010; Zimprich et al., 2004) 

Y1699C Degeneration of SN. Ubiquitin positive inclusions in SN. Neuronal 
loss in SN and LC (Khan et al., 2005; Zimprich et al., 2004) 

R1441G Neuronal loss in SN and LC, no LB (Marti-Masso et al., 2009) 
R1441R Neuronal loss in SN and LC (Craig, 2008)  
I1371V Neuronal loss in SN and LC (Giordana et al., 2007) 
R793M/L1165P Neuronal loss in SN and LC (Covy et al., 2009) 

N1437H Neuronal loss in SN and LC, sparse NFT and Tau pathology 
(Puschmann et al., 2012) 

DJ-1 

R98Q polymorphism LB and LN in SN (Bandopadhyay et al., 2004) 

L172Q 
Severe neuronal loss in SN, LC, GP and putamen. Diffuse LB 
pathology. Axonal a-syn positive spheroids and glial inclusions 
(Taipa et al., 2016).  

GBA L444P, N370S, R463C, 
D409H, R131C, C193E, 

Neural loss in SN and LC. Diffuse LB pathology (Neumann et al., 
2009). 



51 
 

RecNcil, RecA456P 
N370S hom; N370S het; 
L444P/D409H+duplication  

Neuronal loss in SN. LB and LN in SN and CA2-4 hippocampus. 
(Tayebi et al., 2003) 

N370S hom, N370S het, 
D409H/L444P+duplication  

Neuronal loss with/without astrogliosis in SN, CA2-4, calcarine 
layer 4b and cortical layer 5. LB inclusions in SN and CA2-4. Gb-
positive LB hippocampal inclusions. (Goker-Alpan et al., 2010; 
Wong et al., 2004) 

N188S/E326K, T369M, 
E326K, N370S, L444P 

Widespread extensive neocortical LB, AD-stages, PD or pure DLB 
(Gámez-Valero et al., 2016).  

Table 2.1 Neuropathology findings in post-mortem brains with PD-related mutations. Amyloid-beta peptide 

(Aβ), Alzheimer’s Disease (AD); Agyrophilic disease (AGD); alpha-synuclein (asyn); Dementia of Lewy bodies 

(DLB); Progressive supranuclear palsy (PSP); Frontotemporal lobar degeneration (FTLD); cingulate gyrus (CG); 

globus palidus (GP); sustantia nigra (SN); locus ceruleus (LC); entorhinal cortex (ETC); subthalamic nucleus 

(STN); glial cytoplasmic inclusions (GCI); Lewy bodies (LB); Lewy neurites (LN); motor nucleus of the vagus 

(VMN); basal nucleus of Meynert (nbM); nucleus ambiguous (NA); sustantia innominata (SI); neurofibrillary 

tangles (NFT); heterozygous (het), homozygous (hom); deletion (del); exon (Ex). 

2.4 Lewy bodies and PD-related proteins 
More recently, one proteomic study has identified over 300 proteins in cortical 

Lewy bodies, some which had been previously described. The total number of 

molecules that constitute the Lewy bodies is not established and continues growing.  

Functional classification of these proteins showed enrichment of the following 

processes: apoptosis (34%), cytoskeleton (19%) metabolism (14%), extracellular 

matrix (10%), protein synthesis and degradation (8%), neurotransmission (2%), 

immune and inflammation (2%) and unknown function (11%). Fully validation of 

these processes through functional analysis is yet to be done (Leverenz et al., 2007).  

 

Alpha-synuclein is the main component of the pathological inclusions found in 

PD and related disorders. It is normally contained in the cytosol and presynaptic 

terminals of the neurons and its physiological function remains unclear (De 

Franceschi et al., 2017). The common pathological aggregation of alpha-synuclein in 

these neurodegenerative disorders classifies them as a group known as  

“synucleinopathies” (Iwai et al., 1995; Jellinger, 2003). The exact mechanisms 

leading to toxicity and pathology in PD and other alpha-synucleinopathies remain 
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elusive. One hypothesis is that different alpha-synuclein isoforms might lead to 

neuroinflammation and neurotoxicity by affecting the protein-protein interactions and 

axonal transport (Nakata et al., 2012; Sekigawa et al., 2015). This process has been 

also suggested to occur alongside the expression different isoforms of parkin and 

synphilin-1, which might result in impaired substrate degradation, protein 

aggregation and clearance (Brudek et al., 2016a; Lonskaya et al., 2013a, 2013b). 

  

PD, DLB and MSA have in common pathological lesions containing alpha-

synuclein. These lesions tend to affect specific vulnerable brain areas, resulting in 

common clinical manifestations features. Therefore, the alpha-synucleinopathies are 

suggested to be part of a single clinicopathological disorder (Galvin et al., 1999; 

Jellinger et al., 2003; Yang and Yu, 2017). A large number of proteins have been 

found in the pathological inclusions from patients with these disorders. Some have 

been suggested to have a functional, cellular and/or structural relation with alpha-

synuclein: LRRK2 (Qing et al., 2009; Volpicelli-Daley et al., 2016), Pink1 (Chung et 

al., 2016), synphilin-1 (Engelender et al., 1999; Xie et al., 2010) and Parkin (Chung 

et al., 2016; Lonskaya et al., 2013a; Schlossmacher et al., 2002). Thus, all appear to 

share a common pathologic pathway.  

2.4.1 PINK1 neuropathology 
PINK1 protein is expressed in the human brain in all cell types mainly in the 

mitochondrial membrane. PINK1 has been found in post-mortem tissue from people 

with sporadic PD, DLB and MSA (Murakami et al., 2007), and with familial PD 

associated to PINK1 heterozygous mutations (Gandhi, 2006). PINK1 expression was 

found in neurons (cytoplasm and axonal processes), glial cells (nuclei surrounding 

rim), endothelial and smooth muscle cells of blood vessels within the SN. PINK1 was 
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not found in cortical Lewy bodies, Lewy Neurites or other alpha-synuclein or tau 

positive inclusions. In contrast, it was found in a small percentage (5-19%) of Lewy 

bodies in the brainstem and SN within the halo and in a small proportion in the core 

of the inclusion. This difference between cortical and brainstem Lewy bodies could 

be explained by the fact that the antibody used for this study recognises only a 

portion of the protein, the insoluble fraction. This might reflect the solubility of PINK1 

might affect the detection. Given that there are morphological differences between 

cortical and brainstem Lewy bodies, this could also reflect different protein contents 

(Gandhi, 2006).  

 

More recent research by Murakami et al. (2007) in contrast, found PINK1 to 

be present in relatively high levels in neurons within the SN. This work used a more 

sensitive antibody that fully recognises the full length and whole fraction (soluble and 

insoluble) of PINK1. This study was also able to show that PINK1 is present in Lewy 

bodies, neurites and glial cytoplasmic inclusions in the SN. Furthermore, PINK1 was 

found in the glial cytoplasmic inclusions of patients with MSA. This suggests a role in 

the development of pathogenic inclusions of both principal alpha-synucleinopathies. 

How PINK1 could be contributing to the pathological progression remains unclear. 

One suggestion is that PINK1 aggregates in inclusions after it becomes misfolded 

and insoluble. Altered PINK1 activity due to misfolding and altered solubility, could 

also lead to protein aggregation alongside its substrates into the inclusions. This 

raises the question of whether PINK1 and alpha-synuclein may act in the same 

pathological pathway and is the subject of further research (Murakami et al., 2007).  
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2.4.2 Parkin neuropathology 
Parkin is expressed in neurones in the human brain under physiological 

conditions, in the same cytosolic and synaptic terminal compartments as alpha-

synuclein (Schlossmacher et al., 2002). It also was found to be expressed in the 

autophagic vacuoles in the cytoplasm within the astrocytes (Lonskaya et al., 2013b). 

In the brain of patients with PD, an insoluble form of Parkin accumulates vacuoles in 

the striatum (caudate nucleus). Parkin has been found to co-localise with Beclin-1, 

an autophagy-related enzyme, in the SN of the normal human brain. In PD patient 

brains, the interaction between Parkin and Beclin-1 appears to be significantly 

reduced. Here, Parkin mutations might affect structural formation, which could lead 

to protein insolubility and affect Parkin enzymatic and protein interactions (Lonskaya 

et al., 2013a, 2013b). This suggests a prospective role of Parkin in the neuronal 

clearance and autophagy through the autophagosomes.  

 

Parkin protein has been identified in the core of Lewy bodies in the SN, 

entorhinal, brainstem and cingulate cortex in brains from patients with PD and DLB, 

where Parkin and alpha-synuclein co-localise (Schlossmacher et al., 2002; 

Wakabayashi et al., 2012). This has lead researchers to suggest a role of Parkin in 

the initiation of Lewy body development. However, the mechanisms leading to this 

process still remain unclear and not fully confirmed (Schlossmacher et al., 2002).  

2.4.3 LRRK2 neuropathology 
In the normal brain, LRRK2 is ubiquitously expressed in neurons especially in 

the cerebral cortex, in striatum and SN (Higashi et al., 2007). However, it has been 

found to be expressed in most brain regions and a diversity of cell types (astrocytes 

and microglia), with a moderate expression in the SN (Miklossy et al., 2006; Vitte et 
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al., 2010). It was found that LRRK2 expression in surviving neurons within the SN 

was extremely decreased in post-mortem brains from people with sporadic and 

familial PD with LRRK2 mutations (Higashi et al., 2007; Vitte et al., 2010). There are 

discrepancies between LRRK2 expression in Lewy bodies. LRRK2 presence is 

controversial; where it is present sometimes in Lewy bodies (but not Lewy neurites), 

in the halo and core in the cortex, SN and Locus coeruleus; absent in cortical Lewy 

bodies in PD and DLB brains (Higashi et al., 2007; Miklossy et al., 2006; Vitte et al., 

2010).  This was more pronounced in brains from PD patients with LRRK2 mutations 

(Vitte et al., 2010).  

 

Patients with the G2019S mutation of LRRK2 have significantly higher levels, 

compared to sporadic PD patients, of phosphorylated alpha-synuclein at serine 129 

(pS129). This difference is principally seen in the dorsal motor nucleus of the vagus. 

Moreover, alpha-synuclein solubility in G2019S patients was found to be altered in 

the Basal Ganglia and limbic cortex (Mamais et al., 2013). 

 

Increased levels of LRRK2 directly correlate with increases in total and 

phosphorylated alpha-synuclein levels in the brains of PD patients. Furthermore, 

LRRK2 protein was found to co-localise with total and phosphorylated alpha-

synuclein in Lewy Bodies and neurons. This co-localisation occurred mainly in the 

cortical regions and in a lesser extent in the brainstem (Guerreiro et al., 2013). How 

LRRK2 interaction with alpha-synuclein leads to pathology remains unclear. 

2.4.4 DJ-1 neuropathology 
DJ-1 is expressed in numerous tissues, including the brain and is localised in 

both the nucleus and the cytoplasm. It is highly expressed in the glia, mainly in 
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astrocytes. It has been found at very low levels if at all in neurons of the frontal 

cortex and SN. It is occasionally present in the halo of Lewy bodies and rarely in 

Lewy neurites within the SN and absent in the Lewy bodies within the frontal cortex 

(Bandopadhyay et al., 2004; Taipa et al., 2016). 

2.5 TIGAR neuropathology 
TIGAR (TP53-induced glycolysis and apoptosis regulator) has been widely 

studied in oncology (Lee et al., 2014a), but very little is known about its role in 

neurodegeneration. It has been suggested that TIGAR is involved in AD (Katsel et al., 

2013): TIGAR protein levels were significantly reduced in patients with severe 

dementia with greater levels of cognitive impairment. However, TIGAR protein levels 

were not found to be related to conventional Braak neuropathology stage or neuritic 

plaque density measurements. Therefore, they suggest that the main role of TIGAR 

here is mainly in the neurobiology of AD and the cognitive impairment. Furthermore, 

in severe dementia and AD neuropathology, ATM (Ataxia-Telangiectasia mutated) 

expression was found to be increased along with some of its downstream genes. 

This, suggests that the regulation of TIGAR might involve the ATM-p53 pathway, 

which responds to stress and damage (see Introduction). TIGAR protein functions to 

provide cellular protection from ROS and to improve cell survival. Consequently, low 

levels of TIGAR hinders these mechanisms and leads to cell death. Interestingly, 

p53 protein levels did not differ between controls and patients, suggesting that post 

translational mechanisms that modify the action of p53, and as result TIGAR levels, 

are involved. This suggests that ATM up-regulation and TIGAR down regulation 

might be characteristic of the development and progression of dementia in AD 

(Katsel et al., 2013). 
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In a study conducted in a pink1-deficient zebrafish model, researchers from 

our group found that tigarb (the zebrafish homologue of TIGAR) mRNA was 

overexpressed compared to controls. This was associated with the loss of 

dopaminergic neurones and mitochondrial dysfunction. Furthermore, TigarB knock 

down normalised mitochondrial function and rescued the dopaminergic neuronal loss 

(Flinn et al., 2013). Both mitochondrial dysfunction and neuronal loss have been 

reported in tissue from patients with PD (Abramov et al., 2011; Ando et al., 2017; 

Chung et al., 2016; Gandhi, 2006; Manzoni et al., 2013a; Murakami et al., 2007; 

Rakovic et al., 2010, 2013; Schapira et al., 1989), as well as cellular models and in 

vivo models that are PINK1 deficient (Anichtchik et al., 2008; Flinn et al., 2013; 

Sallinen et al., 2010).  

 

Several lines of investigation have suggested further PINK1- and TIGAR-

related cellular mechanisms, including oxidative stress and mitophagy may be 

involved in PD pathogenesis. However, to our knowledge, there are no reported 

publications showing the involvement of TIGAR in human PD pathology. Therefore, 

we aimed to identify whether TIGAR is present in human dopaminergic neurons in 

controls as well as patients with PD and DLB using immunohistochemistry.  

Unpublished pilot data from our laboratory suggested that TIGAR protein may be 

present in Lewy bodies:  Immunohistochemistry for TIGAR appeared to be positive in 

Lewy bodies when using an antibody to the C-terminus (Abcam ab129333) but not 

when using an antibody to the central portion of the protein (Millipore #AB10545).  

This may have been due to aberrant cross reactivity by the first antibody, or the fact 

that there is only antigen availability of the C terminus region in Lewy bodies.  
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2.6 Aims and objectives 
The discovery of TIGAR up regulation in the Pink1-deficient zebrafish model of 

Parkinson’s disease suggested a role for TIGAR in PD pathogenesis.  Therefore, we 

aimed to determine: 

a) If TIGAR is present in the human SN and, 

b) Whether TIGAR protein is indeed present in Lewy bodies 

c) Elucidate the relationship between TIGAR protein levels and PD. 

 

To assess this, we used immunohistochemistry to examine the expression 

levels and localization of TIGAR protein in the post mortem brains from people with 

PD, DLB, MSA and controls. While we concentrated on the SN, we also studied the 

hippocampus, a forebrain region that is also affected by alpha-synuclein pathology.  

On finding TIGAR in Lewy bodies, we studied motor neuron disease (MND), another 

disease with ubiquitylated proteinaceous inclusions, to investigate whether TIGAR 

was specific for Lewy bodies or could be seen in other conditions with proteinaceous 

inclusions.  

2.7 Hypothesis:  
We hypothesised that there would be: 

• An overexpression of TIGAR in the SN of post-mortem brains of people with 

PD. 

• TIGAR protein in Lewy bodies detectable using antisera to the C-terminal 

region of the protein.  

• Altered expression of regulators, such as p53 and HK-II, and targets of TIGAR 

in PD. 
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2.8 Materials and methods 
2.8.1  Human brain tissue 
2.8.1.1 Patients and controls 

Sheffield Brain Bank  

Post mortem human brain tissue was obtained from people who donated their 

brains, after obtaining permission from the next of kin. The acquisition of the brain 

tissue by the Sheffield Brain Tissue Bank (SBTB) was performed with ethics 

committee approval by the Scotland A Research Ethics Committee (ref 

08/MRE00/103). Details of the cases are given in Table 2.2 below. 

ID Gender Diagnosis 
Age at 
death 

(y) 

Duration of  
Disease Cause of death PMD 

LP0079/06 M DLB 78 N/A Intraventricular 
haemorrhage N/A 

LP112/06 M DLB 86 N/A N/A N/A 
LP003/04 F DLB 66 N/A N/A N/A 
LP016/05 M DLB 72 2y Broncopneumonia N/A 
LP097/09 F sPD 84 N/A N/A N/A 
LP052/09 M sPD 76 N/A N/A N/A 
LP015/03 F sPD 74 3 m N/A >100 hrs 
LP087/03 M sPD 71 9 y N/A N/A 
LP073/09 M MSA 69 3 y N/A 34 hrs 
LP120/04 F MSA 63 N/A Broncopneumonia N/A 
LP129/01 M MSA 62 N/A N/A N/A 
LP014/11 M sMND  51 2.3 y N/A N/A 
LP059/09 F sMND  80 8.6 y N/A 50 hrs 
LP072/05 M sMND  66 10 m N/A 8 hrs 
LP094/06 M sMND  71 9 m N/A 53 hrs 
R1208/90 M sMND 48 13 m N/A 8hrs 

LP085/07 F Control 59 - Atypical 
pneumonia 5hrs 

LP005/07 M Control 63 - N/A N/A 

LP098/07 M Control 67 - Hepatocellular 
carcinoma 60 hrs 

NA188/96 F Control 82 - N/A N/A 
LP056/90 M Control 51 - Mesothelioma 25 hrs 

LP309/90 M Control 82 - 
Carcinomatosis, 

thoracic cord 
compresion 

36 hrs 

LP335/90 F Control 29 - Acute intermittent 
porfiria 20 hrs 

Table 2.2. Sheffield Brain Bank Tissue used in this study. Female (F); male (M); sporadic Motor neuron 

disease (MND); Multiple system atrophy (MSA); sporadic Parkinson´s Disease (sPD); Dementia of Lewy Bodies 

(DLB); Post mortem delay (PMD); Not available (N/A); months (m), years (y). 
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Queen Square Brain Bank 

Tissue acquired within the Ethics committee approval Tissue Bank, Queen 

Square Brain Bank for Neurological Disorders (QSBB) and NeuroResource REC Ref. 

08/H0718/54+5. Details of the cases are given in Table 2.3 below. 

ID Gender Diagnosis Age  
(years) 

Duration of  
disease Cause  of death PMD 

(hrs) 
P2/10 F sPD 82 25y Chest infection 56 

P54/11 M sPD 80 16y Pneumonia 67.30 

P89/10 M sPD 77 16y Ischaemic heart 
disease 42.55 

P21/12 M sPD 83 6y Heart failure 44.55 

P33/12 M sPD 74 13y Pneumonia 43.10 

P22/12 M sPD 85 10y Urinary tract infection 32.45 

P11/11 M DLB 60 8y Pneumonia 26 

P34/07 M DLB 80 10y Gradual deterioration 45.10 

P28/11 F DLB 86 17y Chest infection 78.40 

P68/10 M DLB 73 12y Chest infection 42.30 

P48/03 F DLB 74 5y DLB 47.45 

P80/10 M DLB 67 7y DLB 40.55 

P72/07 M Control 85 - Multiple system 
failure 76.50 

P47/11 F Control 79 - Pancreatic 
carcinoma 78.50 

P75/10 F Control 83 - Squamous cell 
carcinoma 39.45 

P64/11 F Control 80 - Pancreatic 
carcinoma 49.10 

P82/10 F Control 87 - Colon carcinoma 84.15 

P78/06 F Control 68 - Breast carcinoma 44.55 
Table 2.3. Queen Square Brain Bank Tissue used in this study. Female (F); male (M); sporadic Parkinson´s 

Disease (sPD); Dementia of Lewy Bodies (DLB); Post mortem delay (PMD); Not available (N/A); years (y). 

2.8.2  Immunohistochemistry  
Immunohistochemical analysis was performed on paraffin-embedded tissue 

from midbrain, hippocampal sections of four cases of sporadic PD, four DLB and four 

matched control cases from the SBTB. Midbrain sections of six sporadic PD, six DLB 

and six matched controls cases from the QSBB were also analysed. Spinal cord 

sections from four MND patients and four controls were also analysed.  
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Paraffin embedded sections of SN, hippocampus and spinal cord tissue were 

used for antibody optimisation. Heat-mediated antigen retrieval of sections was 

carried out using a pressure cooker. Antigen retrieval was performed in either 

Access Citrate (pH6) buffer solution or Access Super (pH8) buffer solution 

(IntelliPATH FLX Detection Kit, Menarini Diagnostics) 20psi for 40s. at 120oC. 

Following antigen retrieval, sections were washed with distilled water and Tris-

Buffered saline (TBS) and incubated for 5 min. with MenaPath Peroxidase Block 

(IntelliPATH FLX Detection Kit, Menarini Diagnostics) to prevent all endogenous 

peroxidase activity. Afterwards, sections were incubated with MenaPath Casein 

Background Blocker (IntelliPATH FLX Detection Kit, Menarini Diagnostics) for 10 min. 

and rinsed with TBS. Sections were then incubated with primary antibody for 1 hr. at 

RT. Following primary antibody incubation, sections were incubated with Universal 

Probe (IntelliPATH FLX Detection Kit, Menarini Diagnostics) for 10 min., washed 

again and incubated with HRP-Polymer (IntelliPATH FLX Detection Kit, Menarini 

Diagnostics) for 15 min. Sections were washed again with TBS and incubated with 

DAB chromogen for 5 min. The slides were then rinsed in deionized water and 

counter stained with haematoxylin. Sections were dehydrated through increased 

concentrations of ethanol (70%, 95%, 100%), cleared in xylene and mounted with 

Dibutyl Phthalate and Xylene (DPX) mountant (Leica). 

2.8.3  Antibody optimisation 
We first attempted to replicate the pilot finding using the antibody recognising 

the C- terminal region of TIGAR. The first aim was to find the best antibody to label 

TIGAR and optimise it to investigate TIGAR protein in the midbrain region. 

Optimisation of the antibody was initially performed in SN, using different 

concentrations of primary antibody (ranging from 1:50 to 1:1000) with antigen 



62 
 

retrieval by using a Pressure cooker at pH9 and pH6. A pathologist assessed 

staining and helped to identify the optimal antibody condition for our area of interest. 

From this, rabbit antibody against TIGAR (Thermo Scientific) at a concentration of 

1:400 and a pH 9 was chosen as the best conditions to assess TIGAR presence in 

midbrain sections from the PD and DLB cases and controls. 

Antibody Region Antigen 
retrieval Dilution/time 

Anti-TIGAR antibody. Millipore 
(AB10545) 

Polyclonal (R) 

KLH-conjugated linear peptide that lies 
in the central region of the protein PC, pH9 1:400 / 30 min 

Anti-TIGAR antibody. ABCAM 
(ab62533) 

Polyclonal (R) 

Synthetic peptide (Human) of 19 amino 
acids from a region near the centre of 

TIGAR 
PC, pH9 1:800 / 30 min 

Anti-TIGAR antibody. ABCAM 
(ab129333) 

Polyclonal (R) 
 

Synthetic peptide corresponding to a 
region within C terminal amino acids 

220-270 of Human TIGAR 
 

PC, pH9 1:750/ 30 min 

*TIGAR Polyclonal antibody 
Thermo Scientific (PA5-

29152) 
Polyclonal (R) 

PC, pH9 1:400 / 1 hr 

Anti-TIGAR  Antibody LS-
C286858 (LifeSpan 

Biosciences) 
Polyclonal (R) 

PC, pH6 1:50 / 1 hr 

Anti alpha-synuclein antibody 
(NCL-L-ASYN) 
Molyclonal (M) 

Prokaryotic recombinant protein 
corresponding to the majority of the full 

length alpha-synuclein molecule 
PC, pH9* 1:1000 / 1hr 

Anti-HK-I [4D7]. ABCAM 
(ab105213) 

Molyclonal (M) 

Recombinant full length protein, 
corresponding to amino acids 1-917. PC, pH9 1:2000 / 1 hr 

Anti-HK-II. Thermo Fisher 
(MA5-14849) 

Molyclonal (R) 

Synthetic peptide corresponding to the 
sequence of human HK-II PC, pH6 1:50 / 1 hr 

Anti-p53 (Bp53-12) sc-263 
Molyclonal (M) 

Antibody raised against recombinant 
p53 of human origin, with epitope 
mapping to the N-terminus part 

PC, pH8 1:200 / 1 hr 

Anti-p53 Dako GA616 
Molyclonal (M) 

Recombinant human wild-type p53 
protein. 

High pH 
Target 

Retrieval 
Solution 

NA+ / 20 min 

Table 2.4 Antibodies tested and optimised for immunohistochemistry in Human brain tissue. Hexokinase I 

(HK-I); Hexokinase II (HK-II); Mouse (M), Rabbit (R); Monoclonal (Mono); Polyclonal (Poly); Non applicable (NA) 

Pressure cooker (PC). * Pre-treatment for 1 hr with formic acid followed by antigen retrieval. +Anti-p53 antibody 

Ready to Use (prediluted). 

2.8.4  Co-localisation with alpha-synuclein 
2.8.4.1 Double staining: Immunofluorescence 

Fluorescent immunostaining against TIGAR in the midbrain was optimised to 

allow double staining to investigate colocalisation with alpha-synuclein. Paraffin 

embedded sections were dewaxed in two washes with xylene, followed by 
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rehydration, starting with two washes with absolute ethanol, then 95% and 70% 

serially each for 5 min. The tissue was then incubated for 20 minutes in 3% H2O2 in 

fresh methanol. Sections were washed with running tap water. Heat-mediated 

antigen retrieval of sections was carried out using a Pressure cooker in pH8 buffer 

solution (IntelliPATH FLX Detection Kit) for 40 minutes at 120oC. Following antigen 

retrieval, sections were washed with distilled water and Tris-Buffered saline (TBS). 

Subsequently, they were incubated for 15 min in 0.2% glycine and washed three 

times with TBS for 5 min each. The sections were then incubated with rabbit (TIGAR) 

or mouse (alpha-synuclein) blocking serum for 30 min. The excess was removed 

after the 30 min. Sections were then incubated with avidin block for 15 min. and 

rinsed with TBS, then incubated for further 15 min with biotin block and rinsed with 

TBS. They were incubated with primary antibody overnight at 4ºC. After incubation, 

the slides were rinsed three times with TBS for 5 min each and then incubated with 

secondary biotinylated antibody for 30 min. Slides were then rinsed with TBS and 

incubated with secondary fluorescent antibody Alexa Fluor 488 or 555 for 1 hr. at RT 

in the dark. Then slides were rinsed with TBS and incubated in Sudan Black (filtered, 

0.3% sudan black/ 70% alcohol) for 5 min. Slides were then washed with tap water 

and stained with Hoeschst (1:1000) for 10 min and mounted with DPX mountant. 

2.8.4.2 Double staining: DAB immunofluorescence 
Double staining with DAB and immunofluorescence was combined. Firstly, all 

slides were processed for DAB staining as described above, counterstaining with 

haematoxylin and washed for 5 min in Scott’s Tap Water. After this, slides were 

incubated with the appropriate goat serum blocking buffer for 30 min and then 

thoroughly washed and sequentially incubated with avidin and biotin block for 15 min 

each. This was followed by three washes with TBS buffer and incubated with primary 

antibody (TIGAR or alpha-synuclein) at 4º C overnight. After this time, slides were 
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thoroughly washed with TBS and incubated with secondary antibody at RT for 30 

min, followed by three washes with TBS. Then, slides were incubated in the dark 

with secondary fluorescent antibody Alexa Fluor 488 or 555 (1:1000) at RT for 1 hr. 

Slides were then washed three times with TBS and incubated with Hoeschst (1:1000) 

for 10 min. Finally, slides were rinsed with TBS and mounted with DPX mountant. 

 

2.8.4.3 Serial sections: DAB staining 
Co-localisation of TIGAR with alpha-synuclein was also assessed in four PD 

cases from the Sheffield cohort. This was performed by cutting serial sections from 

the midbrain. Staining was performed alternatively for TIGAR (1:400) and alpha-

synuclein (1:1000). Slides were stained using the IntelliPATH FLX™ Automated 

Slide Stainer. The IntelliPATH FLX Detection Kit was used for detection. DAB was 

used for detection and sections counterstained with haematoxylin.  

2.8.5  p53 Immunohistochemistry 
Midbrains from the four PD and four control cases from the Sheffield cohort 

were immunostained with anti-p53 (Bp53-12) sc-263. However, due to heavy 

neuromelanin cross-reactivity with this antibody, an alternative method for 

immunohistochemistry was sought.  We are grateful to Mrs Helen Crowle of the 

Department of Cellular Pathology, Hull and East Yorkshire NHS Trust for performing 

the immunohistochemistry for p53.   

  

Briefly, the slides were stained on the Dako Omnis Automated Slide Stainer 

using the Dako Envision Flex High pH (GV80011) kit. Target retrieval was performed 

by using a high pH Target Retrieval Solution for 30 mins. The p53 is a ready-to-use 

antibody (Dako GA616) and incubation time was 20 mins.  Peroxide blocking was 
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done for 3 mins, in secondary labelled polymer for 20 mins and substrate chromogen 

for 5 mins.  

2.8.6  Hexokinase I and II immunohistochemistry 
For HKI and HKII study we stained the four PD midbrain cases and four 

midbrain controls slides from the Sheffield Brain Tissue Bank with Anti-HKI (1:2000) 

and Anti-HKII (1:50). All were stained with a Menarini IntelliPATH automated slide 

stainer using the IntelliPATH FLX Detection Kit. DAB was used for detection and 

haematoxylin was the counterstain.  

2.8.7  Image aquisition 
Whole slide images were captured using a Hamamatsu NanoZoomer XR.  

2.8.8  Quantitative histopathology evaluation 
The neuronal and neuritic load of TIGAR labelling was assessed separately.  

For the neuronal load, the digitised whole slide images were scrutinised by two 

pathologists.  The total number of neurones that were positive and negative for 

TIGAR were counted and the percentage of neurones that were positive were 

calculated.   

 

To quantify neuritic pathology, regions of interest were captured from the 

whole slide images at 20x magnification (405 x 721µm). Six regions of interest per 

case were randomly selected by a pathologist from the SN, entorhinal cortex and 

cortex of the occipitotemporal gyrus. Intensely stained neurites were counted by two 

observers who were blind to case identity and diagnosisand the mean count per 

case calculated.    

 



66 
 

HK-I was quantified using image analysis.  A total of 6 fields per case were 

captured from the SN at 40x objective and were analysed with Image J. Each field 

was divided into 100 equal squares and subjected to colour deconvolution to 

separate DAB staining (brown) from haematoxylin staining (blue; Figure 2.1 b). The 

Shanbhag threshold (Shanbhag, 1994) was applied to the DAB-only images. Then, 

the stained area fraction was measured in the pictures submitted to the threshold 

(Figure 2.1 c). The percentage of each image that was positive for DAB staining was 

assessed. The mean of the 10 values across the 6 fields was calculated for each 

case and used in the statistical analysis for each case. 
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Figure 2.1. Image processing method for quantification of HK-I and TIGAR. Representative images showing 

original picture (a) processed with ImageJ. ImageJ color deconvolution plug-in was used to obtain the DAB-only 

images (b). a Shanbhag threshold was applied to the DAB only images, after which unlabelled areas appear in 

brown (not quantified) and labelled areas appear in white (quantified). Scale bar 100µm. 

 

2.8.9  Statistical analysis 
Statistical analysis used for TIGAR included t-Test, Kolmogorov-Smirnov test, 

Mann U-Withney and Levene’s test on Microsoft Excel and SPSS (IBM).  
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2.9 Results 
2.9.1 TIGAR immunohistochemistry in Sustantia nigra 
2.9.1.1 Antibody optimistation 

Antibodies that recognise the central or near the central region of TIGAR protein. 

Every run included positive and negative controls, as well as an isotype 

control that matched the species and the concentration of the antibody. The positive 

showed positive labelling, whereas any signal was detected with the negative and 

isotype controls. Anti-TIGAR antibody (ab62533) (Figure 2.2a, b) and anti-TIGAR 

antibody (ab10545) (Figure 2.2c, d) showed some cytoplasmic neuronal labelling, 

but with significant cross-reactivity to neuromelanin (Figure 2.2). There was 

significant background staining with minimal differentiation between cell and tissue 

types. There was no difference between one PD case (Figure 2.2 b-d) and the two 

controls (Figure 2.2a-c) and no labelling of Lewy bodies (Figure 2.2d).  

 

Figure 2.2 Antibodies central or near central region of the protein. Representative images of TIGAR staining 

in SN. Anti-TIGAR ab62533 one control (a) and one patient (b) and ab10545 in one control (c) and one patient 

(d). Images Showed no difference between controls and patients, granular staining (dark arrow heads) and 

negative Lewy bodies (red arrow). Bar 50µm 
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Consequently, these antibodies were not used for further experiments due to 

the lack of clear immunostaining of TIGAR and poor quality of the stained samples. 

These antibodies were directed against the central portion of the protein, in contrast 

to the antibody used in pilot work, which was directed against the C-terminal region.  

Therefore, we turned to other antibodies that recognised this a specific portion of the 

protein. 

2.9.2  Antibodies that recognise the C-terminal region of TIGAR protein 
Anti-TIGAR antibodies ab129333 (Figure 2.3 a, d), LS-C286858  (Figure 2.3 b, 

e) and PA5-29152 (Figure 2.3 c, f). Trial staining on SN showed a positive neuronal 

labelling, in the cytoplasm and nuclei, as well as a strong labelling of some neurites. 

The three antibodies that label the C-terminus showed positive staining for TIGAR in 

the SN from the controls group. 

 

Positive Lewy body staining was confirmed with three different antibodies to 

the C-terminus. This immunolabelling was interpreted as verification that TIGAR is 

genuinely present in Lewy bodies (Figure 2.3 a-c) and not a result of an artefactual 

cross-reaction of the antibody. There was good quality with minimal background 

staining with lower neuromelanin staining the PA5-29152 antibody (Figure 2.3 c, f). 

This antibody showed homogenous results across all the samples and avoid non-

specific staining, by reducing the concentration of the antibody. Thus, PA5-29152 

antibody was chosen for further experiments. 
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Figure 2.3. Antibodies that recognise the C-terminal region of the protein. Representative images of TIGAR 

staining in SN. Representative images of the controls (a-c) and patients (d-f) stained with Anti-TIGAR antibody 

LS-C286858 (control-a and patient -d); ab129333 (control-b and patient-e) and Thermo Scientific PA5-29152 

(control-c and patient-f). There was positive TIGAR labelling in the Lewy bodies (red arrow) in the PD cases (a-c) 

with some neurite staining (black arrow) in controls (a and c) and patients (d and f). Bar 50µm. 

2.9.3  TIGAR expression in the SN 
2.9.3.1 TIGAR immunohistochemistry in SN: Sheffield Brain bank cohort 

Neurons from controls and patients showed variable levels of cytoplasmic 

labelling: some had pale staining, while others had stronger cytoplasmic labelling 

(Figure 2.4). TIGAR-positive neurites were also seen in the SN from controls and 

patients. TIGAR was present in the Lewy bodies in both PD (Figure 2.4 b) and DLB 

cases (Figure 2.4 c). No Lewy bodies were found in the control group (Figure 2.4 a).  

As noted above, TIGAR expression was seen in Lewy bodies of PD and DLB 

cases.   
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Figure 2.4. Pathological features in the Sustantia Nigra. Representative pictures of TIGAR-positive Lewy 

Bodies (red arrows) in PD (b) and DLB (c) cases. Lewy bodies are absent in the controls (a). Bar 50µm. 

 

2.9.4  Double staining immunohistochemistry 
2.9.4.1 Double staining immunohistochemistry 

TIGAR fluorescence 

Firstly, the stained fluorescent slides were analysed to confirm that the 

antibody worked for fluorescent detection of TIGAR. Neuronal bodies, neurites and 

cytoplasmic inclusions in the PD and DLB cases were present and positive (Figure 

2.5).  
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Figure 2.5.  TIGAR fluorescence in Sustantia Nigra. Representative images of TIGAR fluorescence staining in 

the SN in a control (a), PD (b and DLB (c) cases, showing the presence of TIGAR in Lewy bodies (white arrows), 

neurons (red arrow) and neurites (blue arrow). Bar 50µm. 
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2.9.5  Colocalisation with alpha-synuclein 
2.9.5.1 Double STAINING: DAB/Fluorescence and double fluorescence 

 Double staining with: DAB for TIGAR (Figure 2.6 a, c) and fluorescent alpha-

synuclein (red) (Figure 2.6 b, d); and fluorescent images acquired for TIGAR (green) 

(Figure 2.7 a) and alpha-synuclein (red) (Figure 2.7 b) revealed the colocalisation 

between the two proteins in Lewy bodies and some neurites (Figure 2.6; and Figure 

2.7 d).  

 

 
Figure 2.6. Double staining in SN: DAB/Fluorescence. Microscopic analysis of DAB staining showing TIGAR 

(a and c) and immunofluorescence staining showing alpha-synuclein with AlexaFluor 555 (red) (b and d), from a 

PD (a and b) and DLB (c and d) cases. Acquired images reveal the co-localization of TIGAR and alpha-synuclein 

in the Lewy bodies (white arrow) and neurite (blue arrow). Bar 50µm. 
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Figure 2.7. Double fluorescence staining in Sustantia Nigra. Microscopic analysis of immunofluorescence 

staining showing TIGAR conjugated with AlexaFluor 488 (green) and alpha-synuclein with AlexaFluor 555 (red) 

and, nuclear staining DAPI (blue). Merge image reveals the co-localisation of TIGAR and alpha-synuclein in the 

Lewy bodies and neurites. Original magnification at 40x.   

 

2.9.5.2 Co-localisation: serial sections 
Using the three different detection methods (double fluorescence, 

fluorescence and DAB and DAB in adjacent sections), we confirmed that TIGAR is 

co-localised with alpha-synuclein. Mainly in the Lewy bodies in the SN.  
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Figure 2.8. Aligned adjacent sections in the Sustantia Nigra. Representative images of DAB 

immunohistochemistry for alpha-synuclein (left panel) and TIGAR (right panel) in the SN of a PD case, showing 

the presence of TIGAR in Lewy bodies (red, blue and purple arrows). Bar 100µm.  

2.9.6 Quantification of TIGAR in dopaminergic neurons 
TIGAR quantification in the dopaminergic neurons was carried out by two 

pathologists (JS and RH). This was performed first to assess the inter-rater reliability, 

in which the percentage of neurones that were intensely stained was counted to 

assess TIGAR expression.  There was a 90% inter-rater agreement between the two 

observers. Only data obtained from the blinded pathologist was taken for the group 

comparison. A total number of four controls, four PD and four DLB cases were 

analysed. High levels of neuronal intensity were quantified in the controls 

(mean=34.25 (5.24%), SD=3.04), PD (mean=51.75 (17.52%), SD=5.8) and DLB 

cases (mean=62.75 (15.89%), SD=15.08; Figure 2.9). Neurones of the SN varied in 

their intensity of TIGAR expression across the three groups, but there were a 
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significantly greater proportion of neurones with strong TIGAR expression in PD than 

controls (2-way ANOVA, P=0.2350). The DLB cases showed greater variance and 

no statistical difference compared to the control group (2-way ANOVA, P=0.3166, 

t=1.384, d.f. 6).   

 

Figure 2.9. Neuronal TIGAR expression in PD, DLB cases and controls. Bar graph represents the 

percentage of SN neurones that stain intensely positive for TIGAR in each group. There was a higher TIGAR 

expression in neurones PD (P=0.2350) and DLB (P=0.3166) cases compared to controls, however they did not 

reach statistical significance (2-way ANOVA, Tukey´s test). 

 

After neuronal expression was quantified, we then assessed the density of 

TIGAR positive neurites in the SN from the same group of controls and patients. This 

was carried out by two blinded researchers (LT and KR). Inter-rater reliability 99.8% 

showed agreement between the observers. Thus, the mean of both observer’s 

counts was used for the group comparison as both observers were blind. The same 

group of controls and patients was used to assess the total number of TIGAR 

positive neurites for the controls (mean=4.833, SD=4.771); PD (mean=18.375, 

SD=0.9648) and DLB cases (mean=312.41, SD=61.076). There were also markedly 

more TIGAR positive neurites in both PD (t-test, ***P<0.0005, t=8.277, d.f. 6) and 

DLB (t-test, **P=0.002, t=10.041, d.f. 3.037) cases compared to controls (Figure 

2.10).  
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These quantitative differences suggested that there is a greater neuronal 

cytoplasmic expression and a greater neuritic pathology in PD and DLB cases in the 

SBTB cohort.   

 

Figure 2.10. TIGAR positive staining in neurites in the Sustantia Nigra of the PD, DLB and control cases. 

Immunoreactivity in representative control (a), PD (b) and DLB (c) cases. The percentage of SN neurites that 

stain intensely positive for TIGAR is significantly higher in DB cases (t-test, ***p<0.0005) and slightly higher in PD 

cases (t-test, **P=0.002) compared to controls.  

2.9.7 TIGAR immunohistochemistry in SN: Queen Square Brain Bank Cohort 
We then aimed to expand our patient cohort and further characterise TIGAR 

in PD and DLB cases from another source, the Queen Square Brain Bank (QSBB) in 

an attempt to validate these findings.  Again, we found TIGAR-positive Lewy bodies 

and neurites in the six PD and six DLB cases (Figure 2.11). Neurones and neurites 

from the controls, PD and DLB cases varied in the intensity of the staining.  

 

Therefore, we next proceeded to examine the TIGAR expression in this group.  
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Figure 2.11,  Immunohistochemical staining in Sustantia Nigra. Immunostaining for TIGAR by peroxidase 

substrate DAB counterstained with haematoxylin (a-c). Representative picture of a control (a), PD (b) and DLB (c) 

cases from QSBB, cases confirming the presence of TIGAR in Lewy bodies (red arrow) and neurites. Bar=50µm.  
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2.9.8 Quantification of TIGAR expression in SN  
 TIGAR neuronal staining protocols were performed by the same researchers 

using the same methods as with the SBTB cases. The percentage of neurones that 

were intensely TIGAR-positive was assessed by one blinded pathologist (JS) in six 

controls (mean=360.8 (52.37%), SD=31.71), six PD (mean=115.5 (29.38%), 

SD=17.74) and six DLB (mean=198.5 (49.04%), SD=27.29) cases (Figure 2.12) 

 

The neurones of the SN varied in their intensity of TIGAR expression, but 

there were not significantly difference regarding the proportion of neurones with 

strong TIGAR expression between PD (t-test, P=0.160, t=1.55, d.f. 7.851) and DLB 

(t-test, P=0.849, t=0.195, d.f.10) patients when compared to controls.   

  

Figure 2.12. TIGAR positive staining in neurones and neurites in the SN of the PD, DLB and control cases 

from QSBB.  The percentage of neurons in entire SN (a) positive for TIGAR relative to total number of neurons 

per field. The analysis showed no difference between the PD (t-test, P=0.160) and DLB (t-test, P=0.849) cases 

compared to controls.  

 

We then quantified the number of TIGAR positive neurites in the SN from the 

same group of controls and patients. The Inter-run sections used for comparing both 

cohorts were the same control sections. Quantification of TIGAR positive neurites 

was carried out by one blinded researcher in controls (mean=90.88, SD=82.55), PD 
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(mean=27.833, SD=26.16) and DLB cases (mean=63.833, SD=32.31).  This also 

showed no difference between both PD (t-test, P=0.125, t=1.784, d.f. 5.99) and DLB 

(t-test, P=0.481, t=0.748, d.f. 6.49) cases compared to controls (Figure 2.13). 

 

 

 

Figure 2.13. TIGAR positive staining in neurites in the SN of the PD, DLB and control cases. Bar graphs 

representing the percentage of TIGAR positive neurites in the controls and diseases cases. No significant 

difference was found in PD (t-test, P=0.125) and DLB (t-test, P=0.481) cases compared to controls. 

 

We found that TIGAR was present in the Lewy bodies in the SN in the PD and 

DLB cases, and absent in the control group from the QSBB. This corroborates with 

the previous results obtained with the SBTB. However, we did not find TIGAR 

quantitative differences between controls and PD and DLB cases from the QSBB as 

we did we the SBTB.   

2.9.9 p53 in SN 
To elucidate the mechanism in which TIGAR might be involved in PD 

pathogenesis, we wanted to know if any other proteins that are upstream or 

downstream of TIGAR might be dysregulated in PD brains. For this reason, we 

proceeded to determine p53 localization in the SN in four PD, one DLB cases and 
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four controls from the Sheffield Brain Tissue Bank. Initial staining with the Anti-p53 

sc-263 antibody heavily stained melanin and failed to get a good staining (data not 

shown). Therefore, p53 staining was performed in the Department of Cellular 

Pathology, Hull and East Yorkshire NHS Trust.  
 

 The positive control showed positive labelling of cell bodies (neoplastic tissue). 

There was no p53 expression in either the control (Figure 2.14 a) or the PD (Figure 

2.14 b) and DLB (Figure 2.14 c) disease group, suggesting no up regulation in the 

expression of the p53 protein in the SN. Moreover, Lewy bodies were negative for 

p53 (Figure 2.14 b, c). In this study and with our methods, we did not find p53 

involvement.  

 

Figure 2.14. p53 staining in the Sustantia Nigra. Immunoreactivity in representative control (a), PD (b) and 

DLB (c) cases showing negative p53 expression within neurons and absence in Lewy bodies (arrows) from PD (b) 

and DLB (c) cases.  NB the brown pigment shown is neuromelanin-not DAB-labelled TIGAR Bar=25µm. 
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2.9.10 Hexokinase I and II in SN 
In addition to p53, Hexokinase I (HK-I) and II (HK-II) are well known to be 

regulators of TIGAR. Therefore, we wanted to investigate if there was an association 

with TIGAR expression in the SN. We assessed HK-I and HK-II expression in four 

controls and four Parkinson’s disease cases. HK-II, which is more abundant in 

muscle and liver, was not found or was found in very low levels. Moreover, we had to 

use high antibody concentration, which gave a considerable amount of non-specific 

background staining (Figure 2.15).  HK-II was not found in the Lewy bodies in the 

patient group (Figure 2.15 b-c). 

 

Figure 2.15. HK-II immunohistochemistry in Sustantia Nigra. Representative images of HKII DAB staining in 

SN in a control (a), PD (b) and DLB (c) cases showing non-specific labelling. There was no difference between 

cases and controls. HKII was not found in Lewy bodies (red arrow). Bar=100µm. 

We could only find positive expression of one of the hexokinase isoforms, HK-

I, which is well known to be abundant in the brain (Aleshin et al., 1998). HK-I staining 

showed a strong cytoplasmic expression in granular pattern in neurons and glia 

(Figure 2.16). This pattern varied within controls (Figure 2.16 a) and disease cases 
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(Figure 2.16 b-c). HK-I was not found in the Lewy bodies of the disease cases 

(Figure 2.16 b-c). 

 

 

Figure 2.16. HK-I immunohistochemistry in SN. Immunoreactivity in representative control (a), PD (b) and 

DLB cases (c). Images show varied neuronal cytoplasmic staining with slightly higher expression in the PD cases 

(b). Bar = 100µm. 

Each captured imaged from the SN from four controls and 4 PD cases was 

analysed with ImageJ. The DAB-only images, which were subjected to the threshold, 

gave the stained area fraction and measured. Overall, a total number of HK-I positive 

neurones were quantified for the controls (mean=61.99, SD=1.73); PD cases 

(mean=67.85, SD=1.03). Neuron intensity of ten fields from ten regions of the SN 

revealed a slightly increased HK-I expression in the PD cases compared to the 

controls (t-test, *P=0.0259, t=2.942, d.f. 6) (Figure 2.17). 
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Figure 2.17. HK-I positive staining in neurones in the SN of the PD and control cases. Bar graphs represent 

the percentage of neurons that stain positive for HK-I. HK-I showed slightly higher expression in PD cases (t-test, 

*P=0.0259) compared to controls. 

 

2.9.11 TIGAR expression in mesial temporal lobe 
Alpha-synuclein pathology has been found in the hippocampus in PD and 

DLB cases (Galvin et al., 1999). Thus, we aimed to look for TIGAR expression in the 

cohort of controls, PD and DLB cases in hippocampal tissue, both anterior and 

posterior, from the SBTB. Since we previously found TIGAR presence in the Lewy 

bodies in the SN in the PD and DLB cases, we wanted to determine whether TIGAR 

colocalization in Lewy bodies was also present in the hippocampus in the patient 

group. The presence of alpha-synuclein pathology had been confirmed previously in 

these cases and the paraffin-embedded tissue blocks were already available.  

 

TIGAR showed variable neuronal expression in the hippocampus in the 

controls and diseases cases (Figure 2.18 b-c). Some showed strong labelling in the 

region of the perforant processes pathway in the CA2 (Figure 2.18 c). 
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Figure 2.18. TIGAR staining in Hippocampus. Representative image of TIGAR presence in hippocampal 

regions CA2 in a control (a), PD (b) and DLB case (c). TIGAR expression showed to be variable in the pyramidal 

cells in controls (a) and disease cases (b-c). There was also some intense labelling in the performant pathway in 

some cases (c).  Bar=100µm 

 

TIGAR labelling in pyramidal neurons from the entorhinal and 

occipitotemporal regions appeared to have slightly higher expression in the disease 

group (Figure 2.19 c-f) when compared to the controls (Figure 2.19 a-b). However, 

not every cell showed to be affected, some showed higher expression, others do not. 

Therefore, we next proceeded to quantify TIGAR positive neurons in these regions.  
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Figure 2.19. TIGAR staining in entorhinal and occipitotemporal cortex. Representative image of neurones of 

the entorhinal (left panel: a, c, e) and occipitotemporal cortex (right panel: b, d, e) in mid layers from controls (a, 

b), PD (c, d) and DLB (e, f) cases. Images showed variable TIGAR neuronal expression in controls (a-b) and 

disease cases (c-f) in both regions. Some cells and processes appeared to have higher TIGAR expression in the 

disease cases (c-f) compared to the controls (a-b). Bar 100µm. 

 

2.9.12 Quantification of TIGAR staining in occipitotemporal cortex and 
entorhinal cortex. 

Three regions of interest were captured at 20x from the occipitotemporal and 

three from the entorhinal cortices from digitised whole slide images of sections at the 

level of the posterior hippocampus from one control, one PD one DLB cases were 

assessed.  Two blinded researchers counted the number of TIGAR-positive neurons 
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and neurites. There was no correlation between the two independent researchers 

(occipitotemporal cortex count correlation=63.3%; entorhinal cortex count 

correlation=21.22%)  (Figure 2.20 a, b); therefore this assessment method was 

aborted.  

 

As an alternative, image analysis was used to assess, based on the 

proportion of the image that was positive for TIGAR was performed by ImageJ 

analysis.  This did not detect any statistical difference (Mann U-Whitney, P=0.800) 

between the control (mean=44.28; SD=7.47), PD (mean=50.41; SD=16.74) and DLB 

cases (mean=50.40; SD=13.96) (Figure 2.20 c, d).     

 

Thus, we found that TIGAR was not involved in PD pathology in other areas 

different outside the SN. These suggest a specific role of TIGAR in PD and DLB 

disease process in the SN. There was no labelling of neocortical or hippocampal 

bodies. 
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Figure 2.20. Quantification of TIGAR in hippocampus. Scatter charts showed no correlation between the two 

independent researchers in counts from the occipitotemporal cortex (OTC) (63.3% correlation) (a) and the 

entorhinal cortex (EHC) (21.22% correlation) (b). Bar graphs represent the percentage of TIGAR positive neurons 

processed and quantified by Image J for the OTC (c) and the EHC (d); no statistical difference was found 

between controls and patients (Mann U-Whitney, P=0.800).  

2.9.13 TIGAR in MSA 
We then assessed TIGAR expression in another synucleinopathy, namely 

MSA. We wanted to determine whether TIGAR had a disease specificity for PD or 

whether it was also present in other synucleinopathies. In the SN, many neurons 

showed apparent intense neuronal cytoplasmic and neurite staining. TIGAR-positive 

glial cytoplasmic inclusions were not seen (Figure 2.21 a-b).  

2.9.13.1 Quantification of TIGAR in MSA 
We then analysed the variability of TIGAR expression in neurones and 

neurites between controls and MSA cases (Figure 2.21 a-b). We assessed the levels 

of these by using the same methods as for the PD and DLB cases above. The 

proportion of TIGAR positive neurones was quantified for controls (mean=52.37, 

SD=31.71) and MSA cases (mean=29.42, SD=4.42). TIGAR positive neurites were 
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also quantified in controls (mean=90.88, SD=82.55) and MSA cases (mean=43.77, 

SD=24.01). We found no significant difference in TIGAR expression in neurones (t-

test, P=0.138, t=1.73, d.f. 5.377) and neurites (t-test, P=0.241, t=1.29, d.f. 6.37) 

between the controls and the MSA patients (Figure 2.21 c-d).  

 

There was no other significance evidence between the control and patient 

group, likewise we did investigate further regions involved in its pathology.  

 

Figure 2.21. TIGAR staining in SN from MSA cases. Immunostaining for TIGAR by peroxidase substrate DAB 

counterstained with haematoxylin in control (a) and MSA cases (b). Images showed variability in TIGAR 

expression between the controls (a) and patients (b). Controls and patients showed a diverse range of 

immunoreactivity within the SN. Bar graphs represent the proportion of TIGAR positive neurones (c) and TIGAR 

positive neurites (d) between controls and patients. No statistical difference was found in neurones (c) (t-test, 

P=0.138) and neurites (d) (t-test, P=0.241) expression between the controls and patients. Bar 100 µm 

2.9.14 TIGAR in spinal cord: Motor Neurone Disease 
We proceeded to assess the presence of TIGAR in the ubiquitylated 

inclusions in neurones of another neurodegenerative disorder: The lower motor 

neurons of motor neurone disease (MND).  
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In contrast to its presence in Lewy bodies, TIGAR protein was not found in the 

TDP-43 positive cytoplasmic inclusions typical of MND. However, TIGAR 

immunostaining in spinal cord showed that TIGAR is present in motor neurons and 

neurites (Figure 2.22 b). Thus, results suggest TIGAR disease specificity for 

brainstem neuronal Lewy pathology of PD and DLB.  

 

Figure 2.22. TIGAR presence in Spinal cord. Microscopic analysis of TIGAR immunoreactivity in Spinal cord 

from a control (a) and ALS patient (b). TIGAR was not found in the TDP-43 positive inclusions of MND cases. A 

variable pattern of TIGAR positive immunoreactivity was observed in the nuclei and neuronal bodies in both 

controls and patients. Bar 50µm. 

2.9.15 Quantification of TIGAR in spinal cord in MND  
We investigated TIGAR expression in a different neurodegenerative disease 

with ubiquitinated inclusions, such as MND, to assess TIGAR disease specificity. It 

was noted that motor neurons from the spinal cord varied in their intensity of TIGAR 
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expression in both the control and patient groups. Therefore, we decided to assess 

the proportion of TIGAR positive and negative motor neurons in controls and MND 

cases by using the same methods as above.  

  

Quantification of TIGAR positive neurones was carried out by one blinded 

researcher. The percentage of TIGAR positive neurites was obtained for controls 

(mean=37.55, SD=26.04) and MND cases (mean=22.04, SD=20.07). However, there 

was no significant difference between the proportion of neurons with strong TIGAR 

expression in controls and MND cases (t-test, P=0.354, t=1.01, d.f. 7) (Figure 2.23 a-

c). Thus, results suggest a TIGAR specific role for PD and DLB. 

 

 

Figure 2.23. TIGAR-positive neurons in the spinal cord of controls and MND cases. Immunoreactivity in 

representative control (a), and MND cases (b). The percentage of neurons in the spinal cord that stain intensely 

positive for TIGAR (red arrows) was not significantly different in the MND cases compared to the controls. (t-test, 

P=0.354). Bar=50µm. 
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Therefore, we then assessed TIGAR positive neurites in the same groups. 

This was carried out by two blinded researchers. Inter-rater reliability 99.6% showed 

agreement between the observers. Thus, the mean from both observer’s counts was 

used for the group comparison. A total number of TIGAR positive neurites were 

quantified for the controls (mean=64.27, SD=71.81) and MND cases (mean=4.83, 

SD=2.92).  There was also no difference of TIGAR-positive neurites between 

controls and MND cases (t-test, P=0.196, t=1.654, d.f. 3.008) (Figure 2.24 a-c).  

 

 

Figure 2.24. TIGAR positive staining in neurites in the Spinal cord of the MND and control cases. 

Immunoreactivity in representative control (a), and MND cases (b). The percentage of neurites in the Spinal cord 

that stain intensely positive for TIGAR (red arrows) was not significantly different in the MND cases compared to 

controls. (t-test, P=0.196). Bar 100µm.  
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2.10 Discussion  
2.10.1 Antibody confirmation 

The present study addressed the normal and pathological TIGAR-related 

characteristics in the human brain in PD and related disorders. Although TIGAR 

expression has been characterised before by Western blot, Immunohistochemistry 

and microarray analysis in the superior temporal gyrus in normal brain and in 

patients with Alzheimer’s Disease (AD). Here, TIGAR gene and protein expression 

was reduced in patients with severe dementia (Katsel et al., 2013). Therefore, we 

wanted to assess it in the PD and related disorders DLB and MSA cohort. We also 

wanted to look in another neurodegenerative disorder characterised by pathological 

inclusions, such as MND, to determine if TIGAR was also present in other disease 

with ubitiquinated inclusions. Here, we demonstrated the presence of TIGAR in 

neurons in the normal and pathological brain. We could confirm that the obtained 

findings were true and reproducible by using three different antibodies that showed 

the similar result across the stained brains.  

2.10.2 TIGAR presence in human brain  
There was TIGAR widespread expression in the midbrain and hippocampus, 

as well as the spinal cord.  This result suggests that TIGAR function is important for 

the normal cellular metabolism across different regions of the CNS and cellular types. 

This could be due to its role in the Pentose Phosphate Pathway (PPP), which 

provides antioxidant defence against ROS, cellular stress and hypoxia, as well as 

providing the nucleotides for DNA synthesis (Bensaad et al., 2006). In neurons, the 

PPP has been suggested to be essential for glucose metabolism and for antioxidant 

function via glycolysis inhibition (Herrero-Mendez et al., 2009). Neurons seem to be 

susceptible to continued damage from oxidative stress (Herrero-Mendez et al., 2009).  
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Therefore, TIGAR function by lowering ROS production, maintaining NADPH and 

glutathione could be indispensable for the maintenance and antioxidant protection of 

the neurons preventing permanent damage (Bolaños and Heales, 2010).   

 

NADPH is produced in high levels in response to stress and is an important 

reducing cofactor that counters oxidative stress. It is produced from the metabolised 

glucose from the PPP and generated by the enzyme glucose-6-phosphate 

dehydrogenase (G6PD). Glutathione (GSH) is an anti-oxidant and cofactor alongside 

NADPH, which combats oxidative stress after it is converted into its reduced form by 

the glutathione reductase (Zuo and Motherwell, 2013). A recent study by Dunn et al., 

2013; characterised the activity of the PPP across different regions of the brain in 

Alzheimer’s disease (AD), PD and normal control tissue by measuring levels of 

NADPH in post-mortem brain tissue. In the cerebral cortex and putamen of AD and 

severe and moderate PD groups NADPH and G6PD were increased; whereas in the 

mild PD group there was a decrease in G6PD. The mild group was related to be an 

early stage of PD, whereas the moderate/severe group was related to later stages of 

the disease. This evidence showed that an impairment of glucose metabolism and 

PPP inhibition leaves neurons vulnerable and exposed oxidative stress, which has 

been suggested to be a feature of an earlier stage in the development of PD (Dunn 

et al., 2013). Furthermore, oxidative stress has been suggested to have a role in the 

formation of Lewy bodies at early stages of the disease (Dias et al., 2013). 

 

NAPDH is produced through the PPP and utilised by glutathione in the redox 

cycle to decrease ROS levels (Ramos-Martinez, 2017). It has been reported that 

neurons have been reported to be deficient in the SN from brain tissue of patients 
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with PD (Fitzmaurice et al., 2003; Perry et al., 1982; Sofic et al., 1992). Therefore, it 

is important to produce glutathione through the recycling via the PPP and NADPH to 

prevent damage from oxidative stress insult. In this study NADPH levels were 

reduced in the putamen and cortex of early stage PD patient, suggesting a defect in 

the sensing or inhibitory mechanisms that prevent NADPH production and inability to 

recycle glutathione. A number of studies have suggested a dysregulation of the PPP 

pathway and glucose metabolism is one of the earliest events occurring in the 

pathogenesis of neurodegeneration (Bouzier-Sore and Bolaños, 2015; Dunn et al., 

2013; Hilker et al., 2012). 

2.10.3 TIGAR expression in the SN in PD, DLB and MSA  
In a previous study performed in post-mortem tissue, studying TIGAR mRNA 

and protein levels in the superior temporal gyrus from brains of AD patient group and 

compared to controls. Microarray data and protein levels obtained by western 

blotting showed reduced levels of TIGAR in the AD patient group compared to 

controls. However, no difference was found between patients and controls tissue 

expression performed in the superior temporal gyrus, one of the most affected brain 

areas in AD. This suggested that TIGAR was probably involved in the functional 

cognitive process rather than the neuropathology seen in the later stages of the 

disease (Katsel et al., 2013). Initially in our study, TIGAR expression was moderate-

high in the PD and DLB group compared to the control group from the first cohort 

studied (Sheffield Brain Tissue Bank). This initially suggested TIGAR upregulation in 

the SN of the disease cases groups, and a possible role in dopaminergic cell 

degeneration leading to disease development. However, when we attempted to 

replicate this with a second cohort (from the Queen Square Brain Bank) no 

significant difference was found. These can be due to the fact that 
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immunohistochemistry is a method in which specific subtle changes of proteins might 

not be detected.  

 

In immunohistochemistry, there are several critical factors that influence the 

outcome of the results of the protein of interest. These include: uncontrollable 

variables from the patient (disease duration and severity, case-case variation, diet, 

age, treatments and surgery, comorbidities, cause of death), quality of tissue, how 

the tissue was obtained, handled (post-mortem delay, ambient temperature, storage, 

mode of inactivation), fixed, processed (storage medium and conditions) and 

interpreted (observer variability and subjectivity). In our study, tissue was obtained 

from two different sources, which might have had an impact on the quantification. 

For example, paraffin processing at very high temperatures, could have an impact in 

the tissue adhesion and result in loss or impaired antigenicity. Immunohistochemistry, 

as a quantitative measure, DAB-based immunohistochemistry is generally not ideal, 

due to the amplification steps involved. Therefore, more accurate quantitation 

methods, such as Enzyme Linked Immunosorbent Assay (ELISA), are required to 

fully assess TIGAR protein levels in the brains from controls and disease patients. 

Therefore, TIGAR suspected neuronal upregulation in PD can be further assessed.   

 

TIGAR role in PD was initially suggested by findings from our group in a 

zebrafish pink1-deficient model (Flinn et al., 2013). TIGAR up-regulation may be a 

feature of PINK1-related disease only and not sporadic disease. In sporadic cases 

the combination of different environmental and genetic factors may have a 

considerable influence. Then, TIGAR expression might be altered only in a subset of 

cases. This is also true for some of the different genes described in sporadic PD. 
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Post-mortem studies in PD patients with PINK1 mutations are rare and difficult to 

obtain. However, it would be interesting to see if what was reported in the zebrafish 

brain can be confirmed in the human brain with Pink1 mutations. 

 

Alpha-synuclein aggregates are different in MSA when compared with PD and 

DLB (Yang and Yu, 2017). The main pathologic features of MSA is the presence of 

glial cytoplasmic inclusions alongside striatal and olivopontocerebellar degeneration 

(Miraglia et al., 2015). In this study we characterised TIGAR presence in the SN of 

MSA patients. We did not find TIGAR-positive glial cytoplasmic inclusions or 

differences in TIGAR expression. However, our cohort was relatively small (3 

patients).  

 

A recent study in MSA showed that neuronal loss, gliosis and glial 

cytoplasmic inclusions are mainly found in the motor, supplementary motor cortex, 

postcentral somatosensory cortex and temporal lobe neocortex (Salvesen et al., 

2015). Here, significant neuronal loss as a consequence of changes in cell density 

rather than cortical tissue volume, was found in the parietal and temporal neocortex. 

In addition, they found that glial cells were more abundant in these regions, which 

compensated for loss of neurones resulting in a normal cortical volume (Salvesen et 

al., 2015). If there is a TIGAR-related pathologic mechanism in MSA, the main 

affected regions, such as neocortex, need to be evaluated. Furthermore, double 

staining immunohistochemistry for TIGAR and alpha-synuclein should be performed 

in order to assess more robustly for co localisation in glial cytoplasmic inclusions. 

TIGAR-related pathology in MSA remains inconclusive following our study. In order 

to assess in a more robust method, such as immunoelectron microscopy or laser 
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capture microdissection (LCM), and a larger cohort should be assessed, not only 

looking at the SN, but other affected regions of the brain. 

2.10.4 TIGAR and alpha-synuclein: co-localisation in Lewy Bodies  
Alpha synucleinopathies are a group of disorders that share many 

neuropathological characteristics, principally the aggregation of alpha-synuclein. In 

the normal human brain alpha-synuclein is present in presynaptic terminals of the 

neurons (Galvin et al., 1999; Iwai et al., 1995; Murphy et al., 2000; Wang et al., 

2014). Although the synucleins have different isoforms, only the alpha isoform has 

been found to be accumulated in the synaptic terminal and involved in the formation 

of pathological oligomeric aggregates in the SN (Dimant et al., 2013). Many theories 

have suggested different mechanisms for this including: increased levels of alpha-

synuclein and toxic gain-of-function; protein misfolding leading to aggregation and 

neurotoxicity; mitochondrial dysfunction; impaired vesicle dynamics; defective 

synapsis and impaired intracellular trafficking. Moreover, two clearance mechanisms, 

the lysosomal autophagy system (LAS) and the ubiquitin-proteosome system (UPS), 

are also suggested to be impaired in PD (Bang et al., 2016; Beilina and Cookson, 

2015; Xilouri et al., 2016). This would impede the degradation of abnormal 

aggegates.  

 

TIGAR localisation in the regions studied in the brains of people with PD 

showed no difference from normal human brain. Interestingly, we found that TIGAR 

is present in Lewy bodies in the SN in PD and DLB, which was not found in the 

controls.  We found co-localisation of TIGAR with alpha-synuclein in Lewy bodies. 

This result reinforces the suggested association of TIGAR with PD pathology. To our 
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knowledge, this association has never been reported before in humans. It is still to 

be elucidated if TIGAR has a role in the formation of Lewy bodies.   

 

PD-related proteins such as LRRK2, PINK1 and Parkin; have also been found 

in Lewy bodies. Their role in Lewy body formation is still elusive. Interestingly, 

TIGAR was first linked to PD in a zebrafish pink1 deficient model, and both proteins 

were found to be in the Lewy bodies in the SN. Therefore, the suggested shared 

distribution within the brain and pathological inclusion would suggests that there may 

be a common involvement of both PINK1 and TIGAR in the development of Lewy 

pathology.  

 

Lewy body pathology could be the result of a cellular self-defence mechanism 

that disposes of and restricts cytotoxic proteins (Fecchio et al., 2013) Thus, the 

inclusion of TIGAR in Lewy bodies could be the result of the same cellular 

mechanism. This suggests an acquired cytotoxic property of TIGAR.   

 

Both, TIGAR and alpha-synuclein, have been described to have a role in 

autophagy impairment, so it is possible that both proteins, when produced in excess, 

impair autophagy and therefore promote protein aggregation. Alternatively, alpha-

synuclein overexpression and aggregation, might be promoting TIGAR sequestration 

and subsequent aggregation. There is already evidence for the capacity of alpha-

synuclein to sequester proteins: Alpha-synuclein aggregates interact with 

mitochondrial complex I, promoting mitochondrial dysfunction and alpha-synuclein 

tends to aggregate in the mitochondria in the SN and basal ganglia of post-mortem 

tissue (Devi et al., 2008).  
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As noted above, TIGAR promotes apoptosis by inhibiting glycolysis in some 

models. A correlation between ROS level reduction and autophagy inhibition has 

been suggested (Bensaad et al., 2009; Ye et al., 2013). This implies that TIGAR 

opposes autophagy (Bensaad et al., 2009).  

2.10.5 TIGAR, p53 and the Hexokinases 
To elucidate the mechanism that might be implicated in the TIGAR-related 

pathology, we looked at p53 expression in the SN of the PD patients compared to 

the normal controls: p53 is a good candidate as is an upstream regulator of TIGAR 

and has it’s a suggested role in neurodegeneration.  

 

Our results demonstrate p53-independent expression of TIGAR in the 

pathologic inclusions in the SN from brains of patients with PD and DLB. If there is a 

direct relationship between p53 and TIGAR, it is possible that this was not evident in 

our work due to the changes affecting p53 structure and function, before and after 

the cellular insult. There is also a possibility that p53 structural and functional 

changes are transient and no longer evident at autopsy. Wild type alpha-synuclein 

promotes p53 down regulation (Alves et al., 2016; Duplan et al., 2016). Therefore, as 

alpha-synuclein is altered in PD, MSA and DLB this may have reduced p53 

expression such that no changes could be seen in the present study. Very low levels 

of expression p53 in normal aged brain has been reported previously, where 

significantly increased p53 expression was detected in brains from AD patients (de la 

Monte et al., 1997). Previously, transcriptional regulation of p53 by parkin in familial 

PD was demonstrated and suggesting a potential involvement of p53 in PD 

pathology. Here, brains from patients with parkin mutations showed significantly high 
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p53 mRNA and protein levels in the striatum. However, the study was carried only in 

two patients with familial PD (Du et al., 2009). Therefore, p53 levels in the SN might 

be difficult to assess and it only could be detected when it is overexpressed and in 

particular conditions. Such very low levels of p53 expression suggest that related 

mechanisms and pathways need further evidence and might not have a pathological 

relevance.     

 

Another possibility is that p53-independent pathways are involved in the 

pathogenesis of PD. In order to further characterise other possible TIGAR regulators, 

we looked at hexokinase I (HK-I) and hexokinase II (HK-II) expression in the SN of 

the PD cases and controls. Our results showed no difference in HK-II expression 

between normal controls and PD patients in the SN. This is likely to be due to low 

levels of HK-II normally expressed in the human brain (John et al., 2011).  

 

HK-I is structurally similar to HK-II, but, in contrast, is expressed principally in 

the brain. Like HK-II, HK-I is important for promoting the glycolytic pathway shunt 

(John et al., 2011; Magrì et al., 2016). Our results revealed only a very slight 

increase in HK-I expression in the SN in PD compared to our controls.  

2.10.6 TIGAR in hippocampus 
The hippocampus and mesial temporal lobe is one of the brain areas that can 

be affected and susceptible to Lewy body pathology (Fujishiro et al., 2013; Jellinger 

et al., 2003). There is a diversity of pathological changes in this area. More frequent 

findings are hippocampal atrophy, Lewy bodies and Lewy neurites, senile plaques 

and phospho-tau pathology. Less frequent findings are the presence of glial 

cytoplasmic and nuclei inclusions, neuronal loss and Pick body-like inclusions (Dalfó 
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et al., 2005; Gaig et al., 2007; Galvin et al., 1999; Klos et al., 2006; Rohan et al., 

2015; Yang and Yu, 2017). The relationship of hippocampal pathology with dementia 

and severe cognitive decline is controversial (Elder et al., 2017; Tanner et al., 2017). 

Lewy pathology is mainly found in the entorhinal cortex, amygdala and CA2/CA3 

regions of the hippocampus. The CA1 region, fusiform gyrus and dentate gyrus are 

only rarely affected. In DLB a correlation between hippocampal atrophy and impaired 

cognition has been reported (Elder et al., 2017; Foo et al., 2016; Gazzina et al., 

2016). This finding is not consistent, however: other studies have not found a 

correlation between cognitive decline and Lewy pathology. This could be explained 

by the different approach from the different studies; where the investigation was 

undertaken in post-mortem tissue and reports (retrospective study), MRI and 

ongoing prospective studies in patients with PD only, MSA only or PD, DLB and AD 

as a group. Moreover, the disease duration varied amongst the different populations 

study, as well as the neuropsychological assessment (Koga et al., 2016; Tam et al., 

2005; Tanner et al., 2017). TIGAR expression in the entorhinal and occipitotemporal 

cortices as well as the hippocampus, did not showed any difference between 

controls and PD and DLB patients. We also did not find TIGAR-positive Lewy bodies. 

Overall, TIGAR pathology involvement in the neuronal alpha synucleinopathies 

seems to be confined to the SN. The limitation of the current study is the small 

number of patients studied. Further research need to be conducted including 

patients that developed dementia.   

2.10.7 TIGAR and MND 
 One of the main pathological characteristics of MND is the presence of 

proteinaceous cytoplasmic inclusions in affected motor neurones, which are positive 

for antibodies to the transactive response DNA binding protein-43 (TDP-43) and 
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ubiquitin(Arai et al., 2006; Ciryam et al., 2017). Given that both PD and ALS are both 

neurodegenerative diseases and have intracellular neuronal inclusions, it is possible 

that these two diseases share some neuropathological processes. Therefore, it was 

important to determine whether the inclusions of both diseases were positive for 

TIGAR. Previous gene chip analysis of mRNA expression of TIGAR in our laboratory 

(Highley et al., 2014) has suggested  a 1.65 fold reduction in TIGAR mRNA in motor 

neurones in ALS (P=0.0008). However, we found that while TIGAR is present in the 

neurones of the spinal cord, there was no significant difference between controls and 

patients.  

 

In this study we looked for TIGAR at the protein level, compared to Highley et 

al. 2014, that looked at the mRNA levels. The discrepancy between the results could 

be due to the fact that immunochemistry is not a good method for quantitation, 

therefore more sensible and specific techniques (ELISA, LCM, western blotting, etc.) 

are required to confirm the results. Post-transcriptional modifications and regulatory 

processes occur at any time during the protein lifetime in response to cellular activity 

demands. Therefore, these modifications offer an alternative explanation for the 

discrepancy between the mRNA and protein TIGAR levels obtained and affect the 

function of the protein. These modifications could be transient or permanent, which 

can affect the expression of the protein in situ. Post-transcriptional modifications 

have been suggested to have a role in PD pathology and related diseases, affecting 

related proteins such as alpha-synuclein (Guhathakurta et al., 2017) and potentially 

TIGAR. If the latter is true, future research needs to address this issue by studying 

the proteomics by specific techniques such as, mass spectrometry or proteomic 

arrays, in situ. Another explanation could be that the data obtained by Highley et. al, 
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2014; were false-positive results due to variability of the platforms and procedures 

used. Validation studies, such as qRT-PCR or enzyme-linked assays, which is a 

useful technique frequently used to confirm the possible biological relevance 

obtained by microarrays.  

 

As consequence, it was concluded TIGAR-positivity in ubiquitylated inclusions 

in PD and DLB but not in ALS inclusions, seems to have a disease-specificity for 

pathology occurring in neuronal PD and DLB in the SN. This is in contrast to p62, 

ubiquitin and many other proteins that are present in the inclusions of other diseases. 

The related proteins, p53 and HK-II, did not show altered expression on 

immunohistochemistry in our study. However, further studies are needed to elucidate 

the suspected role of TIGAR in the human brain pathology. Specifically, it is 

necessary to assess whether its localisation in pathologic inclusions are merely due 

to recruitment or the result of other events involved in PD and DLB development.  

2.11 Conclusion 
  

We have found that TIGAR is present in Lewy bodies in the SN of PD and 

DLB patients where it co localises with alpha-synuclein. This suggests a potential 

role of TIGAR in the formation of Lewy bodies and neurodegeneration more 

generally. The TIGAR-positive pathological inclusions were only found in the SN and 

thus seemed to be restricted to this area.  No TIGAR-positive inclusion was found in 

the spinal cords of patients with MND, or in the glial cytoplasmic inclusions of cases 

of MSA. This suggests specificity for Lewy-type pathology and no involvement in 

other neurodegenerative diseases. There was no difference of p53 localization and 

expression when comparing the PD cases to controls. Further cellular and post-
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mortem tissue studies need to be conducted to elucidate the TIGAR-related 

pathological mechanisms and pathways leading to neurodegeneration. 
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3 TIGAR in PD cellular model 

3.1 Introduction 
3.1.1  Cellular models for Parkinson’s research 

Different cellular models have successfully reproduced neuronal degeneration 

occurring in PD. Important disruptions and alteration in cellular biochemical 

pathways have been found in these models and suggested as part of the 

etiopathology. Cellular models have been widely used to study mainly protein 

aggregation and the mechanisms of cellular death leading to neuronal loss of the 

dopaminergic cells in the SN pars compacta (SNpc). In this study we focused on the 

utility of human fibroblasts from patients with familial and sporadic PD. 

3.1.2 Mitochondrial dysfunction in Parkinson’s disease from patient skin 
tissue 

Mitochondrial dysfunction linked to Complex I (CI) deficiency has been 

reported in several tissues from patients with PD and has a key role in the 

pathogenesis.  Several compounds have been described as neurotoxins, acting by 

inhibiting CI activity and the mitochondrial respiratory chain. 1-methyl 4-phenyl, 1, 2, 

3, 6 tetrahydropyridine (MPTP), the 1-methyl 4-phenyl pyridium ion (MPP+), and 

rotenone are some of the widely used toxins to create PD cell models (Gerlach and 

Riederer, 1996; Tanner et al., 2011). MPTP is recognised as a toxin that induces cell 

death specifically in the SN and causes PD symptoms in humans and animal models. 

Oxidative stress and ROS production have also been linked to PD pathogenesis, the 

oxidative stress inducer Paraquat, another CI mitochondrial inhibitor is also used in 

current models of PD (Cochemé and Murphy, 2008; Tanner et al., 2011). One of the 

difficulties for studying neurodegenerative diseases, such as PD, is the 
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inaccessibility to the affected areas in patients to study the different biological 

mechanisms and processes.  

3.1.3  Skin fibroblasts 
 Skin fibroblasts derived from biopsies taken from a diagnosed PD patient 

have been widely used in PD research as a non-neuronal cell model, as well as in a 

wide range of systemic diseases. They are a representation of primary human cell 

culture, reflecting the influence of the individual genetic background and environment 

in the disease process. This model offers the advantages of robustness, easy 

storage, transport and availability.  

 

 The 2mm punch biopsies are taken from the skin usually from the forearm, set 

up for culture from which fibroblasts can be isolated. Initially it is a culture containing 

keratinocytes and fibroblasts, which can be then be purely separated after the third 

passage. Since these cells come from the skin, they can be easily contaminated with 

Mycoplasma, for which they need to be regularly tested to prevent any deleterious 

effect due to the infection. Subsequent fibroblasts cultures will be consisting of a 

diverse population of mitotic and post-mitotic cells (Bayreuther et al., 1991). There 

are numerous cell repositories and laboratories from which skin fibroblasts, from 

patients with sporadic PD and with mutations in PD related genes, can be obtained: 

Coriell Institute (https://www.coriell.org) and The NINDS human cell and data 

repository (https://nindsgenetics.org) (Wray et al., 2012). Fibroblasts express PARK 

genes at endogenous levels. Furthermore, they display the important similar cellular 

contact interaction, comparable to neurons and response to trophic signals. Unlike 

tumour cell lines, glycolysis does not occur at maximal glycolysis. They also reflect 

additive cellular damage according to the patient age (Auburger et al., 2012). 
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Notably, they can be converted to induced pluripotent stem (iPS), induced neurons 

(iN), induced dopaminergic neurons (iDA), induced neural progenitors (iNP) and/or 

induced neural stem (iNS) cells by reprogramming and applying differentiation 

methods (Badger et al., 2014; Gopalakrishnan et al., 2017; Momcilovic et al., 2016; 

Xu et al., 2017).  

3.1.4  Skin fibroblasts from patients with PARK gene mutations 
3.1.4.1 Alpha-synuclein 

Alpha-synuclein is the main component of the pathological hallmark of PD, the 

Lewy Body. This was the first identified gene in familial cases of PD, the function of 

which remains unknown. Several studies have suggested that it is expressed in 

peripheral tissues from living patients, such as skin, stomach and colon. Post-

mortem studies have reported its expression in peripheral ganglia, plexus, glands, 

etc. (Tolosa and Vilas, 2015). Healthy fibroblasts can take up recombinant alpha-

synuclein, which aggregates and potentially forms inclusions in these cells. It occurs 

in a time dependent manner and is linked to an enhancement of the cellular oxygen 

consumption and apoptosis (Braidy et al., 2013). However, endogenous levels of 

alpha-synuclein expression in these fibroblasts have been repeatedly reported to be 

undetectable (Ambrosi et al., 2014; Braidy et al., 2013; Sanchez-Martinez et al., 

2016).  

3.1.4.2 LRRK2  
Skin fibroblasts from patients with LRRK2 mutations have mitochondrial 

dysfunction (Grunewald et al., 2014; Mortiboys et al., 2010a, 2013, 2015; 

Papkovskaia et al., 2012) and more specifically complex III (CIII) and IV (CIV) defect 

in fibroblasts with LRRK2G2019S mutations (Mortiboys et al., 2015). LRRK2G2019S 

fibroblasts from PD patients displayed increased autophagy, where pharmacological 

inhibition in the MEK/ERK pathway induced a reduction in autophagy (Bravo-San 



109 
 

Pedro et al., 2012, 2013; Yakhine-Diop et al., 2014). In fibroblasts, LRRK2 protein 

levels was not affected by the G2019S mutation, but the LRRK2 kinase activity was 

increased (Bravo-San Pedro et al., 2013). Mortiboys et al., 2015; demonstrated that 

mitochondrial function is rescued after LRRK2 siRNA mediated knockdown, which 

suggest that the mitochondrial defect is secondary to the mutation rather than due 

LRRK2 haploinsufficiency or a nonspecific downstream effect (Mortiboys et al., 

2015). Altered lysosomal morphology has been also documented in LRRK2G2019S 

fibroblasts (Manzoni et al., 2013b). The Two-pore channel 2 (TPC2) proteins, which 

regulate the Ca2+ signalling dynamics and trafficking, were linked to altered 

mitochondrial morphology in LRRK2G2019S fibroblasts (Hockey et al., 2015). Co-

immunoprecipitation of LRRK2 and TCP2 was demonstrated and suggested that 

LRRK2 possibly acts by phosphorylation of TCP2. TPC2 in LRRK2-PD related 

mutations are suggested to be due to interaction and modulation of autophagy in this 

cells (Hockey et al., 2015). LRRK2G2019S mutation fibroblasts were reported to 

display excessive fission due to constant phosphorylation and activation of Drp-1, a 

fission protein, by LRRK2 (Mortiboys et al, 2010; Su and Qi, 2013). Increased 

mitochondrial uncoupling proteins (UCP2 and UCP4) expression lead to an 

enhancement of the mitochondrial proton leak, linked to LRRK2 kinase activity in 

patient fibroblasts (Grunewald et al., 2013; Papkovskaia et al., 2012). 

 

Our group also assessed mitochondrial function and morphology in G2019S 

manifesting (M) and nonmanifesting (NM) carriers. Similar defects in the 

mitochondrial function, basal mitochondrial oxygen consumption and maximal 

respiration and a CIV defect in both groups were found. Coupled respiration and CIII 

were both lower in both groups, but more markedly in the G2019S-M than in the 
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G2019S-NM. (Mortiboys et al., 2015). Ursodeoxycholic acid (UDCA) rescues 

mitochondrial function in people with LRRK2G2019S mutations (M and NM). This cell 

model provided a new reliable platform for drug testing. (Mortiboys et al., 2013, 

2015). 

LRRK2 fibroblasts with different pathogenic mutations within the kinase and 

ROC domains demonstrated that the cytoskeleton, and cellular adhesion remain 

unaffected after the kinase activity is inhibited (Garcia-Miralles et al., 2015). However, 

another study by Caesar, et al. 2015, demonstrated that LRRK2G2019S fibroblasts 

harbour cytoskeletal alterations due to a direct effect in actin dynamics and 

depolymerisation (Caesar et al., 2015). Fibroblasts harbouring mutations within the 

core portion of the LRRK2 protein (R1441G, Y1699C and G2019S), located in the 

ROC, COR and kinase functional domains, showed impaired autophagic response, 

mTORC1 independent, upon starvation. Here, impairment of the 

autophagy/lysosomal pathway was suggested as one of the leading disease 

mechanisms and highlights the importance of studying a variety of disease related 

mutations (Manzoni et al., 2013a). Moreover, fibroblasts from patients with LRRK2 

R1441C and G2019S mutations, displayed enhanced basal mitophagy and 

autophagy (Smith et al., 2016; Su and Qi, 2013; Yakhine-Diop et al., 2014). 

Increased autophagy with mitochondrial dysfunction in the G2019S fibroblasts has 

been suggested to be activated via increased mitochondrial recruitment of dynamin-

related (Drp-1), a protein involved in the mitochondrial fission (Su and Qi, 2013).   

3.1.4.3 PARKIN  
Fibroblasts from patients with parkin mutations have been widely used as a 

PD cellular model investigating the biochemical, functional and physiological 

mechanisms implied in the development of the disease (Grünewald et al., 2010; 

Haylett et al., 2016; Lobasso et al., 2017; Mortiboys et al., 2008, 2013, Rakovic et al., 
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2010, 2011; Vergara et al., 2014; Zanellati et al., 2015). Parkin belongs to the 

Ubiquitin E3 ligases family of proteins involved in the mitochondrial fusion and fission. 

As an E3 Ubiquitin ligase, Parkin acts in a diversity of cellular functions by modifying 

substrates and proteins, which leads to protein stability, regulation, modification, 

localisation and functionality (Panicker et al., 2017).  

 

Defective cytoskeletal proteins in parkin-mutant fibroblasts, cause irregular 

cellular shape and impaired elasticity, via actin regulation (Vergara et al., 2014). 

Parkin mutations impair the cellular bioenergetics status, mitochondrial function, 

respiration and morphology (Grünewald et al., 2010; Mortiboys et al., 2008; Pacelli et 

al., 2011) alongside biomechanical and molecular alterations as some of the 

principal causes of PD (Pacelli et al., 2011; Vergara et al., 2014). Parkin-mutant 

fibroblasts have a CI defect (Mortiboys et al., 2008; Pacelli et al., 2011), defective CI 

biogenesis  and  lower ATP production (Grünewald et al., 2010; Mortiboys et al., 

2008). However, CI deficiency was inconsistent in other parkin-mutant cell lines, 

where activity remained similar between controls and patients (Grünewald et al., 

2009; van der Merwe et al., 2014). Reduced CIV and citrate synthase enzyme were 

found in parkin-mutant fibroblasts (Pacelli et al., 2011). Oxidative stress may also be 

present in Parkin mutant fibroblasts (Grünewald et al., 2010; van der Merwe et al., 

2014; Mortiboys et al., 2008, 2013; Pacelli et al., 2011). These defects were present 

in fibroblasts with parkin knockdown, which support reports that the effect is due to 

parkin deficiency (Mortiboys et al., 2008). The peroxisome proliferator-activated 

receptor gamma coactivator 1 alpha (PGC-1α), a protein with several functions, 

pathway is dysregulated in Parkin deficient fibroblasts. This protein play a role in PD 

pathology by protecting the cells against oxidative stress and promoting 
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mitochondrial biogenesis (Pacelli et al., 2011). Resveratrol treatment rescues CI 

activity, where the rescue effect was suggested to be a mediated-mechanism via CI 

mitochondrial biogenesis or/and post-transcriptional modifications (Ferretta et al., 

2014). 

 

Drug screens performed by Mortiboys et al, 2013, showed that the natural 

compound ursolic acid, and the licensed drug ursodeoxycholic acid, rescued 

mitochondrial dysfunction in parkin-mutant fibroblasts. Here, enhanced Akt 

phosphorylation followed by the activation of the glucocorticoid receptor is crucial for 

the rescue effect (Mortiboys et al., 2013).  

 

Mitofusins (Mitofusin 1 and 2), located in the OMM, maintain the balance 

between mitochondrial fission and fusion (Schrepfer and Scorrano, 2016). Parkin-

deficient fibroblasts showed impaired Mitofusin 2 ubiquitination, which was rescued 

in by overexpressing Parkin (Rakovic et al., 2011). Impaired mitochondrial fusion and 

fission in parkin-deficient fibroblasts, but not in partially deficient cells, result upon 

cellular stress (Mortiboys et al., 2008). Impaired mitophagy has been related to 

parkin loss of function, which alters the PINK1/Parkin mitophagy pathway. Parkin 

mediated ubiquitination and mitophagy was impeded by ubiquitin-specific protease 

15 (USP15), a deubiquitinating enzyme. USP15 knock-down in parkin deficient 

fibroblasts rescued the mitophagy pathway, suggesting USP15 as new therapeutic 

target for PD (Cornelissen et al., 2014).  

 

Further research investigated the lipidome profile of parkin-deficient 

fibroblasts. Results showed a reduced phospholipid and glycosphingolipid content 
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and proportion; whereas high levels of phosphatidylinositol, phosphatidylserine and 

gangliosides were detected (Lobasso et al., 2017). These results suggested an 

unknown connection leading to inflammation, defective autophagy, mitochondrial 

function and morphology. 

3.1.4.4 PINK1  
After mitochondrial depolarization in PINK1-mutant fibroblasts with missense 

and nonsense mutations, PINK1 accumulates in the mitochondrial membrane and is 

effective but not essential to induce Parkin mitochondrial translocation upon stress, 

polarizing and non-depolarizing (Rakovic et al., 2010). Specific mutations alter 

PINK1 function at different stages. Different mutations can affect in a different 

manner the mitochondrial membrane potential (MMP) and biochemical properties, 

where missense mutations appear to be more deleterious (Grünewald et al., 2009). 

PINK1 expression and mitochondrial accumulation, but impaired stabilization in the 

outer mitochondrial membrane (OMM), were found in PINK1 mutant fibroblasts with 

missense mutations (See general introduction).  

 

PINK1 deficient fibroblasts displayed reduced parkin expression; in addition to 

a high susceptibility to proteasomal stress upon caspase activation (Klinkenberg et 

al., 2010). LRRK2 was found to be dysregulated in PINK1 mutant fibroblasts and 

corroborated in iPSC-derived neurons lines with PINK1 mutations. PINK1 

overexpression in control and mutant cell lines led to LRRK2 down-regulation; 

whereas in mutant tissue only, its dysregulation increased LRRK2 protein levels. It 

has been suggested that PINK1 might be inhibiting LRRK2 at the transcriptional level 

(Azkona et al., 2016). 
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A loss of PINK1 kinase activity, possibly secondary to ATP-binding site 

alteration, leads to proteasomal inhibition and Parkin translocation impairment (Ando 

et al., 2017; Exner et al., 2007; Siuda et al., 2014).  PINK1 p.G411S heterozygote 

mutation was described as a variant of risk for PD. Fibroblasts  harbouring the 

mutation showed a partial dominant-negative effect, where mutant PINK1 

heterodimerizes with wild-type PINK1, leading to impaired function and reduced 

kinase activity (Puschmann et al., 2016). Enzymatic kinase activity of PINK1 is 

important for Ubiquitin phosphorylation in the S65 residue (p-S65-Ub), which was not 

found in fibroblasts with PINK1 mutations. Nevertheless, the physiological relevance 

and pathology remain unknown (Fiesel et al., 2015).  Increased glycolysis, 

mitochondrial function and bioenergetics status, decrease levels of CI and CIV and 

enzyme activities of the respiratory chain were reported to be inconsistent in 

fibroblasts with PINK1 mutations and suggested to be mutation-dependant (Abramov 

et al., 2011; Azkona et al., 2016; Exner et al., 2007; Grünewald et al., 2009; Lopez-

Fabuel et al., 2017; Siuda et al., 2014). Mitochondrial morphology was reported 

altered in fibroblasts with missense mutations (Grünewald et al., 2009) and in PINK1 

deficient fibroblasts and rescued when wild-type PINK1 and Parkin are transfected, 

where a protective mechanism against stress has been suggested (Exner et al., 

2007). 

Ubiquitination of mitofusins was altered in Parkin and PINK1 mutationt 

fibroblasts, where the suspected leading mechanism is the degradation of the 

Mitofusins by the Ubiquitin Proteasome System (UPS) (Rakovic et al., 2011).  

   

3.1.4.5 Sporadic PD  
Ambrosi et al. reported that the proteasome catalytic subunit 20S and the 

polyubiquitinated proteins were higher in fibroblasts from sporadic PD patients. 
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Parkin protein levels were increased in sporadic PD fibroblasts and demonstrated to 

be the result of proteasomal impairment (Ambrosi et al., 2014). Sporadic PD 

fibroblasts also showed increased sensitivity to rotenone exposure, enhancing the 

proteasome mechanisms in response, rather than activate autophagy. Also, basal 

mitochondrial respiration may be reduced in the sporadic PD patients (Ambrosi et al., 

2014; Winkler-Stuck et al., 2004) and after rotenone exposure (Ambrosi et al., 2014; 

WIEDEMANN et al., 1999). 

3.2 Aims and objectiives 
TIGAR PD-related mechanisms have yet to be determined in a human cellular 

model. Pink1 and Parkin share common pathways in mitochondrial function and 

mitophagy.  

 

In this study, we aimed to determine TIGAR related mechanisms in fibroblasts 

from sporadic and familial PD patients. By knocking down TIGAR in this model we 

wanted to assess whether TIGAR knockdown can rescue the mitochondrial 

dysfunction.  

• Characterize TIGAR gene expression and protein level in human fibroblasts to 

determine differences between controls and patients. 

• Correlate TIGAR and Parkin protein levels in fibroblasts from controls and 

patients with parkin mutations. 

• Optimise effective and efficient transfection in human fibroblasts.  

• Achieve effective TIGAR knockdown in fibroblasts and assess the effect in 

mitochondrial function and bioenergetics status in controls and patients with 

PD mutations. 
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• Assess TIGAR cellular localisation in fibroblasts from controls and patients 

with Parkin mutations under normal conditions and upon toxin exposure 

• Determine whether TIGAR is involved in autophagy in fibroblasts from 

controls and patients with sporadic PD, which were previously identified to 

have mitochondrial defect.  
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3.3 Materials and methods 
3.3.1  Cell tissue culture 
3.3.1.1 Fibroblasts  

 

Fibroblast cell lines were obtained from two sources; from punch skin biopsies 

from control healthy individuals, patients with compound heterozygous or 

homozygous mutations in the parkin gene, one LRRK2G2019S and two sporadic PD; 

and Coriell Cell Repositories (Camden, NJ) (Table 3.1). All biochemical and 

morphological experiments were performed in fibroblasts from passage 7-12.  

 

Patients  

Case ID Mutations Gender AB (y) 

Parkin 

patients 

P1 
202_203delAG 

(X2) 
Del X4 F 48 

P2 
202_203delAG 

(X2) 
Del X2 F 38 

P3  
202_203delAG 

(X2) 

202_203delAG 

(X2) 
F 39 

ND31618 (P4) ARG42PROhet -- F 63 

ND30171 (P5) ARG42PRO Del X3 M 54 

ND37731 (P6) Del X3 40bp Del X3-X4 F 64 

LRRK2 

patients 
NPF-008(Pt-1) G2019S manifesting M 65 

Sporadic 

patients 

OB137 (Pt-a) Sporadic  M 50 

OB194 (Pt-b) Sporadic  M 61 

Table 3.1. Parkin, LRRK2 mutant and sporadic fibroblasts from patient biopsies. AB, Age at biopsy; y, 

years; X, exon; Del, deletion; het, heterozygote; hom, homozygous; M, male; F, Female. 
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Controls 

Case ID Gender AB (y) 

GM08400 F 37 

GM02153 F 40 

GM00730 F 45 

GM02189 M 63 

GM23967 M 52 

GM07924 M 63 

ND29510 F 55 

OB183 M 50 

OB153 M 61 

Table 3.2. Fibroblasts from healthy controls biopsies. AB, Age at biopsy; y, years; M, male; Female. 

 

3.3.1.2 Cell culture  

Skin fibroblasts 

Primary fibroblasts cells were maintained in T75 cell culture flasks and 

incubated in a humidified atmosphere with 5% CO2 at 37ºC. Skin fibroblasts from 

parkin, LRRK2-mutant patients and matched controls, were grown in Minimum 

Essential Medium with 10% Biosera Fetal Bovine Serum (FBS), 5 ml (1%) of 

Penicillin/Streptomycin, 0.1mM non-essential amino acids, 1mM Sodium Pyruvate, 

50ug/mL uridine and 1x MEM vitamins. Sporadic PD patients and matched controls, 

were grown in DMEM (Invitrogen) with 10% FBS (Sigma), 5 ml (1%) of 

Penicillin/Streptomycin, 1mM Sodium Pyruvate and 50ug/mL uridine. Media was 

stored at 4ºC and warmed to RT before use for cell culture and experiments. Cell 

passaging was performed when cells were >80% confluent. Fibroblasts were sub-

cultured at a ratio of 1:3.  
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Other cell lines 

HEK, HeLa and SH-SY5Y cells were grown in DMEM (Invitrogen) 

supplemented with 10% FBS (Sigma) and 5ml of Penicillin/Streptomycin. Media was 

stored at 4ºC and warmed to RT before use for cell culture and future experiments.  

3.3.2  TIGAR characterisation in human fibroblasts 
3.3.2.1 Sample preparation 

Cells were pelleted and lysed to obtain proteins without cell debris. At 70-80% 

confluency, cells were trypsinised and centrifuged at 400rcf for 4 min. The 

supernatant was discarded and the cell pellet was washed twice with 5mL of PBS. 

After the washes, the pellet was left to dry for 5 min and stored at -80ºC for future 

experiments. 

3.3.2.2 TIGAR gene expression 
To evaluate the TIGAR gene expression, Real-Time qPCR was performed in 

fibroblasts from healthy age-matched controls and parkin-mutant patients. Total RNA 

was extracted from cell pellets, using QIAGEN RNeasy kit (Qiagen) and cDNA was 

synthesised using SuperScript III cDNA first strand-synthesis Kit (Invitrogen), 

following the manufacturer’s instructions. Reaction mixtures were prepared at 20nM 

in a 20µl mix using 10µM of each primer forward and reverse, 10µl 2 X Brilliant III 

Ultra Fast SYBR master mix (Agilent), DNAse-RNase free water and 1 µl of cDNA 

added to a well in a 96 well PCR plate (Biorad), sealed with plastic caps. DNA 

amplification was performed by thermal cycling: initial denaturation at 95ºC for 10 

min, followed by 40 cycles of 95ºC for 30 sec and 60ºC for 1 min, then 60ºC for 1 

min in a PCR detection system (CFX96 Real-Time System, Biorad). Target gene 

expression level was normalised using GAPDH and β-actin as reference genes. 

Primer sequences are given in Table 3.3. 
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The gene quantitation was done relative to the reference genes by subtracting 

the cycle threshold (Ct) of either β-Actin or GAPDH, from the Ct of TIGAR (∆∆Ct=∆Ct 

gene of interest-∆Ct reference gene). The resulting value of Ct (∆Ct) was then 

normalised to control, then the exponent of the base 2 (2-∆∆Ct) was calculated to 

obtain the fold change. This was represented as the fold difference of template for 

the genes (Table 3.3). Five 5-fold serial dilutions of cDNA template were prepared 

and their threshold cycle value was determined. The threshold value versus the 

dilution factor was plotted in a base10 semi-logarithmic graph to obtain a straight line. 

The correlation coefficient (R2) was 0.999. Efficiency of the qPCR reactions of all 

gene primers were calculated based on the slope of the standard curve, where the 

closer slope to 100% is -3.32. The efficiency of all the qPCR reactions was 95-99%. 

For the knockdown expression, the normalised relative TIGAR gene expression was 

first calculated for each condition and then normalised against the untreated control. 

The knockdown percentage was calculated by subtracting the normalised ∆∆Ct 

expression of the control and multiplying by 100. The following formula was used in 

Excel for the calculation: (Power(10,-((∆Ct target-∆Ct reference)/3.333)))*100. 

Gene Sense Sequence 5’-3’ 

TIGAR 

A1  F CGGCATGGAGAAACAAGATT 

R TCCTTTCCCGAAGTCTTGAG 

B2 F CCAAAGCAGCCAGGGAAGAGTG 

R CCGCTTCTTTCAGGATTAGTTGAC 

C3 F CTCCAGTGATCTCATGAGGACA 

R TGACTCAAGACTTCGGGAAAG 

β-Actin 
F GATGCAGAAGGAGATCACTGC 

R ACTCTGCTGGAAGGTGGAC 

GAPDH 
F CTGACTTCAACAGCGACACC 

R ATGAGGTCCACCACCCTGT 

Table 3.3. Primers used for TIGAR characterisation. All primers were used for TIGAR gene expression by 

qPCR   1(Bensaad et al., 2006). Glyceraldehide 3-phosphate deshydrogenase (GAPDH); Primer forward (F); 

Primer reverse (R). 
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3.3.2.3 Western blotting  

TIGAR and Parkin protein determination 

Western Blots were performed to compare the levels of TIGAR protein 

between controls and parkin-mutant fibroblasts, and determine whether the different 

attempts to knock TIGAR down using the siRNA antisense strategy had the desired 

effect. We also looked if there was a correlation between the protein levels of TIGAR 

and Parkin, involving the pathologic process in PD. The fibroblast cell pellet was re-

suspended in Lysis Buffer containing RIPA (Radio-Immunoprecipitation Assay) 

buffer (Sigma Aldrich, USA) and diluted phosphatase inhibitors (1% v/v) (Sigma 

Aldrich, USA) and phosphatase inhibitors cocktail (1% v/v) (PIC). Cell lysates were 

incubated on ice for 30 min and centrifuged at 15871 g at 4°C. Supernatant was 

collected and total protein concentration was measured using the Bradford assay to 

select the appropriate amount of protein. 

 

The Bradford assay is a colorimetric assay, which enables the determination 

of the protein concentration from the cell lysates. A standard curve was obtained by 

preparing various protein concentrations of Bovine serum albumin (BSA) as 

standards. BSA concentrations (µg/ml) of the standards used were: 100, 125, 250, 

500, 750, 1000, 1200 and 1500. The same volume of three serial dilutions of the 

samples and standards were loaded in a 96 well plate in triplicate and 250 µl of 

Coomassie Blue reagent (Biorad) was added to each well. The absorbance was 

measured immediately at 595 nm and the standard curve was prepared. The protein 

concentration was calculated using the linear equation (Figure 3.1).  



122 
 

 

Figure 3.1. BSA standard curve. The absorbance obtained for each standard was plotted in a linear regression 

graph, where each measurement is theoretical to its concentration. A straight line is obtained and expressed in 

the equation “y=mx+b”; where y = absorbance (595nm) and x=protein concentration. Each sample represents the 

average of three replicates. Protein concentration was calculated after the measured absorbance for each 

sample was obtained  

The volume of cell lysate was determined and mixed with 2x Laemmli buffer 

(4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% bromophenol blue and 

0.125 M Tris HCl). Samples were heated for 3 min at 100°C and centrifuged for 1min 

at 2347 g. The same amount of protein from each sample was loaded on a 12% 

polyacrylamide gel (SDS-PAGE) (Table 3.4). 

 

 

Resolving gel 12% Stacking gel 5% 
Reagent  Vol Reagent  Vol 

30% Bis/Acrylamide 4 mL 30% Bis/Acrylamide 1.7mL 
1.5M Tris HCL / 13.9 mM SDS / 
pH 8.8 2.5 mL 0.5M Tris HCL pH6.8/ 13.9 mM 

SDS / pH 6.8 2.5 mL 

dH2O 3.5 mL dH2O 2 mL 
10% Ammonium Persulfate 
(APS) 100 µL 10% Ammonium Persulfate (APS) 50 µL 

N, N, N’, N -Tetramethyl-
ethylenediamine (TEMED) 10 µL  N, N, N’, N -Tetramethyl-

ethylenediamine (TEMED) 20 µL 

Table 3.4. Composition of resolving and stacking polyacrylamide gels.  

Gels were assembled in a Mini-PROTEAN Tetra Vertical Electrophoresis cell 

(Biorad). The pre-stained protein marker (Precision Protein Dual Colour Standard 

(Biorad)) was loaded, followed by samples into each well. Stacking (separating) gels 

were run at low voltage (50 V) and running gel at a higher voltage (120 V) in a 

running buffer (Table 3.5). The process was complete when the dye front ran off the 
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bottom of the gel. Proteins were transferred applying a wet electrophoretic transfer 

(Table 3.5) to a PVDF membrane for 1.5 hours at 250 mA.  

 

Buffer  Reagents  Buffer Reagents Buffer Reagents  

Running 
buffer  

25 mM Tris 

Transfer 
buffer  

25 mM Tris 

TBS-T 
pH 7.6 

150 mM NaCl 
190 mM 
Glycine 

192 mM 
Glycine 20 mM Tris 

0.1% SDS 20% v/v 
Methanol 

0.1% Tween-
20 

Table 3.5. Solution and Reagents used for Western Blotting. 

The membranes were blocked with 5% non-fat dried milk (Mavel) diluted in 

TBS-T (Table 3.5), after which, membranes were incubated overnight at 4ºC with 

primary antibodies against TIGAR (Santa Cruz) and Parkin (Cell Signaling) (Table 

3.6). Then, membranes were incubated with secondary antibody horseradish 

peroxidase (HRP) (Table 3.6). Membranes were washed three times in TBS-T at RT 

for 15 min. Then, membranes were incubated with enhanced chemiluminescence 

(ECL) in a 1:1 ratio of solution 1 (Luminol Enhancer) and solution 2 (Peroxide 

solution) for 1 min before imaging. Bands were detected using a G-Box (Syngene). 

Actin and α-Tubulin were used as loading controls. Quantification was done by 

densitometry analysis using G-Box Syngene Image software. 

Antibodies Catalogue 
number Company Dilution Molecular 

weight (kDa) Host 

 Primary antibodies 
Anti-Actin antibody 

ACTN05 (C4) ab3280 Abcam 1:1000 42 R 

TIGAR antibody 
TIGAR(G2)  sc-74577 

Santa Cruz 
Biotechnology 1:1000 30  M  

Monoclonal anti-α-
Tubulin T9026 Sigma 1:10000 50  M 

Monoclonal Parkin 
antibody CST-4230* 

Cell signaling 
Technology 

1:1000 52 M 

Monoclonal Parkin 
antibody(Prk8) CST-4211 Cell-signaling 

Technology 
1:1000 50  M 

Secondary antibodies 
Anti-rabbit HRP IgG 1706515 Biorad  1:5000 - G 
Anti-mouse HRP IgG 1706516 Biorad 1:10000 - G 

Table 3.6. Antibodies used for TIGAR characterisation and Parkin detection. Goat (G), Mouse (R); Rabbit 

(R), *discontinued. 
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3.3.3  Comparison with other common cell lines in research 
 For future assays in a suitable and different cellular model system, we 

characterized TIGAR and Parkin protein levels in HEK, HeLa, SHSY-5Y and 

LUHMES (Lund human mesencephalic). LUHMES cell lysates were provided by Prof. 

Stephen Wharton’s group (SITraN). All cell pellets were prepared as mentioned in 

sample preparation.  

3.3.4 TIGAR immunofluorescence 
 Immunofluorescence was performed to assess the effects on TIGAR 

localization and expression after inducing cellular stress. First, we tested different 

TIGAR antibodies (Table 3.7). Fibroblasts were seeded at 1.3 x 104 cells/well in a 

24-well plate containing a glass coverslip and grown for 48 hrs. Wells were rinsed 

with PBS and fixed with 4% paraformaldehyde (PFA) for 10 min. Cells were then 

rinsed with PBS and permeabilised using 0.3% Triton-X. Followed by incubation with 

5% BSA in PBS (Blocking buffer) for 1 hr at RT to block non-specific binding. Cells 

were then rinsed with PBS and diluted primary antibody (Table 3.7) in blocking buffer 

was applied to all the wells and incubated overnight at 4ºC. Cells were rinsed with 

PBS and incubated with fluorescent secondary antibody (Table 3.7) diluted in 

blocking buffer for 1 hr in the dark at RT.  

 
Antibody Company Dilution  Region Host 

Primary antibodies 
Anti-TIGAR 

antibody. (AB10545) 
Polyclonal  

Millipore 1:500 
KLH-conjugated linear 
peptide that lies in the 

central region of the protein 
R 

Anti-TIGAR 
antibody. (ab 

129333) 
Polyclonal 

ABCAM 1:800 

Synthetic peptide raised 
against the 19 aas from a 

region near the central 
region of the protein 

R 

TIGAR Polyclonal 
antibody (PA5-

29152) 
Polyclonal 

Thermo Scientific 1:1500 Synthetic peptide 
corresponding to a region 
within C terminal amino 

acids 220-270 of the protein 

R 

Anti-TIGAR  
Antibody (LS-

C286858) 

LifeSpan 
Biosciences 1:500 R 
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Polyclonal 

Anti-TIGAR 
antibody1 

Monoclonal 
 

(Bensaad et al., 
2006) 1:300 

Antibody raised against 
peptide corresponding to 
aas. 256-270 in exon 6-
encoding region of the 

protein. 

M 

Anti-TOM20 (FL-
145) 

Monoclonal 

Santa Cruz 
Biotechnology 1:500 

Antibody raised against aas 
1-145 representing the full 

length of the protein. 
R 

Anti-TOM20 
Monoclonal BD Biosciences 1:1000 Antibody raised against aas. 

47-145 M 

Secondary antibodies 
Alexa Fluor 555a Invitrogen  1:1000 γ-IgG H and L R  
Alexa Fluor 488b Invitrogen  1:1000 γ-IgG H and L M 

Table 3.7. Antibodies used for TIGAR immunofluorescence. Mouse (M); Rabbit (R); aa., aminoacids; gamma 

immunoglobulins (γIgG). Antibody donation from Dr. Karen Vousden (Bensaad et al., 2006).  

3.3.5  RNAi mediated TIGAR knockdown: siRNA transfection 

3.3.5.1 Transfection efficiency  

Transfection reagents  

For transient TIGAR siRNA knockdown, we first assessed the transfection 

efficiency using different reagents and cellular densities in order to achieve the best 

knockdown effect. Lipofectamine 2000 (Invitrogen) is a cationic liposome formulation, 

which permits the introduction of the genetic material by cell membrane electrostatic 

repulsion. EndoFectin™ Max (GeneCopoeia) and DharmaFECT 1 and 3 

(Dharmacon, GE) are both cationic lipid-based transfection reagents. These 

transfections reagents form complexes with nucleic acids and facilitate their delivery 

into a wide range of commonly used mammalian and primary cell lines. 

Transfection procedure 

Initially, a suitable dose and concentration was assessed in a 96-well plate 

format in order to obtain the highest efficiency and least toxicity. After fibroblasts 

were 70% confluent, one day prior to transfection, cells were seeded at 2-5x103 

cells/well in 100 µl antibiotic-free media in a 96 well plate. 
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On the day, transfection complexes were prepared using Opti-MEM® I to 

dilute transfection reagent, and FITC labelled scramble siRNA (Ambion) control 

separately. Each mixture was incubated for 5 min at RT. The diluted amounts for 

each reagent are detailed in the (Table 3.8). Then, mixtures were gently mixed and 

incubated for 10 min at RT. Opti-MEM was added to the mix for a final volume of 

100µl of transfection medium. Cell culture medium was removed from the plates and 

replaced with transfection medium for each transfection reagent/siRNA complex.    

    

Transfection reagent 
(TR) 

Tube 1: diluted TR Tube 2: diluted siRNA 

Volume of TR Opti-MEM® Volume of 20µM 
siRNAa Opti-MEM® 

Lipofectamine 2000 0.1, 0.2, 0.5, 
0.75 µl 9.5 µl  

0.3 µl 

9.5 µl 

DharmaFECT 1 0.1, 0.3, 0.5 µl 
9.5 µl 9.5 µl 

DharmaFECT 3 0.1, 0.3, 0.5 µl 

Endofectin™ Max 0.2, 0.35, 0.5 
µl 5 µl 5 µl 

Table 3.8. Conditions for transfection of fibroblasts for each Transfection Reagent. Reagents tested at 

different concentrations for cell toxicity and transfection efficiency. *Final concentration 30nM in 200µl of serum-

free media  

Media was replaced 6 hrs after transfection to avoid cell toxicity and obtain 

the best transfection efficiency, except for Endofectin.  

Self-transfecting Accell siRNA  

Dharmacon Accell siRNA® transfection system (Dharmacon, GE) is a new 

method designed for delivery into cells difficult to transfect. The system uses a 

naked and chemically modified siRNA, without requiring the use of transfection 

reagents, virus or any other instrument used in standard RNAi methods. Therefore, 

lower toxicity without secondary viral effects can be achieved. In the present study, 

we tested this new method and compare it with conventional RNAi methods here 

assessed.  
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Accell siRNA transfection in fibroblasts, was optimised by assessing the effect 

in human fibroblasts treated with positive and negative controls. Negative controls 

(Table 3.9) are non-sequence-specific siRNAs with minimal targeting of known 

genes in human cells and should not have a specific cellular response. Negative 

controls are useful for siRNA delivery assessment and to determine the effect with 

siRNA-treated samples. Positive siRNA controls (Table 3.9) target highly expressed 

and non-essential cellular genes; therefore, viability is not affected when they are 

knocked-down. Positive controls are useful to optimise experimental conditions.  

Accell siRNA preparation 

Accell siRNAs work at 1µM, which is a higher concentration compared to 

standard siRNA. First, 5x siRNA buffer (Dharmacon, GE) was diluted in 4 volumes 

of RNase-fee water to obtain 1x siRNA buffer. All siRNAs (Table 3.9) were then 

diluted and prepared at 100µM in the 1x siRNA buffer, pipetted then 3-5 times up 

and down avoiding bubbles. Finally, the solution was placed in a shaker for 90 min 

at 37ºC, centrifuged, collected, aliquoted and stored at -20ºC for future experiments.  

Controls Company / catalogue 
number 

Unit 
size Description 

Accell Non-
targeting siRNA #1 

Dharmacon / D-001910-
01-05  

5 nmol 

Specific negative control, without targeting 
any gene product.  

Accell cyclophilin B Dharmacon / D-001920-
01-05 Specific positive control for silencing.usually 

known to achieve high levels of knockdown  
Accell GAPD siRNA Dharmacon / D-001930-

01-05 
Accell red Non-
targeting siRNA 
(Dy-547-labelled) 

Dharmacon / D-001960-
01-05 

Assessment of siRNA uptake by fluorescent 
microscopy to dye-labelled siRNA. Filter 
Cy3 (Rhodamine) 

Table 3.9. Accell siRNA controls. 

Accell siRNA delivery 

Briefly, control fibroblasts were seeded at different densities from 2.5-4 x 103 

cells/well in 100µl Accell Delivery Media and incubated overnight at 37ºC with 5% 

CO2. Then, 24 hrs after plating, growth media was removed and replaced with 100µl 



128 
 

Accell Delivery media containing with or without 1µM siRNA for each control (Table 

3.9). Cells were incubated then for 48hrs; after which, medium was replaced with 

glucose-free galactose medium and further incubated to assess ATP at 96 and 

72hrs. mRNA and protein knockdown were assessed at 72hrs. 

 

Cytotoxicity was assessed for all the RNAi methods. First, with ATP assays 

measurements (See Section 3.3.6.1) at ~70% confluency and viability for: a) each 

transfection reagent alone; b) with Accell siRNA treated positive and negative 

controls. A comparison of each condition was performed by testing a range of 

cellular densities. Efficiency was then assessed by using either FITC scramble 

siRNA or Accell Red Non-targeting siRNA (Dharmacon, GE Healthcare) then 

imaged using the InCell Analyzer 2000 (GE Healthcare) and analysed with the 

InCell Developer Toolbox 1.9.2 Software. The image analysis was performed by 

image segmention to find nuclei and siRNA fluorescent signal according to intensity, 

shape and size per cell.   
 

Culture 
Vessel 

Surf. 
Area 
(cm2) 

Cell 
seeding 
density 

Vol. of 
plating 

medium 

Dilution 
medium of  

transfection 

siRNA 20 
µM 

Lipofectamine 
2000 

96-well 
plate 0.32 3.5 x 103 200 µl 2 x 100 µl 0.2 µl 0.1-0.75 µl 

6-well 
plate 10 1.6 x 105 2.5 ml 2 x 500 µl 1.5 µl 3.5 µl 

T25 flask 60 3 x 106 4 ml 2 x  1 ml 6 µl 20-30 µl 
Table 3.10. Scaling up and down transfections. Example of vary amounts of transfection reagents, medium, 

cells and nucleic acids required in different tissue culture formats. 

 

3.3.5.2 TIGAR siRNA sequences 
TIGAR expression was inhibited by transfection with small interfering RNAs 

(siRNAs) against TIGAR from 3 sources: TIGAR siRNA (h) (Santa Cruz); ON-
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TARGETplus Human C12orf5 siRNA SMARTpool (Dharmacon, GE Healthcare) and 

SMARTpool from Accell siRNA (Dharmacon, GE Healthcare) (Table 3.11).   

To knock down TIGAR expression and avoid off-target effects, transfection 

conditions were modified to assess increasing concentrations of siRNAs. We first 

tested the siRNA pool targeting the exon 6 within the 3’UTR region to check TIGAR 

know-down efficiency. 

siRNA against 
TIGAR Target specific sequence 

Santa cruz biotechnolology 
TIGAR siRNA (h)  

sc-76662A Sense: CCACUUGCUUCUUAUCUAAtt 
Antisense: UUAGAUAAGAAGCAAGUGGtt 

sc-76662B Sense: GGAAGCACAUAAAGUAAGAtt 
Antisense: UCUUACUUUAUGUGCUUCCtt 

sc-76662C Sense: CCAUCAAUUUGGAAGUACAtt 
Antisense: UGUACUUCCAAAUUGAUGGtt 

Dharmacon  
ON-TARGETplus Human C12orf5 siRNA - SMARTpool 
siRNA J-020597-09 GUAGAAGGCAAAGCGCUAA 
siRNA J-020597-10 GUUAAUUCAGACAGCGGUA 
siRNA J-020597-11 GCAUGGAAUUUUGGAGAGA 
siRNA J-020597-12 GUAUGAACCUACAGGAUCA 
Dharmacon 
Accell SMARTpool siRNAC12orf5 
siRNA A-020597-13 CUAACAUGUUUUACGUAUA 
siRNA A-020597-14 GUAUGAACCUACAGGAUCA 
siRNA A-020597-15 UCUUAUUAUUUUAUGGUUA 
siRNA A-020597-16 GUAUAUCCCUGCAAUUUUA 

Table 3.11. TIGAR siRNA pool sequences. The complete target sequences from each of the siRNA contained 

in each pool from the 2 different sources used in this study.  

                                

Figure 3.2. TIGAR gene schematic representation. The 6 predicted exons of TIGAR gene are in represented 

in purple and the UTR regions are represented in violet. The targeted regions from the first siRNApool against 

TIGAR (Santa Cruz) act are in the 3’ UTR region of exon 6 (arrows). The second SMARTpool siRNA against 

TIGAR (Dharmacon) act within the exons 4, 5 and 6 (asterisks). The third Accell SMARTpool siRNA against 

TIGAR (Dharmacon) act within the exon 6 and its 3’ UTR region (stars). 
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Levels of TIGAR mRNA were quantified and normalised to β-actin and 

GAPDH. For western blots, cells were collected from 10 cm petri dishes, after 48hrs 

of transfection. We then check whether the second siRNA SMARTpool, targeting the 

exons 4, 5 and 6, had the desired knock-down effect in human fibroblasts. Western 

blots were performed after 48 hrs of transfection from T25 flask. 

3.3.6  Mitochondrial function assessment 
3.3.6.1 ATP assays 

Cultured fibroblasts typically generate their ATP through glycolysis if grown in 

glucose-rich medium. When the medium is changed to galactose, they rely on the 

oxidative phosphorylation pathway to produce ATP (Mortiboys et al., 2008). The ATP 

assays were performed over 3 consecutive passages as biological triplicates. 

Galactose media components: DMEM without glucose (Invitrogen) suplemented with 

0.9 mg/ml galactose, 10% FBS (Sigma), 5 ml (1%) of Penicillin/Streptomycin, 1mM 

Sodium Pyruvate, 1X MEM vitamins and 50ug/mL uridine.  After reaching 70-80% of 

confluency, cells were trypsinised and re-suspended with 1 mL of media. Cells were 

counted by taking 10 µl of cell suspension and using a haemocytometer. Cells were 

resuspended in 200 µl of normal glucose or galactose media and seeded at a 

density of 2.5-5x103 per well into 96-well plates according to the assay. ATP cellular 

level was measured using the ATPliteTM Luminescence Assay System (Perkin Elmer 

Inc).  

 

ATP production was assessed under different conditions. 24 hrs after of 

plating, media was exchanged for glucose-free galactose media. Cells were further 

incubated for 24 or 48 hrs. Reagents were warmed to RT before starting the assay. 

Lyophilised substrate was reconstituted with 25 mL of substrate buffer solution and 

gently agitation. Cells were removed from the incubator and media aspirated. In 
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order to remove any remaining media, 2 washes with 100 µl of PBS were performed, 

after which 100µl of PBS was added with 50 µl of mammalian cell lysis solution per 

well and the plate was placed on a plate shaker at 700 rpm for 5 min. This allows 

cells to lyse fully and to stabilise ATP levels. Then, 50 µl of substrate solution was 

added and plate was shaken for further 5 min at 700 rpm. The plate was then left to 

adapt to the dark for 10 min. and assessed using a FLUOstar Omega microplate 

reader (BMG LABTECH) at 520 nm, Gain 3600 5% adjustment on luminescence 

mode.  

3.3.6.2  CyQUANT measurement 
Cell density was measured with CyQUANT Cell Proliferation Assay Kit (Life 

technologies, USA). To prepare the HBSS buffer 1x, the 5x HBSS buffer was diluted 

with deionised water. The 1x dye binding solution was prepared by adding 

CYQUANT dye reagent (1:500 dilution of stock reagent provided) to the 1x HBSS 

buffer. After ATP was measured, 50 µl of prepared dye solution were added per well 

and incubated for 1 hr at 37ºC. The fluorescence was measured at 480/530 nm 

Ex/Em using a FLUOstar Omega plate reader. The normalised data was obtained 

when the total ATP was divided by the CyQUANT measurement per well in triplicate. 

Averages from controls were taken as a 100% and the ratio corresponding to 

patients was calculated. 

3.3.6.3 Seahorse assays: Oxygen consumption (OCR) and extracellular 
acidification rates (ECA) measurements. 

PD-mutant fibroblasts and controls 

The Seahorse XF24 Analyzer (Seahorse Bioscience) was used to assess the 

intact cellular endogenous respiration rates and glycolysis at the same time. 

Mitochondrial respiration was measured as the rate of oxygen consumption (OCR) 

and glycolysis by the extracellular acidification (ECAR). Basal OCR and ECAR were 

measured under basal conditions and upon sequential administration of 
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mitochondrial inhibitors: oligomycin, Carbonyl cyanide m-chlorophenyl hydrazine 

(CCCP), rotenone and antimycin A (Table 3.12). ATP-linked respiration was 

obtained from the difference between OCR at baseline and respiration after 

oligomycin injection. Mitochondrial OCR is measured by the difference of OCR after 

antimycin A addition and basal OCR. Oxygen consumption due to proton leak was 

obtained from the difference between antimycin A and oligomycin. Maximal OCR is 

the measurement resulting from OCR after CCCP administration, subtraction from 

OCR induced by CCCP. Spare respiratory capacity is obtained by the difference 

between maximal OCR and basal OCR. The obtained difference OCR after rotenone 

and antimycin A administration was measured as Non-complex I. Coupling efficiency 

was obtained from the fraction of ATP synthesis OCR divided by basal mitochondrial 

OCR. The respiratory cell ratio (RCR) was calculated by dividing maximal OCR by 

oligomycin-insensitive OCR. 

 

The seahorse assays represent two sets of experiments. First, mitochondrial 

respiration OCR and ECAR were assessed in two controls and two parkin-mutant 

fibroblasts in triplicate. Second, TIGAR knockdown effect was performed in one 

control and one LRRK2G20192-mutant fibroblasts.  

Seeding cells in XF24 Cell Culture Microplates  

Seahorse culture plates were prepared by coating with gelatine 48 hrs before 

plating, covered and stored at 4° C overnight.  Seahorse plates were set up 24 hrs 

previous the assay. Gelatine was removed from all the wells and then rinsed with 

sterile dH20. All liquid was removed carefully from the plate and left to dry. Cells 

were seeded at 3.5 x 104 cells/well in 200 µl of galactose media in a 24-well 

Seahorse culture plate. Cells were placed in the incubator for 1-2 hrs, to let cells to 
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attach to the plate. Once cells were attached, 300 µl of galactose media was added. 

Plate was incubated at 37o C overnight.  

XF assay media preparation 

XF assay media was prepared 24 hrs before assay. 48.5µl of XF DMEM 

media was aliquoted and heated to 37o C; followed by addition of 0.5 ml of 0.1g/ml of 

glucose, 0.5 mL of 2-mM glutamine and 0.5 µl of 1-mM Sodium Pyruvate. XF DMEM 

Media pH was adjusted to 7.4 by diluting NaOH, passed through a sterile filter and 

stored at 4oC overnight.  

Sensor cartridge hydration 

The sensor cartridge contains a set of probes, which are important to detect 

pH and O2 changes. The day before the assay, XF Flux plate was prepared by: 1) 

removing the sensor cartridge from the utility plate, 2) 1 ml of calibrant solution was 

added to each well of the utility plate and, 3) return sensor cartridge onto the utility 

plate and sensors submerged in XF calibrant solution. Plate was incubated without 

CO2 at 37o C overnight.  

Running XF assay 

On the day, the XF assay media was warmed up to 37o C. Media from the 

blank wells was removed and replaced with 100µl assay media, which served as 

guidance. Media contained in wells with cells was removed leaving only 100µl by 

using guides in blank wells. This was followed by 900µl of XF assay media careful 

administration to the top of each well, without disturbing the cellular layer. Finally, 

900 µl of media was again removed and replaced with 575 µl of fresh XF assay 

media. Seahorse culture plates were then placed at 37ºC without CO2 for 1 hr to 

allow temperature and O2 calibration.  
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Loading the XF24 Cartridge plate with compounds 

During Seahorse culture plate incubation, the XF24 Cartridge plates were set 

up with the mitochondrial inhibitors drugs listed in Table 3.12. The drugs were 

injected sequentially in the injection ports (A-D) to determine the OXPHOS function. 

The XF24 Cartridge plates were carefully transferred to the Seahorse XF24 flux 

analyser to allow calibration before the assay. XF24 Cartridge plates were then 

replaced with XF24 Cell culture plates to run the assay. Each OCR measurement 

consisted of: 3 min mixing; 2 min wait time and 3 min of continuous measuring of O2 

levels. Basal OCR and ECAR were obtained previous to the addition of Oligomycin, 

CCCP, Rotenone and Antimycin A. The effect on the mitochondrial respiration and 

ECAR was measured for 3 min for each component. 

Cellular normalisation 

For normalisation after cells had been analysed in the Seahorse, Cyquant 

reagent (1:500) was added to the wells and incubated without CO2 for 30 min. 

Normalization was performed by nuclear count after imaging fluorescent nuclei using 

the Incell Analyzer 2000 (GE Healthcare) and analysed with the InCell Developer 

Toolbox 1.9.2 Software. 

 

Injection Compound Action 
Assay 
Conc 
(µM) 

Injection 
Conc (µM) 

Stock 
Conc 
(mM) 

Dilution 
Factor 

Vol into 
3mLs 
(µL) 

A Oligomycin Inhibit CV 0.5 5 10 1:2000 1.5 
B CCCP Uncoupler 2.5 25 10 1:250 7.5 
C Rotenone Inhibit CI 0.5 5 2 1:250 7.5 
D Antimycin Inhibit CIII 0.5 5 2.5 1:200 6 

Table 3.12. Mitochondrial inhibitors used in this study. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP); 

complex I (CI); complex III (CIII); complex V (CV); Concentration (Conc). All compounds were diluted in XF Assay 

media before being loaded in the sensor cartridge. 
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3.3.7  TIGAR knockdown effect in fibroblasts 
Transfection conditions and efficiency of RNAi mediated TIGAR knockdown 

were optimised and assessed in control fibroblasts. Cells were transfected with 

either 30nM siRNA TIGAR or Scramble siRNA using Lipofectamine 2000. 

Mitochondrial respiration and glycolysis was assessed in the knockdowns after 48 

hrs using the Seahorse XF24 Analyzer to measure the OCR and ECAR in the 

derived fibroblasts from one control and one LRRK2G2019S patient. Normalisation was 

done by nuclei count. 

3.3.8  Cellular stress: Rotenone toxic exposure  
One hypothesis of the causes leading to neuronal cell death in PD suggests an 

inhibition of the mitochondrial CI activity. One of the important inhibitors of 

mitochondrial CI, currently used in PD research, is rotenone. In order to assess the 

effect on TIGAR expression and cellular localisation upon cellular stress, cells from 

controls and parkin-mutant fibroblasts were treated with 25nM rotenone. We 

assessed four different conditions: 1) glucose only, 2) glucose with rotenone, 3) 

galactose only and, 4) galactose with rotenone. Cells were seeded at 1.2 x 104 

cells/well in a 24-well plate containing a glass coverslip. Media was removed from 

wells and replaced with: normal MEM glucose media, normal MEM media with 25nM 

rotenone, galactose media and galactose media with 25nM Rotenone. Cells were 

exposed for 48 hrs and fixed with 4% PFA as described earlier (TIGAR 

immunofluorescence) for immunofluorescence. We used two different TIGAR 

antibodies and compared the results. Primary visualization was performed using a 

Leica SP5 confocal microscope system with a x40/1.3 oil immersion objective lens. 

TIGAR (Leica/566) and TOM20 (Leica/488), within a high resolution (246.27 x 

246.27 microns per image, 1024 x 1024 pixels) z-stack made up of images 0.5 µm 
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intervals. Then, images were captured in a wide-field system using a Nikon inverted 

T1 microscope with dual camera. Eight Images per field per condition per patient 

were captured and deconvolution software was used to improve stacked images (Z-

sectioning). This avoided the need of lasers usually employed in confocal imaging. 

The quantitative colocalisation analysis of TIGAR and Tom20 signals was assessed 

with ImageJ and JACoP plug-in (BOLTE and CORDELIÈRES, 2006) to determine: 

a) Pearson’s coefficient; which measures dependency of pixels in dual-channels 

and plotting two images values in grey against each other. It estimated the 

approximation between the signals. It ranges from 1 (complete positive 

colocalisation) to -1 (no colocalisation)    

b) Mander’s coefficients; which is based on Pearson’s correlation coefficient 

where intensity average is taken out of the mathematical expression. It ranges 

from 0 (no overlap) to 1 (complete positive colocalisation). 

Both coefficients are used to measure the linear correlation of two variables 

(Pearson´s) and the proportion of intensity coming from fluorescent pixel colocalising 

signals coming from different colour channels (Mander´s) (Dunn et al., 2011). Since 

both coefficients were good indicator of concurring signals; TIGAR and Tom20 

signals were used to assess colocalisation.  

3.3.9  TIGAR and autophagy 
We then investigated whether TIGAR is implicated in autophagy and/or 

mitophagy. Current treatments for mitophagy activation use high doses of carbonyl 

cyanide m-chlorophenylhydrazone (CCCP), which is a mitochondrial uncoupler. 

CCCP promotes the dissipation of the mitochondrial membrane potential, which 

promotes mitochondrial PINK1 accumulation with subsequent Parkin recruitment. 

Finally, it is believed the process promotes mitochondrial clearance by mitophagy. 
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Bafilomycin in a lysosomal inhibitor, which acts by inhibiting the vacuolar type H(+)-

ATPase and prevents lysosomal acidification. Here, we assessed the effect in 

fibroblasts from two controls and two patients with sporadic PD.  

 

Each treated cell lysates were provided by MSc Rebecca Burger. Shortly, 

provided cell lysates were from four different pre-treatment conditions for 4 hours: a) 

untreated, b) 100nM bafilomycin, c) 10µM CCCP and, c) CCCP with bafilomycin.  All 

cell pellets were then assessed by WB for TIGAR protein levels as described earlier 

(TIGAR and Parkin protein determination) and compared between controls and 

patients.  

3.3.10 Statistical Analysis 
Unless specifically stated otherwise, experiments were done in triplicate and 

values were expressed as means and Standard Deviations (SD). The data was 

analysed using the software GraphPad Prism 7. Statistical test included: unpaired t-

test and non-parametric tests with Bonferroni correction (Mann-Whitney U), and 

ANOVA with multiple comparisons. For TIGAR colocalisation analysis, Image J 

software and JaCoP plug-in were used for Pearson’s and Manders coefficients.  
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3.4 Results 
3.4.1  TIGAR gene expression 

First we investigated TIGAR gene expression in primary fibroblasts of the two 

groups. TIGAR mRNA levels were compared between the six patients with parkin 

mutations (P1-P6) and six matched healthy controls (C1-C6). Overall, there was no 

significant difference, with TIGAR expression being similar in the parkin-mutant 

patient fibroblasts and controls (Figure 3.3). TIGAR mRNA levels were slightly higher 

in the patients (mean=1.217, SD=0.1) compared to the controls (mean=1.067, 

SD=0.81), but this did not reach statistical difference (Mann-Whitney U, P=0.3095) 

(Figure 3.3).  

 

Figure 3.3. TIGAR gene expression in fibroblasts from controls and patient fibroblasts with Parkin 
mutations. Bar graphs represent the fold change of TIGAR expression between controls (mean=1.067, SD=0.81, 

n=6) and patients (mean=1.217, SD=0.1, n=6). Analysis showed no statistical difference between controls and 

patients (Mann-Whitney U, P=0.3095). Results are expressed as the mean +SD of samples from 3 independent 

experiments.  

3.4.2  TIGAR and Parkin protein level 
We then investigated TIGAR protein expression in primary fibroblasts from 

controls and parkin-mutant patients. Initially, controls were used to optimise the 

protein amount and antibody concentration for the group comparison. Next, we 

investigated whether TIGAR protein levels were different between controls 

(mean=0.7483, SD=0.1552, n=6) and parkin-mutant patients (mean=0.8386, 
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SD=0.297, n=6). No significant difference was found between controls and patients 

when a group comparison was undertaken (Mann-Whitney U, P=0.8182). However, 

one parkin-mutant fibroblast cell line (P1) had an almost 2-fold overexpression 

(Figure 3.4 b) compared to the controls and the other parkin-mutant patient lines 

(Figure 3.4 a-b). Therefore, we decided to investigate whether Parkin protein levels 

were correlated to TIGAR protein levels in the fibroblast lines. 

 

Figure 3.4. TIGAR protein levels in fibroblasts from controls and patients with Parkin mutations. WB 

image (a) and densitometry analysis (b, c) using Tubulin as loading control. b) One patient-mutant patient line 

showed almost a 2-fold increased TIGAR protein levels compared to the controls and other parkin-mutant patient 

lines (2-way ANOVA, *P=0.0334). c) However, group analysis showed no difference between controls (n=6) and 

patients (n=6) (Mann-Whitney U, P=0.8182). Bars represent the mean values +SD, from three independent 

experiments.  

 

Parkin protein levels were quantified in primary fibroblast cell lines from the 

six controls and six patients with parkin mutations by performing WB. As shown in 

(Figure 3.5), Parkin and b-actin protein levels were determined and quantified by 

densitometry. WB analysis demonstrated that Parkin was significantly decreased in 

one patient (P1) (Figure 3.5 a-b), compared with the rest of controls and patients, 
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where Parkin protein levels remained similar between them (Figure 3.5 a-b). 

However, when analysed all the controls (mean=0.5922, SD=0.1912, n=6) and 

patients (mean=0.5018, SD=0.179, n=6), there was no statistical significance (Mann-

Whitney U, P=0.9372) (Figure 3.5 c).  

.  

Figure 3.5. Parkin protein in fibroblasts from controls and patients with parkin mutations (right bottom 
panel). WB image (a) and densitometry analysis (b) using b-actin as loading control. b) Parkin protein levels 

between controls (mean=0.5922, SD=0.1922, n=6) and patients (mean=0.5018, SD=0.179, n=6) were variable. c) 

No statistical difference was found between parkin-mutant patients and controls (Mann-Whitney U, P=0.8182). 

Bars represent the mean values +SD, from three independent experiments. 

 

Only one patient (P1) showed increased levels of TIGAR protein correlated 

with reduction of Parkin levels. Since controls and fibroblasts have low similar Parkin 

levels, only TIGAR increase in P1 remained significant. In order to assess whether 

TIGAR high levels have a pathological effect in parkin deficiency, further functional 

analysis remain to be performed in this patient. Due to the limited availability of the 

tissue, these assays could not be performed in the present study. 
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Figure 3.6. TIGAR and Parkin protein levels in fibroblasts from controls and parkin-mutant patients. 

Correlation of TIGAR and Parkin protein levels in controls and parkin-mutant patient lines. Only one patient 

demonstrated TIGAR protein increased levels correlated with reduced Parkin levels (2-way ANOVA, 

****p<0.0001). The ratio of TIGAR and Parkin protein levels is highlighted in the right panel. Bars represent the 

mean+SD from three independent experiments.  

3.4.3  Assessment of mitochondrial function in Fibroblasts 
3.4.3.1 ATP assays 
First, total cellular ATP levels were assessed in fibroblast cell lines from six 

controls and six parkin-mutant patient lines. Transfection optimisations were 

performed in two control and two parkin-mutant cell lines. Then, we assessed TIGAR 

knockdown effect in the mitochondrial function in one LRRK2G2019S mutant fibroblasts 

and matched control. 

 

ATP levels were assessed in four controls and four parkin-mutant cell lines. 

Reduction of ATP cellular levels was seen in four patients: P1 (48%, **P=0.007), P4 

(33%, P=0.108), P5 (48%, **P=0.009) and P6 (37%, *P=0.0279) compared to 

matched controls. Overall, a significant decrease in the ATP production was seen in 

the parkin-mutant fibroblast group by ~41.5% (Mann-Whitney U, *P=0.0286) (Figure 

3.7). We then determined whether the ATP defect was associated to a defect in the 

bioenergetics status. The assays were then performed in two of the six parkin-

mutant patient lines (P4-P6) due to the limited availability of the other cell lines.  
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Figure 3.7. ATP assays in controls and parkin patients. ATP cellular levels were compared between four 

controls and four patients. Cellular ATP levels are reduced by ~41.5 % in parkin-mutant patient lines compared to 

controls (Mann-Whitney U, *P=0.0286). Bars represent the mean and +SD from three independent experiments.  

3.4.3.2 Mitochondrial respiration. Seahorse assays  

Controls and patients  

Parkin-mutant patients  

A great proportion of cellular ATP is produced by mitochondrial oxidative 

phosphorylation, which plays an important role in cellular survival. To assess the 

mitochondrial bioenergetics in parkin-related PD, we measured the mitochondrial 

respiration (OCR) and acidification (ECAR) using the Seahorse XF24 Analyzer.  

 

Bioenergetic parameters were calculated in two controls (C4-C5) and two 

parkin-mutant patient lines (P4-P5). Previous basal ATP assays from both patients 

showed a significant reduction, thus we assessed if it was related to a defect in the 

bioenergetics status, mainly in the respiration committed to ATP synthesis. The 

obtained respiratory measurements were normalised to cell number and are 

illustrated individually (Figure 3.8). Individual data showed a similar trend in controls 

and patients in all the measurements (Figure 3.8).  
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 CONTROLS PATIENTS P value 
NORMALISED COMPONENTS OCR 

Baseline C4=0.032 + 0.003 
C5=0.042 + 0.008 

P4=0.0294 + 0.001 
P5=0.035 + 0.004 

0.928 
0.547 

Mitochondrial OCR C4=0.023 + 0.003 
C5=0.034 + 0.006 

P4=0.022 + 0.003 
P5=0.027 + 0.004 

0.997 
0.586 

Proton leak C4=0.006 + 0.0007 
C5=0.009 + 0.002 

P4=0.005 + 0.002 
P5=0.010 + 0.005 

0.995 
0.995 

ATP-linked C4=0.016 C4 + 0.003 
C5=0.024 + 0.004 

P4=0.017 + 0.001 
P5=0.017 + 0.004 

>0.999 
0.440 

MRC *C4=0.120 + 004 
C5=0.071 + 0.015 

*P4=0.046 + 0.006 
P5=0.083 + 0.014 

****<0.0001 
0.058 

SRC *C4=0.088 + 0.001 
*C5=0.029 + 0.0009 

*P4=0.017 + 0.004 
*P5=0.047 +0.010 

****<0.0001 
**0.001 

Non-Complex I C4=0.001 + 0.0004 
C5=0.002 + 0.0009 

P4=-0.0002 + 0.0007 
P5=0.002 + 0.0005 

0.975 
>0.999 

Coupling efficiency C4=0.726 + 0.015 
C5=0.726 + 0.02 

P4=0.777 + 0.089 
P5=0.626 + 0.173 

0.931 
0.674 

RCR *C4=27.111 + 6.117 
C5=9.844 + 3.823 

*P4=10.081 + 3.822 
P5=14.599 + 9.190 

*0.022 
0.668 

NORMALISED COMPONENT ECAR 

Baseline  *C4=0.001 + 0.0004 
*C5=0.004 + 0.0008 

*P4=0.003 + 0.0003 
*P5=0.002 + 0.0006 

*0.0165 
**0.004 

MC *C4=0.002 + 0.0009 
*C5=0.007 + 0.001 

*P4=0.005 + 0.0002 
*P5=0.002 + 0.0006 

****<0.0001 
****<0.0001 

SC C4=0.0005 + 0.0004 
C5=0.003 + 0.0006 

P4=0.002 + 0.0004 
P5=0.001 + 0.0003 

0.059 
**0.001 

Table 3.13. Bioenergetics parameters from two parkin-mutant cell lines and two matched controls. 

Maximun respiratory capacity (MRC); Spare respiratory capacity (SRC); Maximum capacity (MC); Spare capacity 

(SC) Values measured are expressed as mean + SD from three independent experiments. 2-way ANOVA.  

Overall, data showed a reduction in the basal, mitochondrial OCR, ATP-

synthesis, mitochondrial maximal capacity, spare capacity, coupling efficiency and 

respiratory cell ratio in parkin-patients (Figure 3.8 a, d). Statistical analysis showed 

apparent significant difference only between patient and matching control, however it 

did not when taken as a grouped data (Table 3.13). Glycolytic function was assessed 

by the ECAR measurements (Table 3.13). The ECAR measured under basal 

conditions in individual cases showed a huge variability between individuals (Figure 

3.8 e) and overall, grouped data showed no significance between controls and 

patients (Table 3.13). Therefore, respiratory bioenergetics status needs to be 

assessed in more patients with parkin mutations.  
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Figure 3.8. Mitochondrial respiration and glycolysis in individual controls and parkin-mutant patients. 

Representation of the measurement of a) Normalised component oxygen consumption rate (OCR), b) Coupling 

efficiency, d) Cell Respiratory Ratio (CRR), e) Normalised OCR trace and e) Normalised component ECAR 

representative of glycolysis. OCR rate was measured in XF medium under basal conditions followed by 

sequential injections of Oligomycin, CCCP, rotenone and Antimycin A. Baseline (B), Mitochondrial (M), Proton 

Leak (PL), ATP-linked (ATP-L), Maximum Capacity (MC), Spare Capacity (SC), Non-Complex I (NC-I). Data 

represent the mean+SD from three independent experiments.   
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3.4.4  TIGAR RNAi mediated knockdown optimisation 
3.4.4.1 Transfection optimisation in fibroblasts. Lipofectamine 2000 

 TIGAR knockdown was first aimed at specific siRNA transfection in three 

fibroblasts control cell lines. Transfection efficiency was initially evaluated by using 

Lipofectamine 2000 and FAM-labelled negative control siRNA. We found a 

transfection efficiency of 62%, 77% and 84% using the 0.1, 0.25 and 0.5 µl of 

Lipofectamine respectively (Figure 3.9 a). At the 48 hrs post-transfection, cellular 

toxicity was assessed visually by checking cells under the microscope. Toxicity 

ranged from 10% with the lowest amount of Lipofectamine and 20% with the highest 

(data not shown). Therefore, we found that 0.25 µl of Lipofectamine was the lowest 

amount with the highest transfection efficiency and the lowest toxicity. Secondly, to 

avoid off-target effect and select the best time course and correct siRNA TIGAR 

concentration, transfections at three different time points and increased siRNA 

TIGAR concentrations were assessed. Thirdly, for protein expression, cell pellets 

and lysates were collected and studied after 48 hrs post-transfection.   

 

Figure 3.9. Transfection optimisation with Lipofectamine 2000. a) Transfection efficiency at three different 

concentrations. b) Representative images of Scramble siRNA transfection captured and analysed. c) Image 

representation of transfection efficiency per field using 0.25µl Lipofectamine. Transfected cells were analysed 

and counted individually (blue and white arrows). Scale bar 50 µM. 
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3.4.4.2 siRNA against TIGAR optimisation assessment: qPCR 
TIGAR expression was measured after 24, 48 and 72 hrs post-transfection in 

three different control cell lines. Results from the real-time qPCR data showed 

decreased and increased TIGAR expression in the three different experiments. 

Moreover, the expression was different when normalised to the two reference genes 

(Figure 3.10). At the same time point, when normalised against B-Actin, TIGAR 

mRNA appeared increased, but down regulated when normalised against GAPDH 

(Figure 3.10).  

 

Figure 3.10. siRNA against TIGAR 24, 48 and 72 hrs. Real-Time qPCR data obtained from: a) three fibroblast 

control cell lines (C1, C2, and C3) transfected with either Scramble siRNA or siRNA against TIGAR (siRNA 10nM, 

25nM, 50nM and 70nM) for 24 hrs. siRNA against TIGAR at 70nM was used only in two control cell lines;  b) 

three fibroblast control cell lines (C1, C2, and C3) transfected with either Scramble siRNA or siRNA against 

TIGAR (siRNA 10nM, 25nM, 50nM and 70nM) for 48 hrs. siRNA against TIGAR at 70nM was used only in two 

control cell lines and; c) from two fibroblast control cell lines (C2 and C3) transfected with either Scramble siRNA 

or siRNA TIGAR (siRNA 10nM, 25nM, 50nM and 70nM) for 72 hrs. siRNA against TIGAR at 70nM was used only 

in one control cell line. Untreated (UT), Lipofectamine only (L), scramble siRNA (Scr). Results using both 

reference genes are expressed as the percentage mean of TIGAR expression normalised against the untreated 

control of one experiment for each cell line.    
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Due to the inconsistent results of the qPCR experiments, we decided to 

assess the effect of the chosen siRNAs against TIGAR at protein level using a 

different house-keeping control.  

3.3.4.3 siRNA against TIGAR optimisation assessment. WB 
WB were performed 48 hrs post-transfection using siRNA against TIGAR at a 

concentration of 50nM. Despite several attempts in different control cell lines, TIGAR 

knockdown was unsuccessful. Furthermore, TIGAR protein levels in the condition 

with only Lipofectamine, were consistently affected (Figure 3.11, a).  

 

 

Figure 3.11. WB siRNA against TIGAR. a) After 48 hrs scramble siRNA and siRNA TIGAR treatments, protein 

extracts from cell lysates were used for WB using Tubulin as loading control. b) Densitometry quantification of 

TIGAR Proteins levels, normalised against Tubulin and presented as percentage relative to untreated (UT) 

control. Results are expressed as the mean +SD of samples from three different experiments. 

As the knockdown experiments with siRNA continued to have inconsistent 

results we decided to stop the experiments and tested new siRNAs for TIGAR 

knockdown. 

  

A different pool of siRNA against TIGAR, which targeted 4 coding regions of 

the last 2 exons of the TIGAR gene (Figure 3.2) was tested. Shortly, one control and 
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one parkin-mutant fibroblasts were transfected to compare efficacy between different 

cell lines. Due to previous inconsistency assessing gene knockdown with qPCR, we 

decided to check knock-down efficacy at the protein level. WB were performed 48 

hrs post-transfection using 30nM of siRNA against TIGAR. At the 48hrs, ~70% of 

TIGAR knockdown was successfully achieved with transient transfection mediated 

by siRNA against TIGAR. This siRNA-mediated knockdown was consistent in the 

control and the parkin-mutant fibroblasts (Figure 3.12).  

 

Figure 3.12. WB siRNA against TIGAR. a) After 48 hrs scramble siRNA (Scr) and siRNA TIGAR (siTIGAR) 

treatments, protein extracts from cell lysates, from a control (left side) and a parkin-patient cell lines (right side1) 

were used for WB using Tubulin as loading control. b) Protein levels of TIGAR were normalised to Tubulin, 

quantified by densitometry and presented as percentage relative to untreated (UT) control. Overall, a knockdown 

effect of ~70% was achieved in both cell lines. Results are expressed as the mean + SD of samples from three 

different experiments (ANOVA, **P=0.0036)   

Due to the successful TIGAR knockdown, we then decided to assess if it 

rescues the mitochondrial function in patient cell lines with a known defect in this.  

3.4.5  RNAi mediated knockdown mitochondrial function 
Parkin-mutant patient cell lines were unavailable when this study was 

performed, thus TIGAR knockdown effect in the mitochondrial function in PD patient 
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tissue with a known mitochondrial defect was assessed in the LRRK2G2019S patient 

cell line available. This was investigated by performing ATP and Seahorse assays.  

3.4.5.1 ATP assays 

TIGAR knockdown in LRRK2-mutant fibroblasts 

 We undertook mitochondrial ATP production assays to determine whether 

TIGAR knockdown had a rescue effect in the mitochondrial function in the LRRK2-

mutant patient fibroblasts when compared to a matched control. Basal cellular ATP 

levels were decreased in the patient by ~30% compared to the matched control. 

 

ATP levels of the transfected fibroblasts were assessed at the 48 hrs and 

compared with the untreated and the control conditions. Data showed no difference 

between control and transfected cell lines in both, control and patient. ATP levels 

were consistently increased with both conditions. The transfection reagent had a 

marked effect alone, which made difficult to assess the effect of TIGAR knockdown 

(Figure 3.13).  

 

We concluded that since the ATP assays performed in knockdown 

experiments with siRNA continued to have inconsistent results we decided to stop 

the experiments and tested other method to evaluate the mitochondrial function.  
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Figure 3.13. Mitochondrial ATP production in LRRK2 mutant fibroblasts. Basal mitochondrial ATP 

production is decreased in the LRRK2G2019S mutant fibroblasts. Mitochondrial ATP production was increased in 

the control and the patient cell line after treatment with Lipofectamine alone and in the TIGAR knock-downs.  

Results are expressed as the mean + SD of samples from three different experiments (2-way ANOVA, *p<0.05). 

 

3.4.5.2 Seahorse assays: mitochondrial respiration 

TIGAR knockdown in LRRK2 fibroblasts.  

An ATP defect and mitochondrial OCR, maximum and coupled respiration 

were reported previously and present in this patient (Mortiboys et al., 2015). 

Therefore, we assessed the effect of TIGAR-knockdown in the bioenergetic status in 

the LRRK2G2019S mutant patient and control cell line. We hypothesised that TIGAR 

might be implicated in PD pathology, and when silenced, it can rescue the 

mitochondrial function in cells with the underlying pathology.  

 

Decreased basal (38.5%), mitochondrial (43.9%), ATP-linked OCR (54.7%) 

and coupling efficiency (55.6%) was observed in the patient (Table 3.14. When 

TIGAR was knocked down, all these parameters showed an increase, which was 

less pronounced the lipofectamine treatment was observed (Figure 3.14 a). Due to 

high variability between treatments, this results where no significant.  
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 CONTROL PATIENT 
NORMALISED COMPONENTS OCR 

Baseline 
UT a 1+ 0.0 a 0.615 + 0.370 
L 0.994 + 0.11 0.782 + 0.3642 

siTIGAR 30nM 0.875 + 0.045 a 0.978 + 0.137 

OCR (M) 
UT a 1 + 0.0 a 0.561 + 0.428 
L 1.079 + 0.124 0.788 + 0.486 

siTIGAR 30nM 1.212 + 0.219 a 1.015 + 0.264 

Proton leak 
UT a 1+ 0.0 0.927 + 0.178 
L 1.045 + 0.113 1.002 +  0.219 

siTIGAR 30nM a 1.312 + 0.073 1.083  +  0.179 

ATP-L 
UT 1 + 0.0 a 0.435 + 0.522 
L 1.098 + 0.142 0.706 + 0.547 

siTIGAR 30nM 1.182 + 0.270 a 1.017 + 0.250 

MRC 
UT a 1 + 0.0 a 1.061 + 0.296 
L 1.183 + 0.149 0.907 + 0.727 

siTIGAR 30nM a1.484 + 0.261 a 1.590 + 0.304 

SC 
UT *1 + 0.0 *1.928 + 0.389 
L *1.342 + 0.225 *1.035 + 1.262 

siTIGAR 30nM *2.015 + 0.328 *2.411 + 0.575 

Non-Complex I 
UT 1 + 0.0 1.219 + 0.159 
L 1.231 + 0.256 0.859 + 0.064 

siTIGAR 30nM 1.401 + 0.466 0.975 + 0.621 

Coupling 
efficiency 

UT 1 + 0.0 0.444 + 0.514 
L 1.007 + 0.033 0.724 + 0.416 

siTIGAR 30nM 0.829 + 0.252 0.997 + 0.015 

RCR 
UT 1 + 0.0 0.667 + 0.747 
L 1.179 + 0.129 0.810 + 0.673 

siTIGAR 30nM 1.059 + 0.627 1.74 + 0.298 
NORMALISED COMPONENTS ECAR 

Baseline 
UT *1 + 0.0 *1.78 + 0.626 
L *0.973 + 0.128 *1.66 + 0.367 

siTIGAR 30nM *1.120 + 0.105 *1.25 + 0.184 

Max 
UT 1 + 0.0 1.261 + 0.199 
L 0.854 + 0.0792 1.203 + 0.0348 

siTIGAR 30nM 0.793 + 0.030 0.946 + 0.120 

SC 
UT 1 + 0.0 0.581 + 0.304 
L 0.660 + 0.174 0.426 + 0.594 

siTIGAR 30nM 0.271 + 0.132 0.455 + 0.103 
Table 3.14.  Bioenergetic parameters in a control and LRRK2 patient fibroblasts. Oxygen consumption rate 

(OCR), Mitochondrial (M); ATP-L (ATP-linked); Maximum respiratory capacity (MRC); Spare Capacity (SC); 

Respiratory Cell Ratio (RCR); Untreated (UT); Lipofectamine only (L); siRNA TIGAR (siTIGAR). *Measurements 

with statistical difference between control, patient and siRNA treatment. aMeasurements where a difference 

between control and patient were obtained under basal conditions and where siRNA treatment showed an effect. 

Values measured are expressed as mean + SD, normalised to control (UT) from three independent experiments. 

 

Maximal respiratory capacity (MRC) showed increased levels when TIGAR 

was knocked down, in both control (2-way ANOVA, P=0.569) and patient (2-way 

ANOVA, P=0.471); however, apparent statistical difference was not significant due to 

inconsistency between the different treatments and huge variability in the patient 

(Figure 3.14 a). Spare respiratory capacity (SRC) OCR from the patient showed a 
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significant increase under basal conditions (2-way ANOVA, *P=0.261) and when 

TIGAR is knocked down when compared to the control under basal conditions (2-

way ANOVA, ****P<0.0001). Here, Lipofectamine had the opposite effect in the 

patient, where it showed reduced levels (Figure 3.14 a). Lipofectamine seemed to 

continue displaying a slight effect in the control (2-way ANOVA, P=0.852), but not 

the patient, where it showed significant reduction (2-way ANOVA, P=0.523) (Figure 

3.14 a). 

 

 Spare respiratory capacity (SRC) relies on glucose and fatty acids as its main 

source, suggesting that OCR and SRC are modulated by distinctive metabolic 

regulators. After knocking down TIGAR in the LRKK2G2019S mutant-patient glycolysis 

is enhanced. This correlates with glycolysis measured by ECAR (Figure 3.14 e), with 

a significant increase in levels under basal conditions in the patient (2-way ANOVA, 

**P=0.007); which decreased when treated with Lipofectamine (2-way, ANOVA, 

P=0.992) and TIGAR knockdown (2-way ANOVA, P=0.139). The spare capacity (SC) 

in the control was notably reduced when TIGAR is knocked down (2-way ANOVA, 

*P=0.014).   

 

Overall, we found some differences in the LRRK2-mutant patient. However, 

these assays were performed in only one patient of one genotype, where a different 

gene from a different pathway and particular mutations are involved, which influence 

the overall result. Further assays need to be conducted in a larger group of patients 

to investigate the potential role involving the PD related genes. 
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Figure 3.14. TIGAR knockdown effect in a control and a LRRK2 mutant fibroblast. Mitochondrial respiration 

(OCR) and glycolysis (ECAR).  Representation of the measurement of a) Normalised component oxygen 

consumption rate (OCR) b) Coupling efficiency, c) Respiratory Cell Ratio (RCR), d) Normalised OCR trace and e) 

Normalised component ECAR representative of glycolysis. OCR rate was measured in XF medium under basal 

conditions followed by sequential injections of Oligomycin, CCCP, rotenone and Antimycin A. Oxygen 

consumption rate (OCR), Mitochondrial (M); ATP-L (ATP-linked); Maximum capacity (Max); Spare Capacity (SC); 

Respiratory Cell Ratio (RCR); Untreated (UT); Lipofectamine only (L); siRNA TIGAR (siTIGAR); Control (Ctl); 

Patient (Pt).  Data represent the mean + SD, normalised to control from three independent experiments (2-way 

ANOVA, **p<0.005; *p<0.05).   
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3.4.6 Transfection reagents optimisation 
To assess the effect of TIGAR knockdown in fibroblasts, without being 

masked by the effect from the transfection reagent in cells, we further optimised 

different transfection reagents by measuring ATP levels upon different conditions. 

For this, we tested a control and a patient cell line. First, the different concentrations 

of transfection reagents at the 48 hrs (Figure 3.15 b) showed to be more stable 

compared to the 24 hrs (Figure 3.15 a). Alongside ATP assays, transfection 

efficiency was assessed with transfected cells with Scramble fluorescent siRNA 

plated alongside ATP assays under the same conditions. Cells were visualised using 

the InCell Analyzer 2000 and analysed with the InCell Developer Toolbox 1.9.2 

Software. All the compared transfection reagents showed an efficiency of between 

60-80%, where the 48hrs showed the best results and more comparable with the 

untreated condition between the two cell lines.  From these experiments, we chose 

the lowest concentrations for each transfection reagent and continued optimisation 

assessing different cellular densities at the 48hrs.  
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Figure 3.15. Transfection reagents optimisation in fibroblasts. ATP levels at different concentrations of 

transfection reagent in a control (C4) and a parkin patient (P4) at the 24 (a) and 48hrs (b). Transfection efficiency 

in both cell lines with the different concentrations of transfection reagent using scramble siRNA 30nM at the 24 (c) 

and 48 (d) hrs. Untreated (Ut); DarmaFECT (DF); Endofectin (E) Data represent the mean +SD from one 

independent experiment. 

 

Four different cellular densities were assessed at the 48 hrs in one control 

fibroblast line. The lowest (2,000 cells/well) and the highest (4,500 cells/well) cellular 

densities showed the highest variability in the ATP level with all the transfection 

reagents. ATP levels seemed steadier between the 2,500-3,5000 cells/well in all the 

conditions (Figure 3.16). Since patient fibroblasts showed to have a higher variability 

of ATP levels when it is transfected, we decided to test the transfection reagents in 

two patient fibroblasts cell lines.   
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Figure 3.16. Transfection reagents in one control fibroblast. ATP levels in a control fibroblast at four different 

cellular densities using 0.1µl DharmaFECT 1 (DF1), 0.1 µl DharmaFECT 3 (DF3), 0.2µl Lipofectamine and 0.2 µl 

Endofectin.  

 

 Experiments were performed in the two patient cell lines at the 48 hrs, 

assessing cellular densities ranging from 2,500-3,500 cells/well. The patient 4 (P4) 

showed steadier ATP levels between the three different cellular densities (Figure 

3.17 a), whereas patient 5 (P5) showed a high variability within the three different 

cellular densities (Figure 3.17 b). However, in both cell lines, 3,000 cells/well, 

showed a minimal variability between them and within the different transfection 

reagents. Therefore, we decided to test it further to see if this remained when both 

cell lines were compared with matched controls with the same conditions.  
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Figure 3.17. Transfection reagents in parkin-mutant fibroblasts. ATP levels in two parkin-mutant fibroblasts, 

P4 (a) and P5 (b). Three different cellular densities were assessed using 0.1µl DharmaFECT 1 (DF1), 0.1 µl 

DharmaFECT 3 (DF3), 0.2µl Lipofectamine (L) and 0.2 µl Endofectin (E) and compared with the untreated (Ut) 

condition at 48hrs.    

 Finally, we decided to test one control (C4) and one parkin patient (P4) 

fibroblasts alongside transfection efficiency in the control and the patient and see 

whether transfection remained efficient at a higher passage. At 2,500 and 3,500 

cells/well, C4 and P4 (Figure 3.18) showed slight reduction of ATP levels, except 

from Endofectin, were the levels were significantly lower than the untreated condition. 

C4  (Figure 3.18, a) showed comparable levels to the untreated condition across all 

the samples, whereas P4 (Figure 3.18, b) showed a tendency to an increase in all of 

them. Transfection remained effective with an overall reduction of <10%, where 

Endofectin efficiency remained comparable to previous results (Figure 3.18 c, d, e). 

However, basal ATP levels from the P4 started to be similar to the control cell line, 

which reflected that both cell lines were probably affected due to higher passage and 

constant stress. Since after a numerous failed attempts to optimise the transfection 
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using conventional RNAi methods, we decided to stop this experiments. A new 

method of RNAi delivery was approached and tested, where the need of a 

transfection reagent was avoided.      

 

Figure 3.18. Transfection ATP levels and efficiency in one control (C4) and one patient (P4) fibroblasts. 
ATP levels in a C4 (a) and patient (P4) fibroblasts after 48hrs of transfection. Control (C4) cell line showed less 

variability between 3,000 cells/ well, P4 (b) showed increased levels at 3,000 cells/ well with all the transfection 

reagents. c), d) and e) Representation of the different transfection efficiencies obtained at the 48hrs, where 

Endofectin showed the highest efficiency. Scale bar 50µM  

3.4.7  Accell siRNA transfection 
  Conventional RNAi methods used knockdown TIGAR failed to assess its 

effect in human fibroblasts due to the interfering effect of the transfection reagent, 

leading to a detectable metabolic response. Thus, self-transfecting Accell siRNAs 

were tested in human fibroblasts by measuring transfection efficiency and effect in 

ATP levels. Since they avoid the use of a chemical or mechanical error, we expected 

a lower effect in the metabolic response of the cells.  

 

First, a control fibroblasts line was used to optimise this new method following 

the protocol from the provider. Three cellular densities, 2.5-3.5 x 103 cells/well were 
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selected. ATP levels were initially tested at the recommended 96 hrs after 

transfection (Figure 3.19 a). Cells were transfected with either scramble siRNA (red), 

GAPDH or Cyclophilin B positive controls and Non-targeting negative control. ATP 

levels within the three cellular densities with the different controls showed similar 

comparable ATP levels to the untreated condition (Figure 3.19, a). However, ATP 

levels seemed to be very sensitive to very high and very low cellular densities, that 

could result at the 96 hrs.  

 

Next set of experiments was assessed at the 72 hrs, changing the medium to 

galactose at the 48hrs of transfection (Figure 3.19, b). ATP levels were different 

within the three densities, where 2,500 cells/well showed only slight changes 

compared to the untreated condition, and the 3,000 cell/well showed a significantly 

increase with all the controls. Since an acute effect of the change of the media and 

lower time of the siRNA in the medium was suspected, we decided to assess at the 

effect at 96 hrs in the patient. (P4) line, which previously showed the highest 

variability, then tested. Similar results to the control (Figure 3.19 a) were obtained 

after media change to galactose at the 48 hrs of transfection and assessed at the 

96hrs (Figure 3.19 c). Since transfection efficiency and knockdown efficacy has not 

been tested previously in fibroblasts, knockdown percentage was assessed.   
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Figure 3.19. Accell siRNA Optimisation in fibroblasts. ATP levels in transfected fibroblasts at 1µM of each 

siRNA positive target genes (Cyclophilin B, GAPDH), negative (Non-targeting control 1) and Scramble siRNA 

controls after 96hrs in a control fibroblast (a), 72 hrs (b) and 96 hrs (c) in a parkin mutant fibroblasts.   

 

 Transfection efficiency and knock down assays were performed in a control 

fibroblast. Transfection efficiency was assessed by imaging Scramble Accell siRNA 

(Figure 3.20 c) showing ~60% transfection efficiency at the 72 hrs. mRNA 

knockdown resulted in ~65% knockdown (Figure 3.20 a) and only 15% at the protein 

level (Figure 3.20 b-c).  
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 Accell siRNA requires high concentrations of the reagent and more 

experiment were needed to finally optimise the assays and obtain a higher 

knockdown effect. In addition, fibroblasts cell line availability was becoming limited 

due to the fact of its utility in other projects, therefore we decided to stop this 

experiments and change approach to focus investigating the cellular localisation of 

TIGAR upon cellular stress and its role in PD.  

  

 

Figure 3.20. Accell siRNA in a control fibroblasts. Transfection in one control fibroblasts. Optimisation with 

positive and non-tagenting and measure mRNA percentage levels by qPCR (a), GAPDH protein levels by 

densitometry analysis(b) and WB image (d) compared to control untreated condition. Representative image of 

transfection efficiency using a scramble Accell siRNA. Scale bar 50µM. 

3.4.8  TIGAR cellular localisation 
3.4.8.1 Antibody optimisation 

For future cellular localisation assays, optimisation for TIGAR 

immunofluorescence was undertaken using different antibodies in human fibroblasts 

and HeLa cell line as a control cell line.  Different concentrations and blocking 

methods were assessed. From all the results, only two of the antibodies against 
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TIGAR (ab12933 and PA5-29152) showed consistent staining signal. However, ab 

12933 antibody had an intense perinuclear signal across the different treatments. In 

order to assess their specificity, we tested by knocking down TIGAR in the control 

fibroblasts.   

 

Figure 3.21. TIGAR immunofluorescence in fibroblasts optimisation. Representative images of the different 

staining using Anti-TIGAR antibodies: a) LCS-C286858 (1:100); b) AB10545 (1:250) c) ABCAM 129333 (1:800); 

d) (1:500). Antibody against TIGAR in fibroblasts where TIGAR was knockdown for 48 hrs, fixed and labelled with 

ab1239333 (e) and PA5-29152 (f). Control cellular morphology in figure c was different due to lower confluency. 

Scale bar 50µM.  
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From these results, only the PA-29152 antibody had a reduced expression 

without any other nonspecific signal, whereas ab129333 continued to show an 

intense perinuclear labelling in all the samples tested (Figure 3.21). Then, we verified 

and optimised in HeLa cell lines different treatments and rotenone toxic exposure. 

TIGAR labelling across the different treatments and experiments were consistent 

(Figure 3.22). 

 

Figure 3.22. Anti-TIGAR antibody PA5-29152 immunofluorescence in HeLa cells. Representative images of 

labelling of TIGAR (red) and TOM20 (green) to visualize the mitochondria in HeLa cells. Cells were treated with 

25nM Rotenone for 48hrs and visualize under the fluorescent microscope. Images showed an intense nuclear 

staining in some cells under the different conditions. Cytoplasm intensity was lower in most of the cells. Upon 

rotenone treatment, TIGAR showed a partial mitochondrial translocation in some cells. This event occurred as 

well in the untreated condition in less proportion. Glucose (Glu); Galactose (Gal); Rotenone (Rot); Untreated (UT). 

Scale bar 50µM 

Notably, TIGAR localisation in fibroblasts in glucose (Figure 3.21 d) seemed 

to be mainly in the nuclei, whereas in HeLa had a cytoplasmic localisation. However, 

this changed upon galactose treatment, where intense TIGAR nuclei localisation was 

remarkable. TIGAR showed a partial mitochondrial co-localisation upon rotenone 
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toxic exposure. Since there are no previous reports of TIGAR characterisation in 

human fibroblasts and the effect when stressed with rotenone might induce 

mitochondrial localisation we performed these experiments in three parkin-mutant 

patients and matching controls cell lines.      

3.4.9  Rotenone toxic exposure 
We assessed whether TIGAR could be recruited or translocated to the 

damaged mitochondria in cells with impaired Parkin expression. The first set of 

experiments were performed in three controls (C4-C6) and three parkin-mutant (P4-

P6) fibroblasts from the second group using Antibody against TIGAR PA5-29152 and 

the mitochondrial marker TOM20. After treating cell lines in glucose and galactose 

media for 48hrs after rotenone toxic exposure no evident effect on the overall TIGAR 

expression could be seen in either controls or patients (Figure 3.23). However, an 

intense nuclear staining was obtained across all the samples. Previous reports in 

different cell lines showed TIGAR cytoplasmic localisation.  

  

To confirm this, a monoclonal mouse antibody, courtesy of Dr. Karen 

Vousden, was tested. Since monoclonal antibodies have shown higher specificity 

and this was the group that described TIGAR initially (Bensaad et al., 2006), we 

were confident of the specificity of the antibody. Both antibodies recognise an 

epitope in exon 6 within the same region; however, PA5-192 comprises 50 

aminoacids (220-270), whereas the monoclonal antibody targets only 14 aminoacids 

(256-270) (Table 3.7).   
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Figure 3.23. Anti-TIGAR antibody PA5-29152 immunofluorescence in control fibroblasts exposed to 

Rotenone at the 48hrs. Representative images of a control fibroblast cell line. Cells were fixed and stained with 

antibody against TIGAR PA5-29152 (red) and Anti-TOM20 (green), to visualize cellular localisation and 

mitochondria. Experiments were performed after 48 hrs of rotenone toxic exposure in glucose and galactose 

media. Cells were visualized under a confocal microscope. Glucose (Glu); Galactose (Gal); Rotenone (Rot); 

Untreated (UT). Scale bar 50µM. 

 

 Then, the new antibody was tested in HeLa cells under the same treatment 

conditions (Figure 3.24) and compared the results obtained with the antibody anti-

TIGAR PA5-29152 tested in HeLa cells (Figure 3.22) and fibroblasts (Figure 3.23).   

 

TIGAR PA5-29152 showed intense nuclear staining with moderate 

cytoplasmic staining (Figure 3.23); whereas TIGAR monoclonal antibody showed a 

more intense cytoplasmic and a less evident nuclear staining (Figure 3.24). Between 

the untreated conditions in glucose and galactose, there was no difference in TIGAR 

expression. When rotenone treatment was added to cells led to mitochondrial 

fragmentation, mainly in galactose treatment, where TIGAR showed an apparent 
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mitochondrial co-localisation (Figure 3.24). Since these showed a higher antibody 

specificity and suggested TIGAR mitochondrial co-localisation upon rotenone toxic 

exposure, we conducted the same experiment and conditions in a control fibroblast 

cell line using the monoclonal antibody and compared the previous results obtained 

with PA5-29152 (Figure 3.23).  

 

Figure 3.24. Anti-TIGAR monoclonal mouse antibody immunofluorescence in HeLa cells. Representative 

images of labelling of TIGAR (red) and TOM20 (green) to visualize the mitochondria in HeLa cells. Cells were 

treated with 25nM rotenone in glucose or galactose for 48hrs and visualized under confocal microscope. Glucose 

(Glu); Galactose (Gal); Rotenone (Rot); Untreated (UT). Scale bar 50µM. 

 

TIGAR cellular localisation in control fibroblasts was investigated upon 

glucose and galactose treatment conditions, as well as to the exposure to rotenone 

(Figure 3.25). An evident TIGAR cytoplasmic localisation was obtained, however, 

there was no difference in TIGAR expression under the different treatments. 

Rotenone showed shortened mitochondria (TOM20), which was a reflection of 

mitochondrial fragmentation, mainly in cells grown in galactose. Mitochondrial 



167 
 

measurements (form factor (branching) and aspect ratio (length)) were not 

performed. However, TIGAR mitochondrial localisation was not evident. Intense 

small doted punctae were detected in specific cellular areas near the nuclei. 

 

 

Figure 3.25. Anti-TIGAR monoclonal mouse antibody immunofluorescence in a control fibroblast. 
Representative images of labelling of TIGAR (red) and TOM20 (green) to visualize the mitochondria in HeLa cells. 

Cells were treated with 25nM Rotenone in glucose or galactose for 48hrs and visualized under inverted 

microscope. Glucose (Glu); galactose (Gal); rotenone (Rot); untreated (UT). Scale bar 50µM. 

 

TIGAR mitochondrial localisation was then investigated. These experiments 

were performed in only one control (C4) and one parkin-mutant (P4) fibroblasts.  

 

Co-localisation analysis was performed by inverted microscopy analysis of 

cells labelled in single images acquired and the correlation between TIGAR and 

mitochondrial marker TOM20 was calculated (Figure 3.26). TIGAR expression 

between control (Figure 3.26, a) and patient (Figure 3.26, b), as well as within the 

different treatments, showed no difference. Mitochondria upon rotenone toxic 



168 
 

exposure showed fragmentation in both control and patient fibroblasts and in few 

regions the presence here of small puncta suggested a possible partial mitochondrial 

co-localisation. 

 

Figure 3.26. TIGAR localisation in fibroblasts from one control and one parkin-mutant patient. 

Representative images of fixed and stained cells with antibodies against TIGAR (red) and TOM20 (green) to 

visualize the mitochondria in a control (a) and a parkin-mutant (b) fibroblasts (P4, ARG42PRO het). Cells were 

treated with 25nM Rotenone in glucose or galactose for 48hrs and visualized under an inverted microscope. 

Glucose (Glu); galactose (Gal); rotenone (Rot); untreated (UT). Scale bar 50µM. 

Pearson’s analysis obtained from both, C4 and P4, showed partial 

colocalisation (0.4-0.6) with all the conditions (Figure 3.27). However, this coefficient 

is difficult to interpret and it is only reliable with high correlation. Pearson’s coefficient 

can easily be affected by additional non colocalising signals and a lack of 

perspective of both channels. Mander’s coefficients are easier to interpret and not 

sensitive to overlapping pixels (Dunn et al., 2011). Therefore, we decided to further 

analyse with Mander’s coefficients to determine the proportion coming from both 

channels and how they overlap with each other Mander’s coefficients (m1 and m2) 
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were both low in the control and patient in all the conditions. A minimal increase in 

the Mander’s coefficient for the green channel (m2, TOM20 over TIGAR) in 

fibroblasts was detected (Figure 3.27), showing that the high contribution is coming 

from the mitochondria rather than the actual presence of TIGAR within it.  

 

Figure 3.27. Colocalisation coefficients. Colocalisation analysis of TIGAR with TOM20 in a control (C4) 

and a parkin-mutant (P4) fibroblasts. a) Pearson’s coefficient; b) Mander’s 1 (m1) coefficient and c) Mander’s 2 

coefficient (m2) from each condition from C4 and P4. Overall, there was no difference between the control and 

patient in any of the treatments. Results are expressed as the mean +SD of samples from 3 different experiments    

 

Overall, these findings suggest that TIGAR do not co-localise in the 

mitochondria upon mitochondrial damage when CI is inhibited.  
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3.4.10 TIGAR and autophagy 
The role of TIGAR role in autophagy was investigated in patients with 

sporadic PD with mitochondrial defect.  We investigated the effect on TIGAR after 

cells were treated with bafilomycin (autophagy inhibitor) and CCCP (mitophagy 

inducer). TIGAR protein levels were determined in cell lines from two controls and 

two sporadic patient fibroblasts.  

 

There was no evident difference in TIGAR protein level amongst patients and 

controls (Figure 3.28). Results from these experiments showed a great variability in 

both controls and patients, which is reflected by the high SD obtained. This is 

perhaps a reflection of the variation occurring between the differences from the 

patients here tested. 

 

Figure 3.28. Western blot analysis effect on TIGAR after bafilomycin and CCCP treatment in fibroblasts 

from controls and sporadic PD patient cell lines. a) Representative blots probed in controls (Ct a; Ct b) and 

sporadic PD patient (Pt a; Pt b) cell lines with antibody against TIGAR. b) Densitometry analysis from each pre-

treament conditions (4hrs) in both controls and patients: Untreated (UT), Bafilomycin (B), CCCP (C) and 

Bafilomycin + CCCP (B+C). There was no statistical difference between controls and patients in any of the 

treatments. Results are expressed as the mean+SD of samples from three different experiments (2-way ANOVA, 

P>0.05).  



171 
 

3.4.11 TIGAR in other cellular models 
 Previously, we showed that TIGAR protein is present in human fibroblasts in 

order to assess its suspected function in this cell model system. In order to continue 

investigating TIGAR function and its role in PD, we then investigated the protein level 

in other cellular models that are commonly used in PD research for future 

experiments. Five different cell lines were assessed by WB under basal conditions 

and compared to each other. Endogenous TIGAR protein levels are similar between 

fibroblasts, HeLa and Luhmes, slightly higher in HeLa and significantly increased in 

HEK293 (Figure 3.29). Therefore, for future experiments, we decided to investigate 

TIGAR function in HEK293 cell model system.  

 

Figure 3.29. TIGAR protein levels in 5 different cell lines. WB image (a) and densitrometry analysis (b) using 

b-actin as a loading control. TIGAR protein levels showed to be similar between fibroblasts (F), Luhmes (L), SH 

SY5y and HeLa, whereas HEK cells showed a significant increase of TIGAR protein level when compared to the 

other cell lines. Bars represent the mean values +SD, from 3 independent experiments. (ANOVA, **p<0.005). 
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3.5 Discussion 
3.5.1 TIGAR in human fibroblasts 

As with every cellular model, there are few limitations when using this cellular 

model. Infrequently, a mixture of cells in proliferation or post-mitotic state can be 

found. Mycoplasma infection can occur, like in every cell culture, however regular 

testing and available treatments prevent further infection. As cells are from different 

individuals, growth rates, seeding density and confluency between individual cell 

lines, from controls and patients, is variable, but highly valuable to understand the 

mechanisms of the disease. Unlike neurons, fibroblasts have a different response to 

trophic factors and signals (Auburger et al., 2012).  

 

Comparison of TIGAR mRNA expression levels in the controls and patients 

with Parkin mutations, showed no difference. However, the assessment was 

performed only in a small sample cohort and the conclusions in the present study are 

limited by this factor.  

 

No significant difference was seen in TIGAR protein levels either when a 

group comparison of data obtained from parkin-mutant fibroblasts were compared 

with controls. However, in one patient the TIGAR protein level was increased by ~2.0 

fold, whereas in the remaining patients it was slightly decreased by ~0.5 fold. We 

therefore wanted to establish whether the protein level of TIGAR correlated with the 

level of Parkin in these fibroblasts cells lines. Notably, in the same patient in whom 

the level of TIGAR was the highest the Parkin remained the lowest, suggesting that 

there may be a correlation. Parkin protein level amongst controls and patients 

showed a variable amount of Parkin, except for P1, that interestingly has the highest 
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TIGAR protein level. Due to the shared PD related PINK1/Parkin pathway, these 

results might be related to the effect seen in the pink1-/- zebrafish, where a TIGAR 

overexpression correlation was demonstrated (Flinn et al., 2013). However, the small 

number of samples limits the validity of any conclusions, therefore increasing our 

cohort of controls and patients with Parkin and/or PINK1 mutations, may help to 

confirm these results. 

 

3.5.2  Mitochondrial function and bioenergetics status in parkin-mutant 
fibroblasts 

In previous research performed from our group, fibroblasts from patients with 

known parkin mutations have been shown to have mitochondrial dysfunction with 

ATP deficient production linked to CI. ATP assays assessed the proliferative and 

cytotoxicity response of cells, from PD patient tissue, to drug exposure or other 

biological compounds and/or conditions. Therefore, ATP assays are valuable, 

sensitive and effective method to investigate the underlying suspected energetic 

mechanisms involved in PD (Mortiboys et al., 2008, 2010b). 

  

ATP linked-complex I production is facilitated by changing the media growth 

conditions, since fibroblasts in culture produce their ATP through glycolysis. When 

media is changed from glucose to galactose, fibroblasts rely on the mitochondrial 

oxidative phosphorylation (OXPHOS) pathway to produce their energy. One of the 

patients had to be removed from the overall analysis (P3). ATP assays were 

performed according to the availability of the tissue. Current results show an ATP 

reduction of ~41.5% when comparing the group of controls with the patients with 

Parkin mutations, although not as pronounced as previously observed (Mortiboys et 
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al., 2008). This demonstrated an overall decrease of ATP production linked to a 

similar defect amongst the five parkin-mutant fibroblasts cell lines reported 

(Mortiboys et al., 2008).      

 

Although fibroblasts are a reliable, robust and useful model of research to 

study PD in patient tissue, PD is a disease that primarily affects the CNS. In vivo 

models, such as rodents, have been useful to investigate disease mechanisms, 

assess toxin exposure (i.e., rotenone, paraquat, herbicides) and to test newer 

treatments. They offer a great advantage by assessing their effect in motor 

symptoms and the SN after inducing neurotoxicity and genetic manipulation. Rodent 

models have shown Dopaminergic neuronal loss. Moreover, they have shown to be 

useful to study non-motor PD symptoms (i.e. sleep, cognition). However, they do not 

fully and consistently recapitulate human PD (Blesa et al., 2016; Campos et al., 

2013). An alternative approach will be to study TIGAR by reprogramming fibroblasts 

from patients with PD-related mutations, via induced pluripotent stem cells (iPSC), 

direct lineage of induced neural stem (iNS), induced neural precursor (iNP), induced 

neurons (iN), or dopaminergic neurons (iDA). iPSC with PD-related mutations can be 

differentiated into neurons, which have shown the pathological mechanisms already 

described in PD (Playne and Connor, 2017; Xu et al., 2017). Direct reprogramming 

from somatic cells to a specific type of neurons offers a new alternative method for 

cell modelling avoiding pluripotent state. The direct conversion offers many 

advantages: functional neurons can be obtained faster (within weeks); the risk of 

having pluripotent cells left is avoided; it promises to be an efficient and feasible 

model. However, there are also many disadvantages: less efficiency with scarce or 

no Tyrosine Hydroxylase positive (TH+) cells, it could still produce longer culture 
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periods for maturation and immature and non-functional neurons, cells are post 

mitotic and with limited availability. These new methods are still under optimisation, 

for which different reprogramming protocols have been assessed.  Indeed, the effect 

of TIGAR have been shown to be cell dependent, with complex and somehow 

contrary and arbitrary functions depending on the metabolic context of a specific 

cellular type (Bensaad et al., 2006, 2009; Madan et al., 2012). For this reason, any 

observations in parkin- or PINK1-mutant fibroblasts would need to be confirmed in 

further cellular, neuronal model systems or in PD brain tissue. 

3.5.3  Tigar RNAi mediated knockdown 
Initial transfections using siRNAs (Santa Cruz) against TIGAR were 

unsuccessful in achieving a satisfactory knockdown in controls. Several potential 

reasons should be considered for this. For instance, particular cell types can be 

more difficult to transfect, and this is well established for fibroblasts. Also, the growth 

and quality variability (i.e., cell confluency, density, passage, etc.) amongst the 

different fibroblast cell lines used, could affect the transfection process. However, 

even when transfections assays were performed at the same time with the same 

methodology, variation cannot be avoided due to cell culture behaviour. This 

variation in the results could also be caused by the fact that the reference genes are 

not stably expressed. Also, the factor of the transfection done under serum free 

media for six hours, might affect the expression of the genes when serum is added 

hours after the transfection. In Figure 3.10 b-c, the knockdown effect was seen to be 

reliable between β-actin and GAPDH, whereas at 24 hours (Figure 3.10 a) the 

knockdown effect showed the highest inconsistency of them all. 
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The siRNAs against TIGAR we used were also only targeting the 3’UTR 

region of the gene  (Figure 3.2). Furthermore, it has been reported that siRNA 

mediated gene knockdown is generally less effective when targeting only the 3’ UTR. 

A better silencing effect is achieved when targeting the interior region of the mRNA, 

we therefore used a new SMARTpool of 4 siRNA against TIGAR (Dharmacon) 

avoiding 50 nucleotides (nt) upstream and downstream region and within the exon 4, 

5 and 6 regions of the gene. Successful knockdowns of ~70% were achieved 

consistently across the different experiments within different cell lines (Figure 3.12), 

therefore we decided to assess its effect in the mitochondrial function in one LRRK2-

patient, which displayed a mitochondrial defect previously reported and was 

available. We wanted to see if the effect of TIGAR knockdown was robust and could 

be applied in PD tissue regardless the genotype.  

3.5.4  TIGAR knockdown in mitochondrial function 
 Transfection with either Lipofectamine only or siRNA against TIGAR, showed 

a significant increase of ATP levels in both treatments in the control and the patient. 

This means that the ATP increase is the result of the transfection treatment in the 

cell, therefore any effect of TIGAR knockdown is masked by the transfection. 

Seahorse assays showed the same problem, where Lipofectamine transfection is 

already affecting the results and having similar comparable readings with the cells 

where TIGAR is knockdown in both, control and patient. Therefore, further 

transfection reagents and methods were tested and optimized in order to assess 

TIGAR knockdown effect in mitochondrial function in fibroblasts from patients with 

PD. 
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3.5.5  Transfection reagents effect in ATP 
Transfection experiments in primary cell lines have been shown to be a good 

method to investigate cellular function, physiology, genomics and drug treatments. 

Current RNAi methods use physical and chemical reagents in order to deliver the 

gene or product into the cell. Chemical reagents are some of the most popular 

methods, they are commonly cationic lipids or polymers, that interact with the 

negatively charged nucleic acids, allowing their entrance to the cell via endocytosis 

and prevention to be degraded (Kaestner et al., 2015). In this study, all reagents 

belonging to this group were used for the transfections, were Lipofectamine 2000 

was used for initial transfections and knockdowns. Although fibroblasts are known to 

be a cell line difficult to transfect, we achieved good transfection efficiency (~77%) 

and gene knockdown (~69%), as previously seen by others (Mortiboys et al., 2008, 

2015; Rakovic et al., 2010). Despite the successful knockdown achieved, the effect 

of TIGAR silencing in the patient cell lines could not be assessed due to the 

overlapping effect of the transfection reagent per se. Although different transfection 

reagents, cellular densities and timings were modified, within the different cell lines; 

ATP levels continued to be affected by it. This can be explained by a combination of 

several factors, from the cells and the transfection procedure. With transfections, it is 

difficult to preserve cellular functionality when cells required to be transfected under 

serum-free conditions and the need to replace the media. Cells that are also 

effectively transfected, require to be in division (S or M phase), no overgrown and 

therefore metabolically active (Hsu and Uludağ, 2012). Consequently, metabolic 

activity would be affected and visualised in current metabolic measurements here 

used, such as ATP levels and mitochondrial respiration. Moreover, the growing rate 

of the cell, passage number and the overall health status and membrane trafficking 

processes might be another interfering factor, which contributed for the high 
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variability between the different densities and across the experiments, mainly in the 

patient cell line, since the mutation by itself might be conferring them an energetic 

and metabolic defect. 

 

 New RNAi methods include Accell siRNA, which has the advantage of be a 

“self-delivery” method, where no transfection reagent is required. Thus, lower 

cytotoxicity with good transfection efficiency can be achieved. In this study, the pilot 

optimisation studies showed indeed that ATP production is less affected at the 96hrs, 

where the media was changed at the 48hrs after transfection, in the control and the 

patient, within the different siRNAs, negative and positive controls, same as with the 

scramble siRNA. Further tests and optimisations are needed for this new promising 

method. However, due to the fact that fibroblasts cell lines were limited, Accell siRNA 

reagents needed at higher concentrations and with high price value, we decided to 

stop this experiments. We then decided to assess TIGAR in different cell lines and 

further related mechanisms in fibroblasts, such as response to toxic exposure and 

autophagy. TIGAR RNAi methods were further conducted in a stable inducible 

cellular model, namely HEK293 Flp In cells (see Chapter 4). 

3.5.6  Rotenone toxic exposure 
 Mitochondrial dysfunction, oxidative stress and defective bioenergetics status 

of the cells can all be triggered by rotenone. The aim of these experiments was to 

determine the effect of CI inhibition in TIGAR cellular localisation and expression 

when parkin is deficient. TIGAR cellular localisation and expression under the 

different conditions, glucose and galactose, with or without the rotenone treatment 

showed no difference in either the control or the parkin patient (Figure 3.26 and 

Figure 3.27). Despite the lack of TIGAR translocation, it does not mean that it is not 
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implicated in the pathological process. TIGAR mitochondrial translocation has been 

reported to be dependent on Hexokinase-II (HK-II) expression and presence in the 

mitochondria, which is highly dependent when glucose is available. Furthermore, 

TIGAR is affected in different ways by different stressors. Mitochondrial translocation 

occurs only when O2 levels are <0.1%, but not with moderate hypoxia or normoxia. 

Furthermore, the effect was seen in HeLa cells and several cancer cell lines, where 

metabolic and energetic demands are very different when compared to human 

fibroblasts. Moreover, TIGAR mitochondrial translocation was linked to cellular 

survival by protecting cells from ROS damage and regulation of mitochondrial 

membrane potential.  

3.5.7  Tigar and autophagy 
Autophagy has been suggested to be implicated in PD and TIGAR pathology. 

We therefore aimed to assess TIGAR role in treated fibroblasts from patients with 

sporadic PD with CCCP and bafilomycin. We found no difference between the 

controls and the patients in any of the conditions. This is in keeping with what results 

from our group reported in these cell lines, where no significant evidence was found. 

Many factors could explain this outcome.  

 

To date, altered autophagy remains as a prospective cause in sporadic PD. It 

remains unclear whether a lack of autophagic response and loss of UPS function or 

an abnormal accumulation of autophagosomes and lysosomes are behind the 

pathologic process. Both mechanisms have been shown to produce detrimental 

effects and finally cellular death. Future experiments aiming to determine TIGAR role 

in autophagy in human fibroblasts would need to be done in fibroblasts from patients 
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with sporadic, but also familial PD in order to fully address its role in autophagy PD-

related mechanisms.   

3.6 Conclusion 
This is the first study to investigate TIGAR expression in human fibroblasts 

derived from patients with familial and sporadic PD. We did not find difference in 

TIGAR gene expression and protein level between controls and parkin-mutant 

fibroblasts. Although one patient showed TIGAR increased levels, which correlated 

with decreased parkin levels, it was only one patient.  

 

Effective TIGAR knockdown was achieved in parkin deficient and LRRK2G2019S 

fibroblasts, but the effect of TIGAR deficiency on mitochondrial function could not be 

tested due to masking effect of the transfection. Therefore, further investigations of 

the effect of TIGAR in cellular and neuronal models with PD-related mutations 

should be attempted by alternative methods such as stable transduction. TIGAR 

cellular localisation is not affected in parkin mutant fibroblasts in response to 

rotenone toxic exposure and cellular stress. No evidence of TIGAR involvement in 

autophagy was seen in sporadic patients with PD under the conditions tested in this 

study. Further experiments should be attempted in a stable cell line to determine 

effect of TIGAR knockdown in PINK1 deficiency and confirm in dopaminergic 

neuronal cell lines.     
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4 Stable cell lines for PD research 

4.1 Introduction 
 

It is essential to fully understand the function of genes implicated in the 

development of the disease. Therefore, cellular and animal models with conditional 

gene expression and regulation need to be generated. The genetic function can be 

analysed by turning on or off the expression of mutated genes known to cause PD 

pathology, and therefore be able to recapitulate human health and disease. In the 

present, a wide variety of controlled gene expression systems are commercially 

available, including the tetracycline-inducible T-Rex™ Flp-IN™ cells from Thermo 

Fisher Scientific using common cell lines, such as HEK293T.  

 

As previously stated, mutations in PD-related genes can cause autosomal or 

recessive forms of the disease. Knowing causal gene mutations enables researchers 

to generate cellular and animal models via genomic manipulation, in order to 

investigate potential disease leading mechanisms. 

4.1.1  Gene silencing: molecular engineering  
 RNA interference (RNAi) methods allow the introduction of a double-stranded 

RNA (dsRNA) into a target cell. Small interfering RNAs (siRNAs), micro-RNAs 

(miRNAs) and short hairpin RNA (shRNAs) are some of the interfering RNA species 

used for gene silencing. MicroRNAs (miRNAs) are short transcripts encoded by 

endogenous genes, which activates repression at both, post-transcriptional and 

translational levels, of target genes. In mammalian cell lines, miRNA repression is 

fundamentally through translational repression (Guo et al., 2010; Wilczynska and 
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Bushell, 2014). miRNAs usually bind the 3’UTR in a partial but highly complementary 

manner. They are found in the nucleus, contained and transcribed in a cluster, 

known as long primary transcripts (pri-miRNAs), which are synthesised by the 

enzyme RNA polymerase II. Pri-miRNAs are subsequently cleaved by Drosha, a 

RNAse III protein located in the nucleus and important for miRNA processing. 

RNAse III proteins are specific endonucleases that cleave the RNA structure on 

each side. Drosha cleaves pri-miRNAs into small ~70 nucleotide hairpins known as 

pre-miRNAs. Pre-miRNAs are then exported from the nucleus through pores to the 

cytoplasm by Exportin-5. The pre-miRNAs are further processed into a 22-nucleotide 

mature RNA sequence (mRNA) by Dicer, another RNAse III protein located in the 

cytoplasm (Lee et al., 2003). The mRNA sequence binds the RNA-induced silencing 

complex (RISC), after which antisense strands align with the mRNA. The expression 

of the mRNA is repressed then by three mechanisms: a) preventing the translational 

initiation (repression), mRNA decay (decapping 5’ and 3’ ends) or direct RNA 

cleavage by RISC (Recasens et al., 2016). Plasmid and viral vectors usually contain 

small nuclear RNA pol III promoters, such as U6 and H1, widely used for shRNA and 

miRNAs construct design. Both are ubiquitously expressed promoters that promote 

efficient gene silencing effect, where U6 proved to be the most effective (Mäkinen et 

al., 2006; Zhou et al., 2007). 

  

RNA interference (RNAi) is a powerful tool to gain insight into the biological 

and physiological function of specific genes. By controlling the environmental 

conditions and through genetic manipulation, protein levels can be regulated within 

the physiological margin. However, long-term gene repression might potentially 

cause non-physiological and undesired cellular effects. Generation of inducible RNAi 
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cellular regulation (e.g tetracycline) is a way to avoid these potential undesired 

effects. One disadvantage of this system is that in some particular cell lines 

background gene expression might still be high and detectable in the non-induced 

cells and affect the overall outcome (Gupta et al., 2004).  

 

The Thermo Fisher Scientific engineered miRNAs, BLOCK-iT™ Pol II miR 

RNAi expression vector kit, is a new adapted method for expression of a specific 

designed miRNA sequence, which represent the target sequence of interest and 

RNAi research. This allows the generation of clones expressing double stranded (ds) 

oligos, encoding a pre-miRNA sequence generated by expression vector selection. 

These constructs can then be introduced into the cell of interest for transient or 

stable expression of the targeted miRNA sequence to study its effects within the cell 

(Werness and Anderson, 2010).   

4.1.2 Site-specific recombinase systems  
 The site-specific recombinase systems (SSR) have been widely used to 

achieve gene knockout. SSR can be combined with and inducible gene expression 

system, such as tamoxifen and tetracycline, which enables the generation of cellular 

and animal models at a specific stage in the tissue of interest. This conditional 

knockout approach allows researchers to study the gene function at different cellular 

stages. There are several SSR developed systems, where Cre-loxP, Flp-FRT and 

ᶲC31 are amongst the most commonly used. 

4.1.3  Flp In-FRT  
  The Flp-In FRT system was derived from the yeast Saccharomyces 

cerevisiae. In this system, the recombinase Flp recognises a 34-base pair (bp) 

nucleotide sequence known as the FRT site. Within this site two 13bp palindromic 
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sequences are contained and separated by an 8 bp spacer. These palindromic 

sequences will give the orientation of the site, bind to the recombinase and the 

spacer. This region is where the DNA breaks and homologous recombination occurs 

between the FRT sites. The Flp system therefore allows DNA exchange between 

genomes, at the site of gene of interest, and the transfected plasmid (Golic and 

Lindquist, 1989). This homologous recombination occurs in a single targeted site, 

preventing from gaining or losing nucleotides as well as avoiding clonal variability 

(Shah et al., 2015; Zhang et al., 2012). This is important as it enables the generation 

of isogenic stable cell lines, in which control and disease cell lines are genetically 

identical, except for the expression of the disease-mutated gene (Liu et al., 2006). 

4.1.4  Tetracycline system 
The tetracycline systems are based on the E. coli tetracycline resistance 

operon, an operator sequence (TetO) contained within the operon, the efflux pump 

genes and a tetracycline-repressor protein (TetR). The regulation of this allows the 

gene expression in a spatiotemporal manner. Under normal conditions, the 

expression of the operon is inhibited when TetR binds the TetO. When tetracycline is 

added, the TetR binding is interrupted leading to the operon release, which promotes 

the gene expression. Two controlled systems were derived from this system:  

• In the Tet-off (tTA) systems, the target gene is turned off after tetracycline is 

added, promoting TetR to bind the transcription activation domain VP6. Here, when 

tetracycline is absent, the tetracycline controlled transactivator protein (tTA), which is 

a repressor that binds the tTA responsive promoter (Ptet), enables the gene 

expression.  
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• In the Tet-ON system, the tTAT does not bind the Ptet. Once tetracycline is 

added, the tTA binds the Ptet, which subsequently leads to gene expression (Zhang 

et al., 2012).  

Tet-off and Tet-On systems have been widely used for modelling 

neurodegenerative disorders, such as Alzheimer’s Disease (AD) (Arif et al., 2014), 

PD (Bertolin et al., 2013; Carballo-Carbajal et al., 2010; Jiang et al., 2007; Kobayashi 

et al., 2006), Huntington’s Disease (HD) (Igarashi et al., 2003; Waelter et al., 2001) 

using different cellular and animal models (Khlistunova et al., 2006; Sun et al., 2007).  

4.1.5  FLP/FRT Inducible model 
The combination of both techniques, tetracycline and Flp In systems, enabled 

the development and construction of improved conditional cell lines. The gene of 

interest (GOI) can be then targeted in a spatiotemporal manner by adding 

tetracycline or, the analogue, doxycycline (Spitzer et al., 2013; Yahata et al., 2005).    

 

Thermo Fisher Scientific introduced the new Flp-In T-Rex Core Kit, for 

generation of stable cell lines with tetracycline-inducible expression. This system is 

controlled by the integration of the Flp Recombinase in a specific site, which 

mediates the expression of GOI in mammalian cell lines. This system follows three 

basic steps: generation of the Flp-In T-Rex™ host mammalian cell lines, followed by 

the integration of the vector expressing the GOI containing a tetracycline-controlled 

promoter and, gene induction by tetracycline addition (Spitzer et al., 2013) (Figure 

4.1).  

 

The Flp-In T-Rex System offers many advantages compared to many other 

cellular models. It is and efficient and rapid system for generation of Flp-In T-Rex cell 
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lines expressing the GOI after it has been integrated FRT site in the Flp-In T-Rex 

host cell line. Importantly, the generated inducible stable cell lines are isogenic 

(Yahata et al., 2005).  

 

The Flp-In T-Rex host cell line is generated when two plasmids are co-

transfected into the selected mammalian cell line:  

• The pFRT/lacZeo vector containing a SV40 promoter regulating the 

expression of the lacZ-Zeocin fusion gene. Downstream from the ATG initiation 

codon of the lacZ-Zeocin fusion gene, the FRT site is inserted. This is the recognition 

binding and excision site for the Flp endonuclease. The lacZ-Zeocin fusion gene 

encodes a fusion protein with a Zeocin resistance marker, which allows selection of 

stable cell lines by screening them for Zeocin sensitivity (Huang et al., 2007).  

• The pcDNA6/TR plasmid expressing the TetR gene provides Tetracycline 

resistance (Møller et al., 2016) under the control of the human cytomegalovirus 

(CMV) promoter (Kim et al., 1995). The blasticidin resistance gene, which is under 

the control of the SV40 early polyadenylation signal, allows the expression of the 

blasticidin resistance gene for stable cell line selection (IzuMi et al., 1991).  

 

Random independent genomic integration occurs when the pFRT/lacZ-Zeo and 

pcDNA6/TR plasmids are transfected and integrated into the mammalian cell line. 

Thus, the Flp-In™ T-Rex™ host cell line is then generated (Spitzer et al., 2013).  

 

An expression vector containing the GOI is built by the operator that wishes to 

create a new inducible cell line and will then be integrated into the cells by the Flp 

recombinase. The expressing vector is co-transfected with a plasmid expressing the 
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Flp recombinase into the host cell line. This allows the expression of the Flp 

recombinase, which enables the integration of the expressing vector containing the 

GOI into the genome of the host cell. The Flp recombinase then mediates the 

homologous recombination between the two FRT sites. The lacZ-Zeocin fusion gene 

is inactivated after the SV40 promoter and the ATG initiation codon are brought into 

frame with the hygromycin resistance gene. Stable cell lines can therefore be 

selected by screening them for blasticidin and hygromycin resitance and zeocin 

sensitivity. The expression of the GOI is then induced upon tetracycline addition 

(Figure 4.1).     

 

 

Figure 4.1.  FLP-In T-Rex System Thermo Fisher Scientific. Schematic representation of the Flp-In T-Rex 
system. The pcDNA 5/FRT/TO construct genomic integration into the host cell line is performed by its 

cotransfection with the recombinase plasmid.  Then, homologuos recombination occur between the FRT sites in 

the expression vector and the host cell line. The transcription of the Gene of interest (GOI) takes place once the 

expression is integrated. The host cell line is conferred with antibiotic resistance to Hygromycin and sensitivity to 

Zeocin. Tetracycline addition enables the expression and regulation of the inserted gene.  Adapted from Flp-In™ 

T-REx™ Core Kit Manual, Thermo Fisher Scientific.  
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4.1.6  Inducible models in Parkinson’s Disease 
 Autophagy has been suggested to be involved in the pathogenesis of many 

neurodegenerative diseases. Autophagy helps cellular clearance from misfolded 

proteins, its impairment could lead to accumulation and contribute to the 

pathogenesis in neurodegenerative diseases. When impaired, it could lead to 

accumulation of misfolded proteins within the cell. Stable doxycycline inducible PC12 

cell lines expressing WT alpha-synuclein, A30P or A53T mutants were used as PD 

cellular model to study the neuroprotective effects of resveratrol. The resveratrol 

beneficial effects against aging, inflammation and cancer have been widely 

investigated; however, the involved mechanisms are still unknown. In this model, it 

was demonstrated that it acts as an autophagy and mitophagy inducer through 

modulation and activation of the silent regulator 2 (SIRT1) and AMP-activated 

protein kinase (AMPK) (Wu et al., 2011). Resveratrol is a potential drug for PD 

treatment due to its potential beneficial effects demonstrated in several models   

 

The relation of alpha-synuclein and unfolded protein response (UPR) was 

studied in a PC12 alpha-synuclein overexpressing inducible cell line. Here, induced 

cells showed to have an impaired UPR, increased cellular vulnerability and death. An 

enhancement of cellular toxicity was correlated with cathecolamine, such as 

dopamine, function (Ito et al., 2010). The interaction between dopamine and alpha-

synuclein in a PC12-Tet off (tetracycline inducible) system was studied. The stable 

inducible cell lines were expressing WT alpha-synuclein, mutants M116A, M127A 

and M116/M127A (in which the methionine residue was mutated), Y12D and S12A. 

It is suggested that the alpha-synuclein methionine residues are oxidized by 

dopamine, which induces oligomerization of alpha-synuclein with subsequent 

neurocytotoxicity. Here the dopamine-related M127A modification was reported to 
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play the main role in the oxidation process. It was suggested that the mechanism is 

via dopamine binding the C-terminal region of alpha-synuclein, where dopamine 

might be the main source of reactive oxygen species (ROS). Furthermore, an 

increase of the M127 modification might result under the presence of the pathogenic 

serine (S129) and tyrosine (Y12) alpha-synuclein forms (Nakaso et al., 2013).  

Moreover, the synergistic interaction between alpha-synuclein and dopamine was 

also demonstrated in a stable inducible cell line expressing WT alpha-synuclein and 

the PD-related alpha-synuclein mutant A53T. An increase of aggregates within the 

cytoplasm was observed in cells with alpha-synuclein overexpression, whereas 

mutant A53T showed increased dopamine induced cytotoxicity and vesicular 

formation. Alpha-synucein is mainly expressed in cells with high levels of dopamine, 

where it is suggested to be regulating its release in the synaptic terminals. At long 

term, the cumulative effect of defective dopamine compartmentalization, instability 

and ROS generation might lead to alpha-synuclein aggregation, aggregates 

formation and neuronal death (Tabrizi et al., 2000).  

 

The pathophysiological cellular mechanisms of LRRK2 proteins remain poorly 

understood at the molecular, biochemical and biological levels. Thus, generation of 

reliable and robust cellular and animal models are valuable tools to study these 

mechanisms. Inducible dopaminergic MN9D cell lines (a fusion of embryonic ventral 

mesencephalic and neuroblastoma cells) expressing either WT LRRK2 or mutant 

LRRK2G2019S, were generated to serve for drug screening, testing therapeutic role of 

LRRK2G2019S RNAi mediated gene knockdown and its kinase inhibitors. It was found 

that the G2019S cells had lower metabolic activity, which was increased in the 

presence of WT LRRK2. The G2019S displayed also shortened neurite extension 
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without cytotoxicity, which was rescued by kinase inhibitors and by G2019S RNAi 

mediated knockdown (Huang et al., 2013). Previous research in a Drosophila model, 

suggested that the eukaryotic initiation factor 4E (eIF4E)-binding protein) (4E-BP), 

important in protein synthesis and translation, had role as a LRRK2 substrate. This 

Drosophila model showed that LRRK2 phosphorylated the 4E-BP, impairing 

translation of proteins and altered cellular homeostasis, which could lead to 

neurodegeneration (Imai et al., 2008). To investigate the suspected interaction 

between LRRK2 and 4E-BP, as well as the involved mechanisms, a tetracycline 

inducible HEK 293FT FLP-In cells with WT LRRK2 and mutant G2019S or R1441C 

were studied. Here, they showed that the 4E-BP was a weak substrate of LRRK2 in 

vitro. Its suspected role involved with LRRK2 functionality in human cellular models 

remain to be demonstrated (Kumar et al., 2010). The LRRK2 related cellular 

response to oxidative stress was studied in a lymphoblastoid LRRK2 inducible cell 

line. Here, cells were exposed to two oxidative stressors, namely arsenite and 

hydrogen peroxide (H2O2) and their effect in LRRK2 phosphorylation status. Both 

oxidative stressors induced the loss of phosphorylation at specific sites in LRRK2, 

which affected the GTP binding and kinase activity. This proposed LRRK2 as a 

modulator of the oxidative stress response linked to PD pathogenesis (Mamais et al., 

2014).   Further suspected mechanisms between WT LRRK2, LRRK2 PD-linked 

mutations and tubulin or microtubules dynamics have been investigated in non-

neuronal inducible lines. Here LRRK2 mutations showed to affect the tubulin 

phosphorylation status and lead to impaired microtubule function and stability, 

leading to cellular damage (Gillardon, 2009).   
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 The PINK1/Parkin pathway function in mitophagy is crucial for the cell to 

maintain healthy mitochondria. Impaired mitophagy has been suggested to be 

associated to PD. Many mechanisms have been studied, where mutations in the PD-

related, PINK1 and Parkin, genes play a major role. Stable inducible cell lines 

expression WT human Parkin (FLP-In GFP Parkin) and two mutants, K161N and 

G430D (PD-linked mutations); were used to screen a number of deubiquitinase 

(DUBs) enzymes by mass spectrometry. In the overexpressing Parkin cell line 

induced by carbonyl cyanide 3-chlorophenylhydrazone CCCP, USP30 showed to 

have opposite effects to Parkin. By overexpressing USP30 in Parkin cell lines, it was 

found that USP30 inhibits mitophagy by removing the ubiquitin attached by Parkin. 

Mitophagy was rescued in the GFP-Parkin, mutant G430D and K161N when USP30 

was knocked down in vitro and the in vivo model Drosophila. A protective effect 

against paraquat toxicity was also demonstrated in the flies (Bingol et al., 2014).   

 

 Parkin tetracycline-inducible SH-SY5Y cell lines have been reported useful to 

study the effect of WT and mutant forms of Parkin proteins (Arena et al., 2013; 

Geisler et al., 2010a, 2010b; Ozgul et al., 2014; Rothfuss et al., 2009). Some of the 

mechanisms studied using these models were:  

• Mitophagy: the involvement of PINK1, Parkin, ubiquitin, VDAC1 and p62 in 

the mitophagy pathway in a chronological manner after mitochondrial depolarization 

to remove damaged mitochondria. This pathway impaired by PD-related mutations, 

Parkin and PINK1 loss of function affect their interaction and solubility, mitochondrial 

localization, stabilization and Parkin translocation. Their functional impairment lead 

to defective mitophagy, suspected to be a key mechanism leading to 

neurodegeneration (Geisler et al., 2010a, 2010b). 
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• PINK1 neuroprotection: one of the PINK1 neuroprotection mechanisms was 

demonstrated to occur by preventing cellular death via Bcl-cL (anti-apoptotic protein) 

interaction in depolarized mitochondria. In the SH-SY5Y Parkin inducible cells, Bcl-Xl 

was not involved in depolarized mitochondria and mitophagy after Parkin 

recruitment. This proposed a Parkin-independent PINK1-Bcl-Xl pathway for 

mitochondrial mitophagy (Arena et al., 2013).  

 

• By using 2D-DIGE to study the proteomic profile of this cell lines, 22 proteins 

were identified to be regulated by Parkin, from which 13 of them were particularly 

regulated in the mutant forms (Q311R and A371T) assessed. Most of the hits for the 

mutant forms, were proteins involved in energy metabolism and protein folding. 

Here, UCHL-1, 14-3-3 and heterogeneous nuclear ribonucleoprotein (hnRNP) was 

the most affected. Functional analysis with WT and mutant cell lines showed that 

one of the main differences is post-translational modifications in which mutant forms 

display lower molecular weight. However, protein stability, ubiquitylation activity and 

cellular localisation were not affected in the mutant forms. Further studies are 

required to confirm and correlate the relation of the Parkin substrates identified and 

the mechanisms related to PD and neurodegeneration (Ozgul et al., 2014). 

 

PD cellular and animal models to study DJ-1 role in neurodegeneration, 

showed that its main function is by providing neuroprotection against ROS and by 

regulating gene transcription. In the SH-SY5Y inducible cell model where DJ-1 is 

silenced, microarray analysis showed that 166 genes were altered, where the 

rearranged during transfection (RET) gene showed the highest reduction of mRNA 

and protein levels. A direct correlation between RET and DJ-1 expression was found 
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in this cellular model. Further functional analysis in this DJ-1 deficient model showed 

that RET is acting as a ligand of the glial cell line-derived neurotrophic factor (GDNF), 

which is involved in the regulation of cellular death during early development and its 

vital for postnatal cellular survival and innervation. In addition to this, DJ-1 deficiency 

produced increased ROS levels, which stabilises the hypoxia inducible factor 1α 

(HIF-1α). Increased HIF-1a levels induced cellular hypoxia and apoptosis. This study 

suggested a neuroprotection role of DJ-1 via the GDNF pathway against hypoxia 

and ROS damaged in PD pathology (Foti et al., 2010).  

 

Cell lines in which PD-related genes and mutations have been induced, have 

been a valuable source to study PD-related mechanisms and unknown biochemical, 

physiological and molecular pathways involved.  

4.1.7  CRISPR/Cas9  
Modern techniques have allowed us to use a wide range of molecular 

engineering methods in which a diversity of molecular, biological, biochemical 

pathways can be studied. CRISPR/Cas9 is a new identified genome editing 

technique, which depends on the bacterial Cas9 endonuclease activity. The 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 

(CRISPR-associated endonuclease) is a system, in which the Cas9 endonuclease 

targets and cleaves specific DNA sequences directed by a small guide RNA 

(sgRNA). The system requires the target recognition by Cas9, via a seed sequence 

in the sgRNA and the adjacent GG-dinucleotide PAM sequence (Garneau et al., 

2010; Jinek et al., 2012; Ran et al., 2013). Blunt DNA cleavage generates a double-

strand break (DSB) by two endonucleases domains, which cut the complementary 

strand (Cas9 HNH nuclease domain) and the complementary strand (Cas 9 RuvC-
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like nuclease domain) (Jinek et al., 2012). Cas9 nickase cut only one DNA strand 

(single-strand break, SSB). DSBs and SSBs are then repaired via the homology-

directed repair (HDR) or the Non-homologous end-joining (NHEJ) pathways (Rubio 

et al., 2016).  

 

Insertions and/or deletions can be generated by the NHEJ pathway, which 

result in truncated proteins and premature stop codons (Su et al., 2016). Gene 

Knock-in is generated via the HDR, displaying point mutations, insertions and 

epitope tags (Zhang et al., 2017). Cas9 nickase and SSB repair avoids indels; to cut 

both strands a double-nicking approach is required and DSBs are generated. Thus, 

the off-target effect is highly reduced. This approach requires co-transfection of two 

plasmids, Cas9 nickase, sgRNAs and markers, which affect transfection efficiency 

and efficacy (Yoshioka et al., 2016). The All-in-One (AIO) plasmid approach tackles 

this obstacle by carrying the Cas9 coupled to the fluorescent marker and the two 

sgRNAs. The two cuts or “nicks” (double nicking) are in opposite strands close to 

each other. This approach achieves slightly less efficiency and efficacy but with very 

low off-target effects (Chiang et al., 2016). 

 

Targeting a specific gene and its alteration mimics mutations in humans in 

cellular and animal models. Gene knock-in or knock-out allows to investigate the 

defects from a particular disease and recapitulate pathology.  

 

CRISPR/Cas9 has been used as a therapeutic tool for different conditions and 

diseases. Recombinant adeno-associated viral vectors (AVV) are currently used in 

some cellular (Kennedy and Cullen, 2015) and animal disease models (Ohmori et al., 
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2017) as well as some clinical trials in gene therapy with promising outcomes 

(Rincon et al., 2015). However, the continue need of re-dosing due to loss of gene 

function and potential toxic effect in peripheral organs remain a problem secondary 

to viral sequestration. The combination of CRISPR/Cas9 and AAV genome 

modification, has successfully engineered an effective aav2G9 chimeric aav strain. 

The modified engineered strain possesses the ability to enter the cell by anchoring 

either the heparan sulphate or galactose receptors. This new strain promises an 

effective and specific cellular delivery in the central nervous system (CNS), avoiding 

off-target effects and with lower transgene expression (Murlidharan et al., 2016). 

 

4.1.7.1 CRISPR/Cas9 and PD models 
The anatomy, physiology and genome of pigs are very similar to the human, 

making them suitable as an animal model for a diversity of human pathologies. 

Moreover, their cerebral cortical folding is highly similar to the human brain, making 

them an ideal model to study neurodegenerative diseases. Recently, PD pig model 

has been generated via CRISPR/Cas9, in which Parkin, DJ-1 and PINK1 are 

simultaneously targeted. This new reliable, robust and promising animal model for 

PD was generated by introducing the multiplexing sgRNA into the pronuclear 

embryos via Cas9 mRNA injection. Despite the high possibility of antagonistic, off-

target effects and mutagenesis due to multiple sgRNAs introduction; whole-genome 

sequencing showed no off-target effects and no mosaic mutations (Wang et al., 

2016d).   

 

Risk variants of PD-related genes have been associated with the sporadic 

form of PD. Alpha-synuclein was identified by Genome Wide Association Studies 

(GWAS) as the strongest risk loci for sporadic PD (Simón-Sánchez et al., 2009). 
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Isogenic human pluripotent stem cell lines with genetically modified PD-associated 

regulatory elements were generated via CRISPR/Cas9 system. Heterozygous 

deletion or exchange of associated elements in the risk and protective alleles were 

analysed in the progenitor cells and derived neurons. Here, the binding efficiency of 

the transcription factors was modified having a modulation effect in the enhancer 

activity. The cis-acting effect of the protective A allele at rs356168 in the genomic 

sequence showed lower expression of alpha-synuclein, reducing the risk for PD. 

Contrary, the risk G allele at rs356168 showed increased alpha-synuclein expression 

and higher risk for PD. This system showed to be a reliable and robust cellular model 

to study human disease and the effect of gene variations disease-related (Soldner et 

al., 2016).        

 

It remains unclear the mechanism of the vacuolar protein sorting 35 gene 

(VPS35) in PD. A question of whether its pathology mechanism is due to a gain or 

loss of function has motivated researchers to create models to elucidate the cause. 

Recently, a knock-in mice model was generated via CRISPR/Cas9, in which 

endogenous expression patterns with Vps35 deletion 1 (Del1) are expressed 

alongside the mutant protein (Vps35 D620N KI). The Vps35 D620N KI was able to 

rescue the Vps35 del1 mice from lethality during embryonic stages, but with less 

survival rates. Therefore, the normal functionality of the wild-type protein was never 

achieved. Dopaminergic neurotransmission in the caudate putamen was impaired, 

but without evidence of neurodegeneration in the homozygous mice (Vps35 D620N 

KI). Due to these effects in the mice models, it has been proposed that VPS35 

causal PD-related mechanisms are due to loss of function. However, further 
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functional mechanisms are required to confirm and identify the actual biological 

process implicated in the pathogenesis (Ishizu et al., 2016). 

 

CRISPR/Cas9 offers the opportunity to generate cellular and animal models 

to simulate human diseases, alongside the opportunity to be use as a therapeutic 

tool to target specific genes and correct the genetic defect. Recently, a CRISPR-

based genetic screen was designed in induced pluripotent stem cells (iPSC) derived 

neurons. This CRISPR-iPSC derived neuronal models offers a new platform, in 

which neurodegeneration and vulnerability of a specific neuron can be studied by 

manipulating a range of associated disease risk factors. This approach offers a new 

cellular model to study pathogenesis and related mechanisms, alongside the 

opportunity test new therapeutic techniques and drugs (Kampmann, 2017).     

 

Despite all the advantages CRISPR tools offer, the system is still in early 

stages, where undesired effects hinder its utility. Some of the major disadvantages 

remain the off-target effects and chromosomal rearrangements, which in some 

instances can be difficult to detect (Mohr et al., 2014). This is due to mismatches 

occurring within the short 20 nucleotide sequence that are tolerated within the 

protospacer region (Ran et al., 2013). Furthermore, the larger size of the Cas9 

protein makes it difficult as a delivery method via either viral vectors or as RNA 

molecule. CNS delivery techniques need to cross the blood-brain barrier, making it 

particularly difficult for use as a therapeutic tool in Neurological disorders. Moreover, 

the HDR requires an effective DNA damage repair, which is particularly less active 

and efficient in the post-mitotic neurons, where the likelihood of mutagenesis is 

enhanced (Yan et al., 2017). Current research is working to tackle this problem by 
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sequencing and looking into more prokaryotes genomes, new CRISPR or CRISPR-

like systems, Cas9 modifications and designing algorithms in order to improve the 

DNA cleavage specificity and effectors (Haeussler et al., 2016; Yoshioka et al., 

2016).  

4.2 Aims and objectives 
 Assess the effect of TIGAR knockdown in a stable inducible human cellular 

model with PINK1 deficiency. HEK 293 and HEK Flp In cells were chosen as the 

cellular model and expression system for this study. These cells are easy, 

inexpensive to grow and maintain, with rapid reproduction, easy to transfect, efficient 

protein production, ideal for viral vector production and gene therapy, amenable for 

recombinant protein production, express exogenous proteins and commercially 

available. They offer a robust and reliable cellular model. Furthermore, transfection 

procedures are easy and fast, achieving high efficiency and efficacy.  

 In this study we aimed to: 

• Design RNAi methods for TIGAR and PINK1 knockdown in mammalian cells. 

• Achieve a consistent effective and efficient knockdown of TIGAR and PINK1 

in HEK 293 cells. 

• Build isogenic stable inducible human cell models with TIGAR and PINK1 

deficiency to assess mitochondrial function by measuring ATP cellular production 

and the mitochondrial morphology. 

• Compare two different molecular engineering techniques to assess gene 

silencing effect and function. 
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4.3 Materials and methods 
4.3.1  Stable inducible cell line 
4.3.1.1 HEK293T Flp In 

Oligonucleotides design: microRNAs 

In order to generate inducible knockdown lines, we used the BLOCK-iT™ Pol 

II miRNAi Expression kit (Invitrogen) to generate CMV promoter-based vectors that 

will allow genome-integration at the FRT site. The integration of the vectors enables 

the expression of miRNAs in the HEK293 Flp-IN host cell lines. miRNA are 

oligonucleotides that target a specific against a genomic region, namely TIGAR and 

PINK1. Such constructs are composed by: 

• Single stranded oligonucleotide (ss oligos) for each gene were designed by 

using the online tool from Invitogen’s RNAi Designer 

(http://rnaidesigner.lifetechnologies.com/rnaiexpress/) (Table 4.1 and Table 4.2). 

Pre-miRNA sequences for TIGAR (Table 4.1; Table 4.2) and PINK1 (Table 4.3 and 

Table 4.4) were designed for cloning into pcDNA™ 6.2-GW/+ EmGFP-miR vector. 

The Pre-miRNA (miR) sequences are inserted in the 3’UTR of the fluorescent GFP.  

 

The designed ss oligos or pre-miRNA (miR) for TIGAR (Table 4.2) and PINK1 

(Table 4.4) inserts have the following characteristics:  

• Five derived-nucleotide (TGCTG) from endogenous miR-155. 5’ overhang 

compatible with a four nucleotide overhang in the pcDNA 6.2-GW™/+ EmGFP-miR 

vector 

• Reverse complement of the 21 nucleotide target sequence 

• 19 nucleotide derived from miR-155 to form a terminal loop  
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No. Start Sequence(DNA) GC% Rank1 

1 334 GAAGAGTGCCCTGTGTTTACA 47.62 
 

2 563 GATTAGCAGCCAGTGTCTTAG 47.62 
 

3 567 AGCAGCCAGTGTCTTAGTTGT 47.62 
 

4 634 GACCTTAAGTGTTCCTTACCA 42.86 
 

5 677 TTATGTCAGTCACTCCCAATA 38.1 
 

6 695 ATACAGGGATGAGTCTCTTTA 38.1 
 

7 696 TACAGGGATGAGTCTCTTTAT 38.1 
 

8 738 AGAAGTTAAACCAACGGTTCA 38.1 
 

9 743 TTAAACCAACGGTTCAGTGTA 38.1 
 

10 782 ATCATCTAAATGGACTGACTG 38.1 
 

Table 4.1. TIGAR (NM_020375.2) top 10 target sequences. 1“Star scoring system” reflects the probability of 

knockdown, where the one with the highest probability is given 5 stars and the one with the lowest only 3 stars. 

Only duplexes that are most likely to be successful with higher quality are shown. Target sequences highlighted 

in yellow and were selected for miRNA design. 

 
No. Start Oligo 

Type Oligo Sequence 
1 334 T S 5'- TGCTGTGTAAACACAGGGCACTCTTCGTTTTGGCCACTGACTGACGAAGAGTGCTGTGTTTACA -3' 

B S 5'- CCTGTGTAAACACAGCACTCTTCGTCAGTCAGTGGCCAAAACGAAGAGTGCCCTGTGTTTACAC -3' 
2 634 T S 5'- TGCTGTGGTAAGGAACACTTAAGGTCGTTTTGGCCACTGACTGACGACCTTAAGTTCCTTACCA -3' 

B S 5'- CCTGTGGTAAGGAACTTAAGGTCGTCAGTCAGTGGCCAAAACGACCTTAAGTGTTCCTTACCAC -3' 
3 743 T S 5'- TGCTGTACACTGAACCGTTGGTTTAAGTTTTGGCCACTGACTGACTTAAACCAGGTTCAGTGTA -3' 

B S 5'- CCTGTACACTGAACCTGGTTTAAGTCAGTCAGTGGCCAAAACTTAAACCAACGGTTCAGTGTAC -3' 
Table 4.2. TIGAR oligonucleotide primers. 3 miRs (column 1) were designed against TIGAR. They target 

different regions within the gene (column 2). Top Strand, TS; Bottom Strand, BS.  

 

No. Start Sequence(DNA) GC% Rank1 
1 459 GGAGGAGTATCTGATAGGGCA 52.39 

 

2 464 AGTATCTGATAGGGCAGTCCA 47.62 
 

3 465 GTATCTGATAGGGCAGTCCAT 47.62 
 

4 470 TGATAGGGCAGTCCATTGGTA 47.62 
 

5 496 TGCAGTGCTGCTGTGTATGAA 47.62 
 

6 509 TGTATGAAGCCACCATGCCTA 47.62 
 

7 681 TTCCTCCAGCGAAGCCATCTT 52.39 
 

8 686 CCAGCGAAGCCATCTTGAACA 52.39 
 

9 690 CGAAGCCATCTTGAACACAAT 42.86 
 

10 936 GACGCTGTTCCTCGTTATGAA 47.62 
 

Table 4.3. PINK1 (NM_032409.2) top 10 target sequences. 1”Star scoring system” reflects the probability of 

knockdown, where the one with the highest probability is given 5 stars and the one with the lowest only 3 stars. 

Only duplexes that are most likely to be successful with higher quality are shown. Target sequence is highlighted 

in yellow and were selected for miRNA design. 
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No. Start Oligo 
Type Oligo Sequence 

1 464 
TS 5'- TGCTGTGGACTGCCCTATCAGATACTGTTTTGGCCACTGACTGACAGTATCTGAGGGCAGTCCA -3' 
BS 5'- CCTGTGGACTGCCCTCAGATACTGTCAGTCAGTGGCCAAAACAGTATCTGATAGGGCAGTCCAC -3' 

2 509 
TS 5'- TGCTGTAGGCATGGTGGCTTCATACAGTTTTGGCCACTGACTGACTGTATGAACACCATGCCTA -3' 
BS 5'- CCTGTAGGCATGGTGTTCATACAGTCAGTCAGTGGCCAAAACTGTATGAAGCCACCATGCCTAC -3' 

3 936 
TS 5'- TGCTGTTCATAACGAGGAACAGCGTCGTTTTGGCCACTGACTGACGACGCTGTCTCGTTATGAA -3' 
BS 5'- CCTGTTCATAACGAGACAGCGTCGTCAGTCAGTGGCCAAAACGACGCTGTTCCTCGTTATGAAC -3' 

Table 4.4 PINK1 oligonucleotide primers. Three microRNAs (miRs) (column 1) were designed against PINK1. 

They target different regions within the gene (column 2). Top Strand, TS; Bottom Strand, BS. 

 

4.3.2  Flag tagged TIGAR and pEFGPn1-PINK1 
 Flag-tagged TIGAR was designed and generated by PCR using the primers in  

Table 4.5. The pEGFPn1-PINK1 plasmid expressing PINK1 fused to a GFP tag was 

provided by Dr. Kurt de Vos. 

 

Primer  Sequence  
Sense / Forward GGCGGGGGATCCATGGCTCGCTTCGCTCTGACG 
Antisense / Reverse ACCTGACTGACTTTGAGCGATTGAGCTCCCGCCC 

 

Table 4.5. Flag-tagged TIGAR plasmid design. Sequences rich in GC (green); BamHI restriction site (purple); 

start codon (dark blue); nucleotide target sequence (italics); stop codon (brown) and XhoI restriction site (light 

blue). 

4.3.3  Agarose gel 
Restriction digests or DNA fragments were resolved on 0.8-2% w/v agarose 

gels according to the DNA product size. Gels were run for 45 min - 1 hr at 80 V and 

visualised using a Generuler DNA ladder mix (Thermo Fisher Scientific). 

4.3.4  Restriction digests 
PCR products and plasmids were digested with the appropriate restriction 

enzymes. For this purpose, samples were digested using fast digestion restriction 

enzymes (Thermo Fisher Scientific) with 10x fast digest green restriction buffer 

(Thermo Fisher Scientific) diluted in dH2O at 37º C for 2 hrs.  
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4.3.5  Vector preparation 
 The vector was digested with the appropriate restriction enzymes, which 

prevent non-compatible ends in order to prevent self-ligation. 5µg were digested and 

dephosphorylated with Calf Intestinal Phosphatase (CIP) and incubated at 37ºC for 5 

min. Then, the vector was precipitated by using Phenol-chloroform and centrifuged 

at 15871 g for 3 min. Supernatant was discarded without disturbing the pellet. Pellet 

was air dried and diluted with 25 µl of dH2O. 

 

Plasmid Description Bacterial 
resistance Source 

pcDNA5 FRT/TO 

FLP Recombination Target 
(FRT) site for Flp 
recombinase-mediated 
integration of the vector into 
the Flp-In™ T-REx™ host cell 
line 

Ampicillin  Invitrogen 

pPGKFLPobpA Expression of recombinase Ampicillin Addgene 
pcDNA™6.2-
GW/EmGFP-miRs* 
TIGAR 

Expression of miRs* against 
TIGAR  Spectinomycin 

Invitrogen/ 
generated in this 

study 
pcDNA5 FRT/3XFLAG 
TIGAR 

Expression of 3XFLAG 
tagged TIGAR  Ampicillin Generated in 

this study 
PcDNA5 FRT/EmGFP 
miRs* PINK1 

Expression of miRs* against 
PINK1 Spectinomycin  Generated in 

this study 

pEGFPn1-PINK1 Expression of EGFP tagged 
PINK1 Kanamycin Dr. Kurt de Vos 

Table 4.6. Plasmids for HEK FLP in construction. *For each gene, three microRNAs (miRs) were designed 

and tested for knockdown. 

4.3.6  Annealing single stranded oligos  
The synthesized complementary DNA oligos (Sigma Aldrich) were annealed 

to generate a double-stranded (ds) oligo. The annealing reaction was heated at 95ºC 

for 4 min and let cool down at RT for 10 min. The obtained sample was diluted 5,000 

fold by serial dilutions to get a final concentration of 10nM. ds Oligos were cloned 

into the linearized vector.   

4.3.7  Flagged TIGAR cloning 
 TIGAR DNA fragment was amplified by PCR. PCR samples consisted 

of 100 ng DNA obtained from human fibroblasts, 100ng forward primer, 100ng 
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reverse primer, 2.5nM dnTPs (Bioline) and 1 µl of TAQ enzyme. PCR samples were 

held at 94°C for 3 min, then 30 cycles consisting of 94 °C for 30 sec, 53°C for 30 sec 

and 72°C for 1 min 30 sec, followed by final step at 72°C for 10 min. Products were 

resolved in a 1% w/v agarose gel at 80V for 45min – 1 hr using a Generuler DNA 

ladder mix (Thermo Fisher Scientific).  Observed DNA fragments were cut and 

extracted from the gel using QIAquick Gel Extraction Kit (Qiagen) and following the 

manufacturer´s protocol. Purified DNA was cloned into the dephosphorylated and 

restricted vector.  

4.3.8  Ligation  
The plasmids and DNA inserts were cloned by using a T4 DNA ligase (Roche) 

and 10X ligase Buffer (Roche). The ligation reaction was mixed and incubated for 

>16hrs at RT.  

4.3.9  Plasmid Transformation 
10 µl of the ligation reaction was combined with 100 µl of E.coli DH5α 

competent cells with gentle and swift movements. Then, samples were incubated on 

ice for 10 min and submitted to a heat-shock at 37º C for 5 mins. Samples were then 

taken out and 1 mL of sterile LB Buffer was added and further incubated at 37º C for 

1 hr. After the incubation, samples were centrifuged at 17000 g for 1 min. and the 

supernatant was discarded. The obtained cell pellet was re-suspended in 100 µl of 

LB buffer and distributed in an agar plate with ampicillin or spectinomycin. Agar 

plates were then incubated at 37º C for >16 hrs.  

 

Antibiotic resistant colonies were screened for suitable clone selection. 

Recombinant vectors were purified with QIAquick Gel Extraction Kit purification kit 

(Qiagen) and confirmed by sequencing.  
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4.3.10 Restriction 
 Restriction digest were performed by using the corresponding restriction fast 

digest enzymes (Thermo Fisher Scientific) with 10x fast digest restriction buffer 

(Thermo Fisher Scientific) at 37ºC for 2 hr. 

4.3.11 DNA purification 
Single bacterial colonies from the transformation step were collected and 

inoculated in 3ml of LB broth containing the corresponding selective antibiotic and 

grown at 37 ºC with vigorous shaking overnight. Successful DNA integration 

verification was carried out by using the Plasmid Mini Kit and following the 

manufacturer’s instructions. 

   

Bacterial cells were harvested by centrifugation at 17000 g for 1min at RT. 

Bacterial pellet was re-suspended in 200µl of Buffer P1 (Lysis buffer) followed by 

adding 200µl of Buffer P2. Samples were then inverted five times and incubated for 5 

min at RT. 300 µl of Buffer P3 was then added and samples were mixed thoroughly 

by inverting ten times and centrifuged for 10 min at 17000 g. Supernatant was then 

transferred to a new collection tube. 700µl of Isosopropanol was added to the 

samples, mixed by inverting five times and further incubated for 10 min at RT. 

Samples were then centrifuged at 17000 g for 10 min, the obtained supernatant was 

then discarded without disturbing the pellet. Obtained pellets were air dried and re-

suspended in 50 µl of dH2O. Successful DNA inserts and vectors were verified by 

size of the restriction digests analysed in an agarose gel. 

 

200 µl of the culture from the successful transformants were collected, grown 

in 5ml of LB containing the selective antibiotic and incubated at 37º C on a vigorous 
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shake overnight. Purification was performed using the Plasmid Plus Midi Kit 

according the manufacturer’s instructions.       

4.3.12 Chaining pre-miRNAs (miRs) 
 In order to express more than one miRNA in one primary transcript and 

ensure co-cistronic expression, TIGAR and PINK1 miRNAs were chained into a 

single vector. Restriction digestions were performed by: 1) the combination of two 

specific restriction enzymes to cut the pre-miRNA (miR) insert and; 2) the 

combination of two specific restriction enzymes to cut the expression vector. The 

obtained fragments from the restriction, were run on a 2% agarose gel; then 

backbone and inserts were cut from the gel and purified. The purified fragments and 

backbone were then ligated and transformed. The obtained clones were analysed by 

Sanger sequencing and tested for future experiments.  

4.3.13 Removing EmGFP coding sequence from designed miRNAs to 
destination vector 

To avoid EmGFP expression in functional analysis of TIGAR and PINK1 

knockdown, EmGFP sequence was removed from successful pcDNA6.2-

GW/EmGFP-miR2 TIGAR 2, miR2 PINK1 and the chained miR2 TIGAR- miR2 

PINK1 clones. EmGFP sequence was removed by DraI digestion for 2 hrs at 37ºC 

and run in a 0.8% agarose gel. The insert fragment was excised from the gel and 

purified. The purified fragment was ligated and inserted into the destination vector 

pcDNA5 FRT/TO. Competent cells were transformed and the obtained clones were 

selected and checked by DraI restriction digests, where the 750bp EmGFP fragment 

was not visible.    
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4.3.14 RNAi knockdown 
 Gene knockdown from the successful TIGAR and PINK1 constructs were 

verified by western blotting and qPCR.    

4.3.14.1 Western blotting 
To determine and compare gene knockdown performed by each miR 

constructs, transfected HEK cell pellets were dissolved with Lysis buffer containing 

RIPA (Radio-Immunoprecipitation Assay) buffer (Sigma Aldrich), diluted 

phosphatase inhibitors (1% v/v) (Sigma Aldrich) and protease inhibitors cocktail 

(1%v/v) (PIC). Cell lysates were incubated on ice and centrifuged for 30 min at 

15871 g at 4°C. Supernatant was collected and the total protein was measured using 

the Bradford assay to select the appropriate amount of protein. 

 

A standard curve was obtained and the sample protein concentration was 

calculated using the linear equation (See Chapter three). The volume of cell lysate 

was determined and equivalent amount of Laemmli buffer 2x was added. Samples 

were heated for 3 min. at 100°C and centrifuged for 1 min at 2347 g. Proteins 

equivalents from each sample were loaded on a 12% polyacrylamide gel (SDS-

PAGE). Separating gels were run at low voltage (50 V) and running gel at a higher 

voltage (120 V). Proteins were transferred applying a wet electrophoretic transfer to 

a PVDF membrane for 1.5 hrs at 250 mA. The membranes were blocked with 5% 

non-fat dried milk diluted in TBS-T, after which, membranes were incubated 

overnight at 4ºC with primary antibodies against TIGAR (Santa Cruz) and GFP-

PINK1 (Clonetech) (Table 4.7). Then, membranes were incubated with secondary 

antibody horseradish peroxidases (HRP) (Table 4.7) and bands were detected using 

chemiluminescence with ECL Western Blot detection kit. α-Tubulin and GAPDH 
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were used as loading controls (Table 4.7). Quantification was done by densitometry 

analysis using G-Box Syngene Image software. 

 

Antibodies Catalogue 
number Company Dilution Molecular weight 

(kDa) Host 

Primary antibodies 
TIGAR antibody 

TIGAR(G2)  
sc-74577 

Santa Cruz 
Biotechnology 

1:1000 30  M  

Monoclonal anti-α-
Tubulin 

T9026 Sigma 1:10000 50  M 

Anti-Actin antibody 
ACTN05 (C4) ab3280 Abcam 1:1000 42 R 

Anti-GADPH 
monoclonal antibody 

(6C5)  
CB1001 Calbiochem  1:5000 36 M 

Anti-GFP 
monoclonal antibody 

(JL-8) 
632380 Clonetech 1:4000 /  M 

Secondary antibodies 
Anti-rabbit HRP IgG 1706515 Biorad  1:5000 / G 
Anti-mouse HRP IgG 1706516 Biorad  1:10000 / G 

Table 4.7. Antibodies used for knockdown assessment. Goat (G), Mouse (R); Rabbit (R). 

4.3.14.2 qPCR 
Gene knockdown in HEK Flp-In successful clones was evaluated by Real-

Time qPCR. Total RNA was extracted from cell pellets, using QIAGEN RNeasy kit 

(Qiagen) and cDNA was synthesised using SuperScript III cDNA first strand-

synthesis Kit (Invitrogen), following the manufacturer’s instructions. Target gene 

expression level was normalised using U1 snRNA as reference gene.  

 

The gene quantitation was done relative to the reference genes by subtracting 

the cycle threshold (Ct) of U1 snRNA, from the Ct of TIGAR and PINK1(∆∆Ct=∆Ct 

sample - ∆Ct reference gene). The resulting value of Ct (∆Ct) is the exponent of the 

base 2 (2-∆∆Ct). This was represented as the fold difference of template for the genes 

(Table 4.8). Efficiency of the qPCR reactions of all gene primers were 95-99%. The 

normalised relative TIGAR and PINK1 gene expression was calculated for each 

condition and normalised against the untreated control. Percent of knockdown was 
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calculated by subtracting the normalised ∆∆Ct expression of the control and 

multiplying by 100. The following formula was used in Excel for the calculation: 

(Power(10,-((∆Ct target-∆Ct reference)/3.333)))*100. 

 

GENE SEQUENCE 5’ > 3’ 

TIGAR F CCAAAGCAGCCAGGGAAGAGTG 
R CCGCTTCTTTCAGGATTAGTTGAC 

PINK1 F TGGACACCTCTGGGGCCATC 
R GCCGGACGCTGTTCCTCGTT 

U1 snRNA F CCATGATCACGAAGGTGGTT 
R ATGCAGTCGAGTTTCCCACA 

Table 4.8. Primers used for gene knockdown analysis. Primers used for TIGAR and PINK1 gene expression 

by qPCR. F, Primer forward; R, Primer reverse. Efficiency of the qPCR reactions of all gene primers were 95-

100%. 

4.3.15 Sequencing 
All miR constructs and overexpressing vectors were checked by Sanger 

sequencing using the Big Dye Terminator 3.1 (Applied Biosystems) protocol. Each 

sequencing reaction consisted of 1µg of DNA combined with the corresponding 

primer (Table 4.9), sequencing buffer and reaction mix diluted in dH2O using the 

following PCR sequencing program: 1) 30s at 95ºC for 45 cycles, 2) 15s at 50ºC and, 

3) 4 min at 60ºC. 

 

The PCR products were precipitated and sent to Source Bioscience 

(Nottingham, UK) for analysis. Sequences in abi format were checked by using Finch 

TV software (Geopiza). 

 

PRIMER  SEQUENCE  
CMV (pcDNA5) CGCAAATGGGCGGTAGGCGTG 
BGH reverse TAGAAGGCACAGTCGAGG 
GFP seq forward CGAGAAGCGCGATCACATGGTC 

Table 4.9. Primers used for sequencing in this study. 
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4.3.16 Building Stable Inducible Cell Lines 
4.3.16.1 HEK293T and HEK293T Flp-In 

Cell culture and transfections 

HEK 293T and HEK 293 FRT cell lines were grown in Dulbecco’s modified 

Eagle’s medium (DMEM, Sigma-Aldrich) supplemented with either 10% Fetal Bovine 

Serum or Tetracycline free fetal bovine serum (FBS), penicillin/streptomycin 

(100U/ml) at 37 C under 5% CO2 atmosphere and a relative humidity of 95%. 

HEK293T FRT was maintained in media supplemented with Blasticidin S 

(Calbiochem) and Zeocin (Invitrogen) for mantainance. Stable cell line selection was 

performed by substituting Zeocin with Hygromycin B (Thermo Fisher Scientific)  

(Table 4.10).  

 

For pcDNA6.2™6.2-GW/EmGFP-miRs TIGAR and PINK1 clones screening, HEK 

293 cells were plated in a 24-well plate at 50,000 cells/well. Co-transfections of 

pcDNA6.2™-miRs and overexpressing vectors were carried out using 

polyethylenimine (PEI; Sigma) 1µg/ml and 500ng of total DNA and 50µl of OptiMEM® 

(Life Technologies). The mixture was added to each well with gently swirls and left 

for 48-96 hrs to assess knockdown.   

 

For stable inducible cell line construction, the Flp-In T-Rex kit (Thermo Fisher 

Scientific) was used. After miRs contructs for both genes were checked and selected, 

they were transferred and cloned into the destination vector pcDNA5™/FRT/TO 

designed to be used with the Flp-In T-Rex system. The inducible expression vector 

contains:  

• The hybrid human cytomegalovirus (CMV)/TetO2 promoter, with gene 

expression regulated by Tetracycline. 
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• Flp Recombination Target (FRT) site, for vector stable integration into the 

selected mammalian host cell line. 

• Hygromycin resistant gene for cell line selection.  

 

The integration and expression of the pcDNA 5/FRT/miRs TIGAR, PINK1 and 

chained TIGAR-PINK1 into the genome, occurs by intermolecular DNA 

recombination mediated by the Flp recombinase.  

 

Stable inducible cell lines were generated for knockdown of the two genes 

TIGAR and PINK1, and the combination of both. Cells were seeded at 1 x 106 cells 

on a 10 cm dish in 15 ml culture medium containing Blasticidin to obtain a cellular 

confluency of >50%. 24 hrs after seeding, cells were co-transfected with the 

pPGKFLPobpA:pcDNA5FRT/TO DNA plasmid at a 6:4 ratio using 50 µg PEI  (1 mL). 

48hrs after transfection cells were harvested and split into 10 cm dish with 5 mL of 

conditioned medium (media from cells that have been in culture) and 5 mL of fresh 

culture medium without antibiotics.  24hrs after cells were plated, medium was 

supplemented with Hygromycin B and Blasticidin for selection. Cells were grown 

under selective growth conditions for seven days, after which, media was replaced 

with fresh selection medium until visible clones were identified. Hygromycin resistant 

clones were screened for Zeocin sensitivity to confirm pcDNA5/FRT/TO integration 

into the FRT site. Cells with successful recombination and stable integration will 

grow in selection medium with Hygromycin and Blasticidin. These cells do not grow 

in medium Zeocin and Blasticidin. Successful clones, where the cDNA construct had 

been recombined into the FRT site in the Flp-In-293 cells, were isolated, propagated 

and screened for gene knockdown by qRT-PCR for confirmation. Confirmation of 
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clones with the highest percentage of knockdown at 72 hrs after tetracycline 

induction were selected and expanded. All control cell lines were induced and 

assessed alongside HEK Flp In CRNAi negative control obtained from Dr. Guillaume 

Hautbergue. 

 

Cell model  
stage Antibiotic Stock 

concentration 
Working 

concentration 
HEK FRT 
Before transfection 

Blasticidin 10 mg/mL 15 µg/mL 
Zeocin 100 mg/mL 100 µg/mL 

HEK Flp GOI 
After transfection 

Blasticidin 10 mg/mL 15 µg/mL 
Hygromycin 50 mg/mL 100 µg/mL 

HEK Flp In 
Induction Tetracycline 10 mg/mL 1 µg/mL 

Table 4.10. Antibiotic concentrations for HEK FRT and HEK Flp in.  

 

4.3.17 Mitochondrial function and morphology assessment   
4.3.17.1 ATP assays  

ATP assays were performed to assess the effect of TIGAR, PINK1 and 

double-knockdown in the mitochondrial function and whether there is a rescue effect 

in cells with PINK1 deficiency when TIGAR is knockdown. Cultured cells generate 

their ATP mainly through glycolysis if grown in glucose-rich medium. Once the 

medium is replaced with galactose, they rely on the oxidative phosphorylation 

pathway to produce ATP (Mortiboys et al., 2008). The ATP assays were performed 

over three consecutive passages as biological triplicates of each cell line. Each cell 

line was maintained with selection medium containing Blasticidin and Hygromycin. 

Once cells were confluent, they were trypsinised and plated at 3x103 cells/well in a 

96-well plate with glucose or galactose selection media with or without tetracycline. 

48hrs after tetracycline addition, media was replaced with fresh selection media 

containing tetracycline.  For each cell line, four conditions were tested:   

• Glucose selection media: Not Induced and Induced with tetracycline. 

• Galactose selection media: Not Induced and Induced with tetracycline. 
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ATP cellular level was measured using the ATPliteTM Luminescence Assay 

System (Perkin Elmer). In brief, reagents were warmed to RT before starting the 

assay. Cells were washed with 100 µl of PBS, after which 100µl of PBS was added 

with 50 µl of mammalian cell lysis solution per well and the plate was placed on a 

plate shaker at 700 rpm for 5 min. Then, 50 µl of substrate solution was added and 

plate was shaken for further 5 min at 700 rpm. The plate was then left to adapt to the 

dark for 10 min. and the luminescence was assessed using a FLUOstar Omega 

microplate reader (BMG LABTECH). Cell density was measured with CyQUANT Cell 

Proliferation Assay Kit (Life technologies). After ATP was measured, 50 µl were 

added per well and incubated for 1 hour at 37ºC. The fluorescence was measured at 

530 nm using a FLUOstar Omega plate reader. The normalised data was obtained 

when the total ATP was divided by the CyQUANT measurement per well in triplicate. 

Averages from controls were taken as a 100% and the ratio corresponding to each 

condition per cell line was calculated. 

4.3.17.2 Mitochondrial morphology 
In order to assess the effect of TIGAR, PINK1 and double-knockdown effect in 

mitochondrial morphology, HEK 293T Flp in cells and controls were stained with the 

mitochondrial marker Tom20 (Table 3.7). We assessed four different conditions of 

each cell line with selection media: glucose not induced, glucose/tetracycline 

induced, galactose not induced and galactose/tetracycline induced. Cells were 

seeded at a 5x104 cells/well density in a 24-well plate containing a glass coverslip, in 

selection medium with or without tetracycline. After 48hrs, media was removed from 

wells and replaced with fresh medium with tetracycline. Cells were induced for 72 hrs 

and fixed for immunofluorescence. Briefly, cells were rinsed with PBS and 

permeabilised with 0.3% Triton-X followed by incubation with 5% bovine serum 
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albumin (BSA, Sigma) in PBS (Blocking buffer) for 1 hr at RT. Cells were then rinsed 

with PBS, mouse anti-Tom20 antibody (1:1000, BD Biosciences) in blocking buffer 

was applied to all the wells and incubated overnight at 4ºC. Cells were rinsed with 

PBS and incubated with secondary goat anti-mouse antibody Alexa Fluor 488 

(1:1000; Life technologies) for 1 hr in the dark at RT. Images were captured with 

Opera Phenix Laser based Confocal High Throughput Cell Imaging System (Perkin 

Elmer). A total of nine Images per field per condition per cell line were captured and 

processed by high-content analysis using the Harmony PhenoLOGIC software 

(Perkin Elmer).  

4.3.18 CRISPR/CAS9  
Recently, new approaches in molecular biology towards genome editing 

continue to emerge with improved and promising results. The Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) Type II system is one of them. 

This is a bacterial immune system modified and designed for genome engineering. 

The system is composed of a “guide” RNA (gRNA) and a non-specific CRISPR-

associated endonuclease (Cas9). The gRNA contains a scaffold sequence for Cas9-

binding and an upstream PAM site conformed by a 20 nucleotide targeting sequence. 

The nuclease targets a precise target DNA sequence producing double-strand 

breaks (DSBs), which are repaired through non-homologous end-joining (NHEJ) or 

homology directed repair (HDR). The NHEJ is prone to error but highly efficient, 

whereas the DSB confers high fidelity but with low efficiency. Due to this, Cas9 can 

produce frame-shifts indels and gene loss of function, without modifying the genomic 

sequence.      
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4.3.18.1 Expression system 

Plasmid based 

 For this study, the plasmid expression system was selected. The All-in-One 

plasmid (AIO, #74630) contains two cloning sites that encode dual U6 promoter to 

express dual synthetic guide RNAs. The Cas9-D10A nickase is linked by a 2A 

peptide with the selectable puromycin resistant marker to enhance efficient and 

accurate genome editing (Figure 4.2). 

 

Figure 4.2. Plasmid expression system. AIO-Puro (#7430) nickase plasmid targeting each gene. BbsI and 

BsaI allow dual cloning of synthethic guides RNAs (sgRNA) and dual U6 promoter expression.  Puromycin 

coupled to Cas9 via 2A peptide linker. Terminator (pA).   

 

4.3.18.2 Target sequence selection and sgRNA design  
 The complete sequence with isoforms for TIGAR and PINK1 was obtained 

from NCBI. To select the most efficient 20-nucleotide sequences for nickase 

targeting, the online program (http://crispr.mit.edu/) was used (Table 4.11). It 

provides the nickase design and predicts its “off-target” sites and effects (Figure 

4.15). To maximise gene disruption, we aimed for the first exons within each gene. 

However, for TIGAR, due to the first thee exons having a very short sequence 

(Figure 3.2), guides were only available for exons 4-6. For the nickase design, the 

PAM sequence lies upstream the target sequence and it was removed to leave only 

20 nucleotide sequence. If target sequence did not begin with G, this was added in 

order to allow transcription by the U6 promoter. The space between the two gRNAs 

are variable and without exceeding 20 bp from each other (Table 4.11). The guides 

with the highest scores were selected and two paired gRNAs were chosen for each 

gene. 
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Gene Exon Guide Sequence 5’ > 3’ Pair Sense 

PINK1 1 

1A F ACCGACCCTGCGAGGCTCCGCGCC 
R AAACGGCGCGGAGCCTCGCAGGGT 

1B F ACCGTCTCCGCTTCTTCCGCCAGT 
R AAACACTGGCGGAAGAAGCGGAGA 

2A F ACCGCCGCCTGTTTTTCCTCGATG 
R AAACCATCGAGGAAAAACAGGCGG 

2B F ACCGGCGGGCGGTCTCGGCCTGTC 
R AAACGACAGGCCGAGACCGCCCGC 

TIGAR 

4 
1A F ACCGTCTCTCCAAAATTCCATGCA 

R AAACTGCATGGAATTTTGGAGAGA 

1B F ACCGAAAGTATGACTCAAGACTTC 
R AAACGAAGTCTTGAGTCATACTTT 

5 
2A F ACCGTTCCCTGGCTGCTTTGGCCA 

R AAACTGGCCAAAGCAGCCAGGGAA 

2B F ACCGCCTGTGTTTACACCGCCCGG 
R AAACCCGGGCGGTGTAAACACAGG 

Table 4.11. Designed primers for TIGAR and PINK1. Each paired guide are designed in opposite strands. 

Highlighted in green (F, forward) and yellow (R, reverse) are the cloning overhangs for BbsI or BsaI ligation. Pair 

guides are 1A and 1B, and 2A and 2B for each gene.  

 

4.3.18.3 Molecular cloning  
AIO-Puro vector was digested with BbsI, dephosphorylated and purified as 

previously described ( Vector preparation). All the complimentary DNA oligos were 

annealed by heating at 90-95ºC for 4 min and allow slow cooling at RT. Then, the 

oligo pairs were individually phosphorylated with T4 Polynucleotide Kinase (PNK4). 

Each oligo pair was cloned into the BbsI digested vector using T4 Ligase. Each 

construct was transformed and purified using the Spin Miniprep Kit (QIAgen) and 

following the manufacturer’s instructions. Resulting clones were checked and 

successful ones were selected and purified as previously described (See section 

4.3.11).  

4.3.18.4 Verification of inserts 
 Clones were screened by restriction digests using BamHI. Successful clones 

lose the BamHI recognition site and a linearised vector was then visualised.  
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4.3.18.5 Sequencing 
All sgRNA cloned into BbsI-digested AIO-Puro plasmid were analysed by 

Sanger sequencing using the hU6 promoter primer 

(F:TTTCCCATGATTCCTTCATATTTG) and the Big Dye Terminator 3.1 (Applied 

Biosystems) protocol. Each sequencing reaction was performed as described 

previously (See section 4.3.18.5).  

4.3.18.6 Cell culture and transfection 
 HEK 293T cell lines have been successfully used with CRISPR/Cas9 and 

optimised protocols have been already stablished. HEK293 were grown in 

Dulbecco’s modified Eagle’s medium supplemented with 10% FBS, 

penicillin/streptomycin (100U/ml) at 37º C under 5% CO2 atmosphere and a relative 

humidity of 95%. The day before the transfection, 5x104 cells/well were seeded in a 

24 well plate. On the day, 70% confluent cells were transfected with 500ng of AIO-

TIGAR and AIO-PINK1, each containing the respective paired dRNAs, using 

Lipofectamine 2000.  

 

 Then, 24 hrs after transfection, medium was replaced with fresh warm media 

and 3.5µg of Puromycin was added to each well. Cells were further incubated for 

72hrs for selection. Cells that survived under the Puromycin condition, have 

maintained the plasmid expression, which integrates into the genome of the cell. 

Puromycin resistant cells were then harvested and cultured in regular medium for 

clonal selection. 

4.3.18.7 Clonal selection 
 Clonal cell lines were isolated by limited dilution. Puromycin resistant cells 

were dissociated into single cells 72 hrs after transfection. Each transfected well with 

cells were counted and serially diluted in fresh medium. 60 cells per 10 mL in 

medium were obtained and plated for each 96-well plated, to obtain 0.5 cells/100 µL 
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media per well. Accurate dilution, calculation and single cell seeding is critical for 

single clone selection. Each transfected population for each paired gRNA for each 

gene was plated in duplicate. Cells were checked and inspected with media 

replacement for a period of 2-3 weeks, until clonal appearance with colonies were 

visualized. Cells were left growing in the incubator for a period of ~2 weeks for 

expansion. Clones from cells transfected with paired guides A and B for TIGAR 

knockdown were tested by WB to assess knockdown at the protein level. Clones 

from cells transfected with paired guides A and B for PINK1 knockdown were tested 

by qPCR for gene expression.   

4.3.19 Statistical Analysis  
Statistical analysis was carried out with Prism 7 GraphPad software. P value 

significance was obtained using 2-way and one-way ANOVA with multiple 

comparisons with post hoc correction wherever it is indicated.   
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4.4 Results 
4.4.1  Building the Flp In stable model 
4.4.1.1 Flag tagged TIGAR 

 TIGAR was successfully cloned into pcDNA5 FRT/TO (Figure 4.3, a) and 

overexpressing vector verified in transfected HEK cells (Figure 4.3, b).   

 

Figure 4.3. TIGAR cloning. a) TIGAR PCR product obtained from human fibroblasts; b) WB image of TIGAR in 

the Untreated (UT) and the overexpressing FRT-TIGAR construct in transfected HEK cells.   

4.4.1.2  TIGAR and PINK1 miRNAs 
miR constructs for TIGAR (Figure 4.4) and PINK1 (Figure 4.5) were 

successfully synthethised and cloned into the pcDNA™6.2-GW/EmGFP vector, 

which allow the expression of the miR inserts against TIGAR (Figure 4.4) and PINK1 

(Figure 4.5). The cloned miRs size was expected to be ~200 bp. They were 

transfected into HEK cells for transient RNAi analysis. One miR construct for each 

gene, with the most effective and efficient knockdown, was selected for the 

generation of the HEK Flp In stable cell line.  
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Figure 4.4. TIGAR miRs constructs. Agarose image of cloned TIGAR miR1, miR2 and miR3 inserts that were 

cloned into pcDNA™6.2-GW/EmGFP digested with BamHI and XhoI. Insert expected at ~200bp.   

 

 

 

Figure 4.5. PINK1 miRs constructs. Agarose image of cloned TIGAR miR1, miR2 and miR3 inserts cloned into 

pcDNA™6.2-GW/EmGFP digested with DraI and XhoI. Insert expected at ~180pb.   

 

4.4.1.3  miRNA mediated knockdown 

TIGAR miR constructs screening 

 In order to assess TIGAR knockdown and to select the best miR construct for 

future assays, HEK cells were transfected with or without pcDNA5 FRT/FLAG 

TIGAR and the three cloned pcDNA™6.2-GW/EmGFP-miRs TIGAR knockdown 
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effect was assessed by by WB at 72hrs post-transfection (Figure 4.6). To see 

whether a combination of two miRs showed a higher knockdown, the three miRs 

were combined in two pairs and cloned into pcDNA™6.2-GW/EmGFP. The co-

transfected cells with the overexpressing FLAG-TIGAR and the miR TIGAR 

constructs (Figure 4.6 a left panel) showed a reduction at the protein level of ectopic 

TIGAR, were miR2 TIGAR achieved the highest percentage of all (Figure 4.6 b). 

However, endogenous levels of TIGAR protein remained the same compared to the 

untransfected cells. When cells were transfected with single miR TIGAR constructs, 

TIGAR protein level was reduced in almost all of the transfected cells except for the 

cells transfected with chained miR2 and miR3 TIGAR. Overall, miR2 showed the 

highest knockdown percentage (~86%) (Figure 4.6). Constructs containing two miRs 

for TIGAR did not showed an increase in the knockdown effect, therefore miR2 

TIGAR was selected for future assays and functional analysis. 

 

 

Figure 4.6. TIGAR knockdown in HEK 293T cells. a) Representative WB image of transfected HEK 293T with 

(left panel) or without (right panel) FLAG TIGAR and pcDNA6.2/miR1, miR2, miR3 and chained miRs TIGAR (left 

panel). A knockdown can be seen in all the single constructs and only in one chained. The highest knockdown 

(~86%) was obtained with miR2 against TIGAR.  Ectopic (red arrow) and endogenous (blue arrow) TIGAR.   
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PINK1 miRs constructs screening 

 Cloned miRs for PINK1 were transfected in HEK and knockdown effect was 

assessed at the 48hrs. To asses PINK1 knockdown at the protein level, eGFP-

PINK1 was co-transfected with the three pcDNA™6.2-GW/EmGFP-miRs PINK1. 

Since there are no reliable PINK1 antibodies, GFP-PINK1 knockdown was assessed 

at the 48hrs post-transfection. The three constructs showed high levels of 

knockdown, where miR2 PINK1 showed ~100% knockdown (Figure 4.7). Therefore, 

the construct containing miR2 PINK1was selected for stable inducible cell line 

generation and future functional analysis.    

 

Figure 4.7. PINK1 knockdown in HEK cells. a) Representative Western Blot image of HEK cells co-transfected 

with eGFP-PINK1 and three pcDNA6.2/miR1, miR2 and miR3 against PINK1. Blots (upper panel) were probed 

with antibody against GFP, to detect eGFP-PINK1. The three miR2 PINK1 construct achieved the highest effect 

with ~100% knockdown. 

 

4.4.1.4 GFP removal 
Before the HEK FLP IN cellular model for each gene was established, the 

GFP 750bp sequence was removed from all miR constructs and transferred into the 

destination vector pcDNA5™/FRT/TO (Figure 4.8).  
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Figure 4.8.  Restriction analysis of miRNAs after GFP removal. Image of digested miRNAs with DraI of the 

three miRNAs in pcDNA6.2 vector. First six lanes correspond to miR2 TIGAR. Lanes in the middle correspond to 

miR2 PINK1, where the first 2 lanes correspond to pcDNA6.2/EmGFP-miR2 TIGAR (asterix) and 

pcDNA6.2/EmGFP-miR2 TIGAR/miR2 Pink1 (dash), which were used as GFP controls respectively (single or 

chained inserts). Last six lanes correspond to chained miR2 TIGAR and miR2 PINK1.  

 

 Then, after GFP removal, miR2 TIGAR, miR2 PINK1 and miR2 TIGAR/miR2 

PINK1 were successfully cloned into the pcDNA5/FRT/TO expression vector (Figure 

4.8), TIGAR and GFP-PINK1 levels were assessed at the 48hrs by WB to verify 

knockdown effect (Figure 4.9). GFP-PINK1 continue to show ~100% knockdown in 

transfected cells with miR2 PINK1 (Figure 4.9) and miR2 TIGAR/miR2 PINK1. 

However, miR2 TIGAR showed a lower knockdown effect alone (Figure 4.9) (30%) 

and when co-transfected with eGFP-PINK1 and chained with miR2 PINK1 (Figure 

4.9) (23%). When two miRs are co-transfected, it has been shown that percentage of 

knockdown might decrease (Werness and Anderson, 2010).    



223 
 

 

Figure 4.9. TIGAR Protein levels.  a) Representative Western Blot image of HEK cells untransfected (lane 1), 

co-transfected with eGFP-PINK1 and pcDNA™5/FRT/miR2 TIGAR (lane 3), pcDNA™5/FRT/miR2 PINK1 (lane 4) 

and pcDNA™5/FRT/miR2 TIGAR/miR2 PINK1 (lane 5). Blots (upper panel) were probed with antibody against 

GFP, to detect eGFP-PINK1 The constructs showed a knockdown, in which miR2 PINK1 achieved a ~100% 

knockout; whereas TIGAR showed a knockdown of 30% alone and 23% when both inserts are expressed. 

4.4.2  HEK Flp In TIGAR and PINK1 assessment  
 Once knockdown was achieved, the miR constructs were selected for further 

functional assays in the HEK Flp In cell lines. The miR constructs were transferred 

and cloned into the pcDNA™5/FRT/TO expression vector containing the hybrid 

human cytomegalovirus (CMV)/TetO2 promoter and Hygromycin resistance gene. 

This system allows inducible regulation after tetracycline addition and antibiotic 

selection.  

 

 Stable inducible cell lines for TIGAR and PINK1 were generated after HEK 

FRT cells were transfected with the pcDNA5™/FRT/TO vector containing the pre-

miRNA (miR) insert in the 3’UTR, directed against TIGAR, PINK1 or both, using the 
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Flp-In T-Rex kit. The integration of the vector is mediated by the Flp recombinase, 

which allows the DNA recombination at the FRT sites.  

 

The HEK FRT host cell line contains the pFRT/lacZeo target site vector, 

containing the lac-Z-Zeocin fusion gene regulated by the SV40 promoter. The ATG 

initiation codon of the lac-Z-Zeocin fusion gene lies upstream the FRT site. HEK FRT 

cells express the lacZ-Zeocin resistance gene, which makes them Zeocin-resistant.  

The pcDNA5/FRT/TO constructs contain the hygromycin resistance gene within the 

5’ coding region, as well as a FRT site, which is lacking from the ATG initiation 

codon and a promoter. Once the constructs were co-transfected with pPGKFLPobpA 

plasmid, homologous recombination occurred between the FRT sites. Stable 

insertion into the genome of the pcDNA5/FRT/TO, the ATG initiation codon and the 

SV40 promoter are brought in frame within the hygromycin resistance gene, leading 

to lacZ-Zeocin fusion gene inactivation. Therefore, we were able to select the stable 

inducible cell lines via hygromycin and blasticidin resistance and Zeocin sensitivity. 

After the pcDNA5/FRT/TO vector containing the miR2 TIGAR, miR2 PINK1 and 

miR2 TIGAR/miR2 PINK1 is integrated, gene repression is achieved via tetracycline 

induction. 

 

The pcDNA/FRT/TO vector contains the CMV/TetO2 promoter, in which the 

miR inserts expression are regulated via tetracycline induction. The HEK FRT cells 

contained the blasticidin resistance gene and Tet repressor elements (TetR). This 

allowed blasticidin selection of cell lines expressing the tetracycline repressor protein. 

These cells are maintained under the regulation of the Tetracycline Operator 2, 

which inhibits the expression of the miR insert. Once tetracycline is added, it binds 
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the TetR, it changes it conformation and releases it from the Tet operator sequences. 

This leads to miRs transcription and expression. 

 

After cells were transfected and single colonies were obtained, successful 

clones were selected for screening for each cellular model. Single visible colonies 

were picked and grown in a 24-well plate. Single colonies were then grown under the 

following selection conditions: a) medium with Hygromycin and Blasticidin.and b) 

medium with Zeocin and Hygromycin. Successful clones were grown in medium 

Hygromycin and Blasticidin, where cellular death occurred in medium containing 

Zeocin and Blasticidin. A total of three cell lines were selected from each cellular 

model. After tetracycline induction, knockdown was assessed by comparing the 

mRNA levels obtained by qPCR for each cell lines, (Figure 4.10, Figure 4.11 and 

Figure 4.12).    

4.4.2.1  RNAi mediated knockdown 
Three clones for screening from the HEK Flp In for each cell model were 

selected. Each cell line was harvested and plated into 10 cm dish with or without 

tetracycline addition. Next, the knockdown percentage was analysed for each of the 

clones by assessing the gene expression of TIGAR and PINK1 at 48hrs post 

induction and using qPCR.  

HEK Flp TIGAR cell lines.  

All three Flp TIGAR cell lines were compared with the cells without 

tetracycline induction (control). Based on the obtained results from the 72 hrs post-

induction, two of the three cell lines showed decreased TIGAR expression compared 

to their respective control (Figure 4.10 a). Flp TIGAR cell line T2 had a reduction of 

55.3% (2-way ANOVA, ****P<0.0001) and A2 of ~30% (2-way ANOVA, ****P 

<0.0001), whereas T1 showed a 2-fold increased expression (2-way ANOVA, 
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****P<0.0001)  (Figure 4.10 a). The T2 and A2 cell lines were then chosen to check 

for consistent decreased TIGAR expression after 72 hrs post induction. TIGAR 

expression showed was consistently knocked down after 48 hrs post induction in 

further assessments, where A2 showed a 65% decreased expression and T2 50% 

relative to their controls (2-way ANOVA, ****P <0.0001) (Figure 4.10 b and c). A2 

demonstrated consistency with high reduction of TIGAR expression, therefore this 

cell line was selected for further functional analysis.        

  

 

Figure 4.10. TIGAR Knockdown in HEK FLP IN cell lines. TIGAR mRNA level of HEK FLP TIGAR cell lines at 

72 after of tetracycline induction. A) Three cell lines were selected for screening and selection for TIGAR 

knockdown, where a reduction of TIGAR expression was obtained for T2 (50%) (****P<0.0001) and A2 (30%) 

(****P<0.0001) and a 2-fold increased TIGAR expression was obtained for T1 (****P<0.0001). Two cell lines were 

selected for knockdown validation: A2 (b) and T2 (c), where a constant knockdown was achieved with both cell 

lines of 64.3 % (****P<0.0001) for A2 and 55% (****P<0.0001) for T2. 2-way ANOVA, Dunnett’s test (n=3).    
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HEK Flp PINK1 cell lines  

Initial assessment of HEK Flp PINK1 cell lines after 72 hrs of tetracycline 

induction, two from the three cell lines showed a reduction in PINK1 expression 

when compared to their respective controls (Figure 4.11 a). Here, a decrease in 

PINK1 expression of ~50 % (2-way ANOVA, ****P<0.0001) was observed in PB11 

and 40% (2-way ANOVA, ****P<0.0001) for P2 and an increase of ~19% (2-way 

ANOVA, ****P<0.0001) in P5 (Figure 4.11 a). Further analysis performed in PB11 

and P2 demonstrated a consistent decrease of PINK1 expression of 80% (2-way 

ANOVA, ****P<0.0001) and 50% respectively (2-way ANOVA, ****P<0.0001) relative 

to controls (Figure 4.11, b and c). PB11 achieved the highest knockdown, therefore 

this cell line was selected for future functional analysis.            

 

Figure 4.11. PINK1 knockdown in HEK FLP IN cell lines. PINK1 mRNA level of HEK FLP PINK1 cell lines at 

72 after tetracycline induction. A) Three cell lines were selected for screening for PINK1 knockdown, where a 

reduction in PINK1 expression was obtained for PB11 (50%) (****P<0.0001) and P2 (40%) (****P<0.0001) and a 

~19% increase in PA5 (****P<0.0001). B11 (b) and A2 (c) were selected for further validation of knockdown, 

where a constant knockdown was seen with both cell lines of 80% in PB11 for and 50% in P2. 2-way ANOVA 

Dunnett’s test (n=3).    
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HEK Flp TIGAR/PINK1 cell lines  

After 72 hrs of tetracycline induction, the three obtained cell lines showed a 

decreased expression in both genes of approximately 55% for TIGAR (2-way 

ANOVA, ****P<0.0001) and 72% for PINK1 (TP8) (2-way ANOVA, ****P<0.0001); 

63% for TIGAR and 78% for PINK1 (TP9) (2-way ANOVA, ****P<0.0001); and 24% 

for TIGAR and 35% for PINK1 (TP2) (2-way ANOVA, ****P<0.0001) (Figure 4.12 a). 

Two cell lines were selected for further confirmation, where TP8 showed consistent 

decrease expression of approximately ~94% in both genes (2-way ANOVA, 

****P<0.0001) (Figure 4.12 b); and TP9 of ~53% in both genes (2-way ANOVA, 

****P<0.0001) (Figure 4.12 c). TP8 achieved consistent high reduction for TIGAR 

and PINK1 expression and was selected for functional analysis.    

 

  

Figure 4.12. TIGAR and PINK1 knockdown in HEK FLP IN cell lines. PINK1 knockdown in HEK FLP IN cell 

lines. PINK1 and TIGAR mRNA level of HEK Flp TIGAR/PINK1 cell lines at 72 after tetracycline induction. a) 

Three cell lines were selected for screening for gene knockdown, where a reduction in TIGAR and PINK1 

expression was obtained for TIGAR of 55% (****P<0.0001) and 72% (****P<0.0001) for PINK1 in TP8; 63% and 

78% (****P<0.0001) in TP9 and 24% and 35% in (****P<0.0001) TP2 respectively. These two cell lines were 

selected for further validation of knockdown TP8 (b) and TP9 (c), where a constant knockdown for both genes of 

94% (****P <0.0001) in TP8 and 53% (****P <0.0001) in TP9. 2-way ANOVA Dunnett’s test (n=3).    



229 
 

 

4.4.2.2 HEK Flp In mitochondrial function  
Since tigarb knockdown was demonstrated to have a mitochondrial rescue 

effect in pink1 deficient zebrafish model (Flinn et al., 2013); we aimed to assess this 

effect in human cell lines. 

Effect of TIGAR and PINK1 deficiency in ATP production 

 ATP production was assessed in the three selected cell lines for each cellular 

model (Figure 4.13). In the presence of glucose, after 48 hrs induction, we found a 

reduction of 58% (2-way ANOVA, *P=0.0309) in the HEK Flp TIGAR A2 induced 

cells compared to HEK Flp CRNAi induced cells (Figure 4.13 a). However, no 

statistical difference was found in HEK Flp TIGAR A2 compared to the not induced 

control (2-way ANOVA, P=0.703) (Figure 4.13a). ATP levels were increased in HEK 

Flp PINK1 B11 induced cells compared to not induced cells (20%), without reaching 

statistical difference (2-way ANOVA, P=0.52) (Figure 4.13a). ATP production was 

decreased in HEK Flp TIGAR A2 induced cells (58%) (2-way ANOVA, *P=0.0353) 

when compared to HEK Flp PINK1 B11 induced cells (Figure 4.13). ATP levels were 

reduced in TIGAR/PINK1 TP8 induced cells (~16%) compared to not induced 

controls, however they did not reach statistical significance (2-way ANOVA, P=0.95) 

(Figure 4.13 a). 

 

 In glucose-free medium at 48 hrs post tetracycline induction, HEK Flp TIGAR 

A2 and HEK Flp PINK1 PB11 induced cells showed an ATP reduction of 60% (2-way 

ANOVA, *P=0.0141) and 62% (2-way ANOVA, *P=0.0115) respectively, when 

compared to control HEK Flp CRNAi induced cells. HEK Flp TIGAR A2 and PINK1 

BII showed a decrease of ATP levels ~20% (2-way ANOVA, P>0.05), without 

reaching statistical difference when compared to their respective not induced 
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controls. ATP levels showed a slight increase in HEK Flp TIGAR/PINK1 TP8 induced 

cells when compared to the not induced control (~5%) (2-way ANOVA, P>0.05), 

however this did not reach statistical difference (Figure 4.13 b).  We demonstrated 

that TIGAR and PINK1 deficiency produced a decrease in the ATP independently in 

the absence of glucose; whereas in glucose media TIGAR deficiency showed a 

decrease in ATP levels, opposite to an ATP increase when PINK1 is deficient. In 

glucose-free medium, although there was an increase in ATP production when both 

genes were deficient in the same cell line, it was minimal and no significant. Overall, 

there is a statistical difference in TIGAR and PINK1 cell lines when compared to 

negative control, but not to the respective not induced cell lines.     

 

Figure 4.13. ATP assays in stable inducible cell lines for TIGAR and PINK1 knockdown. ATP assays were 

performed in HEK Flp In of each cellular model in two different medium conditions after 48 hrs of Tetracycline 

induction. a) In glucose medium, a reduction of ATP levels of induced cell lines of about 58% in HEK Flp TIGAR 

A2 relative to HEK Flp CRNAi induced cells (*P=0.0309). An ATP reduction of ~58% in HEK Flp TIGAR A2 when 

compared to HEK Flp PINK1 B11 (*P =0.0353); b) in glucose-free medium, induced cells showed an ATP 

reduction in HEK Flp TIGAR A2 (60%) (*P=0.0141) and HEK Flp PINK1 B11 (62%) (*P=0.0115) when compared 

to HEK Flp CRNAi induced cells. All cellular models showed no statistical difference in any of the conditions 

when compared to their respective not induced control. 2-way ANOVA, Turkey’s test (n=3).  
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4.4.2.3 HEK Flp In mitochondrial morphology 
 Morphological changes have been reported in other cellular models linked to 

a defect in the ATP production in PINK1 deficiency. We therefore investigated 

whether mitochondrial morphology was altered in the HEK Flp TIGAR, HEK Flp 

PINK1 and HEK Flp TIGAR/PINK1 induced cells. All cell lines were submitted to the 

same conditions as the ones assessed for ATP levels. Cells were stained with 

mitochondrial marker Tom 20 and visualised with the Opera Phoenix Laser based 

Confocal High Throughput Cell Imaging System. Nine Images per field per condition 

per cell line were captured and processed by high-content analysis using the 

Harmony PhenoLOGIC software to obtain mitochondrial length measurements. 

Qualitative analysis of individual cell lines was performed in the presence or absence 

of glucose. Overall, after 48 hrs of tetracycline induction, we did not find any 

significant difference in the mitochondrial length or branching in any of the conditions 

and any of the HEK Flp In cellular models. Overall, in our hands and under the 

conditions tested, these results suggested that TIGAR and PINK1 deficiency does 

not alter the mitochondrial morphology in the HEK Flp In cellular model.  
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Figure 4.14. Mitochondrial morphology in stable inducible cell lines for TIGAR and PINK1 knockdown. 

Cells were stained with the mitochondrial marker Tom20 and assessed at the 48hr after tetracycline induction in 

the presence (a) or absence (b) of glucose. Mitochondrial were visualised with the Opera Phoenix Laser based 

Confocal High Throughput Cell Imaging System. Mitochondrial length measurements were obtained by high-

content analysis using the Harmony PhenoLOGIC software. No statistical difference was obtained in any of the 

cell lines in any of the conditions assessed (P>0.05). 2-way ANOVA multiple comparisons (n=3).  

4.4.3  CRISPR/Cas9  
The design for each gene using the CRISPR online tool (http://crispr.mit.edu/) 

produced 2 paired sgRNAs for PINK1 in the exon 1, whereas for TIGAR one paired 

guide was design targeting the exon 4 and one within the exon 5, an example of the 

design is featured in Figure 4.15. The first three exon sequences of the TIGAR gene 

are too small, which result in no available suitable sgRNA for this regions due to their 

size (Table 4.11).  
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Figure 4.15. gRNA design and nicking strategy. Representative image of each paired guide gRNA designed in 

opposite strands, based on target sequences against human TIGAR and PINK1. gRNAs are separated from each 

other by 20 bp within the respective exon. When gRNAs are paired, the off-target effect is predicted to be null by 

the online CRISPR Design tool for all the paired guides against both genes (crispr.mit.edu). Each guide cuts after 

the PAM sequence (red arrow), creating the biallelic disruption.   

 

4.4.3.1 TIGAR and PINK1 colony screening 
All gRNAs were cloned into BbsI-digested AIO-Puro vector. From the 

obtained transformants, 2-3 colonies were picked and checked by restriction digests 

with BamHI and EcoRV. Successful clones with the insert lose the BamHI site, from 

which the linearized vector was detected (Figure 4.16). Successful clones were 

selected and transformed. Afterwards, plasmids were purified, assessed and 

checked for right insertion without any mutations by Sanger sequencing. Four 

plasmid constructs, for the two paired guides corresponding to each gene, were 

selected for transfections.       
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Figure 4.16. Colony screening for PINK1 and TIGAR. Restriction analysis of cloned gRNAs for PINK1 and 

TIGAR. The oligonucleotide duplex was ligated into BbsI-digested AIO-Puro vector; restriction digests with 

BamHI and EcoRV of successful clones showed only the linearized vector (~10000bp) (asterix).  

 

 After cells were transfected with the correct paired guides for each gene and 

puromycin selected, successful clones were expanded and selected for knockdown 

or knock-out confirmation against TIGAR and PINK1.  

TIGAR screening 

  TIGAR protein level was assessed by WB from the selected clones. A total of 

fourteen clones were obtained from each transfected gRNA pair, from which eight 

were selected for screening. Quantitative analysis from the blots showed a reduction 

in TIGAR protein level in five of the clones between 33-85% (Figure 4.17 a-b). 

Although clone 2A showed the highest reduction (One-way ANOVA, ***P<0.001), it 

was also the one with the least protein amount loaded, where Actin protein level was 

remarkably affected (Figure 4.17 a-b). Clones 5A, 6A and 11A showed an increase 

in TIGAR protein levels at almost 2-fold in one clone (Figure 4.17). The four clones 

1B, 3B  (33.5%) (ns P>0.05, n=2), 4B (58%) (*P<0.05, n=2) and 5B 52% (*P<0.05, 

n=2) demonstrated similar reduction of TIGAR protein levels (33-58%) (Figure 4.17 
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b). Since some of the clones were not assessed in triplicate, further verification of 

TIGAR knockdown is suggested in the remaining clones. In addition, quantifying 

mRNA levels would be an alternative method to assess if TIGAR was knocked down 

at the transcriptional level.  

     

 

Figure 4.17. TIGAR CRISPR Cas9 screening. A) WB image of clones obtained from cells transfected with 

paired guides A and B; b) Densitometry analysis where protein level was quantified and normalised against the 

untransfected cells (WT). TIGAR knockdown was obtained for pair 2A of 85% (***P<0.001; n=2), pair 1B of ~50% 

(*P<0.05; n=2), pair 3B of 33.5% (ns P>0.05, n=2), pair 4B of 58% (*P<0.05, n=2) and for pair 5B of 52% 

(*P<0.05, n=2). One-way ANOVA Dunnett’s test.        

 

PINK1 screening  

 Since there is a lack of reliable antibodies against PINK1, we assessed PINK1 

mRNA levels by qPCR in five of the ten clones obtained for this cell model. From the 

results obtained, only two of the five clones assessed showed a reduction of PINK1 

mRNA levels. Clone 4B and 3B showed a reduction of 87% (One-way ANOVA, 
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**P<0.01, n=2) and 85% (One-way ANOVA, **P<0.01, n=3) respectively compared 

to WT cells. A non-significant reduction in PINK1 mRNA levels was detected in 6B 

(33.7%) (One-way ANOVA, ns p>0.05, n=3) and 3A (One-way ANOVA, P>0.05, n=2) 

(Figure 4.18). Some of the clones were tested in duplicate, therefore further 

screening in triplicate and for the remaining clones should be performed in order to 

verify the knockdown effect in order to select a suitable cell line for functional 

analysis in PINK1 deficient cells.  

   

 

Figure 4.18. PINK1 CRISPR Cas9 screening. Quantification of the mRNA level of transfected cells with paired 

guides A and B for PINK1 knockdown, where level of expression was normalised against the untransfected cells 

(WT), where a significant knockdown was obtained for PINK1 3B (85%) (**P<0.01, n=3), and PINK1 4B (87%) 

(**P<0.01) (n=2) cell lines only. Although PINK1 6B and PINK1 3A cell lines showed a reduction, it was no 

statistical different. One-way ANOVA Dunnett’s test.  

 

All cell lines from both cellular models were only screened for knockdown or 

knockout efficacy and efficiency. Detection of indel mutations and polymorphism 

should be verified by functional testing and genotyping for fully validation of the 

system, detect mutations and off-target effects. Further functional testing assays 

should be performed by isolating the DNA of each cell model.  
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4.5 Discussion 
 Previous research performed in the zebrafish pink1 deficient model from our 

group, suggested an unknown implication of TIGAR in PD neurodegenerative 

process (Flinn et al., 2013). The proper mechanisms related to the development of 

the disease were still elusive and needed to be validated in a human model. The aim 

of the current project was to confirm and verify TIGAR PD-related mechanisms in a 

reliable and robust cellular model with PINK1 deficiency. Thanks to modern 

molecular engineering techniques, we achieved to build a stable inducible model, 

which allow us to study the implications and effects of TIGAR when PINK1 is 

deficient.  

4.5.1  Gene knockdown 
 Previous attempts to assess the effects of TIGAR knockdown in human 

fibroblasts were not successful and inconclusive. Although, they proved to be a very 

valuable model with potential promising results, effects of transient transfections and 

chemical reagents prevented us from assessing the knockdown effect. In order to 

overcome and tackle this problem, we build an isogenic stable inducible cell line, 

which allow us to study the functional effects in a PINK1 deficient stable inducible 

model. 

 

 In our study, using RNAi by microRNAs, we achieved a 40-50% TIGAR 

knockdown at the protein and gene level consistently. PINK1 showed to have almost 

a ~100% knockdown at the protein level, achieving almost a knock-out. The fact that 

TIGAR knockdown effect was lower in HEK transfected cells might be for a number 

of reasons. First, TIGAR protein levels have been reported to be higher in HEK cells 

(See chapter three), whereas mRNA levels has been shown to be lower 
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(http://www.proteinatlas.org). So, even when TIGAR is knockdown, it is a lower 

percentage due to its abundancy or a long protein half-life time in HEK cells. Second, 

even when transient transfections help to study the effect of a target gene and 

protein production, they do it in a limited temporal manner due to the fact that the 

genome is not integrated to the host cell line. For this, knockdown effect should be 

then assessed over a period of time from 24-96 hrs to see whether the maximum 

effect is achieved at shorter or longer period. Third, chemical and physical methods 

might interfere with the physiological response of the cell, produce chemical 

modifications of the microRNA (unlikely) and the overall outcome. The efficiency of 

the knockdown also depends on the targeted sequence site within the gene, which 

can result in a high variability. Although, there are no reported TIGAR isoforms, there 

is the probability that there are produced, not targeted by the miRNA (miR) and 

therefore detected by WB. A higher TIGAR knockdown was expected with chained 

microRNAs (miRs) targeting only one gene, but the results showed that the 

percentage was similar or lower than when using miR2 TIGAR alone. miR1 targets 

exon number 5, whereas miR2 and 3 target the middle and distal part of the exon 

number 6 of the gene (Table 4.1). These different sites explain the differences of the 

knockdown effect, suggesting that effective TIGAR knockdown occurs when miR are 

targeting the centre region of exon number 6, the largest of the gene. Contrary to this, 

the chaining of miRNAs targeting two or more different genes can usually result in 

lower knockdown effect of both genes, explaining the difference in the knockdown 

percentage between the two genes in the co-construct (Werness and Anderson, 

2010).  
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Both, TIGAR and PINK1, protein products are present within the cell in the 

cytoplasm or the mitochondrial membrane. Current antibodies against all forms of 

endogenous PINK1 lack reliability, where many of them recognise different cleaved 

products or do not recognise them at all, displaying unspecific background bands 

that are likely to be detected at different molecular levels (Deas et al., 2009). PINK1 

protein is processed and displayed in three different species within the cell: 1) as full 

length (~63 kDa), that upon mitochondrial depolarization it is cleaved by, 2) the 

mitochondrial processing peptidase into a 60-kDa intermediate form, and 3) a 52 

kDa mature form processed by the presenilin-associated rhomboid-like protein 

(PARL) (Greene et al., 2012; Jin et al., 2010). Therefore, the PINK1 protein has a 

short half-life due to its rapid cellular turnover and modifications (Liu et al., 2017), 

which explains the higher protein reduction when it is knocked down and detected 

when tagged with the eGFP protein. PINK1 mRNA levels remain to be a more 

reliable source for PINK1 detection, since they are ubiquitously stably expressed 

within the cell (Blackinton et al., 2007; Duan et al., 2014).  

 

TIGAR and PINK1 knockdown results by WB were both confirmed and 

verified in the stable inducible cell lines by detection of mRNA levels by qPCR. We 

were confident of our results and the silencing effect mediated by the miRNAs (miRs) 

to study the effect in the mitochondrial function and morphology in the cellular 

inducible models.    

4.5.2  Stable inducible models 
There are a wide variety of techniques for transient RNAi, such as: 

microinjection of the desired specific nucleotide sequence, viral and plasmid vectors 

carrying genes and probes that target specific cell. However, one shortcoming with 
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the microinjection is that only a very limited number of cells are transfected (Hsu and 

Uludağ, 2012). Viral vectors have the characteristic to be very useful for 

transfections in primary cells, which are difficult to transfect. Another advantage of 

viral and plasmid vectors is that they often carry a marker for cellular selection of 

cells successfully transduced. Viral vectors require the transcriptional machinery 

from the host to express integrated DNA material. Thus, the host is exposed to 

random integration of the DNA material alongside the bio-hazard risk implied when 

using a viral vector (Ramachandran and Ignacimuthu, 2013). 

 

Stable inducible cell lines offer several advantages for investigating the 

biological and molecular processes not only for PD but for a number of human 

diseases (Falkenburger et al., 2016; Kappel et al., 2007). They can be grown for 

longer periods of time and be produced in larger quantities. The gene function can 

be assessed in a spatiotemporal manner, where gain or loss of function mutations 

are avoided. By turning on and off the gene expression, it helps to understand the 

involvement in the development and progression of the disease. Gene over-

expression can be also studied through this approach and assess gene dose cellular 

effect and toxicity. More than one gene can be easily introduced by the carrying 

vector; allowing to assess protein levels as well as to investigate the clonal 

functionality when different genes are integrated in the same cell. The system also 

prevents the risk of random integration, undesired, not predictable and not 

reproducible gene and cellular effects are minimal (Yahata et al., 2005). 

 

 The Tetracycline-Inducible Flp In T-Rex System from Thermo Fisher 

Scientific provides the tools for generation of stable, isogenic and inducible cell lines 
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with a unique FRT integration site. All of which will contain identical backgrounds and 

cellular models can be generated to knockdown or introduce mutations of a 

particular gene of interest. By using this system, we were then able to generate three 

stable inducible cellular models: HEK Flp TIGAR, PINK1 and co-construct TIGAR-

PINK1 for PD research. The generated cell lines from each model showed a good 

knockdown for both genes, particularly PINK1. The clones with the highest 

percentage reduction at the mRNA level were used to assess the mitochondrial 

function and morphology. However, for Flp TIGAR and the co-construct Flp 

TIGAR/PINK1 cell model, TIGAR silencing showed to be more variable and < 50% at 

the mRNA and protein level. This could be due to the fact that it is a metabolic 

protein and any cellular insult may modify its expression, which is also highly 

dependent in the cellular type. Moreover, HEK cells have a higher TIGAR expression 

than PINK1, which also affects the knockdown effect.    

4.5.3  Limitations  
Opposed to neurons, where the pathology occurs, the HEK cellular model is 

continuously dividing. The ongoing division could be providing the cell the 

opportunity to repair and compensate the damage by alternative mechanisms. 

Stable HEK cells have shown similar physiological effects as neuronal cells, however 

stable expression and phenotype maintenance had been difficult in some cellular 

types, with irreproducible results subjected to different culture conditions. Moreover, 

HEKs are cells with a different phenotype and metabolism different to neurons 

(Stepanenko and Dmitrenko, 2015). To overcome this problem, inducible models 

could be transformed into dopaminergic neurons by converting them either into iPSC, 

or directly into induced human neuronal progenitor cells (iNPCs). Mitochondrial 

translation, glycolysis, mitochondrial functions, protein balance between 
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mitochondrial and nucleus, and molecular changes are suggested to occur in cells 

induced with doxycycline mainly and less likely with tetracycline. (Houtkooper, 2015).  

4.5.4  Mitochondrial morphology and function  
 Mitochondrial function and morphology are impaired in PINK1 deficiency. In 

this study we assessed the changes obtained in the mitochondrial morphology in the 

HEK Flp cells with either PINK1 and/or TIGAR and with TIGAR/PINK1 deficiency. 

Our current results suggested that they might not be affecting the mitochondrial 

morphology in HEK cells.  

 

There are a number of reasons for our current results. First, HEK cells have a 

small particular size (20-30µm length). The detection by the high throughput 

microscopy analysis, OPERA Phoenix, provides better results in larger cells with flat 

morphology. This is explained by the fact the mitochondrial morphology 3D images 

are represented by the obtained 2D image. Moreover, some proteins that are 

constitutively highly expressed might be influencing the expression of the exogenous 

or introduced gene (Thomas and Smart, 2005). Since HEK Flp In are not neuronal 

cells, some genes and protein products might have different levels of expression and 

post-translational modifications. Their rapid growth, clusters or clumps formation and 

cell to cell variation might also contribute to obtained results  

 

A link between mitochondrial function, mitochondrial complexes, mitochondrial 

complexes, ATP production and morphology has been demonstrated in a diversity of 

non-neuronal cellular models. This has been mainly reported in cell lines and tissue 

from patients with PINK1, Parkin and LRRK2 (G2019S) mutations. The zebrafish 

study demonstrated a clear deficit in mitochondrial complex I and III, which 
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correlated with increased tigarb (zebrafish homologue) expression in pink1 

deficiency (Flinn et al., 2013). Here, we aimed to investigate whether the 

mitochondrial function and ATP production is affected in TIGAR and PINK1 

deficiency models, and if there is a rescue effect when both genes are silenced in 

the cell.  

 

 In this study, the three HEK Flp In cellular models showed that ATP cellular 

levels were different within the two growth medium conditions. In glucose presence, 

HEK Flp TIGAR and TIGAR/PINK1 cells showed a drop in ATP levels, which was 

only significant when compared to the negative control (HEK Flp CRNAi) but not the 

not induced control cells. Interestingly, HEK Flp PINK1 cells showed higher ATP 

cellular levels compared to its not induced control (Figure 4.13 a). This could be due 

to the fact that higher cellular ATP levels in cells in culture rely on glucose and 

glycolysis. Thus, in PINK1 deficiency, cells still rely on glycolysis and generate ATP, 

whereas cells with TIGAR deficiency produce ATP via OXPHOS which is less active 

but more productive. PINK1 deficient cells in glucose free media had slightly lower 

ATP, whereas ATP in TIGAR deficient cells remained lower. Although cells have to 

switch to OXPHOS metabolism, cells with lower ATP production have been shown to 

have severe defects of the mitochondrial respiratory chain complexes. Therefore, 

TIGAR deficient cells continued to generate energy through OXPHOS. PINK1 

deficient had a tendency to produce lower levels of ATP, which could be due to 

remaining active mechanisms for energy production. Furthermore, cells with 

TIGAR/PINK1 deficiency, had lower ATP levels in glucose presence, but not 

significant, whereas a tendency for an increase was seen in glucose free media. The 

overall results showed that ATP levels had a tendency to be affected in all three 
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cellular models, although we were expecting a higher effect in all of them. One of the 

most likely explanations for the obtained results is a relation between the knockdown 

percent in each cell line. TIGAR knockdown was achieved at ~50% and ~80% for 

PINK1, with similar results in the cell line with TIGAR/PINK1 deficiency. The fact that 

there are still cells able to express either TIGAR or PINK1, explains the impact on 

the ATP levels obtained for each model. Furthermore, not induced cells could be 

also expressing the miRNA and repressing the targeted genes, thus interfering with 

the outcome. Moreover, since cells were induced, split and plated 24 hrs for the 

assay, acute compensatory mechanisms could be triggered within the cells. 

Therefore, a still active glycolytic pathway and other sources of energy (eg. 

Glutamine) that could be triggered by the cell as a compensatory mechanism might 

increase the ATP production levels in the cells.  

 

Recently, PINK1 levels have been directly correlated with ATP cellular levels 

dependent in glucose as a source. Low levels of PINK1 expression were found in 

cultures with low levels of glucose, likely due to impaired translation. Furthermore, 

PINK1 expression levels were found to depend in an active glycolytic pathway rather 

than the glucose content. A link between glucose metabolism, PINK1 mitochondrial 

damage sensing mechanisms and PINK1/Parkin mitophagy pathway have been 

suggested (Lee et al., 2014b) and with opposed results in other some lines (Yao et 

al., 2011) . TIGAR role in neuronal metabolism is still unclear, it has been suggested 

only to be a neuroprotector only after ischemia-reperfusion events (Cao et al., 2015; 

Li et al., 2014; Sun et al., 2015; Zhou et al., 2016). The suspected role of TIGAR in 

PINK1 deficiency related mechanisms in PD still remain unclear. Interestingly, in 

glioblastoma cells TIGAR and PINK1 have opposed effects, in which the linked 
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mechanisms are by their effect in cellular growth and survival. Both genes are 

regulators of the Warburg effect, in which cellular main source of energy is through 

glycolysis. TIGAR positive regulator provides cellular survival (Peña-Rico et al., 2011; 

Sinha et al., 2013; Wanka et al., 2012) , whereas PINK1 negative regulation impairs 

cellular growth (Agnihotri et al., 2016). However, both act as ROS scavengers 

preventing cellular death (Agnihotri et al., 2016; Peña-Rico et al., 2011; Sinha et al., 

2013; Wanka et al., 2012). These mechanisms could be the link between TIGAR and 

PINK1-related PD pathology. However, it is still unknown how exactly TIGAR is 

involved in PD PINK1 related pathology.  

 

The present study remains to be confirmed and further optimised to detect 

significant changes in the mitochondrial function and morphology, as well as further 

related mechanisms such as autophagy/mitophagy, which have been both related to 

TIGAR and PINK1. Moreover, higher knockdown needs to be achieved for both 

models, which could be performed by optimising the protocol and studied the effect 

at different time-points. ATP defects are highly correlated to defects in the 

mitochondrial respiratory chain. The mitochondrial chain complexes should also be 

assessed since the original zebrafish pink1 deficient model showed complex I and III 

defect. Energy demands and metabolism are different depending on the cellular type, 

which has been also demonstrated true for the function of TIGAR and PINK1. 

Therefore, the link between both genes need to be studied in a dopaminergic 

neuronal model, which could be achieved by converting the cells into induced human 

neuronal progenitor cells (iNPCs).     

     



246 
 

4.5.5  CRISPR/Cas 9: TIGAR and PINK1 
 The new era in genomic engineering brought the CRISPR/Cas9 approach for 

genome editing. This new method offers many advantages compared to previous 

systems like zinc-finger nucleases (ZFN) and transcription activator-like effector 

nucleases (TALENs), which are highly complex and expensive. With CRISPR/Cas9 

a specific gene sequence is targeted, yielding a higher efficiency. Moreover, it allows 

the introduction of two or more sgRNAs targeting different sites in the genome.     

 

One of the main limitations of this technique is the possible occurrence of off-

target effects. Random integration and repair can also result in different cellular 

mosaic mutations. One of the recent developed approaches to avoid those effects is 

by the “double nicking” method using nickase endonucleases. In this study, we used 

the combination of an All-In One vector and Nickase approach to generate 

CRISPR/Cas9 cell lines with TIGAR and PINK1 deficiency. Generation and selection 

of the clones were done without any FACS and only by antibiotic selection and clone 

isolation. This could explain the variability obtained in the TIGAR protein level and 

the PINK1 expression between and within the same clones.  As previous results with 

the FLP-In T-Rex system from Invitrogen, TIGAR showed to have less effective 

knockdown in HEK cells (Figure 4.10 and Figure 4.17), whereas almost a complete 

knockout of PINK1 (~80-90%) (Figure 4.11 and Figure 4.18) was achieved by using 

both methods. One of the main caveats is that without FACS sorting and any assay 

for checking the correct integration and screening for mutations (eg. Surveyor or 

T731 assays) before clonal expansion. However, recently a study by Manikoth 

Ayyathan et al., 2017; showed that the main difference obtained in knockout 

efficiency is due to the cell line rather than the method approached (Manikoth 

Ayyathan et al., 2017).  
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CRISPR/Cas 9 TIGAR tested clones also showed an effect in Actin protein 

level, which could be due to an off-target effect within the clones. Another main 

limitation with CRISPR/Cas9 is that the cell lines are not isogenic, compared to the 

FLP-In cells, and mosaic mutations within the different cell lines might still occur. 

Although CRISPR/Cas9 PINK1 cell lines showed higher knockdown, some clones 

were only tested in two biological replicates. Further confirmation awaits by 

assessing the protein level and gene expression in three biological replicates for 

both genes to confirm effective gene knockdown/knockout, from all the obtained 

clones to select the best one. Before any functional analysis, sequence the full 

genome looking also for candidate off-target sites occurring within either TIGAR or 

PINK1 clones.    

 

In order to study the mechanisms involved in PD-related pathogenesis in the 

main affected region of the disease, the generated isogenic cell lines should be 

converted directly into induced neural stem cells or neural precursor cells to 

generate dopaminergic neurons.  

4.6 Conclusions 
Comparing both systems in the current study, it is clear that here the best 

approach for gene knockdown is by the FLP-In T-Rex system. Limited time for the 

generation of the CRISPR/Cas9 cell models for TIGAR and PINK1 is one of the 

reasons of the lower efficiency and efficacy of this system in this approach. 

Optimisation of the method should be performed in a suitable cell model in which a 

knockout for both genes could be successfully achieved. The dopaminergic neurons, 



248 
 

in the SN, are the main site affected in PD, where the pathology results in neuronal 

death and disease phenotype.  

 

To fully understand the underlying mechanisms leading to PD and related to 

TIGAR and PINK1, studies need to be conducted in a dopaminergic neuronal model 

and in vivo. Overexpression of TIGAR in PINK1 deficient neurons could help to 

understand if TIGAR has a toxic effect within the cells. It would be interesting and 

valuable to understand the role of PINK1 overexpression in dopaminergic neurons 

with TIGAR deficiency.  Overall, we were able to establish a stable inducible cell 

model for TIGAR and PINK1. We showed a tendency to an effect on mitochondrial 

function, but this was not significant. These results require to be optimised over 

different time points and be studied together with the mitochondrial respiratory 

complexes.  

 



249 
 

5 General Discussion and Conclusions 

5.1 TIGAR expression in different cellular models 
TIGAR is a multifunctional protein with a number different binding regulators 

and targets. Its expression is tightly regulated and depends on the cell type and the 

nature of the stimuli. In our study, there was widespread TIGAR expression in the 

different brain regions studied, as well as in human fibroblasts, HEK293, LUHMES 

and SHSY-5Y cells. This supports the proposed role of TIGAR to maintain cellular 

homeostasis across different cell types and tissues. The main function of TIGAR is to 

inhibit glycolysis and promote the metabolic shunt to the Pentose Phosphate 

Pathway (PPP). The function of TIGAR as a pro-survival protein is reflected by its 

capacity to provide antioxidant defence against ROS, cellular stress and hypoxia, 

and nucleotides for DNA synthesis (Bensaad et al., 2006).  

 

How TIGAR-related pathways might be contributing to PD and 

neurodegeneration are still unclear. Since it is a glycolysis inhibitor, in cells that are 

highly depending on energy production from the glycolytic pathway, such as neurons, 

this function might be deleterious for them. PINK1 deficiency causes OXPHOS 

impairment, making the cell rely on ATP production by other sources different from 

the mitochondria, but from glycolysis. TIGAR overexpression impact on glycolysis 

might therefore have a particularly marked effect in PINK1 mutant tissue.  

 

However, TIGAR expression similar in the sporadic PD brains as well as in 

fibroblasts from patients with parkin mutations compared to controls. PINK1 and 

Parkin share many cellular functions. However, there is also evidence of them acting 

in independent pathways (Kageyama et al., 2014; Lazarou et al., 2015; Murakawa et 
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al., 2015). This suggests that TIGAR up-regulation may be a specific feature of 

PINK1-related disease. Unlike in familial cases, a complex interplay between 

environmental and genetic factors will contribute to the development of the disease 

in patients with sporadic PD. Thus, different genes and pathways might explain the 

wide variation of TIGAR levels in our study. Unfortunately, we did not have access to 

PINK1 mutant PD patient tissue.      

 

TIGAR was found to co-localise with alpha-synuclein in the Lewy bodies, 

which could be due to a synergetic interaction, altering their conformation and 

leading to further aggregation. The interaction between alpha-synuclein and TIGAR, 

alongside the previous finding of TIGAR overexpression in the pink1 deficient model, 

suggests new shared mechanisms in sporadic and familial PD. However, proof of 

interaction awaits further investigation, using co-immunoprecipitation assays in the 

PD and DLB brain extracts, stable cell lines overexpressing alpha-synuclein with and 

without additional stressors such as oxidative stress. Since oxidative stress has been 

suggested to be one of the mechanisms in PD and demonstrated to be related to 

alpha-synuclein, TIGAR and PINK1, it would be interesting to study TIGAR and 

alpha-synuclein interaction in the generated stable cell lines, as well as in induced 

neurons under oxidative stress conditions. Many proteins including the PD-related 

LRRK2, PINK1 and Parkin proteins showed impaired conjugation under oxidative 

stress and have also been detected in Lewy bodies (Brudek et al., 2016b; Murakami 

et al., 2007; Volpicelli-Daley et al., 2016). Notably, only antibodies against the C-

terminal did recognise TIGAR in the neuronal bodies and Lewy bodies, which 

suggests that the protein might be fragmented or has undergone a conformational 

change. This could result in misfolding, reduced solubility and aggregation of TIGAR 
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protein in the inclusions.  

5.2 The suspected role of TIGAR in PD 
The zebrafish pink1 deficient model showed a defect in the mitochondrial 

complex I and III, with a slight defect in the mitochondrial morphology but no ATP 

assays were carried out (Flinn et al., 2013).   

 

 In this study, we assessed the effect of TIGAR and PINK1 knockdown in a 

stable inducible cell culture model, where we did not see a mitochondrial defect. We 

found some promising results carried out in the human fibroblasts with TIGAR 

knockdown, but overall the results were inconclusive due to the transfection affecting 

the mitochondrial function. Therefore, our results obtained in fibroblasts and HEK 

cells suggest that mitochondrial function and morphology might not be affected by 

TIGAR levels. However, these results are inconclusive and require further 

optimisation. Fibroblasts and HEK cells are not neuronal cells and their metabolic 

demands differ from neurons. Neuronal metabolisms and energetic demands have 

been demonstrated to depend on glucose metabolism, where the Pentose 

phosphate pathway (PPP) was suggested to be essential. Continue damage in 

neurons has been reported to occur from oxidative stress. TIGAR has been 

demonstrated to function as a pro-survival (Bensaad et al., 2006; Cheung et al., 

2013b; Ma et al., 2017; Martinez-Outschoorn et al., 2010; Peña-Rico et al., 2011; 

Wanka et al., 2012; Yin et al., 2012b), as well as an apoptotic mediator in different 

cell types (Hoshino et al., 2012; Kimata et al., 2010). Moreover, a dual function in 

autophagy and apoptosis has been demonstrated in cancer cell lines (Cheung et al., 

2015; Xie et al., 2014). So, TIGAR might be acting as a neuroprotector by 

dampening the ROS levels and maintaining NADPH and glutathione levels to 
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prevent further damage (Bolaños and Heales, 2010; Herrero-Mendez et al., 2009). 

As a glycolysis inhibitor, TIGAR might also promote cellular death by inhibiting 

glycolysis, leading vulnerable cells and unable to meet energetic demands. 

Furthermore, TIGAR has been demonstrated to protect neurons and other cell types, 

by preventing damage from ischemic injury (Al-Maghrebi and Renno, 2016; Cao et 

al., 2015; Hoshino et al., 2012; Li et al., 2014; Sun et al., 2015; Zhou et al., 2016). 

However, several studies have suggested a dysregulation of the PPP pathway and 

glucose metabolism as one of the earliest events occurring in the pathogenesis of 

neurodegeneration (Bouzier-Sore and Bolaños, 2015; Dunn et al., 2013; Hilker et al., 

2012) providing a tentative but largely hypothetical link with TIGAR.  

 

TIGAR was only detected in Lewy bodies but not in other intracellular 

inclusion bodies, which further reinforces the hypothesis of its disease specificity. 

Therefore, since we TIGAR was present in pathological inclusions of PD and DLB 

patients, it will be interesting to study the effect of its overexpression in induced 

neurons (iN) from fibroblasts with familial and sporadic PD as well as in the 

generated stable cell lines (Hek Flp In) with PINK1 deficiency. TIGAR was found to 

co-localise with alpha-synuclein, therefore, we propose to study the effect of alpha- 

synuclein overexpression when TIGAR is either absent or overexpressed in cultured 

neuronal models.   

 

TIGAR is one of the target proteins of p53, but we did not find evidence of p53 

upregulation in in the post-mortem tissue of the PD and DLB brains. A number of 

p53-independent TIGAR mechanisms have been demonstrated in several cellular 

models under different physiological and stress conditions, which could explain this 
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finding (Sinha et al., 2013; Venkatanarayan et al., 2016; Zou et al., 2012, 2013). The 

p53-independent pathways might provide insight into the suspected role of TIGAR in 

PD. However, p53 was not investigated in the generated stable cell lines and in the 

PD patient fibroblasts.  

 

Reduced ROS levels have been suggested to be associated to autophagy 

inhibition (Bensaad et al., 2009; Ye et al., 2013), where TIGAR opposes autophagy 

(Bensaad et al., 2009). Autophagy has also been suggested to play an important role 

for the development of PD. Therefore, defects in the autophagy pathway, have been 

suggested in PD and other neurodegenerative diseases (Rahman and Rhim, 2017). 

Lewy body pathology may be a consequence of cellular self-defence for clearance of 

cytotoxic proteins (Fecchio et al., 2013) TIGAR presence in Lewy bodies could be 

the result of the same cellular mechanism and suggests an acquired cytotoxic 

property of TIGAR. Both TIGAR and alpha-synuclein have been suggested to have a 

role in autophagy impairment, so increased production of both proteins may lead to 

impaired autophagy and promote protein aggregation. The role of TIGAR in 

autophagy was demonstrated in unstressed cells and independent from mTOR 

pathway. In this study we also investigated the role in TIGAR for autophagy in 

sporadic PD fibroblasts. In our hands, we did not find any impairment in autophagy in 

the patient tissue. However, the study was performed in only two patient cell lines. 

Moreover, unlike familial PD, the evidence of impaired autophagy in sporadic PD still 

remains inconclusive (Ryan et al., 2015).  

 

Further experiments in neuronal cellular models are required to study this 

hypothesis. 
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TIGAR pathways involving HK-I and HK-II were investigated in the brains of 

PD patients in the SN. We found a slight increase in HK-I expression but the 

difference did not reach statistical significance. TIGAR was reported to translocate to 

the mitochondria and interact with HK-II in cells upon hypoxic conditions and 

metabolic stress, providing survival to the cells (Cheung et al., 2012). No difference 

in the HK-II expression was found in our experiments, which might be explained by 

the fact that it has low levels of expression in the human brain. Moreover, we did not 

observe TIGAR translocation to the mitochondria after rotenone exposure. 

Furthermore, we only study the effect of rotenone exposure in one PD patient 

fibroblast cell line and did not study the association of TIGAR with HK-II in the stable 

cell lines. In order to verify TIGAR association with HK-II, further experiments need 

to be performed in a larger cohort of fibroblasts, in the stable cell lines and preferably 

in induced dopaminergic neurons.  Furthermore, microarrays in post-mortem tissue, 

stable inducible cell lines, human fibroblasts, derived neurons, exposed to metabolic 

stress would also provide insight into the disease pathomechanisms related to 

TIGAR. 

5.3 PD models: from zebrafish to post-mortem tissue and 
cellular models 

 In this study we used different cellular models to investigate TIGAR suspected 

role in PD.  They help to unravel TIGAR-related mechanisms leading to the disease, 

with their own advantages and disadvantages. Combining them provided us with a 

good insight of the suspected role of TIGAR in PD.  
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Zebrafish models are a valuable model to study human disease because they 

are in vivo models that are transparent, small size and with fast development. 

Moreover, they are a robust platform for genetic manipulation and drug screening, as 

well as to study development during embryogenesis and at different stages. Contrary 

to fly models, zebrafish are vertebrate animals, where many genes are highly 

conserved, and their findings can be translated into humans (Matsui, 2017).  

However, zebrafish also have some limitations. For example, they do not completely 

resemble the human brain. Morpholino antisense (MO) and TILLING approaches 

can sometimes lead to off-target effects (MO); depending on the size and sequence 

of the coding exons (Sood et al., 2013).   

 

In this study, we aimed to translate the findings in pink1 deficient zebrafish into 

human PD tissue. Post-mortem tissue offers great advantages over other models, 

and help us to gain insight into the pathogenesis of the disease. Their correct 

processing and handling help their preservation and provides an invaluable model 

for DNA, RNA and protein studies.  Fibroblast cultures are also derived from patient 

tissue. However, fibroblasts mirror the biochemical defect occurring in the neurons 

only partially., Investigations in post-mortem brain tissue can nevertheless be 

complemented by performing functional and enzymatic assays in living cells with or 

without a PD gene mutation. Confirmation of their function and interaction can be 

further investigated in a generated stable cell line, which is isogenic and genetically 

manipulated to study the gene/protein function of interest. Although post-mortem 

brain tissue studies are important for research in neurodegeneration, it has some 

limitations.  
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In vitro cellular models allow us to study the process and dynamics leading to 

impaired cellular function and cell death. Fibroblasts and HEK are both, cheap, 

commercially available, easy to handle and maintain, and well established models 

for disease research. HEK cell lines are easy to transfect, whereas fibroblasts are 

slightly more difficult to transfect cells. These cell lines were used when attempting 

TIGAR knockdown, showing different efficiency and efficacy due to their different 

behaviour. We found that TIGAR expression was higher in HEK cells compared to 

human fibroblasts, which resulted in a lower knockdown effect in HEK cells when 

compared to the fibroblasts. Moreover, the siRNA smart pool targets four regions in 

the gene, whereas the miRs target only one region of the gene. This suggests that 

due to the diversity amongst the cell lines and methods, to achieve the desired 

knockdown, an optimised general protocol had to be established for each cellular 

model.  

5.4 Concluding remarks 
TIGAR was found to be present in Lewy bodies in the SN of PD and DLB patients. 

Notably, TIGAR co-localises with alpha-synuclein. These findings suggest TIGAR 

role in neurodegeneration and Lewy body formation. TIGAR-positive pathological 

inclusions were only found in the SN. TIGAR-positive inclusions were not found in 

spinal cords of MND, or in the glial cytoplasmic inclusions of MSA cases. This 

suggests TIGAR specificity for Lewy-type pathology. p53 localization and expression 

was not found when comparing PD cases to controls. TIGAR is translated in human 

fibroblasts derived from patients with familial and sporadic PD. TIGAR gene 

expression and protein level was not significantly different in parkin-mutant 

fibroblasts when compared to controls.  
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TIGAR knockdown was successful in parkin-deficient and LRRK2G2019S 

fibroblasts, however its effect could not be assessed due the transfection secondary 

effects. TIGAR cellular localisation is not affected in parkin-mutant fibroblasts 

exposed to rotenone toxicity and cellular stress. No evidence of TIGAR involvement 

after autophagy/mitophagy induction in sporadic PD patients in this particular study. 

 

A stable inducible cell model for TIGAR and PINK1 deficiency was established to 

investigate TIGAR-pathology in PD. An effect on mitochondrial function was seen, 

but without statistical difference. These results require further optimisation and to be 

studied together with the mitochondrial respiratory complexes.  

5.5 Future studies 
Further cellular and post-mortem tissue studies need to be conducted to 

elucidate the TIGAR-related pathological mechanisms and pathways leading to 

neurodegeneration. These studies should be performed in more controls and PD 

patients with Parkin and/or PINK1 mutations. Moreover, further TIGAR up and 

downregulators (i.e., SP-1, CREB, mTOR, ATM) should be assessed to elucidate 

TIGAR related mechanisms. Further assays, such as co-immunoprecipitation assays, 

are needed in the PD and DLB brain extracts, stable cell lines overexpressing alpha-

synuclein and neuronal cellular models, with and without additional stressors such as 

oxidative stress and severe hypoxia. Future experiments aiming to determine TIGAR 

role in autophagy in human fibroblasts would need to be done in more patients with 

sporadic and familial PD, ideally with PINK1 mutations, in order to fully address its 

role in mitochondrial function and autophagy/mitophagy PD-related mechanisms.   
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TIGAR effect and mechanisms need to be performed in cellular and neuronal, 

in vitro and in vivo models, with PD-related mutations should be attempted by 

alternative methods such as stable transduction. Neuronal models with TIGAR 

and/or alpha-synuclein overexpression are required to study its effect in the 

mitochondrial function, autophagy/mitophagy and cellular survival. 

 

Although CRISPR/Cas9 achieved good knockdown, mainly for PINK1, a small 

limited number of clones were tested. Further confirmation needs to be done by 

assessing the protein level and gene expression in three biological replicates for 

both genes to confirm effective gene knockdown/knockout. Before any functional 

analysis, sequence the full genome looking also for candidate off-target sites 

occurring within either TIGAR or PINK1 clones. Once achieved, this new promising 

technique will be ideal to develop and establish stable neuronal lines to verify and 

investigate further TIGAR-PD related mechanisms and pathways. 
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