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Abstract 

In recent years, genome scale metabolic models have become an important tool for 

identifying potential drug targets against pathogens. These are particularly important where 

cultivation and genetic manipulation (conditional knockouts) are difficult. Malaria is a globally 

important disease infecting 212 million cases and causing more than 400,000 deaths in 2015. 

The resistance of the parasite to all antimalarial drugs on the market emphasises the urgent 

need to identify new drug targets. There are a few malaria metabolic models that have already 

been developed; however, these models are limited in terms of network size or input of accurate 

experimentally derived metabolomics and biomass data. With extensive curation and utilisation 

of parasite-specific constraints in the improvement of existing metabolic network models, a 

highly curated metabolic network model of Plasmodium falciparum, iFT342, was developed 

here. The model has updated gene and reaction annotations as well as additional species 

identifiers that will facilitate ease in comparison with other models. The model has no dead-end 

metabolites (compared to 5 to 39% for other highly curated models) and has the highest 

percentage of live reactions. With the addition of experimentally measured biomass 

composition and metabolite fluxes for glucose and 18 amino acids, iFT342 was able to model in 

vitro parasite growth in restricted glucose environment with remarkable fidelity. In addition, 

through single gene knockout analysis, the model was able to significantly enrich the number of 

experimentally validated essential genes (true positives) in the predicted essential gene set, and 

had the highest percentage of true positive predictions compared with other malaria models. 

Finally, as proof of concept, inhibition of parasite growth was demonstrated using gemcitabine, 

which targets UMP-CMP kinase, a novel target predicted by the model. Gemcitabine inhibited 

parasite growth in a dose-dependent fashion exhibiting an IC50 in the low micromolar range and 

blocked the development of the parasite from the trophozoite to the schizont stage. 
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Chapter 1 General introduction 

1.1 Malaria metabolic pathways and drug targets 

Malaria is an arthropod-borne disease caused by protozoan parasites in the genus 

Plasmodium. Plasmodium falls under the Apicomplexan phylum, a group of obligate parasites 

known for the red algae-derived organelle called the apicoplast (Arisue & Hashimoto, 2015). It 

infects a variety of species such as lizards (Hicks & Schall, 2014), birds (Medeiros et al, 2013) and 

mammals (Perkins & Schaer, 2016). There are four main species that naturally infect humans: P. 

falciparum, P. malariae, P. ovale and P. vivax, of which P. falciparum results in the most fatality 

(Snounou et al, 1993; Wernsdorfer, 2012). There have been reports of naturally acquired 

infection in humans by simian malaria, P. cynomolgi and P. knowlesi (Ta et al, 2014; White, 

2008). It is estimated that about 50% of the world’s population is at risk of malaria. A total of 

104 countries and territories are currently endemic for malaria, most of which are in the tropics 

and subtropics (World Health Organization, 2014; Feachem et al, 2010). In 2015, about 212 

million worldwide contracted the disease, resulting in 429,000 deaths (World Health 

Organization, 2016).   

1.1.1 Malaria life cycle 

Malaria has a complex life cycle that can distinctly be divided into three phases: the 

sporogonic phase which occurs in the mosquito vector, the exo-erythrocytic phase which occurs 

in the host liver and the erythrocytic phase/cycle which occurs in the blood (Schuster, 2002). In 

the sporogonic phase, male and female gametocytes, known as microgametocytes and 

macrogametocytes, respectively, are taken up, for human malarias, by the anopheline mosquito 

vector from an infected human host during a blood meal (Figure 1.1a). The gametes combine to 

form a zygote in the stomach of the insect.  The zygote penetrates into the midgut of the 

mosquito where it develops into an oocyst. The oocyst undergoes a series of mitoses and 

subsequent cellular differentiation to form sporozoites. The oocyst ruptures and releases the 

sporozoites which migrate towards the salivary glands (Vaughan, 2007). During its next blood 

meal, the mosquito introduces sporozoites into the human blood stream (Figure 1.1b). This 

infective stage then reaches the liver where it invades hepatocytes and begins the exo-

erythrocytic phase. In the liver cell, the parasite develops into a mature schizont and divides 

asexually into thousands of merozoites. The merozoites are eventually released into the blood 

where they invade erythrocytes (Frevert, 2004). The erythrocytic cycle starts with the merozoite 

entering the red blood cell (RBC) (Figure 1.1c). As the merozoite penetrates the host cell, it forms 

a membrane layer around it which seals off when the invasion is complete. This forms the 
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parasitophorous vacuole membrane that serves as a secondary layer around the parasite 

(Cowman & Crabb, 2006). In the RBC, the parasite develops from the merozoite to the early 

trophozoite stage (also known as the ring stage), followed by the late trophozoite stage and 

finally the schizont stage. The schizont divides into multiple merozoites, which invade other 

RBCs. Some trophozoites develop into gametocytes which are taken up by the mosquito, thus 

completing the whole life cycle. 

 
Figure 1.1 Plasmodium falciparum life cycle 
The P. falciparum life cycle is divided into three phases: the sporogonic phase, which occurs in 
the anopheline mosquito vector; the exo-erythrocytic phase, which occurs in the host liver; and 
finally the erythrocytic phase/cycle, which occurs in the red blood cell.  

1.1.2 Carbon metabolism 

The erythrocytic cycle is mainly responsible for the symptoms brought about by the 

disease and has been extensively investigated for the development of antimalarial drugs and 

vaccines (Bozdech et al, 2003). During this cycle which takes about 48 hours, the parasite is quite 
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metabolically active and requires a lot of nutrients from the RBC and the host serum (Schuster, 

2002). The new permeability pathways (NPPs), which transport solutes into the RBC, allow this 

increased demand to be met. As the parasite develops from ring to schizont, the host cell 

permeability increases allowing greater influx of important nutrients (Ginsburg et al, 1986b). 

These NPPs have been postulated to either come from parasite transporters incorporated into 

the RBC membrane or as a result of parasite-mediated alterations in host membrane proteins 

(Ginsburg & Stein, 2004). Because the parasite lacks the ability to store carbohydrates as an 

energy source (Scheibel & Miller, 1969; Olszewski & Llinás, 2011), P. falciparum is largely 

dependent on the presence of glucose, with this sugar being the parasite’s main energy and 

carbon source (Roth, 1990; Slavic et al, 2010). As shown in Figure 1.2, the parasite imports 

glucose present within the red blood cell, brought in via the erythrocyte glucose transporter 

(GLUT1) and the NPPs (Kirk & Lehane, 2014). Glucose freely diffuses through the 

parasitophorous vacuole membrane then passes through a glucose transporter (PfHT1) in the 

parasite membrane (Woodrow et al, 2000). Compared with uninfected RBCs, infected cells have 

been shown to have up to a hundred-fold increase in glucose uptake (Jensen et al, 1983; Roth, 

1990). PfHT1 has been extensively characterised and was shown to be functionally different 

from its human counterpart, making it a potential drug target (Joet et al, 2003; Joët & Krishna, 

2004). Compound 3361, a glucose analogue that inhibits this transporter, has been shown to be 

effective in vitro against the parasite (Patel et al, 2008; Saliba et al, 2004). Compared with 

uninfected cells, there is a lower percentage of glucose that is converted to lactate through 

glycolysis in the infected cell, suggesting the utilisation of the sugar in the production of biomass 

components, apart from energy production (adenosine triphosphate, ATP). For example, 

glucose 6-phosphate can be metabolised to ribose 5-phosphate for the production of 

nucleotides, or to mannose 6-phosphate for glycosylphosphatidylinositol anchor biosynthesis. 

Further down the glycolytic pathway, pyruvate can be metabolised to produce acetyl-coenzyme 

A (CoA) for lipid metabolism or incorporation into the tricarboxylic acid cycle (Olszewski & Llinás, 

2011).  
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Figure 1.2 The glycolytic pathway 
The glycolytic pathway, also known as glycolysis, involves a series of reactions (in red) that result 
in the transport and conversion of glucose into different metabolites (in blue) and finally to 
lactate. Glucose enters the red blood cell through GLUT1 and the new permeability pathways, 
then diffuses through the parasitophorous vacuole, and finally through the hexose transporter 
(PfHT1) in the parasite membrane. This pathway produces energy in the form of ATP, as well as 
reducing equivalents in the form of reduced nicotinamide adenosine dinucleotide (NADH). 
Compound 3361, shown in cyan, is a known inhibitor of PfHT1. 
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The pentose phosphate pathway (PPP) is important in generating ribose 5-phosphate 

from glucose 6-phosphate for use in the production of nucleotides (Figure 1.3). The pathway 

also produces reduced nicotinamide adenine dinucleotide phosphate (NADPH) which is an 

important reducing equivalent especially during oxidative stress (Barrett, 1997; Stincone et al, 

2015). The importance of this pathway in Plasmodium is exemplified in the case of glucose 6-

phosphate dehydrogenase (G6PD) deficiency in the human host wherein resistance against 

malaria has been observed. This suggests that the parasite at some point in its lifecycle is 

dependent on the capacity of the host to produce NADPH and maintain redox balance (Ruwende 

& Hill, 1998). PPP has two branches: the oxidative branch and the non-oxidative branch, both of 

which produce ribose 5-phosphate. The oxidative branch generates ribose 5-phosphate from 

glucose 6-phosphate through a series of four reactions, beginning with G6PD and finally with 

the isomerisation of ribulose 5-phosphate to ribose 5-phosphate (Bozdech & Ginsburg, 2005). It 

is important to note that the first two steps in this branch are facilitated by a bifunctional 

G6PD/6-phosphogluconolactonase enzyme (Clarke et al, 2001). This enzyme is different from 

human G6PD (Jortzik et al, 2011) and is likely to be essential for parasite survival based on 

attempted gene knockout experiments, as well as enzyme and in vitro growth inhibition assay 

with ellagic acid, making it a promising antimalarial target (Allen et al, 2015). This oxidative 

branch generates two moles of NADPH for every mole of glucose 6-phosphate. On the other 

hand, the non-oxidative branch utilises fructose 6-phosphate and glyceraldehyde 3-phosphate 

from glycolysis to produce ribose 5-phosphate. This branch is reversible and metabolites can be 

redirected to meet the needs of the parasite. The non-oxidative branch may be turned off in the 

case where the parasite requires both metabolites for nucleic acid synthesis and NAPDH. On the 

other hand, if the parasite is in need of energy, ribulose 5-phosphate may be consumed by the 

reverse of the non-oxidative branch to produce fructose 6-phosphate and glyceraldehyde 

3-phosphate that can be shunted back to glycolysis for the production of ATP and NADH 

(Bozdech & Ginsburg, 2005).  
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Figure 1.3 The pentose phosphate pathway 
The pentose phosphate pathway can be divided into two parts, the oxidative branch and the non-oxidative branch. Both branches are capable of producing 
ribose 5-phosphate, which is utilised in nucleic acid synthesis. In addition, the oxidative branch produces NADPH that participates in redox reactions. Reactions 
are shown here in red while metabolites are shown in blue. Ellagic acid (cyan) is a known inhibitor of the bifunctional enzyme, glucose 6-phosphate 
dehydrogenase/6-phosphogluconate dehydrogenase. In large fonts are important metabolite products of this pathway. 

Oxidative branch 

Non-oxidative branch 
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1.1.3 Mitochondrial metabolism 

There are a number of indispensable metabolic pathways that occur in the mitochondria. 

The tricarboxylic acid (TCA) cycle occurs in the parasite’s mitochondria and is important in the 

generation of NADH and ubiquinol (Figure 1.4). In addition, succinyl-CoA from the TCA cycle can 

be utilised for the production of haem which is important in the generation of cytochrome for 

the mitochondrial electron transport chain. All enzymes involved in the canonical TCA cycle are 

present in the Plasmodium genome except for pyruvate dehydrogenase, which is located in the 

apicoplast (Gardner et al, 2002). Pyruvate dehydrogenase exists as a 4-subunit enzyme complex, 

the pyruvate dehydrogenase complex, which converts pyruvate to acetyl-CoA that can then be 

fed into the TCA cycle or to fatty acid synthesis pathway (Foth et al, 2005). It is currently 

speculated that oxoglutarate (Figure 1.4a) is the main metabolite that is fed into the TCA cycle 

instead of acetyl-CoA (Figure 1.4b) in the canonical cycle. 13C labelling studies showed that 

labelled glucose only contributes to a small proportion of the acetyl-CoA that enters the TCA 

cycle. On the other hand, labelled glutamine which is converted to glutamate was observed to 

contribute to the labelling of TCA metabolites such as succinate, fumarate, malate and citrate. 

At the beginning of the canonical TCA cycle, acetyl-CoA from glucose condenses with 

oxoglutarate to form citrate; however, 13C-glutamine was shown to contribute more to citrate 

labelling than 13C-glucose (Olszewski & Llinás, 2011; Olszewski et al, 2010; Vaidya & Mather, 

2009).  

Electrons from the TCA cycle are then brought into the inner mitochondrial membrane 

where they participate in the electron transport chain. In many organisms, the electron 

transport chain involves a series of redox reactions that creates a proton gradient and drives the 

synthesis of ATP; however, the parasite genome does not encode for the necessary enzyme for 

this (Gardner et al, 2002). Instead, the electron transport chain is utilised for the conversion of 

ubiquinol to ubiquinone. A number of dehydrogenases transfer electrons from different sources 

(e.g., TCA cycle) through the reduction of ubiquinone and this in turn creates the proton 

gradient, as shown in Figure 1.5. This proton gradient then drives the recycling of ubiquinol to 

ubiquinone through the action of cytochrome bc1 (Painter et al, 2007; Nixon et al, 2013). 

Proguanil, an antimalarial drug, inhibits parasite growth in two ways: (1) it is converted in the 

human liver to cycloguanil which is a potent inhibitor of dihydrofolate reductase (DHFR); and (2) 

at high micromolar concentrations, proguanil disrupts the electron membrane potential. 

Proguanil is given in combination with atovaquone, which targets cytochrome bc1. Together, 

they prevent the oxidation of ubiquinol to ubiquinone, which is necessary for pyrimidine 

synthesis (Srivastava & Vaidya, 1999; Guiguemde et al, 2012).  
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Figure 1.4 The tricarboxylic acid cycle 
The tricarboxylic acid cycle, or the TCA cycle, is responsible for the production of metabolites that participate in the electron transport chain. It also produces 
succinyl-CoA that goes into the production of haem, and eventually cytochrome. The metabolites of a canonical TCA cycle are normally obtained from pyruvate 
from glycolysis, with acetyl-CoA (a) as the main metabolite being fed into the cycle. However, recent studies show that more of the metabolites participating in 
the TCA cycle are obtained from glutamate, making 2-oxoglutarate (b) as the main metabolite that enters into the TCA cycle. Shown in red are the reactions and 
in blue are the metabolites. Important metabolic products are shown in large fonts. 
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Figure 1.5 The electron transport chain 
Typically, the electron transport chain generates a proton gradient between the intermembrane space and the matrix of the mitochondria that drives the 
phosphorylation of ADP to ATP. In Plasmodium this gradient is formed as a result of dehydrogenase/oxidoreductase reactions in the inner mitochondrial 
membrane, and ultimately facilitates the production of ubiquinone via cytochrome bc1. Atovaquone inhibits cytochrome bc1 while proguanil disrupts the proton 
gradient, both preventing the production of ubiquinone. This in turn inhibits the production of pyrimidines. 
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1.1.4 Nucleotide metabolism 

The malaria parasite has the necessary mechanism for de novo pyrimidine synthesis but 

lacks pyrimidine salvage pathways. Uridine monophosphate (UMP), which is the precursor for 

cytidine monophosphate (CMP), deoxycytidine monophosphate (dCMP) and deoxythymidine 

monophosphate (dTMP), is synthesised from the metabolism of aspartate and glutamine and 

follows the canonical pathway (Figure 1.6). Glutamine is converted to carbamoyl phosphate and 

combined with aspartate to be further metabolised by dihydroorotase and dihydroorotate 

dehydrogenase (DHODH) to produce orotate, a pyrimidine carboxylic acid. DHODH requires 

ubiquinone as an electron acceptor for the reaction to proceed. With the addition of 

phosphoribosyl pyrophosphate followed by decarboxylation, UMP is produced (Ginsburg, 2006; 

Hyde, 2007). The dependence of Plasmodium on the de novo synthesis of pyrimidines has made 

this pathway an important target for antimalarials (Heikkilä et al, 2007; Krungkrai & Krungkrai, 

2016). Cycloguanil, pyrimethamine and trimethoprim are antimalarial drugs that target DHFR. 

Inhibition of DHFR prevents the conversion of dihydrofolate to tetrahydrofolate, the latter being 

an important cofactor in the methylation of dUMP to dTMP (Olliaro, 2001). Sulfadoxine, an 

inhibitor of dihydropteroate synthase (DHPS) which in turn inhibits the production of a 

dihydrofolate precursor (dihydropteroate), was often administered together with 

pyrimethamine for the treatment of uncomplicated malaria (Dorsey et al, 2002). As previously 

mentioned, drugs such as atovaquone and proguanil disrupt the electron transport chain. This 

disruption lowers the ubiquinone supply in the mitochondria and indirectly inhibits the DHODH 

reaction. The DHODH reaction, which has been identified as essential to the parasite (McRobert 

& McConkey, 2002; Painter et al, 2007), is currently being exploited for the development of new 

antimalarials. DSM265, a long-duration DHODH inhibitor for example has been advanced to 

phase I clinical trials (Phillips et al, 2015).  

Similar to other Apicomplexan parasites, Plasmodium is incapable of synthesising purine 

nucleotides de novo thus it needs to acquire precursors from the host (Chaudhary et al, 2004; 

Downie et al, 2008). The NPPs allow permeation of precursors, which are then transported 

through the parasite plasma membrane via the equilibrative nucleoside transporter 1 (PfENT1) 

(Figure 1.7). These transporters are responsible for bringing in nucleoside and nucleobases such 

as adenine, adenosine, guanine, hypoxanthine and xanthine into the parasite (Hyde, 2007). 

Apart from these purine bases, Plasmodium has the capacity to utilise 5’-methylthioinosine and 

5’-methylthioadenosine from polyamine metabolism to produce hypoxanthine (Downie et al, 

2008). Hypoxanthine is an important nucleobase that can further be converted into different 

purine nucleotides (Ginsburg, 2006; Hyde, 2007). Allopurinol, a drug normally used for the 

treatment of gout, has been shown to inhibit hypoxanthine-guanine-xanthine 
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phosphoribosyltransferase (HGXPRTase) (Downie et al, 2008). A combination of allopurinol and 

quinine resulted in significantly lowered mean parasite clearance time compared with treatment 

with quinine alone (Sarma et al, 1998). Immucillin-H, an immunosuppressant, which targets both 

human and malaria purine nucleoside phosphorylase, inhibits the conversion of inosine to 

hypoxanthine in the parasite. When the compound was modified to preferentially target the 

parasite enzyme, it was shown to inhibit parasite growth in the absence of hypoxanthine (Ting 

et al, 2005). 
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Figure 1.6 De novo synthesis of pyrimidines 
Pyrimidines are obtained from glutamine and aspartate and the eventual production of orotidine monophosphate (OMP), which is the precursor for all pyrimidine 
nucleotides. Decarboxylation of OMP produces uridine monophosphate (UMP), which can be phosphorylated to generate di- and triphosphate counterparts. 
Deoxyuridine monophosphate (dUMP), obtained from the reduction and dephosphorylation of uridine diphosphate (UDP), serves as a precursor for thymidine 
deoxynucleotides (via thymidylate synthetase), while uridine triphosphate (UTP) serves as a precursor for cytidine nucleotides (via cytidine triphosphate (CTP) 
synthase). Important inhibitors of pyrimidine synthesis include DSM265, which acts on dihydroorotate dehydrogenase (DHODH) and prevents the production of 
orotate. Cycloguanil, pyrimethamine and trimethoprim inhibit dihydrofolate reductase, limiting the amount of dihydrofolate necessary for thymidylate synthase 
reaction. This in turn blocks the production of thymidine deoxynucleotides.  
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Figure 1.7 Purine salvage in Plasmodium 
Plasmodium is capable of obtaining purine nucleosides and bases from its host via the nucleoside transporter, PfENT1. Adenosine nucleotides originate from 
inosine monophosphate (IMP), which comes from the phosphoribosylation of hypoxanthine. Guanosine nucleotides, on the other hand, can either come from 
xanthine monophosphate (XMP), produced either from the oxidation of IMP or from xanthine or guanine through the action of hypoxanthine-guanine-xanthine 
phosphoribosyltransferase (HGXPRTase). Known inhibitors that affect this pathway are shown in cyan. Reactions are shown in red and metabolites in blue.  
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1.1.5 Amino acid metabolism 

The intraerythrocytic parasite is also dependent on external sources of amino acids. The 

loss of enzymes responsible for the de novo synthesis of amino acids through evolution has 

resulted in auxotrophic dependence on a number of amino acids (Payne & Loomis, 2006). 

Parasites digest about 60 to 80% of the haemoglobin to obtain most amino acids (Francis et al, 

1997; Krugliak et al, 2002). Haemoglobin is imported into the parasite through a double-

membrane invagination of the parasitophorous vacuole membrane and the plasma membrane 

called the cytostome (Figure 1.8). The cytostome eventually pinches off to form a vesicle that 

fuses with the digestive vacuole where digestion via proteases occurs (Milani et al, 2015). 

However, haemoglobin cannot provide enough cysteine, glutamate, glutamine and methionine, 

thus the parasite obtains these either from human serum or the culture media (Divo et al, 1985; 

Francis et al, 1997). Furthermore, isoleucine is not present in haemoglobin thus the parasite 

relies solely on getting it from the serum; and the absence of isoleucine has been shown to result 

in slowed growth (Babbitt et al, 2012). The parasite has a number of aspartic and cysteine 

proteases for haemoglobin digestion and the redundancy of these proteases allow the parasite 

to balance the utilisation of amino acids from haemoglobin and those from the surrounding 

environment. It has been shown that there are also strain specific nuances when it comes to the 

importance of amino acids obtained from the external environment. In some cases, parasites 

have been shown to grow in culture media in the absence of all amino acids except for 

isoleucine, while for others, methionine in the media was also necessary (Liu et al, 2006). 

Protease inhibitors have been shown to inhibit parasite growth in vitro and in vivo (Pérez et al, 

2013; Greenbaum et al, 2004); however, knockout of cysteine and aspartic protease genes was 

not lethal and still permitted growth in amino acid rich media (Liu et al, 2006).  

Plasmodium is known to digest haemoglobin and release most of the digested amino acids 

from the red blood cell (Zarchin et al, 1986) suggesting that the parasite digests haemoglobin 

for other purposes aside from obtaining amino acids, at the expense of producing toxic 

ferriprotoporphyrin IX or haem (Francis et al, 1997). In a study that looked into haemoglobin 

digestion and utilisation in different strains of P. falciparum, up to 65% of haemoglobin was 

digested by the parasite on average but only 15% of which was taken up by the parasite for 

protein synthesis. Some suggest that this allows more room for the parasite and prevents build-

up of internal volume within the RBC that could result in premature cell lysis (Krugliak et al, 

2002; Allen & Kirk, 2004). Others suggest that the parasite controls the colloid osmotic pressure 

in the host cell to counter the effect of increasing permeability of the RBC membrane as the 

parasite develops in order to prevent premature lysis of the host cell. By breaking down 

haemoglobin and releasing the amino acids into the surrounding environment, the colloid 
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osmolarity inside the RBC is lowered, preventing the movement of permeable cations and water 

inward (Lew et al, 2003; Waldecker et al, 2017).  

Detoxification of haem from haemoglobin digestion is key to the survival of the parasite. 

This is done by haem detoxification protein that converts haem into crystalline haemozoin which 

is inert. Haemozoin appears as a dark pigment that can easily be appreciated when observing 

Giemsa-stained infected blood smears under the microscope (Fitch, 2004; Francis et al, 1997). 

Chloroquine was developed in the 1930s through the addition of a diethylaminoisopentylamino 

side chain on chloroquinoline and became one of the World Health Organization’s drugs of 

choice against malaria. It acts by preventing haem polymerisation, thus taking advantage of the 

toxicity of haem to the parasite (Schlitzer, 2007). Other quinolines such as quinine and 

mefloquine prevent the fusion of vesicles that carry haemoglobin with the digestive vacuole 

(Fitch, 2004). Lumefantrine also prevents haemozoin formation (Combrinck et al, 2013) and is 

currently administered together with artemisinins (Tilley et al, 2016). Artemisinin derivatives 

release oxidative radicals after activation through the cutting of the endoperoxide bond by iron-

containing reactive species such as haem (Tilley et al, 2016). It has been speculated that 

artemisinins alkylate haem and prevents haemozoin formation (O’Neill et al, 2010). Others 

suggest that the mode of action of reactive artemisinin derivatives involves the formation of 

covalent bonds with proteins (Yang et al, 1994), disruption of parasite membrane (Hartwig et al, 

2009) or disruption of the mitochondrial electron transport chain (Li et al, 2005).  
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Figure 1.8 Haemoglobin transport and digestion 
Haemoglobin is brought into the parasite cytosol through the formation of the double-
membrane cytostome (a), which is formed by the invagination of the parasitophorous vacuole 
membrane and parasite membrane. This fuses with the digestive vacuole (b) where the inner 
membrane is digested releasing haemoglobin for digestion by several proteases and peptidases 
(c). Amino acids from haemoglobin are then utilised for protein synthesis. Amino acids not found 
in haemoglobin (i.e., isoleucine) as well as those that are of limited quantity, are obtained from 
the external environment. Excess amino acids from haemoglobin digestion are excreted into the 
external environment (d). Digestion of haemoglobin produces ferriprotoporphyrin IX (haem), 
which is toxic to the parasite. This is detoxified by the crystallisation of haem to haemozoin 
through the action of haem detoxification protein.  

1.1.6 Fatty acid metabolism 

Similar to nucleotide metabolism, Plasmodium is capable of both de novo synthesis and 

salvage of fatty acids. The parasite synthesises fatty acids in the apicoplast through the type II 

fatty acid synthesis pathway which is similar to prokaryotic fatty acid synthesis (Ralph et al, 2004; 

Goodman & McFadden, 2007). Fatty acid synthesis involves the repeated addition of two-carbon 

units onto a growing fatty acid chain. During each addition, malonyl-acyl carrier protein (ACP) 

condenses with a fatty acid-ACP to form a -ketoacyl-ACP through the action of FabB/F. The 

terminal ketone is then reduced by FabG to an alcohol which is dehydrated to give a double 

bond between the two carbon atoms (alkene group) by FabZ. This alkene end is then reduced 

by FabI, forming an additional two-carbon to the fatty acid chain (Tarun et al, 2009). Specific 
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compounds that target this fatty acid synthesis pathway have been shown to be effective against 

Apicomplexan parasites such as Toxoplasma and Plasmodium. Examples of these compounds 

are thiolactomycin and triclosan which respectively inhibits the initial condensation of malonyl-

ACP and fatty acid-ACP (FabB/F), and the final reduction of the alkene group (FabI) (Gornicki, 

2003). In addition, hexachlorophene, a known anthelminthic drug, has been shown to inhibit 

FabG as well as in vitro growth of P. falciparum at low micromolar concentrations 

(Wickramasinghe et al, 2006). These suggest that the type II fatty acid synthesis pathway is 

essential to Plasmodium (Mazumdar & Striepen, 2007); however, gene deletion studies have 

shown that the pathway is not essential in blood and gametocyte stages (Yu et al, 2008; Vaughan 

et al, 2009). This implies that the pathway may have a different and more important role. It is 

suggested that the parasite regulates de novo synthesis and salvage depending on the 

availability of fatty acids in the serum (Botté et al, 2013). Fatty acid metabolism is summarised 

in Figure 1.9. 

 

 

Figure 1.9 Fatty acid synthesis 
Fatty acid synthesis involves the repeated addition of a two-carbon chain into a growing fatty 
acid chain. Malonyl-ACP condenses with a fatty acid-ACP, forming a ketone. This ketone is 
reduced to form a hydroxyl group which is then dehydrated. A second reduction step results in 
an elongated fatty acid. Drugs such as triclosan, thiolactomycin and hexachlorophene are known 
to inhibit specific enzymes involved in fatty acid synthesis. 

1.1.7 Drug resistance 

The use of chloroquine as the first line antimalarial for decades has resulted in the 

development of drug resistance. Chloroquine resistance has been linked to the expression of a 

mutant transmembrane domain protein that is able to shuttle chloroquine out of the digestive 
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vacuole (Schlitzer, 2007). The resistance arose from an amino acid residue mutation in what 

previously was a metabolite transporter that possibly transported chloride or amino acids out 

of the vacuole into the cytosol (Mita et al, 2009; Martin & Kirk, 2004). Through the years, 

resistance to other drugs have also been identified, such as sulfadoxine and pyrimethamine. 

Single and multiple point mutations in the amino acid sequence of DHPS and DHFR are linked to 

reduced parasite inhibition by these drugs, respectively (Triglia et al, 1997; Mita et al, 2009). 

Currently, there is already widespread resistance of the parasite to a number of antimalarial 

drugs. As a response to this issue, the World Health Organization recommended a combination 

therapy with an artemisinin-based compound together with a structurally unrelated drug (e.g., 

amodiaquine, lumefantrine, mefloquine or sulfadoxine-pyrimethamine) as the first-line 

treatment against malaria in 2000 (Nosten & White, 2007; Denis et al, 2006). However, sentinel 

surveillance and randomised control trials on drug efficacy against P. falciparum in the Thai-

Cambodian border done as early as 2001 revealed emerging resistance to combination therapy 

(Denis et al, 2006; Alker et al, 2007; Miotto et al, 2013; Dondorp et al, 2009). Long-term or 

incorrect use of these drugs often leads to the development of drug resistance and the 

ineffectiveness of first line drugs indicates the need for more effective second line medications 

(Asante et al, 2010). Given the current limitations of existing treatment regimens, it is imperative 

to identify and develop newer and safer compounds against malaria. Several effective 

compounds have recently been identified through phenotypic screening; however, the targets 

of a number of these compounds remain unknown (Creek et al, 2016). Knowledge on the specific 

targets of these compounds and an understanding of the metabolic flux through the pathways 

may aid in further identifying and developing new antimalarial compounds (Spangenberg et al, 

2013). 

1.2 Genome scale metabolic model and flux balance analysis 

1.2.1 Metabolic network reconstruction 

A mathematical network of the different metabolic processes that occur in an organism 

is what defines a genome scale metabolic model (Monk et al, 2014). With the increasing 

availability of annotated genome data, the reconstruction of these metabolic networks has 

become easier. This has led to the increase in the total number of genome scale models since 

the reconstruction of the first model in 1999 (Kim et al, 2012; Edwards & Palsson, 1999). One of 

the main objectives of the development of these in silico models is hypothesis generation. These 

models provide a cheaper and less time consuming alternative to wet lab experiments and can 

surpass some technical difficulties that make experimental approaches unfeasible (Kell & 
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Goodacre, 2014). These models may be utilised to obtain further understanding of organisms, 

and to provide annotations for previously undefined genes or reactions (Chavali et al, 2008). 

These models have also been used for the bioengineering of organisms that produce or over-

produce specific metabolites, most often molecules of nutritional or pharmaceutical importance 

(Kim et al, 2012; Navid, 2011). As these models take into consideration the consumption and 

production of different metabolites, they have also been used to identify metabolite markers 

for disease diagnosis (Kell & Goodacre, 2014). Most importantly, in relation to pathogenic 

organisms, analysis of and simulations using genome scale models have led to the identification 

of novel drug targets (Chavali et al, 2008; Plata et al, 2010; Huthmacher et al, 2010; Li et al, 

2011).  

A metabolic network reconstruction normally begins with the analysis of the organism’s 

genome and identifying all possible genes that are eventually translated to proteins. Open 

reading frames (ORFs) are identified and proteins associated to these ORFs are evaluated for 

their protein function and location. Proteins/enzymes involved in metabolic reactions are 

identified and their corresponding metabolic reactions are pieced together to create a 

preliminary model. Utilising data on these proteins, the compartmental location of the 

corresponding reactions can be determined. Gaps in the metabolic pathways can then be 

identified and filled in using information from closely related organisms. The connection from 

gene to protein to reaction is incorporated into the model, and is also known as the gene-

protein-reaction relationship. This relationship ensures incorporation of metabolic reactions and 

pathways associated with the organism’s genes. Furthermore, model evaluation can utilise 

these connections when simulating gene knockouts. The general scheme for the development 

of a genome scale metabolic model is shown in Figure 1.10. 

Genome scale metabolic models often fall under the stoichiometric type of model in 

systems biology (Bruggeman & Westerhoff, 2007). Compared to the two other types of models, 

i.e., regulatory and kinetic models, stoichiometric models aim to provide a more complete and 

holistic representation of a given organism by utilising large data sets (e.g., genomics, 

transcriptomics, proteomics and metabolomics). Stoichiometric models are the least 

complicated of the three models as it does not require input on reaction effectors and kinetic 

parameters. These stoichiometric models work under the steady state assumption which states 

that metabolite concentrations reach a point where no change occurs. The time it takes for 

steady state to be achieved depends on the type of reaction being modelled. In the case of 

enzymatic reactions, these occur rapidly in response to alterations in the environment, and 

steady state is achieved almost instantaneously (Palsson, 2015). Given that genome scale 
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metabolic models normally represent enzymatic reactions, it is therefore appropriate to 

consider the steady state assumption.  

This is in contrast with kinetic models that require parameters such as Michaelis-Menten 

constant (Khodayari et al, 2014), which can be quite difficult when modelling organisms in a 

much larger scale. While kinetic models tend to focus on core metabolism, stoichiometric 

models can expand their coverage to incorporate as much information that can be obtained 

from available data.   
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Figure 1.10 Genome scale metabolic model reconstruction flow chart 
Genome scale metabolic model reconstruction begins with looking at all open reading frames in 
the genome sequence. Using available gene annotations, genes that are related to proteins that 
are involved in metabolic/enzymatic reactions are collected. Proteins that lack annotations are 
checked against similar proteins in other closely related organisms. The metabolic reactions are 
put together to form metabolic pathways using available information. 
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1.2.2  Important databases for malaria metabolic network reconstruction 

At the moment there are several databases that can provide gene annotations, protein 

functions and enzyme reaction data.  Among those widely accessed for the development and 

improvement of the model in this project is PlasmoDB. Also known as the Plasmodium 

falciparum Genome Database, PlasmoDB is part of the EuPathDB Bioinformatics Resource 

Center which is a group of genome databases on eukaryotic pathogens (Aurrecoechea et al, 

2013). PlasmoDB is an online resource that is mainly focussed on the Plasmodium falciparum 

3D7 strain; however, it has also included comprehensive data on other related species 

(PlasmoDB, 2001). Other malaria species included in this database are human malaria P. vivax; 

murine malarias P. yoelii, P. berghei and P. chabaudi; primate malarias P. knowlesi and P. 

reichenowi; and avian malaria P. gallinaceum. The database provides extensive linkages 

between the parasite genome and published experimental data. Transcript and protein 

expression, gene ontology (GO) term annotation, Enzyme Commission (EC) classification 

numbers and related metabolic pathways are examples of data associated with the Plasmodium 

genome presented in this database (Aurrecoechea et al, 2009). Accessing a gene of interest will 

not only provide data associated with the gene, but also external links to other relevant online 

databases such as the Expert Protein Analysis System database (ExPASy) (Artimo et al, 2012), 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) and the Malaria 

Parasite Metabolic Pathways database (MPMP) (Ginsburg, 2006). It also has links to publications 

in PubMed. A feature of PlasmoDB that was quite useful in this project is that whole genome 

data can be downloaded alongside information mentioned above, old and new gene IDs, as well 

as reactants, products and reaction directionality/reversibility for genes associated with 

metabolic reactions (Aurrecoechea et al, 2009).  

The Malaria Parasite Metabolic Pathways online database contains more than 120 

metabolic pathway maps that are mostly relevant to the erythrocytic stages of the P. falciparum 

3D7 strain (Ginsburg & Abdel-Haleem, 2016; Ginsburg, 2006). Many of these pathways were 

obtained from KEGG and streamlined to represent only those that are applicable to the parasite. 

In the absence of gene association data, some pathways were added when biochemical data 

that suggest functionality of the given pathway were available. The pathway maps present 

metabolite names that are linked to KEGG, and reaction names and EC numbers that are linked 

to PlasmoDB, ExPASy, GeneDB and the BRaunschweig ENzyme DAtabase (BRENDA). When 

available, localisation data on a given enzyme/reaction, including fluorescence microscopy 

images and links to publications, are provided. Similar to PlasmoDB, this website provides links 

to PubMed. It also provides “transcription clocks” that represent stage-dependent transcription 

within the 48-hour erythrocytic cycle. Apart from the common pathways like the glycolytic 
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pathway or the mitochondrial TCA cycle, the database also includes malaria-specific metabolic 

functions such as membrane and intracellular traffic, haemoglobin digestion and apicoplast 

function. 

The Kyoto Encyclopedia of Genes and Genomes has a genome collection of more than 

5,000 organisms that were obtained from RefSeq and GenBank (Kanehisa et al, 2016). There are 

a total of nine complete Plasmodium genome data, three of which are strains of P. falciparum.  

More than just a repository of gene and genome data, KEGG is a conglomeration of 16 

databases. One of which is the KEGG Reaction database which contains different biochemical 

reactions. An entry in the Reaction database includes the KEGG reaction ID, reaction equation, 

EC number of the enzyme involved in the reaction and pathway involvement. Entries for these 

reactions are presented with links to other KEGG databases. KEGG Compound database contains 

metabolites and molecules and their associated attributes (e.g., KEGG metabolite ID, name, 

formula, molecular weight, structure and links to reactions and pathways they are involved in). 

KEGG Pathway database can be used to look at metabolic pathways in general or based on a 

reference organism. 

GeneDB is an online database hosted by the Sanger Institute that currently has genome 

data on 41 pathogenic organisms, including P. falciparum (Logan-Klumpler et al, 2012). The 

database works in collaboration with EuPathDB and regularly forwards annotations to EuPathDB 

databases such as PlasmoDB and TriTrypDB (i.e., a database on trypanosomatids). The 

development of GeneDB has focussed on the manual curation of trypanosomatids and 

Plasmodium species utilising more than 600 international peer-reviewed journal publications 

and producing more than 11,000 annotations. It also automatically receives user comments 

from these EuPathDB databases, and these comments are constantly reviewed and 

incorporated into their database as necessary. More than 1,600 comments from members of 

the scientific community have been incorporated into the database in order to update the 

annotations. The database allows users to access the organism’s genome and can focus on 

specific genes. Annotated genes are provided with information on gene names, gene type, 

chromosomal location, gene ontology as well as protein data. The website provides links to 

other external databases such as PlasmoDB, MPMP and PubMed. 

Provided by the Swiss Institute of Bioinformatics (SIB) together with 20 other 

collaborating institutions in Switzerland, ExPASy was initially developed to provide proteomics 

data but was eventually expanded to include genomics, transcriptomics, systems biology, 

phylogeny, population genetics and biophysics (Artimo et al, 2012). When conducting a query 

or a search, the resource returns a summary of total number of hits from and corresponding 

links to 14 SIB databases and 8 other external databases. The BRaunschweig ENzyme DAtabase, 
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or BRENDA, contains information on enzymes from about 11,300 organisms. Enzyme 

information that can be retrieved from this database include associated molecules (e.g., 

substrates, products, inhibitors and cofactors), kinetic parameters, IC50 values and localisation. 

Similar to the previously described databases, BRENDA also has links to PubMed references 

(Schomburg et al, 2004; Placzek et al, 2017). 

1.2.3 Flux balance analysis 

Using available information, a genome scale metabolic model can represent the gene-

protein-reaction relationship, as previously mentioned. Figure 1.11 is a simple representation of 

a metabolic model, illustrating in the third column a given metabolic pathway from the entry of 

metabolite A into the cytosol until the exit of E into the external environment. The first column 

shows the genes that are translated into their corresponding protein in the second column. 

These proteins are linked to the corresponding reaction in the next column. The last column 

summarises the different metabolites that participate in each reaction. In the metabolites 

column, each metabolite involved in a given reaction has a stoichiometric coefficient based on 

the correct reaction equation. A positive number represents the production of a metabolite, 

while a negative number represents the consumption of the said metabolite in the given 

reaction. In reaction R2, for example, 2 moles of metabolite C are required to produce 1 mole of 

metabolite E. The relationship between reactions and metabolites is represented by the 

stoichiometric matrix, conventionally represented by the variable 𝑆 (Thiele et al, 2013; Orth et 

al, 2010; Edwards & Palsson, 1999). In this matrix, the columns (𝑚) represent the reactions and 

the rows (𝑛) represent the metabolites (Figure 1.12). Stoichiometric coefficients for each 

metabolite are written under each of the reaction the metabolite is involved in. Going back to 

the previous example, reaction R2, here we can see metabolite C has a stoichiometric coefficient 

of -2 and metabolite E a coefficient of 1. A stoichiometric coefficient of 0 is assigned when a 

metabolite does not participate in a given reaction. The stoichiometric matrix will then be 

utilised in linear programming calculations, which will be explained later in this chapter. It is 

therefore important to ensure that the reactions incorporated into the model are accurate and 

properly mass balanced to avoid metabolic inconsistencies.  
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Figure 1.11 Simple metabolic model  
This figure shows a simple representation of a metabolic model composed of four reactions; two 
of which are boundary transport reactions that bring in or out metabolites and two are internal 
reactions (visually represented in the third column). The last column shows the individual 
metabolites involved in each reaction and their corresponding stoichiometric coefficient. A 
negative coefficient means that the metabolite is consumed while a positive one represents the 
production of a given metabolite. These coefficients are then used to generate a stoichiometric 
matrix shown in the figure below.  

  

Figure 1.12 Stoichiometric matrix 

Ex1 R1 R2 Ex2

A 1 -1 0 0

B 0 -1 0 0

C 0 1 -2 0

D 0 1 0 0

E 0 0 1 -1
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Apart from the stoichiometric equation, each reaction is given lower and upper flux 

boundaries, 𝑣𝐿𝐵 and 𝑣𝑈𝐵, respectively. These boundaries limit the rate of metabolite 

consumption through a reaction, which is also known as the reaction flux. The reaction flux, 

conventionally represented by the variable 𝑣, is often expressed in millimole of metabolite 

consumed/produced per gram dry weight of the organism per hour. A reaction with a positive 

flux is said to be going forward, i.e., the reactants are converted to products. On the other hand, 

a reaction with a negative flux is said to be going in reverse, i.e., the products are converted back 

to their corresponding reactants. Therefore, these boundaries can also dictate the directionality 

of a given reaction. A reversible reaction can be represented with a negative lower boundary 

and a positive upper boundary, while an irreversible reaction is given a zero lower boundary and 

a positive upper boundary. These flux boundaries may be based on published literature and 

experimental values. A vector of all the fluxes for all the reactions in the model is denoted by 

the variable �⃑�. An example of a vector of fluxes in relation to the sample model is shown in 

Equation 1.1.  

 

�⃑� = [

𝑣𝐸𝑥1

𝑣𝑅1

𝑣𝑅2

𝑣𝐸𝑥2

]   Equation 1.1 

where the reaction fluxes are between the assigned lower (𝐿𝐵) and upper (𝑈𝐵) boundaries: 

𝑣𝐸𝑥1𝐿𝐵
 ≤ 𝑣𝐸𝑥1 ≤ 𝑣𝐸𝑥1𝑈𝐵

 

𝑣𝑅1𝐿𝐵 ≤ 𝑣𝑅1 ≤ 𝑣𝑅1𝑈𝐵 

𝑣𝑅2𝐿𝐵 ≤ 𝑣𝑅2 ≤ 𝑣𝑅2𝑈𝐵 

𝑣𝐸𝑥2𝐿𝐵
 ≤ 𝑣𝐸𝑥2 ≤ 𝑣𝐸𝑥2𝑈𝐵

 
 

 

The product of 𝑆 and �⃑� is therefore equivalent to a vector of size 𝑛 that represents the 

rates of change in metabolite concentration over time (
𝑑𝐶

𝑑𝑡

⃑⃑ ⃑⃑
) per gram dry weight of organism for 

all metabolites in the model as shown in Equation 1.2.  

 

𝑆 ∙ �⃑� =
𝑑𝐶

𝑑𝑡

⃑⃑⃑⃑⃑⃑
 Equation 1.2 

where: 

𝑆 = the stoichiometric matrix with 𝑚 number of columns (reactions) and 𝑛 number of 
rows (metabolites) 

�⃑� = a vector of length 𝑚 representing the fluxes for all the reactions in the model 

𝑑𝐶

𝑑𝑡

⃑⃑ ⃑⃑
 = a vector of length 𝑛 representing the change in metabolite concentration over 

time for all metabolites in the model 
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Note that the product of a matrix and a vector is calculated by taking the sum of the 

products of the stoichiometric coefficient and the corresponding reaction flux, resulting in a 

vector with a length equal to the total number of rows, which in this case, is equal to the total 

number of metabolites (Equation 1.3). 

 

𝑆 ∙ �⃑� =

[
 
 
 
 
1
0
0
0
0

−1
−1
1
1
0

0
0

−2
0
1

0
0
0
0

−1]
 
 
 
 

∙ [

𝑣𝐸𝑥1

𝑣𝑅1

𝑣𝑅2
𝑣𝐸𝑥2

] 

 

=

[
 
 
 
 
1 × 𝑣𝐸𝑥1

0 × 𝑣𝐸𝑥1

0 × 𝑣𝐸𝑥1

0 × 𝑣𝐸𝑥1

0 × 𝑣𝐸𝑥1

−1 × 𝑣𝑅1

−1 × 𝑣𝑅1

+1 × 𝑣𝑅1

+1 × 𝑣𝑅1

+0 × 𝑣𝑅1

+0 × 𝑣𝑅2

+0 × 𝑣𝑅2

−2 × 𝑣𝑅2

+0 × 𝑣𝑅2

+1 × 𝑣𝑅2

+0 × 𝑣𝐸𝑥2

+0 × 𝑣𝐸𝑥2

+0 × 𝑣𝐸𝑥2

+0 × 𝑣𝐸𝑥2

−1 × 𝑣𝐸𝑥2]
 
 
 
 

 

Equation 1.3 

 

Finally, a genome scale metabolic model is assigned an objective, often times to represent 

the growth of the organism (Orth et al, 2010). This objective is also referred to as the biomass 

objective or the biomass reaction (𝐵). This objective is represented by a reaction that 

“consumes” the necessary components of the organism’s biomass. These components include 

nucleic acids, proteins, lipids and carbohydrates. In order to generate an accurate biomass 

reaction, extensive data curation is required (Monk et al, 2014). In the absence of published 

biomass data, other models have relied on data from other related organisms (Chavali et al, 

2008; Plata et al, 2010; Huthmacher et al, 2010). The balanced stoichiometric reaction 

equations, the flux boundaries and the biomass objective provide constraints into the model, 

which is the core concept of constraint-based modelling. Constraint-based modelling works 

under the steady state assumption, which means that the metabolite concentrations in the 

model are no longer changing (Equation 1.4).  

 

𝑑𝐶

𝑑𝑡

⃑⃑⃑⃑⃑⃑
= 0 Equation 1.4 

 

Combining Equation 1.2 and Equation 1.4, gives Equation 1.5, which states that the 

product of the stoichiometric matrix and the vector of reaction fluxes is equal to zero. 

 

𝑆 ∙ �⃑� = 0 Equation 1.5 

 

The steady state assumption allows the use of the model without the need for enzyme 

kinetics data. Instead, the accuracy of the reactions in the stoichiometric matrix, which includes 
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the biomass reaction, and the reaction flux boundaries are what matters in deriving a solution 

from the metabolic model. Through constraint-based modelling, multiple flux distributions 

throughout the whole metabolic network at steady state can be calculated with the aid of linear 

programming. With the previous sample model in mind, and assigning 𝐸𝑥2 as the objective 

function, flux values for all the other three reactions that will maximise the 𝐸𝑥2 reaction flux 

can be calculated. Here, Equation 1.3 is equated to zero to satisfy the steady state equation 

(Equation 1.5), and together with the constraints set for all the reaction fluxes (Equation 1.1), 

the equation becomes the linear programming problem. The reaction flux values (𝑣) are solved 

such that the value of 𝐸𝑥2 (i.e., the objective function) is maximised and the values of the 

individual reaction flux fall within the given lower and upper bound flux constraints (Makhorin, 

2008). Note that it is possible to assign multiple objective functions and the flux through the 

associated reactions are maximised. This is called flux balance analysis (FBA). Through FBA, 

genome scale metabolic models can be utilised to predict genes and reactions that are essential 

to the growth of the modelled organism. Reaction knockouts can be simulated in the model by 

forcing a zero flux over the said reaction; while gene knockouts can be simulated by giving a zero 

flux on all reactions associated with the given gene. If the simulated knockout results in a zero 

flux on the biomass reaction, then the gene/reaction is predicted to be essential (Chavali et al, 

2012b; Orth et al, 2010). By comparing the biomass reaction flux before and after a simulated 

knockout, one can also predict any growth reduction as a result of the knockout (Chavali et al, 

2008; Plata et al, 2010).  

1.2.4 Existing malaria metabolic models 

Several metabolic models on pathogens have been developed towards the identification 

of potential drug targets (Chavali et al, 2012a, 2012b; Forth, 2012; Huthmacher et al, 2010; 

Oberhardt et al, 2009; Plata et al, 2010; Zhang & Hua, 2015). The models of Plata et al (2010) 

and Huthmacher et al (2010) were the earliest model reconstructions for P. falciparum. Taking 

advantage of the availability of published experimental data, these models were able to produce 

accurate predictions. These models have identified a number of targets, some of which have 

already been validated experimentally in the past and some were tested and validated in vitro. 

These two models were also utilised alongside gene expression data and managed to generate 

predictions on metabolite exchanges that matched experimental data. The group of Fang et al 

(2014) modified the Plata model, and with the incorporation of gene expression data, was able 

to model stage specific biomass, biomass component and metabolite production. Subsequently, 

the same group added the red blood cell metabolic model onto the existing model to represent 

the intraerythrocytic parasite (Wallqvist et al, 2016). Using published metabolite data on 
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infected and uninfected RBCs, external flux constraints were incorporated into the model. The 

resulting model was then able to predict external metabolite concentrations comparable to 

experimental values. On the other hand, a highly curated P. falciparum model was developed 

by Thomas Forth as part of his PhD project at the University of Leeds in 2012 (Forth, 2012). The 

Forth model, having only 247 reactions, may be considered small compared to the Plata and 

Huthmacher models with 1,001 and 1,376 reactions, respectively. However, the Forth model 

utilised experimentally measured biomass components (i.e., DNA, RNA and protein) extracted 

from P. falciparum culture in developing the biomass reaction, as opposed to the Plata model 

which based its biomass function on a previously published yeast metabolic model (Duarte et al, 

2004). In addition, initial analysis of the Huthmacher model revealed multiple reactions that are 

not connected to the network. There were also a number of dead-end metabolites (i.e., 

metabolites that are either produced but not consumed, or consumed but not produced; this 

will be explained in detail in Chapter 2) that are present in the Huthmacher model (Forth, 2012). 

Given the limitations of these three main malaria metabolic models, namely the Forth, Plata and 

Huthmacher models, in terms of network size or input of accurate metabolomics and biomass 

data, it is important to develop a consensus model from these three existing model that will be 

able to provide more accurate predictions towards the identification of novel drug targets.  

1.3 Research objectives 

The main objective of this research was to develop a highly curated and experimentally 

validated P. falciparum 3D7 metabolic network model. This was achieved through the following 

specific objectives:  

1. To combine the existing metabolic network model by Forth (2012) with other published 

models (Plata et al, 2010; Huthmacher et al, 2010) 

- This involved the comparison of the three existing models, conversion of the models 

using a common species and reaction ID system, and the evaluation of individual 

and groups of reactions (i.e., pathways) for their accuracy and correctness before 

inclusion into the final/combined model. This also entailed the evaluation of the 

merged model by looking at specific model parameters such as number of live 

reactions and dead-end metabolites, and correcting dead-ends by gap filling. 

Important reaction and metabolite data and identifiers were also added to improve 

the model (Chapter 2). 

2. To generate experimental flux data to be incorporated into the final model, as well as in 

vitro growth assays in altered environmental conditions to be used to validate model 

predictions 
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- This involved the maintenance of continuous Plasmodium falciparum 3D7 in vitro 

cultures as well as the conduct of glucose and amino acid flux measurements, which 

were incorporated into the model. Perturbations on the in vitro glucose influx were 

also performed using mannose as a competitive inhibitor of glucose transport into 

the parasite to compare against model predictions (Chapter 3). 

3. To identify novel drug targets and validate these targets in vitro 

- This involved running gene knockout simulations and comparing the predictions 

with published/experimentally validated essential genes. The list of novel targets 

were narrowed down and candidate drug targets were tested and validated through 

in vitro experiments using repurposed FDA-approved drugs (Chapter 4) 
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Chapter 2 Merging the three models 

2.1 Introduction 

Systems Biology Markup Language (SBML) is a formatting language used for representing 

in silico models such as pathways for cell signalling, gene expression and metabolic reactions. 

SBML enumerates a standardised set of guidelines on the format and contents of a model, and 

thus it provides a “common intermediate format” that can be read by software tools. The 

standards were developed by a community of experts in the relevant fields of research and 

software development, and are constantly being updated and improved. Significant SBML 

updates are marked as levels while minor ones are called versions. The main release is 

numbered as release 1 and subsequent releases may arise to address errors in the current 

release. SBML level 1 was introduced in 2001 and the latest release in 2010 is SBML level 3 

version 1 release 1 (Hucka et al, 2003; Chaouiya et al, 2015).  At the time of writing, SBML level 

3 version 1 release 2 is being prepared while a preliminary release of SBML level 3 version 2 (not 

final) is available at the SBML website (www.sbml.org). Under SBML standards, the final model 

file is written in eXtensible Markup Language (XML), which is widely utilised as a standard 

language in bioinformatics (Achard et al, 2001).  

A genome scale metabolic model in SBML format has a number of components that are 

necessary to describe the model and the metabolic reactions within it. A model is given a 

mandatory identifier (ID) and a name, which is an optional attribute in SBML level 3 version 1. 

Within the model, one can provide annotations to further describe the model such as the 

authors’ names and affiliations (Chaouiya et al, 2015). This is then followed by unit definitions, 

mainly composed of the definition for flux in metabolic models. Flux is commonly expressed as 

millimole per gram dry weight per hour (Orth et al, 2010, 2011; Plata et al, 2010; Chavali et al, 

2008); however, in some cases, flux can be expressed as mole per second (Swainston et al, 2016). 

The unit definition is then followed by the list of compartments, which describes the different 

compartments and their assigned attributes. Compartments represent closed spaces in the 

model that contain the different metabolites and in genome scale metabolic models these 

compartments represent cellular organelles that hold different metabolites. The external 

environment is also represented in the model as a separate compartment. In SBML, only the 

compartment ID is obligatory, while the compartment name, size and unit are optional 

(Chaouiya et al, 2015).   

In an SBML model, species represent metabolites that participate in reactions and are 

contained in specific compartments. Species IDs and compartment (i.e., the location of the 

species) are mandatory attributes but the name is optional. In addition, “constant“ and 
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“boundaryCondition” are mandatory Boolean attributes for species, and they are assigned the 

values “true” or “false.” The “constant” attribute dictates whether the amount of species can 

be changed (as a result of consumption or production via a given reaction) or the quantity 

remains the same regardless of involvement in a given reaction. On the other hand, the 

“boundaryCondition” indicates whether a species is a boundary metabolite or not. Boundary 

metabolites are metabolites that are allowed to move out to and/or enter from the external 

environment (Chaouiya et al, 2015; Hucka et al, 2003). Although not mandatory, additional 

identifiers are recommended to easily and accurately identify the metabolites being referred to 

in the model (Ravikrishnan & Raman, 2015). Identifiers include database IDs such as those from 

Chemical Entities of Biological Interest (ChEBI) (Hastings et al, 2013), KEGG (Kanehisa et al, 2016) 

and PubChem (Bolton et al, 2008) databases. Additionally, structure-based IUPAC International 

Chemical Identifier (InChI) keys (Heller et al, 2015), Simplified Molecular-Input Line-Entry System 

(SMILES) (McNamara & Stearne, 2010) and molecular formulas can be utilised for a more 

accurate identification of metabolites in the model. 

Reactions in the model describe what happens to participating species. In a metabolic 

model, species can either be converted to a different species or transported from one 

compartment to another. Based on SBML standards, a reaction must be defined by the list of 

reactants and products, and the reversibility at the very least. Metabolites as part of either the 

reactants or products are given stoichiometric coefficients as local attributes to further describe 

the reaction. A quantification of the reaction is also important, especially when utilising FBA 

(Chaouiya et al, 2015). Local reaction parameters that describe constraints on the reaction flux 

are therefore incorporated into the model. Essential parameters include the lower and upper 

bound flux constraints, and the objective coefficient. The lower and upper bound constraints 

serve as limits to the allowable flux for a given reaction (Orth et al, 2010), while the objective 

coefficient determines whether a reaction is part of the objective function of the model 

(Ravikrishnan & Raman, 2015; Schellenberger et al, 2010). Given available gene annotation data, 

the connection between the genes, the protein/s that are translated from the said genes and 

the metabolic reaction/s that arise from the said protein is represented by what is called as the 

gene-protein-reaction relationship (GPR). This GPR is incorporated into the model as a reaction 

attribute “gene association.” For reactions associated with multiple genes, the gene association 

attribute is represented using Boolean operators “AND” and “OR” to signify whether all or any 

of the genes are required for the reaction to occur (Reed et al, 2003).  This attribute is utilised 

when simulating gene knockouts (Ebrahim et al, 2013; Gevorgyan et al, 2011; Rocha et al, 2010). 

Additional attributes such as EC number and subsystem classification/pathway involvement can 



33 
 

 
 

be incorporated to further identify or describe the reaction (Forth, 2012; Duarte et al, 2004; 

Chavali et al, 2008; Plata et al, 2010). 

The utilisation of different formats for identifiers in the model can result in inconsistencies 

and difficulty when comparing and combining models. As there is no single ontological format 

that is recommended for metabolic models, many have recommended or utilised additional 

identifiers similar to those mentioned above (e.g., InChI keys, SMILES) (Herrgård et al, 2008; 

Thiele et al, 2013; Ravikrishnan & Raman, 2015). The E. coli models: iJO1366 (Orth et al, 2011) 

and iAF1260 (Feist et al, 2010), human Recon 2.2 (Swainston et al, 2016), yeast iND750 (Duarte 

et al, 2004) models, as well as the Plata malaria model (Plata et al, 2010) used mainly identifiers 

from BRENDA or BIGG (Schellenberger et al, 2010). On the other hand, the Forth (Forth, 2012) 

and the Huthmacher (Huthmacher et al, 2010) malaria metabolic models used mainly KEGG 

(Kanehisa et al, 2016) identifiers for species and reactions. Other identifier ontological systems 

include Reactome (Croft et al, 2014), SEED (Aziz et al, 2012) and UniPathway (Morgat et al, 

2012).  

It is important for genome scale models to accurately represent metabolic reactions in a 

given organism (Monk et al, 2014; Herrgård et al, 2008). It is necessary to ensure that the 

reactions in the model do not violate the law of conservation of mass, and therefore reactions 

should be stoichiometrically balanced. Unbalanced reactions should be corrected or removed 

as even a single unbalanced reaction may result in inaccurate simulation results (Latendresse et 

al, 2012). Minimising the number of dead-end or orphan metabolites is also essential in 

improving a model. Dead-end metabolites are metabolites that are either produced but not 

consumed by any reaction or consumed but not produced by any reaction (Reed et al, 2003). 

These metabolites can create gaps in the metabolic network and can prevent flux through 

associated reactions. Reactions in the model that are not capable of carrying any flux are called 

dead or blocked reactions, as opposed to live reactions which are reactions that can carry a flux 

(Ravikrishnan & Raman, 2015). In assessing model quality, utilising model size (i.e., total number 

of genes or reactions incorporated in the model) as a parameter is not enough. It is 

recommended that the number of live reactions be considered as an additional parameter for 

evaluating model quality as these live reactions represent the section of the model that can 

actually be utilised to generate data and hypotheses (Monk et al, 2014). 

COnstraint-Based Reconstruction and Analysis (COBRA) is a method that utilises genome 

scale metabolic models for the conduct of analysis and simulations. This method, which is 

packaged as the COBRA Toolbox, has different features for evaluating models (e.g., checking 

reaction mass balance, identifying dead-end metabolites), conducting simulations through flux 

balance analysis (which includes single and double gene or reaction knockouts and flux 
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variability analysis) and can read and create models in SBML format (Schellenberger et al, 2011). 

The COBRA Toolbox can be run through MATLAB or Python (i.e., COBRApy). In this project, 

COBRApy was utilised as it does not require proprietary software (Ebrahim et al, 2013). COBRApy 

requires libSBML application programming interface library in order to handle models in SBML 

format. LibSBML allows COBRApy to read, edit and save (write) SBML files in different SBML 

levels and versions (Bornstein et al, 2008). COBRApy also requires a linear programming 

software and in this project the GNU Linear Programming Kit (GLPK) package, a non-proprietary 

software, was used (Makhorin, 2008). 

 This chapter will describe how a malaria metabolic model was developed by utilising 

three existing malaria models (Forth, 2012; Huthmacher et al, 2010; Plata et al, 2010). The 

methodology for reconciling the three models for proper comparison, as well as the methods 

for collecting reactions to be added into the final model will be described here. In order to 

increase model quality, the addition of accurate metabolite and reaction attributes, and the 

identification and correction of gaps in the model will also be discussed. Finally, an initial 

assessment of model quality will be shown in comparison with the assessment of other 

published metabolic models.  

2.2 Methodology 

2.2.1 Standardising the ontological format for reaction and species IDs 

The three malaria metabolic models used in this study were those developed by Forth 

(2012), Huthmacher et al (2010) and Plata et al (2010). The model files of Huthmacher 

(12918_2009_509_MOESM1_ESM.xml) and Plata (msb201060-sup-0004.xml) were retrieved 

from the supplemental files of the publication that described the said models, while that of Forth 

(Sup1 - ForthT_2013_pfalciparum_247reactions_pfa _iTF247_L2V4.xml) was obtained directly 

from the author himself (email communication).  Python was used to gather data from the three 

malaria metabolic models and to compare the different ontological formats. Database files of 

IDs (chem_xref.tsv for species/metabolite IDs and reac_xref.tsv for reaction IDs) in different 

ontological formats alongside their corresponding MNXref ID were obtained from metanetx.org, 

an online support for genome-scale metabolic models that utilises the MNXref ontology as a 

means to reconcile all other ontological formats (Bernard et al, 2014). With this database, 

MNXref ontology was used as the format to bridge the mapping of one ID system to another.  In 

order to evaluate the suitability of an ontological format as the format to use in the 

combined/final model, species and reaction IDs from the three models were mapped to their 

corresponding MNXref IDs and the resulting MNXref IDs were then mapped to the other 
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ontological formats  (Figure 2.1). This provided a limitation where only original IDs with 

corresponding MNXref IDs can be mapped to another ontological format. IDs that cannot be 

mapped to MNXref and thus cannot be mapped to the final ontological format, such as A5 in the 

figure, are considered unique. The total number of unique IDs and the total number of IDs 

mapped to the other format were recorded for each model and for each ontological format.  

 

 
Figure 2.1 Method of mapping one ID ontological format to another 
This figure illustrates the method of mapping IDs in their original format in the model to another. 
When two IDs in the model correspond to one MNXref ID, both were mapped to the same ID 
(a). On the other hand when mapping an MNXref ID to another format, when an MNXref ID 
corresponded to two or more IDs in the other format, the first ID in the alphabetical sequence 
was initially assigned (b). In the end (c), original IDs in the model were mapped to the other 
format. 

A mapping ratio was computed for each ontological format (for species and reaction IDs) 

and was used to compare the different formats. The mapping ratio was computed using the 

formula: 

 

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝐷𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐼𝐷 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝐷𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑀𝑁𝑋𝑟𝑒𝑓 𝑓𝑜𝑟𝑚𝑎𝑡
 Equation 2.1 

 

The format with the highest combined mapping ratios for species and reactions was 

chosen as the ontological format for the final model. Species and reaction IDs in the three 

models were converted to the final format to facilitate proper comparison and merging. IDs that 

cannot be converted to the said format were given IDs in a modified MNXref ID format. Since 

the character lengths of original MNXref IDs are not consistent, the modified MNXref ID format 

utilises the numerical portion of the original MNXref ID (to facilitate ease in tracing back IDs to 

its original form) that has been standardised to 9 alphanumeric characters. For example in the 

case of the species S-methyl-5'-thioinosine with an MNXref ID of MNXM2620, the modified ID is 

xpd002620. The first three characters indicate whether the ID refers to a species (“xpd”) or a 

 

(b) 

Model IDs MNXref IDs Other format 

A1 

A2 

A3 

A4 

A5 

M1 

M2 

M3 

M4 

F1 

F2 

F3 

F4 

Mapping 

A1 → F1 

A2 → F2 

A3 → F2 

A4 → F3 

A5=Unique 

(a) (c) 
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reaction (“xxn”) and the numerical characters from the original ID were converted into six 

numerical characters through the addition of zeros at the beginning (from “2620” to “002620”). 

It is important to note that numerical portion of all MNXref species or reaction IDs do not begin 

with a zero except for H(+) (i.e., MNXM01) which has its corresponding ID in all other formats. 

In such cases where original IDs do not have MNXref IDs, the original IDs were retained. Manual 

evaluation was done for IDs that were mapped to more than one MNXref ID to avoid any 

inconsistencies in ID conversion. The conversion of species and reaction IDs will be discussed in 

greater detail in Section 2.3.2. 

2.2.2 Collecting gene, enzyme and metabolite data 

Additional attributes were added to the species in the model. These include the molecular 

formula, charge and a few identifiers such as InChI keys (Heller & McNaught, 2009), Canonical 

SMILES (McNamara & Stearne, 2010) and PubChem IDs (Bolton et al, 2008). PubChem IDs can 

either be compound ID (CID) or substance ID (SID). These IDs can be used to retrieve metabolite 

data from PubChem. Most species data were collected using PubChemPy (Swain, 2013). 

PubChemPy is a Python-based package that allows compound search in PubChem using the 

original species ID or species name. In cases where data for a given species could not be retrieved 

using PubChemPy (e.g., no molecular formula), data were manually obtained from the KEGG 

database (Kanehisa et al, 2016). Molecular formula for haemoglobin was based on protein 

sequence data obtained from the Universal Protein Resource (UniProt) (Magrane & UniProt 

Consortium, 2011). It was ensured that all species have proper molecular formula in order to 

identify unbalanced reactions. 

Attributes for reactions, whenever absent, were collected from several sources. In the 

case of the Huthmacher model, where reactions (mostly in KEGG ID format) do not have reaction 

names, EC numbers and gene association data, the reaction ID was used to obtain the EC number 

and the corresponding reaction name from KEGG, and using the EC numbers, the gene 

association was obtained from Plasmodium falciparum 3D7 data from the PlasmoDB database 

(Aurrecoechea et al, 2009). If the reaction ID is not in KEGG, the reaction equation (i.e., reactants 

and products) was used to find the corresponding reaction and reaction attributes in KEGG. As 

for the Forth and Plata models, where most reactions have EC numbers and gene association 

data (in the old ID format), reaction attributes were double checked against KEGG or PlasmoDB. 

Reaction attributes that did not match the KEGG or PlasmoDB data were manually evaluated 

and updated as needed. Using the reaction EC number, pathway information was obtained from 

the MPMP online resource (Ginsburg & Abdel-Haleem, 2016).  
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2.2.3 Identifying unique reactions from source models 

The Forth model served as the minimal model to which reactions from the other models 

were added. This model was chosen as it was well curated and initial evaluations showed that it 

had the lowest percentage of dead reactions compared with the other two models. The 

Huthmacher and the Plata models served as the source models, from which reactions were 

obtained to add to the minimal model. Reactions from the source models were collected and 

added into the minimal model. Reactions from the source models must satisfy the following 

criteria before being added into the minimal model: 

1. The reaction has enzyme classification and gene association data. 

2. The reaction is not in the minimal model. 

3. At least one species in the reaction is in the minimal model. 

To ensure that the reaction from the source model is not in the minimal model, reactions 

were compared using the reaction equations, instead of reaction IDs. The original reactants and 

products of a given reaction were converted into separate lists of species and these lists were 

compared against the lists of reactants and products of another reaction. All reactions were 

initially considered as reversible, thus, the reverse reaction equation was also taken into 

consideration when comparing reactions between models. It is important to note that some 

reactions utilised protonated or unprotonated species, which resulted in the presence or 

absence of proton/s in the balanced reaction equation. In this case, two identical reactions may 

be identified as dissimilar due to the presence or absence of proton/s in the equation. To avoid 

this error, two reactions with reaction equations that differ only by one or more protons were 

considered as similar reactions (Bernard et al, 2014).  

The third criterion in adding a reaction into the minimal model involved having a common 

species that is present in both the reaction to be added and the minimal model. This prevented 

the addition of a reaction or a group of reactions that is completely separated from the original 

network. Furthermore, commonly participating species, i.e., species that are highly involved in 

a number of reactions, small molecules as well as nucleotides (e.g., H2O, H+, CO2 and ATP) were 

excluded and were not considered as common “linking” species. This gave emphasis on more 

important species to link new reactions with the reactions in the minimal model.  

Reactions from the source models that satisfy the three criteria were removed from the 

list of source model reactions and were added into the minimal model. As new reactions were 

being added to the minimal model, new species from these reactions were also added. Thus it 

was possible that reactions that initially satisfied the first two criteria but not the third could 

now have a common species in the growing minimal model. The remaining reactions from the 

source models were repeatedly assessed until no new reaction could be added into the model. 
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The reactions in the Plata model were first subjected into this reaction assessment loop followed 

by the Huthmacher reactions. After which, the remaining reactions from the Plata and 

Huthmacher models were again alternately reassessed until no new reactions could be added 

into the minimal model. The resulting combined model at this point will be referred to as the 

expanded model. Figure 2.2 shows the algorithm for the identification of reactions from the 

source model to be added to the minimal model. 

 

Table 2.1 List of commonly participating species, small molecules and nucleotides that were 
excluded from the list of species that may link reactions from the source model into the 
minimal model 

Name SEED ID  Name SEED ID 

Acetyl-CoA cpd00022  dUTP cpd00358 

ADP cpd00008  FAD cpd00015 

AMP cpd00018  FADH2 cpd00982 

ATP cpd00002  GDP cpd00031 

cAMP cpd00446  Glycerol cpd00100 

Carbonic acid cpd00242  GMP cpd00126 

CDP cpd00096  GTP cpd00038 

cGMP cpd00697  H+ cpd00067 

CMP cpd00046  H2O cpd00001 

CO2 cpd00011  H2O2 cpd00025 

CoA cpd00010  HCO3- cpd00242 

CTP cpd00052  HO- cpd00001 

dADP cpd00177  IMP cpd00114 

dAMP cpd00294  NAD+ cpd00003 

dATP cpd00115  NADH cpd00004 

dCDP cpd00533  NADP+ cpd00006 

dCMP cpd00206  NADPH cpd00005 

dCTP cpd00356  NH3 cpd00013 

dGDP cpd00295  O2- cpd00532 

dGMP cpd00296  Orthophosphate cpd00009 

dGTP cpd00241  Oxygen cpd00007 

Diphosphate cpd00012  UDP cpd00014 

dTDP cpd00297  UMP cpd00091 

dTMP cpd00298  Urea cpd00073 

dTTP cpd00357  UTP cpd00062 

dUDP cpd00978  XMP cpd00497 

dUMP cpd00299    
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Figure 2.2  Algorithm for identifying reactions from the source models to be added into the 
minimal model 
This figure describes how reactions from the source models were collected and added into the 
minimal model. Three criteria must be satisfied for a source model reaction to be added into the 
minimal model: Criterion 1 requires that the reaction must have an enzyme classification 
number and gene association data (i.e., gene ID). Criterion 2 requires that the source model 
reaction should not be present in the minimal model. Criterion 3 requires that the source model 
reaction should have at least one species in common with the species in the minimal model. As 
new reactions were added into the growing minimal model, new species associated with the 
added reactions were also added. The reaction assessment loop (Figure 2.3) allows addition of 
reactions that may link to previously added source model reactions. The loop terminated when 
no new reaction could be added into the growing minimal model. 
  

Figure 2.3 is a visualisation of the reaction assessment loop for identifying and adding 

reactions from the source model to the minimal model using a simple example. In the figure, 

the minimal model is represented by two reactions, R1 and R2, while the source model is 

represented by three reactions, R3, R4 and R5. Assuming that all reactions in the example have 

gene and enzyme data (criterion 1), an analysis of the source model is done to identify reactions 

that are not in the minimal model (criterion 2) and that may be connected to the source model 
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through a common metabolite (criterion 3). During the first iteration, only R3 satisfies the three 

criteria, and is added to the minimal model resulting in a growing model. Reaction R3 is then 

removed from the source model and another assessment can be done. In the second iteration, 

both R4 and R5 satisfy the three criteria and are then added into the growing model, giving the 

expanded model.  

 

 

Figure 2.3 Reaction assessment loop 
This is an example of the iterative process to identify and add reactions from the source model 
to the minimal model. An initial comparison of the reactions in the minimal and source models 
is done and reactions that satisfy the three criteria are added into the minimal model and 
removed from the source model (in this case, R3). The addition of reactions into the minimal 
model, which results in the addition of new species, may therefore allow new reactions in the 
source model to satisfy the three criteria thus additional iterations are done until no new 
reaction can be added into the growing model. 
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2.2.4 Correcting reaction direction 

Data on reactions associated with P. falciparum 3D7 genes were downloaded from the 

PlasmoDB (Metabolic Pathways) database (Aurrecoechea et al, 2009). For PlasmoDB genes with 

associated metabolic reaction/s, information on EC number/s, reactants, products, pathway 

source and reaction direction (i.e., reversible or irreversible) were collected from the database. 

Reactions in the expanded model were compared against the PlasmoDB data and were 

corrected and updated as needed. Occasionally, a given reaction may have multiple reaction 

directions depending on the pathway it is involved in. In these cases, reactions and their 

corresponding data were evaluated manually. BRENDA (Placzek et al, 2017) and MPMP 

(Ginsburg & Abdel-Haleem, 2016) were utilised to determine the reaction direction. When 

reaction direction data is not available, the reaction direction was written as reversible in the 

model.  

The flux for each reaction in the model was given lower and upper bound constraints 

depending on the reaction reversibility. Reversible reactions were given a default lower and 

upper bound constraints of -500.0 and 500.0 mmol/gDW/hr, respectively. The use of these 

default values for unconstrained lower and upper bound (i.e., -500 and +500) were adopted 

from the Forth model (Forth, 2012). Utilising other default values used in other models, e.g., 100 

(Chavali et al, 2008) or 999,999  (Feist et al, 2010), did not make any difference in the values 

obtained from model simulations. Irreversible reactions were assigned 0.0 and 500.0 

mmol/gDW/hr as lower and upper bound constraints, respectively. Reactions that were 

identified as reverse (reactants  products) based on existing data were written in the opposite 

direction, putting the products in the reactants side and vice versa (products  reactants). This 

allowed uniform reaction flux constraints where the lower bound constraint is always less than 

the upper bound constraint. This standardisation of reaction direction was necessary as having 

an upper bound constraint that is less than the lower bound constraint can result in an error 

when conducting model simulations in some applications/programs.  

2.2.5 Addressing dead-end metabolites 

COBRApy (Ebrahim et al, 2013) was used to generate a list of nodes from the reactions in 

the expanded model for visualisation and analysis using Cytoscape 3.2.1 (Kohl et al, 2011). 

Cytoscape requires as an input file a list that is composed of two columns, namely, the source 

and target nodes at minimum. Each row contains a pair of nodes where the node in the source 

column is connected by a directed arrow, also known as an edge, to the node in the target 

column. For each reaction, every reactant was assigned as a source node and the reaction as the 

target node, while the reaction was assigned as a source node for every product, which was the 
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target node. If the reaction is reversible, then every product was also assigned as a source node 

with the reaction as the target node. Additionally, the reactants were assigned as target nodes 

for the reaction as the source node (Figure 2.4). 

 

 

Figure 2.4 Visualisation of reactions using Cytoscape 
This diagram shows the process of generating a Cytoscape visualisation of the expanded model, 
partly represented by (A) as a list of reactions and their corresponding reaction equation. Note 
that in the example, hexokinase is shown as an irreversible reaction while phosphoglucose 
isomerase is represented as a reversible reaction. A nodes list (B) is generated from the list of 
reactions, taking into account the reaction direction and reversibility, and is used as the input 
for Cytoscape. The resulting Cytoscape network (C) represents the “flow” of reactants and 
products (in blue) through the reactions (in red). Reversible reactions are represented in this 
figure as double headed arrows.   
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By generating a Cytoscape directed network, the total number of incoming and outgoing 

edges can be calculated for each node in order to identify dead-end metabolites. These edges 

represent the reactions that produce (“InDegree”) or consume (“OutDegree”) a given 

metabolite. Furthermore, a non-directed network (i.e., a network that disregards directionality 

of reactions) can be used to identify the number of reactions connected to each metabolite (i.e, 

simply known as “Degree”). Metabolite nodes with an InDegree or OutDegree equal to 0, 

regardless of Degree value, were considered dead-end metabolites. Additionally, metabolites 

with a Degree equal to 1, regardless of InDegree and OutDegree values (i.e., limited to either 0 

or 1), were also considered as dead-end metabolites. Table 2.2 presents a summary of InDegree, 

OutDegree and Degree values for the identification of dead-end metabolites. The blue nodes 

represent the metabolite being evaluated and the edges represent reactions that consume or 

produce the given metabolite. A list of dead-end metabolites and their corresponding reactions 

was generated and manually reviewed. Data from KEGG (Kanehisa et al, 2016) and MPMP 

(Ginsburg & Abdel-Haleem, 2016) were used to fill in gaps. Reactions with dead-end metabolites 

that were not in the MPMP database were removed from the model. Metabolites that appear 

as dead-ends in MPMP were assigned a boundary reaction or a reaction that can transport the 

metabolite to another compartment. To each of the gap filling reactions, an additional 

annotation signifying that the reaction was added to correct dead-end metabolites was written 

as a reaction attribute labelled as “OTHER_NOTES.” This allows future users to easily identify 

these reactions.  

 

Table 2.2 Identification of dead-end metabolites using Cytoscape*  

Visualisation Description InDegree OutDegree Degree 

 

Consumed but not 
produced 

0 n n 

 
Produced but not 

consumed 
n 0 n 

 

End of a reversible or 
irreversible pathway 

≤ 1 ≤ 1 1 

*n represents any positive integer  
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2.2.6 Deriving the biomass equation 

Previous experimental data on the proportions of proteins, DNA and RNA in terms of 

weight of macromolecules per dry weight of parasite (Forth, 2012) were incorporated into the 

derivation of the biomass equation. This entailed growing P.  falciparum 3D7 strains in vitro in 

Roswell Park Memorial Institute (RPMI) 1640 growth medium (Life Technologies) supplemented 

with 5% (w/v) Albumax I (Gibco), 2% (w/v) sodium bicarbonate (Sigma), 0.01% (w/v) 

hypoxanthine (Sigma) and 0.1% (v/v) gentamicin at 5% haematocrit (O+ blood obtained from St. 

James’s University Hospital). Cultures were grown in a 37oC incubator at 1% oxygen, 3% carbon 

dioxide and 96% nitrogen gas mixture. Parasites were synchronised using 5% sorbitol and were 

allowed to grow to late schizont stage before parasite isolation. A total of 1,080 ml of 

synchronised culture was utilised for biomass measurements. RBCs were collected and lysed 

using 0.15% saponin. Parasites were isolated by high-speed centrifugation. Parasite dry weight 

was measured prior to quantification of biomass components. Protein content of the isolated 

parasites was measured using Bradford Assay (with bovine serum albumin as standard) and the 

percentage of protein by weight of total biomass (dry weight) was calculated. DNA and RNA 

content were measured using a nanodrop spectrophotometer. Total carbohydrate and lipid 

compositions were estimated using a 27:15 carbohydrate to lipid ratio of the remaining biomass 

proportion, as adopted from the biomass function of L. major (Chavali et al, 2008). 

Stoichiometric coefficients for reactants and products to make 1 gDW of parasite in the 

biomass reaction were calculated using Equation 2.2 (using a single amino acid, as an example). 

This simplified equation was adopted from that used by Chavali et al (2008) in calculating the 

stoichiometric coefficients of the L. major biomass reaction. 

 

𝑐𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 =
𝑚𝑝𝑟𝑜𝑡𝑒𝑖𝑛 × 𝑝𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 × 1 𝑔𝐷𝑊𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒 × 103 𝑚𝑚𝑜𝑙

𝑚𝑜𝑙
𝑀𝑊𝑝𝑟𝑜𝑡𝑒𝑖𝑛

 Equation 2.2 

 
where: 

 𝑐𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑  =  stoichiometric coefficient 
𝑚𝑝𝑟𝑜𝑡𝑒𝑖𝑛  = gram of protein per gram of parasite dry weight 

𝑝𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑  =  percentage of amino acid in parasite proteome  
𝑀𝑊𝑝𝑟𝑜𝑡𝑒𝑖𝑛  =  weighted average molecular mass of parasite protein (gram/mole) 

 

The weighted average molecular mass for each biomass component (protein, DNA, RNA, 

carbohydrates and lipids) was calculated using the published proportions or ratios of individual 

subcomponents and the corresponding molecular mass. Individual amino acid proportions were 

estimated based on the relative abundance of each amino acid in P. falciparum (Chanda et al, 

2005). Individual deoxynucleotide proportions were estimated using published data on the G+C 
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content of the P. falciparum 3D7 genome while RNA nucleotide proportions were estimated by 

taking the weighted average of the G+C content of exons and introns (Gardner et al, 2002). The 

proportions of the carbohydrate subcomponents in the original model were retained. These 

subcomponents were limited to GDP-mannose for carbohydrate accumulation, adapted from 

published Leishmania major data (Ralton et al, 2003), and GDP-fucose for glycosylation (Forth, 

2012). GDP-mannose to GDP-fucose ratio was revised using data from published experimental 

quantifications of sugar nucleotides in P. falciparum (Sanz et al, 2013). The lipid component in 

the biomass function of the original model was also updated.  For simplicity, the lipid component 

was not divided into different proportions of fatty acid species. Instead, the components were 

subdivided into three: fatty acids, desaturated fatty acids and C2H4 elongation unit. The 

proportions of these three were adopted from the original model which were also based on 

experimentally published data (Forth, 2012; Mi-Ichi et al, 2007). The weighted average 

molecular mass for fatty acids and desaturated fatty acids were recalculated and updated using 

published experimental data on the proportion of different fatty acid species in P. falciparum 

3D7 strains (Botté et al, 2013), while the molecular weight of the elongation unit, 28.05 g/mol, 

was calculated based on the chemical formula.  

A multiplier (103) was added to the equation to convert the unit of the stoichiometric 

coefficient from moles to mmoles. Additional metabolites (ATP, GTP, AMP, GDP, 

orthophosphate and water) were added to the biomass reaction to account for amino acid 

elongation. Two high energy bonds are consumed in the synthesis of an amino acyl-tRNA 

(Equation 2.3) for activation and transfer steps and hydrolysis of pyrophosphate, while two GTP 

molecules are required for 1) positioning of amino acyl-tRNA into the A site of the ribosome; 

and 2) release of the elongation factor and formation of peptide bond (Equation 2.4) (Stryer, 

1988). Therefore, one mole of ATP, two moles of GTP and three moles of H2O were added for 

every mole of amino acid to account for amino acid elongation. One mole of H2O for every mole 

of GDP-fucose and GDP-mannose for the hydrolysis of these components was also added into 

the biomass equation. A molecular formula for the parasite biomass was estimated by obtaining 

the sum of all atoms in the molecules included in the biomass components. 

 

Amino acid + ATP + tRNA + 2 H2O  Amino acyl-tRNA + AMP + 2 Pi Equation 2.3 
 

2 GTP + 2 H2O  2 GDP + 2 Pi Equation 2.4 
 

To ensure that the biomass reaction is mass balanced, all stoichiometric coefficients were 

multiplied by 1000 to convert these coefficients into integers since the smallest coefficient was 

0.003. The molecular formula for the biomass metabolite was then derived from the sum of all 
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atoms of all metabolites that contribute to the parasite’s biomass, excluding those associated 

with amino acid elongation. COBRApy was then used to check for reaction mass balance. Note 

that the original coefficient (using Equation 2.2) was retained as the coefficients in the model. 

The final model was created using COBRApy and was saved an XML file in SBML version 3 

level 1 format, using the flux balance constraint package (Chaouiya et al, 2015). The source codes 

for reading and writing SBML files were slightly modified to accommodate the addition of other 

attributes to metabolites (e.g., InChI keys, SMILES). 

2.2.7 Ensuring reaction mass balance 

Reaction mass balance was assessed using the check_mass_balance() function in 

COBRApy to ensure that the reactions follow the law of conservation of mass. This function 

evaluates the reaction stoichiometry by looking at the molecular formula and the stoichiometric 

coefficients of the reactants and products. If a reaction is not mass balanced, the function will 

identify unbalanced atoms and a corresponding number of atoms in excess. This output is in the 

form of a Python list as shown in the example below: 

 

The output list contains two items: the first one being the reaction ID (‘rxn00001’) and the 

second is a dictionary of the atoms involved in the reaction. A dictionary is a Python object type 

that consists of a series of paired objects (i.e., key and value). In the case of the dictionary output 

for the said function, the keys are atoms while the values are the total number of atoms in 

excess. A negative stoichiometric coefficient indicates an excess in the reactant side, while a 

positive coefficient is an excess in the product side. The example shown above means that the 

reaction with a reaction ID of ‘rxn00001’ has two extra hydrogen atoms in the reactant side, and 

an extra oxygen atom in the product side. On the other hand, if a reaction is balanced, the 

function will return an empty list, represented by square brackets ([ ]). In some cases, metabolite 

formulas have an R-group (i.e., Markush structure) resulting in unbalanced reactions. Using data 

from KEGG and PubChem, formulas for metabolites with these generic R-groups were 

standardised, and reactions involving these metabolites were evaluated manually to ensure 

mass balance. In the final model, there are 68 metabolites that contain R-groups in their 

molecular formulas, and in most of which, the R-group represents a generic acyl-group. Only 

seven metabolites have an R-group in their molecular formula that does not represent an acyl-

group. These metabolites include apocytochrome, ferri-/ferrocytochrome, thioredoxin and 

carboxylase-carrier protein which are recycled cofactors. All other unbalanced reactions were 

corrected using reaction data from KEGG.  

[‘rxn00001’, {‘C’: 0.0, ‘H’: -2.0, ‘O’: 1.0, ‘N’: 0.0, ‘P’: 0.0}] 
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2.2.8 Identifying dead-end metabolites and live reactions for model evaluation   

A single biomass solution (i.e., calculated maximised objective function value) may be 

achieved through different combinations of reaction fluxes. Flux variability analysis (FVA) looks 

into the flux range of all reactions in the model that can result in the maximised biomass output. 

FVA therefore can also identify reactions that are not capable of carrying any flux (i.e., dead 

reactions). FVA was performed using the biomass reaction as the objective function through 

COBRApy (Ebrahim et al, 2013), and this returned a minimum and maximum flux for each 

reaction. Reactions that could not carry a flux, where the minimum and maximum are both equal 

to zero, were considered dead reactions. Otherwise, reactions that could carry a flux were 

considered as live reactions. It is important to note that COBRApy runs using Python and Python 

utilises floating-point math in its calculations. Floating-point math tends to give out inexact 

zeros, where the values that should be equal to zero are returned as very small values that are 

close to zero (Lutz, 2013). Thus, this was taken into consideration by setting values between -1 

x 10-10 and 1 x 10-10 as zero. MetExplore (Cottret et al, 2010) is an online resource that can be 

used to create, evaluate and run simulations using metabolic models. The XML version of the 

model was uploaded into the MetExplore website and was analysed for dead reactions and 

dead-end metabolites in the model. Public models available in MetExplore, as well as the Plata 

(Plata et al, 2010) and Huthmacher (Huthmacher et al, 2010) models were also evaluated for 

dead-end metabolites and dead reactions and compared with the final model.  

2.3 Results 

2.3.1 Characteristics of the three models 

The original malaria metabolic models of Forth (Forth, 2012), Huthmacher (Huthmacher 

et al, 2010) and Plata (Plata et al, 2010) were all written in SBML (version 2 level 1) and are in 

XML file format. Although data on the network characteristics were available from the 

corresponding publications, the actual model files were evaluated to obtain the data shown in 

Table 2.3. It is important to note that for the Forth model, a total of 247 modifiers were included 

in the list of species to represent enzymes (with or without EC numbers). These were not 

included in the total number of species in the table below and in further comparisons with the 

species in the two other models. Common to all three models are four compartments, the 

apicoplast, cytosol, mitochondria and the extracellular compartment. In addition to these four 

compartments, the Forth model also has a compartment representing the food vacuole, while 

the Huthmacher model has an additional four compartments representing the endoplasmic 

reticulum, food vacuole, Golgi and nucleus.  
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Table 2.3 Network characteristics of the three models 

Model Compartments Genes Species Reactions 

Forth 5 143 267 247 

Huthmacher 8 579 1673 1376 

Plata 4 366 1025 1001 

 
 

The species in the three models included the following species attributes: species ID, 

name, compartment location and boundary condition. None of the models included metabolite 

identifiers such as SMILES (McNamara & Stearne, 2010) or InChI keys (Heller et al, 2015). As for 

chemical formula, although the Plata model incorporated the metabolite formula into most of 

the species names, none of the models have included chemical formula as a species attribute. 

Having a formula incorporated as a species attribute is important in assessing reaction mass 

balance. Water and ATP were the two most commonly participating metabolites in both the 

Forth and the Huthmacher model, while H+ and water were for the Plata model (Figure 2.5). It 

is worth mentioning that more than 50% of reactions in the Plata model involved H+. The Plata 

model utilised different databases including KEGG (Kanehisa et al, 2008) and PlasmoCyc (a part 

of BioCyc) (Yeh et al, 2004) in model reconstruction. KEGG for example presents many of its 

species in the protonated form, while BioCyc has many of its metabolites in the unprotonated 

form. Figure 2.6 shows the difference in the chemical formula of ATP between KEGG and BioCyc 

as an example. Although the proportion of reactions obtained from different databases were 

not mentioned in the publication (Plata et al, 2010), it is possible that many of the reactions in 

the Plata model involved unprotonated forms of the metabolites thus requiring the addition of 

protons in the reaction to balance the equation.  
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Figure 2.5 Top commonly participating metabolites  
This figure shows the percentage of reactions that involve the top ten most commonly 
participating metabolites in the three models.  
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Figure 2.6 Adenosine triphosphate as presented in KEGG and BioCyc 
This is a comparison of the molecular structure and formula of ATP as represented in the KEGG 
(Kanehisa et al, 2016) and BioCyc (Caspi et al, 2014) databases. It is important to keep these 
differences in mind when comparing reaction equations as similar reactions may have different 
reaction equations.   

Whenever available, attributes were included in the Forth model reactions. These 

attributes include gene association in the old Plasmodium gene ID format, protein class (EC 

number), subsystem number, which corresponds to KEGG pathway map (Kanehisa et al, 2016), 

SHARKhunt e-value (Pinney et al, 2005) and BRENDA hit (i.e., data evidence from BRENDA). 

Lower and upper bound flux constraints, as well as the reaction reversibility (i.e., true or false) 

for each reaction were also included in the model. A default value of ±500 mmol/gDW/hr was 

used in this model; however, some experimentally obtained flux values were used as upper and 

lower boundary constraints for their respective boundary reactions. None of the reactions in the 

Huthmacher model had specific reaction names. Instead, the reaction ID was also assigned as 

the reaction name. The reaction reversibility was also included in each reaction; however, lower 

and upper boundary constraints were not included in the model file. None of the reactions in 

this model had gene, enzyme or subsystem data. Apart from the reaction ID, name and 

reversibility, reactions in the Plata model also included the EC number, subsystem (pathway) 

data, reaction equation and gene association (also in the old Plasmodium gene ID format) when 

available. Flux values were set at default value of ±999999.0 mmol/gDW/hr. A majority of the 

Forth reactions (199, 80.6%), and all of those in the Huthmacher model are reversible, while a 

majority (589, 58.8%) of the reactions in the Plata model are irreversible.  

Common to all three models, most of the reactions were cytosolic while transport 

reactions accounted for the second most common. Unique to the Huthmacher model were the 

three compartments, the endoplasmic reticulum and the nucleus which housed 3.5% of all 

reactions in the model, and the Golgi which did not contain any metabolic reaction. Instead, 

metabolites were merely transported to and from this compartment. As for the Plata model, 
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there were an additional 113 (11.3%) reactions that facilitate transport of metabolites from the 

extracellular matrix out into the boundary. These reactions are shown as part of the reactions 

in the extracellular space in Figure 2.7. 

 

 
Figure 2.7 Number of reactions by compartment in the three models 
Shown here are the total counts of the reactions in their respective compartments as well as 
transport reactions in the three models. In light grey is the total number of transport reactions 
that bring metabolites from one intracellular compartment to another or to the extracellular 
space. Unique to the Plata model are reactions that transport metabolites from the extracellular 
space to the boundary (shown in dark grey).  

2.3.2 Standardising the ontological formats for reaction and species IDs 

The Forth model represented its species mainly using KEGG IDs, with the addition of four 

metabolites. Metabolite IDs DesatFA_c and FAC2H4unit_a were given to represent a 

desaturated fatty acid and C2H4 unit elongation of a fatty acid, respectively. These metabolites 

were used as part of a simplified fatty acid desaturation and elongation reactions. Haemozoin, 

both as a boundary and vacuole metabolite, were assigned the IDs Hemozoin_b and 

Hemozoin_v, respectively  (Forth, 2012). The Huthmacher model utilised the KEGG ID system, 

except for a total of 82 species, which were given unique identifiers to represent metabolites 

such as glycoproteins, generic mRNA, haem and haemozoin (Huthmacher et al, 2010). There 

were a few IDs (12) that follow the KEGG format; however they were not part of the KEGG 

compound database (e.g., C00660 representing D-glucose 1,6-bisphosphate). The Plata model 

utilised the BIGG ontology system in most of the species ID, except for five IDs which do not 

have a corresponding BIGG ID (e.g., haemoglobin, 5'-methylthioinosine) (Plata et al, 2010).  

A majority of the reactions (149, 60.3%) in the Forth model were represented using KEGG 

IDs except for 95 (38.5%) transport reactions and three (1.2%) non-transport reactions. 
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Transport reactions were given IDs composed of the metabolite name, the compartments 

between which the metabolite is transported, and a suffix of “s” signifying that it is a transport 

reaction. For example, the reaction ID “NADPH_mtoc_s” represents a reaction that transports 

NADPH between the mitochondria and the cytosol, while "O2_btoc_s" represents boundary 

reaction that transports molecular oxygen between the external compartment and the cytosol. 

Three non-transport reactions were given unique reaction IDs: “SFAE_a,” “OHGbDigV_v” and 

“MalariaBiomass_plus16maint_s” representing a simplified fatty acid elongation reaction, 

oxyhaemoglobin digestion and the biomass reaction, respectively. Similar to the Forth model, 

the Huthmacher model used KEGG IDs for a majority (802, 58.3%) of its reaction, while transport 

reactions (378, 27.5%) were given unique IDs (i.e., uppercase “T” followed by a number). There 

were 196 (14.2%) non-transport reactions with unique IDs that are not in KEGG. Most of the 

Plata reactions were in the BIGG format, except for four (0.4%).  

A total of 11 ontological formats for species IDs and nine for reaction IDs were included 

in the metanetx.org database files as summarised in Figure 2.8. The Chemical Entities of 

Biological Interest (ChEBI) ontology had the most number of species IDs  compared with all other 

formats (Degtyarenko et al, 2008), while Reactome (Croft et al, 2014) had the most number of 

reaction IDs. Analysis of the database files revealed that a single MNXref ID may correspond to 

more than one ID of a different format. In some cases, the duplication is a result of IDs 

corresponding to the same species/reaction, while in other cases, the IDs may refer to specific 

types or nomenclature formats of a given compound (Table 2.4). The occurrence of these 

duplications presented as a problem in terms of the accuracy of the conversion from one 

ontological format to another. However, for the purposes of identifying a suitable format for the 

final/combined model, the occurrence of these duplications was disregarded. Nevertheless, in 

the conversion of the models into the final format, manual double-checking of the reactions and 

species ID was done to guarantee accuracy of ID conversion to the final format. 
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Figure 2.8 Total number of species and reaction IDs by ontological system 
This figure shows a summary of the total number of species and reaction IDs by ontological 
system obtained from metanetx.org.  

 
Table 2.4 Examples of MNXref IDs corresponding to more than one ID in an alternative 
ontological format (e.g., KEGG) 

MNXref ID KEGG ID Compound name/s 

MNXM1004 C02591 Sucrose 6'-phosphate; Sucrose 6F-phosphate; Sucrose 6'-
phosphate 

MNXM1004 C16688 Sucrose 6-phosphate; 6-O-Phosphonosucrose; Sucrose 6-
phosphate; beta-D-Fructofuranosyl-6-O-phosphono-alpha-D-
glucopyranoside; 6-Phosphosucrose 

MNXM101154 C07514 Amphetamine; Amfetamin (TN); Amfetamine (INN) 

MNXM101154 D07445 Amphetamine; Amfetamin (TN); Amfetamine (INN) 

 
 

The calculation of the mapping ratio (Equation 2.1) facilitated the identification of a 

suitable ontological format that has the most number of IDs that correspond to the original IDs 

in the three models (Figure 2.9). The SEED format had the highest number of IDs corresponding 

to the original IDs in the models. The SEED is an annotation environment that allows experts 

from a variety of fields to provide information on subsystems or protein families within a certain 

genome (Overbeek et al, 2005). This system utilises the Model SEED biochemistry database that 

contains non-redundant species and reactions from the KEGG database in addition to curated 

species and reactions from a number of published metabolic models (Aziz et al, 2012). IDs in the 

SEED format starts with either “cmp” (for compounds or species) or “rxn” (for reactions) 
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followed by 5 numeric characters. The consistency of the number of characters in the ID, and 

the use of simple alphanumeric characters allow easier search and evaluation of specific IDs 

within a model file. This is in contrast to ontological formats that use IDs with varying character 

lengths such as BIGG (Schellenberger et al, 2010), BioPath (Reitz et al, 2004), BRENDA (Placzek 

et al, 2017), ChEBI (Degtyarenko et al, 2008) and MetaCyc (Caspi et al, 2014), where it is possible 

that the specific string of characters of short IDs can be found within other IDs (e.g., “amine” vs. 

“5-prime-phospho-beta-d-ribosylamine”). Furthermore, the use of non-alphanumeric 

characters such as ( _ ), ( - ) and ( + ) in BIGG, BioPath and MetaCyc can be a source of error or 

confusion during encoding (e.g., “asp__L”, “Acyl(n+3)-CoA”, “+-bornyl-diphosphate”), and some 

use characters that are not allowed in defining an ID in SBML (Chaouiya et al, 2015). 

 

 

Figure 2.9 Species and reaction ID mapping ratios by ontological system 
Mapping ratios were calculated as a means to represent the success in conversion of the original 
species and reaction IDs in the original models to a given ontological system. Shown here are 
the cumulative mapping ratios covering all three models. Compared with the other ontological 
systems, the largest ratio of the original IDs in the three models were converted to IDs under 
the SEED ontological system (Aziz et al, 2012). 

Conversion of species and reaction ID initially involved automated conversion using the 

metanetx species and reaction database file done in Python. In cases where the original ID did 

not match any ID, these were manually evaluated against KEGG (Kanehisa et al, 2016), BIGG 

(Schellenberger et al, 2010) and SEED (Aziz et al, 2012) databases to ensure accurate conversion. 
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It was noted that some models used multiple species IDs for the same species while others 

utilised multiple species to represent stereoisomers, as in the case of - and -glucose, and - 

and -glucose 6-phosphate in the Forth model. These species were standardised for ease in the 

comparison of the three models. Table 2.5 shows the original IDs and names of species that were 

standardised alongside the revised IDs in SEED format and the standardised names.  

 



 
 

 
 

5
6 

Table 2.5 Standardised species IDs  
Old ID Original name in model SEED ID Standardised name 
Forth model 
C00267 alpha-D-Glucose cpd00027 D-Glucose 
C00221 beta-D-Glucose cpd00027 D-Glucose 
C00668 alpha-D-Glucose 6-phosphate cpd00079 D-Glucose 6-phosphate 
C01172 beta-D-Glucose 6-phosphate cpd00079 D-Glucose 6-phosphate 
C01353 Carbonic acid cpd00242 HCO3- 
C00288 HCO3- cpd00242 HCO3- 
Huthmacher model 
U00039 2-methyl-1-hydroxybutylthiamine diphosphate cpd14702 2-methyl-1-hydroxybutylthiamine diphosphate 
C15978 2-Methyl-1-hydroxybutyl-ThPP cpd14702 2-methyl-1-hydroxybutylthiamine diphosphate 
U00038 3-methyl-1-hydroxybutylthiamine diphosphate cpd14698 3-Methyl-1-hydroxybutyl-ThPP 
C15974 3-Methyl-1-hydroxybutyl-ThPP cpd14698 3-Methyl-1-hydroxybutyl-ThPP 
U00032 Cytochrome c oxidized cpd00109 Ferricytochrome c 
C00125 Ferricytochrome c cpd00109 Ferricytochrome c 
C00126 Ferrocytochrome c cpd00110 Ferrocytochrome c 
C00524 Cytochrome c cpd00110 Ferrocytochrome c 
C00080 H+ cpd00067 H+ 
U00013 H+-pumped cpd00067 H+ 
U00028 mRNA cpd11462 mRNA 
U00019 mRNA cpd11462 mRNA 
U00034 mRNA cpd11462 mRNA 
C04501 N-Acetyl-alpha-D-glucosamine 1-phosphate cpd02611 N-Acetyl-D-glucosamine 1-phosphate 
C04256 N-Acetyl-D-glucosamine 1-phosphate cpd02611 N-Acetyl-D-glucosamine 1-phosphate 
C15812 C15812 ([Enzyme]-S-sulfanylcysteine; Thiamine biosynthesis intermediate 3) cpd14548 Thiamine biosynthesis intermediate 3 
U00052 protein-S-sulfanylcysteine cpd14548 Thiamine biosynthesis intermediate 3 
Plata model 
dolp Dolichol_phosphate_C15H27O4P cpd11619 Dolichyl phosphate 
dolp_L Dolichol phosphate cpd11619 Dolichyl phosphate 
dolmanp Dolichyl_phosphate_D_mannose_C21H38O9P cpd12407 Dolichyl phosphate D-mannose 
dolmanp_L Dolichyl phosphate D-mannose cpd12407 Dolichyl phosphate D-mannose 
hcys_L L_Homocysteine_C4H9NO2S cpd00135 L-Homocysteine 
hcys_l Homocysteine cpd00135 L-Homocysteine 
pail phosphatidylinositol cpd11822 Phosphatidyl-1D-myo-inositol 
ptd1ino phosphatidyl_1D_myo_inositol_C4140H7644O1300P100 cpd11822 Phosphatidyl-1D-myo-inositol 
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Most of the species IDs in the Plata model were converted to SEED format, with only 1.5% 

of the IDs being assigned modified MNXref IDs. On the other hand, two (0.7%) and 50 (3.1%) of 

the species IDs in the Forth and Huthmacher models, respectively, were not converted to either 

SEED or revised MNXref format (Figure 2.10). Close to 60% of reaction IDs in the three models 

were converted to either SEED or revised MNXref format, while the rest of those that were not 

converted were transport or boundary reactions. There was difficulty in converting some 

reactions, especially in the absence of additional information (e.g., reaction name, gene and 

enzyme data) as in the case of the Huthmacher model. In some cases, the corresponding EC 

number was used as the reaction ID as in the Plata model (e.g., R_1_7_1_1_mt, R_1_7_1_3_mt 

to represent nitrate reductase:NADH and nitrate reductase:NADPH reactions, respectively), 

which were manually checked against the KEGG database (to retrieve the KEGG ID) before 

converting to their corresponding SEED IDs. 

 

 
Figure 2.10 Conversion of species and reaction IDs to SEED/modified MNXref ID format 
The percentages of species and reaction IDs in the original models that have been converted to 
either SEED or modified MNXref IDs are presented here. A large majority of the species in the 
three models were successfully converted to SEED or modified MNXref ID format, while only 
close to 60% of the reaction IDs were converted. Most of the transport reaction IDs were not 
converted to the SEED format. 

2.3.3 Comparing the three models 

After standardising the species names and IDs, duplicate species and reactions were 

removed giving the total number of unique species and reactions shown in Table 2.6. Conversion 

of the species and reaction IDs to SEED format made it possible to identify common and unique 

species and reactions between the three models. Since there were reaction IDs that were not 

converted to SEED format, comparison of reactions required inspecting the reaction equations 
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(with species IDs in SEED format) rather than just the reaction IDs. Also, it was important to take 

into consideration the presence or absence of proton/s placed on either side of the reaction to 

balance the equation (Bernard et al, 2014). Take for example glucose phosphorylation by 

hexokinase as represented in the three models. Although neither of the Forth and the 

Huthmacher models included chemical formulas for their metabolites, it can be assumed based 

on the reaction equation of glucose phosphorylation in these two models that the ATP, glucose 

6-phosphate and ADP participating in the said reaction are protonated (Equation 2.5). The 

reaction equation and chemical formulas shown in Equation 2.5 were obtained from KEGG 

(Kanehisa et al, 2016). This is in contrast with the same reaction represented in the Plata model 

where unprotonated forms of ATP, glucose 6-phosphate and ADP were included in the reaction 

(Equation 2.6), consistent with the reactions and chemical formulas available in BioCyc (Caspi et 

al, 2014). Marked in blue in the equations below are the hydrogen atoms in the chemical formula 

that include those that protonate the phosphates in the corresponding metabolites, while 

marked in red are the hydrogen atoms in the chemical formulas of the unprotonated form. 

 

Table 2.6 Total number of species and reactions before and after species standardisation 

 Before species standardisation After species standardisation 

Model Species Reactions Species Reactions 

Forth 267 247 263 244 

Huthmacher 1673 1376 1609 1374 

Plata 1025 1001 914 969 

 
 
C6H12O6 + C10H16N5O13P3  C6H13O9P + C10H15N5O10P2   

Equation 2.5 
Glucose  ATP  Glucose 6-phosphate  ADP   

          

C6H12O6 + C10H12N5O13P3  C6H11O9P + C10H12N5O10P2 + H 
Equation 2.6 

Glucose  ATP  Glucose 6-phosphate  ADP  H+ 
  

There are 198 species that are in common between the three models (Figure 2.11). 

Nucleotides, nucleosides, bases and intermediate metabolites involved in nucleotide 

metabolism comprised 23.2% of these common species, while 22.2% of the species were amino 

acids and their derivatives. Small molecules such as water, oxygen and carbon dioxide accounted 

for 13.1% of common species, while cofactors such as coenzyme A, nicotinamides and folates 

comprised 12.1%. Unfortunately, comparison of chemical formulas could not be done as these 

were not included in both the Forth and Huthmacher models. There were only 99 reactions in 

common between the three models. Transferases and oxidoreductases were the most common 

enzyme classifications among the reactions common to all three models following a similar 

pattern as in other models such as the yeast (Förster et al, 2003) and the Leishmania major 
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(Chavali et al, 2008). Most of the common species and reactions were located in the cytosol. 

More than 60% of the common reactions were involved in nucleotide and carbohydrate 

metabolism, representing core reactions such as purine and pyrimidine metabolism, as well as 

glycolysis and the pentose phosphate pathway.  

Of the 99 common reactions, 26 (26.3%) were those that were represented with different 

stoichiometric equations in the original models as a result of utilising protonated or 

unprotonated metabolites. Between the Forth and the Huthmacher model, only two common 

reactions had dissimilar equations. This was expected as most of the reactions in the two models 

were obtained from the KEGG database. The difference in the equations of these two identified 

reactions were because of manual reaction equation balancing done in the Forth model (Forth, 

2012). On the other hand, 28 common reactions between the Plata and the Forth models, and 

98 common reactions between the Plata and the Huthmacher models had dissimilar reaction 

equations due to the use of different metabolite chemical formulas. Again, this was expected as 

the Plata model utilised data not just from KEGG but also from PlasmoCyc (Plata et al, 2010). 

Given the considerable number of common reactions with dissimilar reaction equations, it was 

important to take this into consideration when comparing reactions. Otherwise, redundant 

reactions would have been incorporated into the combined model.  
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Figure 2.11 Common species and reactions between the three models 
(A) A Venn diagram of common species between the three models; (B) Distribution of common 
species by cellular compartment; (C) Venn diagram of common reactions between the three 
models, and common reactions grouped by (D) compartment (including intracellular transport 
reactions, and boundary reactions that transport external metabolites), (E) enzyme commission 
(EC) classification and (F) subsystem involvement. 
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2.3.4 Identifying unique reactions from source models 

As enumerated in the methodology section, three criteria were used to identify reactions 

from the source models (i.e., the Huthmacher and Plata models) to be added to the minimal 

model (i.e., the Forth model). In order to satisfy the first criterion, the reaction from the source 

model should have gene association and enzyme data. Available data on a total of 5,777 P. 

falciparum 3D7 genes were downloaded from PlasmoDB (Aurrecoechea et al, 2009). All gene 

data included updated gene IDs, gene names and lists of old gene IDs, while 1,321 of these genes 

that are associated with metabolic reactions had their corresponding EC numbers. In the case of 

the reactions in the Plata model, the gene IDs (in the old format) were compared against 

PlasmoDB data. A total of 616 reactions (61.5%) had gene association data that matched 

PlasmoDB data, while 41 reactions (4.1%) had gene IDs not in PlasmoDB. The rest of the 

reactions were boundary and transport reactions that did not have gene association data.  

Since the Huthmacher model did not have any gene or enzyme data, reaction IDs in KEGG 

format were looked up in the KEGG database (Kanehisa et al, 2016) to obtain the corresponding 

EC number. For reaction IDs that were not in KEGG format, the reaction equation was used to 

obtain the corresponding EC number. There were 736 reactions that had associated EC numbers 

from KEGG. The EC numbers of these reactions were compared against those in the PlasmoDB 

database, yielding a total of 517 reactions with gene association data. These 517 Huthmacher 

reactions and 616 Plata reactions were then evaluated on the basis of the second and the third 

criteria, in an iterative process as shown in simple example in Figure 2.3 (Methodology section). 

At the end of the iterations, 201 reactions involving 199 species and 162 reactions involving 245 

species were collected from the Huthmacher and Plata models, respectively, giving an expanded 

model with 607 reactions and 707 species.  

The use of the three criteria in selecting reactions to be added to the minimal model has 

an important drawback. Since a majority of intracellular transport reactions from the source 

models did not have any gene association data, these were not selected for inclusion in the 

minimal model. As a result, intracellular transport reactions (in the source models) that link 

reactions in existing compartments in the minimal model to other compartments that are solely 

present in the source models, specifically in the Huthmacher model (i.e., nucleus, endoplasmic 

reticulum) were not added. This in turn limited the reactions into the original compartments in 

the minimal model and the expanded model retained the same compartments that were 

present in the minimal model. It is important to note that a majority of the nuclear reactions 

(involved in RNA synthesis) were not present in KEGG or MPMP and these were not included in 

the final model. On the other hand, many of the reactions in the endoplasmic reticulum such as 
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those involved in dolichol and aminosugar metabolism were also present in the Plata model, 

which were eventually added to the expanded model (as cytosolic reactions). 

2.3.5 Correcting reaction direction and dead-ends 

Out of the 1,321 P. falciparum 3D7 genes associated with metabolic reactions that are 

available from PlasmoDB (Aurrecoechea et al, 2009), 428 had metabolic pathway data, which 

included the gene name, product description (e.g., enzyme name) and a table of associated 

reactions as shown in the example in Figure 2.12. In this example, reactions that are associated 

with the gene PF3D7_0624000 (hexokinase) were enumerated in table form. The table included 

the (1) reaction ID, (2) one representative substrate that participates in the reaction, (3) EC 

number, (4) one representative product that participates in the reaction, (5) pathway name and 

ID, and (6) direction. Note that the reaction, species and pathway IDs are in KEGG format.  

 

 
Figure 2.12 An example of metabolic pathway data from PlasmoDB 
Data on metabolic pathway related to P. falciparum 3D7 genes were downloaded from 
PlasmoDB. Genes with available data are provided with the information shown in this figure 
such as EC numbers, reaction reversibility and pathway involvement.  

Model reactions with gene ID and EC numbers were then compared against the PlasmoDB 

metabolic pathway data. In some cases, the comparison was straightforward especially when a 

given PlasmoDB gene is only associated with a single reaction. However, since a majority of the 

genes with metabolic pathway data from PlasmoDB had two or more associated reactions (268 

out of 428, 62.6%), a significant number of reactions in the model had to be evaluated manually. 

These included model reactions that matched with multiple reaction directions as well as those 

with conflicting EC number information. Reaction reversibility was amended for 60 (9.8%) of the 

model reactions (i.e., change from reversible to irreversible or vice versa), while nine (1.5%) 

Gene ID: PF3D7_0624000 
Gene Name or Symbol: HK 
Product Description: hexokinase (HK) 
 
Table: Metabolic Pathway Reactions 

Reaction Substrates EC number Products Pathway name Direction 

R01786 C00267 2.7.1.1 C00668 Glycolysis / Gluconeogenesis (ec00010) Reversible 

R01786 C00267 2.7.1.1 C00668 Glycolysis / Gluconeogenesis (ec00010) Irreversible 

R01600 C00221 2.7.1.1 C01172 Glycolysis / Gluconeogenesis (ec00010) Irreversible 

R01786 C00267 2.7.1.1 C00668 Glycolysis / Gluconeogenesis (ec00010) Reversible 

R01786 C00267 2.7.1.1 C00668 Glycolysis / Gluconeogenesis (ec00010) Irreversible 

R01786 C00267 2.7.1.1 C00668 Galactose metabolism (ec00052) Irreversible 

R01786 C00267 2.7.1.1 C00668 Galactose metabolism (ec00052) Reversible 

R01786 C00267 2.7.1.1 C00668 Galactose metabolism (ec00052) Reversible 

R01786 C00267 2.7.1.1 C00668 Galactose metabolism (ec00052) Irreversible 

R01326 C00159 2.7.1.1 C00275 Fructose and mannose metabolism (ec00051) Irreversible 

R00867 C00095 2.7.1.1 C05345 Fructose and mannose metabolism (ec00051) Irreversible 

R01326 C00159 2.7.1.1 C00275 Fructose and mannose metabolism (ec00051) Irreversible 
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irreversible reactions required reversal of the reactants and products. Among those that 

required manual evaluation and correction, 39 reactions (6.4%) had multiple associated 

reactions while 154 (25.4%) had conflicting EC numbers. The rest of the reactions did not require 

any correction because either they do not have gene/reaction data or the reaction attributes 

matched those in PlasmoDB.  

Using Cytoscape, 241 dead-end metabolites, involving 171 reactions were identified in 

the expanded model. Gaps were filled using data from KEGG (Kanehisa et al, 2016), BRENDA 

(Placzek et al, 2017), PlasmoDB (Aurrecoechea et al, 2009) and MPMP (Ginsburg & Abdel-

Haleem, 2016). Reactions involving metabolites that are not present in MPMP were removed 

from the model. After gap filling, the model was re-evaluated for dead-end metabolites, 

revealing 55 dead-end metabolites. Gap filling was again done using data from the databases 

mentioned above. For dead metabolites that also appeared as dead-ends in MPMP, exchange 

reactions were added to bring the metabolite in/out of a given compartment. A total of 11 

boundary reactions were included in the model to remove dead-end metabolites, while seven 

intracellular transport reactions were added to move dead-end metabolites from one 

compartment to another. Interestingly, cytidine monophosphate (CMP), both in the cytosol and 

the apicoplast, was identified as a dead-end metabolite even though it was being produced and 

consumed by different reactions. After careful assessment, it was identified that CMP was being 

produced by multiple irreversible reactions in the cytosol and by a single reaction in the 

apicoplast. Furthermore, the only reaction that consumes CMP was the reversible intracellular 

transport reaction that shuttles CMP between the cytosol and the apicoplast. These reactions 

producing CMP as well as the intracellular transport reaction that bring CMP between the 

cytoplasm and the apicoplast are shown in red in Figure 2.13. Thus, CMP was considered as a 

dead-end metabolite. In order to correct this, an additional reaction, CMP phosphohydrolase 

(rxn00363_c, EC number 3.1.3.5), which hydrolyses CMP to cytidine and orthophosphate, was 

added to the model. Although the Plasmodium falciparum 3D7 has a gene that is associated with 

a nucleotide phosphorylase (PF3D7_1206100, EC number 3.1.3.5), the enzyme is specific to IMP 

as a substrate (Aurrecoechea et al, 2009). Therefore CMP phosphohydrolase was added into the 

model without any gene association data. An additional boundary transport reaction was added 

to the model to transport cytidine via the PfENT1 nucleoside transporter (PF3D7_1347200). 

Reactions added to address the issue of CMP as a dead-end metabolite are shown in yellow in 

Figure 2.13. Table 2.7 shows the list of reactions that were added to address dead-end 

metabolites in the model.  
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Figure 2.13 Diagram showing CMP as a dead-end metabolite 
CMP in the model is produced by a number of irreversible reactions (in red) in the cytoplasm 
and apicoplast, while it is only consumed by a single reaction, which is the transport reaction 
that brings CMP between the cytosol and the apicoplast. This makes CMP a dead-end 
metabolite. This was addressed by the addition of the two reactions (in yellow). 

Table 2.7 Reactions added into the model to correct dead-end metabolites after gap filling 

Reaction ID Reaction name Reversibility 

Biliverdin_ctob_s Biliverdin transfer: cytosol to boundary False 

Cadaverine_ctob_s Cadaverine transfer: cytosol to boundary False 

Cardiolipin_ctob_s Cardiolipin transfer: cytosol to boundary False 

CO_ctob_s CO transfer: cytosol to boundary False 

CTP_ctoa_s CTP transfer: cytosol to apicoplast False 

Cytidine_ctob_s Cytidine transfer: cytosol to boundary True 

Diphosphate_atoc_s Diphosphate transfer: apicoplast to cytosol True 

Diphosphate_mtoc_s Diphosphate transfer: mitochondria to cytosol True 

Fe2_ctom_s Fe2+ transfer: cytosol to mitochondria True 

Glucosylceramide_ctob_s Glucosylceramide transfer: cytosol to boundary False 

Glyceraldehyde_ctob_s Glyceraldehyde transfer: cytosol to boundary False 

NH3_atoc_s NH3 transfer: apicoplast to cytosol False 

NH3_mtoc_s NH3 transfer: mitochondria to cytosol True 

Oxygen_mtoc_s Oxygen transfer: mitochondria to cytosol True 

Phenylpyruvate_ctob_s Phenylpyruvate transfer: cytosol to boundary False 

Propane_1_2_diol_ctob_s Propane_1_2_diol transfer: cytosol to boundary False 

rxn00363_c CMP phosphohydrolase True 

Saccharopine_ctob_s Saccharopine transfer: cytosol to boundary False 

Spermine_ctob_s Spermine transfer: cytosol to boundary False 

 

Reactions in the resulting model were counter-checked against the reactions in a number 

of pathways in MPMP (Ginsburg & Abdel-Haleem, 2016). A total of 35 pathways (Carbohydrates: 

5; Nucleic acids: 2; Amino acids: 9; Lipids: 6; Co-factors: 10; TCA cycle; Apicoplast transport 

reactions: 1; Mitochondrial transport reactions: 1; and Plasma membrane transport reactions: 

1) were reviewed. In the process, reaction reversibility was corrected as needed, gene IDs were 
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updated, duplicate reactions (usually those not in their proper compartments) were deleted, 

necessary transport reactions were added and pathway information were added as additional 

attributes for each reaction. 

2.3.6 Deriving the biomass equation 

Previous experimental data on the proportions of protein, DNA and RNA in the P. 

falciparum 3D7 late schizont biomass were obtained from the work of Thomas Forth (Forth, 

2012), which were 48.0%, 6.7% and 5.9%, respectively. As in the original Forth model, the 

remaining percentage was then broken down based on a 27:15 carbohydrate to lipid ratio 

(Chavali et al, 2008), giving calculated proportions of 25.3% and 14.1%, respectively. These 

macromolecules (i.e., protein, DNA, RNA, carbohydrates and lipids) were further subdivided into 

individual subcomponents (e.g., amino acids for protein, nucleotides for DNA/RNA). The 

percentages of these individual subcomponents were based on published data on P. falciparum 

(Chanda et al, 2005; Gardner et al, 2002; Sanz et al, 2013; Botté et al, 2013). Using these 

published percentages, the weighted average molecular mass (𝑀𝑊 in Equation 1.1) of the 

subcomponents representing the macromolecular component was also calculated. Table 2.8 

shows the calculated weighted average molecular mass of the subcomponents of the 

macromolecules used to calculate the stoichiometric coefficients of the reactants and products 

in the biomass reaction equation. Figure 2.14 shows the percentages of the macromolecules 

and their subcomponents used in the derivation of the biomass equation. Table 2.9 shows the 

list of reactants and products in the biomass reaction. Note that negative stoichiometric 

coefficients were given to reactants since they are being consumed in the reaction, while 

products were given positive coefficients.   

 

Table 2.8 Calculated weighted average molecular mass of the subcomponents representing 
the macromolecular components in the biomass reaction 

Macromolecule Subcomponents 𝑴𝑾 (gram/mol) 

Protein Amino acids 117.48 

DNA Deoxynucleotides 486.77 

RNA Nucleotides 497.36 

Carbohydrates Nucleotide sugars 602.35 

Lipids Fatty acids 276.79 
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Figure 2.14 Percentages of the molecular components in the P. falciparum biomass  
The proportions of macromolecules (centre pie chart) were taken from experimentally 
measured values by Forth (2012) for DNA, RNA and proteins while the rest were divided 
between carbohydrates and fatty acids based on data from L. major (Chavali et al, 2008). 
Subcomponents of the macromolecules (shown in stacked columns) were obtained from 
published data on P. falciparum (Chanda et al, 2005; Gardner et al, 2002; Sanz et al, 2013; Botté 
et al, 2013). 
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Table 2.9 Biomass reaction metabolites with their corresponding species ID, chemical 
formula and stoichiometric coefficient 

Name  ID Formula Coefficient 

L-Alanine cpd00035_c C3H7NO2 -0.099 

L-Arginine cpd00051_c C6H14N4O2 -0.12 

L-Asparagine cpd00132_c C4H8N2O3 -0.503 

L-Aspartate cpd00041_c C4H7NO4 -0.248 

L-Cysteine cpd00084_c C3H7NO2S -0.074 

L-Glutamate cpd00023_c C5H9NO4 -0.289 

L-Glutamine cpd00053_c C5H10N2O3 -0.116 

Glycine cpd00033_c C2H5NO2 -0.128 

L-Histidine cpd00119_c C6H9N3O2 -0.091 

L-Isoleucine cpd00322_c C6H13NO2 -0.384 

L-Leucine cpd00107_c C6H13NO2 -0.334 

L-Lysine cpd00039_c C6H14N2O2 -0.479 

L-Methionine cpd00060_c C5H11NO2S -0.091 

L-Phenylalanine cpd00066_c C9H11NO2 -0.19 

L-Proline cpd00129_c C5H9NO2 -0.091 

L-Serine cpd00054_c C3H7NO3 -0.26 

L-Threonine cpd00161_c C4H9NO3 -0.173 

L-Tryptophan cpd00065_c C11H12N2O2 -0.021 

L-Tyrosine cpd00069_c C9H11NO3 -0.227 

L-Valine cpd00156_c C5H11NO2 -0.169 

dATP cpd00115_c C10H16N5O12P3 -0.055 

dCTP cpd00356_c C9H16N3O13P3 -0.013 

dGTP cpd00241_c C10H16N5O13P3 -0.013 

dTTP cpd00357_c C10H17N2O14P3 -0.055 

ATP cpd00002_c C10H16N5O13P3 -4.178 

CTP cpd00052_c C9H16N3O14P3 -0.013 

GTP cpd00038_c C10H16N5O14P3 -8.198 

UTP cpd00062_c C9H15N2O15P3 -0.046 

Elongation unit FAC2H4unit_c C2H4 -0.003 

Fatty acid cpd00049_c CHO2R -0.451 

Desaturated fatty acid DesatFA_c CO2R -0.055 

GDP-L-fucose cpd00272_c C16H25N5O15P2 -0.078 

GDP-mannose cpd00083_c C16H25N5O16P2 -0.342 

H2O cpd00001_c H2O -12.677 

Malaria biomass biomass_c  1 

GDP cpd00031_c C10H15N5O11P2 8.591 

Orthophosphate cpd00009_c O4P 12.257 

AMP cpd00018_c C10H14N5O7P 4.086 

H+ cpd00067_c H 36.771 

 

2.3.7 Final model 

The name of the final model (iFT342) was based on the naming convention where the “i" 

indicates that it is an in silico model, followed by the first author’s initials and the total number 

of genes represented in the model (Reed et al, 2003). The iFT342 has a total of 342 genes, 551 
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reactions and 560 metabolites. The model includes five compartments: the apicoplast, cytosol, 

mitochondria, vacuole and the external compartment. There are 106 boundary reactions that 

transport metabolites to and from the extracellular space, and 106 intracellular transport 

reactions that bring metabolites into the different compartments. Compared with the minimal 

model, iTF143 (Forth, 2012), the addition of reactions resulted in a notable increase in the total 

number of genes, reactions and metabolites in the final model as shown in Table 2.10. 

 

Table 2.10 Comparison of metabolic model characteristics between the minimal model 
(iTF143) and the final model (iFT342) 

 iTF143 iFT342 

Genes 143 342 

Reactions 247 551 

     Gene associated (intracellular) 141 324 

     Gene associated (transport) 0 15 

     Gene associated (exchange) 0 32 

     Non-gene associated (intracellular) 10 14 

     Non-gene associated (transport) 52 91 

     Non-gene associated (exchange)   

          Boundary reactions 43 74 

          Biomass reaction 1 1 

Metabolites 267 560 

Pathways 19 40 

Compartments 5 5 
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Figure 2.15 Visual representation of the minimal model (iTF143) and the final model (iFT342) 
This figure provides a visual comparison between the minimal model and the final model. Shown 
in various colours are the species and reactions in accordance with their compartmental 
location. Transport reactions (which include boundary and intracellular transport reactions) are 
shown in grey while the objective function (i.e., the biomass reaction) is shown in red. Model 
networks were visualised using Gephi open source software (Bastian et al, 2009). 

There are 106 boundary metabolites and 454 intracellular metabolites. All 560 

metabolites in the model have chemical formulas, and 530 have additional metabolite 

attributes, i.e., PubChem ID (Bolton et al, 2008), InChI keys (Heller & McNaught, 2009) and 

Canonical SMILES (McNamara & Stearne, 2010). These additional attributes allow accurate 

identification of metabolites, and will contribute to the ease in comparing with other models. 

These characteristics are absent in the previous models. With the addition of chemical formulas, 

reaction stoichiometric balance was checked and corrected. All internal reactions in the model 

are mass balanced.  
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About 70% of the reactions in the model are gene associated. Most of the non-gene 

associated reactions are transport reactions, while only 2.5% are intracellular reactions. Most of 

the non-gene associated intracellular reactions were added to complete important pathways 

(e.g., shikimate biosynthesis, ubiquinone metabolism, inositol phosphate metabolism). Cytosolic 

reactions and transport reactions account for a vast majority of the reactions in the model, while 

reactions in the vacuole, which mostly involve haemoglobin metabolism, account for less than 

1% of all the reactions. Similar to the Plata model (Plata et al, 2010), as well as the yeast (Förster 

et al, 2003) and the Leishmania major (Chavali et al, 2008) models, transferases are the most 

common enzyme class in the iFT342. These were followed by oxidoreductases, similar to the 

yeast and L. major models, but not the Plata model, where the second most common are 

hydrolases. Over 26% of the reactions in the model are involved in lipid metabolism, of which, 

more than 50% participate in fatty acid synthesis and utilisation of phospholipids. Close to 10% 

of the reactions in the model are involved in carbohydrate metabolism while 13% are involved 

in amino acid metabolism and haemoglobin digestion. Figure 2.16 shows the distribution of 

reactions based on the gene association, compartment, EC classification and subsystem 

involvement. 
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Figure 2.16 Model characteristics of iFT342 
Reactions in the iFT342 model are shown here grouped by (A) gene association, (B) 
compartment, (C) enzyme commission classification and (D) subsystem involvement. 

Although the final model size is not close to those of previously published malaria models, 

the number of dead reactions was minimised allowing more live reactions that can participate 

in model simulations. This gave our model a total number of live reactions that is comparable 

with the other malaria models. As shown in Table 2.11, 87.5% (482 out of the 551) of the 

reactions in the final model are live reactions. This percentage of live reactions is close to that 

in the minimal model, and is higher than in many of the highly curated metabolic models. The 

low percentage of dead reactions can be attributed to the absence of dead-end metabolites in 

the model, as these metabolites can block the flux in pathways that they are involved 

(Latendresse et al, 2012). The number of metabolites, reactions, dead-end metabolites and live 

reactions in the model and other published metabolic models are summarised in Table 2.11. 



 
 

 
 

7
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Table 2.11 Number and percentage of dead-end metabolites and live reactions in a number of highly-curated GSMs determined using MetExplore presented 
in decreasing percentages of live reactions 

Model name Organism Metabolites Reactions Dead-end metabolites Live reactions Reference 

iFT342 P. falciparum 560 551 0 0.0% 482 87.5%  

iTF143 P. falciparum 267 247 13 4.9% 211 85.4% (Forth, 2012) 

Recon2 H. sapiens 5063 7440 1178 23.3% 5317 71.5% (Thiele et al, 2013) 

iAF1260 E. coli 1972 2382 118 6.0% 1532 64.3% (Feist et al, 2010) 

iAC560 L. major 1165 1112 259 22.2% 714 64.2% (Chavali et al, 2008) 

iMM904 S. cerevisiae 1392 1577 198 14.2% 885 56.1% (Herrgård et al, 2008) 

PlasmoNet P. falciparum 1623 1376 600 37.0% 534 38.8% (Huthmacher et al, 2010) 

iTH366 P. falciparum 915 1001 357 39.0% 354 35.4% (Plata et al, 2010) 
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2.4 Discussion 

At the beginning, there was difficulty reconciling the three models due to the difference 

in ID formats utilised. A similar issue was encountered during the development of a consensus 

model of Saccharomyces cerevisiae from two previously and independently reconstructed 

models (Herrgård et al, 2008). It was necessary for the team to initially annotate the metabolites 

in the two models with more specific identifiers to make model comparison possible. They 

compared the metabolites against data from ChEBI, KEGG and PubChem to collect InChI keys 

and SMILES identifiers, which were used for a more accurate comparison. Acknowledging this 

problem in reconciling different identifiers, there have been attempts to map different 

metabolite and reaction IDs of different ontological formats to aid in genome scale metabolic 

reconstruction (Lang et al, 2011; Kumar et al, 2012; Bernard et al, 2014). MNXref is one such 

attempt to unify different ontological formats by comparing the calculated structure of 

metabolites at pH 7.3. For metabolites without a given structure, exact compound names were 

used. As for reactions, they were compared based on the participating metabolites, but not 

taking into consideration the stoichiometric coefficient and the presence of water and proton 

(Bernard et al, 2014).  

In the comparison of the three malaria models used in this project, MNXref data was used 

to reconcile metabolite names and IDs; however this was not utilised for the comparison of 

reactions. A similar approach to the generation of MNXref unified data was applied to the 

comparison of reactions in the three models to ensure accuracy. Comparison of reactions was 

based on the metabolites participating in the reactions. Nevertheless, reaction IDs (in SEED 

format) were assigned to the appropriate reaction using MNXref data. To avoid future issues 

regarding the exact and accurate identification of model species, it has been recommended that 

additional identifiers be included in describing metabolites (Ravikrishnan & Raman, 2015; 

Herrgård et al, 2008). Thus it was ensured that the final model had properly annotated reactions 

(i.e., updated gene IDs and EC numbers) and species (i.e., chemical formula, SMILES, InChI keys 

and PubChem IDs) to facilitate ease when comparing with other models.  

To ensure model accuracy, reactions from the source models were compared against 

several highly curated and reliable databases. The PlasmoDB database was highly utilised in 

evaluating and correcting the annotations in the model. The database receives regular updates 

as well as inputs through constant communication with other databases such as GeneDB 

(Aurrecoechea et al, 2009; Logan-Klumpler et al, 2012). Model annotations were also highly 

dependent on the highly and manually curated MPMP database (Ginsburg & Abdel-Haleem, 

2016; Ginsburg, 2006) which was also utilised in the development of the other malaria metabolic 
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models (Forth, 2012; Huthmacher et al, 2010; Plata et al, 2010). Use of accurate data is crucial 

to guarantee that the gene-protein-reaction relationships represented in the reaction 

annotations are correct. This in turn will help ensure that the data obtained from model 

simulations (e.g., gene knockouts) will be as accurate as possible. 

Although initial model development was done in an automated fashion, manual analysis 

and annotations remained as the main bulk of the work to ensure model accuracy. Incorporating 

standardised molecular formulas for metabolites, although not mandatory in SBML level 3 

version 1 (Chaouiya et al, 2015), was instrumental in making sure that the reactions do not 

violate the law of conservation of mass. This metabolite attribute should be made mandatory 

for metabolic models. A recent appraisal of 59 genome scale metabolic models revealed that 

many of these models did not include molecular formulas in the metabolic attributes, making it 

impossible to determine reaction mass balance (Ravikrishnan & Raman, 2015). All internal 

reactions in the final model were mass balanced making the model well suitable for subsequent 

analysis and hypotheses generation.  

Model quality is sometimes assessed in terms of its completeness and 

comprehensiveness of gene coverage. However, the total number of genes or reactions 

represented in the model does not normally correspond to high model quality (Monk et al, 

2014). The same study mentioned above reported that only 7% of the evaluated models had live 

reactions greater that 80% (Ravikrishnan & Raman, 2015). In the generation of the final model 

in this study, extensive manual curation was also necessary to correct dead-end metabolites 

which contributed to the generation of a model with a high percentage of live reactions (87.5%), 

which is an important measure of model quality. Despite having a total number of reactions and 

genes less than those in the Huthmacher and the Plata model, correcting dead reactions resulted 

in a total number of live reactions only 52 reactions fewer compared with the Huthmacher 

model, and 128 reactions more compared with the Plata model. In terms of percentage of live 

reactions, these two models only had 38.8% and 35.4%, respectively. Finally, compared with 

other published and highly curated genome scale metabolic models, the iFT342 has the highest 

percentage of live reactions. It is therefore recommended that dead-end metabolites should be 

addressed extensively in light of available data to increase the number of live reactions that can 

participate in model simulations (Latendresse et al, 2012). Moreover, it is also recommended 

that the percentage of live reactions be used as a means of assessing model quality, in 

congruence with the recommendations in other studies (Ravikrishnan & Raman, 2015; Monk et 

al, 2014). 
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Chapter 3 In vitro flux measurements and glucose perturbation 

3.1 Introduction 

Plasmodium falciparum in vitro culture using human erythrocytes was described as early 

as 1912 (Bass & Johns, 1912). Parasites grown in leukocyte-free erythrocytes with human serum 

were able to complete up to three asexual cycles; however, most of the parasites were observed 

to die after the first and second cycles. A landmark in the development of in vitro P. falciparum 

culture was the discovery in 1976 by William Trager and James Jensen (Trager & Jensen, 2005) 

that continuous growth required low oxygen conditions. They demonstrated that parasites can 

be indefinitely cultured in a thin layer of human erythrocytes (plasma and leukocyte-free) in 

RPMI media supplemented with human serum either in a continuous flow vial (i.e., media is 

constantly replaced at a rate of 50 ml/day using a peristaltic pump) in 5% oxygen, or in a petri 

dish placed in a candle jar. The latter was maintained by replacing the media daily and keeping 

the culture in low oxygen. The candle technique uses a lit candle placed in a chamber (that is 

eventually sealed air tight when the fire goes out) to consume oxygen, providing a suitable 

environment for parasite culture. Using these techniques, the parasites were noted to have lost 

their synchronicity, unlike what is normally observed in human infection (i.e., synchronised 

parasite growth). Asynchronous parasite cultures show a mix of all asexual stages (i.e., rings, late 

trophozoites and schizonts) in vitro. Nevertheless, the morphology of the parasites remained 

the same and the parasites were able to be grown continuously for more than 50 days.  

A number of issues have been associated with the use of human serum in culture, 

including cost, availability and serum donor-to-donor variability (Willet & Canfield, 1984; Flores 

et al, 1997; Asahi & Kanazawa, 1994). It has been shown that bovine albumin, glucose, 

hypoxanthine and lipid-cholesterol-rich mixture were important in supporting parasite growth 

in the absence of human serum (Ofulla et al, 1993). Albumax II (Life Technologies), a lipid-rich 

bovine serum albumin with low immunoglobulin content, supplemented with hypoxanthine, is 

a popular replacement for human serum in malaria culture media (Flores et al, 1997). There 

were a number of differences observed when growing parasites in Albumax versus human 

serum. Reduced parasite cytoadherence, which is associated with the sequestration of red blood 

cells, has been shown in parasites grown in Albumax-supplemented media (Treutiger et al, 

1999). Also, difficulty in culturing wild-type isolates in Albumax media has been reported 

(Taverne, 2000). Nevertheless, no significant difference in in vitro parasite growth was observed 

between cultures of P. falciparum strains grown in media supplemented with human serum or 

Albumax II and hypoxanthine (Cranmer et al, 1995). Albumax II has been widely utilised 
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especially in a number of metabolomics studies related to drug target identification (Allman et 

al, 2016; Creek et al, 2016; Cobbold et al, 2016).  

The asynchronous nature of in vitro parasite culture makes it difficult to obtain stage 

specific information without performing synchronisation techniques. A commonly utilised 

technique for culture synchronisation is sorbitol treatment (Lambros & Vanderberg, 1979). This 

technique exploits the stage-dependent increase in the permeability of the new permeability 

pathways in infected erythrocytes. In the early stages, RBC permeability gradually increases until 

about 24 hours post invasion when the permeability exponentially increases (Waldecker et al, 

2017; Lew et al, 2003). This increase in permeability results in an increase in osmotic fragility of 

the host cell. Thus in the presence of high sorbitol concentrations (5% or 274 mM), more 

permeable cells draw in sorbitol resulting in increased internal osmotic pressure and eventual 

lysis of red blood cells infected with parasites in the later stages of replication. A second 

synchronisation is sometimes necessary to obtain better synchronicity due to the broad window 

of infected red cells insensitive to the sorbitol treatment (Lambros & Vanderberg, 1979). Other 

synchronisation methods that take advantage of differences in temperature sensitivity, 

buoyancy or magnetic property of different parasite stages have also been developed 

(Kwiatkowski, 1989; Mons et al, 1985; Ahn et al, 2008).  

As described in the first chapter, Plasmodium is highly dependent on glucose as an energy 

and carbon source. It has been reported that infected erythrocytes (in synchronised cultures) 

consume glucose at a much higher rate (between 86 to 186 mol glucose per billion parasitised 

RBCs per day), compared with uninfected cells which consume 4.6 mol glucose per billion RBCs 

per day (Jensen et al, 1983). In in vitro cultures, concentrations of non-phosphorylated sugars 

(including glucose) within infected RBCs have been shown to be similar to external 

concentrations, with the external and internal concentrations equilibrating within one hour. This 

suggests that the transport of these sugars is a passive rather than an active process (Kirk et al, 

1996). With this in mind, the rate of glucose consumption by the parasite may be measured 

simply by monitoring the change in glucose concentration in the culture media (i.e., spent 

media) over a given period of time. In addition to glucose, the parasite is also dependent on 

amino acids from the media and from the digestion of haemoglobin. The parasite balances 

haemoglobin digestion with the availability of amino acids in the media (Liu et al, 2006) and 

maintains colloid osmotic pressure to prevent premature host cell lysis (Lew et al, 2003; 

Waldecker et al, 2017). This interplay between consuming and discarding amino acids may be 

observed through changes in amino acid concentration in spent media. Many genome scale 

metabolic model predictions are generated using FBA, which looks into the transformation of 

metabolites as they participate in the different metabolic reactions in the model. Experimentally 
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measurable inputs (i.e., influx of external metabolites through boundary reactions) and outputs 

(i.e., biomass production) are therefore important in generating accurate predictions using FBA 

(Yilmaz & Walhout, 2017). Given the importance of glucose and amino acids in parasite survival, 

experimentally measured rates of consumption of these metabolites will be a vital addition to a 

malaria metabolic model. 

In this chapter, mannose was used as a competitive inhibitor of the P. falciparum hexose 

transporter, PfHT1, which transports glucose and mannose into the parasite (Woodrow et al, 

2000). Inhibition of glucose uptake by the parasite was done to determine and quantify the 

effect of limiting the parasite’s most important energy source on overall growth. Competitive 

inhibition of glucose uptake by mannose is not pronounced in vivo as the glucose concentration 

is nearly a hundred-fold higher than mannose in human serum (LeRoux et al, 2009). Mannose, 

which is primed by hexokinase to produce mannose 6-phosphate, generally participates in the 

production of glycosylphosphatidylinositol anchors which contribute to parasite virulence (Sanz 

et al, 2013; Olszewski & Llinás, 2011). Although it is a monosaccharide that may be utilised as an 

energy source in other organisms, mannose cannot sustain in vitro growth (Geary et al, 1985). 

Specific hexoses and amino-hexoses (e.g., fucose and glucosamine) have been shown to inhibit 

merozoite invasion, and thus limit overall parasite growth in culture; however, mannose 

demonstrated no such inhibitory effect (Weiss et al, 1981).  

This chapter will provide the basic methods used in parasite culture, which are important 

in the generation of experimental data that were eventually utilised in improving and validating 

the model developed in the previous chapter. Experimental procedures for the collection of 

spent media and quantification of metabolites will also be described, and the results of 

metabolite flux calculations will be discussed in the light of parasite metabolism. Finally, the 

effects of glucose perturbation on the overall parasite growth were quantified, which will then 

be compared against model predictions as a means of model validation (Chapter 4).  

3.2 Methodology 

3.2.1 Parasite culture 

Continuous P. falciparum 3D7 in vitro cultures were grown in filter-sterilised malaria 

complete media composed of Roswell Park Memorial Institute (RPMI) 1640 growth medium 

(with L-glutamine, HEPES and phenol red, Life Technologies) supplemented with 5% (w/v) 

Albumax II (Gibco), 2% (w/v) sodium bicarbonate (Sigma), 0.01% (w/v) hypoxanthine (Sigma) 

and 0.1% (v/v) gentamicin (10 mg/ml, Gibco) at 5% haematocrit (O+ blood was obtained from 

the National Blood Service of the National Health Service Blood and Transplant Unit (NHSBT) in 
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Seacroft, Leeds). Whole blood was washed three times with RPMI media to remove the serum 

and white blood cells prior to use. Washed blood was stored at 50% haematocrit in RPMI. 

Cultures were grown in a 37oC incubator in 25 cm2 polystyrene non-vented tissue culture flasks 

(Nunclon). The culture flasks were individually gassed with 1% oxygen, 3% carbon dioxide and 

96% nitrogen gas mixture using a sterile blunt needle connected to a filtered (0.22 m pore size) 

gas tubing for 10 seconds prior to sealing the flask with the non-vented cap.  

Initial cultures were prepared by thawing frozen stabilates and drawing out the freezing 

agent (0.9% NaCl, 4.8% sorbitol and 28% glycerol) from the RBCs by a series of NaCl solutions in 

decreasing concentration. To the thawed stabilates, 0.2x stabilate volume of 12% NaCl was 

added dropwise and was allowed to stand at room temperature for 3 minutes. Then 10x 

stabilate volume of 1.6% NaCl was added and the solution was mixed gently. The mixture was 

centrifuged for 5 minutes at 3000 rpm. The supernatant was removed and 10x pellet volume of 

0.2% glucose/0.9% NaCl solution was added dropwise. The mixture was once again centrifuged 

for 5 minutes at 3000 rpm. The supernatant was removed and 0.25 ml washed RBCs (50% 

haematocrit) and 6 ml of malaria complete medium were added. The culture was transferred 

into a 25 cm2 non-vented tissue culture flask, gassed and incubated at 37oC.  

For regular maintenance, the culture media was changed daily by initially tilting the flask 

for about 30 minutes to allow the red blood cells to settle on the rear bottom edge of the flask. 

The used media was carefully removed using a transfer pipette and a sample of the blood was 

collected and smeared on a glass slide (Figure 3.1). New pre-warmed media was then added into 

the flask and the culture was gassed before being placed back into the incubator. The blood 

smear was air dried and fixed using 100% methanol. The fixed blood was then soaked in 10% 

Giemsa (VWR Chemicals) in Sorensen’s buffer (10 mM NaH2PO4, 28 mM Na2HPO4, pH 7.2) for 10 

minutes. The stain was then carefully rinsed off with tap water and the slide was air dried before 

reading by light microscopy under oil-immersion (1000x magnification).  
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Figure 3.1 Image of a thin blood smear stained with 10% Giemsa 
A blood sample is taken from the parasite culture to monitor the parasitaemia and to evaluate 
the status of the culture. The blood sample is smeared onto a slide (A) to give a thin layer of cells 
at the terminal end of the smear. In this area (red arrow), the red blood cells do not overlap (B), 
allowing accurate cell and parasite counting. 

A Miller graticule (Figure 3.2a) was installed in the microscope eyepiece and was used 

as an aid for parasite counting. This graticule is normally used in counting the percentage of 

reticulocytes in a blood smear (Bain, 2006). The graticule, illustrated in Figure 3.2b, is composed 

of two squares, an outer square (in blue) and an inner square (in green), with the inner square 

having an area that is a tenth of the area of the outer square. When doing a parasite count, the 

graticule is placed in a field where the red blood cells are evenly distributed. The inner square is 

used to give a quick estimate of the total number of red blood cells in the outer square. This is 

done by multiplying the red blood cell count in the inner square by 10. The total number of 

infected red blood cells in the outer square (including those in the inner square) is also noted 

down.  

 

Figure 3.2 An illustration of a Miller graticule used to assist in parasite counting 
The Miller graticule (A) was placed in the microscope eyepiece to help estimate the total number 
of red blood cell in the graticule field. The inner square (B, in green) represents a tenth of the 
whole area of the graticule (in blue). Multiplying the total number of red blood cells in the small 
square by ten gives an estimate of the total number of red bloods cells in the whole graticule 
field.  
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The parasitaemia was calculated from the total number of infected red blood cells as a 

percentage of the estimated total number of red blood cells counted (Equation 2.1). It is possible 

that a single red blood cell can be infected by multiple parasites. In this case, the infected cell is 

only counted as one. As these cultures were unsynchronised, the number of rings, late 

trophozoites and schizonts were also noted. In calculating the percentage of each parasite stage, 

a total of 100 parasites are counted and the number of parasites at each stage are noted and 

expressed as a percentage of the total number of parasites counted. When calculating for the 

parasitaemia, at least 1,000 red blood cells were observed and counted for daily monitoring 

while at least 2,000 red blood cells were examined prior to the conduct of any experiment. In 

addition, the haematocrit was also measured using a haemocytometer prior to any experiment. 

Given the measured parasitaemia and haematocrit, the desired parasitaemia and haematocrit 

were adjusted using Equation 3.2, Equation 3.3 and Equation 3.4. These equations give the 

volume of initial culture (to be subcultured), washed RBCs and new media necessary to adjust 

the parasitaemia and haematocrit to the desired percentages and culture volume.  

 

𝑃𝑎𝑟𝑎𝑠𝑖𝑡𝑎𝑒𝑚𝑖𝑎 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑑 𝑏𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑑 𝑏𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠
× 100% Equation 3.1 

 

𝑉𝑖 =
𝑃𝑓𝐻𝑓𝑉𝑓

𝑃𝑖𝐻𝑖
 Equation 3.2 

 

𝑉𝑟 =
𝐻𝑓𝑉𝑓

50
× (1 −

𝑃𝑓

𝑃𝑖
) Equation 3.3 

 

𝑉𝑚 = 𝑉𝑓 − 𝑉𝑖 − 𝑉𝑟 Equation 3.4 

where: 
𝑉𝑖  = volume of initial culture  
𝑉𝑓  = final volume  

𝑃𝑖  = initial parasitaemia 
𝑃𝑓   = final parasitaemia 

𝐻𝑖   = initial haematocrit 
𝐻𝑓  =  final haematocrit 

𝑉𝑟  =  volume of washed RBCs (50% haematocrit) 
𝑉𝑚  =  volume of media (malaria complete media) 

 
The parasitaemia of the cultures were normally maintained under 4%, and the parasites 

were subcultured as needed. Subculturing was done by adding a calculated volume from the 

previous culture and diluting it with 5% haematocrit in fresh malaria complete media. As part of 

general parasite maintenance, a culture with a 4% parasitaemia was normally subcultured to 



81 
 

 
 

achieve a final parasitaemia of 0.5% (1:8 dilution) by adding 0.75 ml of the original culture to 

5.25 ml of 5% washed RBCs in malaria complete media in a new 25 cm2 tissue culture flask. For 

larger culture volumes, 18 and 42 ml of cultures were grown in 75 and 175 cm2 tissue culture 

flasks (Nunclon), respectively. Larger flasks required longer gassing time.  

Sorbitol was used to obtain synchronised cultures. The synchronisation procedure 

required cultures with high parasitaemia (> 4%) with a majority of the parasites in the ring stage 

(Lambros & Vanderberg, 1979). The culture was placed in a 50 ml Falcon tube and was 

centrifuged at 3000 rpm for 5 minutes. The media was removed and replaced with 0.5x media 

volume of filter-sterilised 5% sorbitol. The parasites were incubated in sorbitol for 10 minutes 

at room temperature. After incubation, pre-warmed media (5x sorbitol volume) was added to 

the culture to lower the sorbitol concentration before centrifugation at 3000 rpm for 5 minutes. 

The supernatant was removed and the pellet was resuspended with enough pre-warmed 

malaria culture media to dilute the haematocrit to 5%. The culture, which contained mostly ring 

stage parasites at this point, was transferred to a new tissue culture flask and was maintained 

as above. Two synchronisations were performed 40 hours apart prior to the experiment to 

obtain highly synchronous ring stage parasites (Figure 3.3).  

Sterile materials and filter-sterilised (pore size of 0.22 m) reagents were utilised in 

parasite culture. NaCl solutions for thawing parasites were autoclaved prior to use. Experimental 

procedures (except for slide staining) were done following proper aseptic techniques. 
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Figure 3.3 Image of a thin blood smear showing unsynchronised and synchronised 
Plasmodium falciparum 3D7 cultures 
This shows a comparison between unsynchronised (A) and synchronised (B-D) parasite cultures. 
Upon sorbitol synchronisation, the culture is composed mostly of ring stage parasites (B). These 
parasites develop to late trophozoites (C) at around 24 hours post synchronisation, and 
schizonts (D) around 40-42 hours post synchronisation. 

3.2.2 Spent media collection 

Synchronised cultures with a total volume of 18 ml at 1% parasitaemia and 5% 

haematocrit were placed in non-vented 75 cm2 tissue culture flasks. Non-infected red blood cells 

at 5% haematocrit were used as control. One millilitre of culture was collected at time 0 (𝑡0), 

and every 6 hours until 48 hours post synchronisation (𝑡48). It was important that the culture 

was mixed gently until homogenous prior to sample collection. This ensured that the 

haematocrit was maintained at 5%. The collected sample was placed in a sterile 1.5 ml 

microcentrifuge tube, and centrifuged at 3000 rpm for 2 minutes. The spent media was collected 

and immediately stored at -80oC for later analysis. After the sample collection at 24 hours post 

synchronisation, the old media in the culture flask was replaced with new media (for both 

infected and control cultures). This was done by placing the culture in a sterile Falcon tube and 

spinning it at 3000 rpm for 5 minutes. The media was carefully removed and replaced with new 
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pre-warmed malaria complete media. At that point, the culture volume was 13 ml (after five 1 

ml-sample collections), thus 12.35 ml (95% of 13 ml) of malaria complete media was added to 

the infected RBCs giving a final haematocrit of 5%. Three biological replicates were tested for 

this experiment. 

3.2.3 Glucose assay 

The glucose concentration in the spent media was determined using a Megazyme Glucose 

Assay (Glucose Oxidase-Peroxidase format) Kit. Using a 96-well clear-bottomed microtiter plate 

(Sarstedt), 300 l of the glucose determination reagent (glucose oxidase, peroxidase, p-

hydroxybenzoic acid and 4-aminoantipyrine, prepared as written in the assay manual of 

procedures) was added to 10 l of sample and was incubated at 40oC for 20 minutes. Water (10 

l) added to 300 l of glucose determination reagent was used as a blank, while 10 l of 1 g/l 

glucose solution (provided with the assay kit) in the same amount of glucose determination 

reagent was used as control. The end point absorbance at 510 nm was then read using a 

microplate reader (SpectraMax 340PC). The concentration in g/l was calculated by dividing the 

difference of the absorbance of the sample (𝐴𝑠𝑎𝑚𝑝𝑙𝑒) and the blank (𝐴𝑏𝑙𝑎𝑛𝑘) by the difference 

of the absorbance of the control (𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and the blank. The unit of glucose concentration was 

converted to millimolar for the flux calculations by dividing the concentration in g/l by the 

molecular weight (𝑀𝑊𝑔𝑙𝑢𝑐𝑜𝑠𝑒) of glucose in g/mol, then multiplied by 1000 (Equation 3.5). 

 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑀) =
𝐴𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑏𝑙𝑎𝑛𝑘

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐴𝑏𝑙𝑎𝑛𝑘
×

1000

𝑀𝑊𝑔𝑙𝑢𝑐𝑜𝑠𝑒
 Equation 3.5 

3.2.4 Amino acid concentration determination 

Amino acid concentrations in the spent media were determined using an Ultimate 3000 

High-Performance Liquid Chromatography (HPLC) system (Dionex). The HPLC protocol utilised a 

reverse-phase chromatography with an Acclaim 120 C18 (Dionex) 100 mm x 2.1 mm column (3 

m particle size, 120 Å pore size) stationary phase. The mobile phase was made up of an 

aqueous and organic gradient. Eluent A was composed of 10 mM Na2HPO4 (Sigma), 10 mM 

Na2HB4O7 · 10 H2O (Sigma) and 0.5 mM NaN3 (Sigma), adjusted to pH 8.2, and Eluent B was 

composed of 45% (v/v) methanol (HPLC grade, Fisher Scientific) 45% (v/v) acetonitrile (HPLC 

grade, Fisher Scientific) in water (Chromasolv Plus, SLS). The HPLC protocol was a modified 

version of that developed by Steiner et al (2009). The HPLC program was developed using a ramp 

gradient from 2% to 60% Eluent B over a period of 60 minutes. The program was then adjusted 
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to decrease the slope of the gradient (for better peak resolution) and a 10-minute equilibration 

was added at the end (Table 3.1). 

 

Table 3.1 HPLC Program 

Time (min) Percent Eluent A Percent Eluent B Flow rate (ml/min) 

0 98% 2% 0.200 

60 55% 45% 0.200 

60.5 98% 2% 0.200 

70.5 98% 2% 0.200 

 

Samples were derivatised prior to chromatography. The derivatisation procedure was 

done in a 1.5 ml microcentrifuge tube at room temperature by adding the following reagents in 

order shown below: 

1. 300 l of borate buffer (0.1 M Na2HB4O7 · 10H2O (Sigma), pH 10.2)  

2. 15 l of o-phthaldialdehyde (OPA) solution (75 mM OPA (SLS), 225 mM 

3-mercaptopropionic acid (MPA) (Sigma) in 0.1 M borate buffer, pH 10.2) 

3. 3 l of sample (mixed 5 times using a Gilson pipette set at 300 l), incubated for 60 

seconds at room temperature 

4. 6 l 9-fluorenylmethoxycarbonyl chloride (FMOC) solution (2.5 mg/mL FMOC 

(Sigma) in HPLC grade acetonitrile) (mixed 5 times using a Gilson pipette set at 300 

l) 

5. 42 l phosphoric acid solution (15 l/ml 85% phosphoric acid in Eluent A) 

 

Derivatised samples were filtered through a 13 mm polytetrafluoroethylene (PTFE) 

syringe filter (0.22 m pore size, Fisher Scientific) before placing into a 250 l polypropylene 

HPLC vial. Even though derivatisation using OPA and MPA has been shown to be stable over a 

period of 90 minutes (Molnár-Perl, 2001), slight decrease in peak areas was observed after 

running the same sample again after 2 hours (during earlier experiments). Thus, to ensure 

minimal degradation of the derivatised compounds, the derivatisation procedure was only done 

within 10 minutes prior to running the sample through the HPLC and the whole run time was 

limited to under 80 minutes.  Detection of derivatised amino acids was through UV absorbance 

at 338 nm at 10.0 Hz data collection rate (from 0 to 55 minutes). Amino acid peak areas were 

measured from the chromatograms using Chromeleon. Taking into consideration the long HPLC 

running time, selected spent media samples (i.e., those collected at 𝑡6, 𝑡18, 𝑡30, 𝑡36, 𝑡42 and 𝑡48) 

were run for amino acid concentration determination. The change in concentration from 𝑡6 to 

𝑡18 was used to calculate amino acid flux at the mid-ring stage, from 𝑡30 to 𝑡36 for the late 

trophozoite stage and from 𝑡42 to 𝑡48 for the late schizont stage.  
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Individual amino acid standards were prepared in 0.1 N HCl. In addition, a stock solution 

containing all amino acids (with known concentrations) was prepared, taking into account the 

individual amino acid densities (when available) to ensure accurate standard concentrations 

(Table 3.2). Standards at different concentrations were run to generate standard curves. The 

amino acid peak areas from the chromatogram (y) were plotted against the standard 

concentration (x) using MS Excel 2010, forcing the y-intercept to zero. The concentration of a 

given amino acid in the spent media was then calculated by dividing its peak area by the slope 

of the corresponding amino acid standard curve.  



 
 

 
 

8
6

 

Table 3.2 Amino acids and their corresponding chemical properties used in the preparation of amino acid standards (Budavari et al, 1989) 

Amino acid Molecular weight 
(g/mol) 

Density 
(g/ml) 

Solubility 
in water (mM) 

Manufacturer/ 
Catalogue number 

L-Alanine 89.1 1.371 1,430.0 Sigma, A7627-100G 

(+)-L-Arginine HCl 210.7 1.325 Soluble Sigma, A6969-25G 

L-Asparagine 132.1 1.543 270.0 Sigma, A0884-25G 

L-Aspartic acid 133.1 1.636 33.8 Sigma, A9256-100G 

L-Cystine 240.3 1.655 0.4 Sigma, C7602-25G 

L-Glutamic acid 147.1 1.566 58.7 Sigma, G1251-100G 

L-(+)-Glutamine 146.1 Not available 329.0 Acros Organics, 10376840 

Glycine 75.1 1.598 3,330.0 Sigma, G7126-100G 

L-Histidine monohydrochloride monohydrate 209.6 1.412 Fairly soluble in water Sigma, H5659-25G 

Trans-4-hydroxy-L-proline 131.1 Not available 2,200.9 Sigma, H54409-25G 

L-Isoleucine 131.2 1.201 314.1 Sigma, I7403-25G 

L-Leucine 131.2 1.167 185.0 Sigma, L8912-25G 

L-Lysine monohydrochloride 182.7 1.237 Very freely soluble Sigma, L8662-25G 

L-Methionine 149.2 1.311 Soluble in water Sigma, M5308-25G 

L-Phenylalanine 165.2 1.315 179.2 Sigma, P2126-100G 

L-Proline 115.1 1.376 14,071.1 Sigma, P5607-25G 

L-Serine 105.1 1.582 Soluble in water Sigma, S4311-25G 

L-Threonine 119.1 1.499 Freely soluble Sigma, T8441-25G 

L-Tryptophan 204.2 1.303 55.8 Sigma, T-0655 

L-Tyrosine 181.2 1.403 2.5 Sigma, T3754-25G 

L-Valine 117.2 1.267 711.9 Sigma, V0513-25G 
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3.2.5 Flux calculation 

Spent media for both infected and uninfected (control) samples were assayed for glucose 

and amino acid concentrations as detailed above. The metabolite flux from time a (𝑡𝑎) to time b 

(𝑡𝑏) was calculated using the formula: 

 

𝑓𝑙𝑢𝑥𝑡𝑎−𝑡𝑏
=

𝑣𝑡𝑎
× (∆𝐶𝑖 − ∆𝐶𝑢)

𝑔𝐷𝑊𝑡𝑎 × ∆𝑡
 Equation 3.6 

where: 
𝑣𝑡𝑎

  =  volume at 𝑡𝑎, in litres 

∆𝐶𝑖  =  change in metabolite concentration in infected culture from 𝑡𝑎 to 𝑡𝑏, in mM 
∆𝐶𝑢  =  change in metabolite concentration in uninfected culture from 𝑡𝑎 to 𝑡𝑏, in 

mM 
𝑔𝐷𝑊𝑡𝑎

  =  gram dry weight of parasite at 𝑡𝑎 (see Equation 3.7) 

∆𝑡 =  change in time (𝑡𝑏 − 𝑡𝑎), in hours 
 

The change in metabolite concentration in uninfected culture (∆𝐶𝑢) was subtracted from 

the observed change in metabolite concentration in infected culture (∆𝐶𝑖) to account for the 

background effect of metabolism in uninfected RBCs (Yayon et al, 1983). The change in 

metabolite concentration (in infected or uninfected culture) was calculated by subtracting the 

concentration (in mM) at 𝑡𝑏 from that at 𝑡𝑎. Thus, a positive ∆𝐶 (i.e., 𝐶𝑡𝑎
> 𝐶𝑡𝑏

) indicates a 

decrease in metabolite concentration in the media. Correspondingly, a positive flux signifies 

entry of metabolites into the cell, while a negative flux indicates movement of metabolites from 

the red blood cell into the surrounding media. 

The parasite mass (𝑔𝐷𝑊𝑡𝑎) was determined using the calculated number of parasites, 

which was based on the parasitaemia, haematocrit and the culture volume at 𝑡𝑎 (Equation 3.7). 

For simplicity, two assumptions were made. (1) It was assumed that each infected RBC contained 

only one parasite. (2) Given a synchronised culture, it is assumed that the parasitaemia (set at 

1%) remained the same throughout the 48 hour experiment, as each parasite in the culture 

would have merely developed from rings to trophozoites to schizonts without asexual 

multiplication and invasion of neighbouring red blood cells. Thorough but gentle mixing of the 

culture prior to sample collection ensured that the haematocrit (5%) was maintained throughout 

the duration of the experiment. The total parasite mass was finally calculated by multiplying the 

number of parasites by the mass per parasite (𝑚𝑝 = 10.5 × 10−12 𝑔𝐷𝑊

𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒
) (Forth, 2012). Table 

3.3 shows the estimated amount of parasites (in gram dry weight) used to calculate for the 

metabolite flux in spent media at different time points. Flux calculations were done to determine 
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the rate of metabolite consumption/production by cultures at different stages of parasite 

development (i.e., mid-rings, late trophozoites and late schizonts).  

 

𝑔𝐷𝑊𝑡𝑎
= 𝑘 × 𝑝 × ℎ × 𝑣𝑡𝑎

× 𝑚𝑝 Equation 3.7 

where: 

𝑘  =  haematocrit constant (1013  
𝑅𝐵𝐶𝑠

𝑙𝑖𝑡𝑟𝑒 𝑜𝑓 𝑅𝐵𝐶𝑠
) 

𝑝  =  parasitaemia at 𝑡𝑎 
ℎ  =  haematocrit at 𝑡𝑎 
𝑣𝑡𝑎

  =  culture volume at 𝑡𝑎, in litres 

𝑚𝑝  =  mass per parasite 

 

Table 3.3 Culture volume and estimated mass of parasite in culture (gDW) at different time 
points during spent media collection used to calculate for metabolite flux 

Hours post synchronisation Culture volume 
(litre) 

Estimated total gDW of 
parasite in culture (gram) 

0 0.017 0.000893 

6 0.016 0.000840 

12 0.015 0.000788 

18 0.014 0.000735 

24 0.013 0.000683 

30 0.012 0.000630 

36 0.011 0.000578 

42 0.010 0.000525 

48 0.009 0.000473 

 

3.2.6 In vitro glucose perturbation 

To determine the effect of lowered parasite glucose consumption on growth, initial 

experiments were performed by growing the parasites in lower media glucose concentrations; 

however, it was later realised that lowering media glucose can affect not just parasite growth 

but also RBC metabolism. Thus it was important to reduce parasite glucose consumption without 

compromising glucose utilisation in the host cell. Mannose, which is cheap and widely available, 

was used as a competitive inhibitor for the P. falciparum hexose transporter 1 (PfHT1), which 

transports glucose present in the red blood cell into the parasite. Glucose enters the uninfected 

red blood cell through facilitative diffusion via GLUT1, which comprises 5% of the cell membrane 

(Mueckler, 1994). In infected cells, glucose enters the host cell more freely through the NPPs as 

well as through GLUT1 (Krishna et al, 2000).  

Mannose has an inhibition/dissociation constant (𝐾𝑖) of 1.1 mM for PfHT1, while glucose 

has a Michaelis constant (𝐾𝑚) of 1.0 mM (Woodrow et al, 2000). The percent of glucose 

transport inhibition (
𝑣𝑖

𝑣𝑢
) can be calculated based on the media concentrations of mannose and 
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glucose using the Michaelis-Menten equations with (Equation 3.8) and without (Equation 3.9) a 

competitive inhibitor (Stryer, 1988). The two equations were combined to give Equation 3.10. 

For simplicity, the percent activity of PfHT1 with respect to the transport of glucose into the 

parasite will be called “percent PfHT1 activity” from here on. 

 

𝑣𝑖 =
𝑉𝑚𝑎𝑥[𝑔𝑙𝑢𝑐𝑜𝑠𝑒]

𝐾𝑚 (1 +
[𝑚𝑎𝑛𝑛𝑜𝑠𝑒]

𝐾𝑖
) + [𝑔𝑙𝑢𝑐𝑜𝑠𝑒]

 
Equation 3.8 

  

𝑣𝑢 =
𝑉𝑚𝑎𝑥[𝑔𝑙𝑢𝑐𝑜𝑠𝑒]

𝐾𝑚 + [𝑔𝑙𝑢𝑐𝑜𝑠𝑒]
 Equation 3.9 

  

𝑣𝑖

𝑣𝑢
=

𝐾𝑚 + [𝑔𝑙𝑢𝑐𝑜𝑠𝑒]

𝐾𝑚 (1 +
[𝑚𝑎𝑛𝑛𝑜𝑠𝑒]

𝐾𝑖
) + [𝑔𝑙𝑢𝑐𝑜𝑠𝑒]

× 100% 
Equation 3.10 

where: 
𝑣𝑖  =  rate of glucose transport with the inhibitor (mannose) 
𝑣𝑢  =  rate of glucose transport without the inhibitor  
𝐾𝑚  =  Michaelis constant for glucose 
𝐾𝑖  =  inhibition constant for mannose 
[𝑚𝑎𝑛𝑛𝑜𝑠𝑒]  =  mannose concentration 
[𝑔𝑙𝑢𝑐𝑜𝑠𝑒]  =  glucose concentration 
𝑉𝑚𝑎𝑥  =  maximum rate of reaction 

 

The concentrations of mannose were calculated using Equation 3.10 to result in 25% to 

100% PfHT1 glucose transport in the presence of 8.0 mM glucose (Table 3.4). Concentrations of 

sorbitol equal to that of mannose were used in the control. Zero PfHT1 activity was simulated 

by growing the parasites in 0 mM glucose and 8.0 mM of mannose or sorbitol.  

 

Table 3.4 Calculated P. falciparum hexose transporter 1 (PfHT1) activity at different glucose 
and mannose concentrations 

Percent PfHT1 activity [𝒈𝒍𝒖𝒄𝒐𝒔𝒆] (mM) [𝒎𝒂𝒏𝒏𝒐𝒔𝒆] (mM) 

0% 0.00 8.00 

25% 8.00 29.70 

40% 8.00 14.85 

50% 8.00 9.90 

60% 8.00 6.60 

75% 8.00 3.30 

80% 8.00 2.48 

90% 8.00 1.10 

100% 8.00 0.00 
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A lower glucose concentration (8.0 mM) compared to the glucose concentration in normal 

malaria complete media (11.0 mM) was used to avoid negative growth effects of high media 

osmolarity (Dei-Cas et al, 1985; Ginsburg et al, 1986a). Parasites were also grown in media with 

11.0 mM glucose as additional control. No-glucose media was initially prepared using no-glucose 

RPMI (with L-glutamine and phenol red, Life Technologies) supplemented with the same 

components as detailed in the methodology section of this chapter, in addition to 25 mM HEPES 

(Sigma), which is absent in no-glucose RPMI. Appropriate amounts of filter-sterilised (0.22 m 

pore size) glucose, mannose and/or sorbitol 400 mM stock solutions were added to aliquots of 

no-glucose media to obtain the concentrations listed in Table 3.4.  

Unsynchronised parasite cultures at 0.5% parasitaemia and 3% haematocrit were grown 

in black-sided, clear flat-bottomed 96-well plates (Costar) in media with different glucose and 

mannose/sorbitol concentrations (200 l total culture volume per well). Uninfected RBCs at 3% 

haematocrit were used as an additional control. The cultures were incubated in 1% oxygen, 3% 

carbon dioxide and 96% nitrogen in a humidified sealed chamber at 37oC. The chamber was 

gassed with the same gas mixture after 24 hours. After 48 hours, the relative numbers of 

parasites were quantified using SYBR Green following the protocol of Smilkstein et al (2004). 

This procedure involved the addition of 100 l of 3x lysis buffer to each well. The 3x lysis buffer 

consisted of 0.024% (w/v) saponin (BDH), 0.24% (v/v) Triton X-100 (Sigma), 60 mM Tris (pH 7.5), 

15 mM EDTA and 0.3 l/ml SYBR Green I 1000x concentration (Thermo Fisher). SYBR Green was 

only added into the lysis buffer prior to use. Upon addition of the lysis buffer, the plates were 

covered in aluminium foil and incubated at room temperature for 45 minutes. Fluorescence was 

then measured using a multifunctional microplate reader (POLARstar OPTIMA, BMG LABTECH) 

set at 485 nm excitation and detection at 520 nm. At least three biological replicates were 

performed for this experiment (3 replicates for 40%, 60%, 80% and 90% PfHT1 activity; 4 

replicates for 50% and 75% PfHT1 activity; and 7 replicates for 0%, 25% and 100% PfHT1 activity).  

In vitro growth was presented as a percentage of the relative numbers of parasites in 

media without the inhibitor (100% PfHT1 activity). Background fluorescence from parasites 

grown in 0 mM glucose was subtracted from all other measured fluorescence (𝑓) prior to the 

calculation of percent in vitro growth. The calculation for the percent in vitro growth at a given 

percentage of PfHT1 activity is shown in Equation 3.11. Percent in vitro growth (y) was plotted 

against the percent PfHT1 activity (x) using GraphPad Prism. The Shapiro-Wilk test was used to 

test for normality of data and T-test to compare the means of individual groups against the 

control. Differences in in vitro growth as a result of lowered PfHT1 activity as well as increased 

media osmolarity were determined. Pearson’s test was also performed to examine the 
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correlation between percent parasite growth and percent PfHT1 activity. All statistical tests 

were done using IBM SPSS Statistics 20. 

 

% 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 𝑔𝑟𝑜𝑤𝑡ℎ 𝑎𝑡 𝑋% 𝑃𝑓𝐻𝑇1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

=
𝑓𝑋% 𝑃𝑓𝐻𝑇1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 𝑓0% 𝑃𝑓𝐻𝑇1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑓100% 𝑃𝑓𝐻𝑇1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 𝑓0% 𝑃𝑓𝐻𝑇1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
× 100% 

Equation 3.11 

where: 
𝑓𝑋% 𝑃𝑓𝐻𝑇1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  =  fluorescence at a given percentage of PfHT1 activity  
𝑓0% 𝑃𝑓𝐻𝑇1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  =  fluorescence at 0% PfHT1 activity 
𝑓100% 𝑃𝑓𝐻𝑇1 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  =  fluorescence at 100% PfHT1 activity 
 

3.3 Results 

3.3.1 Glucose concentration in spent media 

Glucose concentration in spent media was monitored over a 48-hour time course as part 

of this study. Given that the movement of glucose into the infected red blood cell is considered 

as an equilibrative process (Kirk et al, 1996), monitoring changes in glucose concentration in the 

media was utilised as an alternative means of monitoring the rate of glucose consumption by 

the parasite. Cultures utilised for this experiment were standardised to have a parasitaemia of 

1% and a haematocrit of 5%, which necessitated a change in media after 24 hours (Jensen et al, 

1983). Although a sample of spent media at 24 hours post synchronisation was collected prior 

to changing the media, the addition of new media contributed to an apparent increase in 

metabolites measured at 30 hours post synchronisation (Table 3.5 and Figure 3.4). Therefore, 

flux values between 24 and 30 hours were excluded from the calculations.  

 

Table 3.5 Average glucose concentration (in mM) in spent media collected from infected 
and uninfected cultures at different time points after parasite synchronisation (n = 3) 

Hours post 
synchronisation 

Infected RBCs Uninfected RBCs (control) 

Average SEM Average SEM 

0 9.90 0.07 10.21 0.41 

6 9.71 0.16 9.93 0.46 

12 9.00 0.36 9.45 0.38 

18 8.15 0.39 9.19 0.23 

24 7.49 0.50 8.82 0.48 

30 9.14 0.41 9.45 0.23 

36 8.06 0.69 9.39 0.22 

42 7.10 0.90 9.10 0.40 

48 6.64 0.86 8.83 0.37 
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Figure 3.4 Average glucose concentration in spent media collected from infected and 
uninfected cultures at different time points after parasite synchronisation  
Glucose concentration (± SEM) in spent media was measured at 6-hour intervals throughout the 
48-hour life cycle of P. falciparum 3D7 in in vitro culture at 1% parasitaemia and 5% haematocrit. 
The cultures required a change in media after collecting spent media at 24 hours, causing an 
apparent increase in glucose concentration at 30 hours post synchronisation. (n = 3) 

By simply looking at the change in concentration (Figure 3.4), it may be tempting to 

deduce that there was a steady rate of consumption of glucose by the parasite over time. 

However, it is important to remember that the total number of parasites decreased over time 

as a result of sample collection done at 6-hour intervals. It is therefore important to take into 

consideration the number of parasites at the beginning of each interval to get a more accurate 

picture of the rate of glucose consumption (i.e., glucose flux). In addition, the background 

glucose consumption of uninfected red blood cells was also taken into account in the calculation 

of the glucose flux in infected cells. Figure 3.5 shows the glucose flux over the 48 hour time 

period (excluding 24-30 hours post synchronisation). The overall average glucose flux was 

calculated to be 1.32 ± 0.39 mmol/gDW/hr, which is close to the value obtained by Forth (1.27 

mmol/gDW/hr) using NMR-measured flux values in spent media of P. falciparum 3D7 in vitro 

cultures (Forth, 2012). A similar trend in glucose consumption in synchronised parasite cultures 

was observed in a previous study where lower glucose consumption was noted in cultures with 

higher percentage of ring stage parasites (Jensen et al, 1983). The late trophozoite stage 

exhibited the highest glucose consumption as expected since the trophozoite stage is the most 
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metabolically active of the three stages (Kirk & Lehane, 2014). Expression patterns of genes 

involved in glycolysis were also shown to reach maximum expression during the early 

trophozoite stage (Bozdech et al, 2003). This coincides with the peak in glucose flux observed 

here at 30-36 hours post synchronisation, if the delay between transcription and translation is 

taken into consideration. An evaluation of expression data of more than 200 genes and their 

associated protein in P. falciparum revealed a median time delay of 11 hours between peak 

mRNA and corresponding protein expressions (Foth et al, 2011). A similar pattern in the 

concentration of lactate dehydrogenase enzyme (PfLDH), the last step in the glycolysis pathway, 

was observed in synchronised P. falciparum 3D7 culture over the 48-hour parasite life cycle 

(Vivas et al, 2005). A decrease in PfLDH activity was observed at 18 hours, which was followed 

by a gradual rise until 30 hours when peak activity was observed. 
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Figure 3.5 Calculated glucose flux at different intervals within the 48-hour parasite life cycle 
in a synchronised culture 
(A) Calculated glucose flux (in mmol/gDW/hr, ± SEM) at 6-hour intervals throughout the 48-hour 
parasite lifecycle (n = 3) is shown to coincide with (B) the expression pattern of P. falciparum 
genes related to glycolysis (Bozdech et al, 2003) and (C) the expression pattern (white squares) 
and concentration (solid squares) of P. falciparum lactate dehydrogenase (PfLDH), the enzyme 
involved in the last step of glycolysis (Vivas et al, 2005). Note that the flux between 24 and 30 
hours (A) was not calculated as previously explained at the beginning of the results section. 
(Figure 3.5B was obtained from an open access journal, while permission from the publisher was 
obtained for the reprint of Figure 3.5C). 
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3.3.2 Amino acid concentration in spent media and flux calculations 

Two main reagents were used for amino acid derivatisation allowing the amino acids to 

be measureable by ultraviolet (UV) detection: O-phthaldialdehyde (OPA) reacts with primary 

amines, while 9-fluorenylmethoxycarbonyl chloride (FMOC) reacts with secondary amines 

(Schuster, 1988). Proline and hydroxyproline are the only secondary amines in the amino acid 

standard solution and the rest are considered primary amines (Kaspar et al, 2009). OPA and 

FMOC are detected at 338 nm and 263 nm wavelengths, respectively (Bartolomeo & Maisano, 

2006; Schuster, 1988). The HPLC protocol, as previously mentioned in the Methodology section, 

was based on the protocol by Steiner et al (2009), which was intended for ultra-high-

performance liquid chromatography (UHPLC). Compared to conventional HPLC, UHPLC can 

accommodate smaller stationary phase particle size and a greater pressure range, thus 

permitting higher flow rates and faster separation (Cielecka-Piontek et al, 2013). In addition, the 

original protocol utilised automated pre-column derivatisation, a feature that was not present 

in the HPLC equipment used in this study. A shift in UV wavelength from 338 nm to 263 nm 

towards the end of the run was required in the original protocol; however, the shift in 

wavelength resulted in an overall shift in baseline absorbance and failure to detect any peak at 

263 nm detection. Therefore, the UV detection was set to 338 nm throughout the duration of 

the run, limiting the detection to the 19 primary amines. 

In the generation of standard curves, a poor linear fit was generally observed with the 

curve for cystine compared to the rest of the amino acids which had R2 values close to 1 (Figure 

3.6). This irregularity may be attributed to condition-related susceptibility of cystine (dimeric 

form) to be reduced to its cysteine (monomeric form) (Alvarez-Coque et al, 1988), with the latter 

known to yield a weakly detectable complex with OPA (Birwé & Hesse, 1991). Therefore, 

concentration measurements for cystine were not used, giving a total number of 18 amino acids 

quantified in collected spent media.  
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Figure 3.6 Representative standard curves showing peak areas measured from the 
chromatogram plotted against known standard concentrations 
As an example, the standard curve for aspartic acid (A) is shown together with the trendline, 
linear equation and R2 as a basis for linear fit. The cystine standard curve (B) below is showing a 
poor linear fit.  

Fluctuations in amino acid concentrations in spent media are affected by several factors. 

RPMI 1640 medium used in parasite culture is composed of 20 amino acids (excluding alanine) 

(Moore & Woods, 1977). Through the remodelling of the RBC membrane by the parasite, amino 

acids (as well as other solutes) from the media can easily be transported into the infected host 

cell though the new permeability pathways, which are described as highly permeable, non-

highly selective channels (Staines et al, 2006; Ginsburg & Stein, 2004; Bouyer et al, 2006). These 

channels allow the parasite to obtain the necessary amino acids that are absent or insufficient 
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in haemoglobin from the media. In addition, these channels permit the efflux of amino acids 

from haemoglobin digestion that are in excess of what the parasite requires to survive (Krugliak 

et al, 2002; Lew et al, 2003). This contributes to the apparent increase in the concentration of a 

number of amino acids in the media. The change in amino acid concentrations in the media may 

therefore be attributed to the balance between the relative abundance of amino acids in the 

media and in haemoglobin, and the amino acid requirements of the parasite (Table 3.6).  

 

Table 3.6 Comparison of the relative abundance of amino acids in RPMI 1640 media (Life 
Technologies) in mM, haemoglobin (Magrane & UniProt Consortium, 2011) and P. falciparum 
proteome (Chanda et al, 2005) in percentages. The red to blue colour scale represents a 
decreasing relative abundance of amino acid. 

Amino acid RPMI 1640 Haemoglobin Parasite proteome 

Alanine 0.000 12.5% 2.4% 

Arginine 1.149 2.1% 2.9% 

Asparagine 0.379 3.5% 12.3% 

Aspartic acid 0.150 5.2% 6.1% 

Cystine 0.208 1.0% 1.8% 

Glutamic acid 0.136 4.2% 2.8% 

Glutamine 2.055 1.4% 7.1% 

Glycine 0.133 6.9% 3.1% 

Histidine 0.097 6.6% 2.2% 

Isoleucine 0.382 0.0% 9.4% 

Leucine 0.382 12.5% 8.2% 

Lysine 0.274 7.6% 11.7% 

Methionine 0.101 1.7% 2.2% 

Phenylalanine 0.091 5.2% 4.6% 

Proline 0.174 4.8% 2.2% 

Serine 0.286 5.5% 6.4% 

Threonine 0.168 5.5% 4.2% 

Tryptophan 0.025 1.0% 0.5% 

Tyrosine 0.111 2.1% 5.6% 

Valine 0.171 10.7% 4.1% 

 

Amino acid concentrations in spent media, both in infected and uninfected cultures, 

(Table 3.7 and Table 3.8) were used to calculate the flux to represent the three main parasite 

erythrocytic stages (Table 3.9, Table 3.10 and Table 3.11). The calculated glucose flux values 

were also included in these tables. The minimum, maximum flux values, as well as standard 

deviations and standard errors presented in these tables were eventually used as constraints in 

the model, which will be described in the next chapter. It can be appreciated here that there is 

a relatively high influx (positive flux values) of amino acids during the schizont stage. Conversely, 

a majority of amino acids during the ring and the trophozoite stages appeared to be moving out 
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of the infected cell. An experimental quantification of parasite protein at different stages 

alongside haemoglobin digestion has shown stage dependent haemoglobin digestion as well as 

parasite protein production (Krugliak et al, 2002). These investigators calculated a very low 

efficiency in conversion of haemoglobin to biomass by the parasite especially during the early 

stages. During the ring stage, only 5% of the digested haemoglobin was converted to parasite 

protein. This is consistent with the amino acid flux values observed in the ring stage in this study 

(Table 3.9) when most of the amino acids were excreted into the media. It is worth noting that 

there was an influx of isoleucine observed during the ring stage, consistent with the fact that 

the only source of isoleucine for the parasite is the media, as it is absent in haemoglobin 

(Magrane & UniProt Consortium, 2011).  

Compared with the mid-ring stage data, calculated flux values at the trophozoite stage 

showed even more amino acids moving out of the infected cells, including isoleucine (Table 

3.10). This pattern contradicts the fact that during the trophozoite stage (at around 24 to 30 

hours post invasion), the parasite protein synthesis begins to increase significantly (Krugliak et 

al, 2002), and that isoleucine is absent in haemoglobin therefore it should be impossible for the 

concentration of isoleucine in the media to increase. A similar efflux of isoleucine was also 

observed by Forth who measured amino acid flux through the analysis of spent media in P. 

falciparum in vitro cultures (Forth, 2012). Metabolite concentrations measured over a period of 

48 hours done by Olszewski et al (2009) also showed a rise in concentration at 32 hours post 

infection for 10 out of 14 amino acids (i.e., asparagine, glutamate, histidine, (iso)leucine, 

methionine, phenylalanine, proline, serine, tryptophan and tyrosine). Note that liquid 

chromatography-tandem mass spectrometry was utilised for quantifying metabolite 

concentrations in the media thus the total isoleucine and leucine concentrations were reported 

as a single value. 

It is possible that the shifts in total volume of the infected cell and the gradual increase in 

parasite volume may result in shifts in the effective space inside the infected red blood cell 

surrounding the parasite. In silico modelling of infected cell and parasite volume was done by 

simulating homeostasis in infected red blood cells as a function of haemoglobin digestion, 

movement of important ions and parasite growth (Lew et al, 2003). Using the model, which was 

later validated experimentally (Waldecker et al, 2017), they have shown that the parasite and 

the host cell volumes were stable during the early stages but eventually increased at 

disproportional rates at 24 hours post invasion. Parasite volume was shown to increase at a 

higher rate compared to the host cell during the trophozoite stage, until about 42 hours post 

invasion when the parasite and the RBC volume begin to stabilise. Moreover, the effective space 

between the parasite and the RBC membrane decreases from around 32 to 40 hours post 
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invasion (Lew et al, 2003). It could therefore be speculated that the rapid growth of the parasite 

during the trophozoite stage, alongside the slower increase in host cell volume, may account for 

the movement of water and solutes out of the red blood cell. This phenomenon may explain the 

observed efflux of a majority of amino acids including isoleucine during the late trophozoite 

stage. On the other hand, high protein synthesis, increase in colloid pressure and eventual host 

cell swelling around 40 hours post invasion (Allen & Kirk, 2004; Zarchin et al, 1986) may account 

for the influx of most amino acids during the schizont stage as shown in Table 3.11.   



 
 

 
 

1
0

0
 

Table 3.7 Average amino acid concentrations (in mM) in spent media collected from infected cultures at different time points (hours post synchronisation, 
hps). The red to blue colour scale represents a decreasing concentration of amino acid. (n = 3) 

 6 hps 18 hps 30 hps 36 hps 42 hps 48 hps 

 Average SEM Average SEM Average SEM Average SEM Average SEM Average SEM 

Alanine 0.010 0.001 0.030 0.005 0.012 0.003 0.025 0.009 0.032 0.010 0.036 0.012 

Arginine 0.650 0.063 0.484 0.149 0.578 0.079 0.496 0.099 0.472 0.150 0.367 0.127 

Asparagine 0.252 0.005 0.275 0.008 0.221 0.011 0.233 0.006 0.255 0.008 0.244 0.007 

Aspartic acid 0.047 0.002 0.054 0.003 0.029 0.002 0.027 0.003 0.042 0.002 0.039 0.002 

Glutamic acid 0.094 0.003 0.112 0.005 0.087 0.003 0.097 0.007 0.116 0.004 0.122 0.012 

Glutamine 1.291 0.042 1.266 0.061 1.129 0.068 1.109 0.042 1.148 0.063 1.040 0.026 

Glycine 0.301 0.006 0.323 0.008 0.320 0.015 0.321 0.007 0.169 0.007 0.166 0.012 

Histidine 0.090 0.004 0.097 0.004 0.083 0.011 0.094 0.005 0.103 0.004 0.090 0.008 

Isoleucine 0.254 0.004 0.266 0.010 0.217 0.010 0.226 0.004 0.249 0.013 0.235 0.001 

Leucine 0.236 0.009 0.245 0.023 0.222 0.013 0.227 0.005 0.238 0.008 0.223 0.003 

Lysine 0.107 0.009 0.121 0.009 0.109 0.022 0.091 0.005 0.117 0.018 0.103 0.017 

Methionine 0.061 0.001 0.068 0.003 0.052 0.003 0.058 0.003 0.062 0.003 0.058 0.000 

Phenylalanine 0.061 0.000 0.070 0.005 0.056 0.003 0.061 0.005 0.067 0.002 0.064 0.003 

Serine 0.191 0.005 0.212 0.007 0.171 0.007 0.179 0.007 0.192 0.006 0.185 0.005 

Threonine 0.110 0.001 0.126 0.005 0.102 0.005 0.110 0.005 0.116 0.003 0.111 0.007 

Tryptophan 0.064 0.000 0.067 0.002 0.070 0.004 0.069 0.005 0.021 0.002 0.020 0.000 

Tyrosine 0.074 0.002 0.082 0.003 0.066 0.003 0.069 0.002 0.075 0.002 0.071 0.003 

Valine 0.123 0.007 0.144 0.007 0.127 0.012 0.127 0.009 0.142 0.003 0.138 0.013 
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Table 3.8 Average amino acid concentrations (in mM) in spent media collected from uninfected cultures at different time points (hours post 
synchronisation, hps). The red to blue colour scale represents a decreasing concentration of amino acid. (n = 3) 

 6 hps 18 hps 30 hps 36 hps 42 hps 48 hps 

 Average SEM Average SEM Average SEM Average SEM Average SEM Average SEM 

Alanine 0.007 0.001 0.013 0.002 0.004 0.000 0.004 0.000 0.007 0.001 0.012 0.004 

Arginine 0.670 0.045 0.549 0.086 0.714 0.087 0.584 0.028 0.535 0.068 0.501 0.103 

Asparagine 0.239 0.009 0.255 0.012 0.260 0.024 0.241 0.010 0.251 0.005 0.261 0.018 

Aspartic acid 0.041 0.003 0.045 0.000 0.044 0.007 0.042 0.002 0.041 0.003 0.044 0.005 

Glutamic acid 0.094 0.004 0.100 0.004 0.095 0.008 0.088 0.005 0.094 0.001 0.101 0.007 

Glutamine 1.224 0.030 1.199 0.038 1.309 0.112 1.165 0.053 1.154 0.012 1.158 0.087 

Glycine 0.201 0.015 0.214 0.014 0.252 0.041 0.251 0.024 0.204 0.032 0.213 0.022 

Histidine 0.076 0.004 0.078 0.006 0.090 0.014 0.080 0.002 0.078 0.002 0.085 0.006 

Isoleucine 0.245 0.010 0.267 0.013 0.251 0.025 0.241 0.013 0.254 0.004 0.264 0.018 

Leucine 0.343 0.020 0.531 0.025 0.254 0.027 0.217 0.010 0.226 0.015 0.226 0.023 

Lysine 0.118 0.018 0.131 0.010 0.105 0.020 0.100 0.012 0.110 0.017 0.120 0.009 

Methionine 0.059 0.001 0.065 0.003 0.062 0.005 0.059 0.005 0.061 0.001 0.065 0.004 

Phenylalanine 0.058 0.002 0.061 0.003 0.059 0.004 0.053 0.003 0.059 0.002 0.064 0.004 

Serine 0.186 0.007 0.195 0.009 0.195 0.019 0.183 0.007 0.189 0.005 0.201 0.014 

Threonine 0.105 0.003 0.113 0.008 0.107 0.011 0.102 0.003 0.108 0.001 0.113 0.009 

Tryptophan 0.031 0.004 0.036 0.004 0.051 0.011 0.052 0.009 0.034 0.010 0.036 0.011 

Tyrosine 0.071 0.003 0.075 0.004 0.074 0.006 0.067 0.003 0.074 0.002 0.055 0.027 

Valine 0.218 0.037 0.216 0.018 0.127 0.009 0.124 0.013 0.132 0.005 0.135 0.007 
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Table 3.9 Amino acid and glucose flux (in mmol/gDW/hr) measured between 6 and 18 
hours post synchronisation representing flux during the mid-ring stage. The red to blue colour 
scale (in the first three columns) represents decreasing flux values. (n = 3) 

 Average Minimum Maximum SD SEM 

Alanine -0.023 -0.041 -0.007 0.017 0.01 

Arginine 0.072 0.007 0.202 0.112 0.065 

Asparagine -0.009 -0.021 0.000 0.011 0.006 

Aspartic acid -0.005 -0.014 0.007 0.011 0.006 

Glucose 1.300 0.677 2.224 0.816 0.471 

Glutamic acid -0.019 -0.028 -0.014 0.008 0.005 

Glutamine 0.000 -0.026 0.017 0.023 0.013 

Glycine -0.014 -0.042 0.014 0.028 0.016 

Histidine -0.007 -0.022 0.000 0.013 0.007 

Isoleucine 0.017 0.000 0.043 0.023 0.013 

Leucine 0.283 0.227 0.354 0.065 0.037 

Lysine 0.000 -0.070 0.057 0.064 0.037 

Methionine -0.002 -0.007 0.007 0.008 0.005 

Phenylalanine -0.010 -0.022 0.007 0.015 0.009 

Serine -0.019 -0.043 -0.007 0.021 0.012 

Threonine -0.014 -0.042 0.007 0.025 0.015 

Tryptophan 0.003 0.000 0.008 0.004 0.003 

Tyrosine -0.005 -0.008 0.000 0.004 0.003 

Valine -0.036 -0.137 0.058 0.097 0.056 
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Table 3.10 Amino acid and glucose flux (in mmol/gDW/hr) measured between 30 and 36 
hours post synchronisation representing flux during the late trophozoite stage. The red to blue 
colour scale (in the first three columns) represents decreasing flux values. (n = 3) 

 Average Minimum Maximum SD SEM 

Alanine -0.041 -0.082 -0.014 0.036 0.021 

Arginine -0.154 -0.504 0.403 0.488 0.282 

Asparagine -0.098 -0.183 0.042 0.123 0.071 

Aspartic acid 0.000 -0.029 0.029 0.029 0.017 

Glucose 3.239 2.164 4.475 1.163 0.672 

Glutamic acid -0.056 -0.070 -0.028 0.024 0.014 

Glutamine -0.396 -0.844 0.327 0.632 0.365 

Glycine -0.009 -0.126 0.112 0.119 0.069 

Histidine -0.066 -0.175 0.000 0.095 0.055 

Isoleucine -0.062 -0.157 0.100 0.140 0.081 

Leucine -0.137 -0.184 -0.057 0.070 0.040 

Lysine 0.038 -0.165 0.235 0.200 0.116 

Methionine -0.028 -0.042 0.000 0.024 0.014 

Phenylalanine -0.035 -0.045 -0.030 0.009 0.005 

Serine -0.062 -0.115 0.043 0.091 0.052 

Threonine -0.038 -0.085 0.014 0.050 0.029 

Tryptophan 0.010 -0.031 0.031 0.036 0.021 

Tyrosine -0.031 -0.061 0.000 0.031 0.018 

Valine -0.010 -0.029 0.014 0.022 0.013 
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Table 3.11 Amino acid and glucose flux (in mmol/gDW/hr) measured between 42 and 48 
hours post synchronisation representing flux during the schizont stage. The red to blue colour 
scale (in the first three columns) represents decreasing flux values. (n = 3) 

 Average Minimum Maximum SD SEM 

Alanine 0.000 -0.027 0.014 0.024 0.014 

Arginine 0.221 -0.115 0.576 0.346 0.200 

Asparagine 0.070 -0.098 0.239 0.169 0.097 

Aspartic acid 0.019 -0.014 0.086 0.058 0.033 

Glucose 0.605 0.463 0.846 0.210 0.121 

Glutamic acid 0.005 -0.070 0.084 0.077 0.044 

Glutamine 0.356 -0.362 1.085 0.724 0.418 

Glycine 0.037 -0.154 0.140 0.166 0.096 

Histidine 0.066 -0.022 0.109 0.076 0.044 

Isoleucine 0.081 -0.071 0.213 0.143 0.083 

Leucine 0.047 -0.042 0.156 0.100 0.058 

Lysine 0.072 -0.261 0.278 0.291 0.168 

Methionine 0.028 0.000 0.042 0.024 0.014 

Phenylalanine 0.025 0.000 0.045 0.023 0.013 

Serine 0.062 -0.057 0.172 0.115 0.066 

Threonine 0.028 -0.071 0.127 0.099 0.057 

Tryptophan 0.010 -0.016 0.031 0.024 0.014 

Tyrosine -0.046 -0.244 0.076 0.173 0.100 

Valine 0.024 -0.115 0.101 0.121 0.070 

 

3.3.3 In vitro glucose perturbation 

Inhibition of parasite growth has been shown at high media osmolarity. Parasites grown 

in 50 to 100 mM of sucrose or maltose brought about a reduction in host cell volume and 

eventual inhibition in parasite growth (Ginsburg et al, 1986a). Additionally, high media 

osmolarity has been demonstrated to inhibit development of trophozoites to schizonts (Dei-Cas 

et al, 1985). The highest mannose concentration (29.7 mM) was calculated to give 25% PfHT1 

activity in the presence of 8.0 mM glucose, while the lowest concentration (1.1 mM) was 

estimated to result in 90% transporter activity. To eliminate the possibility of osmolarity as a 

factor affecting parasite growth (as opposed to limiting PfHT1 activity), controls were grown in 

media supplemented with sorbitol at similar concentrations as mannose, in addition to 8.0 mM 

glucose. Sorbitol, which has very low affinity for PfHT1 (𝐾𝑖 > 50 mM), is not metabolised by P. 

falciparum (Woodrow et al, 2000). Given that lower glucose concentrations were used in the 

experiment, controls grown in 11.1 mM glucose were also included. Reduced glucose 

concentration and high media osmolarity (8 mM glucose plus 29.7 mM sorbitol) showed no 
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significant difference in parasite growth compared with control cultures (in 11.1 mM glucose) 

(p-value = 0.956). 

Figure 3.7 shows growth of asynchronous parasite cultures in the presence of mannose 

at different concentrations to give different levels of PfHT1 activity. Here, mannose and glucose 

competitively bind to PfHT1 for transport into the parasite (Woodrow et al, 2000). By varying 

the concentrations of mannose based on its inhibition constant (𝐾𝑖) and the glucose Michaelis 

constant (𝐾𝑚), the amount of glucose being transported into the parasite was controlled. As 

expected, there is a significant correlation between the calculated PfHT1 activity and percentage 

of parasite growth (Pearson’s R = 0.942, p-value < 0.001). No significant effect was seen on 

parasite growth above 60% inhibition of glucose uptake, and the parasites were able to sustain 

reduced but significantly lower growth at lower glucose uptake rates. This is not surprising as 

hypoglycaemia is not uncommon in severe cases of malaria where plasma glucose levels can go 

below 2.2 mM (World Health Organization, 2015).  

Given the same calculated percentage of PfHT1 activity, reduced glucose uptake was 

simulated in the model and biomass flux, as a surrogate for parasite growth, was calculated and 

compared with the in vitro values as part of model validation (Chapter 4).  
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Figure 3.7 Parasite growth in the presence of mannose as a PfHT1 (glucose transporter) 
competitive inhibitor 
This figure shows parasite growth (as a percentage of growth in the absence of an inhibitor) 
after 48 hours of incubation in increasing concentrations of mannose (red). Sorbitol was used as 
a control as it has very low affinity for PfHT1 (blue). SYBR green was used to measure the relative 
amount of parasites. Concentrations of mannose and glucose were calculated to achieve the 
desired percent inhibition of PfHT1 using 𝐾𝑚 = 1.0 and 𝐾𝑖 = 1.1 mM. (n ≥ 3) 
*p-value = 0.0434, **p-value = 0.0087, ***p-value < 0.0001 
 

3.4 Discussion 

To further enhance the accuracy of the in silico metabolic model, in vitro flux data on 18 

amino acids and glucose were measured through changes in metabolite concentrations in the 

media, and these values were later on incorporated as constraints in the model (Chapter 4). 

Spent media collection in this study utilised synchronised parasite cultures at 1% parasitaemia 

and 5% haematocrit, requiring the need to change the culture media every 24 hours to avoid 

undesirable pH conditions and accumulation of waste products (Jensen et al, 1983). This media 

change rendered the data between 24 to 30 hours unusable for the analysis of metabolite flux. 

Growing cultures at a lower parasitaemia and lower haematocrit may address this issue; 
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however, changes in metabolite concentrations might not be as detectable as in cultures with a 

higher parasitaemia and haematocrit. Another possible action would have been to conduct two 

spent media collections at 24 hours done before and after changing the media.  

The trend in glucose flux observed over the life cycle of the parasite was consistent with 

RNA expression of genes involved in glycolysis (Bozdech et al, 2003) and parasite lactate 

dehydrogenase concentrations (Vivas et al, 2005). Moreover, overall average glucose flux was 

close to that measured using NMR quantification of glucose concentrations in spent media in P. 

falciparum 3D7 cultures (Forth, 2012). However, the data obtained had large calculated 

standard errors despite standardising the parasitaemia, haematocrit and culture conditions, and 

utilising blood within two weeks of collection from the blood bank. One possible reason for the 

error may be the variability in the erythrocytes utilised in the experiments. The age of the blood 

obtained from the NHSBT for use in parasite culture was unknown and the supply of O+ blood 

was only based on availability. At times, blood was obtained from other blood banks as the 

required blood type was not available in Leeds. Parasite growth rate and RBC invasion have been 

shown to decrease with increasing RBC storage time, though no significant effect on schizogony 

was observed (Goheen et al, 2016). RBC characteristics and responsive change due to storage 

also varies between donor to donor (DeWalski et al, 2015). In comparison with the rate of 

glucose consumption (4.58 ± 1.5 mol per billion RBCs per 24 hours) reported by Jensen et al 

(1983), the average glucose flux in uninfected red blood cells (recalculated to obtain a similar 

unit as the reported value) observed in the spent media experiments was lower (2.29 ± 0.39  

mol per billion RBCs per 24 hours). This may be attributed to differences in RBC storage as 

storage duration has been implicated to lower glycolytic rates in red blood cells (Gevi et al, 

2012). In future work, biopreservation of red blood cells (i.e., storage of fresh RBCs in serum and 

freezing media in liquid nitrogen) may be done so that blood from the same donor may be used 

for different experimental replicates, reducing RBC variability. A study comparing fresh and 

biopreserved red blood cells has shown no significant difference in parasite growth rates and 

merozoite invasion (Goheen et al, 2016). 

Initially, optimisation of amino acid detection through HPLC (specifically to test the 

derivatisation protocol) was done using a larger column, Acclaim 120 C18 (Dionex) 150 mm x 4.6 

mm column (5 m particle size, 120 Å pore size), which was eventually replaced with a new 

smaller column with smaller particle size (see Methodology for column properties and 

dimensions). The replacement of the column significantly reduced the consumption of eluents 

(from 2.0 ml/min to 0.2 ml/min). This meant that a single 2-litre preparation of eluent can be 

used for running more samples, reducing minor variability in eluent properties (e.g., pH, 

concentration). A pH shift of 0.1 can result in a 10% shift in the retention time, while a 1% 



108 
 

 
 

difference in organic solvent concentration can result in a 5 to 15% shift in retention time (Neue, 

2002). The long running time (70.5 minutes) per sample posed as a limitation and running all 

spent media samples would have been quite time consuming thus only selected samples were 

run for amino acid concentration determination. UHPLC separation using a column with smaller 

particle size can easily reduce running time to 10 minutes (Steiner et al, 2009). In addition to 

amino acids, in vitro flux measurements of other important boundary metabolites such as 

lactate and hypoxanthine may also contribute to enhancing the predictive capacity of the model. 

A variety of 6-carbon monosaccharides, including deoxy- forms and sugar analogues, can 

act as ligands for the Plasmodium falciparum hexose transporter 1 (Woodrow et al, 2000). 

Glucose and mannose both have relatively high affinity for the transporter compared with other 

hexoses such as fructose and galactose (Blume et al, 2011). Here mannose was used against 

glucose as a competitive inhibitor for PfHT1. Mannose is a cheap compound that can be used in 

conducting inhibition experiments on PfHT1; however, a limitation of using mannose is that 

higher concentrations are required to achieve greater inhibitions because mannose has a 𝐾𝑖 

close to the 𝐾𝑚 for glucose (Woodrow et al, 2000). Nevertheless, it has been demonstrated here 

that parasite transporter activity can be reduced to as low 25%, showing significant reduction in 

parasite growth. Higher concentrations of mannose may be used to achieve greater reduction 

in glucose transporter activity, but this has to be done alongside controls to ensure that the 

hyperosmolar culture media does not interfere with normal parasite growth. It is important to 

note that RPMI has an osmolality between 270 and 310 milliosmoles/kg and a specific gravity of 

1.006 kg/l (Thermo Fisher) and early studies have shown no significant parasite growth changes 

in osmolarities of up to 328 milliosmoles/l (Dei-Cas et al, 1985). This gives a small margin of 

about 16 to 56 milliosmoles/l for the addition of mannose. Otherwise, greater PfHT1 inhibition 

may be achieved by using compound 3361, a glucose analogue which has a much lower 𝐾𝑖 (0.053 

mM) compared with mannose (1.1 mM) (Joët & Krishna, 2004). Other glucose analogues that 

have been utilised for glucose transporter studies in malaria include 2-deoxy-D-glucose and 3-

O-methyl-D-glucose (Krishna et al, 2000; Woodrow et al, 2000). 
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Chapter 4 Model predictions and validation 

4.1 Introduction 

Constraint-based modelling utilises different boundaries, conditions and physical laws 

that limit the solution space within which the organism’s phenotype can be best fitted and 

represented (Price et al, 2004; Ravikrishnan & Raman, 2015). The solution space represents a 

set of combinations of reaction fluxes within the allowable constraints (Orth et al, 2010). With 

any given unconstrained model, there are multiple possible combinations of reaction fluxes that 

can result in a feasible solution for the objective function. Take for example a simple model 

composed only of three reactions (i.e., R1, R2 and R3) represented as a three dimensional plot, 

where each axis represents the flux for each reaction (Figure 4.1). Without any constraint on all 

three reactions (A), the solution space is the infinite space in this three-dimensional plot and 

every point in this three dimensional space is a possible solution; however, putting boundaries 

on each axis (e.g., flux constraints, shown in blue broken lines), the solution space (in red) 

becomes smaller (B). With additional constraints (e.g., reaction, mass balance and 

thermodynamics), the solution space becomes even smaller (C). Through flux balance analysis, 

a given genome scale metabolic model can be used to find an optimal solution for a given 

objective (shown in green), such as the production of biomass (represented as R1). The green 

broken lines show the corresponding flux values for the reactions that result in the maximisation 

of the flux for the objective function. 

Reactions in the model must have a stoichiometry that takes into consideration the law 

of conservation of mass. In addition, information on reaction thermodynamics may help identify 

the direction of a given reaction, i.e., reversible or irreversible, which constrain the model 

further. As gene expression data have become more widely available, several models have 

utilised these data to provide a more accurate representation of the organism being modelled 

(Lee et al, 2012; Navid, 2011). There are several ways of incorporating gene expression data into 

a metabolic model. One can utilise a function that turns on or off reactions associated with genes 

based on their gene expression, or adjust the reaction flux in proportion with the corresponding 

gene expression (Reed, 2012).  
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Figure 4.1 Visualisation of flux balance analysis solution space 
A three reaction model is represented here by a three-dimensional plot, with the three axes 
representing the flux for the respective reactions (R1, R2 and R3). R1 is the reaction that 
represents the objective function. (A) Without constraining the reaction fluxes, there are an 
infinite number of possible combinations of reaction fluxes that will result in a solution. (B) By 
adding constraints in the reaction fluxes (blue broken lines), the solution space becomes smaller, 
shown in red, where each point in the solution space is a possible solution. The solution space 
becomes even smaller with the addition of reaction stoichiometry/mass balance and 
thermodynamics (C). Flux balance analysis, through linear programming, can be used to 
calculate the flux for each reaction that will result in maximum flux for the objective function, in 
this case shown as the green dot. The green broken lines show the corresponding flux values for 
the reactions that result in the maximisation of the objective function. 
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Using stage specific gene expression data, the Plata malaria model proportionally 

adjusted the flux of reactions based on the relative expression of the corresponding associated 

genes. They then compared the predicted shifts in external concentrations of 33 metabolites 

between stages against experimental data, showing significant correlations (Plata et al, 2010). 

On the other hand, the Huthmacher malaria model utilised five different gene expression data 

sets and compared the flux direction of a number of external metabolites and compared these 

against published experimental data. They were able to observe that predictions of model 

constrained using gene expression data were more in agreement with experimental data than 

those from the unconstrained model (Huthmacher et al, 2010). A similar approach of adding 

model constraints can be done using derived metabolite flux. The group of Wallqvist et al (2016) 

integrated the malaria metabolic model into the RBC metabolic model and incorporated strain 

specific gene expression data along with metabolite flux data from uninfected RBCs 

(experimental) and flux values in co-infected RBCs, i.e., uninfected RBCs cultured together with 

infected RBCs (predicted). Using these constraints, the metabolite flux values for infected RBCs 

were calculated through flux balance analysis, which showed 16 out of 24 metabolite fluxes 

having significant correlation with experimental data. These methods of comparing predictions 

against experimental data are part of model validation, which are often used as a measure of 

model quality and a means to ensure the accuracy of model predictions (Kim et al, 2012).  

As mentioned in the first chapter, metabolic models are often utilised to identify potential 

drug targets through flux balance analysis (Chavali et al, 2008; Plata et al, 2010; Huthmacher et 

al, 2010; Li et al, 2011; Navid, 2011). Gene or reaction knockouts can be simulated and the effect 

on the biomass objective can be evaluated to identify whether the said knockout resulted in a 

lethal phenotype or limited growth. In silico, lethal knockouts result in zero objective flux while 

growth-limiting knockouts result in sub-optimal objective flux. In the case of the predictions 

using the Plata model, knockouts were divided into four categories: lethal, growth reducing (i.e., 

resultant biomass flux between 0 and 95% of wild-type biomass flux), slightly growth reducing 

(i.e., resultant biomass flux between 95% and 100% of wild-type biomass flux) and non-lethal 

(Plata et al, 2010). In the Leishmania major model, a cut off of 90% was used to define growth-

limiting knockouts (Chavali et al, 2008). Several software can be used to simulate gene or 

reaction knockouts. MetExplore (Cottret et al, 2010) is a free online resource that allows users 

to upload SBML models for evaluation and simulations. SurreyFBA (Gevorgyan et al, 2011) and 

OptFlux (Rocha et al, 2010) are free downloadable software with user friendly graphical 

interface that can also perform a number of important commands for model analysis and 

simulations. COBRApy (Ebrahim et al, 2013) is a Python-based software that has similar 

functionalities as the previously mentioned software.  
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Predicted gene knockouts in comparison with experimental data have been used for 

model validation. Proponents of the metabolic models of S. cerevisiae (Duarte et al, 2004), E. 

coli (Latendresse et al, 2012), L. major (Chavali et al, 2008) and P. falciparum (Plata et al, 2010; 

Huthmacher et al, 2010) have compared their predicted essential genes/reactions with 

published data on experimentally validated essential genes/reactions. Furthermore, predicted 

targets have been experimentally validated with the use of inhibitors in in vitro cultures. Plata 

et al identified nicotinate mononucleotide adenylyltransferase as a potential drug target and, 

with the use of a small molecule inhibitor (compound 1_03), they were able to demonstrate P. 

falciparum growth inhibition (MIC50 = 50 M). A few FDA-approved drugs were tested in vitro 

on Leishmania major to target those that were predicted by their model to be essential. They 

have shown that halofantrine, an antimalarial drug, was able to inhibit growth with an IC50 of 

9.5 M, demonstrating the potential of drug repurposing as a means of finding new anti-

infectives/antiparasitics (Chavali et al, 2012a). They have used online databases on compound-

protein interactions for the identification of potential inhibitors. One of these databases is 

DrugBank (Law et al, 2014), which contains detailed information on more than 8,000 compounds 

and their interactions with protein targets. The database contains FDA-approved drugs as well 

as those that are experimental, investigational and withdrawn. Important information on the 

type of drug-target interaction is also included in the database (e.g., inhibitors, cofactors, 

substrate, product, etc.). The DrugBank website offers drug search by name, structure, chemical 

formula or molecular weight, while protein targets can be searched using their name or protein 

sequence. When conducting a protein target search, DrugBank returns a list of aligned protein 

sequences along with sequence alignments with matched proteins, their corresponding 

alignment scores and interacting compounds. Details and external database links on the 

matched target and the interacting drugs are also provided.  

In this chapter, experimentally measured stage specific metabolite flux values from the 

previous chapter were incorporated in the model developed in the second chapter. Given these 

constraints, in silico perturbations similar to those done in vitro in the previous chapter were 

simulated and the results were compared with each other. Single gene knockout simulations 

were also done in order to predict essential genes. These predicted essential genes were 

compared against published data on experimentally validated essential genes. Finally, 

repurposed compounds identified using the DrugBank database were tested for in vitro activity 

against selected novel targets as part of proof-of-concept model validation.  
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4.2 Methodology 

4.2.1 In silico glucose perturbation 

To mimic in vitro consumption of nucleoside/bases from the media, the boundary flux of 

adenine, adenosine, guanine, inosine and xanthine were set to zero as these are not present in 

Albumax II supplemented malaria complete media. This also allows the model to consume 

hypoxanthine for purine metabolism from the external environment. COBRApy (Ebrahim et al, 

2013) was used to add the experimentally obtained flux values from Chapter 3 into the model 

developed in Chapter 2. The upper and lower bound flux for 18 amino acid boundary reactions 

as well as the glucose boundary reaction were constrained using the stage specific in vitro (1) 

maximum and minimum flux (i.e., range), (2) average flux ± SD and (3) average flux ± SEM, 

respectively. With these set constraints, the maximum biomass reaction flux or the optimal 

solution was calculated using FBA. For consistency, the constraint value (i.e., range, SD or SEM) 

that yielded feasible models (i.e., those with optimal solution) for all parasite stages was used 

for generating stage specific models. A stage specific model is defined as a model with boundary 

constraints set using the experimentally derived stage specific flux values. It is important to note 

that with the constraint set on glucose flux, the predicted lactate influx was contrary to what 

was observed in vitro (Jensen et al, 1983; Elliott et al, 2001). Thus, constraint on the lactate 

boundary reaction, which was based on previously measured lactate efflux (-1.644 

mmol/gDW/hr) on P. falciparum 3D7 spent culture media was added into the model (Forth, 

2012). Similar glucose perturbation simulation was done on the unconstrained model for 

comparison with the constrained models. 

For each stage specific model, glucose flux was perturbed to simulate inhibition of the 

parasite glucose transporter (PfHT1). This was done by adjusting the upper bound flux of the 

glucose boundary reaction (Glucose_btoc_s), to represent 0 to 100% transporter activity. Using 

COBRApy, the maximum biomass solution at different percentages of glucose transporter 

activity was determined through FBA. These were plotted using GraphPad PRISM 7, while 

Pearson’s correlation and the corresponding p-values between the in vitro and in silico data were 

calculated using SciPy (Jones et al, 2015). The stage specific model with the best correlation with 

the in vitro data (i.e., schizont stage model, explained in detail in the Results section) was used 

for subsequent simulations.  

4.2.2 Comparison of flux values with gene expression data 

Reaction flux values were compared against gene expression data to identify any possible 

correlation between the two data sets. The absolute value of the flux was used in the 



114 
 

 

comparison instead of the actual value to factor out the direction of the reaction while focussing 

on the rate of metabolite consumption of the reaction. Using the three stage specific models, 

reaction flux values that result in maximum biomass flux were calculated to represent reaction 

fluxes during the ring, trophozoite and schizont stages. These reaction fluxes were then mapped 

against their associated genes for comparison with gene expression data. In cases where a given 

gene is associated with multiple reactions, the average flux of all associated reactions was 

calculated and assigned to the said gene. Only genes in the model that were associated with 

reactions with non-constant flux values were considered to avoid error in the calculation of the 

Pearson’s correlation coefficient (r-value). Gene expression data (in reads per kilobase of exon 

per million mapped reads) used in this comparison was obtained from the RNA-seq data of 

Bartfai et al (2010) where they measured gene expression at 5 hour intervals over 40 hours (post 

invasion) in P. falciparum 3D7 in vitro cultures (from T5 to T40).  Gene expression at T5, T30 and 

T40 hours post infection were compared against ring, trophozoite and schizont stage flux, 

respectively. These time points were selected as they were closest to the initial time points of 

spent media collection for the measurement of in vitro metabolite flux (i.e., 6, 30, and 42 hours 

post synchronisation), as explained in Chapter 3.  

For each gene in the model, Pearson’s correlation was calculated between the gene-

associated reaction flux and the gene expression data, and the average correlation for all genes 

was determined (actual average r-value). An empirical p-value for the average correlation was 

calculated in two ways: 

1. For each gene, the order of the flux (i.e., ring, trophozoite and schizont flux values) 

were randomly shuffled and correlation with gene expression data was calculated 

before getting the average correlation for all genes. 

2. Random gene expression values (within the minimum and maximum expression 

values for a given gene) were compared against the flux values in correct order and 

the correlation was calculated. The average correlation for all genes was then 

determined.  

Ten thousand randomisations were done to obtain 10,000 average Pearson’s correlation 

coefficients (random average r-values). The empirical p-value was calculated by counting the 

total number of random average r-values that are greater than or equal to the actual average r-

value, and dividing the count by the total number of random average r-values. This gives the 

probability of observing an average r-value greater than or equal to the actual average r-value 

by chance. Two p-values will therefore be reported here for each average r-value, presented in 

the same order as the enumerated methods of empirical p-value calculations mentioned above.  
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Considering published data on correlation between peak gene expression and protein 

abundance (Foth et al, 2011) which reported a delay in peak protein abundance of 11 hours 

after peak gene expression, correlation between predicted reaction flux and “time-shifted” gene 

expression values were also tested. Predicted reaction flux values at the ring, trophozoite and 

schizont stages were compared against gene expression at T40 (i.e., corresponding to the gene 

expression roughly before the beginning of the next asexual cycle), T20 and T30 hours post 

infection, respectively. The average r-value and the corresponding empirical p-values were then 

calculated. 

4.2.3 Identification of essential genes 

Single gene knockouts were simulated to identify essential genes in the schizont stage 

model using COBRApy (Ebrahim et al, 2013). Gene knockouts that resulted in a zero biomass 

solution were considered as lethal knockouts; while those that resulted in a lowered biomass 

solution were considered growth-limiting knockouts. Different thresholds for defining limited 

growth were tested (explained in detail in section 4.3.3); and ultimately, biomass solution that 

is less than 95% of the optimal solution was considered as the threshold. After single gene 

knockout analysis, the predicted set of essential genes was matched against a set of published 

data on experimentally validated essential genes/reactions in Plasmodium. Published literature 

were reviewed for growth assays using compounds with known enzyme targets or gene 

knockouts/conditional knockouts done in vitro or in vivo on Plasmodium spp., while inhibition 

assays on purified parasite enzyme were excluded. When available, identified essential gene IDs 

and the EC classification number of associated reaction/s were noted together with the 

publication reference. Additional known targets were obtained from TDR Targets (Magariños et 

al, 2012), a database that holds information on malaria and neglected tropical diseases that are 

important for drug target identification. In cases where only the gene ID or the EC number was 

mentioned in the publication, the corresponding EC classification number or gene ID were 

matched using PlasmoDB data (Aurrecoechea et al, 2009). Also, gene IDs in the old format were 

updated to the new format using PlasmoDB data. A total of 128 genes make up the original gold 

standard list (see Appendix). 

The Plasmodium Genetic Modification (PlasmoGEM) is a database that holds vector 

sequences that can be used to modify the genome of Plasmodium berghei (Schwach et al, 2015; 

Gomes et al, 2015). The database was developed as part of the initiative of the Malaria 

Programme at the Wellcome Trust Sanger Institute. In May 2016, the database was updated to 

include prepublication phenotypic data on more than 2,000 P. berghei genes 

(www.plasmogem.sanger.ac.uk). Updated P. berghei gene IDs along with phenotypic data were 
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downloaded from the PlasmoGEM database and orthologues of these genes in P. falciparum 

were identified through PlasmoDB (Aurrecoechea et al, 2009). For P. falciparum genes that are 

orthologous to more than one P. berghei gene, only those with consistent gene essentiality 

information were noted (e.g., all orthologous P. berghei genes must be essential). A total of 

1,629 genes associated with lethal or slow growing phenotypes were obtained from 

PlasmoGEM, 1,572 of which were not in the original gold standard list. This gave an updated 

gold standard list consisting of 1,700 genes.  

As part of model validation, the proportion of genes predicted through FBA that were in 

the gold standard list (i.e., true positive predictions) were compared against the proportion of 

genes in the model that were in the gold standard list; and the corresponding enrichment score 

and hypergeometric p-value were calculated. The enrichment score is simply the proportion of 

gold standard genes in the predicted essential gene set divided by the proportion of gold 

standard genes in the whole model. The p-value was calculated through hypergeometric testing 

to negate the possibility that the enrichment of true positive predictions in the set of predicted 

genes was a result of chance (Huang et al, 2009). Simply put, the hypergeometric p-value is the 

probability of single gene knockout analysis randomly identifying n or more true positives in the 

predicted essential gene set. This was done using the hypergeometric function in SciPy (Jones et 

al, 2015). These calculations were done for lethal and growth-limiting gene knockouts together 

and separately. Similarly, single gene knockouts were done using the unconstrained model for 

comparison. 

The list of essential genes predicted using the Plata model was obtained from the 

supplemental table of single gene deletions in the corresponding publication (Plata et al, 2010). 

For consistency, only the genes in the Plata model whose knockouts resulted in < 95% biomass 

solution were compared with the essential gene predictions using the iFT342 model (as Plata et 

al also reported gene knockouts that resulted in biomass solution between 95% and 100%). 

Essential genes predicted by the Huthmacher model were obtained from the supplementary file 

that contained the ranked predicted essential reactions (12918_2009_509_MOESM18_ESM.txt) 

which listed the gene IDs associated with the essential reactions. Additionally, the authors 

presented in the publication predicted essential genes that coincided with their gold standard 

list (Huthmacher et al, 2010). Essential genes predicted by the Forth model were taken from 

Appendix VII of the final thesis manuscript (Forth, 2012). Similarly, gene knockouts that resulted 

in ≥ 95% biomass solution in the Forth model were excluded from the analysis. A Venn diagram 

was generated using the jvenn online resource (Bardou et al, 2014). Positive predictive value 

(𝑃𝑃𝑉) and true positive rate (𝑇𝑃𝑅) were calculated using the formulas shown in Equation 4.1 

and Equation 4.2, respectively. 
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𝑃𝑃𝑉 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑒𝑛𝑒𝑠
× 100% Equation 4.1 

 

𝑇𝑃𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑚𝑜𝑑𝑒𝑙
× 100% Equation 4.2 

 

4.2.4 Validation of novel targets 

Protein sequences of all 342 genes in the iFT342 model were obtained from PlasmoDB 

(Aurrecoechea et al, 2009) and were used for sequence alignment against proteins in the 

DrugBank database (Law et al, 2014). For genes in the model that aligned with proteins in the 

said database, information on the corresponding e-value of the alignment as well as the 

compounds that interact with the aligned protein were collected. These compounds include 

agonists, cofactors, inhibitors and substrates. Inhibitors of predicted novel essential genes (i.e., 

those predicted by the model to be essential but are not in the gold standard list) were selected 

and tested in vitro.  

Stock solutions of cladribine (200 mM, Cambridge Bioscience), gemcitabine (20 mM, 

Sigma), ritodrine (20 mM, Sigma), rosiglitazone (20 mM, Cambridge Bioscience) and DSM265 (10 

mM) (produced by the Chemistry Department, University of Leeds) were prepared in dimethyl 

sulfoxide (DMSO, Sigma). For the dose response assay, unsynchronised P. falciparum 3D7 (n = 3 

biological replicates) at 0.5% parasitaemia and 3% haematocrit were grown in black-sided, clear 

flat-bottomed 96-well plates (Costar) in malaria complete media (as detailed in Chapter 3) with 

different concentrations (from 1.3 nM to 20 M) of cladribine, gemcitabine and ritodrine. 

Rosiglitazone at similar concentrations was used as negative control. DSM265 with 

concentrations from 0.0128 nM to 1 M was used as positive control. Uninfected red blood cells 

were also grown in malaria complete media with DMSO (at a concentration similar to those 

incubated in the highest drug concentration) as additional control. The cultures were incubated 

in 1% oxygen, 3% carbon dioxide and 96% nitrogen in a humidified sealed chamber at 37oC. The 

chamber was gassed with the same gas mixture after 24 hours. After 48 hours of incubation, the 

relative amounts of live parasites were quantified using SYBR Green as described in Chapter 3 

(Smilkstein et al, 2004). Background fluorescence of uninfected red blood cells was subtracted 

prior to comparison with control cultures. Growth response was presented as a proportion of 

the control cultures grown in the absence of the drug. The dose response plots were done using 

GraphPad Prism 7. For those that showed growth inhibition, dose response was recalculated by 

subtracting the background fluorescence of the culture grown in the highest drug concentration 

(parasites left over after 48 hours of incubation) from each sample before replotting the dose 
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response curve separately (per replicate). The IC50 was calculated for each plot and the average 

value was reported alongside the standard error.  

To further describe the effect of a compound that demonstrated inhibition in the dose 

response assay, highly synchronised P. falciparum 3D7 at 0.5% parasitaemia and 3% haematocrit 

were grown in malaria complete media in 25 cm2 tissue culture flasks at 10 times the determined 

IC50 of the drug. Blood smears stained with 10% Giemsa in Sorensen’s buffer were taken at 24 

and 48 hours post incubation with the drug and the number of parasites at different stages (i.e., 

rings, late trophozoites and schizonts) was quantified by light microscopy. 

4.3 Results 

4.3.1 In silico glucose perturbation 

The range and the average in vitro flux along with the standard deviation and standard 

error of the mean were used separately as flux constraints for the respective boundary 

metabolite in the model, and the maximum biomass flux was calculated using flux balance 

analysis (Table 4.1). In some cases, the constraints resulted in an infeasible model, and no 

biomass solution was obtained. Only the average ± SD as boundary metabolite flux constraints 

was able to yield feasible solutions for all three stages and thus these values were utilised in the 

subsequent simulations. Comparing the biomass flux obtained using the standard deviation of 

the boundary metabolite flux as constraints, the schizont model was able to generate biomass 

at a rate that is almost ten times that in the late trophozoite model and even more than in the 

ring stage model. Taking into consideration the experimental metabolite flux constraints added 

into the model, it can be suggested that ring and trophozoite stage constraints permit but do 

not maximise biomass production as much as the schizont stage constraints. Although the 

parasite is most metabolically active during the trophozoite stage (Kirk & Lehane, 2014), biomass 

production may be more evident during the schizont stage when nuclear divisions and 

development of daughter merozoites occur (Gerald et al, 2011). 

 

Table 4.1 Maximum biomass flux (in mmol/gDW/hr) obtained using stage specific in vitro 
flux values as model constraints 

Constraint Rings Late trophozoites Schizonts 

Range No solution 3.10 x 10-2 3.77 x 10-1 

SD 1.68 x 10-2 4.17 x 10-2 3.86 x 10-1 

SEM No solution No solution No solution 

 

Using the three stage specific models (with the average in vitro metabolite boundary flux 

values ± SD as model constraints), the maximum biomass flux values at different percentages of 

glucose transport flux were calculated using FBA and were compared against in vitro data (Figure 
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4.2). As expected, for each stage specific model there was increasing biomass flux with 

increasing glucose flux; however, at one point, further increase in glucose flux does not 

contribute in a further increase in biomass flux. This may be explained by looking at the 

contribution of some metabolites to the biomass reaction, specifically those not produced 

downstream to or branching out from the glycolytic pathway (i.e., non-glucose dependent 

biomass reactants). Constraints on these metabolites tend to restrict the biomass production 

independently from the constraints on the availability of glucose. The late trophozoite stage 

model predicted maximum biomass flux even at 25% glucose transport flux, while at least 75% 

glucose influx was necessary for the ring stage model to achieve maximum biomass flux. Both 

the ring and late trophozoite stage specific models showed abrupt shift in biomass flux from 0 

to 100% at 25% and 75% glucose transport flux, respectively. In contrast, the schizont stage 

model displayed a more gradual increase in predicted biomass production with increasing 

glucose transport flux. For the schizont model, at least 80% glucose transport flux was required 

to give 100% biomass production. With the restrictions on the amino acid boundary flux, non-

glucose dependent biomass reactants such as pyrimidines are also restricted as they are 

dependent on available aspartate and glutamine. Looking at the individual trends in amino acid 

flux with increasing influx of glucose (Figure 4.3), influx of aspartate and glutamine are always 

maximised to satisfy the model’s need for these amino acids as well as pyrimidines; however at 

a certain point, the production of glutamate (which is a by-product of pyrimidine synthesis) 

surpasses the model’s requirement and thus resulting in a shift from influx to efflux of 

glutamate. Alanine and leucine are the two most abundant amino acids in haemoglobin, 

accounting for 25% of the total amino acid composition. Alanine is not present in the media and 

is not very abundant in the parasite proteome, thus there is constant efflux of the said amino 

acid into the media. On the other hand, leucine is the fourth most abundant amino acid in the 

parasite proteome. At lower glucose flux, haemoglobin digestion is capable of supplying enough 

leucine to satisfy the biomass reaction stoichiometry, thus there is no influx of the amino acid 

from the media. However, overall amino acid efflux constraints limit haemoglobin digestion. So 

despite this amino acid being abundant in haemoglobin, leucine from the media becomes 

necessary with increasing glucose influx. 

The late trophozoite stage model predictions showed no correlation with in vitro growth 

(r = 0.623, p-value = 0.073), while the mid-ring stage model predictions had a significant 

correlation (r = 0.820, p-value = 0.007). Of the three stage specific models, the late schizont stage 

model predictions were the best correlated with the in vitro data (r = 0.985, p-value = 1.36 x 

10-6). Additionally, the percentage of PfHT1 activity that resulted in 50% parasite growth in vitro 

(49.7%) was quite similar to what was predicted by the schizont model (50.7%), as shown in 
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Table 4.2. Restricting glucose flux in the unconstrained model showed similar results as the late 

trophozoite model, having a non-significant correlation with the in vitro data (r = 0.626, p-value 

= 0.07).  
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Figure 4.2 In vitro/in silico glucose transporter inhibition 
The blue, red and green curves represent the predicted biomass flux at different percentages of 
glucose transporter flux in the mid-ring, late trophozoite and late schizont stage models, 
respectively. The purple curve (in vitro data) represents the relative amounts of parasite (± SEM) 
as a percentage of the amount of parasites in the control after 48 hours of incubation in different 
concentrations of mannose, which inhibits glucose transport via PfHT1 (n ≥ 3 biological 
replicates).  
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Figure 4.3 Flux of amino acid boundary reactions necessary to maximise biomass production 
with increasing glucose boundary flux in the schizont stage model 
This figure shows the flux of 18 constrained amino acid boundary reactions at different 
percentages of glucose boundary flux. The y-axes represent the amino acid boundary flux (in 
green) that results in maximum biomass solution (in mmol/gDW/hr) while the x-axes represent 
the proportion of glucose boundary flux with respect to the glucose upper bound constraint. 
The blue and red lines represent the corresponding upper and lower bound constraints for the 
boundary reaction, respectively. 
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Table 4.2 Comparison of in vitro percent growth at different levels of glucose transporter 
activity against stage specific in silico model predictions  

PfHT1 
activity 

In vitro 
In silico (mmol/gDW/hr) 

Mid-ring Late trophozoite Late schizont 

0.0% 0.0% 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 

25.0% 22.5% 0.00 (0.0%) 4.17 x 10-2 (100.0%) 9.06 x 10-2 (23.5%) 

40.0% 37.1% 0.00 (0.0%) 4.17 x 10-2 (100.0%) 1.73 x 10-1 (44.8%) 

50.0% 62.7% 0.00 (0.0%) 4.17 x 10-2 (100.0%) 2.28 x 10-1 (59.1%) 

60.0% 85.1% 0.00 (0.0%) 4.17 x 10-2 (100.0%) 2.84 x 10-1 (73.6%) 

75.0% 104.7% 1.68 x 10-2 (100.0%) 4.17 x 10-2 (100.0%) 3.66 x 10-1 (94.8%) 

80.0% 121.6% 1.68 x 10-2 (100.0%) 4.17 x 10-2 (100.0%) 3.86 x 10-1 (100.0%) 

90.0% 107.1% 1.68 x 10-2 (100.0%) 4.17 x 10-2 (100.0%) 3.86 x 10-1 (100.0%) 

100.0% 100.0% 1.68 x 10-2 (100.0%) 4.17 x 10-2 (100.0%) 3.86 x 10-1 (100.0%) 

IC50
* 49.7% 68.8% 67.1% 50.7% 

Pearson’s correlation 0.82 0.62 0.99 

p-value 0.007 0.07 1 x 10-6 
*The IC50 presented here is the percentage of PfHT1 activity that resulted in 50% inhibition of in 
silico or in vitro growth. 

4.3.2 Comparison of flux values with gene expression data 

Out of 342 genes in the model, only 185 were associated with reactions with non-constant 

flux values. Comparing the predicted associated flux values of these genes with gene expression 

data gave an average Pearson’s correlation coefficient of 0.100 (empirical p-values = 0.03, 0.03), 

suggesting very weak overall correlation between gene expression and flux values. The r-values 

for individual reactions ranged from -0.998 to 1.000, with a median of 0.164 and a standard 

deviation of 0.724. Comparing the “time-shifted” gene expression values with the predicted flux 

gave an average r-value of -0.114 (empirical p-values = 0.99, 0.98).  

4.3.3 Identification of essential genes 

As mentioned earlier, predicted essential genes were divided into two groups: (1) those 

associated with knockouts that resulted in a lethal phenotype (biomass reaction flux = 0 

mmol/gDW/hr); and (2) those whose knockouts resulted in reduced growth. Although lower 

thresholds produced significant enrichment of gold standard genes in the predicted set of 

essential genes, reduced growth was set at 95% of the maximum biomass reaction flux as lower 

thresholds resulted in fewer predicted essential genes and higher hypergeometric p-values for 

enrichment of gold standard genes in the predicted gene set (Table 4.3). 
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Table 4.3 Total number of predicted essential genes and true positive predictions using 
different thresholds for defining limited in silico growth (threshold x maximum biomass 
reaction flux) 

Threshold Total number 
of predicted 

essential genes 

Number of true 
positives (in gold 

standard list) 

Positive 
predictive value 

Hypergeometric 
p-value 

1.00 77 59 76.6% 1.69 x 10-6 

0.99 77 59 76.6% 1.69 x 10-6 

0.95 77 59 76.6% 1.69 x 10-6 

0.90 75 57 76.0% 4.59 x 10-6 

0.80 75 57 76.0% 4.59 x 10-6 

0.70 75 57 76.0% 4.59 x 10-6 

0.60 53 40 75.5% 0.0003 

0.50 52 40 76.9% 0.0001 

 
 

Out of 342 genes in the model, 77 genes were predicted to be essential: 45 gene 

knockouts were predicted to be lethal (i.e., biomass solution = 0), while 32 were growth-limiting 

(i.e., biomass solution < 95% optimal biomass solution). Of the genes associated with lethal and 

growth-limiting knockouts, 82.2% and 68.8% were in the gold standard list, respectively. 

Combining genes associated with lethal and growth-limiting knockouts, 76.6% were associated 

with experimentally validated essential genes; 1.44 times more compared with the percentage 

of gold standard genes in the whole model (53.2%). Significant enrichment was observed in the 

group of genes associated with lethal and growth-limiting knockouts, with p-values of 1.52 x 10-5 

and 0.047, respectively; however, combining these two sets exhibited even more significant 

enrichment (p-value = 1.69 x 10-6). Figure 4.4 shows a comparison of the total number of 

essential genes divided into those associated with lethal and growth-limiting knockouts 

alongside the percentages of true positive predictions. Table 4.4 shows the total number of 

predicted essential genes and the total number present in the gold standard list. The 

corresponding enrichment scores and hypergeometric p-values are also presented in the table.  
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Figure 4.4 Total number of predicted essential genes 
This figure shows the total number of predicted essential genes together with the percentage 
of true positive predictions in comparison with the total number of genes in the model. The 
essential genes were divided into lethal and growth-limiting depending on the predicted effect 
of single gene knockout using COBRApy.  

Table 4.4 Total number of predicted essential genes in comparison with the set of gold 
standard genes 

  Predicted essential genes 

  
Genes in the 

model 
Combined Lethal 

Growth-
limiting 

Total 342 77 45 32 

in gold standard list 182 (53.2%) 59 37 22 

not in gold standard list 160 18 8 10 

Positive predictive value   76.6% 82.2% 68.8% 

Enrichment score  1.44 1.55 1.29 

p-value  1.69 x 10-6 1.52 x 10-5 0.047 

 

Evaluating all 77 essential genes, 29 genes (37.7%) were associated with reactions 

involved in amino acid metabolism which includes haemoglobin digestion. There were 21 

(27.3%) genes involved in carbohydrate metabolism and another 21 involved in nucleic acid 

metabolism. Notably, there was a significant increase in the proportion of genes associated with 

reactions involved in amino acid metabolism (p = 0.0001), nucleic acid metabolism (p = 0.0002) 

and carbohydrate metabolism (p = 0.007) in the list of essential genes in comparison with the 

overall proportions in the model. In order to identify the impact of adding boundary flux 

constraints in the model, single gene knockouts were also performed using the original model 

(iFT342) with unconstrained amino acid and glucose boundary exchanges. A total of 42 essential 

genes were identified, all of which were associated with a lethal phenotype and 34 (81.0%) are 

in the gold standard list (enrichment score = 1.52, p-value = 7.17 x 10-5). All 42 essential genes 
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in the unconstrained model were in the 77 essential genes identified using the schizont stage 

(constrained) model. Although the unconstrained model yielded a slightly higher enrichment 

score, it also gave a smaller set of predicted essential genes, missing 25 (42.4%) of true positives. 

In the constrained model, 7 genes involved in glycolysis were identified as essential, while 

only 3 were identified in the unconstrained model. This increase may be attributed to limiting 

the glucose and lactate flux to the values obtained experimentally. In the unconstrained model, 

lactate from the external environment is consumed rather than produced by the model, 

contributing to the production of important metabolites from glycolysis that ultimately feed into 

the biomass reaction (e.g., pyruvate, glyceraldehyde 3-phosphate). In comparison with nucleic 

acid metabolism, where boundary constraints on nucleosides/bases were not constrained, there 

was no difference in the set of essential genes identified by the constrained and unconstrained 

models. On the other hand, 22 (75.9%) out of the 29 predicted essential genes involved in amino 

acid metabolism were involved in haemoglobin digestion; and 17 out of the 22 genes (77.3%) 

were in the gold standard list. This is in stark contrast with the unconstrained model where none 

of the predicted essential genes were involved in haemoglobin digestion. The additional 

constraints in 18 amino acid boundary flux in the model have highlighted the importance of 

haemoglobin digestion in the model given the limited amino acid supply from the external 

environment. Figure 4.5 shows a comparison of the proportions of genes based on subsystem 

involvement between the predicted set of essential genes and the overall proportions in the 

model. Significant enrichment of genes involved in amino acid, carbohydrate and nucleic acid 

metabolism suggests the importance of these pathways in parasite growth. Table 4.5 shows the 

list of 18 novel essential genes (i.e., those not in the gold standard list) identified using the 

schizont stage model. 
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Figure 4.5 Subsystem involvement of reactions associated with predicted essential genes using the schizont stage model 
This figure shows the proportion of essential genes by subsystem or pathway involvement of their associated reactions in comparison with all the genes in the 
model. Subsystems with significant enrichment of predicted essential genes involved are marked with asterisks. Note that depending on the associated reactions, 
a given gene may be involved in more than one subsystem.   
*p-value = 0.0066, **p-value = 0.0002, ***p-value = 0.0001 
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Table 4.5 List of novel gene targets and their associated reactions as predicted by single gene knockout analysis using the schizont stage model 

Gene ID Associated reaction/s Pathway/s EC number Effect of gene 
knockout 

PF3D7_0111500 UMP-CMP kinase Pyrimidine Metabolism 2.7.4.14 Lethal 

PF3D7_0507200 
PF3D7_0932300 
PF3D7_1115300 
PF3D7_1115400 
PF3D7_1401300 

OxyHaemoglobin digestion: Vacuole Haemoglobin Digestion 3.4.11.- and 3.4.11.1 and 
3.4.11.2 and 3.4.11.9 and 
3.4.11.18 and 3.4.11.21 and 
3.4.14.1 and 3.4.21.62 and 
3.4.22.- and 3.4.23.- and 
3.4.23.38 and 3.4.23.39 and 
3.4.24.- 

Growth-limiting 

PF3D7_0813800 GDP-mannose 4,6-dehydratase Mannose and Fructose Metabolism 4.2.1.47 Lethal 

PF3D7_0815900 
PF3D7_1020800 
PF3D7_1446400 

Dihydrolipoamide acyltransferase 
component E2 

Pyruvate Metabolism 2.3.1.12 Lethal 

Dihydrolipoyl dehydrogenase Glycine and Serine Metabolism, Pyruvate 
Metabolism 

1.8.1.4 

2-Oxoglutarate dehydrogenase complex  Mitochondrial TCA Cycle 1.2.4.2 and 1.8.1.4 and 
2.3.1.61 

Pyruvate dehydrogenase E1 component 
subunit alpha and beta 

Pyruvate Metabolism 1.2.4.1 

PF3D7_0823900 Citrate transfer: mitochondria to 
cytosol; dicarboxylate/tricarboxylate 
carrier 

Mitochondrial TCA Cycle, Pyruvate 
Metabolism, Intracellular Transport 

- Growth-limiting 

Dicarboxylate/tricarboxylate carrier 
(DTC), Malate:oxoglutarate antiporter 

Mitochondrial TCA Cycle, Intracellular 
Transport 

- 

PF3D7_0922600 L-Glutamate ammonia ligase Glutamate Metabolism, Nitrogen 
Metabolism 

6.3.1.2 Growth-limiting 

PF3D7_0927300 Fumarate hydratase Mitochondrial TCA Cycle 4.2.1.2 Growth-limiting 
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Table 4.5 List of novel gene targets and their associated reactions as predicted by single gene knockout analysis using the schizont stage model (continued) 

Gene ID Associated reaction/s Pathway/s EC number Effect of gene 
knockout 

PF3D7_1014000 GDP-L-fucose synthase Mannose and Fructose Metabolism 1.1.1.271 Lethal 

PF3D7_1017400 D-Mannose 6-phosphate 1,6-
phosphomutase 

Mannose and Fructose Metabolism 5.4.2.8 Lethal 

PF3D7_1251300 ATP:dUMP phosphotransferase Pyrimidine Metabolism 2.7.4.9 Lethal 

Thymidylate kinase Pyrimidine Metabolism 2.7.4.9 

PF3D7_1368700 Mitochondrial carrier protein Mitochondrial TCA Cycle, Intracellular 
Transport 

- Growth-limiting 

PF3D7_1453500 NADPH:NAD+ oxidoreductase Nicotinate and Nicotinamide Metabolism 1.6.1.1 Growth-limiting 
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In the Plata model, 202 out of all 366 genes (55.2%) in the model and 44 out of the 58 

(75.9%) predicted essential genes (< 95% biomass solution) are in the gold standard list, giving 

an enrichment score of 1.38 with a hypergeometric p-value of 0.0004. Out of the 58 lethal and 

growth-limiting gene knockouts predicted by the Plata model, only 19 are in common with the 

essential genes predicted by our model. Unfortunately, gene association data was not available 

in the Huthmacher model file, thus the enrichment score and its accompanying hypergeometric 

p-value cannot be calculated. Out of the 185 genes associated with predicted essential reactions 

in the Huthmacher model, 115 (62.2%) are in the gold standard list and 26 are in common with 

our predicted gene set. The Forth model identified 79 essential genes, 55 of which (69.6%) are 

in the gold standard list. In comparison with the total number of genes in the Forth model that 

are in the gold standard list (87 out of 143, 60.8%), there is a lower but significant enrichment 

(1.14) of true positives in the predicted essential gene set (hypergeometric p-value = 0.01). It is 

not surprising that the Forth model had the highest true positive rate (63.2%) compared to 

iFT342 (32.4%) and the Plata models (21.8%), given the level of manual and meticulous curation 

done on this small model. Table 4.6 summarises the total number of essential genes predicted 

by the four malaria metabolic models in comparison with the gold standard list along with the 

corresponding enrichment scores and hypergeometric p-values. This table also includes the total 

number of predicted essential genes by the unconstrained model. Figure 4.6 gives a summary 

of the total number of common essential genes predicted by the four malaria metabolic models. 

There are a total of 11 genes that have been predicted by all four models to be essential, and 

only one, thymidylate kinase (PF3D7_1251300, 2.7.4.9) is considered novel (Table 4.7).  
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Table 4.6 Number of essential genes predicted by existing malaria models in comparison with the gold standard list in order of increasing hypergeometric 
p-value 

Model 
Genes Positive 

predictive 
value 

True positive 
rate 

Enrichment 
score 

p-value Total 
in model 

Actual 
essential 

Predicted 
essential 

True positive 

iFT342 342 182 (53.2%) 77 59 76.6% 32.4% 1.44 1.69 x 10-6 

iFT342u* 342 182 (53.2%) 42 34 81.0% 18.7% 1.52 7.17 x 10-5 

Plata 366 202 (55.2%) 58 44 75.9% 21.8% 1.38 0.0004 

Forth 143 87 (60.8%) 79 55 69.6% 63.2% 1.14 0.01 

Huthmacher 579 ** 185 115 62.2% ** ** ** 

*Unconstrained iFT342 model 
**IDs for all genes in the Huthmacher model were not available therefore comparison with the gold standard list and calculation of true positive rate, enrichment 
score and hypergeometric p-value were not possible 
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Figure 4.6 Venn diagram of essential genes predicted by the four models  
This figure shows the total number of common and unique essential genes predicted by the four 
malaria models. 

Table 4.7 Common essential genes predicted by all four malaria models 

Gene ID Name Novel target? 

PF3D7_0417200 Dihydrofolate reductase-thymidylate synthase in gold standard 

PF3D7_0512700 Orotate phosphoribosyltransferase in gold standard 

PF3D7_0603300 Dihydroorotate dehydrogenase in gold standard 

PF3D7_0923800 Thioredoxin reductase in gold standard 

PF3D7_0928900 Guanylate kinase in gold standard 

PF3D7_1015900 Enolase in gold standard 

PF3D7_1023200 Orotidine monophosphate decarboxylase in gold standard 

PF3D7_1251300 Thymidylate kinase novel 

PF3D7_1308200 Carbamoyl phosphate synthetase in gold standard 

PF3D7_1344800 Aspartate carbamoyltransferase in gold standard 

PF3D7_1472900 Dihydroorotase in gold standard 

 

4.3.4 Validation of novel targets 

The protein sequences of all genes in the model were aligned against the sequences in 

the DrugBank database (Law et al, 2014) and compounds (e.g., inhibitors, cofactors, substrate) 
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that are known to interact with the aligned sequences were identified. Out of 342 genes in the 

model, 124 were mapped against proteins in DrugBank. It is important to note that the selection 

of inhibitors for identified novel targets was done prior to the incorporation of the gold standard 

genes obtained from PlasmoGEM. By utilising the original set of 128 gold standard genes, 36 out 

of the 77 predicted targets were identified as novel. Twenty of these “novel” targets aligned 

with proteins in the DrugBank database, with only 4 having known inhibitors. However, after 

taking into consideration the set of genes obtained from PlasmoGEM, only two of these targets 

remain novel: dihydrolipoyl dehydrogenase, apicoplast (aLipDH) (PF3D7_0815900) and UMP-

CMP kinase, putative (PF3D7_0111500). Table 4.8 shows the four predicted novel gene targets 

that aligned with protein sequences in the DrugBank database, together with the corresponding 

alignment e-value and known inhibitors. Some of the identified inhibitors have already been 

tested against the parasite in vitro. Methotrexate, an anti-metabolite drug that is currently being 

used in autoimmune diseases and cancer, has been shown to inhibit in vitro growth of a number 

of P. falciparum strains including the multidrug-resistant (K1) strain (Dar et al, 2008). 

Methotrexate is known to target dihydrofolate reductase, which is also targeted by the 

antimalarial drug cycloguanil (Uga et al, 2006; Srivastava & Vaidya, 1999). In addition, it has also 

been identified as a potent inhibitor of the human 6-phosphogluconate dehydrogenase (6PGD). 

In vitro inhibition assay on human 6PGD has shown that ketotifen, dacarbazine and meloxicam 

had IC50 in the low nanomolar range while furosemide and methotrexate had slightly higher IC50 

between 100 and 200 nM (Akkemik et al, 2010). Among the identified inhibitors of the human 

6PGD in Table 4.8, ritodrine had the highest IC50 of 3.66 mM and was therefore selected for 

testing against the parasite.  
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Table 4.8 Novel gene targets with protein sequences that aligned with proteins in the 
DrugBank database with known FDA-approved inhibitors in order of increasing e-value 

Gene ID Gene name E-value Drug name Drug class 

PF3D7_1454700 6-phosphogluconate 
dehydrogenase, 
decarboxylating, 
putative 

1.53E-132 Methotrexate Anti-metabolite, 
anti-cancer, 
immunosuppressant 

Furosemide Diuretic 

Meloxicam Non-steroidal anti-
inflammatory drug 

Dacarbazine Anti-cancer 

Ritodrine Uterine relaxant 

Ketotifen Antihistamine 

PF3D7_1015800 Ribonucleotide 
reductase small 
subunit, putative 

3.38E-45 Cladribine Anti-cancer 

Gallium 
nitrate 

Treatment for 
hypercalcaemia 

PF3D7_0815900 Dihydrolipoyl 
dehydrogenase, 
apicoplast (aLipDH) 

1.24E-25 Carmustine Anti-cancer 

PF3D7_0111500 UMP-CMP kinase, 
putative 

1.08E-24 Gemcitabine Anti-metabolite, 
anti-cancer 

 

Cladribine and gemcitabine, which are antineoplastic nucleoside analogues, were also 

selected for testing against the parasite in vitro. Cladribine is converted to its triphosphate form 

and inhibits ribonucleotide reductase (M2 subunit). This in turn reduces the supply of 

deoxynucleotide triphosphates in the cell, thus inhibiting tumour growth. The triphosphate form 

of cladribine also gets incorporated into the DNA during DNA elongation, affecting DNA 

synthesis and repair (Bonate et al, 2006; Robak et al, 2006). Similarly, gemcitabine is 

phosphorylated into its active metabolite, which then inhibits human ribonucleotide reductase 

and affects DNA synthesis and repair in neoplastic cells (Mini et al, 2006). Specifically, 

gemcitabine binds to the large subunit of the human ribonucleotide reductase which is not 

identical to the parasite's ribonucleotide reductase (e-value = 0.99). Moreover, gemcitabine also 

inhibits UMP/CMP kinase, which is important in the pyrimidine metabolism (Hsu et al, 2005). 

For proof-of-concept, three drugs (i.e., ritodrine, cladribine and gemcitabine) separately 

targeting three different enzymes were selected for testing in parasites in vitro, while 

carmustine, which is used for malignant gliomas, was not selected as it is the most hazardous of 

the four compounds (based on Sigma materials safety data sheet). Rosiglitazone, an inhibitor of 

acyl-CoA synthetase (PF3D7_0525100), was used as in the negative control as the enzyme was 

predicted to be non-essential for parasite growth. DSM265 (Phillips et al, 2015), which targets 

dihydroorotate dehydrogenase (a known essential enzyme for parasite growth) was used in the 

positive control. It is important to note that 6PGD is present in the red blood cell which may 
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interfere with the metabolism of both the parasite and the host cell; however, ribonucleotide 

reductase and UMP/CMP kinase are both absent in the red blood cell (Prchal & Gregg, 2005). 

Although the parasite 6PGD sequence had a very significant alignment with the human 

counterpart (UniProt ID: P52209), growth inhibition with ritodrine was not observed in vitro 

(Figure 4.7). Similarly, there was no growth inhibition observed in the presence of cladribine 

even though the predicted target, the Plasmodium ribonucleotide reductase (PF3D7_1015800, 

1.17.4.1), is quite similar to the M2 subunit of the human homologue (UniProt ID: P31350), with 

five out of the six metal binding sites and the single active site being conserved between the two 

(Magrane & UniProt Consortium, 2011). On the other hand, gemcitabine has been shown to 

inhibit parasite growth, with an IC50 of 2.62 ± 0.53 M. Several groups have tested FDA-approved 

drugs for antimalarial activity (Eastman et al, 2013; Chong et al, 2006; Weisman et al, 2006), and 

these results were consistent with those of Eastman et al and Chong et al. Possible reasons for 

the inactivity of ritodrine and cladribine against the parasite may be because the drugs do not 

reach their enzyme targets, or because they are not converted into their active form. Both 

cladribine and gemcitabine have been shown to be transported by the Plasmodium equilibrative 

nucleoside transporter (PfENT1) (Parker et al, 2000) and both require phosphorylation by 

deoxycytidine kinase for enzyme inhibition to take place (Robak et al, 2006; Mini et al, 2006). 

However, differences in the affinity to nucleoside kinases as well as difference in substrate 

binding sites in the target enzyme may be reasons for the inactivity of the former. 6PGD is an 

important enzyme in the pentose phosphate pathway, specifically in the generation of redox 

equivalents (i.e., NADPH) and ribose 5-phosphate for DNA synthesis (Bozdech & Ginsburg, 2005). 

Because the second half of the pentose phosphate pathway is also capable of producing ribose 

5-phosphate in the absence of 6PGD, this enzyme may be important when it comes to 

combatting elevated oxidative stress. Culture conditions may therefore play a role in the 

effectivity of ritodrine and this may be the reason why the drug exhibited 14% growth inhibition 

at 10 M in vitro (Weisman et al, 2006). Looking at other drugs that have been predicted to 

target 6PGD (Table 4.8), methotrexate and ketotifen have been shown to inhibit Plasmodium 

growth in vitro and in vivo, respectively (Dar et al, 2008; Milner et al, 2012). However, these 

information must be interpreted with caution as these drugs are known to have other targets 

(Dar et al, 2008; Law et al, 2014). 
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Figure 4.7 Dose response curves of P. falciparum 3D7 after 48 hours of incubation in selected 
compounds (average ± SEM) 
Cladribine, gemcitabine and ritodrine were identified using the DrugBank database as potential 
inhibitors of novel targets predicted using the schizont stage model. Rosiglitazone, which was 
predicted to inhibit a non-essential target, was used as a negative control and DSM265, which 
targets DHODH, was used as a positive control. (n = 3) 

The effect of gemcitabine at 10 times the determined IC50 on synchronised P. falciparum 

in vitro cultures was monitored over a 48 hour incubation period. Gemcitabine seemed to 

prevent the development of schizonts, thus resulting in a culture composed purely of 

trophozoites after 48 hours of incubation with the drug (Figure 4.9). Upon closer inspection of 

parasites, large lightly stained bodies (V) were visible in a number of trophozoites (Figure 4.10b). 
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In addition, haemozoin in most trophozoites appeared to be disorganised compared with 

normal trophozoites (Figure 4.10c-d). Gemcitabine was predicted to inhibit P. falciparum UMP-

CMP kinase (PF3D7_0111500, 2.7.4.14), which phosphorylates UMP to UDP, the latter serving 

as a precursor for thymidine deoxynucleotides and cytidine nucleotides and deoxynucleotides. 

The parasite UMP-CMP kinase, which is 371 amino acids long, aligns with the shorter human 

homologue (UniProt ID: P30085, 196 amino acids long), with an e-value of 1.08 x 10-24. Five of 

the six amino acid residues that serve as binding sites for a number of nucleotides are conserved 

between the two species, suggesting that gemcitabine may indeed be targeting the parasite 

UMP-CMP kinase. Limiting nucleotides important for DNA synthesis may therefore explain why 

parasites incubated in gemcitabine were unable to undergo schizogony. 

 

 

Figure 4.8 Percentage of parasite stages at 24 and 48 hours after incubation in 10 times the 
determined IC50 of gemcitabine 
Synchronised parasites were grown in malaria complete media with 10 times the determined 
IC50 of gemcitabine and was observed at 24 and 48 hours after adding the drug. The parasites 
incubated in gemcitabine were unable to progress from trophozoite stage to schizont stage, and 
therefore were unable to replicate and produce rings after 48 hours (in contrast with the control 
cultures).  
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Figure 4.9 Blood smears of synchronised P. falciparum 3D7 parasites stained with 10% 
Giemsa after 24 and 48 hours of incubation in 10 times the determined IC50 of gemcitabine 
Compared with the control, parasites grown in gemcitabine were unable to develop from 
trophozoites to schizonts.  
 
 

 

Figure 4.10 Trophozoite stage P. falciparum 3D7 parasites stained with 10% Giemsa after 48 
hours of incubation in 10 times the determined IC50 of gemcitabine 
Large lightly stained bodies (V) were observed in a number of trophozoites after 48 hours of 
incubation in gemcitabine. Moreover, haemozoin (red arrow) in those exposed to the drug 
appeared to be disorganised (B-D) compared with the control (A). 
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4.4 Discussion 

Addition of constraints is sometimes done with the aid of minimisation of metabolic 

adjustments (MOMA). This method finds a solution space for a constrained model that is closest 

to that of the unconstrained (i.e., wild-type) model (Segrè et al, 2002). Since some of the 

experimental metabolite flux constraints were able to generate feasible models, there was no 

need to apply MOMA as utilising experimental constraints will give better predictions compared 

with MOMA-adjusted constraints (Price et al, 2004). With the addition of experimentally 

obtained metabolite flux, the schizont stage model was able to model in vitro parasite growth 

in glucose restricted environment with remarkable fidelity (r = 0.985, p-value = 1.36 x 10-6). 

Moreover, there was a significant enrichment of experimentally validated essential genes in the 

set of essential genes predicted by the model (p-value = 1.69 x 10-6), more significant compared 

with the predictions of the Plata model (p-value = 0.0004). These validations therefore give us 

more confidence on the verity of the predictions of our model.  

In contrast with other models, gene expression data was not incorporated into the iFT342. 

A number of malaria metabolic models have been utilised alongside gene expression data and 

have facilitated in the generation of accurate predictions (Huthmacher et al, 2010; Plata et al, 

2010; Fang et al, 2014); however, the iFT342 has shown only very weak overall correlation 

between predicted flux and gene expression. This may be expected as there are several post-

transcriptional factors that contribute to discrepancies between gene expression and overall 

protein activity. Although some have linked this discrepancy to the observed delay between 

peak gene expression and protein abundance (Le Roch et al, 2004; Foth et al, 2011), other 

contributing factors may include mRNA and protein half-lives. In a study that looked into the 

rates of decay of mRNA of 2,744 P. falciparum genes (Shock et al, 2007), it has been shown that 

the half-lives of different mRNAs globally change throughout the erythrocytic cycle of the 

parasite. Furthermore, groups of genes with similar patterns in decay rates showed significant 

enrichments of GO terms. This therefore suggests that good correlation may be observed 

between gene expression and flux in certain groups of genes in a metabolic model but not all. 

In lieu of gene expression data, proteomics and metabolomics data incorporated into a 

metabolic model have been shown to improve model accuracy (Yizhak et al, 2010). Also, 

incorporation of metabolomics data has been suggested as a model constraint as this data 

provides a better insight on the enzyme activity compared with transcriptomics or proteomics 

data (Rossell et al, 2006; Yizhak et al, 2010). 

Even though the predicted essential gene set obtained using the unconstrained iFT324 

model gave a higher enrichment score of 1.52, versus 1.44 in the schizont stage model, the 

unconstrained model predicted 45.5% fewer essential genes and missed 42.4% of the gold 
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standard genes predicted by the constrained model. This therefore reiterates the important 

contribution of adding metabolic constraints to the accuracy of model predictions (Price et al, 

2004). With this in mind, the schizont model may further be improved through the incorporation 

of more experimentally measured constraints. Also, incorporation of experimentally measured 

lipid and carbohydrate biomass components may increase the accuracy of model predictions. In 

addition, it is worth noting that the Forth model showed the highest true positive rate compared 

with the other malaria models. This may be attributed to the manual curation that was done in 

developing this model. With further evaluation, analysis and curation of the iFT342 model, it is 

likely that the accuracy of model predictions will also improve. Cut offs for identifying growth-

limiting knockouts are also important. Given the results of this study, a threshold of 95% of the 

maximum biomass output is recommended, as lower thresholds may miss important essential 

targets.  

The poor correlation between the predictions of the early stage (i.e., ring and trophozoite) 

models with the in vitro data may be attributed to the limited accuracy of monitoring metabolite 

concentrations in the growth media as a proxy for measuring metabolite exchanges between 

the parasite and red blood cell, particularly during the early stages. The erythrocyte membrane 

has been shown to slowly increase in permeability via the NPPs during the early parasite stages 

(Waldecker et al, 2017). It is possible that the metabolite exchanges between the ring stage 

parasite and the internal compartment of the red blood cell (host cytosol) may not be well 

represented by the exchange of metabolites between the infected RBC and the external 

environment (media) due to the fact that the permeability during the ring stage is lesser 

compared with the permeability during the later stages. Furthermore, disproportionate changes 

in the parasite and host cell volumes (Lew et al, 2003) may have resulted in an apparent efflux 

of metabolites during the trophozoite stage, making changes in metabolite concentrations in 

spent media also less representative of host and parasite metabolite exchanges at this stage. 

However, it is also possible that the ring and trophozoite stage models may be modelling 

parasite metabolism more than parasite growth (i.e., biomass production), which is most 

exemplified in the schizont stage when mitosis occurs (Gerald et al, 2011). Thus assigning a more 

appropriate stage-specific objective function may be considered. 

On the contrary, shifts in metabolite concentration in the spent media may best represent 

influx and efflux of these different components from the parasite during the schizont stage, 

when the red blood cell is most permeable and the host and parasite volumes increase at a slow 

but steady rate (Lew et al, 2003). Moreover, experimental quantification of biomass 

components that was used to derive the model’s biomass reaction equation was obtained from 

late schizont stage parasites (Forth, 2012), which may explain why the schizont stage model 
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predictions correlated well with the in vitro data. In addition, asynchronous parasite cultures 

were utilised in generating the in vitro data and growth measurements were estimated using 

SYBR green fluorescence which detects the amount of double stranded DNA that correlates well 

with parasitaemia (Smilkstein et al, 2004). Given that DNA replication happens in the schizont 

stage (Bozdech et al, 2003), the in vitro growth measurements may be representing the schizont 

stage more than the earlier stages, which also explains the high in vitro and in silico growth 

correlation. 

Further improvement of the model may be done through inclusion of additional 

metabolite boundary constraints. Published data on metabolite concentrations in spent media 

over a 48 hour time course done by Olszewski et al (2009) may be utilised and the metabolite 

flux recalculated for incorporation into the model; however, due to the experimental technique 

that they used, separate concentration measurements for leucine and isoleucine was not 

feasible. Nevertheless, they have provided valuable concentration measurements for 59 

metabolites at 8 hour intervals over the 48 hour erythrocytic cycle of the parasite. As many of 

these metabolites do not have boundary transport reactions in the model, further updating and 

expanding the model to include transport reactions and metabolic pathways involving these 

metabolites may prove to be an important next step in improving model accuracy. Development 

of accurate gametocyte and liver stage specific models with the use of stage specific biomass 

quantification and metabolite measurements will be important in the identification of drug 

targets and the subsequent development of drugs that can reduce transmission or kill latent 

stage parasites.  

Here, 18 novel drug targets were identified (Table 4.5) and a few of them have already 

being investigated. For example, oxoglutarate dehydrogenase (PF3D7_0815900, 1.2.4.2, 1.8.1.4, 

2.3.1.61) has been explored as potential drug targets. Oxythiamine, a thiamine analogue, which 

is converted by thiamine pyrophosphokinase to oxythiamine pyrophosphate, has been shown 

to inhibit the enzyme complex (Chan et al, 2013). Several attempts using multiple techniques to 

knockout fumarate hydratase (PF3D7_0927300, 4.2.1.2) in P. falciparum did not produce any 

viable parasite line which may suggest that this enzyme is essential for parasite growth (Ke et al, 

2015). Given the importance of L-glutamate ammonia ligase in Mycobacterium, it is also being 

explored as a drug target in Leishmania and Plasmodium (Singh & Siddiqi, 2017). As a proof of 

concept, inhibitors for selected novel targets were tested, and incubation with gemcitabine, 

which was predicted to target UMP-CMP kinase (PF3D7_0111500, 2.7.4.14), resulted in 

inhibition of in vitro parasite growth. Additional in vitro assays may be done to ascertain that 

gemcitabine is targeting the said enzyme. This can be done by testing gemcitabine on purified 

parasite UMP-CMP kinase. Once this has been confirmed, comparison of human and parasite 
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enzyme may be the key to developing an analogue of gemcitabine that will specifically target 

the parasite but not the host enzyme. It is important to note that several drugs that interact with 

novel targets predicted by the model still have unidentified drug action (as to whether they are 

inhibitors, agonists, cofactors, etc.) on the enzyme target (based on DrugBank). These drugs may 

be evaluated for function and identified inhibitors may be repurposed as antimalarial drugs. 

Additionally, other drug databases such as the STITCH database (Kuhn et al, 2014) may be 

exploited in order to find other compounds that may inhibit these predicted novel targets. In 

the light of prioritising drug target validation, inhibition of novel targets may be focussed 

primarily on those commonly predicted by all malaria models. Gene knockouts through CRISPR-

Cas9, which have already been demonstrated in P. falciparum (Ghorbal et al, 2014; Wagner et 

al, 2014) may also be considered as a more definitive means of novel target validation.  
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Chapter 5 Discussion 

5.1 General purpose of genome scale metabolic models 

The main objective of developing a genome scale metabolic model is to accurately 

represent the metabolic processes in a given organism with the goal of utilising the model as a 

less costly and less time-consuming alternative to wet lab experiments (Monk et al, 2014). Use 

of metabolic models becomes even more important when it comes to understanding dangerous 

organisms or pathogens or when dealing with organism stages that are difficult to 

experimentally manipulate (Gardner & Boyle, 2017). This objective may be misinterpreted as an 

aim to ultimately replace wet lab experiments. Rather, model simulations ought to be used as a 

means to generate hypotheses for validation in the laboratory (Kell & Goodacre, 2014). More 

importantly, the relationship between experimental and in silico work should be seen as a 

constant cyclical movement of information where one contributes to the improvement of the 

other (Figure 5.1). Initially, models are reconstructed using available information on an 

organism’s genome and gene-associated reactions and species. Subsequently, additional 

experimental data may be incorporated into the model as constraints, contributing to the 

generation of more accurate predictions (Price et al, 2004). Moreover, the model can be 

improved by considering known essential and non-essential genes or reactions that are in the 

model and making the necessary corrections that are strongly based on existing published data 

to align the model predictions with gene essentiality data. As there is a continuous influx of new 

information on gene and reaction annotations and essentiality, as well as data obtained from 

experimental validation of novel targets, the model can regularly be updated and new 

information can be obtained and used to further influence experimental approach. In this 

process, new drug targets may be identified for drug development. 
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Figure 5.1 Flow of information between wet lab experiments and metabolic modelling 
This diagram shows how information obtained from wet lab experiments can be used to improve 
genome scale metabolic models. Conversely, data and information obtained from model 
simulations provide hypotheses that may be utilised to prioritise experimental work and 
improve experimental plans. 

5.2 Model reusability 

A good metabolic network model may be summarised into two main characteristics: 

reusable and accurate. The former deals more with the format of the model while the latter 

focusses on the content. As with much scientific research, replicability is important. It is essential 

that models are made in a standardised format so that they may be utilised by the greater 

scientific community. The SBML format was developed for the purpose of generating a model 

that can be used by different software (Chaouiya et al, 2015). Furthermore, addition of species 

and reaction annotations have been recommended to facilitate model comparison 

(Ravikrishnan & Raman, 2015). Having species identifiers such as InChI keys, SMILES and 

PubChem IDs is an important characteristic of the iFT342 as none of the other existing malaria 

metabolic models have incorporated these identifiers. Furthermore, updating gene IDs and EC 
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classification numbers has also contributed to improving the quality of the model developed 

here.  

More than simplifying model comparisons, models ought to be made in such a way that 

they can easily be merged with other models when necessary. This can be important in the case 

of developing consensus models and modelling interactions between organisms, such as the 

host and the parasite. This has already been done to model blood stage and liver stage malaria 

parasites (Huthmacher et al, 2010; Wallqvist et al, 2016; Bazzani et al, 2012). With the constant 

development and improvement of the “community consensus” human metabolic model, Recon 

2.2 (Swainston et al, 2016), up-to-date human tissue specific models may be utilised alongside 

improved parasite models. In addition, there are a number of models on Mus musculus (Yilmaz 

& Walhout, 2017) that may be combined with rodent parasite models. Using gene homology 

and gene expression data, species specific malaria models may be developed for use with other 

host models. To date, there is no single ontological format that is recommended for use in 

genome scale metabolic models. Additional species and reaction annotations will aid in model 

comparison; however, this only partially addresses the issue of merging models. At least with 

COBRApy, reading multiple models is easy; but COBRApy relies heavily on the assigned IDs for 

accessing and editing species and reaction information. For modelling host-parasite interaction, 

one has to compare and standardise species IDs to allow proper merging of two models. As for 

the development of consensus models, having several models that utilise different ontological 

systems for reaction, species and compartment IDs, one still has to, at the very least, evaluate 

and compare species annotations of reactants and products in the reaction and the 

compartmental location to avoid unnecessary duplication of reactions.  

Different groups have their own preference when it comes to the use of a specific reaction 

and species ontological system. As some of these groups have been using the same system for 

years, it would be difficult to impose a single unifying ontological system. Online resources such 

as metanetx.org (Bernard et al, 2014) offers conversion of identifiers in uploaded models into 

its own MNXref system, but the process is not 100% efficient and still requires manual 

examination of the mapped and unmapped identifiers. A similar resource may be developed 

that can serve as a repository for genome scale metabolic models that not only converts 

uploaded models into a unified ontological system, but also populates a species and reaction 

database with common and unique entries alongside their corresponding annotations. Species 

data may include the old ID, name, chemical formula, InChI keys, SMILES, PubChem IDs, links to 

other databases and an assigned unified ID. Reaction data may include the old reaction ID, name, 

EC classification number, gene association data, reactants and products, reversibility, links to 

other databases when available and an assigned unified ID. These species and reaction data may 
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then be used to evaluate and convert species and reaction IDs from uploaded models. Similar to 

other trustworthy databases and online resources, manual curation of database entries may be 

necessary. Community-driven database maintenance may be applied where different experts 

can contribute, annotate and amend database information in conjunction with addressing 

feedback from users, similar to what is being implemented in other knowledgebases like 

EuPathDB (Aurrecoechea et al, 2013), GeneDB (Logan-Klumpler et al, 2012) and TrypanoCyc 

Pathway/Genome Database (Shameer et al, 2015). 

5.3 Model accuracy 

The second characteristic of a good model is accuracy. This includes use of reliable gene, 

reaction and species information in model reconstruction. The accuracy of the predictions of the 

iFT342 model may partly be attributed to the use of the small but highly curated Forth model 

(Forth, 2012) and utilising online resources to ensure reactions from the other malaria models 

(Plata et al, 2010; Huthmacher et al, 2010) that were added into the final model have accurate 

annotations. Gene-protein-reaction relationships, reaction (e.g., reaction stoichiometry, 

reversibility) and species attributes (e.g., chemical name, formula) were verified and amended 

based on information obtained from PlasmoDB (Aurrecoechea et al, 2009), MPMP (Ginsburg & 

Abdel-Haleem, 2016), KEGG (Kanehisa et al, 2016) and BRENDA (Placzek et al, 2017). Increasing 

the genome coverage of the model and considering reactions located in compartments not 

present in the current model may help increase the accuracy of the model, especially when 

considerable attention is given to ensure the verity of the incorporated reactions and reaction 

attributes. Reactions from the Huthmacher model contained in the nucleus and the endoplasmic 

reticulum may be further evaluated before adding into the current model. Transport reactions 

can then be added to link these reactions to the existing metabolic network. 

Keeping in mind that FBA looks into the interconversion of metabolites within the 

metabolic network of a given organism, the correctness of reaction stoichiometry and 

reversibility plays a very crucial role in ensuring the accuracy of model predictions. The reactions 

in the iFT342 model have been compared against the abovementioned databases, checked for 

reaction mass balance and corrected as needed. A similar approach of consulting multiple 

databases to ensure correctness of reaction reversibility was done; however, there were a 

number of reactions with no available information. In this case, the reaction was maintained as 

reversible. Since the reversibility of reactions affects the accuracy of model predictions 

(Swainston et al, 2016), the accuracy of the current model will greatly benefit from new 

information on reaction thermodynamics. Nevertheless, the percentage of irreversible reactions 

in the model is close to that of highly curated models. A comparison of the number and 
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percentage of irreversible reactions in selected metabolic models, including highly curated 

human, yeast and E. coli models is shown in Table 5.1.  

 

Table 5.1 Number and percentage of irreversible reactions in selected GSMs determined 
using MetExplore in order of decreasing percentage of irreversible reaction 

Model name Organism 
Total number 
of reactions 

Irreversible reactions 
Reference 

Number Percentage 

iFT342 P. falciparum 551 355 64.4%   

iAF1260 E. coli 2382 1530 64.2% 
(Feist et al, 

2010) 

iMM904 S. cerevisiae 1577 928 58.8% 
(Herrgård et 

al, 2008) 

iTH366 P. falciparum 1001 589 58.8% 
(Plata et al, 

2010) 

Recon2 H. sapiens 7440 4112 55.3% 
(Thiele et al, 

2013) 

iAC560 L. major 1112 482 43.3% 
(Chavali et al, 

2008) 

iTF143 P. falciparum 247 48 19.4% (Forth, 2012) 

PlasmoNet P. falciparum 1376 0 0.0% 
(Huthmacher 
et al, 2010) 

 

Even though all internal reactions in the iFT342 model are mass balanced, there is still 

room for improvement in terms of species with Markush structures (R-groups) in their molecular 

formulas. In the development of the consensus yeast model (Herrgård et al, 2008), some 

reactions with species having R-groups in their molecular formulas were removed from the 

model to avoid ambiguity; however, this resulted in the decrease in reactions involved in certain 

pathways. A better means to address this issue is through more extensive curation as in the 

development of the human model, reducing the total number of species with R-groups from 377 

in the Recon 2.04 model to 68 in the 2.2 version (Swainston et al, 2016). The iFT342 model also 

has 68 metabolites with R-groups in their molecular formulas. It is important to note that with 

updating the molecular formulas of these species, reaction mass balance have to be reassessed 

and it may be necessary to add new reactions to accommodate the addition of these “new” 

metabolites. 

With regard to dead-end metabolites, the model developed here had none and has the 

least percentage of dead reactions; however, to further improve the model, it is important to 

consider other forms of metabolites that may result in dead reactions. Take for example the 

case of the metabolite CMP in the model (as discussed in Chapter 2) where it is produced by 

multiple irreversible reactions (in two different compartments) but is only consumed by a single 

transport reaction that shuttles the metabolite between these two compartments. Even though 
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CMP is both produced and consumed, it has contributed to blocked reactions, therefore 

additional reactions were necessary to alleviate the problem. Given that 69 (12.5%) dead 

reactions are still present in the model, further assessment of reactions may be done to identify 

and correct these gaps. “Pseudo-gap” metabolites (Ponce-de-León et al, 2013) may be the 

reason for some if not all of these blocked reactions. “Pseudo-gap” metabolites are those that 

participate in more than one reaction (both consumed and produced) but are constantly being 

recycled (as in the case of a cofactor). This results in a zero net production of the said 

metabolites. Therefore pathways that terminate in the production or consumption of these 

metabolites end up with zero flux. 

Compared with the other malaria metabolic models (Forth and Plata models), the iFT342 

model was able to generate the most accurate gene essentiality predictions, giving the highest 

and most significant enrichment of true positive predictions (compared with experimentally 

validated essential or gold standard genes). Out of 182 experimentally validated essential genes 

that are present in the whole model, only 59 were identified as essential after simulating single 

gene knockouts. This means that the model can still be refined further by correcting the 

discrepancy (123 false negatives) between the gold standard genes and the list of predicted 

essential genes (Chavali et al, 2012b). By looking at the reactions associated with false negatives 

(i.e., falsely identified as non-essential genes), one can evaluate whether there are redundant 

reactions that may be removed in order to align the predictions with the gold standard list. 

Reactions that bypass those that are associated with gold standard genes also require re-

evaluation. On the other hand, contributions of these false negatives to biomass production 

should also be evaluated. It is possible that many of these false negatives are important to the 

parasite metabolic pathways that are not involved in biomass production, such as maintaining 

redox balance or simply generating energy equivalents for parasite survival.  

As mentioned in the previous chapters, some models have utilised gene expression data 

in order to generate more accurate predictions (Plata et al, 2010; Huthmacher et al, 2010; 

Wallqvist et al, 2016). A similar approach may be done using the current model to simulate 

different stage specific parasite metabolism. The timing of the gene expression data may be 

shifted to account for the lag between transcription and translation (Foth et al, 2011). However, 

use of gene expression data in metabolic models must be done with care and other post 

translational factors must be taken into consideration. Given that some genes may have better 

gene expression-protein abundance correlations than others, it may be important to consider 

clustering genes and utilising gene expression data on gene clusters that have good 

transcriptomics and metabolomics correlations. Time-shifts may also be applied on gene 

clusters based on published information on mRNA half-lives (Shock et al, 2007). As 
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metabolomics data may represent enzyme activity better than transcriptomics or proteomics 

data (Rossell et al, 2006; Yizhak et al, 2010), experimental measurements of metabolite flux of 

other important boundary metabolites (e.g., adenine, adenosine, guanine, inosine, 

hypoxanthine and xanthine) may be useful in adding constraints onto the purine salvage 

pathway in the model. Nevertheless, the proper utilisation of transcriptomics, proteomics and 

metabolomics data altogether may prove to be a valuable technique for improving the accuracy 

of metabolic models.  

In vitro quantification of carbohydrates and lipids in the parasite biomass to update the 

biomass function may also increase the accuracy of model predictions. Furthermore, 

quantification of ATP, NADH and NADPH production/consumption may be done and considered 

as an additional or alternative objective function to model energy consumption and 

maintenance of redox balance. Published data on in vitro intracellular metabolite concentrations 

from malaria parasite cell extracts (Olszewski et al, 2009) may be used to calculate metabolite 

flux and these values may be incorporated into the model as additional constraints. 

5.4 Validation of novel targets 

Eighteen novel targets were identified by the model, and preliminary experimental data 

shown in Chapter 4 suggests that one of these novel targets, UMP-CMP kinase, is essential for 

parasite development. Gemcitabine, an antineoplastic agent that was predicted to target UMP-

CMP kinase, halted the development of parasites from trophozoites to schizonts. This suggests 

that the compound is targeting a reaction/reactions that contribute to DNA replication which 

includes UMP-CMP kinase. Additional confirmatory tests are required to ascertain that this 

target is indeed essential to the parasite. In vitro gene knockout may be the most definitive way 

of validating the essentiality of the said gene. The CRISPR-Cas9 system as well as the use of 

alternative protein-RNA complexes (e.g., Cpf1) have been successful in knocking out genes in P. 

falciparum and P. berghei (Wagner et al, 2014; Ghorbal et al, 2014; Carrasquilla & Owusu, 2016; 

Zetsche et al, 2015) and such technique may be utilised to confirm the importance of UMP-CMP 

kinase in parasite growth. Testing the compound against purified parasite protein may also be 

useful in providing supporting evidence that gemcitabine targets the said kinase; but it is 

important to remember that gemcitabine requires phosphorylation by ribonucleotide reductase 

into an active metabolite that then targets UMP-CMP kinase (Hsu et al, 2005; Mini et al, 2006).  

Similarly, other predicted novel targets may be validated using the previously mentioned 

techniques. Taking into consideration the cost and time involved in validating these targets, 

prioritisation is essential. One way is to concentrate on novel targets that are consistent with 

the predictions of the other malaria models. Another way is to look into gene expression data 
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on these novel targets and selecting those that are highly and/or constitutively expressed 

throughout the parasite life cycle (Le Roch et al, 2003). In light of finding druggable targets, novel 

targets may also be ranked based on having the least homology to human enzymes (Yeh et al, 

2004). Other databases similar to DrugBank, such as STITCH (Kuhn et al, 2014), may be exploited 

to identify compounds that may be used for in vitro growth inhibition assays.  

5.5 Conclusion 

This study demonstrates the value of extensive curation and utilisation of parasite-specific 

constraints in the improvement of existing metabolic network models. A highly curated 

metabolic model of Plasmodium falciparum, iFT342, was developed by taking advantage of 

already existing malaria metabolic models in conjunction with the extensive use of available 

databases containing information on P. falciparum and associated reactions and metabolites to 

ensure correctness of genes, reactions and species incorporated into the model. The iFT342 has 

updated gene and reaction annotations as well as additional species identifiers that will facilitate 

ease in comparison with other models. The model has zero dead-end metabolites and has the 

highest percentage of live reactions (87.5%) compared with highly curated models such as the 

human (71.5%), E. coli (64.3%) and yeast (56.1%) models. With the addition of experimentally 

measured biomass composition (Forth, 2012) and metabolite fluxes for glucose and 18 amino 

acids, iFT342 was able to model in vitro parasite growth in restricted glucose environment with 

remarkable fidelity (r = 0.985, p-value = 1.36 x 10-6). Through single gene knockout analysis, the 

model was able to significantly enrich the total number of experimentally validated essential 

(gold standard) genes (PPV = 76.6%, enrichment score = 1.44, p-value = 1.69 x 10-6). Finally, as 

proof of concept, inhibition of parasite growth was demonstrated using gemcitabine, which was 

predicted to target UMP-CMP kinase, a novel target predicted by the model. Gemcitabine had 

an IC50 in the low micromolar range (2.62 ± 0.53 M) and was shown to inhibit development of 

the parasite from the trophozoite to the schizont stage. 
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Appendix Original set of experimentally validated essential Plasmodium spp. genes and associated reactions  
Gene ID Reaction/Gene name EC number References 

PF3D7_0104400 4-hydroxy-3-methylbut-2-enyl diphosphate 
reductase (LytB) 

1.17.1.2 Vinayak, S., & Sharma, Y. D. (2007). Inhibition of Plasmodium 
falciparum ispH (lytB) gene expression by hammerhead ribozyme. 
Oligonucleotides, 17(2), 189-200. 

PF3D7_0106300 Calcium-transporting ATPase, putative 3.6.3.8 Eckstein-Ludwig, U., Webb, R. J., Van Goethem, I. D. A., East, J. M., 
Lee, A. G., Kimura, M., ... & Krishna, S. (2003). Artemisinins target the 
SERCA of Plasmodium falciparum. Nature, 424(6951), 957-961. 

PF3D7_0106900 2-C-methyl-D-erythritol 4-phosphate 
cytidylyltransferase, putative (IspD) 

2.7.7.60 Wu, W., Herrera, Z., Ebert, D., Baska, K., Cho, S. H., DeRisi, J. L., & 
Yeh, E. (2015). A chemical rescue screen identifies a Plasmodium 
falciparum apicoplast inhibitor targeting MEP isoprenoid precursor 
biosynthesis. Antimicrobial agents and chemotherapy, 59(1), 356-
364. 

PF3D7_0204700 Hexose transporter  Woodrow, C. J., Penny, J. I., & Krishna, S. (1999). Intraerythrocytic 
Plasmodium falciparum expresses a high affinity facilitative hexose 
transporter. Journal of Biological Chemistry, 274(11), 7272-7277. 

PF3D7_0206300 3-Phosphoshikimate 1-carboxyvinyltransferase 2.5.1.19 Roberts, F., Roberts, C. W., Johnson, J. J., Kyle, D. E., Krell, T., 
Coggins, J. R., ... & Chakrabarti, D. (1998). Evidence for the shikimate 
pathway in apicomplexan parasites. Nature, 393(6687), 801-805. 

PF3D7_0209300 2C-methyl-D-erythritol 2,4-cyclodiphosphate 
synthase 

4.6.1.12 Crane, C. M., Kaiser, J., Ramsden, N. L., Lauw, S., Rohdich, F., 
Eisenreich, W., ... & Diederich, F. (2006). Fluorescent Inhibitors for 
IspF, an Enzyme in the Non‐Mevalonate Pathway for Isoprenoid 
Biosynthesis and a Potential Target for Antimalarial Therapy. 
Angewandte Chemie International Edition, 45(7), 1069-1074. 

PF3D7_0211400 Beta-ketoacyl-ACP synthase III (KASIII)  2.3.1.180, 
2.3.1.41 

Prigge, S. T., He, X., Gerena, L., Waters, N. C., & Reynolds, K. A. 
(2003). The initiating steps of a type II fatty acid synthase in 
Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and 
pfKASIII. Biochemistry, 42(4), 1160-1169. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0312400 Glycogen synthase kinase 3 2.7.11.26 Syin, C., Parzy, D., Traincard, F., Boccaccio, I., Joshi, M. B., Lin, D. T., 
... & Langsley, G. (2001). The H89 cAMP‐dependent protein kinase 
inhibitor blocks Plasmodium falciparum development in infected 
erythrocytes. European Journal of Biochemistry, 268(18), 4842-4849.;  
Xiao, Z., Waters, N. C., Woodard, C. L., Li, Z., & Li, P. K. (2001). Design 
and synthesis of Pfmrk inhibitors as potential antimalarial agents. 
Bioorganic & medicinal chemistry letters, 11(21), 2875-2878. 

PF3D7_0320500 Nicotinamidase, putative 3.5.1.19 O'Hara, J. K., Kerwin, L. J., Cobbold, S. A., Tai, J., Bedell, T. A., Reider, 
P. J., & Llinás, M. (2014). Targeting NAD+ metabolism in the human 
malaria parasite Plasmodium falciparum. PloS one, 9(4), e94061. 

PF3D7_0322000 Peptidyl-prolyl cis-trans isomerase 5.2.1.8 Monaghan, P., Fardis, M., Revill, W. P., & Bell, A. (2005). Antimalarial 
effects of macrolactones related to FK520 (ascomycin) are 
independent of the immunosuppressive properties of the 
compounds. Journal of Infectious Diseases, 191(8), 1342-1349. 

PF3D7_0406400 Cytosolic glyoxalase II (cGloII) 3.1.2.6 Urscher, M., Przyborski, J. M., Imoto, M., & Deponte, M. (2010). 
Distinct subcellular localization in the cytosol and apicoplast, 
unexpected dimerization and inhibition of Plasmodium falciparum 
glyoxalases. Molecular microbiology, 76(1), 92-103. 

PF3D7_0415300 Cdc2-related protein kinase 3 (CRK3)  2.7.11.22 Rangarajan, R., Bei, A., Henry, N., Madamet, M., Parzy, D., Nivez, M. 
P., ... & Sultan, A. (2006). Pbcrk-1, the Plasmodium berghei 
orthologue of P. falciparum cdc-2 related kinase-1 (Pfcrk-1), is 
essential for completion of the intraerythrocytic asexual cycle. 
Experimental parasitology, 112(3), 202-207. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0417200 Bifunctional dihydrofolate reductase-thymidylate 
synthase 

1.5.1.3, 
2.1.1.45 

Le Bras, J., & Durand, R. (2003). The mechanisms of resistance to 
antimalarial drugs in Plasmodium falciparum. Fundamental & clinical 
pharmacology, 17(2), 147-153.; 
Fidock, D. A., Nomura, T., & Wellems, T. E. (1998). Cycloguanil and Its 
Parent Compound Proguanil Demonstrate Distinct Activities against 
Plasmodium falciparum Malaria Parasites Transformed with Human 
Dihydrofolate Reductase. Molecular pharmacology, 54(6), 1140-
1147; 
Dar, O., Khan, M. S., & Adagu, I. (2008). The potential use of 
methotrexate in the treatment of falciparum malaria: in vitro assays 
against sensitive and multidrug-resistant falciparum strains. 
Japanese journal of infectious diseases, 61(3), 210-1.; 
Jiang, L., Lee, P. C., White, J., & Rathod, P. K. (2000). Potent and 
selective activity of a combination of thymidine and 1843U89, a 
folate-based thymidylate synthase inhibitor, against Plasmodium 
falciparum. Antimicrobial agents and chemotherapy, 44(4), 1047-
1050.; 
Nduati, E., Hunt, S., Kamau, E. M., & Nzila, A. (2005). 2, 4-
diaminopteridine-based compounds as precursors for de novo 
synthesis of antifolates: a novel class of antimalarials. Antimicrobial 
agents and chemotherapy, 49(9), 3652-3657. 

PF3D7_0508200 Sphingosine-N-acyltransferase 2.3.1.24 Gerold, P., & Schwarz, R. T. (2001). Biosynthesis of glycosphingolipids 
de-novo by the human malaria parasite Plasmodium falciparum. 
Molecular and biochemical parasitology, 112(1), 29-37. 

PF3D7_0509800 Phosphatidylinositol 4-kinase (PI4K) 2.7.1.67 McNamara, C. W., Lee, M. C., Lim, C. S., Lim, S. H., Roland, J., Nagle, 
A., ... & Manary, M. J. (2013). Targeting Plasmodium PI (4) K to 
eliminate malaria. Nature, 504(7479), 248-253. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0510500 Topoisomerase I 5.99.1.2 Bodley, A. L., Cumming, J. N., & Shapiro, T. A. (1998). Effects of 
camptothecin, a topoisomerase I inhibitor, on Plasmodium 
falciparum. Biochemical pharmacology, 55(5), 709-711. 

PF3D7_0511200 Stearoyl-CoA desaturase (SCD) 1.14.19.1 Gratraud, P., Huws, E., Falkard, B., Adjalley, S., Fidock, D. A., Berry, L., 
... & Kremer, L. (2009). Oleic acid biosynthesis in Plasmodium 
falciparum: characterization of the stearoyl-CoA desaturase and 
investigation as a potential therapeutic target. PloS one, 4(9), e6889. 

PF3D7_0512700 Orotate phosphoribosyltransferase 2.4.2.10 Scott, H. V., Gero, A. M., & O'Sullivan, W. J. (1986). In vitro inhibition 
of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine 
biosynthesis de novo. Molecular and biochemical parasitology, 18(1), 
3-15. 

PF3D7_0513300 Purine nucleoside phosphorylase (PNP) 2.4.2.1 Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Schramm, V. 
L., & Kim, K. (2002). Purine-less Death in Plasmodium falciparum 
Induced by Immucillin-H, a Transition State Analogue of Purine 
Nucleoside Phosphorylase. Journal of Biological Chemistry, 277(5), 
3226-3231. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0520900 S-adenosyl-L-homocysteine hydrolase (SAHH)  3.3.1.1 Messika, E., Golenser, J., Abu-Elheiga, L., Robert-Gero, M., Lederer, 
E., & Bachrach, U. (1990). Effect of sinefungin on macromolecular 
biosynthesis and cell cycle of Plasmodium falciparum. Tropical 
medicine and parasitology: official organ of Deutsche 
Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft fur 
Technische Zusammenarbeit (GTZ), 41(3), 273-278.; 
Kitade, Y., Kozaki, A., Gotoh, T., Miwa, T., Nakanishi, M., & Yatome, 
C. (1999, November). Synthesis of S-adenosyl-L-homocysteine 
hydrolase inhibitors and their biological activities. In Nucleic acids 
symposium series (Vol. 42, No. 1, pp. 25-26). Oxford University 
Press.; 
Shuto, S., Minakawa, N., Niizuma, S., Kim, H. S., Wataya, Y., & 
Matsuda, A. (2002). New Neplanocin Analogues. 12. Alternative 
Synthesis and Antimalarial Effect of (6 ‘R)-6 ‘-C-Methylneplanocin A, 
a Potent AdoHcy Hydrolase Inhibitor 1. Journal of medicinal 
chemistry, 45(3), 748-751.; 
Bujnicki, J. M., Prigge, S. T., Caridha, D., & Chiang, P. K. (2003). 
Structure, evolution, and inhibitor interaction of S‐adenosyl‐L‐
homocysteine hydrolase from Plasmodium falciparum. Proteins: 
Structure, Function, and Bioinformatics, 52(4), 624-632. 

PF3D7_0527300 Methionine aminopeptidase 1a, putative 
(METAP1a) 

3.4.11.18 Chen, X., Chong, C. R., Shi, L., Yoshimoto, T., Sullivan, D. J., & Liu, J. O. 
(2006). Inhibitors of Plasmodium falciparum methionine 
aminopeptidase 1b possess antimalarial activity. Proceedings of the 
National Academy of Sciences, 103(39), 14548-14553. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0603300 Dihydroorotate dehydrogenase, mitochondrial 
precursor (DHODH) 

1.3.5.2 Krungkrai, J., Krungkrai, S. R., & Phakanont, K. (1992). Antimalarial 
activity of orotate analogs that inhibit dihydroorotase and 
dihydroorotate dehydrogenase. Biochemical pharmacology, 43(6), 
1295-1301.; 
McRobert, L., & McConkey, G. A. (2002). RNA interference (RNAi) 
inhibits growth of Plasmodium falciparum. Molecular and 
biochemical parasitology, 119(2), 273-278.; 
Baldwin, J., Michnoff, C. H., Malmquist, N. A., White, J., Roth, M. G., 
Rathod, P. K., & Phillips, M. A. (2005). High-throughput screening for 
potent and selective inhibitors of Plasmodium falciparum 
dihydroorotate dehydrogenase. Journal of Biological Chemistry, 
280(23), 21847-21853.; 
Boa, A. N., Canavan, S. P., Hirst, P. R., Ramsey, C., Stead, A. M., & 
McConkey, G. A. (2005). Synthesis of brequinar analogue inhibitors 
of malaria parasite dihydroorotate dehydrogenase. Bioorganic & 
medicinal chemistry, 13(6), 1945-1967.; 
Heikkilä, T., Thirumalairajan, S., Davies, M., Parsons, M. R., 
McConkey, A. G., Fishwick, C. W., & Johnson, A. P. (2006). The first 
de novo designed inhibitors of Plasmodium falciparum 
dihydroorotate dehydrogenase. Bioorganic & medicinal chemistry 
letters, 16(1), 88-92. 

PF3D7_0604700 Lactoylglutathione lyase 4.4.1.5 Thornalley, P. J., Strath, M., & Wilson, R. J. M. (1994). Antimalarial 
activity in vitro of the glyoxalase I inhibitor diester, Sp-
bromobenzylglutathione diethyl ester. Biochemical pharmacology, 
47(2), 418-420. 

PF3D7_0615100 Enoyl-acyl carrier reductase 1.3.1.9 Surolia, N., & Surolia, A. (2001). Triclosan offers protection against 
blood stages of malaria by inhibiting enoyl-ACP reductase of 
Plasmodium falciparum. Nature medicine, 7(2), 167-173.; 
Spalding, M. D., & Prigge, S. T. (2008). Malaria pulls a FASt one. Cell 
host & microbe, 4(6), 509-511. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0621200 Pyridoxine biosynthesis protein PDX1 (PDX1) 4.-.-.- Reeksting, S. B., Müller, I. B., Burger, P. B., Burgos, E. S., Salmon, L., 
Louw, A. I., ... & Wrenger, C. (2013). Exploring inhibition of Pdx1, a 
component of the PLP synthase complex of the human malaria 
parasite Plasmodium falciparum. Biochemical Journal, 449(1), 175-
187. 

PF3D7_0623000 Chorismate synthase 4.2.3.5 McRobert, L., & McConkey, G. A. (2002). RNA interference (RNAi) 
inhibits growth of Plasmodium falciparum. Molecular and 
biochemical parasitology, 119(2), 273-278. 

PF3D7_0624000 Hexokinase 2.7.1.1  Harris, M. T., Walker, D. M., Drew, M. E., Mitchell, W. G., Dao, K., 
Schroeder, C. E., ... & Morris, J. C. (2013). Interrogating a hexokinase-
selected small-molecule library for inhibitors of Plasmodium 
falciparum hexokinase. Antimicrobial agents and chemotherapy, 
57(8), 3731-3737. 

PF3D7_0624700 N-acetylglucosaminylphosphatidylinositol 
deacetylase, putative 

3.5.1.89 Smith, T. K., Gerold, P., Crossman, A., Paterson, M. J., Borissow, C. N., 
Brimacombe, J. S., ... & Schwarz, R. T. (2002). Substrate specificity of 
the Plasmodium falciparum glycosylphosphatidylinositol biosynthetic 
pathway and inhibition by species-specific suicide substrates. 
Biochemistry, 41(41), 12395-12406. 

PF3D7_0625000 Ceramide-cholinephosphotransferase; 
sphingomyelin synthase 1, putative 

2.7.8.27 Gerold, P., & Schwarz, R. T. (2001). Biosynthesis of glycosphingolipids 
de-novo by the human malaria parasite Plasmodium falciparum. 
Molecular and biochemical parasitology, 112(1), 29-37. 

PF3D7_0625100 Ceramide-cholinephosphotransferase; 
sphingomyelin synthase 2, putative 

2.7.8.27 Gerold, P., & Schwarz, R. T. (2001). Biosynthesis of glycosphingolipids 
de-novo by the human malaria parasite Plasmodium falciparum. 
Molecular and biochemical parasitology, 112(1), 29-37. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0626300 3-oxoacyl-acyl-carrier protein synthase I/II 2.3.1.41, 
2.3.1.85 

Waller, R. F., Ralph, S. A., Reed, M. B., Su, V., Douglas, J. D., Minnikin, 
D. E., ... & McFadden, G. I. (2003). A type II pathway for fatty acid 
biosynthesis presents drug targets in Plasmodium falciparum. 
Antimicrobial agents and chemotherapy, 47(1), 297-301.; 
Prigge, S. T., He, X., Gerena, L., Waters, N. C., & Reynolds, K. A. 
(2003). The initiating steps of a type II fatty acid synthase in 
Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and 
pfKASIII. Biochemistry, 42(4), 1160-1169. 

PF3D7_0720400 Ferrodoxin reductase-like protein 1.7.1.4 Seeber, F., Aliverti, A., & Zanetti, G. (2005). The plant-type 
ferredoxin-NADP+ reductase/ferredoxin redox system as a possible 
drug target against apicomplexan human parasites. Current 
pharmaceutical design, 11(24), 3159-3172. 

PF3D7_0724300 3-demethylubiquinone-9 3-methyltransferase, 
putative 

2.1.1.64 Massimine, K. M., McIntosh, M. T., Doan, L. T., Atreya, C. E., Gromer, 
S., Sirawaraporn, W., ... & Anderson, K. S. (2006). Eosin B as a novel 
antimalarial agent for drug-resistant Plasmodium falciparum. 
Antimicrobial agents and chemotherapy, 50(9), 3132-3141. 

PF3D7_0802000 Glutamate dehydrogenase, putative (GDH3) 1.4.1.2 Aparicio, I. M., Marín-Menéndez, A., Bell, A., & Engel, P. C. (2010). 
Susceptibility of Plasmodium falciparum to glutamate 
dehydrogenase inhibitors—A possible new antimalarial target. 
Molecular and biochemical parasitology, 172(2), 152-155. 

PF3D7_0804400 Methionine aminopeptidase 1c, putative 
(METAP1c) 

3.4.11.18 Chen, X., Chong, C. R., Shi, L., Yoshimoto, T., Sullivan, D. J., & Liu, J. O. 
(2006). Inhibitors of Plasmodium falciparum methionine 
aminopeptidase 1b possess antimalarial activity. Proceedings of the 
National Academy of Sciences, 103(39), 14548-14553. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0810800 Hydroxymethyldihydropterin 
pyrophosphokinase-dihydropteroate synthase 
(PPPK-DHPS)  

2.5.1.15, 
2.7.6.3 

McCullough J. L., Maren T. H. (1974). Dihydropteroate synthetase 
from Plasmodium berghei: isolation, properties, and inhibition by 
dapsone and sulfadiazine. Molecular pharmacology, 10(1), 140-145.; 
Triglia, T., Menting, J. G., Wilson, C., & Cowman, A. F. (1997). 
Mutations in dihydropteroate synthase are responsible for sulfone 
and sulfonamide resistance in Plasmodium falciparum. Proceedings 
of the National Academy of Sciences, 94(25), 13944-13949.; 
 Vinnicombe, H. G., & Derrick, J. P. (1999). Dihydropteroate synthase: 
an old drug target revisited. Biochem. Soc. Trans., 27, 53–58 

PF3D7_0814900 Fe-superoxide dismutase 1.15.1.1 Soulere, L., Delplace, P., Davioud-Charvet, E., Py, S., Sergheraert, C., 
Perie, J., ... & Dive, D. (2003). Screening of Plasmodium falciparum 
iron superoxide dismutase inhibitors and accuracy of the SOD-assays. 
Bioorganic & medicinal chemistry, 11(23), 4941-4944. 

PF3D7_0907900 Peptide deformylase (PDF)  3.5.1.88 Serero, A., Giglione, C., & Meinnel, T. (2001). Seeking new targets for 
antiparasitic agents: Response from A. Serero et al. TRENDS in 
Parasitology, 17(1), 7-8. 

PF3D7_0915000 Type II NADH:ubiquinone oxidoreductase (NDH2) 1.6.5.3, 1.6.5.9 Biagini, G. A., Viriyavejakul, P., O'neill, P. M., Bray, P. G., & Ward, S. 
A. (2006). Functional characterization and target validation of 
alternative complex I of Plasmodium falciparum mitochondria. 
Antimicrobial agents and chemotherapy, 50(5), 1841-1851.; 
Krungkrai, J., Kanchanarithisak, R., Krungkrai, S. R., & Rochanakij, S. 
(2002). Mitochondrial NADH dehydrogenase from Plasmodium 
falciparum and Plasmodium berghei. Experimental parasitology, 
100(1), 54-61 

PF3D7_0916600 Methyltransferase, putative 2.1.1.64 Massimine, K. M., McIntosh, M. T., Doan, L. T., Atreya, C. E., Gromer, 
S., Sirawaraporn, W., ... & Anderson, K. S. (2006). Eosin B as a novel 
antimalarial agent for drug-resistant Plasmodium falciparum. 
Antimicrobial agents and chemotherapy, 50(9), 3132-3141. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0918900 Gamma-glutamylcysteine synthetase 6.3.2.2 Luersen, K., Walter, R. D., Muller, S. (2000). Plasmodium falciparum-
infected red blood cells depend on a functional glutathione de novo 
synthesis attributable to an enhanced loss of glutathione. 
Biochemical Journal, 346(2), 545-552.; 
Platel, D. F. N., Mangou, F., & Tribouley-Duret, J. (1999). Role of 
glutathione in the detoxification of ferriprotoporphyrin IX in 
chloroquine resistant Plasmodium berghei. Molecular and 
biochemical parasitology, 98(2), 215-223.; 
Meierjohann, S., Walter, R. D., & Müller, S. (2002). Regulation of 
intracellular glutathione levels in erythrocytes infected with 
chloroquine-sensitive and chloroquine-resistant Plasmodium 
falciparum. Biochemical journal, 368(3), 761-768. 

PF3D7_0920800 Inosine-5'-monophosphate dehydrogenase 1.1.1.205 Webster, H. K., & Whaun, J. M. (1982). Antimalarial properties of 
bredinin. Prediction based on identification of differences in human 
host-parasite purine metabolism. Journal of Clinical Investigation, 
70(2), 461. 

PF3D7_0922400 Amino-deoxychorismate synthase 2.6.1.85 Camara, D., Bisanz, C., Barette, C., Van Daele, J., Human, E., Barnard, 
B., ... & Maréchal, E. (2012). Inhibition of p-aminobenzoate and 
folate syntheses in plants and apicomplexan parasites by natural 
product rubreserine. Journal of Biological Chemistry, 287(26), 22367-
22376. 

PF3D7_0922900 3-oxoacyl-(acyl-carrier protein) reductase 1.1.1.100, 
2.3.1.85 

Wickramasinghe, S. R., Inglis, K. A., Urch, J. E., Müller, S., Van Aalten, 
D. M., & Fairlamb, A. H. (2006). Kinetic, inhibition and structural 
studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a 
key enzyme in fatty; acid biosynthesis. Biochemical Journal, 393(2), 
447-457.; 
Prigge, S. T., He, X., Gerena, L., Waters, N. C., & Reynolds, K. A. 
(2003). The initiating steps of a type II fatty acid synthase in 
Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and 
pfKASIII. Biochemistry, 42(4), 1160-1169. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_0923800 Thioredoxin reductase 1.8.1.9 Krnajski, Z., Gilberger, T. W., Walter, R. D., Cowman, A. F., & Müller, 
S. (2002). Thioredoxin Reductase Is Essential for the Survival of 
Plasmodium falciparum Erythrocytic Stages. Journal of Biological 
Chemistry, 277(29), 25970-25975.; 
Luersen, K., Walter, R. D., Muller, S. (2000). Plasmodium falciparum-
infected red blood cells depend on a functional glutathione de novo 
synthesis attributable to an enhanced loss of glutathione. 
Biochemical Journal, 346(2), 545-552. 

PF3D7_0925700 Histone deacetylase 3.5.1.98 Singh, S. B., Zink, D. L., Liesch, J. M., Mosley, R. T., Dombrowski, A. 
W., Bills, G. F., ... & Goetz, M. A. (2002). Structure and chemistry of 
apicidins, a class of novel cyclic tetrapeptides without a terminal α-
keto epoxide as inhibitors of histone deacetylase with potent 
antiprotozoal activities. The Journal of organic chemistry, 67(3), 815-
825.; 
Mai, A., Cerbara, I., Valente, S., Massa, S., Walker, L. A., & Tekwani, 
B. L. (2004). Antimalarial and antileishmanial activities of aroyl-
pyrrolyl-hydroxyamides, a new class of histone deacetylase 
inhibitors. Antimicrobial agents and chemotherapy, 48(4), 1435-
1436. 

PF3D7_0926700 Glutamine-dependent NAD(+) synthetase, 
putative (NADSYN) 

6.3.5.1 O'Hara, J. K., Kerwin, L. J., Cobbold, S. A., Tai, J., Bedell, T. A., Reider, 
P. J., & Llinás, M. (2014). Targeting NAD+ metabolism in the human 
malaria parasite Plasmodium falciparum. PloS one, 9(4), e94061. 

PF3D7_0934800 cAMP-dependent protein kinase catalytic 
subunit 

2.7.11.11 Syin, C., Parzy, D., Traincard, F., Boccaccio, I., Joshi, M. B., Lin, D. T., 
... & Langsley, G. (2001). The H89 cAMP‐dependent protein kinase 
inhibitor blocks Plasmodium falciparum development in infected 
erythrocytes. European Journal of Biochemistry, 268(18), 4842-4849. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1008900 Adenylate kinase 2.7.4.3 Ulschmid, J. K., Rahlfs, S., Schirmer, R. H., & Becker, K. (2004). 
Adenylate kinase and GTP: AMP phosphotransferase of the malarial 
parasite Plasmodium falciparum: central players in cellular energy 
metabolism. Molecular and biochemical parasitology, 136(2), 211-
220.; 
Kanaani, J., & Ginsburg, H. (1989). Metabolic interconnection 
between the human malarial parasite Plasmodium falciparum and its 
host erythrocyte. Regulation of ATP levels by means of an adenylate 
translocator and adenylate kinase. Journal of Biological Chemistry, 
264(6), 3194-3199. 

PF3D7_1012400 Hypoxanthine-guanine 
phosphoribosyltransferase (HGPRT)  

2.4.2.8 Dawson, P. A., Cochran, D. A., Emmerson, B. T., & Gordon, R. B. 
(1993). Inhibition of Plasmodium falciparum hypoxanthine-guanine 
phosphoribosyltransferase mRNA by antisense oligodeoxynucleotide 
sequence. Molecular and biochemical parasitology, 60(1), 153-156.; 
Li, C. M., Tyler, P. C., Furneaux, R. H., Kicska, G., Xu, Y., Grubmeyer, 
C., ... & Schramm, V. L. (1999). Transition-state analogs as inhibitors 
of human and malarial hypoxanthine-guanine 
phosphoribosyltransferases. Nature Structural & Molecular Biology, 
6(6), 582-587. 

PF3D7_1012600 GMP synthetase 6.3.4.1, 6.3.5.2 McConkey, G. A. (2000). Plasmodium falciparum: isolation and 
characterisation of a gene encoding protozoan GMP synthase. 
Experimental parasitology, 94(1), 23-32. 

PF3D7_1015300 Methionine aminopeptidase 1b, putative 
(METAP1b) 

3.4.11.18 Chen, X., Chong, C. R., Shi, L., Yoshimoto, T., Sullivan, D. J., & Liu, J. O. 
(2006). Inhibitors of Plasmodium falciparum methionine 
aminopeptidase 1b possess antimalarial activity. Proceedings of the 
National Academy of Sciences, 103(39), 14548-14553. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1023200 Orotidine monophosphate decarboxylase 4.1.1.23 Scott, H. V., Gero, A. M., & O'Sullivan, W. J. (1986). In vitro inhibition 
of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine 
biosynthesis de novo. Molecular and biochemical parasitology, 18(1), 
3-15.; 
Seymour, K. K., Lyons, S. D., Phillips, L., Rieckmann, K. H., & 
Christopherson, R. I. (1994). Cytotoxic effects of inhibitors of de novo 
pyrimidine biosynthesis upon Plasmodium falciparum. Biochemistry, 
33(17), 5268-5274.; 
Krungkrai, S. R., DelFraino, B. J., Smiley, J. A., Prapunwattana, P., 
Mitamura, T., Horii, T., & Krungkrai, J. (2005). A Novel Enzyme 
Complex of Orotate Phosphoribosyltransferase and Orotidine 5 ‘-
Monophosphate Decarboxylase in Human Malaria Parasite 
Plasmodium falciparum: Physical Association, Kinetics, and Inhibition 
Characterization†. Biochemistry, 44(5), 1643-1652.; 
Bello, A. M., Poduch, E., Liu, Y., Wei, L., Crandall, I., Wang, X., ... & 
Kotra, L. P. (2008). Structure–activity relationships of C6-uridine 
derivatives targeting plasmodia orotidine monophosphate 
decarboxylase. Journal of medicinal chemistry, 51(3), 439-448.; 
Kotra, L. P., Meza-Avina, M. E., Wei, L., Buhendwa, M. G., Poduch, E., 
Bello, A. M., & Pai, E. F. (2008). Inhibition of orotidine 5'-
monophosphate decarboxylase and its therapeutic potential. Mini 
reviews in medicinal chemistry, 8(3), 239-247. 

PF3D7_1026900 Acetyl-CoA carboxylase 6.4.1.2 Waller, R. F., Ralph, S. A., Reed, M. B., Su, V., Douglas, J. D., Minnikin, 
D. E., ... & McFadden, G. I. (2003). A type II pathway for fatty acid 
biosynthesis presents drug targets in Plasmodium falciparum. 
Antimicrobial agents and chemotherapy, 47(1), 297-301. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1029600 Adenosine deaminase (ADA) 3.5.4.4 Gero, A. M., Dunn, C. G., Brown, D. M., Pulenthiran, K., Gorovits, E. 
L., Bakos, T., & Weis, A. L. (2003). New malaria chemotherapy 
developed by utilization of a unique parasite transport system. 
Current pharmaceutical design, 9(11), 867-877.; 
Tyler, P. C., Taylor, E. A., Fröhlich, R. F., & Schramm, V. L. (2007). 
Synthesis of 5 ‘-Methylthio Coformycins: Specific Inhibitors for 
Malarial Adenosine Deaminase. Journal of the American Chemical 
Society, 129(21), 6872-6879.; 
Ting, L. M., Shi, W., Lewandowicz, A., Singh, V., Mwakingwe, A., 
Birck, M. R., ... & Evans, G. B. (2005). Targeting a novel Plasmodium 
falciparum purine recycling pathway with specific immucillins. 
Journal of Biological Chemistry, 280(10), 9547-9554. 

PF3D7_1033100 S-adenosylmethionine decarboxylase/ornithine 
decarboxylase (AdoMetDC/ODC)  

4.1.1.17, 
4.1.1.50 

Assaraf, Y. G., Golenser, J., Spira, D. T., & Bachrach, U. (1984). 
Polyamine levels and the activity of their biosynthetic enzymes in 
human erythrocytes infected with the malarial parasite, Plasmodium 
falciparum. Biochemical Journal, 222(3), 815-819.; 
Bitonti, A. J., Dumont, J. A., Bush, T. L., Edwards, M. L., Stemerick, D. 
M., McCann, P. P., & Sjoerdsma, A. (1989). Bis (benzyl) polyamine 
analogs inhibit the growth of chloroquine-resistant human malaria 
parasites (Plasmodium falciparum) in vitro and in combination with 
alpha-difluoromethylornithine cure murine malaria. Proceedings of 
the National Academy of Sciences, 86(2), 651-655.; 
Berger, B. J. (2000). Antimalarial activities of aminooxy compounds. 
Antimicrobial agents and chemotherapy, 44(9), 2540-2542.; 
Wright, P. S., Byers, T. L., Cross-Doersen, D. E., McCann, P. P., & 
Bitonti, A. J. (1991). Irreversible inhibition of S-adenosylmethionine 
decarboxylase in Plasmodium falciparum-infected erythrocytes: 
growth inhibition in vitro. Biochemical pharmacology, 41(11), 1713-
1718. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1034400 Flavoprotein subunit of succinate dehydrogenase 1.3.5.1, 
1.3.99.1, 
6.2.1.4 

Suraveratum, N., Krungkrai, S. R., Leangaramgul, P., Prapunwattana, 
P., & Krungkrai, J. (2000). Purification and characterization of 
Plasmodium falciparum succinate dehydrogenase. Molecular and 
biochemical parasitology, 105(2), 215-222. 

PF3D7_1113700 Lactoylglutathione lyase 4.4.1.5 Thornalley, P. J., Strath, M., & Wilson, R. J. M. (1994). Antimalarial 
activity in vitro of the glyoxalase I inhibitor diester, Sp-
bromobenzylglutathione diethyl ester. Biochemical pharmacology, 
47(2), 418-420. 

PF3D7_1114800 Glycerol-3-phosphate dehydrogenase, putative 
(G3PDH) 

1.1.1.8 Lindner, S. E., Sartain, M. J., Hayes, K., Harupa, A., Moritz, R. L., 
Kappe, S. H., & Vaughan, A. M. (2014). Enzymes involved in plastid‐
targeted phosphatidic acid synthesis are essential for Plasmodium 
yoelii liver‐stage development. Molecular microbiology, 91(4), 679-
693. 

PF3D7_1115700 Falcipain-2A 3.4.22.- Biot, C., Pradines, B., Sergeant, M. H., Gut, J., Rosenthal, P. J., & 
Chibale, K. (2007). Design, synthesis, and antimalarial activity of 
structural chimeras of thiosemicarbazone and ferroquine analogues. 
Bioorganic & medicinal chemistry letters, 17(23), 6434-6438. 

PF3D7_1116700 Dipeptidyl aminopeptidase 1 3.4.14.1 Klemba, M., Gluzman, I., & Goldberg, D. E. (2004). A Plasmodium 
falciparum dipeptidyl aminopeptidase I participates in vacuolar 
hemoglobin degradation. Journal of Biological Chemistry, 279(41), 
43000-43007. 

PF3D7_1118200 Heat shock protein 90, putative  Banumathy, G., Singh, V., Pavithra, S. R., & Tatu, U. (2003). Heat 
shock protein 90 function is essential for Plasmodium falciparum 
growth in human erythrocytes. Journal of Biological Chemistry, 
278(20), 18336-18345. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1126000 Threonine--tRNA ligase (ThrRS) 6.1.1.3 Ruan, B., Bovee, M. L., Sacher, M., Stathopoulos, C., Poralla, K., 
Francklyn, C. S., & Söll, D. (2005). A unique hydrophobic cluster near 
the active site contributes to differences in borrelidin inhibition 
among threonyl-tRNA synthetases. Journal of Biological Chemistry, 
280(1), 571-577. 

PF3D7_1127100 Deoxyuridine 5'-triphosphate 
nucleotidohydrolase, putative 

3.6.1.23 Whittingham, J. L., Leal, I., Nguyen, C., Kasinathan, G., Bell, E., Jones, 
A. F., ... & Perez, L. M. R. (2005). dUTPase as a platform for 
antimalarial drug design: structural basis for the selectivity of a class 
of nucleoside inhibitors. Structure, 13(2), 329-338. 

PF3D7_1129000 Spermidine synthase 2.5.1.16 Haider, N., Eschbach, M. L., de Souza Dias, S., Gilberger, T. W., 
Walter, R. D., & Lüersen, K. (2005). The spermidine synthase of the 
malaria parasite Plasmodium falciparum: molecular and biochemical 
characterisation of the polyamine synthesis enzyme. Molecular and 
biochemical parasitology, 142(2), 224-236. 

PF3D7_1136500 Casein kinase 1, PfCK1 2.7.11.1 Waters, N. C., Woodard, C. L., & Prigge, S. T. (2000). Cyclin H 
activation and drug susceptibility of the Pfmrk cyclin dependent 
protein kinase from Plasmodium falciparum. Molecular and 
biochemical parasitology, 107(1), 45-55. 

PF3D7_1140000 Carbonic anhydrase, putative 4.2.1.1 Reungprapavut, S., Krungkrai, S. R., & Krungkrai, J. (2004). 
Plasmodium falciparum carbonic anhydrase is a possible target for 
malaria chemotherapy. Journal of enzyme inhibition and medicinal 
chemistry, 19(3), 249-256. 

PF3D7_1147500 Farnesyltransferase beta subunit, putative 2.5.1.29, 
2.5.1.58 

Ohkanda, J., Lockman, J. W., Yokoyama, K., Gelb, M. H., Croft, S. L., 
Kendrick, H., ... & Hamilton, A. D. (2001). Peptidomimetic inhibitors 
of protein farnesyltransferase show potent antimalarial activity. 
Bioorganic & medicinal chemistry letters, 11(6), 761-764. 

 

  



 
 

 
 

1
8

1
 

Gene ID Reaction/Gene name EC number References 

PF3D7_1205700 Targeted glyoxalase II (tGloII) 3.1.2.6 Urscher, M., Przyborski, J. M., Imoto, M., & Deponte, M. (2010). 
Distinct subcellular localization in the cytosol and apicoplast, 
unexpected dimerization and inhibition of Plasmodium falciparum 
glyoxalases. Molecular microbiology, 76(1), 92-103. 

PF3D7_1211900 Non-SERCA-type Ca2+ -transporting P-ATPase 3.6.3.2, 3.6.3.8 Eckstein-Ludwig, U., Webb, R. J., Van Goethem, I. D. A., East, J. M., 
Lee, A. G., Kimura, M., ... & Krishna, S. (2003). Artemisinins target the 
SERCA of Plasmodium falciparum. Nature, 424(6951), 957-961. 

PF3D7_1212500 Glycerol-3-phosphate acyltransferase 2.3.1.15 Nicolas, O., Margout, D., Taudon, N., Wein, S., Calas, M., Vial, H. J., & 
Bressolle, F. M. (2005). Pharmacological properties of a new 
antimalarial bisthiazolium salt, T3, and a corresponding prodrug, TE3. 
Antimicrobial agents and chemotherapy, 49(9), 3631-3639. 

PF3D7_1212800 Iron-sulfur subunit of succinate dehydrogenase 1.3.5.1, 
1.3.99.1 

Suraveratum, N., Krungkrai, S. R., Leangaramgul, P., Prapunwattana, 
P., & Krungkrai, J. (2000). Purification and characterization of 
Plasmodium falciparum succinate dehydrogenase. Molecular and 
biochemical parasitology, 105(2), 215-222. 

PF3D7_1235600 Serine hydroxymethyltransferase (SHMT) 2.1.2.1 Witschel, M. C., Rottmann, M., Schwab, A., Leartsakulpanich, U., 
Chitnumsub, P., Seet, M., ... & McNamara, C. (2015). Inhibitors of 
plasmodial serine hydroxymethyltransferase (SHMT): cocrystal 
structures of pyrazolopyrans with potent blood-and liver-stage 
activities. Journal of medicinal chemistry, 58(7), 3117-3130. 

PF3D7_1236800 Protein-S-isoprenylcysteine O-methyltransferase, 
putative 

2.1.1.100 Baron, R. A., Peterson, Y. K., Otto, J. C., Rudolph, J., & Casey, P. J. 
(2007). Time-dependent inhibition of isoprenylcysteine carboxyl 
methyltransferase by indole-based small molecules. Biochemistry, 
46(2), 554-560.; 
Winter-Vann, A. M., Baron, R. A., Wong, W., dela Cruz, J., York, J. D., 
Gooden, D. M., ... & Casey, P. J. (2005). A small-molecule inhibitor of 
isoprenylcysteine carboxyl methyltransferase with antitumor activity 
in cancer cells. Proceedings of the National Academy of Sciences of 
the United States of America, 102(12), 4336-4341. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1238600 Sphingomyelin phosphodiesterase, putative 3.1.4.12 Hanada, K., Palacpac, N. M. Q., Magistrado, P. A., Kurokawa, K., Rai, 
G., Sakata, D., ... & Mitamura, T. (2002). Plasmodium falciparum 
phospholipase C hydrolyzing sphingomyelin and 
lysocholinephospholipids is a possible target for malaria 
chemotherapy. Journal of Experimental Medicine, 195(1), 23-34. 

PF3D7_1239500 DNA gyrase subunit B 5.99.1.3 Gamage, S. A., Tepsiri, N., Wilairat, P., Wojcik, S. J., Figgitt, D. P., 
Ralph, R. K., & Denny, W. A. (1994). Synthesis and in vitro evaluation 
of 9-anilino-3, 6-diaminoacridines active against a multidrug-
resistant strain of the malaria parasite Plasmodium falciparum. 
Journal of medicinal chemistry, 37(10), 1486-1494.; 
Chavalitshewinkoon-Petmitr, P., Pongvilairat, G., Auparakkitanon, S., 
& Wilairat, P. (2000). Gametocytocidal activity of pyronaridine and 
DNA topoisomerase II inhibitors against multidrug-resistant 
Plasmodium falciparum in vitro. Parasitology international, 48(4), 
275-280.; 
Noonpakdee, W., Pothikasikorn, J., Nimitsantiwong, W., & Wilairat, 
P. (2003). Inhibition of Plasmodium falciparum proliferation in vitro 
by antisense oligodeoxynucleotides against malarial topoisomerase 
II. Biochemical and biophysical research communications, 302(4), 
659-664. 

PF3D7_1246100 Delta-aminolevulinic acid synthetase 2.3.1.37 Surolia, N., & Padmanaban, G. (1992). De novo biosynthesis of heme 
offers a new chemotherapeutic target in the human malarial 
parasite. Biochemical and Biophysical Research Communications, 
187(2), 744-750.; 
Varadharajan, S., Dhanasekaran, S., Bonday, Z. Q., Rangarajan, P. N., 
Padmanaban, G. (2002). Involvement of deltaaminolaevulinate 
synthase encoded by the parasite gene in de novo haem synthesis by 
Plasmodium falciparum. Biochemical Journal. 367(Pt 2):321–327. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1246900 Rac-beta serine/threonine protein kinase, PfPKB 2.7.11.1 Waters, N. C., Woodard, C. L., & Prigge, S. T. (2000). Cyclin H 
activation and drug susceptibility of the Pfmrk cyclin dependent 
protein kinase from Plasmodium falciparum. Molecular and 
biochemical parasitology, 107(1), 45-55. 

PF3D7_1247800 Dipeptidyl aminopeptidase 2 (DPAP2) 3.4.14.1 Tanaka, T. Q., Deu, E., Molina-Cruz, A., Ashburne, M. J., Ali, O., Suri, 
A., ... & Williamson, K. C. (2013). Plasmodium dipeptidyl 
aminopeptidases as malaria transmission-blocking drug targets. 
Antimicrobial agents and chemotherapy, 57(10), 4645-4652. 

PF3D7_1302600 Deoxyhypusine hydroxylase (DOHH)  1.14.99.29 Saeftel, M., Sarite, R. S., Njuguna, T., Holzgrabe, U., Ulmer, D., 
Hoerauf, A., & Kaiser, A. (2006). Piperidones with activity against 
Plasmodium falciparum. Parasitology research, 99(3), 281-286. 

PF3D7_1308200 Carbamoyl phosphate synthetase 6.3.4.16, 
6.3.5.5 

Flores, M. V., Atkins, D., Wade, D., O’Sullivan, W. J., Stewart, T. S. 
(1997). Inhibition of Plasmodium falciparum proliferation in vitro by 
ribozymes. Journal of Biological Chemistry, 272(27):16940–16945. 

PF3D7_1311800 M1-family alanyl aminopeptidase (M1AAP) 3.4.11.2 Skinner-Adams, T. S., Stack, C. M., Trenholme, K. R., Brown, C. L., 
Grembecka, J., Lowther, J., ... & Whisstock, J. C. (2010). Plasmodium 
falciparum neutral aminopeptidases: new targets for anti-malarials. 
Trends in biochemical sciences, 35(1), 53-61. 

PF3D7_1316600 Choline-phosphate cytidylyltransferase (CCT) 2.7.7.15 González-Bulnes, P., Bobenchik, A. M., Augagneur, Y., Cerdan, R., 
Vial, H. J., Llebaria, A., & Mamoun, C. B. (2011). PG12, a phospholipid 
analog with potent antimalarial activity, inhibits Plasmodium 
falciparum CTP: phosphocholine cytidylyltransferase activity. Journal 
of Biological Chemistry, 286(33), 28940-28947. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1318200 Glycerol-3-phosphate acyltransferase 2.3.1.15 Lindner, S. E., Sartain, M. J., Hayes, K., Harupa, A., Moritz, R. L., 
Kappe, S. H., & Vaughan, A. M. (2014). Enzymes involved in plastid‐
targeted phosphatidic acid synthesis are essential for Plasmodium 
yoelii liver‐stage development. Molecular microbiology, 91(4), 679-
693.; 
Nicolas, O., Margout, D., Taudon, N., Wein, S., Calas, M., Vial, H. J., & 
Bressolle, F. M. (2005). Pharmacological properties of a new 
antimalarial bisthiazolium salt, T3, and a corresponding prodrug, TE3. 
Antimicrobial agents and chemotherapy, 49(9), 3631-3639. 

PF3D7_1323000 3-hydroxyacyl-ACP dehydratase 4.2.1.58, 
4.2.1.59, 
4.2.1.60, 
4.2.1.61 

Sharma, S. K., Kapoor, M., Ramya, T. N. C., Kumar, S., Kumar, G., 
Modak, R., ... & Surolia, A. (2003). Identification, characterization, 
and inhibition of Plasmodium falciparum β-hydroxyacyl-acyl carrier 
protein dehydratase (FabZ). Journal of Biological Chemistry, 278(46), 
45661-45671. 

PF3D7_1324900 Lactate dehydrogenase 1.1.1.27 Granchi, C., Bertini, S., Macchia, M., & Minutolo, F. (2010). Inhibitors 
of lactate dehydrogenase isoforms and their therapeutic potentials. 
Current medicinal chemistry, 17(7), 672-697. 

PF3D7_1327600 Nicotinate-nucleotide adenylyltransferase 
(NMNAT) 

2.7.7.18 O'Hara, J. K., Kerwin, L. J., Cobbold, S. A., Tai, J., Bedell, T. A., Reider, 
P. J., & Llinás, M. (2014). Targeting NAD+ metabolism in the human 
malaria parasite Plasmodium falciparum. PloS one, 9(4), e94061. 

PF3D7_1342100 Aconitate hydratase 4.2.1.3 Hodges, M., Yikilmaz, E., Patterson, G., Kasvosve, I., Rouault, T. A., 
Gordeuk, V. R., & Loyevsky, M. (2005). An iron regulatory-like protein 
expressed in Plasmodium falciparum displays aconitase activity. 
Molecular and biochemical parasitology, 143(1), 29-38. 
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Gene ID Reaction/Gene name EC number References 

PF3D7_1343000 Phosphoethanolamine N-methyltransferase 2.1.1.103 Witola, W. H., El Bissati, K., Pessi, G., Xie, C., Roepe, P. D., & 
Mamoun, C. B. (2008). Disruption of the Plasmodium falciparum 
PfPMT gene results in a complete loss of phosphatidylcholine 
biosynthesis via the serine-decarboxylase-phosphoethanolamine-
methyltransferase pathway and severe growth and survival defects. 
Journal of Biological Chemistry, 283(41), 27636-27643. 

PF3D7_1345700 Isocitrate dehydrogenase (NADP), mitochondrial 
precursor (IDH) 

1.1.1.42 Wrenger, C., & Müller, S. (2003). Isocitrate dehydrogenase of 
Plasmodium falciparum. European Journal of Biochemistry, 270(8), 
1775-1783. 

PF3D7_1347200 Nucleoside transporter 1 (NT1)   Frame, I. J., Deniskin, R., Rinderspacher, A., Katz, F., Deng, S. X., Moir, 
R. D., ... & Landry, D. W. (2015). Yeast-based high-throughput screen 
identifies Plasmodium falciparum equilibrative nucleoside 
transporter 1 inhibitors that kill malaria parasites. ACS chemical 
biology, 10(3), 775-783. 

PF3D7_1351600 Glycerol kinase (GK) 2.7.1.30 Naidoo, K., & Coetzer, T. L. (2013). Reduced glycerol incorporation 
into phospholipids contributes to impaired intra-erythrocytic growth 
of glycerol kinase knockout Plasmodium falciparum parasites. 
Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(11), 
5326-5334. 

PF3D7_1354500 Adenylosuccinate synthetase (adsS) 6.3.4.4 Eaazhisai, K., Jayalakshmi, R., Gayathri, P., Anand, R. P., Sumathy, K., 
Balaram, H., & Murthy, M. R. N. (2004). Crystal structure of fully 
ligated adenylosuccinate synthetase from Plasmodium falciparum. 
Journal of molecular biology, 335(5), 1251-1264. 

PF3D7_1356900 Protein kinase 5 2.7.11.22 Harmse, L., van Zyl, R., Gray, N., Schultz, P., Leclerc, S., Meijer, L., ... 
& Havlik, I. (2001). Structure-activity relationships and inhibitory 
effects of various purine derivatives on the in vitro growth of 
Plasmodium falciparum. Biochemical pharmacology, 62(3), 341-348. 
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PF3D7_1360800 Falcilysin 3.4.23.1, 
3.4.24.-, 
4.4.1.21 

Zhang, P., Nicholson, D. E., Bujnicki, J. M., Su, X., Brendle, J. J., Ferdig, 
M., ... & Chiang, P. K. (2002). Angiogenesis inhibitors specific for 
methionine aminopeptidase 2 as drugs for malaria and leishmaniasis. 
Journal of biomedical science, 9(1), 34-40. 

PF3D7_1364900 Ferrochelatase (FC) 4.99.1.1 Nagaraj, V. A., Sundaram, B., Varadarajan, N. M., Subramani, P. A., 
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chemistry letters, 14(11), 2931-2934. 
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PF3D7_1444800 Fructose-bisphosphate aldolase 4.1.2.13 Wanidworanun, C., Nagel, R. L., & Shear, H. L. (1999). Antisense 
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cell surface adhesins and the actin cytoskeleton in apicomplexan 
parasites. Molecular cell, 11(4), 885-894. 
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hemozoin formation in Plasmodium falciparum trophozoite extracts 
by heme analogs: possible implication in the resistance to malaria 
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reductoisomerase 
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C., Hintz, M., ... & Soldati, D. (1999). Inhibitors of the nonmevalonate 
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biosynthesis presents drug targets in Plasmodium falciparum. 
Antimicrobial agents and chemotherapy, 47(1), 297-301. 
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(1997). dCTP levels are maintained in Plasmodium falciparum 
subjected to pyrimidine deficiency or excess. Annals of Tropical 
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Krungkrai, J., Krungkrai, S. R., & Phakanont, K. (1992). Antimalarial 
activity of orotate analogs that inhibit dihydroorotase and 
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1295-1301. 
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PF3D7_1476700 Lysophospholipase, putative 3.1.1.5 Zidovetzki, R., Sherman, I. W., Prudhomme, J., & Crawford, J. (1994). 
Inhibition of Plasmodium falciparum lysophospholipase by anti-
malarial drugs and sulphydryl reagents. Parasitology, 108(03), 249-
255. 

PF3D7_1476800 Lysophospholipase, putative 3.1.1.5 Zidovetzki, R., Sherman, I. W., Prudhomme, J., & Crawford, J. (1994). 
Inhibition of Plasmodium falciparum lysophospholipase by anti-
malarial drugs and sulphydryl reagents. Parasitology, 108(03), 249-
255. 

PFC10_API0015 RNA polymerase B (rpoB) 2.7.7.6 Lin, Q., Katakura, K., & Suzuki, M. (2002). Inhibition of mitochondrial 
and plastid activity of Plasmodium falciparum by minocycline. FEBS 
letters, 515(1-3), 71-74. 
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