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Abstract 

 
Flow control has become a topic of great importance for several 

applications, ranging from commercial aircraft, to intercontinental 

pipes and skyscrapers. In these applications, and many more, the 

interaction with a fluid flow can have a significant influence on the 

performance of the system. In many cases the fluids encountered are 

turbulent and detrimental to the latter. 

Several attempts have been made to solve this problem. However, 

due to the non-linearity and infinite dimensionality of fluid flows and 

their governing equations, a complete understanding of turbulent 

behaviour and a feasible control approach has not been obtained. 

In this thesis, model reduction approaches that exploit non-linear 

system identification are applied using data obtained from numerical 

simulations of turbulent three-dimensional channel flow, and two-

dimensional flow over the backward facing step. A multiple-input 

multiple-output model, consisting of 27 sub-structures, is obtained for 

the fluctuations of the velocity components of the channel flow. A single-

input single-output model for fluctuations of the pressure coefficient, 

and two multiple-input single-output models for fluctuations of the 

velocity magnitude are obtained in flow over the BFS.  

A non-linear model predictive control strategy is designed using 

identified one- and multi-step ahead predictors, with the inclusion of 

integral action for robustness. The proposed control approach 

incorporates a non-linear model without the need for expensive non-

linear optimizations. 

Finally, a frequency domain analysis of unmanipulated turbulent 

flow is perfumed using five systems. Higher order generalized frequency 

response functions (GFRF) are computed to study the non-linear energy 

transfer phenomena.  A more detailed investigation is performed using 

the output FRF (OFRF), which can elucidate the contribution of the �-th 

order frequency response to the output frequency response. 
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CHAPTER 1 

 
 

Introduction  

 
 

1.1. Background and Motivation  

 

Flow control has been investigated for nearly a century  (Braslow, 1999; 

Tuttle & Bushnell, 1979). Since the proposition by Prandtl of the 

boundary layer (Prandtl, 1905), researchers have sought ways to improve 

the performance of machinery that interacts with fluid flows. Several 

applications have been reported prior to, and during the first and second 

world-wars (Braslow, 1999; Tuttle & Maddalon, 1982), when interest 

regarding aircraft and marine applications peaked. Most approaches at 

the time were passive, and involved the optimization of the geometries 

of air foils and marine vessels, some uses of suction have also been 

reported (Braslow, 1999; Tuttle & Bushnell, 1979; Tuttle & Maddalon, 

1982). 

After the wars, interest waivered mainly due to low oil prices and the 

limited amount of applications where flow control could achieve a 

significant improvement, of performance or reduction of fuel 

consumption (Braslow, 1999; Tuttle & Bushnell, 1979; Tuttle & Maddalon, 

1982). Between 1960-70 there was almost no progress in this area.  
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However, the increase of fuel costs, coupled with insecure sources of 

petroleum, for example, in addition to the desire of reducing aircraft 

noise and lower pollution, meant that this research field became active 

once again.  In recent years, similar economic and environmental 

demands have maintained the focus on flow control. In particular, the 

reduction of fuel costs and pollution, as well as the significant increase 

in computation power which enables the real-time implementation of 

computationally demanding algorithms, have given this topic an urgent 

and implementable tone (Åkervik, Hœpffner, Ehrenstein, & Henningson, 

2007; Bewley, 2001; Kim, 2003; Kim & Bewley, 2007; Lumley & Blossey, 

1998; Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

The performance of many engineering systems, especially transport 

and power generation, buildings, and structures, is greatly degraded as a 

consequence of their interactions with fluids  (Bewley, 2001; Kim, 2003; 

Scott Collis et al., 2004). In the modern world, it is therefore of 

paramount importance to be able manipulate/control a fluid flow. 

Further, the technologies required for the implementation of such 

control methods, are readily available in the form of sensors and 

actuators (Ho & Tai, 1998; Lofdahl & Gad-el-Hak, 1999; Varadan & 

Varadan, 2000). 

Fluids in motion are governed by the Navier-Stokes equations and 

can be classified as being laminar or turbulent (Bradshaw, 1994; 

Davidson, Kaneda, & Sreenivasan, 2013; Frank, 2011), those encountered 

in numerous applications are of the latter kind.  

Turbulent flows are characterised as being chaotic and stochastic 

and the determination of their behaviour remains one of the unsolved 

problems of classic physics (Bradshaw, 1994; Davidson et al., 2013; P. 

George, 2003; Li, 2013). For this reason, turbulence has even been said to 

have been “invented by the Devil, on the seventh day of Creation” 

(Bradshaw, 1994). 

In some cases turbulence is beneficial and even pursued, to improve 

heat transfer in (heat) exchangers or heighten mixing within 

combustion engines or chemicals in pharmaceutical plants (Bewley, 

2001; Bewley, Moin, & Temam, 2001). However, in many others, there is a 

great drive to diminish it (Kim & Bewley, 2007; Kubo, Modi, Kotsubo, 



1.1 Background and Motivation  

3 
 

Hayashida, & Kato, 1996; Ricco, Ottonelli, Hasegawa, & Quadrio, 2012). 

Turbulent boundary layers over aircraft or ships for example, induce 

higher skin-friction drag than that of laminar flow (Davidson et al., 2013; 

Frank, 2011; Scott Collis et al., 2004). In turn, this decreases the overall 

performance of the vehicle, while increasing fuel consumption (Bewley, 

2001; Kim & Bewley, 2007; Scott Collis et al., 2004). It is estimated that 

skin-friction drag makes up 45% of the total drag of a commercial 

aircraft, while 50-80% of a large marine vessel (Heins, 2015; IPCC, 2014). 

Therefore, one of the sectors most benefitted by the implementation of 

a flow control strategy, is transport.  

It has been estimated that a control strategy which generates a drag 

reduction, leading to a one-percent saving of world fuel-consumption, is 

worth over $1.25M (£1.01M) per day (Scott Collis et al., 2004). This figure 

shows how millions of dollars could be saved in transportation, as well 

as many other fuel consuming applications by achieving a relatively 

small flow alteration. 

In terms of ecological benefits, the decrease of fuel consumption 

alone is a great achievement, for it would help to preserve earth’s 

resources. More importantly, it would mean the lessening of CO2 

emission as well as other greenhouse gases and pollutants due to the 

increased performance (Quadrio, Ricco, & Viotti, 2009; Scott Collis et al., 

2004). Although the extent of these outcomes is difficult to quantify, it 

would certainly be evident. Considering that international shipping 

accounted for 2.2% of ��� and 2.1% of green-house gas emissions1 in 2012, 

while the aviation industry was estimated to contribute 2.5% of the 

world’s ��� emissions (IPCC, 2014), a way to reduce this ecological foot-

print is urgently needed. 

Other just as important effects can be obtained with the reduction of 

vibrations. For example, those caused by wind and ocean effects, on civil 

engineering structures. This can lead to a decrease in material and 

construction costs (Kubo et al., 1996). Increased efficiency in the 

intercontinental transportation of oil and natural gas in pipes, wind 

turbine effectiveness, and many other examples of areas of opportunity 

and potential benefits can be given (Kim, 2003; Kim & Bewley, 2007).  

                                                            
1 This is quantified in a carbon dioxide equivalent (����) basis (IPCC, 2014) 
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The behaviour of wall bounded fluids has been studied in the past 

through several canonical scenarios, such as: Couette flow, pipe flow, 

boundary layer flow and plane channel flow, as well as flow over a 

backward facing step (Bewley, 2001; Choi, Moin, & Kim, 1994; Dean & 

Bhushan, 2012; Gad-el-Hak, 1989; Gibson, Halcrow, & CvitanoviĆ, 2008; 

Heenan & Morrison, 1998; Huang & Kim, 2008; Kim, 2003; Le, Moin, & 

Kim, 1997; Neumann & Wengle, 2003; Scott Collis et al., 2004; Uruba, 

Jonáš, & Mazur, 2007). In this work, the channel flow and flow over the 

backward facing step scenarios will be studied, and used in conjunction 

with methods oriented towards the development of a flow control 

scheme and the increase of the understanding of turbulent flow 

behaviour. 

The topic of flow between two infinite parallel plates has been used 

as a test-bed, or stepping stone, towards more complex applications, 

however, much can still be learned from transition and fully turbulent 

flows in this geometry (Bewley, 2001; Heins, Jones, & Sharma, 2016; Kim, 

2003). Plane channel flow is that found in a rectangular domain, with 

periodic boundary conditions for the stream- and span-wise directions, 

and zero-velocity at the walls in the wall-normal direction (Frank, 2011; 

Gibson et al., 2008; Kim, 2003; Nakayama, 1999). The flow over a 

backward facing step is similar, with the addition of a sudden expansion 

in the streamwise direction, which creates the step characteristic of this 

scenario (Frank, 2011; Le et al., 1997). 

One way in which approaches to control flow have been classified is 

whether the scheme obtained is passive or active (Perlin, Dowling, & 

Ceccio, 2016; Scott Collis et al., 2004). The former often resulting of a 

modification of the wall or geometry such as riblets and grooves (Heenan 

& Morrison, 1998; Neumann & Wengle, 2003; Perlin et al., 2016; Pollard, 

1998). The latter being a dynamic closed- or open-loop modification of 

flow-structures using methods that include an external energy input, 

and in the case of closed-loop methods, require the sensing of the 

systems’ state (Choi, Moin, & Kim, 1993; Choi et al., 1994; Perlin et al., 

2016; Scott Collis et al., 2004).  Examples of active control strategies 

include adaptive neural networks (Bewley, 2001; C. Lee, Kim, Babcock, & 

Goodman, 1997), schemes based purely on the understanding of 
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dominant physics (Hervé, Sipp, Schmid, & Samuelides, 2012; Kim, 2003), 

and model-based classic and modern control schemes (Allgower, 

Findeisen, & Nagy, 2004; Bewley et al., 2001; Choi et al., 1994; Heins et al., 

2016; Huang & Kim, 2008; Jones, Heins, Kerrigan, Morrison, & Sharma, 

2015; Joshi, Speyer, & Kim, 1997; Kim & Bewley, 2007; C. Lee, Kim, & Choi, 

1998), among others. 

The systems analysed are, in terms of control theory, of a high 

complexity; non-linear and infinite-dimensional, even when the flow 

being studied is considered as basic in other disciplines such as fluid 

mechanics or computational fluid dynamics (CFD) (Baramov, Tutty, & 

Rogers, 2001; Hervé et al., 2012; Joshi et al., 1997; Kim & Bewley, 2007). 

Thus, several of the present attempts of fluid control have often been 

based on physical intuition, experience, and in some cases even sheer 

luck (Kim, 2003; K. H. Lee, Cortelezzi, Kim, & Speyer, 2001; Scott Collis et 

al., 2004). Many more require information that is extremely hard at bests 

to obtain in reality, and so, turn out to be close to impossible to 

implement outside of simulations without the use of linearized 

equations and other assumptions (Kim, 2003; C. Lee et al., 1997; K. H. Lee 

et al., 2001). Therefore, as far as it was observed a need for the 

development of an accurate reduced-order model and active closed-loop 

controller, which is both robust and realistic so that it is feasible for 

implementation, is found within the literature (Bewley et al., 2001). 

The control approach implemented in this work is the family of 

model-based predictive control. These are methods which rely on an 

explicit model of the plant to generate future predictions, and optimize 

a control sequence that drives the system to the desired state using a 

receding horizon (Camacho & Bordons-Alba, 2003; Clarke, Mohtadi, & 

Tuffs, 1987a; García, Prett, & Morari, 1989).  

A non-linear variant of the generalized predictive control algorithm 

is implemented. The latter is defined to be used with finite control and 

prediction horizons, in addition to the inclusion of constraints during 

the control law design stage  (Bai & Coca, 2011; Camacho & Bordons-Alba, 

2003; Clarke & Mohtadi, 1989; Clarke et al., 1987a; Rossiter, 2003). 

The explicit constraint handling is the most attractive feature of 

several MPC methods, considering that real systems are subject to 
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limitations set by the plant, sensors and actuators (Camacho & Bordons-

Alba, 2003; Clarke & Mohtadi, 1989; Clarke et al., 1987a). Additional 

distinguishing features of interest for the current project are firstly, the 

ability to use models of any form, including non-linear multivariable 

NARMAX models identified from input/output data (Bai & Coca, 2011; 

Camacho & Bordons-Alba, 2003; Clarke et al., 1987a; García et al., 1989). 

Secondly, the use of a receding horizon which, coupled to the use of 

integral action in the model, provide robustness to the strategy, which 

in the case of infinite control and prediction horizons, yields nominal 

stability (Bai & Coca, 2011; Camacho & Bordons-Alba, 2003; Clarke et al., 

1987a; García et al., 1989; Rossiter, 2003). 

The analysis of non-linear systems in the frequency domain is 

possible thanks to the development of methods such as the generalized 

frequency response functions and output frequency response functions 

(D. A. George, 1959; Lang & Billings, 1997, 2004; Peyton Jones & 

Choudhary, 2012; Yue, Billings, & Lang, 2005). Prior to the development 

of these theories, this kind of analysis was limited due to the difficulty 

of identifying models from data, in addition to the complexity that they 

themselves represent, many attempts were made using Volterra series 

representation of the systems (Billings, 2013; Billings & Lang, 2002; 

Billings & Tsang, 1989a; Jing, Lang, & Billings, 2010; Lang & Billings, 1997). 

Frequency-domain representations of many time-domain models are 

unique, which allows for the study of the invariant dynamics of the 

system to be identified (Billings & Lang, 2002; Jing et al., 2010; Lang & 

Billings, 2004). In addition to this, the study of this kind of models is of 

importance since most, if not all, real processes encountered are non-

linear. Considering that systems are subject to tighter constraints in 

addition to increasing complexity, the use of simplified models can no 

longer be justified in many applications (Billings, 2013; Lang & Billings, 

2004). A more comprehensive understanding of non-linear systems, in 

addition to the possibility of design of controllers that exploit 

phenomena only attainable through this kind of models has also been 

identified (Bai & Coca, 2011; Bewley, 2001; Billings & Lang, 2002; Henson, 

1998). 
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1.2. Aims and objectives  

 

The current research looks towards working within the gap found in the 

existing literature and take advantage of existing theories from the 

disciplines that intersect in this area of study, mainly fluid mechanics, 

control and optimization theory, and mathematics (Kim & Bewley, 

2007).  

The aim of the current research project is to develop model-based 

active flow control strategies in addition to an analysis of turbulent 

flows in the frequency domain, likewise based on reduced-order models. 

The objectives can therefore be summarized as follows: 
 

 Obtain accurate and representative data of flow in the 

selected geometries through simulations using specialized 

computational fluid dynamics (CFD) packages. For the case of 

channel flow, highly accurate but computationally 

demanding direct numerical simulation (DNS) are performed 

using the ChannelFlow package (Gibson, 2012; M. Lee & Moser, 

2015) due to the simple geometry. On the other hand, large-

eddy simulation (LES) using Fluent is used to simulate the 

flow over the backward facing step (Le et al., 1997; Neumann & 

Wengle, 2003). Such simulations are based on successfully 

implemented experimental and simulation configurations to 

ensure the validity of the data obtained (Driver & Jovic, 1994; 

Le et al., 1997). 

 Develop model reduction approaches that exploit nonlinear 

system identification, based on the NARMAX model and 

associated methodology. Data obtained from actuated 

simulations of both scenarios is used to perform the 

identification of one-step ahead (OSA), in the case of channel 

flow, and multi-step ahead (MSA) predictors (Bai & Coca, 2011) 

in the case of flow over the BFS. The identification procedure 

is tailored to ensure that the resulting flow over the BFS 

models facilitate fast implementation of control algorithms. 

 Formulate and implement non-linear model predictive 

control (NMPC) strategies for fluid flows (Bewley et al., 2001; 
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Camacho & Bordons-Alba, 2003; Clarke, Mohtadi, & Tuffs, 

1987b), based on the reduced-order models, capable of taking 

the fluid state to a desired trajectory. NMPC strategies using 

localized sensing and actuation are proposed for the flow over 

the backward facing step where a single-input single-output 

approach is given to control the fluctuations of the pressure 

coefficient on the step wall, additionally a multiple-input 

single-output (MISO) case is taken for the manipulation of the 

velocity magnitude within the recirculation zone.  

 Perform an analysis of energy transfer and investigate the 

influence of the upstream (of the step) flow on downstream 

behaviour. This is achieved by identifying one-step ahead non-

linear models, relating the velocity magnitude at points 

upstream of the step, to locations downstream. The models 

are mapped into the frequency domain to obtain the 

generalized and output frequency response functions (GFRF 

and OFRF) (Billings & Lang, 2002; D. A. George, 1959; Lang & 

Billings, 1997).  

 Carry out an analysis of the generalized frequency response 

functions. The multivariable nature of the GFRF’s make this 

analysis complicated for quadratic or higher order systems 

(Billings & Lang, 2002; Lang & Billings, 1997; Peyton Jones & 

Choudhary, 2012; Yue et al., 2005). However, they can provide 

a unique visualisation of the physical underlying behaviour of 

the system, which can be hidden in the time-domain model. 

They can elucidate the impact of individual model terms on 

the response of the system (Billings & Lang, 2002; Billings & 

Tsang, 1989a, 1989b; Lang & Billings, 1997; Peyton Jones & 

Choudhary, 2012; Yue et al., 2005).  

 Analytically define the way in which the output frequency 

response, and specific output frequencies of interest, are 

generated using the output frequency response functions. The 

OFRF’s are one dimensional functions of frequency, which are 

easier to visualize and interpret than the GFRF’s, and can 

establish the contribution of the different order non-
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linearities to the whole output frequency response or of 

individual elements (Billings & Lang, 2002; Lang & Billings, 

1996, 1997, 2004; Lang, Billings, Yue, & Li, 2007; Peyton Jones 

& Choudhary, 2012; Yue et al., 2005). 

 

 

1.3. Thesis outline  

 

The current thesis presents the results obtained during this PhD 

research program. This work can be split into three sections, which are 

made up of the seven chapters included, as: 

 Fluid flow simulation and analysis (Chapter 2 and 3) 

 System identification of reduced-order models (Chapter 4) 

 Development of applications of the identified models, in the form 

of control schemes and analysis of the system in the frequency 

domain. (Chapter 5, 6 and 7) 
 

 

The remaining chapters are organized as follows: 
 

 Chapter 2 presents a brief introduction to fluid mechanics and a 

more detailed description of fluid dynamics, where the latter 

deals with fluids in motion. The derivation of the governing 

equations is given, in addition to the definitions of relevant 

concepts required for an understanding of fluid flows. The 

numerical methods employed by the CFD packages used are 

discussed. 
 

 Chapter 3 introduces the two cases of wall bounded flows studied 

in the remainder of the work, mainly the channel flow and flow 

over the backward facing step. The definition and reasoning for 

the selected parameters is given. The chapter also includes an 

analysis of natural flow and Fourier analysis of the extracted data 

to generate a persistently exciting input for system identification 

purposes. 
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 Chapter 4 gives an overview of system identification using the 

NARMAX methodology, in addition to discussing the importance 

of deriving dynamical models from experimental data. The 

implementation of these algorithms for the identification of SISO 

and MISO models from the CFD data is detailed, and results 

presented. A discussion on the accuracy of the identified models, 

in addition to challenges faced in the identification on non-linear 

systems, particularly of fluid flows, is also given. 

 

 Chapter 5 presents a review of the theoretical and practical flow 

control approaches in the literature, with a focus on those applied 

on wall-bounded flows of the active and passive type. A detailed 

presentation of active open- and closed-loop methods is given, 

where the latter are the most relevant to the current work. 

Existing actuator and sensing technologies are briefly reported. 
 

 Chapter 6 introduces linear and non-linear model predictive 

control, in addition to the modifications made to the generalized 

predictive control algorithm to obtain compatibility with the 

current problem, and the identified OSA and MSA predictors. 

Simulations of the implemented MPC strategy are given for both 

the control of the pressure coefficient fluctuations, ��, using a 

SISO approach and the MISO control of the velocity magnitude 

fluctuations, |�|. The simulations of both systems are performed 

through a noise-free, measurement noise, and measurement noise 

with load disturbance case. 
 

 Chapter 7 introduces the frequency properties of non-linear 

systems, in addition to the concept and methods to compute the 

GFRF’s and OFRF’s. An analysis of four different systems relating 

velocity magnitude from two upstream points with two 

downstream locations, in addition to the interaction of the two 

upstream nodes is performed using these tools. The GFRF’s are 

used to see the contribution that the different model orders have 

on the output frequency spectrum. The OFRF’s provide a more 
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detailed insight into the contribution of individual frequencies on 

the output response.  
 

 Chapter 8 draws the general conclusions of the current thesis in 

addition to a discussion of issues encountered within the 

disciplines involved in this work. In addition, possible areas for 

improvement are presented with recommendations for future 

work. 
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CHAPTER 2 

 
 

Overview  of the theory of 

fluids and computational fluid 

dynamics 

 

 

2.1 Introduction  
 

In order to control the behaviour of a fluid using a model-based 

control approach, it is of the upmost importance to obtain an accurate, 

reliable and robust model of the different phenomena which constitute 

a flowing fluid (Kim, 2003; Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

Since it is very difficult, and in some cases impossible, to carry out 

repeatable experiments to obtain data or validate schemes, simulations 

of the scenarios of interest are often performed to enable understanding 

of what goes on within the flow (John, 1995). 

Nowadays, it is possible to carry out such simulations with great 

accuracy thanks to hundreds of years of studying flows (John, 1995), and 

the developments which have been made in this field (Canuto, Hussaini, 

Quarteroni, & Zang, 1988; John, 1995; Temam, 1977). 
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The study of fluid flows and the forces which act upon them, also 

known as fluid mechanics, is one of the oldest branches of physics and 

is nowadays considered a sub-branch of continuum mechanics (Frank, 

2011; Nakayama, 1999). In turn, fluid mechanics is divided into 

hydrostatics and fluid dynamics, in which the former studies fluids at 

rest and the latter is focused on the forces of fluids in motion (Davidson, 

Kaneda, & Sreenivasan, 2013; Frank, 2011; Nakayama, 1999). 

Since the equations that govern the flow of fluids are non-linear and 

highly complex, there are no general solutions and often even case 

specific ones are prohibitively expensive to derive and solve. It is 

because of this that techniques to obtain approximations to the 

solutions have been created. This practice has evolved into a branch of 

fluid dynamics, namely Computational Fluid Dynamics or CFD (Bewley, 

2001; Canuto, Hussaini, Quarteroni, & Zang, 1988; John, 1995). 

This project has been especially concerned with the dynamical study 

of the flow, where the forces acting upon the particles of the fluid, as well 

as the effects they have on the flow are considered. Furthermore, the 

impact of the fluid on its surroundings, and vice versa, is considered, to 

have a full picture of the motion of the flow inside of the studied domain.  

A clear understanding of this theory was necessary to obtain the 

tools needed, in turn, to derive an accurate data-based model of the flow 

using simulations. 

 The chapter is divided as follows, Section 2.2 presents the general 

theory of fluid flows, with a description of the main concepts that are 

needed to derive the governing equations, and understand the behaviour 

of flows. Section 2.2.1 contains details of the derivation of the continuity 

equation and 2.2.3 shows the approach used to obtain the momentum 

equation. 

Section §2.3 goes on to describe computational fluid dynamics, with 

an emphasis on the methods employed by the specialized packages used 

to obtain the simulations of flows in the two studied geometries of this 

project. Section 2.3.1 explains DNS and the ChannelFlow package, 

whereas Section 2.3.2 presents the LES method and Ansys-Fluent. 

Section 2.4 contains a brief discussion on the presented theory and 

simulation approaches. 
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2.2 General theory of fluid mechanics and dynamics 
 

A fluid is a state of matter which can be defined as being a substance 

that, in the presence of a shearing or tangential force, will deform 

continuously regardless of the magnitude of such a force and cannot 

return to its original state at any time (Frank, 2011; Nakayama, 1999). 

In order to truly study the flow of a fluid, it would be necessary to 

describe the motion of all the particles that make it up. This is, of course, 

impossible to achieve, thus some considerations are made to simplify 

the analysis. The first is that the intermolecular cohesive forces are 

strong1 and the second states that the molecular mean free path2 must 

be less than one per-cent of some characteristic length in the flow 

(Frank, 2011; Nakayama, 1999).. Where the latter is a property of the 

domain in which the flow is found. If both of these conditions are met 

then the fluid can be considered as behaving as one continuous mass, 

such a model is referred to as a continuum (Frank, 2011; Nakayama, 

1999).  

A further simplification made to the analysis, is that it is carried out 

on an infinitesimal control volume in a fixed position in space (x, y, z), 

as seen in Figure 2.1. The fundamental physical properties are then 

applied to the fluid, and relationships between the different variables 

are sought at this position and within the control volume. This method 

is referred to as the Eulerian approach (Frank, 2011; Nakayama, 1999), 

and it results in the governing equations to be represented in 

conservation form3, with a partial differential equation (PDE) structure. 

                                                            
1 This is true for a number of gases and almost any liquid. 
2 Term that refers to the statistical average distance that molecules travel between collisions. 
3 Term commonly used in CFD literature to describe an equation derived when studying a fixed 
control volume, it is closely related to the numerical method that is used to discretize and solve 
the equation. This form is said to have a more apparent physical meaning and certain 
computational advantages for CFD applications when compared against the integral or non-
conservational forms. 
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Figure 2.1 Schematic of an infinitesimal element of fluid in a fixed position (x, y, z) within the flow4 

Following are definitions of fluid properties whose understanding is 

necessary for the derivation of the governing equations, also presented 

are concepts related to turbulence.  

Additional and more detailed definitions of other useful concepts 

can be found in Appendix A.1 (Frank, 2011; Nakayama, 1999). 

 Dynamic viscosity (�): The result of the intermolecular forces 

which occur when a layer, or particles of fluid, slide by one 

another. This is partially responsible for the boundary layer and 

the no-slip condition.  

 Velocity (�): This is the rate of change of position of the particles 

within the control volume, often referred to as the vector � for 

three-dimensional Cartesian coordinates (�,�,�).  

 Reynolds number ( ��): Dimensionless ratio of inertial and 

viscous forces found within a fluid, often used to define whether 

a flow is laminar or turbulent. The most common way of 

calculating this value is using �� =
���

�
. 

 No-slip condition: Boundary condition which states that the 

velocity � of all fluid particles at the interface with a solid, is equal 

to the velocity V  of such solid, that is � = V and can be seen in 

Figure 2.2a for the case of stationary and moving walls. 

                                                            
4 Image adapted from (Kim, 2003) 
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Figure 2.2 a) Schematic of the no-slip condition between a flow velocity profile and stationary/moving 

walls.5 b) Schematic of the boundary layer with a corresponding velocity profile over a flat plate.  

 Boundary layer: Small region near the vicinity of a fluid-solid 

interface where the viscosity effects are dominant or at least of 

the same magnitude as the inertial forces. This concept 

introduced by Prandtl in 1904 (Prandtl, 1905), states that due to 

the adhesion of the fluid to the surface of the solid, a no-slip 

condition is present and a thin layer is created. There exists a high 

velocity gradient going from stationary flow, to approximately 

99% of the velocity magnitude given by the free stream or outer 

flow. Figure 2.2b is a simplified representation of the velocity 

profile of a boundary layer of a flow over a flat plate.  

 Laminar flow: Regime characterized by parallel flow in which 

there is no mixing between adjacent layers (Frank, 2011; 

Nakayama, 1999). This regime is usually found in flows at low 

speeds and disturbances tend to decay over time. 

 Turbulent flow: Is a flow regime characterized by chaotic changes 

in its state, with velocity and pressure fluctuations in space and 

time (Davidson et al., 2013; Frank, 2011; George, 2003). It presents 

rotational and irregular interaction of a wide range of temporal 

and spatial scales and is not fully understood to this day (George, 

2003). 

 Flow separation and reattachment: occurs when a flow over a 

surface encounters an adverse pressure gradient, which makes 

                                                            
5 Image adapted from (Lee, K. H., Cortelezzi, Kim, & Speyer, 2001) 
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the boundary layer decelerate until the flow is reversed and is said 

to be detached or separated (Frank, 2011; Nakayama, 1999). It can 

also happen when an expansion of the geometry is present, 

resulting in a free shear layer which separates a recirculation zone 

from the free flow (Gautier & Aider, 2013; Huang & Kim, 2008; Le, 

Moin, & Kim, 1997). The point at which the free shear layer or line 

of zero velocity touches the wall again is the reattachment point 

(Gautier & Aider, 2013; Hervé, Sipp, Schmid, & Samuelides, 2012; 

Le, Moin, & Kim, 1997; Pouryoussefi, Mirzaei, & Hajipour, 2015). 

The latter is defined as being the point where the reversed and 

free flow meet, additionally, it is the location that the streamwise 

wall shear stress will change sign. These phenomena are depicted 

in Figure 2.3  

 
Figure 2.3 Schematic of flow velocity profiles with separation and reattachment over curved surface. 

The complete description of a three-dimensional fluid flow depends 

on six variables �,�,�,�,� and temperature (Frank, 2011; Nakayama, 

1999). However, during this project, the fluid considered is viscous, 

incompressible, and isothermal. These considerations mean that the 

density, �, and temperature, � , will be held constant, therefore only the 

four remaining variables will be used. A further effect of this 

simplification is that the energy equation is decoupled from the system 

of governing equations, and is not therefore required to solve for the 

remaining variables. Thus, only details for the continuity and 

momentum equations will be addressed.  
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2.2.1 Continuity equation  
 

The continuity equation arises from the law of conservation of mass, 

which states that mass cannot be created nor destroyed (Frank, 2011; 

Nakayama, 1999). As shown in Figure 2.4 considering an infinitesimal 

volume, Δ�, within a surface, � that encloses a volume of fluid, �, then, 

having an element of mass � = �Δ�, the following must hold: 

�

��
(�Δ�) = 0 

(2.1) 

 
Figure 2.4. Schematic of a control volume � , within surface � and infinitesimal volume element �� .6 

If the entire mass enclosed in S is considered, equation (2.1) becomes: 

lim
�� → �

� �
1

�

(D�)

D�
Δ� +

D(Δ�)

D�
� = 0 

(2.2) 

Equation (2.2)  shows that an increase in density leads to a decrease in 

volume and vice versa. After some manipulations, which are beyond the 

scope of this description and can be found in books regarding fluid 

mechanics such as (Frank, 2011; Nakayama, 1999), each term in the 

brackets of equation (2.2) becomes respectively, 

�
1

�
�
δ�

δ�
+ � ∙∇�� ��                and                  � ∇ ∙� �� 

combining these two terms, 

�
1

�
�
δ�

δ�
+ ∇ ∙��� dσ = 0 

from which the equation of continuity can be obtained, namely: 

δ�

δ�
+ ∇ ∙(��) = 0 

(2.3) 

This is the most general form of the continuity equation for fluids. As 

mentioned before, this project will deal with incompressible fluids, in 

which the density, ρ, is a constant, therefore with this consideration 

equation (2.3) reduces to: 

∇ ∙� = 0 
(2.4) 

                                                            
6 Image adapted from (Lee, K. H., Cortelezzi, Kim, & Speyer, 2001) 
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Equation (2.4), also known as the continuity constraint, states that an 

incompressible flow must be divergence free. Which means that the time 

rate of change of the volume of an element in a fluid in motion, per unit 

volume, is equal to cero. That is, an element within an incompressible 

fluid cannot be deformed or vary in volume from one instant to the next 

with respect to its original volume. 

 

2.2.2 Momentum equations  
 

For the derivation of these equations a slightly different approach is 

taken, where the analysis will be done on an infinitesimal volume, Δσ , 

that is moving with the flow. In this way, the derivation of the equations 

is slightly clearer and faster (Frank, 2011; Nakayama, 1999). 

The physical principle that is enforced to obtain this equation is that 

of Newton’s second law, which states that the summation of forces 

acting upon a body must be equal to the mass times the acceleration of 

said body, or  � = � � . 

Since Newton’s second law states a vector relation, it can be split 

into three scalar parts, therefore the remainder of the analysis will be 

carried out on the streamwise, or ‘�’ component only to illustrate the 

procedure and an identical approach can be used to derive the relations 

along the remaining directions. 

The element under consideration will have two main types of forces 

acting upon it, mainly body and surface forces (Frank, 2011; Nakayama, 

1999). The former are those which act on the volumetric mass of the 

element and at a distance such as gravitational, magnetic, or electric 

forces. The latter type, act as the name denotes, directly on the surface 

of the element, and are due to the pressure distribution by the rest of the 

fluid on the element or viscous effects that create stress distributions, of 

the shear and normal kind. 

The body force per unit mass � will have a � direction component, 

��,�, acting on the fluid element, hence if the volume of the element is 

�� = (�� �� ��), the body force will be denoted by: 

��,� = ���(�� �� ��) 
(2.5) 
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Figure 2.5. Schematic of an infinitesimal moving fluid element with the � direction surface forces and 

pressure components.7 

Considering the fluid element in Figure 2.5, the surface forces in the 

� direction are shear stress, such as ���, normal stress, as ��� and the 

pressure effects. The signs of the forces are given by existing conventions 

relating to the velocity components which cause the stresses, and the 

fact that pressure always points into the element upon which it acts. 

Taking all the forces shown in the diagram and equation (2.5), the total 

force in the � direction �� is 

�� = �−
δp

δx
+
δ���
δx

+
δ���
δy

+
δ���
δz

� �� �� �� + ���(�� �� ��) 

(2.6) 

The mass, � , of the element of volume �� is given by 

� = � �� = � �� �� �� 
(2.7) 

The acceleration is then defined as the rate of change of � by the 

substantial derivative8 as  

�� =
D�

D�
 

(2.8) 

Therefore, substituting equation (2.6) through to (2.8) into Newton’s 

second law we obtain 

�−
δ�

δ�
+
δ���
δ�

+
δ���
δ�

+
δ���
δ�

� d� d� d� + ���(d� d� d�) = (� d� d� d�)
D�

D�
 

(2.9) 

Simplifying equation (2.9) the � component of the momentum equation 

is obtained. Following a similar approach it is possible to get the 

                                                            
7 Image adapted from (Lee, C., Kim, Babcock, & Goodman, 1997) 
8 Defined as the time rate of change of velocity of the fluid element as it moves through space. In 
calculus it is known as the total differential. 



CHAPTER 2 
  

22 
 

remaining components to obtain the Navier-Stokes equations in non-

conservation form, given by 

ρ
��

��
= �−

δ�

δ�
+
δ���
δ�

+
δ���
δ�

+
δ���
δ�

� + ��� 

ρ
��

��
= �−

δ�

δ�
+
δ���
δ�

+
δ���
δ�

+
δ���
δ�

� + ��� 

ρ
��

��
= �−

δ�

δ�
+
δ���
δ�

+
δ���
δ�

+
δ���
δ�

� + ��� 

This set of equations has to be transformed into the conservation form 

in order for them to be able to be used in an easier way in numerical 

simulations. The details are omitted in this work but the interested 

reader may use (Frank, 2011; John, 1995; Nakayama, 1999). 

�(��)

��
+ ∇ ∙(���) = �−

δp

δx
+
δ���
δx

+
δ���
δy

+
δ���
δz

� + ��� 

�(��)

��
+ ∇ ∙(���) = �−

δp

δy
+
δ���
δx

+
δ���
δy

+
δ���
δz

� + ��� 

�(��)

��
+ ∇ ∙(���) = �−

δp

δz
+
δ���
δx

+
δ���
δy

+
δ���
δz

� + ��� 

(2.10) 

The set of equations (2.10) needs to be further modified, since for 

Newtonian fluids there is a relationship between the time rate of strain 

or the velocity gradients and the shear stress in the fluid, these 

relationships are stated below 

��� = �(∇ ∙�) + 2�
��

��
 , ��� = �(∇ ∙�) + 2�

��

��
 ,

��� = �(∇ ∙�) + 2�
��

��
 

��� = ��� = � �
��

��
+
��

��
� , ��� = ��� = � �

��

��
+
��

��
� ,

��� = ��� = � �
��

��
+
��

��
� 

(2.11) 

Where μ is the molecular viscosity coefficient and λ is the second 

viscosity coefficient that, according to a hypothesis by Stokes, is given 

by λ = −
�

�
μ (Frank, 2011; Nakayama, 1999). 

Therefore substituting the stresses from equation (2.11) into 

equation (2.10) and applying the incompressible flow assumption, 

together with the continuity constraint, equation (2.3), makes the 

complete incompressible Navier-Stokes equations in conservation form. 
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This is a closed set of equations which can be solved numerically for the 

velocity and pressure components (Frank, 2011; Nakayama, 1999). 

� �
��

��
+ �

��

��
+ �

��

��
+ �

��

��
� = −

δp

δx
+ � �

���

���
+ �

���

���
+ �

���

���
� + ��� 

� �
��

��
+ �

��

��
+ �

��

��
+ �

��

��
� = −

δp

δy
+ � �

���

���
+ �

���

���
+ �

���

���
� + ��� 

 

� �
��

��
+ �

��

��
+ �

��

��
+ �

��

��
� = −

δp

δz
+ � �

���

���
+ �

���

���
+ �

���

���
� + ��� 

These equations in vector notation can be written as  

� �
δ�

δt
+ � ∙∇�� = − ∇� + �∇�� + �� 

(2.12) 

Where variables in bold are vector valued and the operator ∇� is the 

Laplacian of the velocity, defined as ∇�≔ i
��

���
+ j

��

���
+ k

��

���
. 

These equations describe both the compressible and incompressible 

flow and together with the appropriate continuity constrain are a 

coupled system of non-linear equations that to this day, do not have a 

closed-form solution; in the case of the incompressible flow, they are a 

self-contained set of PDE’s (Temam, 1977). 

 

2.3 Computational fluid dynamics 
 

This section provides an overview of the methods employed by the CFD 

packages, to solve the governing equations for the cases studied. This is 

known as computational fluid dynamics (CFD), and is defined as a 

technique which uses numerical methods together with computational 

tools to solve problems from fluid mechanics and dynamics, since they 

cannot be readily solved analytically (Frank, 2011; John, 1995).  

There are several CFD methods, each with strong points and 

weaknesses. The desired application defines the elements that the CFD 

method should include. That is depending on the accuracy required, or 

memory limitations for example, one has to choose an appropriate way 

to simulate the flow.  
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Even though there are several schemes, most of them have the following 

stages (Canuto, Hussaini, Quarteroni, & Zang, 1988; John, 1995):  

 Pre-processing: stage where the type of flow, PDE model to be 

used, domain and other characteristics or requirements of the 

problem to be solved are established. 

 Discretization: stage where the physical and temporal domain of 

the simulations are transformed into discrete meshes, over which 

the numerical methods are applied to solve the equations. 

Methods for this include Finite Volume (FVM), Finite Element 

(FEM) or Spectral Element (SEM) for spatial discretization and 

Finite Differencing (FDM) for temporal discretization. 

 Iterative solver: stage where the calculations take place and 

requires the most time and computational resources. The time to 

obtain a solution depends on the accuracy required, the 

convergence criteria, size of the problem, as well as the methods 

chosen during the previous stages. 

 Post-processing: stage that involves performing final 

manipulations on the computed flow to extract the required 

information, in many cases it includes visualizing the data and 

validation with benchmark cases or experimental results. 

For the development of this project dedicated CFD packages were used 

to simulate flow in two scenarios, as described in detail in Chapter 3. In 

the current chapter the discussion will be limited to an overview of the 

scenario studied using each package and a description of the algorithms 

employed in solving the relevant equations. 

 

2.3.1 The ChannelFlow package and channel flow 
 

The first case that has been studied is that of channel flow. This is 

rectangular flow in a wall bounded domain, driven by the movement of 

the boundaries or the presence of a pressure gradient (Heins, Jones, & 

Sharma, 2016; Kim, Moin, & Moser, 1987; Moser, Kim, & Mansour, 1999).  

The simulations regarding this case were obtained using direct 

numerical simulation (DNS) (John, 1995) of the full non-linear 

incompressible Navier-Stokes equations in a CFD package named 

ChannelFlow (Gibson, 2012). DNS methods resolve all the time and 
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length scales of the Navier-Stokes equations (John, 1995), and for 

practical applications are usually too computationally expensive.  

However, in this particular case given the periodicity of the domain and 

simple geometry it can be readily applied (Choi, Moin, & Kim, 1993; 

Gibson, Halcrow, & Cvitanović, 2008). 

This package integrates the Navier-Stokes equations within a 

domain that is periodic in spanwise and streamwise directions, and 

follows the algorithm set by Canuto (Canuto, Hussaini, Quarteroni, & 

Zang, 1988) to solve the equations. The software uses spectral 

discretization in spatial directions and finite differencing in time, 

considering primitive variables which are velocity and pressure.  

ChannelFlow is designed to be a series of classes that handle a 

different part of the mathematical algorithm in a separate manner, such 

as carrying out Fourier and Chebyshev transforms to discretize the 

domain, time marching the equations, and solving them throughout the 

simulation domain. 

Defining a rectangular domain Ω , as  Ω ≜ ���  ×[�,�]×���  where �  

is the unit interval in the periodic directions and L�,[a,b],L� indicate the 

size of the domain in the streamwise, wall-normal and spanwise 

direction respectively and N�,N�, N� represent the number of grid-points 

in each direction as shown in Figure 2.6. 

 
Figure 2.6. Schematic of physical domain �  used in ChannelFlow, with dimensions and discretized grid-

point labels.  
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There are rigid walls at y = a and y = b where no-slip boundary 

conditions give ���� = 09, and periodic boundary conditions are 

considered in the x and z direction, so that:  

����(� + ��,�,�,�) = ����(��,�,�,�), 

����(�,�,� + ��,�) = ����(�,�,� + ��,�) 

The flow in Ω  is governed by the incompressible Navier-Stokes 

equations, repeated here for convenience  

∂����

∂t
+ ���� ∙∇���� = − ∇���� + �∇����� 

∇ ∙���� = 0 
(2.13) 

Here the body forces are neglected and the coefficient ν is the kinematic 

viscosity defined as � =
�

�
, however note that the density has been 

considered as unit. 

The total velocity and pressure terms are broken into a constant and 

a fluctuating element as: 

����(�,�) = �(�)�� + �(�,�) 
(2.14) 

����(�,�) = � (�) � + �(�,�)
�

 

(2.15) 

∇����(�,�) = � �� + ∇�
�

(�,�) 

(2.16) 

In equation (2.14), the first term on the right-hand side is the base 

velocity and the second term the fluctuating velocity. Similarly the total 

pressure is decomposed into a linear-in-� term and a periodic fluctuating 

pressure. The gradient of equation (2.15) is the division of a spatially 

constant base pressure gradient and a fluctuating pressure gradient. 

Applying equation (2.14) and (2.16) into the momentum equation 

(2.13) gives  

��

��
+ ∇� = ν∇�� − ���� ∙∇���� + �ν

δ��

δy�
− �  

�
� �� 

(2.17) 

  

                                                            
9 Where ���� = � = � + � + � represents the total velocity, the notation has been changed to 
make clear the derivation of further details. 
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The non-linear term ���� ∙∇���� is then expanded and equation (2.17) 

becomes 

��

��
+ ∇ �p +

1

2
� ∙��

= ν∇�� − [(∇×�)×� + �
δ�

δ�
+ �

δ�

δ�
��]+ �ν

δ��

δ��
− �  

�
� �� 

(2.18) 

Defining the linear and non-linear term as 

�� = �∇�� and � (�) = (∇×�)×� + �
��

��
+ v

��

��
��, 

and introducing  

� = � +
�

�
� ∙� and � = �ν

���

���
− ∏  � ���, 

equation (2.18) becomes 

��

��
+ ∇� = �� − � (�) + � 

(2.19) 

This equation is then Fourier transformed and a truncation is done at a 

later stage. The definition of the continuous transform for a function 

�(�,�) = ��(�,�) of two variables, is as follows: 

����,�� =
1

����
� � �(�,�)�

�����
���
��

�
���
��

�
 �� ��

��

�

��

�

 

The Fourier transform for the operators in equation (2.19) such as the 

gradient, Laplacian and � operator, are defined as: 

∇���,��≔ 2��
��
��

�� +
�

��
�� + 2��

��
��

�� 

∇���,��
� ≔

��

���
− 4�� �

��
�

��
�
+
��
�

��
�
� 

����,�� ≔ �∇���,��
�  

 

Therefore ∇�� = ∇��� and  ��� = ���� 10, note also that since � is spatially 

constant �� = ��������� and equation (2.19) becomes 

���

��
+ ∇���= ���� − � (�)� + �� 

(2.20) 

ChannelFlow includes several time-stepping algorithms that allow for 

equation (2.20) to be integrated in time. The method which has been used 

                                                            
10 Narrow tildes are used for continuous transforms and wide ones are for discrete transforms. 
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for the simulations considered in the project, is a third order Runge-

Kutta scheme. This procedure treats the linear term implicitly and the 

non-linear term explicitly.  

Details for this and the equations solving schemes shall not be 

further developed since they are methods that have been well 

established in their disciplines, for both the time marching and solution 

of PDE’s. It is important to mention that the techniques for such 

methods are outlined in the Temporal Discretization chapter, section 

§4.3, and §7.3, of (Canuto, Hussaini, Quarteroni, & Zang, 1988).  

In broad terms, a pressure correction and tau method is used to 

decompose the coupled equations that arise with the time-marching 

methods, into an array of one-dimensional Helmholtz equations. 

Following, an influence-matrix method is used to solve them for each 

time-step resulting in the values of the velocity components and the 

dependant pressure. The procedure is then repeated at each time step. 

A final set of equations that are necessary to mention in this section, 

is that of the relation between the coordinates of grid-points ���,���,��� 

and the grid-point indices ��,��,��, to ensure that a clear way to obtain 

the precise source of data analysed is established. 

Considering the total amount of N�,N�, N� grid-points and the index 

of the grid-point being studied, these relations are: 

��� =
����
��

, 0 ≤ �� < �� 

(2.21) 

��� =
� + �

2
+
� − �

2
cos �

���

�� − 1
� , 0 ≤ �� < �� 

(2.22) 

��� =
����
��

, 0 ≤ �� < �� 

(2.23) 
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2.3.2 Ansys-Fluent and flow over a backward facing step 
 

The case of flow over a backward facing step (BFS) is one that has also 

been studied in the past since the geometry remains simple to a degree 

(Driver & Jovic, 1994; Gautier & Aider, 2013; Hervé, Sipp, Schmid, & 

Samuelides, 2012; Le, Moin, & Kim, 1997; Neumann & Wengle, 2003). 

However, additional phenomena are present in comparison to a channel 

flow (Neumann & Wengle, 2003; Ruisi, Zare-Behtash, Kontis, & Erfani, 

2016).  

The presence of a sudden expansion, mainly the step, causes these 

new structures and events. The most important are the separation of the 

flow and boundary layer and their posterior reattachment (Driver & 

Jovic, 1994; Gautier & Aider, 2013; Neumann & Wengle, 2003).  

A more detailed description can be found in Chapter 3. Simulations 

for this case were performed using the commercial software Ansys-

Fluent (ANSYS Inc, 2016). 

Briefly, the domain consists of an inlet of dimension �� = 15�, which 

ends with a step where the flow expansion takes place of height � and 

an outlet of length �� = 30�, it can be seen in Figure 2.7. In this case the 

lower wall is assumed rigid, therefore the no slip condition is present. 

The upper wall is sufficiently far away for the effects of the flow 

interacting with it can be neglected. This upper boundary is placed at a 

height �� = 6�.  

 
Figure 2.7 Schematic of flow over a BFS physical domain, with dimensions. 

As it was mentioned previously, for more complicated flows or 

geometries, DNS methods cannot be used due to their computational 

burden, and so alternative methods have been created (Zheng, Zhang, & 
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Zhang, 2011). Of these, each has advantages and disadvantages and care 

must be taken when selecting a model and solution methods. 

Since in the case being studied, there is an inhomogeneous domain 

in the wall normal direction, spectral discretization cannot be applied 

and so the mesh requirements to carry out a DNS become prohibitively 

expensive for the project. Considering that the computational burden of 

the DNS arises from the need to solve all the time and length scales of 

the flow, which include the highly complex turbulence phenomenon 

entirely, alternative methods often propose the use of averaging, 

filtering or linearizing the Navier-Stokes equations to lessen it (John, 

1995). There are several algorithms which have been developed using 

these techniques to help decrease the difficulty associated with 

simulating flows in different domains, such as the famous Unsteady 

Reynolds averaged Navier-Stokes method (URANS) (Reynolds, 1894).  

The use of methods such as URANS, which are the least 

computationally expensive would not provide accurate results due to 

the high adverse pressure gradient found after the expansion (Le, Moin, 

& Kim, 1997; Neumann & Wengle, 2003; Zheng, Zhang, & Zhang, 2011). 

Therefore, to ensure accurate and correct results the Large Eddy 

Simulation or LES method has been used. Where this is an expensive 

algorithm in terms of CPU and memory requirements but far less than 

DNS, and at the same time is capable of resolving the expansion with 

better accuracy than many other methods.  

 
 

Figure 2.8 Mesh used for spatial discretization of flow over a BFS case, with detail of refined mesh near 
the step and lower wall. 

However, a small time-step and high grid resolution is required, 

especially near the lower wall and step to ensure all relevant structures 

are properly resolved, as seen in  
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Figure 2.8. The reader is directed to (Canuto, Hussaini, Quarteroni, & 

Zang, 1988; Davidson, Kaneda, & Sreenivasan, 2013; John, 1995) for more 

details of alternative procedures. 

The principle of the LES method, is to filter the Navier-Stokes 

equations either in Fourier or physical space, eliminating the need for 

any information whose time- or length-scale is smaller than the filter 

width (Smagorinsky, 1963). Thus, reducing the mesh and time-step 

requirements to carry out an accurate and numerically stable 

simulation. 

A filtered variable as defined within Fluent is:  

�(�) = ��(��)�(�,��) ��′

 

�

 

Where D is the fluid domain and G is the filter function that determines 

the cut-off time and/or length (ANSYS FLUENT, 2016). 

Applying the definition for a filtered variable to the set of Navier-

Stokes equations in the form of (2.3) and (2.12), one obtains: 

�

��
(���) +

�

���
������� =

�

���
����� −

��

���
−
����

���
 

(2.24) 

��

��
+

�

���
(���) = 0 

(2.25) 

Where ��� is the stress tensor due to molecular viscosity and ��� is the 

subgrid-scale stress, defined by 

��� = � �
���
���

+
���

���
� −

2

3
�
���
���

��� 

and 

��� = ����� − ��� �� 

The filtering operation which is applied in Fluent is performed by the 

discretization method itself, that is, finite volume method (FVM).  

The finite volume method consists of splitting the domain into 

control volumes or cells, these can be rectangular, non-orthogonal and 

even unstructured grids, which is one of the main advantages of this 

method. The transport equations are then integrated over each of the 

control volumes, and as this is applying a set of conservation principles 
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over each of the small volumes, then a global conservation is also 

ensured. 

 

The filter function �(�,��) is then defined as: 

�(�,��) = �
1

�
,               �′ ∈ �

0 ,      ��ℎ������
 

And the filtered variable is then: 

�(�) =
1

�
��(��) ��� ,   �′ ∈ �

 

�

 

Where � is the volume of the computational cell. 

The settings chosen to carry out the simulations were, a pressure-

based segregated solver, which decouples and solves the governing 

equations iteratively to obtain the solution variables (�,�,�,�,�,�) at 

each time step, this method also employs a pressure-correction 

algorithm as the ChannelFlow package.  

A second-order upwind scheme was used for the spatial 

discretization, and a second order implicit transient formulation for the 

temporal one. 

The pressure-velocity coupling method used is the SIMPLE (Semi-

Implicit Method for Pressure-Linked Equations). Although this method 

is best suited for simple or laminar flows, it has been used in this study 

since the LES formulation is being used with a small time step and fine 

mesh resolution. This helps to improve accuracy to avoid a greatly 

increased computational burden, resulting from other methods such as 

PISO (Pressure Implicit with Split Operator). Details for each of these 

methods are not presented here since they have been well stablished and 

the reader is directed to (ANSYS FLUENT, 2016) for further information 

of the implementation in FLUENT. 

The boundary conditions defined for these simulations are as 

follows: 

 In the streamwise direction velocity inlet and outflow conditions 

are imposed, where the former is used to set the flow velocity 

along the boundary, in addition to the scalar properties of the 

flow, and the latter define a zero-diffusion flux for flow variables 

with an overall mass balance correction. 



2.4 Discussion  

33 
 

 The lower inlet walls and step are given no-slip conditions, as in 

the case of the channel flow and the upper wall of the entire 

domain is defined with zero-shear-stress and � = �� to simulate 

an open channel as in (Driver & Jovic, 1994; Le, Moin, & Kim, 1997). 

 

2.4 Discussion 
 

This chapter has presented the relevant concepts of fluid dynamics 

required to understand the basic behaviour of fluid flows. Additionally, 

an overview of the way in which the Navier-Stokes equations are 

obtained was given, with details of the derivation of the continuity and 

momentum equations. 

Further it briefly introduced the two scenarios that have been 

studied to generate data to perform the system identification, and 

posterior design of control schemes. These being the channel flow and 

flow over the backward facing step. 

A more detailed description is given in the following chapter, 

together with the definition of the corresponding variables and 

parameters which define the simulations that were run using the 

methods presented here. 

Additionally, the numerical methods which are selected to perform 

the simulations of the flows, in addition to other settings and boundary 

conditions are stated for each of the cases with some detail on the 

specific considerations taken by each of the CFD packages. 

 

 

  



CHAPTER 2 
  

34 
 

 



35 
 

 
 
 
 
CHAPTER 3   

 
 

Simulation and analysis of 

natural and actuated channel 

flow and flow over a backward 

facing step  

 

 
3.1. Introduction 

 

The ability of manipulating fluid flows to achieve a desired behaviour is 

key to improving the performance of many engineering systems (Kim, J. 

& Bewley, 2007; Kubo, Modi, Kotsubo, Hayashida, & Kato, 1996). The 

development of flow control strategies requires mathematical models 

that can accurately predict the behaviour of fluid flows in different 

geometrical configurations (Billings, 2013; Scott Collis, Joslin, Seifert, & 

Theofilis, 2004).  

System identification strategies to obtain these models are based on 

data of the variables of interest, in the presence of a persistently exciting 

inputs (Billings, 2013; Coca & Billings, 2002a).  
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Given the difficulty and expense of carrying out experiments to be 

able to generate such data, this work has been based on numerical 

simulations of the governing equations. These simulations have been 

obtained from the full non-linear Navier-Stokes equations using 

advanced CFD packages to generate accurate and realistic simulations.  

This chapter introduces the numerical simulations for two 

geometrical configurations commonly used to evaluate active flow 

control strategies, namely the three-dimensional channel flow and two-

dimensional flow over the backward facing step (Bewley, 2001; Choi, H., 

Moin, & Kim, 1994; Huang & Kim, 2008; Kim, J., 2003).  

The Chapter is organized as follows. Section 3.2.1 and 3.3.1 present a 

description of the channel flow, and flow over the BFS case, respectively. 

The reasoning behind the most important parameters and specifications 

needed to characterise the simulations is given, in addition to an 

analysis of the natural flow in both geometries in the time and frequency 

domain.  

Using the study performed on the data of the natural flows, the 

procedure to design a persistently exciting input signal to be used for 

system identification techniques is specified in Section 3.2.2 and 3.3.2.  

Finally, Section 3.4 contains a brief discussion on the properties of 

these simulations and some comments on their validity, accuracy, and 

bases for their use. 

 

3.2. The channel flow   

 

In the past, many scenarios of fluid flows have been studied, where 

experiments and simulations have often been designed as simplified 

forms of natural or man-made systems or applications of interest. Such 

as the introduction of symmetry planes and periodic boundary 

conditions, when studying flows that appear to have repeating 

behaviours (De Brederode & Bradshaw, 1978; Gibson, Halcrow, & 

Cvitanović, 2008). As it has been observed within the literature, the 

canonical scenario used to test from new CFD methods to the field of 

flow control is that of the channel flow (Lee & Moser, 2015; Ricco, 

Ottonelli, Hasegawa, & Quadrio, 2012). 
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Channel flow is characterized as being flow enclosed within a pipe 

or rectangular channel, where the length of such domain is much larger 

than the height and width (Lee & Moser, 2015; Mito & Kasagi, 1998; Moser, 

Kim, & Mansour, 1999; Ricco & Quadrio, 2008). This property allows for 

several simplifications to be done, as will be discussed later, while 

carrying out the simulations and analysis of the flow. The flow can be 

driven either by a pressure gradient along the domain, or the movement 

of one, or both enclosing walls. The particular geometry used in this 

work is sometimes referred to as plane channel flow, throughout the rest 

of the thesis, it will be referred to simply as the channel flow. Given the 

large number of flow control publications that feature it, (Biserni, 

Fichera, Guglielmino, Lorenzini, & Pagano, 2006; Kim, K., Beskok, & 

Jayasuriya, 2005), this geometrical configuration was one of two used to 

test the proposed strategy to develop, be means of system identification, 

non-linear reduced-order models for fluid-flow control applications.  

 

3.2.1. Model definition and analysis of natural flow 

 

The channel flow case represents a wall-bounded flow found between 

infinite parallel plates, where the width and length of the domain are 

larger than the height (Kim, J., 2003; Lee & Moser, 2015). This is 

important to define the computational boundary conditions, set as a no-

slip condition on the lower and upper wall, and periodic boundaries for 

the streamwise and spanwise directions as detailed in Chapter 2.  

The previous consideration is possible since, as stated, the domain 

is greatly larger in the stream- and span-wise directions than in the wall-

normal one. Therefore, the flow will be able to become fully developed in 

the streamwise direction and be affected by local behaviour. The domain 

is also assumed to be large enough to accommodate all scales of the flow 

dynamics, which are also affected by the mesh resolution. This condition 

is ensured by the dimensions given to the domain prior to the 

discretization (Moser, Kim, & Mansour, 1999; Rozhdestvensky & 

Priymak, 1982). 

This scenario has been studied due to the basic nature of the 

geometry as seen in Figure 3.1, which makes it simple, to a certain degree, 
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for disciplines such as fluid mechanics itself and to generate CFD 

simulations. In terms of control theory, however, it is still of a high 

complexity, being a system that distributed, non-linear and infinite-

dimensional (Joshi, Speyer, & Kim, 1997; Kim, J., 2003; Kim, J. & Bewley, 

2007).  

 
Figure 3.1. Schematic showing the channel flow domain, its physical dimensions and node positioning. 

Due to the focus of this work and the simplicity of the geometry, it is 

possible to focus at this stage on the overall fluid flow properties and 

phenomena. Rather than being concerned with the generation of 

computational meshes capable of resolving the smallest time and length 

scales, or running high numbers of iterations per time-step to ensure the 

residuals are below highly demanding thresholds. While later chapters 

focus on how to alter and control them. Having said this, it should be 

noted that it has been fundamental to ensure that the simulations 

provide realistic flow data to carry out a feasible system identification 

and posterior control design and implementation. 

As mentioned in §2.3, the first stages of the CFD method are the pre-

processing and definition of the scenario, the posterior selection of the 

discretization methods and finally the implementation of the iterative 

solver. Since the ChannelFlow package has been developed specifically 

to study flow in this configuration, it was only necessary to define the 

geometrical and simulation parameters. 

The full non-linear Navier-Stokes equations (2.13) are solved in the 

domain Ω, defined previously and shown in Figure 2.6, using spectral 

discretization for spatial dimensions and finite differencing for 

temporal ones. The way in which the equations are solved was chosen to 

be the ‘rotational form’ as mentioned in §2.3.1. Detailed descriptions on 

the time marching algorithms as well as other issues regarding the way 
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in which this is carried out can be found in section §4.3, and §7.3, of 

(Canuto, Hussaini, Quarteroni, & Zang, 1988). 

Several simulations to test the performance, limitations, and 

capabilities of the ChannelFlow package were carried out. In these, 

variables such as Reynolds numbers, sampling times and grid resolution 

were tested in the ranges of 350 – 2500, 0.1 – 0.005 seconds and 80,000 – 

1,250,000 nodes, respectively. 

Once these tests were completed and the data analysed, parameters 

were chosen to generate adequate simulations which optimize 

performance and facilitate the posterior analysis of the data. 

The final values employed in the CFD code to simulate the channel 

flow scenario were given the values shown in Table 3.1.  

Table 3.1. Domain and fluid parameter definition for channel flow simulations.  

Variable Meaning Value  
�� Number of grid-points in �-direction 180 (Δ� = 0.06) 
�� Number of grid-points in � direction 141 (Δ� = 2.5×10��) 

�� Number of grid-points in � direction  150 (Δ� = 0.04) 
�� Domain size in � direction �� = 2 ∙ � ∙ �� 2 
�� Domain size in � direction �� = 2 ∙ � ∙ �� 1.5 
� Upper wall height 1 
� Lower wall height −1 

��� Reynolds number 450 

�� Time-step size 0.01 

These values represent the dimensions of the physical and 

computational domain, as well as the characteristics of the flow. They 

were chosen to provide a large enough amount of data to ensure accurate 

simulations, at the same time of maintaining a reasonable 

computational load.  

The dimensionless size of the physical domain �� = � − � = 2 , 

 �� = 1.5, �� = 1.2, is the minimum size of domain to sustain the scales of 

laminar and turbulent flow (Gibson, Halcrow, & Cvitanović, 2008). In 

addition, the number of nodes in this domain is again chosen to ensure 

the appearance of all the dynamics of interest which make up the flow. 

This is set to be at least the number of nodes necessary to solve the NS 

equations accurately according to (Canuto, Hussaini, Quarteroni, & 

Zang, 1988; Gibson, Halcrow, & Cvitanović, 2008).  
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It should be noted that the number of nodes may appear to be small 

in comparison with other CFD simulations, this is due to the method 

used for the spatial discretization. Spectral transforms provide 

exponential accuracy with a reduced number of nodes (Åkervik, 

Hœpffner, Ehrenstein, & Henningson, 2007; Canuto, Hussaini, 

Quarteroni, & Zang, 1988; Choi, H., Moin, & Kim, 1994; Choi, K. S., 

Debisschop, & Clayton, 1998). 

Scripts were developed to extract and arrange the data from the 

generated binary files to a format which could be used in Matlab. As can 

be seen, the bulk of this project deals with the last of the CFD stages, 

mainly the post-processing and analysis of the data obtained. 

Once a simulation that was considered suitable had been obtained, a 

detailed analysis of the velocity fluctuations was carried out in addition 

to Fourier analysis. The study in the time domain was performed to 

determine a suitable data sampling time for system identification. 

Fourier analysis was used to investigate the response spectrum of the 

system to determine the frequency range required to persistently excite 

the system. 

 
Figure 3.2. Fluctuation of velocity components and corresponding spectrum for Re=450 in blue 

and Re=1100 in blue at node [5, 4, 5]. a) Streamwise velocity b) Wall-normal velocity c) 
Spanwise velocity. 

This analysis was performed over a subset of nodes to compare the 

frequency content of these measurements at different spatial locations, 

as fluid flows are highly time and space dependant (Canuto, Hussaini, 

Quarteroni, & Zang, 1988; Davidson, Kaneda, & Sreenivasan, 2013; Frank, 

2011).  

a) b) c) 
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Figure 3.3. Fluctuation of velocity components and corresponding spectrum for Re=450 in blue 

and Re=1100 in blue at node [15, 14, 12]. a) Streamwise velocity b) Wall-normal velocity c) 
Spanwise velocity. 

 
Figure 3.4. Fluctuation of velocity components and corresponding spectrum for Re=450 in blue 

and Re=1100 in blue at node [25, 25, 20]. a) Streamwise velocity b) Wall-normal velocity  
c) Spanwise velocity. 

In Figure 3.2, Figure 3.3 and Figure 3.4, the time-series and spectrum of 

the three components of the flow velocity can be seen for different 

locations in the domain. Additional locations were analysed, however, 

only these are given to show that a similar pattern is visible across the 

entire domain. The spectrum has significant peaks at low frequencies, 

and behaves like a low-pass filter, with a cut-off frequency observable at 

around 5-10Hz, depending on the location. 

Tests under different Reynolds numbers were then performed to see 

the effect that this fluid property has on the spectrum of the system. A 

similar analysis was carried out and as it can be seen in Figure 3.2 – 

Figure 3.4, the spectrum indeed varies with the Re number of the flow. 

a) b) c) 

a) b) c) 
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However, the differences are relatively small with an increase of around 

5Hz of the cut-off frequency when comparing flow at double the 

Reynolds number.  

 
Figure 3.5. Fluctuation of velocity magnitude and corresponding spectrum at node [5, 4, 5] in 

blue, [15, 14, 12] in red and [25, 25, 20] in yellow. a) Re=450 b) Re=1100 

The magnitude of the flow velocity was analysed in addition to the 

components, Figure 3.5 shows that the spectrum at these two Reynolds 

numbers is nearly identical.  

Therefore, to ensure that the analysis and models identified in the 

next chapter remain valid over a larger operating range, the cut-off 

frequency for the persistently exciting input will be considered as 15Hz, 

which is considerably larger than that obtained in the tests under  

�� = 450.  

 
Figure 3.6. Snapshot of instantaneous velocity field showing the streamwise component of the 
velocity on the boundary planes. The upper half of the inner flow has been removed to allow 

for the visualization of the � = � plane. 

To finalize the analysis of the un-manipulated flow, visualisations of the 

instantaneous velocity fields were obtained. A snapshot of an 

a) b) 
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instantaneous velocity field is shown in Figure 3.6. Here the streamwise 

component is shown on the inlet and outlet planes, in addition to the 

upper half of the � = �� plane and the lower half of the � = 0 plane. This 

was so that the same streamwise component of the � = 0 plane could be 

shown as well.  

 

3.2.2. Design of persistently exciting input  

 

The objective of analysing this system is to obtain a finite dimensional 

model, which can later be used for control design. Therefore, it was 

necessary to create a simulation which showed the behaviour of the flow 

before a known and carefully designed input signal (Billings, 2013; Coca, 

2003; Coca & Billings, 2002). 

This was possible once the analysis of the natural flow had been 

carried out, since enough knowledge of the system was obtained to 

create a tailored actuation signal. The generated signal could then be 

applied onto the flow to generate data suited for system identification 

schemes, so that the reduced-order-model, of the data fitting type, could 

be identified (Scott Collis, Joslin, Seifert, & Theofilis, 2004).  

The actuation which is to be applied in the simulation is in the form 

of boundary suction and blowing, known as transpiration, and is 

implemented on the flow through a modified version of the 

ChannelFlow package (Heins, 2012). 

This modified code allows for a non-zero wall-normal velocity to be 

imposed and modified versions of the discretization and solver methods 

are implemented, particularly on the homogeneous Dirichlet and 

Neumann boundary conditions which represent the no-slip condition at 

the walls.  

 

Figure 3.7. Schematic showing wall transpiration on channel flow domain. 
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A new flow field composed of the base flow and a velocity field with the 

same dimensions and resolution of the former, except in the wall normal 

direction is generated. In this direction, two sets grid-points are created 

on the top and bottom boundaries, essentially creating two planes at 

�� = � and �� = � as represented in Figure 3.7. 

The code then advances the new flow field according to the modified 

algorithm, so that the output in each time-step is the base flow with an 

artificial blowing/suction action on the walls.  

The designed signal is required to be persistently exciting in both 

frequency and magnitude content. To account for the former, a white 

noise signal was created and filtered to cover the system bandwidth. This 

signal had a higher cut-off frequency than that of the systems’, to ensure 

that the validity of the models is maintained even with slight changes in 

the system. 

In regards to the magnitude, a series of actuated simulations were 

performed with varying amplitudes. During these, it was noted that the 

ChannelFlow package has a limitation on the magnitude of the signal 

which can be applied as actuation. The numerical stability of the 

simulations was compromised when this limit was surpassed. This is 

likely to be because the original time-stepping algorithms, as well as the 

solvers and other operations, were not specifically chosen for this 

particular case and may not be the best suited.  

After several tests, it was noted that per the mesh resolution and 

flow properties used in this study, the actuation signal should remain 

within the range of amplitude M = ±0.95. Therefore, to avoid numerical 

issues during the simulations, the actuation has been truncated at the 

value � = ±0.90.  

Considering this limitation, a new signal was generated and the 

spectrum analysed to ensure that it was adequate for the excitation of 

this system, and indeed persistently exciting to the configuration of 

channel flow. These requirements exist to ensure that all of the system 

dynamics are triggered, and at the same time, energy in the form of the 

actuation signal is only applied over the operating bandwidth (Billings, 

Chen, & Korenberg, 1989; Coca & Billings, 2002b).  
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Several attempts of the system identification of a single model to 

represent the entire system were made. It was noted that this approach 

would not provide positive results due to the large range of different 

dynamics that occur at different locations. Considering that a single 

degree of freedom would likely be insufficient to successfully manipulate 

the flow, it was decided that a higher number of inputs were needed to 

allow for a successful control to be designed and implemented. 

Therefore, simulations with six actuators applied at the walls were 

carried out using different signals designed following the procedure 

stated above.  

 
Figure 3.8. Tailored signals designed and implemented on the actuated channel flow 

simulations used for system identification. 

The signals which were ultimately used with the system identification 

techniques can be seen in Figure 3.8. As mentioned, more details 

regarding the reasoning behind the additional actuators, specifically the 

spatial arrangement, are given in Chapter 4. 

 

3.3. Flow over a backward facing step 

 

The case of flow over a Backward Facing Step (BFS), is a variation of the 

geometry of channel flow as shown in Figure 3.9. Once again, the domain 

is wall bounded and considered to be of much greater length in the 

streamwise and spanwise directions, in comparison to the distance 

between the upper and lower boundaries. The variation of the geometry 
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however, is the addition of an expansion of the channel, giving way to a 

backward facing step of height (H). 

 This second scenario was chosen since it has gained attention in 

recent years; firstly, due to the geometry being simple enough to test new 

ideas in the presence of a flow with more complex phenomena. Secondly, 

to the development of new actuator and sensor technologies (Hervé, 

Sipp, Schmid, & Samuelides, 2012; Koide, Sasaki, Kameya, & Motosuke, 

2015; Uruba, Jonáš, & Mazur, 2007; Xu et al., 2015). The latter will be 

discussed in Chapter 5.  

 
Figure 3.9 Schematic of the flow over a backward facing step, showing developed boundary 

layer upstream and recirculation/reattachment zone downstream of the step. 

As explained in Chapter 2, there is a separation of the flow at the top 

corner of the step due to the adverse pressure gradient generated 

downstream. This leads to a recirculation bubble or zone immediately 

behind the step, and later a reattachment of the flow to the outlet wall 

as shown in Figure 3.9 (Driver & Jovic, 1994; Le, Moin, & Kim, 1997; 

Okada, Miyaji, Fujii et al., 2010). It has to be noted that depending on the 

length of the domain downstream of the step as well as the Reynolds 

number, there may be more than one recirculation- and, in turn, 

reattachment-zones (Driver & Jovic, 1994; Le, Moin, & Kim, 1997). 

However, in this study only the main recirculation zone after the step 

will be considered. 

This case has also been used as a benchmark to derive and test 

control schemes, usually focused on manipulating the reattachment of 

the flow. However, a feasible application of non-linear reduced order 

models, and active feedback control laws to predict and alter this 

position has not been found (Henning & King, 2007; Kim, J., Moin, & 
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Moser, 1987; Okada, Miyaji, Fujii et al., 2010; Uruba, Jonáš, & Mazur, 

2007). Details of the existing applications are given in Chapter 5. 

 

3.3.1. Model definition and analysis of natural flow  

 

Like the channel flow scenario, the backward facing step flow case was 

chosen due to the simplicity of the geometry and availability of 

literature. Considering that there is a richer content of dynamics in this 

configuration, and the fact that it can be considered as a simplified 

version of flows which present similar phenomena, such as flow over air-

foils, the study of this is of interest for both system identification and 

control design and implementation purposes (Uruba, Jonáš, & Mazur, 

2007; Xu, Gao, Ming et al., 2015). 

To achieve the latter objective, accurate and reliable models are 

needed. A similar procedure to that carried out when performing the 

channel flow simulations was followed. The first step is to generate 

adequate data, to analyse the natural flow and generate a persistently 

exciting input. 

As mentioned in Chapter 2, the model which was used to simulate 

the governing equations was LES. This model requires a small time-step 

and fine mesh resolution to provide accurate results. The domain size 

and flow properties were defined according to that used in (Driver & 

Jovic, 1994; Le, Moin, & Kim, 1997). Le et al. presents data obtained from 

a DNS simulation, which was also validated using an experimental set-

up with almost identical characteristics by Driver and Jovic.  

Table 3.2 Dimensions of physical and computational domain 

Location Value [m] Number 
of nodes 

Minimum distance [m] 
(∆�  � = �, �, �) 

Step (height - � ) 0.0098 180 5.7×10�� 
Inlet wall (length - �) 0.1470 400 4.4×10�� 
Inlet (height - �) 0.0490 200 5.8×10�� 
Outlet wall (length - �) 0.2940 1275 3.6×10�� 
Domain width (length - �) .0588 400 5.8×10�� 

The values used from their work in addition with the remainder of the 

parameters used in Fluent for the initial simulations are presented in 
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Table 3.2 and Table 3.3. All dimensions stated here are labelled according 

to Figure 2.7. 

Table 3.3. Additional simulation parameters for un-manipulated flow over the BFS 

Variable Description Value (Range tested) 
�� Fixed sample time of simulations 0.005 ��� 

�� Free stream velocity. 7.7 [�/�]  
� Fluid density. 1.2039 [��/�^3 ] 
� Dynamic viscosity 

1.5131×10�� �
��

� ∙ ���
� 

�� Reynolds number. 5000 
Iterations Minimum number of iterations per 

time-step. 
40 

Such values were set to be able to capture a large range of time and length 

scales while keeping in mind the time the simulations took to finish and 

amount of data generated, since this increases massively with mesh 

resolution. 

Given that these simulations were carried out to identify a reduced 

order model and later design and implement a controller scheme, it was 

decided to make a simplification on the geometry. The geometry would 

be considered as two-dimensional, to focus on the design of a single 

SISO/MISO controller, and thus remove the issue of determining three-

dimensional spatial positioning of the actuator. This two-dimensional 

flow assumption is possible since, as given in (De Brederode & Bradshaw, 

1978), a flow maintains two-dimensionality regardless of the boundary 

layer thickness, as long as the aspect ratio between the step height and 

domain width is over 10. They showed experimentally that with this 

consideration, the side wall effects can be neglected. 

However, since the LES method is designed to be applied on 3D 

scenario, additional considerations were made during the pre-

processing stage to ensure that the simulation was as accurate as 

possible in this reduced configuration. Such considerations were related 

to the mesh resolution and initial conditions. Regarding the former, the 

element sizes were carefully selected to ensure that the most relevant 

structures could be resolved. Simulations using incremental refinement 

in certain areas were carried out to ensure that mesh dependency was 

eliminated.  
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 On the topic of the initial conditions (IC’s), it is well known that CFD 

simulations using most algorithms are sensitive to the imposed IC’s, 

especially for time varying flows (Le, Moin, & Kim, 1997). Therefore, the 

following procedure was followed to ensure that the IC’s used in this 

work were representative of a turbulent flow.  

Firstly, a LES simulation of three-dimensional channel flow, with 

the same mesh resolution and dimensions as the inlet of the flow over 

the BFS was generated. This simulation was given no-slip wall boundary 

conditions in the wall-normal directions and velocity inlet / outflow in 

the streamwise directions. A symmetry boundary was imposed for the 

spanwise direction. The simulation was run using the time-step in Table 

3.2 and allowed to run for 5000 time-steps to ensure that the flow was 

developed.  

The velocity and pressure data obtained were used as inlet 

conditions for a simulation of three-dimensional flow over the BFS, 

again with the parameters stated in Table 3.2 and boundary conditions 

described in Chapter 2. This simulation was allowed to run for a further 

5000 time-steps to allow for the flow to develop once again.  

An instantaneous profile of all relevant variables was taken from the 

mid-plane, in the spanwise direction, of this three-dimensional domain. 

This was used as the initial condition for the two-dimensional 

simulations.  

Finally, the 2D simulations was run for 10,000 time-steps to allow for 

the flow to recover and develop. This last instant was considered as the 

initial condition for later simulations. The case of natural flow was 

started from these conditions and flow statistics and data was extracted 

after 2000 time-steps. The time and frequency domain analysis of this 

flow was performed on this last data set. 

This method was done to avoid the over-simplified scheme of 

generating a velocity field with random fluctuations, given that this 

option results in an excess of small-scale motions. The latter are unreal 

and deteriorate the performance of the LES methods (Kim, J., Moin, & 

Moser, 1987; Moser, Kim, & Mansour, 1999). 

This procedure requires a set of computationally expensive 

simulations to obtain the initial conditions for the two-dimensional un-

a) 
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manipulated flow. Therefore, tests with varying Reynolds were not 

carried out during this work. For the remainder of the analysis, all data 

has been obtained from simulations set to �� = 5000, to match the 

simulations and experiments of (Driver and Jovic 1994, Le, Moin et al. 

1997). 

 

 

 
For caption please see next page 

a) 

b) 

c) 
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Figure 3.10. Time series and spectrum for velocity magnitude fluctuations at different spatial 
locations. a) Node at (H, 0.1H) b) Node at (4H, 0.1H) c) Node at (18H, 0.1H) and d) Node at (-1H, 

0.1H) 

Like with the channel flow data, an analysis of the velocity fluctuations 

at several points down- and up-stream of the step was carried out. 

Fourier analysis was performed on this data once more to determine the 

frequency range needed for inputs to be persistently exciting for this set-

up.  

Figure 3.10a), b), and c) show the time fluctuations and spectrum of the 

velocity magnitude at three spatial coordinates downstream of the step 

and Figure 3.10 d) at a single location upstream of the flow. 

As it can be seen, the flow behaves like the channel flow case, where 

there are significant peaks in the lower frequencies such as 12, 25 Hz but 

are attenuated towards higher values. 

 

 

 

 

Figure 3.11. Snapshot of instantaneous velocity magnitude field of flow over the BFS. The 
recirculation zone is enclosed in the dotted line and the red dot is the location of the 

instantaneous reattachment point. 

 

d) 
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To conclude with the analysis of the un-manipulated flow a snapshot of 

the velocity field of the flow over the BFS domain is shown in Figure 3.11 

with a close-up of the step area. The recirculation and approximate 

instantaneous reattachment point have been superimposed on the 

image. The latter is identified by analysing the streamwise component 

of the wall-shear stress at the outlet wall, and is the point where this 

stress changes sign, or the point of zero velocity. In the figure, it is the 

darkest point downstream of the recirculation zone. 

 

3.3.2. Design of persistently exciting input and analysis of actuated flow  

 

Using the results obtained from the frequency analysis, once more, a 

signal which is persistently exciting for the flow over the BFS was 

created. The process was the same as with the channel flow case, where 

a white-noise sequence was generated and filtered to have the required 

bandwidth to match that of the system. 

As for the amplitude, the signal was applied onto the system with 

increasing magnitudes until a value at which the simulations become 

unstable was reached. This was determined to be when the solution 

became divergent, or if the residuals converged to a value greater than 

the tolerance of a solution considered correct after a few time-steps with 

40 iterations per time-step (ANSYS FLUENT, 2016). The magnitude of the 

actuation signal was then adapted to be at the most � = 30 which is less 

than the limit identified, and thus ensures that the simulations are still 

accurate and reliable. 

To apply the signals, a modified version of the mesh was used. This 

mesh had the inlet and step wall divided into several sections, which can 

be switched between a velocity inlet and a no-slip wall boundary 

condition. The relevant nodes were then prescribed to be equal to the 

generated signals at each time-step. Using this configuration three cases 

have been studied, a single actuator at the top of the step, and two / four 

actuators on the step wall.  
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Figure 3.12. Actuator layouts for the three studied cases of manipulated flow over a BFS 

This implementation can be seen in Figure 3.12 where the boundary 

zones given the velocity inlet boundary conditions are shown in blue and 

the sections which remain as no-slip walls are shown in red. The 

dimensions for the actuator sections were set to be in the range of 

previous experimental applications, where (Okada, Miyaji, Fujii et al., 

2010; Uruba, Jonáš, & Mazur, 2007; Xu, Gao, Ming et al., 2015) have 

considered actuators which are between 3% and 15% of the step height. 

Hence, the actuator size has been set as 10% of H, that is, 9.8×10��m. 

More details on previous studies of the manipulated flow over the BFS 

will be given in Chapter 5. 

 
Figure 3.13. Tailored signals designed and implemented on the actuated flow over the BFS 

simulations used for system identification. Top left: One actuator upstream of the step. Top 
right: Two step wall actuators Bottom: Four step wall actuators, two per plot. 

A portion of the signals created for each of the three actuation cases is 

shown in Figure 3.13. 
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 Simulations were run with the signals and the parameters shown in 

Table 3.3 and the data extracted at predefined locations, as will be 

detailed in the next chapter. 

3.4. Discussion  

 

This chapter has presented the definition of the physical and 

computational domains used in the flow over the backward facing step 

and channel flow scenarios.  

For the case of the channel flow, a simulation of natural flow was 

generated and the velocity fluctuations across several spatial positions 

analysed in the time and frequency domain. The spectrum of each of the 

components, and the magnitude of the velocity were studied in order to 

define the bandwidth of the system, to create a persistently exciting 

signal tailored for this case (Billings, 2013). To define the limits of the 

actuation signal it is necessary to define the device which will be used. 

In the current work, this was done by using the maximum magnitude 

possible considering the numerical limitations of the CFD package. 

Tests using signals of increasing magnitudes were carried out until a 

limit value at which the simulations remained stable was determined. 

The final actuation signal designed was therefore tailored to excite the 

full range of frequencies and magnitudes possible of this system.  

 A similar procedure was undertaken for the flow over a BFS, 

where again, all relevant parameters and settings for Fluent were 

defined and a simulation of the natural flow was obtained. Given that 

the simulations using the LES method require a high mesh resolution 

and small time-steps, it was decided to simplify the three-dimensional 

domain to a two-dimensional case (De Brederode & Bradshaw, 1978; Le, 

Moin, & Kim, 1997). Here some further considerations were made and a 

procedure followed to create accurate initial and inlet conditions in 

order to help reduce the effect of this simplification (Le, Moin, & Kim, 

1997). 

An analysis of the time velocity fluctuations and their spectrum was 

carried out to define the bandwidth of this flow. A signal was then 

generated which covers the relevant frequencies and applied with 

increasing magnitudes on a modified mesh. Three cases were studied, 
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using one, two and four actuators. Simulations were run until the 

solution became unstable due to the control action. Using this limit on 

magnitude, a final actuation signal was generated that is persistently 

exciting for this scenario and implemented into the simulations.  

Regarding the accuracy and validity of the simulations, as with the 

use of any model or approximation, there exists a trade-off between 

accuracy and computational requirements. In the case of CFD the latter 

can grow massively with an increase in mesh resolution or a decrease of 

time-step. On the other hand, the gain in accuracy of the simulations is 

not as large, except when comparing very different methods such as DNS 

with RANS (John, 1995).  

The values defined in this chapter, such as time-step and mesh 

resolution, are therefore chosen to provide data which is accurate and 

representative of the case being studied, but at the same time do not 

require as many computational resources with the selected numerical 

methods.  

In order to verify this, several simulations were carried out to test 

for dependency on certain parameters such as the mesh resolution, until 

a value was found that ensured the convergence, to a certain threshold, 

of the variables of interest (John, 1995). For other parameters, however, 

a value had to be ‘arbitrarily’ chosen, to allow for a sufficient amount of 

dynamics to be captured but ensuring that these were still relevant.  

An example of this is the simulation time-step, where it is possible 

to select decreasing values almost indefinitely, and a richer dynamic 

content will always be captured. However, many of the effects that will 

be seen with smaller values of ��, are too fast for any real implementation 

of a controller, or may be impossible to measure in real flows with 

current and perhaps even future technology (Ho & Tai, 1998; Lofdahl & 

Gad-El-Hak, 1999a).  

Therefore, it is necessary to stablish a limit where the data sampled 

is sufficient, in this work this was simplified since the purpose of the 

data generation was the use of system identification schemes. The latter 

require that consecutive data-points be correlated, something that may 

not be ensured with large time-steps, but with a degree of difference 
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between them, hence the sampling rate cannot be such that successive 

values are very similar (Billings, 2013; Lofdahl & Gad-El-Hak, 1999b). 

Finally, the analysis and measurements used for the system 

identification and posterior control design were of the velocity 

fluctuations from the entire domain in the channel flow case, and of 

certain nodes in the flow over the BFS. This is something that would be 

hard to accomplish (Ho & Tai, 1998; Lofdahl & Gad-El-Hak, 1999a). 

However, as the objective of the current work is to study the flows and 

the capability that the schemes have in this application, it was decided 

to use these variables as they enhanced the performance. For a practical 

application, both the models and controllers obtained, will need to be 

modified to overcome this issue.  

Variables such as the wall-shear stress would be better suited to be 

the controlled variables, since it can be readily measured using current 

technologies (Lofdahl & Gad-El-Hak, 1999a). As for the control input, the 

limitations in frequency and magnitude of the implemented 

microelectromechanical system (MEMS), to be used as the actuators, 

would need to be enforced in the control design stage (Ho & Tai, 1998; 

Lofdahl & Gad-El-Hak, 1999b; Varadan & Varadan, 2000).  
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CHAPTER 4  

 
 

System identification of non-

linear reduced-order models of 

channel flow and flow over the 

backward facing step 

 
 

4.1 Introduction  

 

The use of mathematical models arises from the desire to understand, 

control and enhance systems which we encounter every day in our lives 

(Coca & Billings, 2002b; Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

Since it is often impossible to experiment freely with existing systems, a 

tool that would allow for a simplified representation or simulation of 

such systems was needed (Coca & Billings, 2002b; John, 1995). Through 

mathematical expressions, it is possible to capture the dynamics and 

express the relationships of different variables of existing natural, and 

man-made systems. And so, after centuries of development, 

mathematical models that describe and predict accurately the evolution 

of complex dynamical processes can be routinely derived, analysed and 
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simulated, providing the foundation for modern system design  (Billings, 

Chen, & Korenberg, 1989; Coca & Billings, 2002b; Kerschen, Worden, 

Vakakis, & Golinval, 2006; Ljung, 2010). 

Mathematical models of dynamical systems characterize the 

relationship between the inputs, state variables and outputs (Billings, 

2013; Hong, Mitchell, Chen et al., 2008). The complexity and accuracy of 

a model of a dynamical system may vary significantly, according to the 

application and its purpose. In some cases, linear models involving one 

or two variables are sufficient, whilst in other cases, non-linear integro-

differential equations are needed (Chen & Billings, 1989; Coca & Billings, 

2002b; Kerschen et al., 2006). 

In the modern day, the use of mathematical models to represent and 

simulate complex systems play a central role in a wide spectrum of 

applications ranging from the animation of hair in a movie-clip (Wu & 

Kanai, 2016), to the design of control laws for jet engines. 

In Chapter 3, computationally expensive mathematical models of 

incompressible flows, namely the Navier-Stokes equations, were used to 

simulate fluid flows in different scenarios. In this Chapter, the NARMAX 

system identification approach is used to identify reduced-order models 

of the system, based on data generated by numerical simulations. The 

identified models describe the flow dynamics with a desired level of 

accuracy, and can predict an actuated flow with an incredibly reduced 

computational and time cost. Both of which are essential to design an 

effective and feasible controller for such an application (Huang & Kim, 

2008; Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

According to the a priori knowledge about a system of interest, 

mathematical models can be classified into three categories: white box, 

grey box, and black box models (Hong, Mitchell, Chen et al., 2008; Ljung, 

2004, 2010; Scott Collis, Joslin, Seifert, & Theofilis, 2004).   

White box models are those which are built entirely from 

fundamental principles, such as the physical laws which describe the 

process (Ljung, 2004, 2010).  

This type requires a thorough knowledge of the system to define the 

relations between all the variables involved, something that is often 

extremely difficult or impossible to achieve due to the complexity of 
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most real-world problems (Billings, 2013; Coca & Billings, 2002b; Hong et 

al., 2008; Ljung, 2010). 

Black box models are those for which there is no available knowledge 

of the structure or parameters of the model, and so both have to be 

determined (Ljung, 2004, 2010). When this is done using available 

observations of the input-stimuli and measured outputs it is known as 

system identification (Billings, 2013; Ljung, 2010). This work is focused 

on the identification of black box models. 

Grey box models incorporate some knowledge of the system but not 

enough to define the model in its entirety (Ljung, 2004, 2010). The model 

is built such that it exploits all a priori information about the system, 

such as model equations, and appropriate algorithms are used to 

estimate the unknown model parameters, for example (Hong, Mitchell, 

Chen et al., 2008; Ljung, 2010).  

The remainder of this chapter is organized as follows. Section 4.2 

presents the NARMAX system identification methodology and 

associated algorithms. Considerations needed during the experiment 

design are given in Section 4.2.1, the structure detection algorithm used 

in 4.2.2 and Section 4.2.3 presents dynamical and statistical model 

validation methods. 

Section 4.3 and 4.4 present the identification of reduced-order 

models of the 3D channel flow and the flow over a backward facing step, 

respectively.  Finally, Section 4.5 presents a discussion on the accuracy 

of the identified models as well as the challenges faced by the system 

identification of non-linear systems, and their application to the 

analysis of fluid flows. 

 

4.2 Review of non-linear system identification – the NARMAX 

methodology  

 

System identification techniques have been developed and tested in the 

past to derive grey and black box models (Ljung, 2004, 2010). Within this 

discipline there are two important challenges (Billings, 2013; Hong, 

Mitchell, Chen et al., 2008). The first is the detection of an appropriate 

model structure that captures the systems’ dynamics, and the second is 



CHAPTER 4  
  

60 
 

the estimation of the correct model parameters (Billings, 2013; Billings 

et al., 1989; Coca & Billings, 2002b; Ljung, 2010; Sjöberg et al., 1995).  

The former is of great importance since it is the procedure which 

defines the functions that will make up the model and ultimately the 

relations between all variables (Billings, 2013; Ljung, 2010; Sjöberg, 

Zhang, Ljung et al., 1995). Meanwhile, the latter is also of importance 

since the parameters will dictate if the overall model is biased, a good fit 

to a particular data-set or an adequate representation of the underlying 

dynamics of the system (Billings, 2013; Chen & Billings, 1989; Coca & 

Billings, 2002b; Hong et al., 2008; Ljung, 2010; Sjöberg et al., 1995). 

In the past, linear model identification and analysis has been the 

main object of focus and is a topic which has been studied extensively 

(Billings, 2013; Hong et al., 2008; Lang & Billings, 2004). The use of such 

models has been known to be carried out even when the systems under 

study were highly complex or known to be non-linear (Billings, 2013; 

Chen & Billings, 1989; Ljung, 2010; Wei, Liu, & Billings, 2003). It is known 

that the dynamics which can be represented through linear expressions 

are not sufficient to simulate a wide number of real systems (Billings, 

2013; Lang & Billings, 2004).  

Over the past 30 years, powerful tools to identify and analyse the 

nonlinear systems, have become available (Billings, 2013; Billings et al., 

1989; Coca & Billings, 2002a; Lang & Billings, 2004).  

The NARMAX methodology encompasses a set of methods and 

algorithms for identifying a Non-linear Auto Regressive Moving Average 

with eXogenous inputs – NARMAX – model (Billings, 2013; Billings, 

Chen, & Korenberg, 1989; Boaghe, Billings, Li, Fleming, & Liu, 2002; Chen 

& Billings, 1989; Coca & Billings, 2002; Leontaritis & Billings, 1985a, 

1985b; Wei, Liu, & Billings, 2003). 

The general NARMAX model with � inputs, � outputs; n�, n� and n� 

maximum lags1 for inputs, outputs and error, respectively, in addition 

to a zero mean noise sequence, is given in equation (4.1) (Billings, 2013; 

                                                            
1 For simplicity in the remainder of this work, the values for ��, ��, and  �� are set as constant for 

all the respective input, output, and error signals of the system. However, the methodology allows 
for each of the signals to have a different value, resulting in ���, ���, with � = 1 … � and � = 1 … �. 
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Billings et al., 1989; Chen & Billings, 1989; Coca & Billings, 2002a, 2002b, 

Leontaritis & Billings, 1985, 1987; Wei et al., 2003). 

�(�) = � ��(� − 1), … , ��� − ���, �(� − 1), … , �(� − ��), �(� − 1), … , �(�

− ��)� + �(�) 

(4.1) 

Where bold denotes a vector or matrix value, �(∙) = [f�(∙), … , f�(∙)]�  yields 

a vector-valued non-linear mapping function, and   

�(�) = �
��(�)

⋮
��(�)

�,  �(�) = �
��(�)

⋮
��(�)

� and �(�) = �
��(�)

⋮
��(�)

� 

It is important to note that both the inputs �(�− 1), … , �(�− ��) and the 

outputs �(�− 1), … , ���− ��� are the measurements obtained at the 

defined sampling time ��. The notation �(�− �) stands for �(�− � ∙ ��). 

In equation (4.1) the function �(∙) or any information relating to it is 

usually not known a priori, and has to be identified using structure 

selection methods and the parameters identified posteriorly using the 

measured input-output data. 

The NARMAX model is capable of representing a wide class of non-

linear systems under very mild assumptions (Billings, Chen, & 

Korenberg, 1989; Leontaritis & Billings, 1985a, 1985b). To deal with 

measurement and process noise, this methodology implements noise 

modelling procedures that ensure that the estimates of the model 

parameter are unbiased (Billings, 2013; Chen & Billings, 1989; Leontaritis 

& Billings, 1985a, 1985b). 

Most system identification algorithms include four stages or steps 

for an adequate model to be derived (i. – iv.) the NARMAX methods 

expand on these to also include a posterior analysis of the model for a 

better understanding of the system (v., vi.) in the time and frequency 

domain (Billings, 2013; Hong, Mitchell, Chen et al., 2008; Ljung, 2010).  

i. Experiment design and pre-conditioning of data 

ii. Model structure selection 

iii. Parameter estimation 

iv. Model validation 

v. Simulating the evolution of the systems 

vi. Analysis of the systems’ dynamics 
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The NARMAX methodology is able to produce models which are 

both parsimonious and faithful to the dynamics of the initial system 

(Billings, 2013; Chen & Billings, 1989). The simplicity of the models allows 

for a break-down of complex behaviours, giving way to a better analysis 

and understanding of the process, which is something that cannot be 

done when using fuzzy models, or neural networks are employed 

(Billings, 2013; Boynton, Balikhin, Billings, Sharma, & Amariutei, 2011; 

Ljung, 2010). 

A further advantage is that it can be mapped directly into the 

frequency domain (Billings, 2013; Billings & Lang, 2002; Billings & Tsang, 

1989; Lang & Billings, 1996, 1997, 2004; Lang, Billings, Yue, & Li, 2007; Yue, 

Billings, & Lang, 2005). This allows for the computation of the 

Generalized (GFRF) and Output Frequency Response Functions (OFRF) 

of the original system in a straight forward manner (Billings, 2013). Both 

allow for the effects of individual terms and parameters of the time 

domain model to be analysed in the frequency domain, and provide a 

greater insight to the properties of the system and dynamics which 

would otherwise be hard to identify and interpret (Billings, 2013; Hong, 

Mitchell, Chen et al., 2008; Jing, Lang, & Billings, 2008; Lang, Billings, 

Yue, & Li, 2007; Liu, 2002; Ljung, 2010). 

 

4.2.1 Experiment design  

 

The initial stage of any system identification procedure is the generation 

and collection of input/output data (Billings & Zhu, 1994; Haynes & 

Billings, 1994; Leontaritis & Billings, 1987). The input design for non-

linear models is not as straightforward as with linear models, where only 

the mean, variance and bandwidth need to be selected (Billings, 2013; 

Billings & Zhu, 1994; Haynes & Billings, 1994; Leontaritis & Billings, 1987; 

Ljung, 2004).  

In the case of a nonlinear system, one of the requirements which 

contributes to the effectiveness of the system identification procedure, 

is the input applied. Where the latter, should be persistently exciting to 

the system of interest (Billings, 2013; Billings, Chen, & Korenberg, 1989; 

Billings & Zhu, 1994; Leontaritis & Billings, 1987; Ljung, 2004). That is, 
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the input used to generate identification data needs to cover the 

expected operating range both in frequency and amplitude, to ensure 

that the identified model captures in full, the underlying dynamics 

(Billings, 2013; Hong, Mitchell, Chen et al., 2008; Ljung, 2010). For non-

linear models, signals such as the pseudo-random binary sequence PRBS 

are not persistently exciting (Haynes & Billings, 1994). 

The importance of the amplitude range is that, unless all magnitudes 

are covered, the resulting output may be difficult to distinguish from 

measurement uncertainties and other error sources, further it may not 

trigger all relevant dynamics which is the reason for an external pre-

designed input to be applied (Billings & Zhu, 1994; Leontaritis & Billings, 

1987; Ljung, 2004).  

The study of the frequency content is of importance to identify the 

bandwidth of the system and only apply energy where truly required, 

since going over the system’s cut-off frequency has little use (Billings & 

Zhu, 1994; Hong, Mitchell, Chen et al., 2008; Leontaritis & Billings, 1987). 

A margin, however, can be beneficial to account for slight changes in the 

operating region. In (Leontaritis & Billings, 1987) it is suggested that for 

an unknown system, the input signal be a filtered Gaussian sequence 

when dealing with power constraints and a uniformly distributed one 

for amplitude constraints. Taking into consideration the limits of the 

physical or simulation limits. 

Finally, the sampling time also has an important effect on the 

structure and parameters estimates generated, therefore a study such as 

that proposed by (Billings & Zhu, 1994) is of use to define the best suited 

conditions. Smaller sampling values favour accurate parameter 

estimation but can deter structure selection whereas the opposite 

occurs for longer sampling times (Bai, 2010; Billings & Zhu, 1994). 

 

4.2.2 Structure selection & parameter estimation  

 

The functions ��(∙), � = 1, … , � from equation (4.1) can be expanded in 

several ways. To choose a particular form, it is necessary to analyse the 

ease of use, performance, and other factors according to the application 
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being studied. Possible representations include polynomial, rational, 

radial basis functions as well as wavelets (Chen & Billings, 1989).  

In this work, only polynomial NARMAX models were considered. 

The main reasons are that the polynomial model structure is 

particularly suitable both for design of control laws as well as for 

analytical derivation of the Generalized Frequency Response Functions 

associated with the identified models (Billings, 2013; Chen & Billings, 

1989; Jing, Lang, & Billings, 2008; Lang, Billings, Yue, & Li, 2007). The 

polynomial expansion with a non-linearity of degree � of the ��ℎ output 

is represented by 

��(�) = �� + � ���
���

(�)

�

��� �

+ � � ���,��
���

(�)���
(�)

�

��� ��

�

��� �

+ ⋯

+ � ⋯ � ���,…,��
���

(�) ⋯ ���
(�)

�

��� ��� �

�

��� �

+ ��(�) 

 (4.2) 

Where in equation  (4.2), ��(∙)
(�) represent lagged terms in �, � or �,  

� = � ∙ �� + � ∙ �� + � ∙ �� and ��(∙)
 are the unknown parameters to be 

approximated. As can be seen, this expansion is linear in the parameters 

which allows for the general output of the NARMAX model, equation 

(4.2), to be represented as a linear regression equation. For the 

remainder of the chapter, a SISO system will be considered to ease the 

derivation. Equation (4.2) becomes: 

�(�) = � ����(�)

�

�� �

+ �(�)  ,                              � = 1, … , � 

(4.3) 

In equation (4.3) , N is the number of observations of the 

input/output/error, �� are the regressors or predictors, which are 

monomials of ��(�) to �� (�) up to degree �, M is the total number of 

predictors, �� are the unknown coefficients and �(�) = �(�) + �� (�) with 

�(�) being noise and �� (�) the modelling error. 

In matrix form this becomes 

� = �� + � 
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with  

� = �

��

⋮
��

� , = �
��

⋮
��

� , � = �
��

⋮
��

� ,     � = [�� … �� ]     and     �� = �

��

⋮
��

�       

for � = 1 … �. 

Here M is defined: 

� = � �� + 1

�

�� �

 

and  

�� =
��� �(�� + �� + �� + � − 1)

�
,          �� = 1. 

The structure selection now consists of choosing a subset � �  from  

� ≪ � elements belonging to � , which represents the full model set to a 

certain accuracy or tolerance �. Then finding the estimates of the 

parameters ���  by solving the quasi-linear least squares (LS) problem 

(Billings, 2013), given by  

��� = min
��

‖� − � � �� ‖�
�. 

The number of selected model terms/regressors is crucial. Selecting 

too few model terms means that the model will not capture in full the 

underlying dynamics (Billings, 2013; Chen, Billings, & Luo, 1989). 

Selecting too many model terms leads to overfitting, that is, the model 

will fit the data including the noise but fail to capture the underlying 

dynamics (Billings, 2013; Chen, Billings, & Luo, 1989). 

There are several methods such as optimal multiple-selection 

methods or stepwise regression to determine the relevant regressors 

(Hong, Mitchell, Chen et al., 2008), but most of these become highly 

computationally expensive or extremely difficult to use even with 

systems that are of a low complexity (Hong, Mitchell, Chen et al., 2008; 

Ljung, 2010).  

The most effective approach to model structure selection is the 

Orthogonal Forward Regression (OFR) method proposed by Chen et al. 

(Chen, Billings, & Luo, 1989). The OFR is an improvement on the well-

known orthogonal least squares (OLS), a method that assigns an error 

reduction ratio (ERR) to each candidate regressor and chooses the most 

significant until a termination criterion is reached (Chen, Billings, & 

Luo, 1989). The OLS method was impaired by the fact that the ERR 
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depended on the orthogonalisation path, which meant that the terms 

were not always correctly graded (Billings, 2013). The OFR used in this 

project is based on the modified Gram-Schmidt (MGS) algorithm, which 

is one of the more stable and well-conditioned orthogonalisation 

procedures (Billings, 2013; Billings, Chen, & Korenberg, 1989). 

The structure selection is split into two stages, firstly a non-linear 

average model with exogenous inputs (NARX) is identified by omitting 

the error terms for all regressors, and then an iterative scheme is 

performed to model the residuals which exist between the measured and 

predicted output, until the residuals are un-correlated with all past 

measurements (Billings, 2013). 

The regression matrix is partitioned into process and noise terms, 

� � and � �  respectively, where � = �� �|� � � and �� + �� = �. The 

regression equation of the NARX model is � = � ��� + �. 

Assuming � � is of full rank, the orthogonal decomposition is  

� � = �� , with �  defined as: 

� =

⎣
⎢
⎢
⎢
⎡
1
0
0

���

1
0

⋮
0

⋮
⋯

���

���

1

⋯
⋯
⋯

⋮
⋯

⋮
⋯

���

���

⋮
�� � ��

1 ⎦
⎥
⎥
⎥
⎤

 

 

and �  is defined such that � �� = �  where �  is a positive diagonal 

matrix.  

Considering � = ��� �, the NARX model can be rewritten  

� = (��� �)����� + � = �� + �, by defining � = �����. 

Since the auxiliary regressors, � �, are uncoupled, the resulting 

parameters � � are uncoupled as well, so that the contribution of each 

regressor can be evaluated independently and so: 

� = � � �� �� 

or 

� � =
� �

��

� �
�� �

 ,     1 ≤ � ≤ � 

The sum of the squares of the output variable � is 

��� = � ��
���

��� + ���

�

�� �
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Therefore, the ERR of � �  is defined as: 

[���]� =
��

�� �
�� �

���
. 

The ERR is the proportion of the output variance explained by the term 

in question (Billings, 2013). 

To estimate the process model using the MGS algorithm, the A 

matrix is filled one row at a time with the following steps: 

Denote �� = � where � has been transformed into  

�(�� �) = [� � … � �� � ��
(�� �)

… ��
(�� �)

] and � into �(�� �).  

(i) Then, for � ≤ � ≤ ��, compute: 

��
(�)

=
���

(�� �)
�

�
�(�� �)

���
(�� �)

�
�

��
(�� �)

 

[���]� =
���

(�)
�

�
���

(�� �)
�

�
��

(�� �)

���
 

(ii) Find [���]� = [���]�
(��)

= max �[���]�
(�)

, � ≤ � ≤ ��� 

Then the ��th column of �(�� �) is changed with the �th column of �(�� �) 

and the ��th column of � in interchanged up to the (� − 1)th row with 

the �th column of �. 

(iii) Calculate the kth row of A, transform �(�� �) and �(�� �) into �(�) 

and �(�), respectively, then calculate 

⎩
⎪
⎨

⎪
⎧ � � =  ��

(�� �)
,

��,� =
� �

��(�� �)

� �
�� �

 , � + 1 ≤ � ≤ ��,

��
� = ��

(�� �)
− ��,�� � ,    � + 1 ≤ � ≤ ��.

 

�
�� =

� �
��(�� �)

� �
�� �

 ,

�(�) = �(�� �) − ��� � .

 

The selection is terminated at the ��th stage when the tolerance is 

reached2 by 

1 − � [���]�

� �

�� �

< � 

                                                            
2 An alternative termination criterion is to define the maximum number of terms allowed in ��.  
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Where the model now has �� significant terms and the parameter 

selection can now be carried out by 

���� = �� 

The intermediate steps and a more thorough description of these 

algorithms, as well as the iterative procedure needed to include the 

identification of the noise model can be found in (Billings, 2013; Billings, 

Chen, & Korenberg, 1989; Chen, Billings, & Luo, 1989; Wei, Liu, & Billings, 

2003). In this work, noise-free data used in identification is generated 

through numerical simulations of Navier-Stokes equations and so the 

identified models are in fact NARX-type models that do not include noise 

terms. However, for the remainder of the thesis they will be addressed as 

NARMAX models to emphasise the method used to identify them and 

the fact that the noise model can easily be incorporated. 

 

4.2.3 Model validation methods  

 

Model validation is the last of the base steps of system identification, 

prior to the analysis of the identified model (Billings & Voon, 1983, 1986; 

Billings & Zhu, 1994; Haynes & Billings, 1994; Zhu & Billings, 1997). In this 

stage, the model is analysed to ensure that it is a representation of the 

system and its dynamics and not simply a good fit to the training data. 

Methods of statistical and qualitative nature exist (Billings & Voon, 1983; 

Billings & Zhu, 1994; Haynes & Billings, 1994; Ljung, 2004; Zheng & 

Billings, 1999). 

The main statistical validation methods developed for linear models 

consist in calculating correlation functions of the residuals and system 

inputs, then performing several tests and check that they are within 

defined confidence intervals (Billings & Voon, 1986; Billings & Zhu, 1994; 

Zhu & Billings, 1997). This is satisfied when the residuals are truly, or 

close to, a white random sequence, and therefore do not contain 

unmodeled dynamics. These tests can be applied to whatever form of 

model is used to represent the input/output map. 

Linear SISO methods have existed since the 1970’s, however, it has 

been shown that they are not sufficient to detect unmodeled non-linear 

terms (Mao & Billings, 2000). Methods to overcome this have been 
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proposed by (Billings & Voon, 1986; Billings & Zhu, 1994) where the 

output signals have also been included in the tests, and are successful 

for most cases. However, it was determined that for the small value 

problem, they can also provide incorrect results, therefore 

multidirectional tests were proposed (Billings & Zhu, 1994; Mao & 

Billings, 2000; Zhu & Billings, 1997). The MIMO case has also been studied 

(Billings & Zhu, 1995). 

The full set of tests to ensure that there the residuals are 

unpredictable are 

 Linear tests: �
���(�) = �(�)         ∀ �

���(�) = 0               ∀ �
 

 Non-linear tests: �

�
����

�
�

(�) = 0              ∀ �

�
����

�
��(�) = 0            ∀ �

��(��)(�) = 0           � ≥ 1

 

Where �(�) is the Kronecker delta, �(�) are the residuals, and the dash 

denotes that the mean level has been removed from the respective 

signal. 

 Tests using output signal: �
�

����
�
(��)� = ��(�)       ∀ �

�
����

�
(��)� = 0               ∀ �

 

where 0 < � < 1. 

Multi-directional tests (1): 

⎩
⎪⎪
⎨

⎪⎪
⎧

�����
(�) = �(�)           ∀ �

�����
(�) = 0                 ∀ �

�
���

��
�
��

(�) = 0             ∀ �

�
���

��
�
��

�(�) = 0             ∀ �

���(����)(�) = 0      � ≥ 1

 

 Multi-directional tests (2): �
�

���
��������

�(�) = ��(�)           ∀ �

�
���

��
�
������

�(�) = 0                 ∀ �
 

Where 0 < � < 1 and the tests have to be valid for all �, for the definition 

of this variable and further details, the reader is directed to (Mao & 

Billings, 2000). Given that these correlation tests provide only statistical 

information, the discrepancies between the modelled and real dynamics 

may not always be shown.  

Dynamical validation therefore complements the previous 

statistical tests to ensure that the model exhibits the appropriate 

behaviour (Zheng & Billings, 1999). These approaches often compare the 
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dynamical invariants of the model to those of the real system (Zheng & 

Billings, 1999). These include the equilibrium points, Lyapunov 

exponents, bifurcation diagrams, among others. In practice this is often 

not realizable since there is usually not enough knowledge of the system 

to obtain these, and the methods to compute them from data are 

complicated at best (Zheng & Billings, 1999). Therefore, the model 

predicted output (MPO) and the one-step ahead predictions of the model 

are studied (Condrea, 2014).  

The OSA predictions are computed entirely using past measured 

input/output data according to equation (4.1). The procedure is repeated 

for the whole sequence that is to be studied. It can be noticed that the 

modelling error introduced is minimal since it is corrected for at each 

time-step when new measured data is used, and it shows how well the 

model approximates output measurements (Condrea, 2014). 

On the other hand, the MPO is an iterative procedure, where for the 

first time-step, the OSA prediction is obtained using measured data. For 

the following calculations, the last estimated output is used to compute 

the future value. The equivalent expression for equation (4.1) in this case 

is 

����� (�) = �������  (� − 1), … , ����� �� − ���, �(� − 1), … , �(� − ��), 

… , �(� − 1), … , �(� − ��)� + �(�) 

Where the accent is added to emphasise that it is the previous prediction 

which is used. In this case the prediction error builds up at each 

iteration, hence the MPO is a far clearer indicator to assess the quality 

of the model. 

Once the MPO has been calculated, the error can be defined as  

�(�) = �(�) − ��(�) and several measures of error exist to evaluate the 

model (De Gooijer & Hyndman, 2006; Hyndman & Koehler, 2006). These 

will be discussed later. When analysing the MPO, care has to be taken 

while defining the goodness of the model, since it is not always necessary 

for the model to have great performance tens or hundreds of steps-

ahead, and so, the evaluation should be done according to the 

application (Billings, 2013). 

A further test which can be performed using the OSA and MPO is that 

of using the model on unseen data (Billings, 2013). The process consists 



4.3 System identification of channel flow  

71 
 

of using a subset of the data set for training and the remainder for 

validation. To analyse the performance on the new set of the OSA and 

MPO using the selected error measure. This can be further enhanced 

using methods such as k-fold cross-validation, random subsampling and 

bootstrap techniques (Ayala Solares & Wei, 2015; Condrea, 2014). 

The choice of test used for validation depends on the form of the 

model in addition to the availability of data or possibility of running 

several tests (Billings, 2013; Billings & Voon, 1986; Hong, Mitchell, Chen 

et al., 2008; Ljung, 2010).  

 

4.3 System identification of channel flow 

 

Numerical simulation of the Navier-Stokes equations are 

computationally expensive (John, 1995). This even when the geometry 

and the flow are simple in nature, and is made more so when the 

Reynolds number is in the transition or turbulent regime (Bewley, 2001; 

John, 1995). Further, many model reduction approaches provide results 

which are not always suitable for real-time control applications due to 

the over-simplification of the system or still unfeasible computational 

requirements (Bewley, 2001; Pollard, 1998; Scott Collis, Joslin, Seifert, & 

Theofilis, 2004). In this case, reduced order models of flow dynamics, 

which are sufficiently accurate for analysis or control purposes, are 

needed.  

 

4.3.1 Experiment design 

 

Simulations have been carried out of the channel flow in a wall bounded 

domain. The domain was defined to have dimensions �� = 4� , �� = 2, 

and ��= 3� for the streamwise, wall-normal and spanwise directions, 

respectively. An appropriate mesh and sampling time, �� = 0.01 seconds, 

were defined to sufficiently resolve the scales for the simulation to be 

representative of the flow. 

The data was subsampled spatially, to avoid subsequent 

measurements to be overly similar and reduce the length of the data-
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series. The data which was finally used for the system identification was 

from a sub-mesh �� of ��� = 30, ��� = 29, and ��� = 25 grid-points.  

Since the mesh �� had a fewer number of nodes, but still over 20,000, 

it was decided that the entire time series of each node would be used for 

training the model, and then validated on the remaining models of the 

same type and the best performing chosen. Figure 4.1 shows the data 

used for a single node, where plotted are the three velocity components 

of the velocity ��, ��, ��.  

 

Figure 4.1. Components of velocity fluctuations over time from node [15,20,12] of mesh ��, �� in blue, 
�� in red, and �� in green. 

As it was mentioned in Chapter 3, data from several simulations under 

different initial conditions, and with varying Reynolds numbers were 

used to study the frequency content variation of the output signals, to 

design an appropriately exciting input. The generated signal was then 

applied to the system using a modified version of the ChannelFlow 

package and data extracted from the new sub-mesh as mentioned above.  

Due to conflicting notation from the fluid flows and control 

disciplines, from this chapter onwards, the input/actuations signals will 

be referred to as �. The components of the velocity and magnitude will 

be labelled as (��, ��, ��) and  |�|, respectively, where |�|= � ��
� + ��

� + ��
�. 

 

4.3.2 Structure selection & parameter estimation  

 

Multiple-input multiple-output models have been sought, using the flow 

velocity components ��, ��, �� as the variable to be modelled. Each of 
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these were considered as outputs (���
, ���

, ���
) and the velocity 

components of the surrounding nodes were selected as the inputs  

(�����, ��� ��, �����), therefore, the terms of equation (4.1) are given by: 

��(∙)
(�) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
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(� − 1)
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���
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(� − 1)

⋮
���
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Where the index �� is used to identify the surrounding nodes to the one 

being analysed and ��(∙)
(�) is considered for each of the three 

components ���
(�), ���

(�), ���
(�).   

After several initial tests, where a single model was sought for the 

entire domain, it became evident that this would not be adequate. Even 

with varying values for the model order and input/output lags. This was 

of course to be expected since it is a highly spatial and time varying 

system (Bewley, 2001).  

Therefore, an approach was undertaken where different structures 

would be used across spatial locations. Further, to enhance the 

performance of the model of a particular node, data from the 

surrounding ones would be considered as inputs, in addition to the 

external actuation. 

 

a)  

 

b) 

 

For caption, see next page 
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c) 

 

d) 

 

Figure 4.2. Schematic of the four node classes for the identification of the model at the red node. Input 
data obtained from blue nodes and the output data from the current (red) node. a) Edge node b) Wall 

node c) Vertex node d) Inner flow. 

Since not all the nodes have neighbours in every direction, as is the case 

of the boundary nodes, the structure could not be equal at every 

location. Therefore, 4 different node classes with several sub-types were 

defined. Figure 4.2 shows schematics of the different node types, where 

the blue and red dots represent the nodes being used as inputs and 

outputs, respectively, during the system identification procedure. 

 
Figure 4.3. Schematic of node types of entire domain, showing location and number of each sub-type. 

Wall nodes in green, edge nodes in red, and vertex node in blue. Inner flow nodes are those which do not 
belong to the previous types. 

In turn, Figure 4.3 again shows the node classes including their 

corresponding sub-types. Wall nodes in green with 6 sub-types, edge in 

red with 12 sub-types, vertex in blue with 8 sub-types, and inner flow not 

shown to avoid confusion. Each of the sub-types could have a different 

structure.  

Table 4.1. Range of variables used in the MIMO system identification of the velocity fluctuations. 

Variable Meaning Value  
� Order of non-linearity 2, 3 
�� Process terms 2, … , 30 

�� Output lag  2, 3, 4 

�� Input lag  2, … , 7 
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In order to find the best combination for model degree and input/output 

lags, these two variables were varied in the ranges shown in Table 4.1 and 

models identified and analysed for each combination.  

The values shown in Table 4.1 were chosen for several reasons. 

Linear, quadratic, and cubic models were tested, however, for the case of 

the latter, the increase in accuracy did not warrant the increased 

complexity and computational burden during the computation and 

simulation of the model. Additionally, since the Navier-Stokes are 

quadratic then a model of this order should be able to capture the 

relevant dynamics and represent the system faithfully (Billings, 2013; 

Davidson, Kaneda, & Sreenivasan, 2013).  

The limits for input and output lags were chosen since it is well-

known that past conditions greatly affect the evolution of the flow 

(Davidson, Kaneda, & Sreenivasan, 2013; John, 1995), and so large values 

would be needed. However, due to the high number of inputs being 

tested for some of the structures as well as the model orders, the limit 

for this value could not be larger without making the computational 

burden overly costly. 

The identification procedure was applied with all the combinations 

of the variables defined in Table 4.1, the termination criteria was set to 

be an increasing limit number of terms. At each iteration of the 

procedure, the model predicted output was computed by providing 

initial conditions and the input training signal. The evolution of the 

Normalized Root Mean Squared Error (NRMSE) (Boynton, Balikhin, 

Billings, Sharma, & Amariutei, 2011) as defined in equation (4.4) was 

monitored and used to choose the best performing model. 

����� =
� ∑ (�� − ���)��

�� �

�
��

 

(4.4) 

Where �� is the �th measured signal, ��� the ith prediction from the 

identified model and �� the standard deviation of the measured signal. 

After a series of tests, it was noted that adding data from beyond a 

lag of �� = 6 time-steps did not contribute to a great increase the model 

accuracy. A slightly longer lag was still allowed to account for any future 
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changes in the operating region. Many models however did not require 

this amount as can be seen in the final structures. 

 
Figure 4.4. Model predicted output (in blue) and measured signal (in green) for each of the velocity 

components at node [1,9,1] for the best performing edge vertex on training data. Top: ��  with 
����� = ��.�% . Middle:  ��  with ����� = �.��% . Bottom: ��  with ����� = ��.��% . 

Table 4.2. Model structure for each of the velocity components at node [1,9,1]. 

Structure ��  Structure ��  Structure �� 
���(� − 1)  1 . ��(� − 1) 1 . ���(� − 1) 1 

��(� − 1) ��(� − 1) . ��(� − 2) 1 . ���(� − 2) 1 

��(� − 4) ��(� − 2) . ��(� − 3) 1 . ���(� − 3) 1 

���(� − 2) 1 . ��(� − 4) 1 . ��(� − 4) 1 

��(� − 2) ��(� − 2) . ���(� − 1) 1 . ��(� − 5) 1 

��(� − 3) ��(� − 2) . ���(� − 5) ���(� − 1) . ��(� − 2) ��(� − 4) 

���(� − 3) 1 . ���(� − 2) 1 . ��(� − 1) 1 

��(� − 4) ��(� − 2) . ��(� − 5) 1 . ��(� − 2) 1 

��(� − 7) ��(� − 2) . ��(� − 6) ��(� − 5) . ��(� − 3) 1 

��(� − 1) ��(� − 3) . ��(� − 6) ��(� − 5) . ��(� − 4) 1 

��(� − 2) ��(� − 3) . . . . ���(� − 7) ��(� − 5) 

���(� − 7) ��(� − 4) . 
  

. ���(� − 4) ��(� − 1) 

��(� − 1) ��(� − 1) . . . . ���(� − 7) ���(� − 2) 

��(� − 2) ��(� − 6) . . . . ��(� − 6) 1 

���(� − 2) ��(� − 2) . . . . ��(� − 3) 1 

���(� − 5) ���(� − 1) . . . . ��(� − 7) ���(� − 2) 

���(� − 6) ���(� − 7) . . . . ��(� − 1) ���(� − 2) 

��(� − 5) ��(� − 2) . . . . ��(� − 1) ���(� − 2) 

���(� − 3) 1 . . . . . . 

���(� − 3) 1 . . . . 
  

 Figure 4.4 shows the performance of a model identified at node [1,9,1] 

and Table 4.1 presents the corresponding model structure. The 

parameters are not shown since these were calculated at each node 

independently. In these structures, only the actuation is shown as an 

input, the data from the surrounding nodes has been identified as  
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��(�− �) for � = 4, … , 18 and the (���
, ���

, ���
) outputs for the current 

node are ��(�− �) for � = 1, 2, 3. This was done to clarify that the 

surrounding nodes are outputs of the full model, even if at individual 

nodes they are used as input data. 

After some analysis, it was noted that should the model be used for 

control purposes in later work, the single actuation signal would not be 

enough to manipulate the system in the desired form. According to the 

literature, it has been found that variations of actuators or actuating 

signals along the spanwise directions, while applying wall normal 

actuation, can cause a faster modification of the flow (Klumpp, Meinke, 

& Schröder, 2010; Quadrio & Ricco, 2004; Quadrio, Ricco, & Viotti, 2009; 

Zare, Lieu, & Jovanovic, 2012). This even with a reduced amount of input 

energy. 

Figure 4.5. Schematic of multi-actuation arrays over channel flow domain. a) Three different streamwise 
actuation signals per wall b) Two different spanwise actuations per wall. 

Therefore, new simulations with an array of actuators were performed, 

here tests were done to ensure that in the current geometry, the 

hypothesis of spanwise variations were indeed better at modifying the 

flow. For this purpose, the configurations shown in Figure 4.5 were 

tested. Each of the bands represents a different actuation signal applied 

at all nodes included in that area. In Figure 4.5 a) the streamwise varying 

actuations are depicted while b) shows the spanwise varying set-up. 

Cases with two and three different actuations at each wall were tested. 

After analysing the results from these simulations, it was clear that the 

spanwise varying case has the largest effect in the least time when the 

same signals are applied.  

New simulations using three actuations at each wall were performed 

and the system identification was carried out once again following the 

same procedure explained. Models were obtained using the training data 

and tested on the remainder nodes of the same sub-type, until a suitable 

model which performed adequately was found.  

a) b) 
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For the inner flow, it was found that a single structure was suitable 

to represent the entire zone. However, depending on the application it 

is likely that more structures would help to improve the predictions, and 

to account for changes in conditions such as the Reynold number. 

Figure 4.6. Model predicted output (in blue) and measured signal (in red) for training data of the velocity 
components for the best performing a) Inner flow node at [15,20,12]. Top: ��  with ����� = ��.��% . 
Middle:  ��  with ����� = ��.��% . Bottom: ��  with ����� = ��.��% . b) Edge node at [30,7,25]. 

Top: ��  with ����� = ��.��% . Middle:  ��  with ����� = ��.��% . Bottom: ��  with ����� =

��.��% . 

The performance of models identified for two locations can be seen in 

Figure 4.6. The model structures for these two locations are also shown 

in Table 4.3 and Table 4.4. Again, the parameters are not shown since 

they have been calculated per node. 

Table 4.3. Model structure for each of the velocity components at node [15,20,12]. 

Structure ��  Structure ��   Structure �� 

��(� − 1) 1 . ��(� − 1) 1 
. 

��(� − 1) 1 

��(� − 1) 1 . ���(� − 1) 1 
. 

���(� − 1) 1 

���(� − 1) ���(� − 1) . ���(� − 1) 1 
. 

���(� − 1) 1 

���(� − 1) ���(� − 1) . ���(� − 1) 1 
. 

���(� − 1) 1 

a) 

b) 
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���(� − 1) 1 . ���(� − 1) ���(� − 1) 
. 

���(� − 1) ���(� − 1) 

���(� − 1) 1 . ���(� − 1) ���(� − 1) 
. 

���(� − 1) ���(� − 1) 
. . . ���(� − 1) 1 

. 

���(� − 1) ���(� − 1) 
. . . . . . 

���(� − 1) ���(� − 1) 
. . . . . . 

���(� − 1) ���(� − 1) 
. . . . . . 

���(� − 1) ���(� − 1) 
. . . . . . 

���(� − 1) ���(� − 1) 

Table 4.4. Model structure for each of the velocity components at node [30,7,25]. 

Structure ��  Structure ��   Structure �� 

��(� − 1) 1 . ��(� − 1) 1 . ��(� − 1) 1 

��(� − 1) ��(� − 1) . ���(� − 1) 1 . ���(� − 1) ���(� − 1) 

���(� − 1) 1 . ���(� − 1) 1 . ���(� − 1) 1 
. . . ���(� − 1) ��(� − 1) . . . 

. . . ���(� − 1) 1 . . . 

Finally, to improve the performance of the identified structures across 

the entire domain, the parameters at each of the nodes were recalculated 

using data from the corresponding training set, so that an additional 

tuning of the model was obtained prior to the validation. 

 

4.3.3 Model validation 
 

Once suitable models had been identified for each location, the model 

validation procedure was performed. The model selected for each node 

sub-type was tested on the remainder alike nodes for validation.  

For caption, see next page 

 

a) 
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Figure 4.7. Model predicted output (in blue) and measured signal (in red) for validation data of the 
velocity components for the best performing a) Inner flow node at [20,8,21]. Top: ��  with ����� =

��.��% . Middle:  ��  with ����� = ��.��% . Bottom: ��  with ����� = ��.��% . b) Edge node at 

[30,19,25]. Top: ��  with ����� = ��.��% . Middle:  ��  with ����� = ��.��% . Bottom: ��  with 

����� = ��.�% . 

Figure 4.7 shows performance of the models obtained for the locations 

shown before. For most of the node sub-types, the models selected per 

the NMRSE on the training data had a good performance while 

predicting the evolution of the flow with the validation data. However, 

there were some which were inadequate, and so the process was repeated 

until a suitable model which performed well on all the alike nodes, was 

obtained. The entire set of model structures can be found in Appendix 

B.1. 

The NRMSE was computed for all the nodes of ��. Since there are 

30×29×25 = 21,750 nodes and three velocity components for each node, 

the visualization of the performance of the entire model is difficult. 

Therefore, the NRMSE for every node was computed and a probability 

density function (PDF) fitted to the values. The values of NRMSE were 

grouped according to the velocity components, i.e. three PDF’s have been 

fitted, one for each component over the entire domain. The PDF’s can be 

seen in Appendix B.2. 

4.4 System identification of backward facing step flow 
 

The backward facing step is another example of a flow in a relatively 

simple geometry, which can be used to model and understand the 

behaviour of turbulence (Heenan & Morrison, 1998; Le, Moin, & Kim, 

1997). Additionally, this case contains new phenomena such as detached 

flow and a reattachment point (Driver & Jovic, 1994; Le, Moin, & Kim, 

b) 
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1997). These are of interest in many applications, as discussed in Chapter 

3. 

Here once again, a reduced order model which can replicate the 

evolution of the flow, and help to predict the reattachment point for 

example, is of great interest for control applications. 

The simulation method of the Fluent package is described in 

Chapter 2. The LES method simulates a simplified version of the Navier-

Stokes equations, where the discretization methods act as a filter so that 

only the eddies, which have larger scales in time and space than �� and 

mesh size, respectively, are solved whereas the smaller ones are 

modelled (Ansys, 2016).  

This package and method of generating data was used since it is 

considered to be the second most accurate, after DNS methods (John, 

1995).  

 

4.4.1 Experiment design 
 

Simulations were run using the Ansys-Fluent CFD package. To simulate 

flow over the backward facing step, a refined mesh was created in the 

specialized ICEM meshing program. This mesh was made up of 515,000 

nodes which were found to be sufficient to resolve the flow accurately. 

This was verified by comparing the generated velocity, and other 

variables, to DNS and experimental data as mentioned in Chapter 3.  

Since the goal of identifying a model of this scenario was to design a 

controller scheme, as will be discussed in Chapter 6, a single-input 

single-output SISO approach to the modelling was initially undertaken. 

The main reason for this being that MIMO models increase the difficulty 

of designing a controller and sometimes may be completely unsuitable, 

depending on the form of the model (Camacho & Bordons-Alba, 2003; 

Rossiter, 2003).  

Considering that a generalized predictive control scheme was to be 

designed, the models identified are required to have certain properties, 

as will be discussed in the next section.  

After some tests with the implementation of the controller, it was 

noted that the SISO approach to the control did not provide results with 
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an acceptable performance. Therefore, multiple-input single-output 

MISO models were then identified.  

Two different variables were chosen as outputs for the SISO and 

MISO case. For the former the pressure coefficient, ��, near the top of 

the step wall and for the latter the velocity magnitude, |�|, at a node 

within the recirculation zone were chosen. For convenience, the SISO 

pressure coefficient model will be referred to as ��� and the MISO 

velocity magnitude models as ���, ��� according to the number of 

actuators used in the simulations. 

                 
Figure 4.8. Schematic showing the location for the extraction of data from flow over the BFS domain. a) 
�� location using one actuator upstream of the step. b) |�| location using two and four actuators on the 

step wall. 

The locations where this data was extracted can be seen in Figure 4.8 

where ��� = [0,0.0095] and �� = [0.0025,0.00098]. The time step set for 

the training and validation data sets was �� = 0.005, and �� = 0.001 

seconds for the ���and �� models, respectively. 

Considering these variables together with the defined time-step, the 

data which was generated from the LES simulations was split into a 

subset used for the training of the models and the remainder for 

validation purposes. Figure 4.9 shows the data divisions for �� and 

Figure 4.10 the division for |�| with the actuation signals. In the case of 

the velocity magnitude data, both the case with two and four actuators 

are presented in Figure 4.10 a) and b) respectively. 

 

a) b) 
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Figure 4.9. Time series for �� data (Top) and actuation signal applied (bottom), blue and green 

highlighted zones represent data points used for model training and validation, respectively. 

 
 

Figure 4.10. Time series for |�| data and actuation signals applied, blue and green highlighted zones 
represent data points used for model training and validation, respectively. a) Two actuators on step wall 

Top: |�| time series. Bottom: Actuation. b) Four actuators on step wall Top: |�| time series. Bottom: 
Actuation. 

a) 

b) 
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4.4.2 Structure selection & parameter estimation  

 

The structure selection and parameter identification algorithm was 

used on the training data. Unlike in the channel flow case, where 

quadratic models were sought to allow for an inclusion of more input 

and output signals without a great increase in model complexity. For the 

���and �� models sought from the BFS data, higher degrees were 

permitted to account for the reduced amount of information being fed 

into the model. 

Additionally, since as mentioned previously a predictive controller 

scheme was to be designed at a later stage, the models needed to have 

certain properties. These include the need for them to be input affine, 

and ensuring that non-linearities with respect to future terms are not 

included, particularly if the model is used recursively (Camacho & 

Bordons-Alba, 2003; Rossiter, 2003). To account for this, a routine which 

eliminated the candidate terms that did not comply with these 

conditions was included in the structure selection stage.  

Tests showed that this limitation of the candidate terms had a 

negative impact on the performance of the models, which were slightly 

less accurate when certain terms were removed from the candidate set. 

However, this was a required trade-off since without the removal of 

those terms, the application of the predictive controller would have 

been difficult and the computational burden increased during the 

required calculations. The latter goes against the very motivation for 

deriving such models, and so it was decided to choose the best 

performing models that were suitable for the controller scheme. 

Table 4.5. Range of variables used in the SISO system identification of the �� and |�| data. 

Variable Meaning Value  

� Order of non-linearity 2, 3, 4 
�� Process terms 5, … , 25 
�� Output lag  2, … , 5 

�� Input lag  2, … , 20 

Here the model orders, lags and the number of process terms were tested 

in the range shown in Table 4.5. The final number of terms was defined 

by allowing the algorithm to run with an increasing limit, while 
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monitoring the evolution of the NMRSE of each identified model and 

selecting the best one. 

 

Figure 4.11. Top: Model predicted output (in blue) and measured signal (in red) of training data for �� 

fluctuation using ���. The ����� = ��.��% . Bottom: One step ahead predictions (in blue) and 

measured signal (in red) for �� fluctuation using ���. The ����� = �.��% .  

 

 

 

Figure 4.12. a) Top: Model predicted output (in blue) and measured signal (in red) of training data of |�| 
fluctuation using ���. The ����� = ��.��% . Bottom: One step ahead predictions (in blue) and 

measured signal (in red) of training data of |�| fluctuation using ���. The ����� = ��.��% . b) Top: 
Model predicted output (in blue) and measured signal (in red) of training data of |�| fluctuation using 
���. The ����� = ��.��% . Bottom: One step ahead predictions (in blue) and measured signal (in 

red) of training data of |�| fluctuation using ���. The NRMSE=30.77%. 

a) 

b) 
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Figure 4.11 shows the performance of MPO of the ��� model on the 

training data. Likewise, Figure 4.12 a) and b) presents the MPO for the 

���, ��� models, on the training data.  

Table 4.6. Model structure and parameters for ���. 

Parameter Model ��� 
−0.000651 0 0 

1.942 ��(� − 1) 0 
−0.963 ��(� − 2) 0 

−0.05751 ��(� − 1) 0 
0.003786 ��(� − 1) ��(� − 6) 
0.10892 ��(� − 2) 0 

−0.053079 ��(� − 3) 0 
−0.002812 ��(� − 6) ��(� − 6) 

The terms and parameters identified for the ��� model are given in Table 

4.6. Similar tables containing the ��� and ��� model structures have 

been reported in Appendix B.3 to save space. The ��� model has very 

good prediction accuracy with an ����� = 12% . On the other hand, the 

models identified from the |�| data using two and four actuators have 

higher �����, even though the predictions have good accuracy as can 

be visually verified. This is thought to be due to the formulation of the 

NRMSE, where the smaller and larger errors are given different a penalty 

(De Gooijer & Hyndman, 2006; Hyndman & Koehler, 2006). Alternative 

prediction error measures were considered, however the NRMSE was the 

most consistent for both the channel flow and flow over the BFS data. 

As will be discussed in Chapter 6, the controller strategy using the 

��� and ���models did not have a good performance. This was mainly 

attributed to the accumulation of error while calculating the multi-step-

ahead (MSA) predictions of the flow, when using the models recursively. 

Therefore, the identification of multi-step-ahead predictors identified 

directly from the data was carried out to improve performance (Bai, 

2010; Bai & Coca, 2008, 2011). This direct approach has been shown to be 

more accurate than using recursive methods (Atiya, El-Shoura, Shaheen, 

& El-Sherif, 1999; Zhang, Eddy Patuwo, & Y. Hu, 1998). 
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The j-step-ahead predictors of the NARX model are given by: 

��(� + 1|�) = �� ��(�), … , ��� − �� + 1�, �(�), … , �(� − �� + 1)�, 

��(� + 2|�) = �� ��(�), … , ��� − �� + 1�, �(� + 1), �(�), … , �(� − �� + 1)�, 

⋮ 

��(� + �|�) = ����(�), … , ��� − �� + 1�, �(� + � − 1), … , �(�), 

… , �(� − �� + 1)� 
 (4.5) 

Where ��(� + �|�) denotes the estimated value of �, � steps ahead in the 

future given past data up to instant � and �(∙)� � = 1 … � are the same non-

linear functions to be identified from the data as in equation (4.1), except 

for the change in the included terms. 

The practical way to achieve this identification is by shifting the 

multi-step-ahead predictors of equation (4.5) j-steps backwards in time, 

so that the identified functions ���(�)� will be dependent on: 

�(�) = [�(� − �), … , ��� − �� − � + 1�, �(� − 1), … , �(�), 

… , �(� − �� − � + 1)] 

This is reduced to eliminating the candidate terms which include output 

data from times which do not comply with this expression. The 

predictor needs to be shifted forward in time once the identification 

procedure has been completed to be readily used in the model predictive 

controller schemes. 

The models which are identified in this manner increase in 

complexity as the prediction horizon increases, and so during the 

structure selection stage, higher orders, number of lags as well as 

process terms were tested. 

Table 4.7. Range of variables used in the MISO system identification of the velocity fluctuations. 

Variable Meaning Value  
� Order of non-linearity 2, 3, 4 
�� Process terms 5, … , 50 

�� Output lag  2, … , 10 

�� Input lag  2, … , 30 

Table 4.7 shows the range of parameters used in the direct identification 

of the MSA predictors. The identified model structures and parameters 

can be found in Appendix B.5.  
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4.4.3 Model validation 
 

Once more, after the structure identification and parameter estimation 

procedures were completed, the model validation was carried out.  

 
Figure 4.13. Top: Model predicted output (in blue) and measured signal (in red) of validation data for �� 

fluctuation using ���. The ����� = ��.��% . Bottom: One step ahead predictions (in blue) and 

measured signal (in red) for �� fluctuation using ���. The ����� = �.��% . 

First, the validation of the ��� was carried out. For this the MPO was 

obtained by stimulating the model with the validation data and 

comparing it with the measurements. The NMRSE was obtained to 

evaluate the performance of these models, the simulation results can be 

seen in Figure 4.13.  As it can be seen the predictions on the unseen data 

have almost the same accuracy as those on the training set with an 

����� = 15.3% . This indicates that the model is an adequate 

representation of the system and not simply a good fit to the data.  

 

For caption see next page 

a) 
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Figure 4.14. a) Top: Model predicted output (in blue) and measured signal (in red) of validation data of 
|�| fluctuation using ���. The ����� = ��.��% . Bottom: One step ahead predictions (in blue) and 

measured signal (in red) of validation data of |�| fluctuation using ���. The ����� = ��.��% . b) Top: 
Model predicted output (in blue) and measured signal (in red) of validation data of |�| fluctuation using 

���. The ����� = ��.��% . Bottom: One step ahead predictions (in blue) and measured signal (in 
red) of validation data of |�| fluctuation using ���. The NRMSE=29.84%. 

The MPO of the �� models on the validation data were obtained for both 

cases, with two and four actuators. The NRMSE was computed to 

evaluate the performance, and the simulation can be seen in Figure 4.14. 

The NRMSE has decreased slightly in the validation data compared to 

the training, and this is likely to be due to the different weights given to 

small and large errors by the NRMSE as mentioned previously.  

Visually it can be seen that the predictions have a similar 

performance, where the main peaks and valleys are simulated with good 

accuracy, while smaller dynamics are not always followed. This is likely 

to be due to the high influence that surrounding nodes have on the 

current one, which in the MISO models is not present.  

Table 4.8. NMRSE of the MPO for ��� over training and validation data for the MSA predictors. 

Also shown are number of process terms, order, and maximum input/output lags. 

M�� 
MSA 

Training 
NMRSE 

Validation 
NMRSE 

P� Order n� n� 

2 37.84% 38.15% 21 2 10 2 
3 40.73% 41.77% 15 2 14 7 
4 40.65% 42.63% 9 3 10 6 
5 40.79% 42.90% 9 2 14 6 

 

In the case of the MSA predictors, the performance of each can be 

analysed by simulating them individually, the results of this can be seen 

b) 
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in Appendix B.4, while the NRMSE for each of the ��� and ���, �-step 

ahead models are given in Table 4.8 and Table 4.9, respectively. 

Table 4.9. NMRSE of the MPO for ��� over training and validation data for the MSA predictors. Also 
shown are number of process terms, order, and maximum input/output lags. 

��� 
MSA 

Training 
NMRSE 

MPO 
NMRSE 

�� Order �� �� 

2 40.39% 40.54% 21 2 10 2 
3 40.23% 41.5% 15 2 14 7 
4 41.76% 44.75% 9 3 10 6 
5 44.52% 43.04% 9 2 14 6 

Here the performance of the models deteriorates slightly with the 

increase of number of steps-ahead predicted. However, as is visible in the 

graphs of Appendix B.4, the predictions of the main trends are 

sufficiently accurate to be used. Additionally, the control tests using 

these models were successful, which also shows that the models 

replicate the behaviour of the flow sufficiently accurately. 

 

4.5 Discussion  
 

The current chapter has presented the development of reduced order 

models identified using measured data from simulations of flow in two 

scenarios. The models were identified using system identification, 

specifically the NARMAX methodology using a polynomial expansion 

for the model (Billings, 2013). 

A section of the generated data in each case was assigned as training 

and the remainder as validation. The identified models were tested and 

proved to be an accurate representation of the system and its underlying 

dynamics and not simply a fit to the specific data set. 

In the case of the channel flow data, a MIMO model made up of 27 

different sub-types was identified from measurements of the velocity 

components of the flow. The nodes of the domain were categorized into 

different classes and sub-types with a structure identified for each. The 

number of inputs, lags and model order varied for each sub-type, with a 

constant three outputs at each one. Each of the structures was tested on 

an unseen data set and the NRMSE calculated for each to ensure it was 

acceptable. Additionally, a visual inspection of the superimposed time 
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series was carried out to verify that the main dynamics had been 

reproduced by the MPO. 

As for the data from the flow over a BFS, three models were obtained. 

A SISO model has been identified which represents the input/output 

behaviour of the pressure coefficient �� (at location ���), in the presence 

of an external actuation, in the form of suction and blowing upstream of 

the step wall. Considering the fluctuations of the velocity |�|, two MISO 

models were obtained, one with two and one with four actuators on the 

step wall considered as inputs, and the velocity magnitude at position 

�� as the output. 

Again, the performance of the models was visually inspected and the 

NRMSE monitored during the structure selection to ensure the models 

were accurate, and later validated using new data.  

The identified OSA predictors were used to design and implement a 

predictive controller of flow over the BFS. The results obtained were not 

adequate, therefore, multi-step-ahead predictors were identified using 

the same data. These have been shown to be more accurate than using 

one-step ahead models recursively (Atiya, El-Shoura, Shaheen, & El-

Sherif, 1999; Zhang, Eddy Patuwo, & Y. Hu, 1998). Additionally, since the 

�-step ahead predictors depend only on data up to instant �, they can be 

evaluated simultaneously (Bai, 2010; Billings, 2013). Thus, allowing for 

parallel schemes to be implemented and calculation speeds to be 

minimized. Something that is key when implementing controllers on 

fast systems such as a fluid flow (Ho & Tai, 1998; Lofdahl & Gad-El-Hak, 

1999). 

As with any system identification technique, the NARMAX 

methodology requires that the data used in the scheme have certain 

properties. This work has attempted to fulfil these as much as possible, 

however due to the numerical methods and other limitations, some 

approximations have had to be made. The limitation of the actuation 

magnitude by the CFD package of both flow scenarios, mean that the 

simulated flow has not been excited by the full range of magnitudes 

which could have been applied to the real system. This is of course 

undesirable, however, since limitations on actuation and sensing exist 

in any real system, there can never be a truly persistently exciting 



CHAPTER 4  
  

92 
 

actuation nor the perfectly sampled signal. Approximations and trade-

offs have to be made where necessary to study the application and decide 

the boundaries that need to be set (Billings, Chen, & Korenberg, 1989).  

To improve the validity of the identified models, in future work, it 

would be of interest to study available sensors and actuators. This is so 

that, in addition to carrying out the studies on a domain with realistic 

dimensions, as in this work, the sampling rate and frequency/magnitude 

limitations of actuations are included. Hence, the models obtained using 

this set-up would be a better approximation to an implementable 

system. As long as the necessary calculations can be made in real-time. 

A final matter to consider is the evaluation of the accuracy of the 

model, to determine that it is an adequate representation of the system 

and not a good fit to a certain data set. This has been studied extensively 

but remains a key question (Billings & Zhu, 1995; Haynes & Billings, 1994; 

Ljung, 2010). Two possible reasons for this is firstly, that measures of 

accuracy, such as the NRMSE, vary the way in which errors of different 

magnitudes are penalized (De Gooijer & Hyndman, 2006). This means 

that a well performing model may have a high NRMSE, if the data set 

contains large peaks or is close to zero for example, whereas a bad model 

may have a low NRMSE. Secondly, to evaluate if the model has been 

over/under fitted, it is necessary to carry out dynamical and statistical 

tests (Billings, 2013; Billings & Voon, 1986; Zheng & Billings, 1999). That 

is, calculate the MPO over validation data to ensure that the 

performance of the model remains close to constant with that of the 

training (Ayala Solares & Wei, 2015; Billings, 2013; Zheng & Billings, 1999).  

The issue with finding a correct measure of accuracy has been 

encountered in the current work, were the MSA predictors have shown 

good performance on the validation set as well as the implementation of 

a predictive controller, as detailed in Chapter 6, but have relatively high 

NRMSE. As mentioned before, other measures were tested but the 

discrepancy between the scores given to the different models tested in 

addition to a visual inspection were more inconsistent, thus the NRMSE 

was chosen to evaluate the identified models.  

Regarding the second issue, to determine if the models are 

over/under fitted they have been tested on new data. However, for the 
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models identified for the flow over the BFS case, it would be of interest 

to test the models with data obtained from simulations with different 

flow properties, like Reynolds number. This to verify that the model 

truly represents the dynamics of the flow and is not simply performing 

well with the validation data, which has not been ‘seen’ by the model but 

may have similar behaviour since it is of the same flow. 

Finally, regarding the choice of variables used in the identification 

of the models, it should be mentioned that the velocity components and 

magnitude were used since this has been done successfully in previous 

studies and experimental set-up’s (Bewley, 2001; Le, Moin, & Kim, 1997; 

Lumley & Blossey, 1998; Moser, Kim, & Mansour, 1999). Additionally, 

after trial model identification using other variables, the velocity 

fluctuations were found to be more suitable, and their models performed 

better than the wall-shear for example.  

It is known that the latter is useful to determine the reattachment 

point. However, since it is a time averaged value and a method to obtain 

the ‘correct’ instantaneous position could not be determined, it was 

decided to study the alternative variables. 
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CHAPTER 5 

 
 

Review of control strategies for 

fluid flows  

 
  
 

5.1 Introduction  
 

Natural and man-made systems that interact with fluid flows are subject 

to considerable flow-induced forces that often have a detrimental effect 

on these systems (Kubo, Modi, Kotsubo, Hayashida, & Kato, 1996; Obeid, 

Jha, & Ahmadi, 2012).  For example, turbulent flow around a wing leads 

to increase in drag, a decrease in lift and overall heightened fuel 

consumption (De Giorgi, De Luca, Ficarella, & Marra, 2015; Obeid, Jha, & 

Ahmadi, 2012; Wu, Z., Wong, Wang et al., 2015). In contrast, turbulent 

flow of the air-fuel mixture inside of the combustion chamber of an 

engine is beneficial for an efficient combustion (Kim, J. & Bewley, 2007). 

In both examples, and many other systems, the passive (i.e. the 

optimization of wing profile) or active (i.e. dynamic actuation on the 

flow) manipulation of the flow can enhance performance (Cattafesta Iii, 

Song, Williams, Rowley, & Alvi, 2008; De Giorgi, De Luca, Ficarella, & 

Marra, 2015).  
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One of the most notable impacts that flow control can have in 

modern society is in the transport industry where drag, due to skin-

friction, accounts for 40-80% of the total drag (Davidson, Kaneda, & 

Sreenivasan, 2013; Ipcc, 2014; Viswanath, 2002). Huge monetary savings, 

in addition to ecological benefits brought on at the same time by the 

lessening of ��� emissions are expectable (Ipcc, 2014; Kim, J. & Bewley, 

2007; Scott Collis, Joslin, Seifert, & Theofilis, 2004). The Advisory 

Council for Aerospace Research in Europe (ACARE) have set a target for 

2020 that fuel consumption and emissions are to be reduced by 50%, 

relative to 2000 (De Giorgi, De Luca, Ficarella, & Marra, 2015; Glynn, 

2011).  

Flow control has been studied for many years (Bewley, 2001; Kim, J., 

2003; Kim, J. & Bewley, 2007; Scott Collis, Joslin, Seifert, & Theofilis, 

2004).  Some argue (Scott Collis, Joslin, Seifert, & Theofilis, 2004; Uruba, 

Jonáš, & Mazur, 2007) that flow control  has its origins in 1904 when 

Prandtl defined the aerodynamic boundary layer in his seminal paper 

(Prandtl, 1905).  

Since then several strategies for controlling fluid flows have been 

developed (Bewley, 2001; Choi, H., Moin, & Kim, 1994; De Giorgi, De Luca, 

Ficarella, & Marra, 2015; Gad-El-Hak, 1989; Kim, J., 2003; Kim, J. & Bewley, 

2007; Lumley & Blossey, 1998; Pollard, 1998; Rathnasingham & Breuer, 

2003; Scott Collis, Joslin, Seifert, & Theofilis, 2004). These can be 

classified according to different criteria such as (Bewley, 2001; Gad-El-

Hak, 1989; Kim, J. & Bewley, 2007; Lumley & Blossey, 1998; Pollard, 1998; 

Scott Collis, Joslin, Seifert, & Theofilis, 2004): 

 The way in which the flow is modified – using passive or active 

means 

 The type of actuator – using riblets, synthetic jets or plasma 

actuators, for example 

 The objective of the controller – to induce drag reduction, 

separation delay, or mixing enhancement 

 Type of control scheme used – open- or closed-loop (with further 

sub-divisions for the latter depending on the implemented 

algorithms) 
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This Chapter provides a literature review of theoretical and practical 

flow control approaches with an emphasis on studies carried out on wall 

bounded flows, as these are most relevant to the current work. 

The Chapter is organized as follows. Passive approaches for flow 

control are described in Section 5.2. Existing sensors and actuators are 

summarized in Sections §5.3.1. Section 5.3.2 provides a review of active 

open-loop methodologies whereas closed-loop approaches are reported 

in Section 5.3.3. A discussion of the presented methodologies 

considering current issues identified is given in Section 5.4  

 

5.2 Passive flow control approaches 

 

Passive flow control methods are those which, as the name implies, do 

not require any type of external energy, momentum, or mass to carry out 

their function (Heenan & Morrison, 1998; Li, Jessen, Roggenkamp et al., 

2015; Perlin, Dowling, & Ceccio, 2016; Pollard, 1998; Sattarzadeh, 

Fransson, Talamelli, & Fallenius, 2014). These type of schemes (typically) 

do not change with time and often consist of an alteration to the domain 

boundaries (Perlin, Dowling, & Ceccio, 2016; Viswanath, 2002). Different 

types of structures and coatings have been used to modify the behaviour 

of the flow (Perlin, Dowling, & Ceccio, 2016; Viswanath, 2002).  

The major interest in this type of control scheme lies precisely in the 

fact that after the initial design and implementation of the wall or fluid 

modification, no further energy or input is required (Fransson, 2015; 

Perlin, Dowling, & Ceccio, 2016). Hence, there is an improvement of the 

specific goal or performance at a low cost and effort. 

Different types of wall modifications have been reported, the most 

common being riblets, grooves, large eddy break-up devices (LEBU’s) 

(Sutardi & Ching, 1999; Wahidi, Chakroun, & Al-Fahed, 2005), compliant 

and super-hydrophobic surfaces have also been implemented and more 

recently the application of biologically inspired textures, such as 

replicating shark skin (Choi, H., Moin, & Kim, 1993; Dean & Bhushan, 

2012; Lee, S. J. & Lee, 2001; Perlin, Dowling, & Ceccio, 2016; Pollard, 1998; 

Scott Collis, Joslin, Seifert, & Theofilis, 2004; Spalart, Strelets, & Travin, 

2006).  
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Figure 5.1 Schematic of different passive methods to alter the boundary layer in channel flow. 

In the case of channel flow, grooves, riblets and LEBU’s have been the 

most implemented (Choi, H., Moin, & Kim, 1993; Dean & Bhushan, 2012; 

Lee, S. J. & Lee, 2001; Li, Jessen, Roggenkamp et al., 2015; Perlin, Dowling, 

& Ceccio, 2016; Viswanath, 2002). These are slots or protrusions which 

cross the entire domain in the streamwise or spanwise direction (Choi, 

H., Moin, & Kim, 1993; Dean & Bhushan, 2012; Li, Jessen, Roggenkamp et 

al., 2015) as seen in Figure 5.1, except for the LEBU which is finite 

(Neumann & Wengle, 2003; Spalart, Strelets, & Travin, 2006).  

Studies have been carried out in plane or channel flows as in (Choi, 

H., Moin, & Kim, 1993; Dean & Bhushan, 2012; Gad-El-Hak, 1989; Perlin, 

Dowling, & Ceccio, 2016; Pollard, 1998), or over aerofoils (Park, Sun, & 

Kim, 2014; Viswanath, 2002). 

A few authors have looked at the effect of different slot shapes and 

sizes in flows with varying Reynolds number (Sutardi & Ching, 1999; 

Wahidi, Chakroun, & Al-Fahed, 2005). Additionally, (Li, Jessen, 

Roggenkamp et al., 2015) has performed tests using riblets on a moving 

wall, thus increasing the effect which they can have. This is one of the 

first examples of a mixture of active and passive approaches.  

It is thought that riblets and alike devices impede cross-flow motion, 

and weaken near-wall streamwise vortices (Dean & Bhushan, 2012; Lee, 
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S. J. & Lee, 2001; Viswanath, 2002), whereas grooves weaken the 

boundary layer hence turbulence is reduced and further instabilities 

dampened (Sutardi & Ching, 1999; Wahidi, Chakroun, & Al-Fahed, 2005). 

The cases which report a decrease in drag force have found that there 

is a correlation between the dimensions of the riblet/groove and the drag 

reduction possible (Choi, H., Moin, & Kim, 1993; Dean & Bhushan, 2012; 

Li, Jessen, Roggenkamp et al., 2015; Perlin, Dowling, & Ceccio, 2016; 

Viswanath, 2002). Additionally, several authors have found that in the 

case of grooves, a sharp increase in skin-friction �� occurs immediately 

downstream, followed by a decrease and a slow oscillatory return to the 

smooth-wall value (Choi, H., Moin, & Kim, 1993; Dean & Bhushan, 2012; 

Gad-El-Hak, 1989; Li, Jessen, Roggenkamp et al., 2015; Pollard, 1998). It 

was also found that the effects of the riblets and grooves remain largely 

within the boundary layer, and have little effect on the mean flow where 

bulk velocity and turbulent energy for example, remain largely 

unchanged (Sutardi & Ching, 1999). 

Most of the studies mentioned here present a drop between 1% and 

6% of drag reduction when using either of these methods under specific 

flow and riblet / groove dimensions (Perlin, Dowling, & Ceccio, 2016; 

Spalart, Strelets, & Travin, 2006; Sutardi & Ching, 1999; Wahidi, 

Chakroun, & Al-Fahed, 2005). Further, the effect was seen to usually 

increase proportionally with Reynolds number up to a certain limit 

(Wahidi, Chakroun, & Al-Fahed, 2005). However, drag increase has also 

been found with certain parameters, such as arrays of micro-grooves 

(Bewley, 2001; Gad-El-Hak, 1989; Li, Jessen, Roggenkamp et al., 2015; 

Pollard, 1998; Scott Collis, Joslin, Seifert, & Theofilis, 2004).  

 
Figure 5.2. Schematic of the flow over the BFS domain using upstream square fence to control the 

reattachment length. 



CHAPTER 5 
  

100 
 

In the case of flow over the BFS, studies where a fence is added on the 

inlet wall, as seen in Figure 5.2, have shown that its position and height 

have a strong effect on the size of the recirculation zone downstream of 

the step (Neumann & Wengle, 2003; Terekhov, Smul’skii, & Sharov, 2012). 

Neumann et al. and Terekhov have carried out similar studies, the 

former using DNS and LES methods and the latter through experiments 

(Neumann & Wengle, 2003; Terekhov, Smul’skii, & Sharov, 2012). The 

experimental results showed a drop of around 30% of the reattachment 

distance ��, with respect to the base flow, whereas the simulations 

indicated a smaller decrease of 13% (Neumann & Wengle, 2003; Terekhov, 

Smul’skii, & Sharov, 2012). This discrepancy can be attributed to the 

slight geometrical differences of the domains studied in each case 

(Driver & Jovic, 1994; Le, Moin, & Kim, 1997), in addition to a greater 

impact of the numerical and discretization error on this more 

complicated flow (Neumann & Wengle, 2003; Terekhov, Smul’skii, & 

Sharov, 2012). 

 
Figure 5.3. Schematic of the flow over the BFS domain using passive permeable wall to control the 

reattachment length. 

Two final passive schemes which have been reported are using a 

permeable reattachment surface on the outlet wall of the flow over the 

BFS domain (Heenan & Morrison, 1998), as shown in Figure 5.3, and the 

so-called reinforced passive control over a flat plate (Sattarzadeh, 

Fransson, Talamelli, & Fallenius, 2014). The permeable wall method by 

Hennan and Morrison, consists of the traditional BFS geometry with a 

plenum of “quiescent” fluid beneath the permeable section of the outlet 

wall, this is sealed so that there is zero net mass-flux (Heenan & 

Morrison, 1998).  

This technique increases the reattachment distance by around 20%, 

however, the flow downstream of the step is stabilized. This is likely to 
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be due to an inhibition of unsteady pressure convection and vorticity 

from the recirculation zone back to the step (Heenan & Morrison, 1998).  

On the other hand, the reinforced passive control consists of a 

mixture of a groove on a flat plate, with arrays of vortex generators 

further downstream to extend the stabilizing effect (Sattarzadeh, 

Fransson, Talamelli, & Fallenius, 2014). Comparing the un-manipulated 

flow, flow with a single groove and flow with a groove and vortex 

generator mix, Sattarzadeh et al. have managed to delay the transition 

onset from ��� = 1.3�, to ��� = 2.9� and in the last case completely 

removing it from the considered plate, that is ��� > 4�. Considering 

this, the overall drag can be calculated using the Blasius skin-friction 

relation for the laminar section of the boundary layer, and an empirical 

relation for the turbulent part, giving a reduction of 39% and 65% of drag 

force compared to the uncontrolled case (Sattarzadeh, Fransson, 

Talamelli, & Fallenius, 2014). 

The situation where a slight change in the dimension of the 

implemented device, be it a riblet or fence, leads to a radical change in 

performance, can be considered as a clear example of the drawback to 

using passive methods (Choi, H., Moin, & Kim, 1993; Perlin, Dowling, & 

Ceccio, 2016; Viswanath, 2002). They are inherently limited to deliver the 

expected results only while operating under conditions like those of 

their design (Bewley, 2001; Gad-El-Hak, 1989; Perlin, Dowling, & Ceccio, 

2016; Scott Collis, Joslin, Seifert, & Theofilis, 2004). Thus, drag reduction 

for example, can be lower than anticipated, or altogether increased if the 

nominal flow conditions are surpassed. This, coupled with the need to 

react to changes instantaneously, are the main reasons that active 

control methods have been developed (Choi, H., Moin, & Kim, 1994; Gad-

El-Hak, 1989; Perlin, Dowling, & Ceccio, 2016; Scott Collis, Joslin, Seifert, 

& Theofilis, 2004).  

 

5.3 Active flow control approaches 

 

To overcome the fact that passive controllers provide a relatively small 

benefit, and can quickly become a burden if the conditions of the system 

change. In addition to the desire of gaining a higher increase of 
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performance, active control approaches have been studied with 

increasing frequency in all manner of applications. Fluid control is no 

exception and more methods have been considered over the past few 

decades (Bewley, 2001; Gad-El-Hak, 1989; Perlin, Dowling, & Ceccio, 2016; 

Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

Active controllers are defined as those which require a form of 

external energy input to be able to affect the system, in this case the fluid 

flow, and this is often delivered by means of unsteady actuators (Choi, 

H., Moin, & Kim, 1994; Chung & Talha, 2011; Gad-El-Hak, 1989; Perlin, 

Dowling, & Ceccio, 2016; Pollard, 1998; Rathnasingham & Breuer, 2003; 

Scott Collis, Joslin, Seifert, & Theofilis, 2004).  

The schemes that fall into this kind can be further categorized 

according to the actuation, as mentioned, but a more significant method 

is by the way in which the controller responds to changes in the flow 

(Bewley, 2001; Gad-El-Hak, 1989; Kim, J. & Bewley, 2007; Lumley & 

Blossey, 1998; Pollard, 1998; Scott Collis, Joslin, Seifert, & Theofilis, 

2004). That is, by defining if the method is open- or closed-loop, where 

the former does not react to change in the flows, rather it is prescribed, 

and the latter includes the feedback of a measured quantity that the 

controller uses to calculate future actuations to drive the system to the 

desired state (Bewley, 2001; Gad-El-Hak, 1989; Scott Collis, Joslin, Seifert, 

& Theofilis, 2004). Open-loop control is often viewed as an under-

utilization of the possibility of reacting according to the system’s state 

(Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

One of the main advantages of active controllers is that, 

theoretically, a larger impact on flow behaviour is possible by means of 

localized sensing and actuation, than that achievable by passive means 

(Scott Collis, Joslin, Seifert, & Theofilis, 2004; Zhou & Bai, 2011). The 

optimal arrangement of sensors and actuators is not something that can 

be easily determined, and research is still ongoing. (Bewley, Moin, & 

Temam, 2001; Gad-El-Hak, 1989; Perlin, Dowling, & Ceccio, 2016; Scott 

Collis, Joslin, Seifert, & Theofilis, 2004; Zhou & Bai, 2011). 
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5.3.1 Sensors and actuators used in active flow control 

 

This section provides a brief description of available actuators and an 

overview of sensors, which are both essential elements of both open- and 

closed-loop control. The details of how such devices are used in flow 

control are saved for the next sections where the controller schemes are 

introduced. 

Most of the implementations presented here are using wall bounded 

flows. These actuators have been known to be used in other 

configurations, however, initial studies are often performed on this 

geometry to test their performance and study the mechanisms by which 

the flow behaviour is changed. 

There are two main types of actuators which involve the injection of 

fluid into the main flow (De Giorgi, De Luca, Ficarella, & Marra, 2015; 

Kim, J., 2003). The source of this additional fluid can be external in the 

case of jets, or from the same flow, as synthetic jets (Bewley, 2001; De 

Giorgi, De Luca, Ficarella, & Marra, 2015; Gad-El-Hak, 1989; Pollard, 1998; 

Scott Collis, Joslin, Seifert, & Theofilis, 2004; Xu, Gao, Ming et al., 2015). 

This kind of actuators have been studied in simulations and 

experimental set-ups (De Giorgi, De Luca, Ficarella, & Marra, 2015; 

Rathnasingham & Breuer, 2003; Scott Collis, Joslin, Seifert, & Theofilis, 

2004). There have been trials with single actuators or arrays, which in 

turn, are localized or spread throughout the domain (Chung & Talha, 

2011; Ricco & Dilib, 2010; Uruba, Jonáš, & Mazur, 2007). In simulations, 

these actuators are often used as wall transpiration, which represents 

arrays of jets that provide wall-normal velocity at different locations (De 

Giorgi, De Luca, Ficarella, & Marra, 2015; Rathnasingham & Breuer, 

2003).  

The current work uses these actuators in both flow cases. For the 

channel flow case, the velocity is added at all computational nodes on 

the boundary.  

Therefore, it can be considered that the actuator nozzle is of the 

same dimensions of the domain, or that there is an actuator at each of 

the nodes. On the other hand, in the flow over the BFS case, the control 

action is in the form of an array of actuators, here each of them have a 
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pre-defined size and position. At the current stage, the dimensions of 

these actuators have been set based on previous studies or limitations 

of the domain and CFD package, rather than properties of real devices. 

Overall jets have been found to be able to produce a larger effect 

since the pressure at which they operate can be defined externally (De 

Giorgi, De Luca, Ficarella, & Marra, 2015). On the other hand, synthetic 

jets often depend on membranes that oscillate, or moving walls within a 

cavity to create movement of the flow which is pushed through an 

opening on the wall, which greatly limits the force available (De Giorgi, 

De Luca, Ficarella, & Marra, 2015; Okada, Miyaji, Fujii et al., 2010; Scott 

Collis, Joslin, Seifert, & Theofilis, 2004; Xu, Gao, Ming et al., 2015). In 

some studies, it has been reported that the net energy saving of jets is 

found to be small if not negative due to the large amount of energy that 

is required by the actuator (Lumley & Blossey, 1998; Perlin, Dowling, & 

Ceccio, 2016; Pollard, 1998). This in usually not the case with synthetic 

jets, which can have a great impact if the limited actuation manages to 

modify the flow considering the low input energy required (De Giorgi, De 

Luca, Ficarella, & Marra, 2015; Wang, Luo, Xia, Liu, & Deng, 2012).  

Mechanical actuators are generally those which create a 

deformation of the boundary or movement of certain elements such as 

flaps (Wang, Luo, Xia, Liu, & Deng, 2012). Arrays of micro-

electromechanical-systems (MEMS) can deliver wall deformations of 

different amplitudes and at high frequencies (Ho & Tai, 1998; Lofdahl & 

Gad-El-Hak, 1999a, 1999b; Segawa, Kawaguchi, Kikushima, & Yoshida, 

2002; Varadan & Varadan, 2000). Experiments have also been performed 

using oscillating sections of wall (Ricco, Ottonelli, Hasegawa, & Quadrio, 

2012; Zhao, Wu, & Luo, 2004).  

Trials using groups of vibrating walls have been used to simulate 

wave-like deformations of the wall. Results have been varied and the 

frequency at which the wall(s) vibrate, or of the travelling wave have a 

great impact on the success of the scheme (Pollard, 1998; Quadrio, Ricco, 

& Viotti, 2009; Ricco & Quadrio, 2008; Ricco & Wu, 2004; Segawa, 

Kawaguchi, Kikushima, & Yoshida, 2002). The main idea behind these 

type of actuators is that the oscillating surface can alter the flow 
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momentum in the boundary layer, which in turn reduces the turbulence 

intensity (Wang, Luo, Xia, Liu, & Deng, 2012).  

 The use of plasma actuators, consisting of two electrodes placed on 

either side of a thin dielectric material, that create an ionized region 

capable of accelerating the fluid in its vicinity, has increased in previous 

years (Pouryoussefi, Mirzaei, & Hajipour, 2015; Wang, Luo, Xia, Liu, & 

Deng, 2012; Wu, Z., Wong, Wang et al., 2015). This mainly due to the high 

flow speeds which can be generated by such devices, in addition to the 

ease of implementation and lack of moving parts. A similar effect to a jet 

which is parallel to the flow is obtained using these actuators, however 

it has a higher response rate (Pouryoussefi, Mirzaei, & Hajipour, 2015; 

Wang, Luo, Xia, Liu, & Deng, 2012).  

Experimental trials have been carried out as will be discussed later. 

However, simulations have not been thoroughly investigated to better 

understand the way in which the plasma interacts with the flow since it 

is difficult to model this phenomenon (Perlin, Dowling, & Ceccio, 2016).  

The final type of actuation to be discussed is that of using non-

intrusive forces on the flow. An important example of this is the use of 

the Lorentz force, generated when an electrically conducting fluid flows 

through a magnetic field (Zhou & Bai, 2011). Using this force different 

types of actuation can be simulated such as wall-normal suction and 

blowing, streamwise forcing and spanwise travelling waves (Huang, L., 

Fan, & Dong, 2010). This shows that it can be a versatile tool, since it is 

likely to be the most re-configurable, however, this type of actuation can 

only be applied to very specific fluids (Huang, L., Fan, & Dong, 2010). 

In the case of sensors, many technologies have been studied and 

stablished to measure a wide range of variables in flows of different 

fluids and properties (Wang, Luo, Xia, Liu, & Deng, 2012). In this 

discipline, care should be taken to ensure that the required scales can be 

measured when implementing a real sensor (Lofdahl & Gad-El-Hak, 

1999a, 1999b). Much debate surrounding the adequate resolution and 

distance between arrays of sensors for example, has been generated over 

the years (Kasagi, Suzuki, & Fukagata, 2009; Lofdahl & Gad-El-Hak, 1999a, 

1999b; Varadan & Varadan, 2000). This has been helped by the creation 

of MEMS since they allow for smaller scales to be identified, however if 
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measurements near the wall are required, then even these might prove 

to be insufficient (Lofdahl & Gad-El-Hak, 1999b). 

The main variables in a flow are the velocity, pressure and also of 

importance is the wall shear (Frank, 2011). Sensors which focus on 

measuring these quantities have existed for many years.  

Pressure sensors use piezo-electric or -resistive configurations, 

where vibrations cause a small diaphragm to deflect, and depending on 

the type of sensor this will cause a small voltage to be generated. 

Capacitive sensors have also been implemented (Lofdahl & Gad-El-Hak, 

1999a, 1999b). 

For the determination of wall shear stress, the application defines 

the resolution that is necessary. However, for this variable not only the 

mean shear is necessary but also its fluctuations, particularly in the case 

of turbulent flows (Haritonidis, 1989; Lofdahl & Gad-El-Hak, 1999a). The 

wall shear can be obtained through direct measurements using floating 

element sensors or inferred from other quantities as with correlation 

methods or momentum balance techniques (Haritonidis, 1989; Ho & Tai, 

1998; Lofdahl & Gad-El-Hak, 1999a, 1999b; Varadan & Varadan, 2000). 

Examples of these are too many to be discussed here and the reader is 

referred to (Haritonidis, 1989) for a review of methods.  

 

5.3.2 Open-loop flow control 

 

Many approaches have been taken using open-loop strategies by 

different authors where these techniques incorporate the use of 

actuators which have a predefined function (Bewley, 2001; Gautier & 

Aider, 2014b; Kim, J., 2003; Pollard, 1998; Zhao, Wu, & Luo, 2004; Zhou & 

Bai, 2011). In addition, they have no way of sensing the current state of 

the flow to adjust their behaviour. The benefit of these control schemes 

over passive ones, is that they can easily be adjusted if new knowledge 

or circumstances are presented (Bewley, 2001; Joshi, Speyer, & Kim, 1997; 

Kim, J., 2003; Pollard, 1998). 

Plasma actuators have been used mainly on the flow over the BFS 

geometry, where different authors have studied the effect of actuator 

positioning (Koide, Sasaki, Kameya, & Motosuke, 2015; Pouryoussefi, 
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Mirzaei, & Hajipour, 2015; Wang, Luo, Xia, Liu, & Deng, 2012; Wu, Z., 

Wong, Wang et al., 2015). In a study by (Pouryoussefi, Mirzaei, & 

Hajipour, 2015), the effects of a dielectric barrier discharge (DBD) 

actuator have been experimentally studied over a range of Reynolds 

numbers.  

 
Figure 5.4. Schematic of the flow over the BFS domain using a plasma actuator on the step edge to 

control the reattachment length. 

Four actuation positions were tested, two on the step edge which yielded 

an induced flow parallel to the free-stream flow or diagonally flowing 

into the recirculation zone, in each case. And two others downstream of 

the step, one inducing flow towards the step and the remaining towards 

the outlet. The arrangements can be seen in Figure 5.4, a schematic of 

the plasma actuator configuration at tach location is presented where 

the induced flow is directed from the exposed to the hidden electrode 

(Pouryoussefi, Mirzaei, & Hajipour, 2015). Each of the positions were 

tested individually using both, continuous and oscillating actuation 

with varying frequencies, the tested values chosen as multiples of the 

vortex shedding frequency (Pouryoussefi, Mirzaei, & Hajipour, 2015).  

It was found that the actuator at position 1 was better suited to 

reduce the length of the recirculation zone. This was obtained by using 

oscillating control with a frequency equal to that of the vortex shedding 

of un-manipulated flow (Pouryoussefi, Mirzaei, & Hajipour, 2015). The 

remaining configurations showed little improvement, however it was 

evident that as the free stream velocity increased, the impact of the 

actuation became less significant regardless of the position of the 

actuator (Pouryoussefi, Mirzaei, & Hajipour, 2015). With this study, they 

defined that in flow over the BFS, the most significant ways to achieve a 

reduction of the reattachment length is to increase shear layer 
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entrainment and promote a mixture with the mean flow, or to influence 

the streams of the recirculation zone directly (Pouryoussefi, Mirzaei, & 

Hajipour, 2015). In this work, the direct manipulation of the streams in 

the recirculation zones was tested using the actuators placed on the step 

wall. The upstream actuator was used in an attempt to modify the shear-

layer; however, the control was not as effective as will be discussed. 

Several authors have investigated wall oscillations (Choi, K. S., 2002; 

Choi, K. S., Debisschop, & Clayton, 1998; Quadrio & Ricco, 2004; Ricco & 

Quadrio, 2008; Ricco & Wu, 2004). Studies have been performed with one 

and both domain walls being actuated. Additionally, tests were 

performed with sub-sections of the wall under actuation. It was found 

that the possible drag reduction using this type of control depends 

strongly on the maximum wall velocity and period of oscillation, where 

certain combinations provided up to 45% drag reduction whereas 

experimental trials reported lower drag reductions of approximately 25-

37% (Choi, K. S., Debisschop, & Clayton, 1998; Ricco & Quadrio, 2008; 

Ricco & Wu, 2004). A parameter which relates the scaling of drag 

reduction according to the values mentioned previously is firstly 

proposed by (Choi, K. S., 2002; Choi, K. S., Debisschop, & Clayton, 1998), 

and formally defined and investigated by (Quadrio & Ricco, 2004; Ricco 

& Quadrio, 2008). This parameter is seen to be a powerful predictive tool 

to determine the drag reduction quantity over a defined threshold of 

wall velocity, and period of oscillations (Ricco & Quadrio, 2008).  

A drawback of the simulation and experimental trials reported, is 

that they have been performed at moderately low Reynolds numbers 

(Choi, K. S., Debisschop, & Clayton, 1998; Ricco & Quadrio, 2008; Ricco & 

Wu, 2004). Even though the effect of the Reynolds number has been 

investigated, and shown to decrease the drag reduction and net energy 

saving across conservative values, it is not known if the same methods 

will continue to provide benefit at flows with more practical properties 

(Choi, K. S., 2002; Choi, K. S., Debisschop, & Clayton, 1998; Quadrio & 

Ricco, 2004; Quadrio, Ricco, & Viotti, 2009; Ricco, Ottonelli, Hasegawa, & 

Quadrio, 2012; Ricco & Quadrio, 2008; Ricco & Wu, 2004). The 

discrepancy between experimental and simulations results is thought to 

be due to the difference of the setup. In an experimental set-up, results 
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are obtained using sections of oscillating walls, while simulations often 

rely on periodic boundary conditions which represent infinitely long 

oscillating walls (Ricco, Ottonelli, Hasegawa, & Quadrio, 2012; Ricco & 

Quadrio, 2008). 

Flow control using stream- and span-wise travelling waves generated 

by external forcing, such as Lorentz force, or through suction and 

blowing can be considered as variants to wall oscillations since they 

both aim to modify or eliminate streamwise streaks directly with the 

actuation method (Huang, L., Fan, & Dong, 2010; Quadrio, Ricco, & Viotti, 

2009; Zare, Lieu, & Jovanovic, 2012; Zhao, Wu, & Luo, 2004). Using these 

approaches similar results of around 40-50% drag reduction were 

obtained (Huang, L., Fan, & Dong, 2010; Quadrio, Ricco, & Viotti, 2009; 

Zare, Lieu, & Jovanovic, 2012; Zhao, Wu, & Luo, 2004). 

The final form of open-loop control to be discussed, which is the 

most extensively studied, and uses the form of actuation implemented 

in the current work, is that of steady and unsteady suction and blowing. 

The use of jets and synthetic jets are considered simultaneously, since 

similar mechanisms of drag-reduction are exploited using both types of 

actuators (De Giorgi, De Luca, Ficarella, & Marra, 2015; Okada, Miyaji, 

Fujii et al., 2010). The difference between them lies in source of the 

injected flow, and how the energy is transferred as mentioned in the 

previous section. 

In the case of flow over the BFS, (Uruba, Jonáš, & Mazur, 2007) have 

carried out experimental control tests using suction and blowing on a 

spanwise slot at the base of the step. They tested two shapes and several 

actuation areas, with uniform actuation across the entire step width. It 

was found that the orifice geometry does not affect the shortening of the 

recirculation zone when using constant suction, rather it is dependant 

only on the force applied (Uruba, Jonáš, & Mazur, 2007). Further, they 

found that constant blowing is also dependant on the force but more 

sensitive to the contact volume, i.e. the geometry of the slot.  

An optimization of an actuator with varying jet angle upstream of 

the step was done by (Xu, Gao, Ming et al., 2015). In addition to finding 

the optimal angle of operation, variations of the frequencies of the 

oscillating jet were considered. It was found that an upstream facing jet, 
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with the non-linear oscillations of this actuator, has a strong effect on 

the entrainment of the shear layer and helps it to curve inward towards 

the step. Thus, reducing the size of the recirculation zone. 

Finally, (Gautier & Aider, 2014a) performed experimental tests using 

variations of jet frequency and amplitude/duty-cycle. They managed to 

reduce the size of the recirculation zone using various combinations of 

the parameters. It was noted that with certain optimal jet amplitudes, 

the duty-cycle could be lowered to around 10% and still yield reductions 

of the reattachment length of 90%. Gautier et. al. claim that this upper 

bound of performance is due to the actuator imperfections rather than 

the actual method used. However, if the jet amplitude exceeded certain 

values, the recirculation zone was greatly increased. 

Numerical analysis by (Kim, K. & Sung, 2006) of periodic blowing on 

a channel flow were carried out. A single geometry for the slot was used 

and variation of the frequency of the jet oscillations analysed. Using this 

technique, drag reduction of up to 70% were obtained by unsteady 

blowing as well as steady force. These results have been confirmed 

experimentally and drag reductions of up to 50% have been obtained 

(Kim, J., 2003; Kim, K. & Sung, 2006). 

(Ricco & Dilib, 2010) have performed simulations of the effect that 

wall transpirations have on the vorticity disturbances of the 

incompressible Blasius boundary layer. Here they found that wall 

suction can attenuate both two- and three-dimensional fluctuations. 

Lower frequency structures are attenuated and high frequency are 

merely shifted towards the inner flow. This is enough to reduce the 

turbulent energy of the flow; however, it is dependent on the magnitude 

of the actuation. 

 

5.3.3 Closed-loop flow control 

 

Taking into consideration the limitations of open-loop controllers, in 

addition to the need to react in real-time to the state of the flow, the 

development of closed-loop strategies has been studied by several 

authors (Bewley, Moin, & Temam, 2001; Henning & King, 2007; Obeid, 

Jha, & Ahmadi, 2012; Pollard, 1998; Scott Collis, Joslin, Seifert, & 
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Theofilis, 2004; Wu, G. C., Baleanu, Zeng, & Deng, 2015; Wu, Z., Wong, 

Wang et al., 2015). The previous open-loop approaches and the 

knowledge gained, has helped to develop a better comprehension of the 

different phenomena and overall flow behaviour. Using this, better 

models of the flow can now be obtained, which lead to development of 

improved closed-loop controllers, and may also contribute with the 

development of actuators (Kim, J., 2003; Lofdahl & Gad-El-Hak, 1999b; 

Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

The most significant and relevant approaches, described below, have 

been grouped by the type of control method used, such as classical and 

modern control, neural networks, optimal control, and finally data-

based model methods (Pollard, 1998; Scott Collis, Joslin, Seifert, & 

Theofilis, 2004). The latter were isolated since they are the most closely 

related approaches to the current work. 

Considering that turbulence production near the wall is related to 

the large coherent structures, which can be modelled by linear 

dynamical equations (Pollard, 1998; Rathnasingham & Breuer, 2003), a 

MIMO linear filter was used by Rathnasingham to estimate a transfer 

function between three spanwise wall sensors and three downstream 

sensors, designated outputs/control points. A second transfer function 

is estimated from the actuators (inputs), which lie between the first set 

of sensors and the control points themselves.  

The control method consisted in minimizing a cost function defined 

from measured values at the control points. This was implemented in a 

wind tunnel, initial tests to validate the identified transfer functions 

were performed, the predictions obtained by the model were found to be 

accurate. Actuated trials were then performed with one and three 

actuators. The results were that the streamwise velocity fluctuations 

could be reduced by around 25% using both configurations, when 

measuring the velocity at the control points. This translates roughly to 

a reduction of around 7% of the drag force in the flow (Rathnasingham & 

Breuer, 2003). 

Another study using linear control scheme is that of (Joshi, Speyer, 

& Kim, 1997), where, using the linearized Navier-Stokes equations, they 

develop a finite dimensional SISO state space model, using a Galerkin 
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method to transform from the partial differential equations. A PI 

controller was implemented using x-direction wall-shear measurements, 

this approach was used to stabilize 2-D plane flow. It was noted that the 

position of the actuator and type of sensing can lead to changes in the 

pole/zeros of the model (Joshi, Speyer, & Kim, 1997). Some sensor 

locations lead to minimum-phase systems while others to non-minimum 

phase, which are inherently more difficult to control. Their control was 

robust to varying Reynolds number, however, it was noticed that the 

feedback control can result in high amplitude transients. These may 

exceed the range for which the linear model is valid, and impede the 

stabilization of the flow if the disturbance is reinforced through 

nonlinear means (Joshi, Speyer, & Kim, 1997; Scott Collis, Joslin, Seifert, 

& Theofilis, 2004). 

(Choi, H., Moin, & Kim, 1994) came up with the so-called opposition 

control. This involves suction/blowing at the wall, where the magnitude 

of the actuation is the opposite of the velocity measured at a certain 

distance �� (Bewley, 2001; Chung & Talha, 2011; Kim, J., 2003; Scott Collis, 

Joslin, Seifert, & Theofilis, 2004). Therefore, the applied value is given by: 

�(∙)(�, 0, �; �) = −�� ∗ �(�, ��, �; �) 

Several numerical simulations were performed to test different 

components of velocity imposed at the wall, these being wall-normal ��, 

and spanwise �� control.  

 
Figure 5.5. Schematic of the channel flow domain using opposition control, the measuring planes at 

height ��and out-of-phase actuation are shown. 

Tests were performed using smaller regions of the wall for actuation, in 

addition to tests where the reactive signal was applied only when events 

exceeded a threshold value ���. In their studies the optimal sensing 

height was found to be �� = 10. A 25% skin friction reduction was 

obtained with both the �� and �� controllers. When using 25% of the wall 
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for actuation, and applying the opposing signal at strong events, a skin 

friction reduction of 20% was achieved. When 5% of the surface was used 

in the same configuration a drop of 15% was achieved (Choi, H., Moin, & 

Kim, 1994). This indicates that selective and localized actuation can have 

great effect on the flow if properly applied. This controller can be 

considered as a proportional controller with a negative gain, ��, and a 

schematic representing the method is given in Figure 5.5. 

The conditions for this control are somewhat unrealistic regarding 

the measuring of the velocity, since this approach is hard to implement. 

Hence, Choi et al. implemented wall-based measurements, using the 

leading term in a Taylor series expansion of the velocity near the wall, 

and managed to get a 6% reduction in skin friction. Since these initial 

studies of opposition control, similar approaches have been tested with 

varying sensing heights, increased proportional gains, in addition to 

different approximations to obtain flow information using wall 

measurements (Chung & Talha, 2011; Ricco & Dilib, 2010). However, great 

differences in the reduction of skin friction have not been achieved, and 

remain around 5-15%, additionally it was noticed that if the actuation 

exceeds a certain value, the drag force reduction decreases (Bewley, 2001; 

Chung & Talha, 2011). 

Modern control techniques which explicitly account for model 

uncertainty as well as disturbances have also been implemented.   

(Fattorini & Sritharan, 1992) proposed an existence theorem for 

optimal control of viscous bounded and unbounded flows in different 

geometries. Barbu and Sritharan (Barbu & Sritharan, 1998) proposed the 

use of infinite-dimensional state-space formulation of the ��-control of 

the Navier-Stokes equation to address the robustness of optimal closed-

loop methods in the presence of exogeneous forces regarding fluid 

dynamics. They stablish that once a suboptimal solution is found for the 

��-control of the linearized system, the corresponding ��-control 

problem has a solution for small perturbations of the steady solution 

(Barbu & Sritharan, 1998).  

In (Barbu, Havârneanu, Popa, & Sritharan, 2003; Havârneanu, Popa, 

& Sritharan, 2006), the local exact controllability of both, the 

magnetohydrodynamic equations and the Navier-Stokes equations was 
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studied. It was found that both are locally exactly controllable around 

sufficiently smooth stationary solutions. In the case of the Navier-Stokes 

equations, this can be achieved by suitable locally distributed actuation 

dictated by an internal controller (Havârneanu, Popa, & Sritharan, 

2006). The Navier-Stokes equation analysis was based on a domain with 

a Navier-slip boundary condition. (Barbu & Triggiani, 2004) showed that 

a finite-dimensional closed-loop controller, which depends on the 

largest algebraic multiplicity of the unstable eigenvalues of the 

linearized Navier-Stokes equations, is capable of locally stabilizing to 

any steady-state solution. The controller is supported in an open set  

� ⊂ Ω where Ω is an open smooth bounded domain and is of the form 

(Barbu & Triggiani, 2004; Yan, Coca, & Barbu, 2008): 

�(�, �) = − � ��(�)��(�)

��

���

 

Where �(∙) is the control signal, {��}���
��  is a constructed system of 

functions related to the unstable eigenvalues of the linearized Navier-

Stokes operator and K is the maximum algebraic multiplicity of such 

unstable eigenvalues (Barbu & Triggiani, 2004; Yan, Coca, & Barbu, 2008).  

Yan, Coca, et. al. (Yan, Coca, & Barbu, 2008) developed an algorithm 

to implement the proposed control law, considering that the need to 

solve an infinite dimensional operator Riccati equation does not allow 

direct implementation. The developed algorithm is based on the 

Galerkin finite element method and these results were extended to apply 

to wider range on semi-linear parabolic systems in (Barbu, Coca, & Yan, 

2005; Yan, Coca, & Barbu, 2009).   

(Barbu, 2007) presents an open-loop control for two-dimensional 

channel flow using wall normal actuation (�, �) of the form 

�(�, �) = � ��(�)����

 

|�|��

 ,          �(�, �) = � ��(�)����

 

|�|��

 

Where (�, �) are functions that exponentially stabilize the system. This 

shows that the stabilization of steady-state flows can be achieved using 

a finite number � of Fourier modes (Barbu, 2007). 

(Raymond, 2006) studied the stabilization of the linearized Navier-

Stokes equations using a feedback boundary control in two-dimensions. 

The pointwise (in time) closed-loop control law was determined through 
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the solution of an LQ problem. Raymond used an extension of the exact 

controllability results using internal control of the linearized governing 

equations from (Fernández-Cara, Guerrero, Imanuvilov, & Puel, 2004). A 

similar approach had been taken by (Fursikov, 2001), however, in this 

case the feedback operator is not pointwise and the eigenfunctions and 

eigenvalues of the Oseen operator are required (Raymond, 2006). 

(Raymond, 2007) then studied the three-dimensional case, which is not 

a straightforward expansion from his previous results, since the 

feedback control law could not be characterized by a well posed Riccati 

equation. For the case when both Dirichlet and Neumann type boundary 

conditions are present, (Nguyen & Raymond, 2015) have obtained a 

feedback control law by stabilizing the linearized Navier-Stokes 

equations, additionally, proved that the full system is also stabilized 

around the neighbourhood of an unstable stationary solution. 

ℋ2 (or Linear-Quadratic Gaussian – LQG) and ℋ∞ methods have also 

been implemented by (Bewley, 2001; Bewley & Liu, 1998; Bewley, Moin, & 

Temam, 2001). Bewley used an adjoint-based optimal control, where the 

control objective was minimized over finite time. Using this approach, a 

drag reduction of around 50% was obtained in channel flow at low 

Reynolds number. A suboptimal approach was taken by (Lee, C., Kim, & 

Choi, 1998) where it was no longer necessary to solve the governing 

equations iteratively. Additionally, the adjoint formulation could be 

taken only regarding the linear part of the discretized Navier-Stokes 

equations. These methods have been implemented on flows at low 

Reynolds numbers. 

Controllers based on reduced order models have also been 

implemented using similar methods. (Lee, K. H., Cortelezzi, Kim, & 

Speyer, 2001) used LQG strategy to synthesize a two-dimensional 

controller based on the linearized Navier-Stokes equations. The 

gradients of the streamwise velocity fluctuations as outputs and 

blowing/suction at the wall as inputs were used and a reduction of skin-

friction by 10% obtained. The controller was then replicated in the 

spanwise direction to create a three-dimensional controller which 

delivered a 17% reduction of skin-friction. 
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(Jones, Heins, Kerrigan, Morrison, & Sharma, 2015) used model 

refinement techniques on a state space approximation of the channel 

flow perturbation equations, to derive a low order model, which was 

used to synthesise a ℋ∞ loop-shaping controller. Their objective was to 

minimize the streamwise wall-shear stress perturbation through 

measurements of this variable, and used the voltage applied to actuators 

as the controlled input. They suggest that there are three problems to be 

addressed when dealing with the control of turbulence through linear 

control theory, which are the linearization, spatial discretisation, and 

the method to go from a system of partial differential equations to one 

of ordinary differential equations. More recently, (Heins, Jones, & 

Sharma, 2016) designed a passivity-based control using similar means. In 

this new study, they found that the ten lowest streamwise Fourier 

modes, considering only the linear dynamics of channel flow, are 

responsible for a large part of the energy production. Their control 

objective was to minimise the energy bound of these modes, which leads 

to a reduction of the skin-friction of the flow.  

Another technique that has been explored is that of neural networks 

(NN), (Lee, C., Kim, Babcock, & Goodman, 1997) developed a linear and 

non-linear neural network which was able to predict the velocities at 

certain locations from measurements of wall-sheer stresses. Both neural 

networks were trained off-line using data from a numerical simulation 

of a fully controlled flow based on the previously described opposition 

control method. They were applied as controllers to a turbulent flow 

giving an 18% drop in drag force reduction in both cases (Lee, C., Kim, 

Babcock, & Goodman, 1997). This showed that there is a strong 

correlation between the shear stresses at the boundary, and the 

actuation required to control the flow. Additionally, the notion that in 

some cases it is sufficient to apply linear schemes to obtain considerable 

results is reinforced. However, since the networks had been trained on 

an already controlled flow, this approach is unlikely to be useful with 

other scenarios (Kim, J., 2003; Lee, C., Kim, Babcock, & Goodman, 1997).  



5.3 Active flow control approaches  

117 
 

 
Figure 5.6. Schematic of neural network based control used by Lee.  

A second approach was studied, where a new network was trained on-

line to serve as an adaptive inverse model of the Navier-Stokes 

equations, the plant. The setup for this procedure is shown in the 

schematic in Figure 5.6. 

In this method, a NN models the inverse plant that maps from the 

shear stresses at the wall to the actuation required. The model is copied 

to act as controller, with the shear stresses that are being sought as input 

to the plant. This approach resulted in a 20% drag force reduction, 

although it is not a considerable increase from the previous cases, it was 

achieved from the direct study of a time varying system and therefore 

has a greater likelihood of successful application in a wider range of 

scenarios (Lee, C., Kim, Babcock, & Goodman, 1997). 

A model free approach was taken by (Santillo, Hoagg, Bernstein, & 

Powell, 2006). Firstly, a system identification technique was applied to 

determine the coefficients of the transfer function relating the control 

inputs to the performance variables. Following, an ARMARKOV 

adaptive disturbance rejection algorithm was implemented to stabilize 

one- and two-dimensional flows. Two actuators were used, one on each 

of the walls of a channel flow, with measured, and performance variables 

being the velocity components of the flow at the sensor locations. The 

method was proven to be feasible, although the authors felt that the two-

dimensional performance could be further improved. Due to the low 

complexity of this approach, it is possible to implement in an easier 

manner than other techniques mentioned here (Santillo, Hoagg, 

Bernstein, & Powell, 2006). 

As it can be seen, many of the previously mentioned techniques 

which use reduced order models are often based on the linearized 
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Navier-Stokes equations. However, to the authors knowledge, there have 

been few attempts of using system identification techniques to obtain 

data-based reduced-order models to be used with the control schemes. 

(Huang, S. C. & Kim, 2008) is an example of this approach, where 

separation control was implemented through a LQG controller in the 

flow over the BFS case. This used state estimation from a Kalman filter 

that was in turn, based on linear models identified directly from input-

output data. Two different models were identified, firstly a least-squares 

based approach is used to obtain an ARX model, and secondly, a 

subspace method was implemented to obtain a state space 

representation. The LQG strategy was designed to minimise a cost 

function dependant on the energy of pressure fluctuations and the 

controller input itself. With this strategy, the recirculation zone was 

greatly reduced. It was found that the state space model was better 

suited than the ARX model obtained. 

(Hervé, Sipp, Schmid, & Samuelides, 2012) too worked on the 

separation control of flow over the BFS. They identified an ARMAX 

model from the measured data, the coefficients of the identified model 

were set according to physical knowledge, such as the maximum lag 

between the application of the actuation and its effect downstream 

(Hervé, Sipp, Schmid, & Samuelides, 2012). A feed-forward control is 

implemented and proved to be able to reduce the total turbulent kinetic 

energy of the system by 50%. Encouraging results were also obtained 

when the sensors and actuators were considered as corrupted by noise 

of different magnitudes, where the stability was not compromised and 

an expected decrease of performance was observed. Other approaches 

using alternative methods of system identification have been noticed, 

named data-based mechanistic methods. These have not been applied to 

wall bounded flows but have been found in studies relating to 

environmental flows such as rivers or airflow (Desta, Brecht, Meyers, 

Baelmans, & Berckmans, 2004; Young, 2006).  

 

 

 



5.4 Discussion  

119 
 

5.4 Discussion 

 

A review of recent applications of flow control strategies in wall bounded 

domains, has been presented. The author is aware that more examples 

of the strategies described here exist, however, only the most 

representative were chosen to be included. A number of reviews have 

been found and the reader is directed to them, and the references 

therein, for further information (Bewley, 2001; Bewley & Liu, 1998; Chung 

& Talha, 2011; Gad-El-Hak, 1989; Kim, J., 2003; Kim, J. & Bewley, 2007; 

Lumley & Blossey, 1998; Perlin, Dowling, & Ceccio, 2016; Pollard, 1998; 

Rathnasingham & Breuer, 2003; Scott Collis, Joslin, Seifert, & Theofilis, 

2004; Wang, Luo, Xia, Liu, & Deng, 2012; Zhou & Bai, 2011). 

A few matters have to be addressed regarding the control methods 

and the elements required by them. 

Firstly, on the topic of actuators and sensors, it should be noted that 

available technologies make the implementation of many controller 

strategies a real possibility (Ho & Tai, 1998; Lofdahl & Gad-El-Hak, 1999b; 

Varadan & Varadan, 2000). However, many studies, including the 

current work, have used methods, measurements or concepts that 

cannot be directly implemented in real systems. This is due to several 

reasons, such as the impossibility of having full state information, or 

using variables that are hard to measure. Additionally, computationally 

expensive methods cannot be implemented, especially in the case of 

closed-loop control, due to the fast dynamics of the systems which 

require equally fast solutions (Bewley, 2001; Scott Collis, Joslin, Seifert, 

& Theofilis, 2004). Lastly, actuators and sensors have limitations on the 

scales, frequencies and magnitudes which can be achieved, in many 

cases this has not been considered during the controller design. It is also 

of importance to keep in mind that the measurements will be corrupted 

by noise so a method to validate the controllers before such conditions 

should also be incorporated in the studies to ensure that the controllers 

derived are robust (Bewley, 2001; Hervé, Sipp, Schmid, & Samuelides, 

2012; Scott Collis, Joslin, Seifert, & Theofilis, 2004). These issues need to 

be amended before many of the controllers currently designed can be 

implemented on full-scale systems.  
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Regarding the controller methods, expensive methods cannot be 

implemented in real-time due to the small time-scales that flows exhibit 

(Lee, K. H., Cortelezzi, Kim, & Speyer, 2001). This is the main motivation 

for the use of reduced order models, to reduce the computational burden 

and remove the need to perform iterative computations, complex 

optimizations or the calculations of the adjoint of large systems (Lee, K. 

H., Cortelezzi, Kim, & Speyer, 2001). Concerning the use of classical 

controllers, it is important to consider that these methods do not 

account for the initial transient, and so it must be taken into account 

separately, as this can easily lead to instabilities which take the flow 

beyond the validity of the model (Kim, J. & Bewley, 2007; Scott Collis, 

Joslin, Seifert, & Theofilis, 2004). 

As for the types of models used to approximate the full flow, it is 

observed that many authors use linear structures (Kim, J. & Bewley, 

2007). The use and capability of this practice has been validated through 

experimental tests and it is widely believed that controlling the linear 

dynamics of a flow is sufficient to prevent transition for example (Kim, 

J. & Bewley, 2007; Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

However, it is necessary to remember that when using linearizations, the 

validity of the model is always limited to a certain operating point. If this 

point is surpassed, no guarantees can be made regarding the 

performance of the model and any control based on it (Kim, J., 2003).  

The use of non-linear models has not been identified in the 

literature, this is likely due to the difficulty in identifying accurate 

models, as well as designing controllers which are compatible with them 

(Allgower, Findeisen, & Nagy, 2004; Billings, 2013). This issue is worsened 

by the nature of the infinite-dimensional system with such a complex 

behaviour (Joshi, Speyer, & Kim, 1997; Kim, J. & Bewley, 2007). However, 

the implementation of such methods would likely yield an improvement 

in the predictions and the range of validity of the control methods.  

The final point to be addressed is the selection of the sensing and 

actuation methods, as well as the location of application. This is as 

important as the control strategy and models employed, since it directly 

defines and limits the former. A correct selection of the measurement 

variables and position of sensors and actuations can determine if the 
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plant is observable, controllable and non-minimum phase, or otherwise 

(Kim, J. & Bewley, 2007). This however, is not something that has a 

unique solution, nor can it be easily determined (Bewley, 2001; Kim, J., 

2003; Pollard, 1998; Scott Collis, Joslin, Seifert, & Theofilis, 2004). 

Therefore, methods to help to identify optimal sensing and actuation as 

well as the most significant variables should be studied in greater depth 

depending on the application, so that the developed strategies can fulfil 

expectations. 
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CHAPTER 6  

 
 

Non-linear model predictive 

control of flow over the backward 

facing step  

 
6.1. Introduction 

 

Several model-based control approaches to flow control have been 

proposed and demonstrated, both numerical and experimentally 

(Bewley, 2001; Choi, Moin, & Kim, 1994; Gad-El-Hak, 1989; Heins, Jones, & 

Sharma, 2016; Hervé, Sipp, Schmid, & Samuelides, 2012; Scott Collis, 

Joslin, Seifert, & Theofilis, 2004). For practical reasons, controller design 

is often carried out based on models derived from simplified versions of 

the governing equations (Bewley, 2001; Hervé, Sipp, Schmid, & 

Samuelides, 2012; Scott Collis, Joslin, Seifert, & Theofilis, 2004).  More 

specifically, for a control scheme to be implemented on a real system, it 

should not have resource intensive characteristics or rely on data that 

is difficult to obtain (Bewley, 2001; Kim, 2003; Scott Collis, Joslin, Seifert, 

& Theofilis, 2004). Therefore, developing implementable control 

strategies require sufficiently accurate reduced-order models of the fluid 

flow. 
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In the case of the flow over a backward step, a typical goal is to 

control the position of the reattachment point (Heenan & Morrison, 

1998; Hervé, Sipp, Schmid, & Samuelides, 2012; Neumann & Wengle, 2003; 

Uruba, Jonáš, & Mazur, 2007). This geometry is often considered as a 

benchmark to study the effects of control schemes to be used with 

amplifier flows (Gautier & Aider, 2013, 2014b). These are flow in which 

instabilities are, as the name implies, amplified due to the geometry 

itself, in the current case, due to the expansion of the channel (Ruisi, 

Zare-Behtash, Kontis, & Erfani, 2016; Zheng, Zhang, & Zhang, 2011).  

The separation and reattachment of the flow are also of importance 

in many applications, such as turbines and heat exchangers, among 

others, where the goal is to enhance lift and reduce drag or vibrations by 

the reduction of the unstable recirculation bubble (Gautier & Aider, 2013; 

Hervé, Sipp, Schmid, & Samuelides, 2012; Le, Moin, & Kim, 1997; 

Neumann & Wengle, 2003; Ruisi, Zare-Behtash, Kontis, & Erfani, 2016; 

Uruba, Jonáš, & Mazur, 2007; Xu, Gao, Ming et al., 2015; Zheng, Zhang, & 

Zhang, 2011). 

The separation of the flow at the edge of the step causes a (separated) 

shear layer to appear, which reattaches further downstream (Gautier & 

Aider, 2014b; Le, Moin, & Kim, 1997; Zheng, Zhang, & Zhang, 2011). It has 

been noted that the altering of this shear layer can influence the 

properties of the recirculation bubble (Gautier & Aider, 2014a; Henning 

& King, 2007; Hervé, Sipp, Schmid, & Samuelides, 2012; Pouryoussefi, 

Mirzaei, & Hajipour, 2015; Ruisi, Zare-Behtash, Kontis, & Erfani, 2016; 

Uruba, Jonáš, & Mazur, 2007; Zheng, Zhang, & Zhang, 2011).  

The latter is characterised as having two main recirculation’s, the 

larger of the two being caused by the main separation and which defined 

the reattachment point of the flow over the BFS, and the smaller present 

in the lower corner of the step (Gautier & Aider, 2014a; Le, Moin, & Kim, 

1997; Zheng, Zhang, & Zhang, 2011). Both cause changes in the pressure 

felt by the channel walls, hence, cause variations of the wall-shear stress, 

commonly used to identify the reattachment point. Further, it is 

thought that the increase of mixing between the free-flow and the shear 

layer can also aid in the reduction of the reattachment length 
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(Pouryoussefi, Mirzaei, & Hajipour, 2015; Ruisi, Zare-Behtash, Kontis, & 

Erfani, 2016). 

 Model predictive control has its origin in the 1960’s (García, Prett, & 

Morari, 1989), since then a number of different algorithms have been 

proposed, each with strengths and weaknesses (Allgower, Findeisen, & 

Nagy, 2004; Camacho & Bordons-Alba, 2003; Clarke, Mohtadi, & Tuffs, 

1987a; García, Prett, & Morari, 1989; Henson, 1998; Lee, 2011; Mayne, 2014; 

Morari & Lee, 1999).  Most of the approaches have been based on linear 

representations of the systems, using impulse- and step-response 

models, or identified input/output mappings (Camacho & Bordons-Alba, 

2003; García, Prett, & Morari, 1989; Lee, 2011; Morari & Lee, 1999; Qin & 

Badgwell, 2003).  

Linear approaches have been shown to be successful while there are 

few, or no variations of the set point, so that a sufficiently accurate 

model remains valid (Henson, 1998; Mayne, 2014; Morari & Lee, 1999). In 

the case that the conditions change significantly, non-linear effects may 

become significant and therefore the response of the controller may be 

unacceptable (Henson, 1998; Mayne, 2014).  

In these cases, the use of non-linear models is warranted, however, 

this introduces the need to use expensive non-linear optimization, in 

addition to the use of complicated algorithms to identify accurate 

models and compute the future predictions (Bai, 2010; Camacho & 

Bordons-Alba, 2003; Henson, 1998; Mayne, 2014). 

  Model predictive control does not refer to a single algorithm, but a 

methodology that consists of the following set of elements (Camacho & 

Bordons-Alba, 2003; Clarke & Mohtadi, 1989; Clarke, Mohtadi, & Tuffs, 

1987a; Rossiter, 2003): 

 Explicit model. It is used to forecast the evolution of the system 

over the prediction horizon, ��. Many forms can be used such as 

state-space, transfer function and difference equation models 

such as in this work. 

 Measurements of past data. Needed to initialize the algorithm and 

obtain the control sequence. Data up to instant (� − 1) is needed 

for the actuation signals, �, and up to (�) for the outputs, �. 
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 Cost function. It is optimized at each time-step to compute the 

control sequence which minimizes the error between the 

measured and desired state. In addition, it can include 

penalization on the input(s), output(s) and their rates of change. 

MPC relies on iterative finite-horizon optimizations of the model which 

requires accurate prediction of the system response over a finite number 

of steps in the future, and not infinitely as is the case with other optimal 

control strategies (Bewley, 2001; Clarke & Mohtadi, 1989; Rossiter, 2003).  

This methodology can be applied to SISO as well as to MIMO system 

configurations and allows the incorporation of constraints at design 

stage (Camacho & Bordons-Alba, 2003; García, Prett, & Morari, 1989; 

Rossiter, 2003). These properties make MPC suited to flow control 

applications that involve large-scale multi-input-multi-output models – 

typically obtained as finite-element approximations of the governing 

partial differential equations – and are subject to various constrains 

imposed by the actuators and sensors. Control approaches that handle 

constraints at design stage rather than during the implementation is 

highly desirable (Clarke & Mohtadi, 1989; Clarke, Mohtadi, & Tuffs, 

1987a).   

The development and implementation of MPC strategies for flow 

control applications pose several challenges. Specifically, the numerical 

models are high-dimensional and non-linear leading to computationally 

intensive algorithms that are difficult to implement in real-time.  

This chapter investigates a non-linear model predictive control 

strategy based on reduced-order one- and multi-step ahead non-linear 

predictors identified directly from data (Bai & Coca, 2008, 2011), 

generated by an accurate simulation of the governing partial differential 

equations, which can provide a possible solution to these challenges.  

Assuming that such multi-step predictors are available, this 

approach can be applied in principle to wide range of control problems  

(Bai & Coca, 2008; Rossiter, 2003). 

The approach, which is similar to the generalized predictive control 

(GPC) (Camacho & Bordons-Alba, 2003; Clarke, Mohtadi, & Tuffs, 1987a), 

has the advantage that it relies on input-affine nonlinear predictors, 
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which lead to fast algorithms that are suited to real-time 

implementation.  

The Chapter is organized as follows. Section 6.2 provides an overview 

of existing linear and non-linear MPC schemes. Section 6.3 introduces a 

NARMAX based non-linear MPC strategy derived from the GPC 

algorithm. The results of simulations trials with noise-free, 

measurement noise and measurement noise in addition to disturbances 

for the ��� SISO model are given in Section 6.4.1. Section 6.4.2 presents 

the expansion of the algorithm to accommodate multivariate MISO 

predictors. Simulation results are once more presented, studying the 

three noise/disturbance scenarios as before. 

Finally, Section 6.4 contains a discussion of these results, including 

their validity and possible improvements which could be made in the 

future.  

 

6.2. Review of non-linear model predictive control strategies  

 

As previously stated, MPC schemes are those which predict the 

evolution of the state, and aim to compute a control sequence which 

minimizes a cost function while satisfying constraints. Most algorithms 

in this family implement a receding horizon which means that only one 

input is applied to the plant and the process repeated at every time-step.  

An example of the MPC method can be seen in Figure 6.1. Where, for 

a given system,  the control horizon ends at (� + ��) and the prediction 

horizon at (� + ��), the controller increments are Δ� and the control 

actions are assumed constant for all � > ��. 

 
Figure 6.1. Schematic of the MPC strategy, showing the predictions based on past data up to instant (�) 

and the future control increments ��. 
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The variants of MPC are differentiated depending on the length of 

the prediction and control horizon, as well as the type of models that can 

be controlled successfully. That is, what form the model is in, such as 

state space or transfer function, or to which kind of plant-model 

mismatch they are most sensitive to, such as over-parametrization or 

the correct selection of dead-time (Clarke & Mohtadi, 1989). 

Both linear and non-linear MPC exist, where the former has been 

studied extensively and is well documented (Clarke, Mohtadi, & Tuffs, 

1987a; García, Prett, & Morari, 1989; Henson, 1998; Morari & Lee, 1999). 

These methods incorporate linear models and constraints, together with 

a quadratic cost function (Clarke, Mohtadi, & Tuffs, 1987a). Rigorously 

speaking, the closed-loop dynamics of linear MPC methods are non-

linear due to the inclusion of constraints and the quadratic cost 

function. however, they are considered linear since the models are of 

this form (García, Prett, & Morari, 1989; Morari & Lee, 1999). 

The methods considered as non-linear MPC (NMPC) are those based 

on non-linear models and/or make use of non-linear constraints and the 

cost function may not be quadratic (Camacho & Bordons-Alba, 2003; 

Henson, 1998; Rossiter, 2003). NMPC has not been as widely studied and 

few industrial applications exist in either simulation or experimental 

set-up (Henson, 1998). This is mainly due to the increased computational 

expense when calculating the predictions, and performing the non-

linear optimization. The latter is generally non-quadratic and non-

convex (Henson, 1998; Rossiter, 2003). Further, the difficulty in 

obtaining reliable models using system identification is viewed as a great 

disadvantage (Billings, 2013). This however, can be circumvented by 

using the NARMAX methodology, as is the case of this work. 

Additionally, by restricting the terms included in the model, and 

considering some variable changes, the advantage of using NMPC can be 

obtained without its characteristic computational burden. This will be 

explained in greater detail below.  

Regardless of whether the model used is linear or non-linear, there 

are several variants of MPC, which have been proposed by different 

authors (Camacho & Bordons-Alba, 2003; Clarke, Mohtadi, & Tuffs, 1987a; 

García, Prett, & Morari, 1989; Lee, 2011). Several reviews exist (Allgower, 
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Findeisen, & Nagy, 2004; García, Prett, & Morari, 1989; Henson, 1998; Lee, 

2011; Mayne, 2014; Mayne, Rawlings, Rao, & Scokaert, 2000; Morari & Lee, 

1999). Considering that there are many types, each customized for a 

certain type of application and in some cases, with sub-classifications, a 

comprehensive review is beyond the scope of the current work. The most 

representative schemes found in the literature are dynamic matrix 

control (DMC), quadratic DMC, GPC, internal model control (IMC), 

unified predictive control (UPC), extended model based predictive 

control (EMPC) and extended prediction self-adaptive control (EPSAC) 

(Camacho & Bordons-Alba, 2003; Clarke, Mohtadi, & Tuffs, 1987a; 

Henson, 1998; Lee, 2011). 

The linear GPC algorithm proposed by (Clarke, Mohtadi, & Tuffs, 

1987a), uses an explicit formulation of the model, often in the controlled 

auto-regressive integral moving-average (CARIMA) form. This is chosen 

since it accounts for non-stationary uncertainty (Clarke, Mohtadi, & 

Tuffs, 1987a; Rossiter, 2003). In the current work, however, the control is 

implemented using the identified NARMAX models. Some modifications 

will be performed to include integral action and ensure an offset-free 

steady-state.  

The prediction horizon considered is finite and set according to the 

application, it is recommended that it be equal or slightly greater to the 

settling time of the system (Clarke, Mohtadi, & Tuffs, 1987a, 1987b). The 

control horizon can be equal to that of the predictions or shorter. In 

GPC, it is assumed that all control increments beyond this horizon are 

equal to zero, which means that the control is assumed to be at a 

constant value after the control horizon (Clarke, Mohtadi, & Tuffs, 1987a, 

1987b).  

A control sequence is obtained by minimising the cost function 

subject to the constraints. At the following time-step the process is 

repeated using the new measurements and thus, a receding horizon 

method is obtained (Camacho & Bordons-Alba, 2003; Clarke, Mohtadi, & 

Tuffs, 1987a; Rossiter, 2003). 
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6.3. NARMAX based non-linear model predictive control 

 

The NARMAX model NMPC approach introduced in (Bai & Coca, 2008) 

is adopted in this work. This method uses a non-linear model, which is 

input-affine for future terms, with linear constraints, and a quadratic 

cost function. Therefore, this approach maintains the accuracy 

achievable only with non-linear models, without requiring the solution 

of non-linear optimizations (Bai & Coca, 2011).  

In the GPC framework, the predictors are derived through the 

solution of a set of Diophantine equations, however this cannot be 

performed using non-linear models (Bai & Coca, 2008). To circumvent 

this, Bai and Coca proposed the use of �-step ahead non-linear predictors 

identified directly from data. The j-step-ahead predictors of the NARX 

model are given by (Bai, 2010; Bai & Coca, 2008): 

��(� + 1|�) = �� ��(�), … , ��� − �� + 1�, �(�), … , �(� − �� + 1)�, 

��(� + 2|�) = �� ��(�), … , ��� − �� + 1�, �(� + 1), �(�), … , �(� − �� + 1)�, 

⋮ 

��(� + �|�) = ����(�), … , ��� − �� + 1�, �(� + � − 1), … , �(�), 

… , �(� − �� + 1)� 

(6. 1) 
By shifting the predictors from equation (6. 1) j-steps backwards in time, 

the functions ��(�(�)) will depend on  

�(�) = ��(� − �), … , ��� − �� − � + 1�, �(� − 1), 

… , �(�), … , �(� − �� − � + 1)] 

Therefore, the terms included in the model will ensure that it is input 

affine, which means linear with respect to terms that include �(� + �) for 

� = 0, 1, … , ��. Since values for input(s) and output(s) are known up to 

instant (� − 1) and (�), respectively, the model can be evaluated and the 

predictions obtained in terms of the future inputs as the only unknown. 

In (Bai & Coca, 2008) these predictors are identified directly in terms 

of the future input increments. In this work, this has been performed 

after the identification, in addition to using the output increments.  
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Once the change of variable is performed, the predictors correspond 

to the linearization of equation (6. 1) around the previous control input 

�(�). 

��(� + �|�) = ��(�(�)+ �
���(�)

��(� + �)
�

�(�)

Δ�(� + �)

��� (�,��)

���

 

This approach is somewhat like the extended linear MPC, originally 

proposed for the DMC controller. In their case, the linear prediction 

equation was augmented with a non-linear term, which in turn was 

calculated by minimizing the difference between the prediction of the 

linear and full non-linear model (Camacho & Bordons-Alba, 2003). In this 

work however, the full non-linear model is always considered. 

There has been great interest in the topic of linear MPC stability and 

robustness and methods such as using infinite prediction horizon or 

setting terminal in/equality constraints have been developed to ensure 

this (Keerthi & Gilbert, 1988; Mayne & Michalska, 1990). In the case of 

NMPC there is still no general theoretical results regarding closed-loop 

stability, however, the aforementioned processes can also be applied 

(Mayne & Michalska, 1990).  

The use of infinite horizon is the most straightforward manner of 

assuring convergence, this is of course unfeasible and made even more 

so in the case of non-linear optimizations, the use of terminal 

constraints is also difficult due to the inherent complexity of non-linear 

models (Bai, 2010). Therefore, in practice, when nominal stability cannot 

be guaranteed, closed-loop stability is ensured by the tuning of the 

parameters (Camacho & Bordons-Alba, 2003; Henson, 1998). 

Finally, regarding the robustness of MPC, it has been noted that in 

many LMPC and NMPC applications, the models employed are wholly 

deterministic and so do not account for model/plant mismatch. The 

current work will consider the use of integral action during the design 

of the controller to obtain robustness. Additionally, multi-step-ahead 

models are employed which also aid with this objective. Should the 

system under study contain measurement and process noise, the 

NARMAX methodology can be used to identify a linear or non-linear 

noise model to obtain a stochastic predictor (Billings, 2013; Billings, 

Chen, & Korenberg, 1989).  
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6.4. NARMAX based NMPC for flow over the backward facing 

step 

 

This section describes the methodology used to carry out the model 

predictive control of the identified models. The methodology will be 

illustrated for the SISO model ���. The required modifications to the 

models and other details elaborated and finally, results of simulations 

with and without measurement noise and disturbances given.  

6.4.1. NARMAX based NMPC for ��� using recursive predictors 

 

For control implementation purposes, the one-step-ahead SISO 

predictor of the system is the reduced-order NARMAX model identified 

from data, introduced in Chapter 4, given by 

��(�) = ���(� − 1), … , ��� − ���, �(� − 1), … , �(� − ��), �(� − 1), 

… , �(� − ��)� + �(�) 
(6. 2) 

The identified predictor ��� is input-affine with respect to the future 

control input �(� + � − 1), for � = 1, … , ��. 

As mentioned in Chapter 4, the exclusion of terms in the candidate 

set, required to ensure input-affinity, has caused a slight degradation of 

the prediction performance of the identified models. However, the 

models are still more accurate and include richer dynamics than linear 

ones, so the trade-off was believed to be warranted.  

The future control input considering known data up to instant 

(� − 1), is defined as 

�(� + � − 1) = �(� − 1)+ � Δ�

���

���

(� + �) 

(6. 3) 

where the control increments are 

Δ�(� + �) = �(� + �)− �(� + � − 1)        � = 0,1, … , �� 

(6. 4) 

With this change of variable, the �-step ahead predictor, equation (6. 2), 

can be written as  

��(� + �|�) = ����(�), … , ��� − �� + 1�, 

Δ�(� + � − 1), … , Δ�(�), �(� − 1)… , �(� − �� + 1)�  

(6. 5) 
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Table 6.1. Model structure and parameters for ��� with incremental actuation. 

Parameter Model ��� 

-0.00065 1 1 

1.942068 ��(�) 1 

-0.96332 ��(� − 1) 1 

-0.05751 Δ��(�) 1 

-0.05751 ��(� − 1) 1 

0.003786 Δ��(�) ��(� − 5) 

0.003786 ��(� − 1) ��(� − 5) 
0.108961 ��(� − 1) 1 

-0.05308 ��(� − 2) 1 

-0.00281 ��(� − 5) ��(� − 5) 

The model terms and corresponding parameters of the OSA model with 

the change of variable are listed in Table 6.1. 

The one-step-ahead predictor ��� was used to derive the multi-step-

ahead predictors assuming a control horizon �� = 5. The structure 

identified is such that, the j-step ahead predictor, 1 < � ≤ 5 ,  obtained by 

iteration of model ���, is still input affine with respect to future control 

actions.  Higher prediction horizons can be considered but this would 

require the direct identification of the predictors for � > 5. 

Separating terms that include future control increments, equation 

(6. 5) can be written as 

�(� + �|�) = ����(�)� + � ���(

�

���

�(�))Δ�(� + � − 1) 

or simplified,  

�(� + �|�) = ����(�)� + ��(�(�))Δ�(� + � − 1) 

(6. 6) 
where 

�(�) = ��(�), … , ��� − �� + 1�, �(� − 1)… , �(� − �� + 1)� 

Arranging equation (6. 6) in matrix form, yields 

� = � ∙ Δ� + � 

(6. 7) 
In equation (6. 7), each of the variables are defined as: 

� = �

�(� + 1|�)

�(� + 2|�)
⋮

�(� + ��|�)

�,  Δ� = �

Δ�(�)

Δ�(� + 1)
⋮

Δ�(� + �� − 1)

�,  � =

⎣
⎢
⎢
⎢
⎡

����(�)�

����(�)�

⋮
�����(�)�⎦

⎥
⎥
⎥
⎤

, 
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� =

⎣
⎢
⎢
⎢
⎡

�����(�)� 0 ⋯ 0

�����(�)� �����(�)� ⋯ 0

⋮ ⋮ ⋱ ⋮
��� ���(�)� ��� ���(�)� … ��� ��

��(�)�⎦
⎥
⎥
⎥
⎤

 

(6. 8) 

Matrix � needs to be updated at each time-step since it depends on past 

measurements. 

To deal with load disturbances and ensure zero steady-state error 

(Henson, 1998), predictors are modified to incorporate integral action by 

applying the operator Δ = 1 − ��� to equation (6. 6), which gives 

Δ�(� + �|�) = Δ����(�)� + Δ��(���)Δ�(� + � − 1) 

 

and leads to  

�(� + �|�) = �(� + � − 1|�)+ ����(�)� − ����(� − 1)�

+ ��(���)[Δ�(� + � − 1)− Δ�(� + � − 2)] 

In matrix form this is written as  

 

� = ���� ∙ Δ� + ���� 
(6. 9) 

with  

���� = �

��� 0 ⋯ 0
��� − ��� + ��� ��� ⋯ 0

⋮ ⋮ ⋱ ⋮
��� � − ��� � + �(����) � ��� � − ��� � + �(����) � … ��� ��

� , 

���� = �

− ���

− (��� + ���)
⋮

− ���� � + ⋯ + ��� + ����

� ∙ Δ�(� − 1)+

⎣
⎢
⎢
⎢
⎡

���� ���(�)�

���� ���(�)�

⋮
���� ����(�)�⎦

⎥
⎥
⎥
⎤

 , 

⎣
⎢
⎢
⎢
⎡

���� ���(�)�

���� ���(�)�

⋮
���� ����(�)�⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

����(�)� − ����(� − 1)� + �(�)

����(�)� − ����(� − 1)� + ���� ���(�)�

⋮
���

��(�)� − ���
��(� − 1)� + ���� (����)��(�)�⎦

⎥
⎥
⎥
⎤

 

(6. 10) 

In the previous expression, the �����(�)� notation was dropped to help 

readability of the matrices; likewise, the subscript of equation (6. 9) will 

be dropped. The predictor will be used in the form of equation (6. 9) for 

the remainder of this description.  

The only remaining elements to define are the desired trajectory and 

the constraints. The former is dependent on the application; several 
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different trajectories were tested as will be described later. In the case of 

the constraints, these can be imposed on the inputs, �, outputs, � , and 

their rate of change, Δ� or Δy (Clarke, Mohtadi, & Tuffs, 1987a, 1987b; 

Rossiter, 2003). 

The inclusion of constraints during the design stage is one of the 

most valuable characteristics of MPC methodologies, since this ensures 

adequate closed-loop performance (Clarke & Mohtadi, 1989; Clarke, 

Mohtadi, & Tuffs, 1987a). In the case of GPC, these can be used as tuning 

parameters to enhance the performance of the controlled system, in 

addition to specifying the operational limits of the system (Clarke & 

Mohtadi, 1989; Clarke, Mohtadi, & Tuffs, 1987a, 1987b).  

In the current work, only constraints of the input and its rate of 

change have been considered. The MPC optimization problem can be 

formulated as follows 

�(��, ��, ��) = � �[�(� + �|�)− �(� + �)]�

��

����

+ � �(�)[Δ�(� + � − 1)]�

��

���

 

(6. 11) 

Subject to the following constraints 

���� ≤ � ≤ ����  

Δ���� ≤ Δ� ≤ Δ����  

���� ≤ � ≤ ����  
 (6. 12) 

In equation (6. 11), � is the reference signal, �� is the minimum 

prediction horizon which determines at which instant it becomes 

desirable for the output to follow the reference, and �, � are weighing 

sequences (� = 1).  

In equation (6. 12), the constraint on the input needs to be written in 

terms of the input increments. Therefore, it becomes 

�
�

− �
� ∙ � ∙ �

��(�)

��(� + �)
⋮

��(� + � � − �)

� + �
�
�� ∙ �(� − �) ≤ �

� �
� �

�∙ �
����

− ����  
� 

 (6. 13) 
and the constraint on the input increments remains 

�
�

− �
� ∙ �

Δ�(�)

Δ�(� + 1)
⋮

Δ�(� + �� − 1)

� ≤ �
� �
� �

�∙ �
Δ����

Δ����
�      

(6. 14) 
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Where � is a vector of ones of dimensions (��× 1) and � a lower 

triangular matrix (��× ��), with unit entries below the diagonal: 

� = �

1 0 ⋯ 0
1 1 ⋯ 0
1 1 ⋱ ⋮
1 1 … 1

 � 

� is a square identity matrix of dimensions �� and � denotes a zero 

matrix of adequate dimensions. In this example �� = ��. 

As mentioned, constraints on the outputs can also be enforced, a 

similar approach is followed where equation (6. 9) is used to substitute 

the prediction �(� + �) in terms of the past measurements and the future 

control increments vector. In the current work this was not 

implemented. 

Substituting equation (6. 9) in (6. 11), considering equation (6. 4) and 

expressing the result in matrix form gives 

�= [� ∙ Δ� + � − � ]� ∙ [� ∙ Δ� + � − � ] + Δ�� ∙ � ∙ Δ� 

(6. 15) 

with Λ being a diagonal matrix of  ���, ��, … , ���
�

�
 and �⃖��= � ∙ �(� − 1), 

where � is a vector of ones of appropriate dimensions. 

The set of control increments which minimises the cost function (6. 15) 

can be found by solving 

��

�Δ�
= 0 

(6. 16) 
Subject to the constraints defined by equations (6. 13) and (6. 14) . The 

unconstrained sequence is given by 

Δ� = (�� ∙ � + �)��(�� ∙ � − �� ∙ �) 

(6. 17) 

Where only the first value of the vector Δ� is applied to the process. 

Different cost functions can be formulated depending on the 

required performance and needs of the application (Clarke, Mohtadi, & 

Tuffs, 1987a).  

The prediction horizons, �� and ��, in addition to the control 

horizon, ��, and weighing matrix, Λ , are the tuning parameters available 

to modify this controller (Clarke & Mohtadi, 1989; Clarke, Mohtadi, & 

Tuffs, 1987a). The prediction horizons determine the response that the 

controlled system will exhibit (Camacho & Bordons-Alba, 2003; Mayne & 

Michalska, 1990).  
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To define the value, it is necessary to consider the rise time of the 

plant. Ideally it is important to ensure that �� is large enough to 

anticipate deviations from the set-point or constraint violations, for 

example, and compensate for them accordingly. Meanwhile, value of �� 

is most important if the plant includes delays or dead-times and should 

be greater than these, since any actuation applied before will not 

influence the output (Clarke, Mohtadi, & Tuffs, 1987a, 1987b).  

The control horizon determines how aggressive or sluggish the 

controlled response of the system will be. Setting lower values of �� is 

requiring that the desired value be reached faster, whereas increasing 

the value allows for a smoother response (Clarke, Mohtadi, & Tuffs, 

1987a, 1987b; Henson, 1998). The weighing matrix, Λ, also affects this 

response as it influences the cost of the control increments, Δu. It is 

difficult to determine the optimal values a priori and so fine tuning 

through simulations if often employed (Clarke, Mohtadi, & Tuffs, 1987a, 

1987b; Henson, 1998).  

Table 6.2. Values tested as tuning parameters of the MPC algorithm 

Variable Meaning Value  
�� Minimum prediction horizon 1 
�� Maximum prediction horizon 5 
N� Control horizon 5 
� Weighing sequence 1× 10��, … ,1 

Table 6.2 shows the values assigned to the tuning parameters. These 

were evaluated through numerical simulation. The maximum 

prediction horizon tested, which achieved desired performance, was 

�� = 5.  

Since the flow has no dead-time, the minimum prediction horizon 

was set to �� = 1.  The control horizon was set to be equal to the 

prediction horizon �� = �� = 5. Numerical simulations show the 

performance decreasing considerably for �� < 4, however, performance 

did not improve using horizons larger than �� = 5. The constraints of 

the input should be set were set per the limitations of the actuators 

implemented, both in magnitude and response speed. In the case of 

simulations this bound can be implemented in a straightforward 

manner.  
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For the current work, during the system identification stage, an 

input with the highest magnitude acceptable by the package Fluent was 

implemented, to ensure it was persistently exciting. The control limit 

will therefore be set at this value, that is the magnitude had to be lower 

than ± 1
�

�
, as for the input increments, the threshold was varied to tune 

the response speed of the system. 

The MPC algorithm was implemented using Matlab, the plant 

evolution was simulated by the OSA predictor defined in Table 4.6 and 

the controller applied with the different tuning parameters mentioned 

previously. Initially, several simulations were run to tune the control 

increment weighing parameter.  

Regarding the set-points or desired trajectories, various sequences 

were designed by analysing the range of the measured output, and 

creating a mixture of a stepped signal of different magnitudes with a 

sinusoidal which are in the appropriate range.  

 
Figure 6.2. Top: Simulation of noise-free controlled ��� model. Plant output in red and desired trajectory 

in blue. Bottom: Actuation signal �(�). � � = �, � � = � and � = �.���, ����� = �.��%  

 
Figure 6.3. Top: Simulation of noise-free controlled ��� model. Plant output in red and desired trajectory 

in blue. Bottom: Actuation signal �(�). � � = �, � � = � and � = �× ����, ����� = �.��%  
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Figure 6.2 and Figure 6.3 shows the performance of the control with two 

values of �. It can be seen that the smaller value of � has better tracking 

of the trajectory, however the changes in the control signal are more 

sudden and have sharper changes. Depending on the actuator used, this 

may not be achievable or it may cause damage to the system or itself.  

Therefore, the implemented value would depend on the limitations 

and requirements of the real system. 

To validate the controller further, the measured signal was 

corrupted with noise, additionally, load disturbances were added 

throughout the simulation time to see the capability of the controller to 

compensate for them. 

 
Figure 6.4. Top: White noise signal �(�) in blue and measurement noise �� (�) in red. Bottom: 

Comparison of clean data in blue, and noise corrupted signal in red of �� fluctuations. 

The measurement noise signal, ��(�),was generated by filtering a white 

noise signal �(�) with variance �� = 1.537× 10�� using the filter  

� (�) = 1 −
0.5

�
  

This yielded the signal shown in Figure 6.4 with � = − 1.12× 10�� and 

�� = 3.101× 10��. The load disturbances introduced �(�) are given by 

�(�) = �
.0055 60 ≤ � ≤ 75

− .0055 135 ≤ � ≤ 150
0 ��ℎ������
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Figure 6.5. Top: Simulation of controlled ��� model with measurement noise �� (�). Plant output in red 

and desired trajectory in blue. Bottom: Actuation signal �(�).� � = �, � � = � and � = �.���, 
����� = ��.�%  

 

Figure 6.6. Top: Simulation of controlled ��� model with measurement noise �� (�) and load 

disturbances �(�) (in grey). Plant output in red and desired trajectory in blue. Bottom: Actuation signal 
�(�).� � = �, � � = � and � = �.���, ����� = ��.��%  

As it can be seen, the controller is able to maintain the system at the 

desired trajectory despite the presence of measurement noise as in 

Figure 6.5, and measurement noise with load disturbances, shown in 

Figure 6.6. The inputs are maintained within operational limits, and for 

the most part not overly aggressive.  

For the simulation including the load disturbance, the measurement 

noise signal ��(�) was attenuated by 20% so that the effects of the 

disturbance could be more identified more easily. 
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6.4.2. NARMAX based NMPC for ��� and ��� using multi-step ahead predictors 

 

A similar procedure was carried out to implement the MPC using the 

identified predictors for each of the ��(∙) models. However, as these are 

MISO models, an expansion of the algorithm was performed.  

Firstly, for a system with � inputs, equations (6. 3) and (6. 4) have to 

be defined for each of the inputs. The change of variable from future 

input values, to input increments should be performed to obtain the 

MISO version of equation (6. 5), given by  

��(� + �|�) = ����(�), … , ��� − �� + 1�, Δ��(� + � − 1), … , Δ��(�), 

��(� − 1)… , ��(� − �� + 1), … , Δ��(� + � − 1), … , Δ��(�), 

��(� − 1)… , ��(� − �� + 1)� 

(6. 18) 
Here, as during the system identification, �� is considered constant for 

all inputs. The input number is used as a superscript to avoid confusion 

in the following operations.  

The predictor in the form of equation (6. 18) is once again split into 

terms which include future control increments and those that do not, 

hence the following is obtained for the �-step ahead predictor: 

�(� + �|�) = ����(�)� + � � ���
�(

�

���

�(�))Δ��(� + � − 1)

�

���

 

(6. 19) 
where 

�(�) = ��(�), … , ��� − �� + 1�, ��(� − 1)… , ��(� − �� + 1), 

… , ��(� − 1)… , ��(� − �� + 1)] 

(6. 20) 

Substituting equation (6. 20) into (6. 19), and writing them out in vector 

form gives the same result as (6. 7), mainly, � = � ∙ Δ� + �. However, for 

the MISO case the extended variables are defined as 

Δ� = �

Δ�(�)

Δ�(� + 1)
⋮

Δ�(� + �� − 1)

� ,  � =

⎣
⎢
⎢
⎢
⎡

����(�)�

����(�)�

⋮
�����(�)�⎦

⎥
⎥
⎥
⎤

 , 
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� = �(�(�)) =

⎣
⎢
⎢
⎢
⎡

�����(�)� 0 ⋯ 0

�����(�)� �����(�)� ⋯ 0

⋮ ⋮ ⋱ ⋮
��� ���(�)� ��� ���(�)� … ��� ��

��(�)�⎦
⎥
⎥
⎥
⎤

 

(6. 21) 
where 

Δ�(�) = �
Δ��(�)

⋮
Δ��(�)

� ,     Δ�(� + � − 1) = �
Δ��(� + � − 1)

⋮
Δ��(� + � − 1)

� 

and 

�� �
���(�)� = [�� �

���(�)�],    � = 1, … , �     �= 1, … , ��, and � = 1, … , �. 

Here, each ���(�)� is of dimension [1, �]. 

Using this new definition of the relevant variables, the same 

procedure used in the SISO case is applied to introduce integral action 

to the predictor (6. 19). 

Similarly, the constraints imposed on the system have to be re-

structured. 

Most of the modifications which are required are the adjustment of 

identity matrices and unit vectors. The main difference is the new 

definition of the vector Δ� as given by equation (6. 21). For the current 

work, the limits ���� and ����, as well as Δu��� and Δu���, have been set 

as equal to all the inputs. As mentioned in the previous section, these 

bounds were defined to be the maximum magnitude possible and not 

based on real actuator performance at this stage. This can easily be 

modified to accommodate actuators with different characteristics.   

A new cost function is defined by 

�(N�, ��, ��) = � �[�(� + �|�)− �(� + �)]�

��

����

+ �‖Δ�(k + j− 1)‖�
�

��

���

 

(6. 22) 
Which is subject to the constraints 

�
���� ≤ ��(� + � − 1) ≤ ���� , � = 1, … , �, � = 1, … , ��

Δu��� ≤ Δu�(� + � − 1) ≤ Δu���, � = 1, … , �, � = 1, … , ��

 

Likewise, in matrix form, equation (6. 22) is given by 

�= [� ∙ Δ� + � − � ]� ∙ [� ∙ Δ� + � − � ] + Δ�� ∙ � ∙ Δ� 

(6. 23) 

Taking into account the new definition of the variables.  
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The solution is found using equation (6. 16) and the control 

implemented to the system is  

�(�) = �(� − 1)+ Δ�(�) 

This MISO MPC algorithm was again implemented using Matlab and 

tested on both the ��� and ��� models identified for the velocity 

magnitude fluctuations. The lower and upper bounds for the actuation 

signal in this case were ± 30
�

�
 and again, the weighing matrix � was 

modified during the simulations to manipulate the controller 

performance. 

As in the previous section, the algorithm was tested using the OSA 

predictors as the plant. Firstly, the case with no measurement noise or 

disturbances was applied to the model ���. 

 
Figure 6.7. Top: Simulation of noise-free controlled ��� model. Plant output in red and desired trajectory 

in blue. Bottom: Actuation signals ��(�).� � = �, � � = � and � = �.����, ����� = �.��%  

This case considered two inputs, therefore s=2 was set in the algorithm 

and the matrices formed to the appropriate size. In Figure 6.7 it can be 

seen that using two actuators, the required actuation to maintain the 

system at the desired trajectory has large oscillations and is saturated at 

some points due to the constraints. Even so, the controller can maintain 

good tracking performance and minimise the error. 
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Figure 6.8. Top: White noise signal �(�) and measurement noise �� (�). Bottom: Comparison of 

measured and noisy data of |�| fluctuations. 

 A new noise signal �(�) was generated as in the previous section, for this 

scenario the variance was set as �� = 5.92× 10^ − 2. The signal was 

filtered giving the measurement noise ��(�) as seen in Figure 6.8, with 

� = − 1.5× 10�� and �� = 5.165× 10��. The load disturbances introduced 

�(�) are given by 

�(�) = �

1.5 65 ≤ � ≤ 80
− 1.5 110 ≤ � ≤ 120
1.5 150 ≤ � ≤ 170

0 ��ℎ������

 

The algorithm was then implemented including only the measurement 

noise, and then measurement noise with load disturbances. 

 
Figure 6.9. Top: Simulation of controlled ��� model with measurement noise �� (�). Plant output in red 

and desired trajectory in blue. Bottom: Actuation signals ��(�). � � = �, � � = � and � = �.����, 
����� = ��.��%  
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Figure 6.10. Top: Simulation of controlled ��� model with measurement noise �� (�) and load 

disturbance �(�) (in grey). Plant output in red and desired trajectory in blue. Bottom: Actuation signals 
��(�). � � = �, � � = � and � = �.����, ����� = ��.��%  

Figure 6.9 and Figure 6.10 once again show that the controller has good 

performance even in the presence of noise and load disturbances. This is 

of due to the integral action obtained by using input and output 

increments rather than the whole values. However, the actuations are 

saturated for a portion of the simulations. It is clear that when this 

occurs, the performance of the controller is decreased. The magnitude of 

the measurement noise was again decreased when introducing the load 

disturbances so that its effect could be seen more clearly. 

After these tests had been performed, the same procedure was 

implemented using the ��� multi-step-ahead predictors. Once again, a 

noise free case was performed to define the weighing parameters. 

 
Figure 6.11. Top Simulation of noise-free controlled ��� model. Plant output in red and desired 

trajectory in blue. Bottom: Actuation signals ��(�). � � = �, � � = � and � = �.��, ����� = �.��%  
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Figure 6.12. Top: Simulation of noise-free controlled ��� model. Plant output in red and desired 

trajectory in blue. Bottom: Actuation signals ��(�).  � � = �, � � = � and � = �.����, ����� = �.�%  

The system is successfully controlled even with the relatively high value 

for � as can be seen in Figure 6.11. Figure 6.12 shows that the performance 

can be increased using the weighing matrix, however this makes the 

actuation slightly more aggressive at some points and the improvement 

of performance for the current case is not greatly enhanced. 

 
Figure 6.13. Top: Simulation of controlled ��� model with measurement noise �� (�). Plant output in 

red and desired trajectory in blue. Bottom: Actuation signals ��(�). � � = �, � � = � and � = �.��, 
����� = ��.��%  
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Figure 6.14. Top: Simulation of controlled ��� model with measurement noise �� (�) and load 

disturbance �(�). Plant output in red and desired trajectory in blue. Bottom: Actuation signals ��(�). 
� � = �, � � = � and � = �.��, ����� = ��.��%  

Likewise, a trial using only measurement noise, and one with 

measurement noise and disturbance were carried out. The results of 

these can be seen in Figure 6.13 and Figure 6.14, respectively. The same 

noise signal and disturbances used in the ��� case were applied here. 

Like the previous case, the measurement error was attenuated in the 

simulation including the load disturbance to study the performance of 

the controller before these events. 

As it can be seen, the algorithm can take the system to the desired 

state and track changes in the set-point in the presence of measurement 

noise and load disturbances.  

6.5. Discussion 
 

This chapter has presented a brief overview of the MPC algorithm, with 

a special focus on the non-linear GPC approach that relies on identified 

input-affine NARX/NARMAX predictors, introduced by (Bai & Coca, 

2008).  

The algorithm was to control the fluctuations of the pressure 

coefficient on the step wall. Additionally, using two MISO models, ��� 

and ��� the control of the velocity fluctuations at a node downstream of 

the step was also performed.  

In the ��� case, the �-step ahead predictions are obtained recursively 

using a OSA predictor and with the MISO models, each of the predictors 

were identified directly from data. All of the simulations have been 
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carried out with modified versions of the models which use the 

increments of input and output variables rather than the whole signals, 

leading to integral action of the controller and enhancing robustness 

(Camacho & Bordons-Alba, 2003; Rossiter, 2003). 

The controller schemes have proved to be successful in all the cases. 

Each of them was tested firstly with no noise, then considering 

measurement noise obtained from a filtered white noise sequence, and 

lastly, with measurement noise and load disturbances. In the case of the 

��� control, the signal to noise ratio defined is  

��� = 10 log �
�������

�

������
� � ≈ 9�� 

while in the cases used with the velocity magnitude, ��� ≈ 15��.  

The disturbances added were approximately 8-10% of the largest 

magnitudes of the signal used in the system identification in each case. 

This shows that the method proposed has good performance overall and 

the capability to reject disturbances and operate with corrupted 

measurements.  

It can be observed that both ��(∙) models performed better than the 

���. This can be attributed to two reasons. The first is that for the ��� 

model, a single OSA predictor was used, and the five-step-ahead 

predictions obtained through recursive calculations. This approach 

leads to a build-up of error at each step due to the use of past predictions 

rather than data (Bai, 2010). Therefore, the control sequence computed 

will not drive the real system to the desired state. On the other hand, the 

use of directly identified multi-step-ahead predictors, as used in this 

work, greatly improves the accuracy of the projected evolution of the 

system, allowing for the truly required control signal to be computed.  

The predictors identified using the NARMAX methodology are 

parsimonious compared to those obtained through linearizations or 

first-principle models, and therefore controllers can be designed with 

greater ease (Bewley, 2001; Billings, 2013; Scott Collis, Joslin, Seifert, & 

Theofilis, 2004).  

This is enhanced further by the fact that they contain only linear 

terms with respect to future input. Therefore, the advantage of a wholly 

NMPC strategy is obtained, without the associated complexity and 
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computational cost as fast QP methods can be used to carry out the 

optimization. A last advantage to using the NARMAX methodology, is 

that when using corrupted measurements for the identification, 

stochastic predictors can easily be identified, which can improve the 

robustness of the designed control law since it would not depend only 

on the tuning parameters as the model itself accounts for noise and 

disturbances (Bai & Coca, 2011). 

The second reason behind the increased performance of ��(∙) over 

��� is that the former has a single degree of freedom to control the 

system. This single actuation is able to track the desired trajectory, 

however, since it does not perform as well as expected, it is likely that 

the real system will not be adequately controlled. This is also visible in 

the fact that the ��� model outperforms the ���, again showing an 

improvement with increased actuators.  

The control actions of the four-input case are smoother and of a 

lower magnitude compared to those of two actuators, which even 

saturates in some instances. Nonetheless, the stability is maintained 

and performance recovered at later time-steps for all the cases. 

It may be possible to improve the performance of the controller 

further by carrying out tests using either an increased prediction 

horizon, or a higher number of actuators. Although it has been seen that 

using �� = 5 has yielded positive results, an increase of the prediction 

horizon is guaranteed to improve the performance, given that an infinite 

horizon leads to nominal stability (Keerthi & Gilbert, 1988; Mayne & 

Michalska, 1990; Mayne, Rawlings, Rao, & Scokaert, 2000). This of course, 

increases the computational burden, however depending on the 

sampling time and complexity of the model, it may not be of great 

concern unless extremely high horizons are sought. In the current work 

this was not perfumed due to the decrease of prediction performance 

that was seen after five-steps-ahead. However, the use of alternate 

NARMAX formulations may allow for better predictors to be identified 

at longer prediction horizons.  

As it was mentioned in the last chapter, the number and location of 

the actuators contribute greatly to the effectiveness of the control 
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scheme in the case of fluid flows (Kim, 2003; Lofdahl & Gad-El-Hak, 1999; 

Scott Collis, Joslin, Seifert, & Theofilis, 2004).  

In this work, three arrangements have been studied, one actuator 

one the inlet wall and two or four on the step wall. These have shown 

that a SISO case is likely to be unfeasible, as it is barely able to control a 

reduced-order model of the system with adequate performance. The two 

and four actuator cases have showed promising results, however, these 

could be improved if further analysis using different dimensions and 

additional actuators were introduced, to find the optimal settings. 

 

 



151 
 

  
 
 
 
CHAPTER 7  

 
 

Frequency analysis of fluid flows  

 
 

7.1. Introduction 

 

Turbulence has been studied for many years, yet a comprehensive 

understanding of it, and its onset is still out of reach (George, P., 2003; 

Li, 2013; Moin & Mahesh, 1998). In fact, some believe that turbulence is 

even “more than” chaos, since it has been shown that depending on the 

Reynolds number, it may not be caused by, or even due to the same 

effects as chaos; but rather due to rough dependence1 on the initial data 

(Li, 2013, 2014).  

The NARMAX models identified from simulation data of flow over 

the BFS have been shown to capture the dynamics of the flow 

encountered in this geometry. An analysis using nonlinear reduced-

order models of turbulent flow can be used to grow the understanding of 

fluid behaviour, in an attempt to shed some light on the turbulence 

phenomena. Non-linear models are clearly required for such a task since 

                                                            
1 Chaos and moderate Reynolds number turbulence is said to be due to sensitive dependence on 
initial data, whereas high Reynolds number is due to rough dependence on initial data. That is, in 
the former, a perturbation takes time to accumulate and in the latter it can grow to a significant 
amount instantly ((Li, 2013)) 
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their linear counterpart cannot represent dynamical behaviours such as 

chaos, harmonics, intermodulation, among others (Lang & Billings, 

2004; Peyton Jones & Choudhary, 2012a; Yue, Billings, & Lang, 2005a). 

This however, greatly increases the difficulty of the analysis since the 

well-established methods of linear analysis in both the time- and 

frequency-domain cannot be easily applied in the non-linear case (Lang 

& Billings, 2004).  

The study of non-linear systems in the frequency domain has 

received more attention over the past few decades (Lang & Billings, 1997; 

Lang, Billings, Yue, & Li, 2007; Yue, Billings, & Lang, 2005a), mainly due 

to the increase of computational power and development of tools which 

allow for this kind of analysis, such as the generalized frequency 

response function (GFRF) (Billings & Tsang, 1989a; George, D. A., 1959), 

the output frequency response function (OFRF) (Billings & Lang, 2002; 

Lang & Billings, 1997, 2004), and the describing function method (Nuij, 

Bosgra, & Steinbuch, 2006), to name a few. Another reason for the 

interest in the analysis of non-linear systems, is the fact that if these 

complex phenomena, such as energy transfer between frequencies, are 

not understood and considered in the design of any structure, be it 

architectonic, automotive or otherwise, it can lead to a catastrophic 

outcome should a resonance be triggered, for example (Lang & Billings, 

2004). 

Frequency domain analysis of non-linear systems is useful, both, in 

the case that the time-domain models have physically meaningful 

parameters or if, as is the case of identified models, the terms and 

coefficients are not related to any physical properties of the system 

(Jing, Lang, & Billings, 2008). This is because the frequency 

representation can be explicitly mapped from the model coefficients and 

so the observed non-linear phenomena can be directly linked to the 

physical system (Jing, Lang, & Billings, 2008; Lang, Billings, Yue, & Li, 

2007). Additionally, identified models with no physical meaning are 

often not unique, therefore it is difficult to compare them in the time-

domain. However, their frequency domain representation will show the 

invariant features of the system, and therefore will be the same (Billings, 

2013; Jing, Lang, & Billings, 2008; Lang, Billings, Yue, & Li, 2007). 
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This chapter presents an analysis of identified NARMAX models in 

the frequency domain. These models represent the input-output 

behaviour between four nodes in the domain, two upstream and two 

downstream of the step. Additionally, the interaction between both 

upstream nodes will be studied.  

The chapter is divided as follows. Section 7.2 presents a brief 

introduction to the frequency domain properties of non-linear systems. 

Section 7.3 introduces the concept of the GFRF and OFRF, additionally 

the method to compute them is presented in section 7.3.1 and 7.3.2, 

respectively.  

Section 7.4 presents the computation and analysis of the GFRF’s for 

the identified models. Likewise, Section 7.5 presents the estimated 

OFRF’s. Both, the GFRF’s and OFRF’s are presented up to third order. 

Finally, Section 7.6 presents a discussion of the results and their 

relevance. 

 

7.2. Non-linear systems in the frequency domain  

 

Linear systems have been studied in the frequency domain with great 

success for many years, and many theories exists, allowing for analysis 

and design of systems across many disciplines (Billings, 2013; Billings & 

Lang, 2002; Lang & Billings, 2004).  

The main benefit of linear models is that they can be directly mapped 

between the time and frequency domain (Billings, 2013; Billings & Lang, 

2002; Lang & Billings, 2004). Therefore, the relationship between the 

input spectra and the output response can be easily obtained (Billings & 

Lang, 2002; Lang & Billings, 2004). The time domain system 

response, �(�), is given by 

�(�) = � ℎ(�)�(� − �)��

�

��

 

Here, ℎ(�) is the impulse response and �(�) the input. 

Applying the Fourier transform gives the frequency domain counterpart  

�(��) = �(��) ∙ �(��) 

(7. 1) 
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Where �(��) and �(��) are the spectrum2 of the output and input 

respectively and �(��) is the (linear) frequency response function. 

Additionally, �� = −1 is the imaginary unit. 

The need for non-linear systems arises from the fact that linear ones 

cannot exhibit many dynamics and phenomena that are present and 

significant to most real systems (Billings & Tsang, 1989a; Lang & Billings, 

2004). The following phenomena are the mechanisms through which the 

output frequency content of a non-linear system is enriched and 

becomes significantly different to that of a linear system excited by the 

same input signal (Billings, 2013; Billings & Tsang, 1989a; Lang & Billings, 

2004; Yue, Billings, & Lang, 2005a). 

 Inter-modulation: the way in which two or more components are 

combined to form the output frequency. The frequencies created 

in this way are limited to those which cannot be obtained through 

the rest of the mechanisms described here. 

  Harmonics: defined as frequency components which are 

multiples of the input frequency, i.e. if the input frequency is  

� = �� the output will include elements at � = 2��, 3��,… 

 Desensitisation: is the interference caused to the response at 

frequency �� by the application of another sinusoidal of 

frequency component ��. The gain at �� will depend on the 

magnitude of the second signal of frequency �� 

 Gain compression or expansion: is the change of the system gain 

due to variation of the input magnitude, where it is not 

proportional as with linear models. Expansion is an increase of 

the gain beyond the linear gain, and compression the opposite. 

                                                           
2 In this work �(��) is used to represent the Fourier transform of �(�), some of the literature 
also uses �(�). 
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Figure 7.1. Examples of non-linear frequency generation phenomena. Top: Harmonics and 

intermodulation. Bottom left: Desensitisation and Bottom right: Gain expansion/compression. 

Visual examples of these phenomena are given in Figure 7.1. The top 

image compares the linear and non-linear frequency response of a 

system under a two-tone input. Harmonics (in blue) and inter-

modulation effects (in green) are shown (Billings & Tsang, 1989a, 1989b; 

Yue, Billings, & Lang, 2005a). The image on the bottom left presents 

desensitisation of the original output spectrum (when excited by 

��(���)), when an additional input ��(���) is applied. The value of the 

spectrum at �� (red dot) is lowered non-linearly due to the presence of 

the second frequency component (Billings & Tsang, 1989a, 1989b). The 

bottom right image shows a typical curve of the gain variation of a linear 

(dotted) and non-linear (solid) system. Gain expansion is observed as the 

solid line surpasses the dashed and compression is present when the 

former is found below (Billings & Tsang, 1989a, 1989b; Yue, Billings, & 

Lang, 2005a). 

It is clear that the output spectrum of a non-linear system is much 

richer than the input (Billings & Lang, 2002; Billings & Tsang, 1989a; Jing, 

Lang, & Billings, 2008, 2010; Lang & Billings, 1997, 2004; Peyton Jones & 

Choudhary, 2012b). Therefore, the techniques applied to the study of 

linear systems cannot be applied in the non-linear case and extensions 

have been proposed  (Billings & Lang, 2002; Billings & Tsang, 1989a, 

1989b; Jing, Lang, & Billings, 2010; Lang & Billings, 1997, 2004; Peyton 

Jones, 2007; Peyton Jones & Choudhary, 2012a; Yue, Billings, & Lang, 

2005a). 
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7.3. The generalized and output frequency response functions  

 

The GFRF is an extension of the linear frequency response function, 

to the nonlinear case (Billings & Lang, 2002; Billings & Tsang, 1989a; 

Peyton Jones & Choudhary, 2012b; Yue, Billings, & Lang, 2005a). There 

are several methods to calculate the GFRF’s, such as using higher order 

extensions of the fast Fourier transform (Kim & Powers, 1988; Nam & 

Powers, 1994) or the transformation of a model using exponential inputs, 

the power series method, through a direct mapping of coefficients or 

computing the response to multi-tonal inputs (Billings & Lang, 2002; 

Lang & Billings, 1997; Peyton Jones & Choudhary, 2012b; Wei, Lang, & 

Billings, 2007).  

A disadvantage of the FFT methods is the need to compute higher 

order spectra, in addition to the limited ability of analysing systems of 

up to third order due to computational expense (Billings & Lang, 2002; 

Yue, Billings, & Lang, 2005a). Additionally, requirements often 

unachievable concerning the input signals, and a great difficulty in 

obtaining a Volterra series representation of many systems exist 

(Billings & Lang, 2002; Yue, Billings, & Lang, 2005a). In this work, an 

approach based on the mapping of the NARMAX models to the 

frequency domain will be used (Billings & Lang, 2002; Lang & Billings, 

1997; Peyton Jones & Billings, 1989; Peyton Jones & Choudhary, 2012b). 

Considering a class of non-linear systems, that is stable near a zero-

equilibrium point, and can be represented by the Volterra series (Lang & 

Billings, 1996; Sandberg, 1983), the output is given by 

�(�) = � � … � ℎ� (��,… ,�� ) � �(� − ��)���

�

�� �

�

��

�

��

�

�� �

 

(7. 2) 
Where �  is the maximum non-linearity order, and ℎ� (∙) represents the 

���  order Volterra kernel. Equation (7. 2) can also be written as 

 

�(�) = � �� (�)

�

�� �

 

(7. 3) 
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Where,  �� (�) is the contribution of the ���  order non-linearity to the 

output, given by 

�� (�) = � … � ℎ� (��,… ,�� ) � �(� − ��)���

�

�� �

�

��

�

��

 

(7. 4) 
The Fourier transform of the Volterra kernel is given by the expansion 

to the ���  order non-linear case of 

�(��) = � ℎ(�)�������

�

��

 

which yields 

�� (���,… ,��� ) = � … � ℎ� (��,… ,�� )���(��∙���⋯ ��� ∙�� ) 

�

��

�

��

���,… ,���  

for � = 1,2,… ,�  

(7. 5) 

Equation (7. 5) is the definition of the ���  order generalized frequency 

response function (GFRF) (George, D. A., 1959). 

Given that the Volterra kernel can be written a number of ways 

depending on the order of the terms within the integration, it is 

necessary to define a way to obtain unique representations (Billings, 

2013). The symmetric GFRF is therefore defined as 

�� ��� (���,… ,��� ) =
1

�!
� �� ����(�),… ,���(�)�

�(∙)

 

(7. 6) 
In equation (7. 6), �(∙) denotes all permutations of integers 1,… ,�. 

Using the definition of the GFRF in equation (7. 4) and considering an 

input defined by  

�(�) =
1

2�
� �(��)������

�

��

 

The output �(�) can be written as 

�(�) = �
1

(2�)�
� … � �� (���,… ,��� ) � �(���)��(���⋯ ��� )����,… ,���

�

�� �

�

��

�

��

�

���

 

(7. 7) 
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After some manipulations and change of variables (Billings, 2013; Lang 

& Billings, 1996), equation (7. 7) can be written in the frequency domain 

as: 

�(��) = � �� (��)

�

�� �

 

(7. 8) 
with 

�� (��) =
1

√� ∙ (2�)���
� �� (���,… ,��� )

 

���⋯ ��� � �

� �(���)���

�

�� �

 

(7. 9) 
Where ∫ (∙)

 

���,… ,��� � �
 denotes the integration of the argument over the 

�-dimensional hyperplane � = ��+ ,… ,+ ��  and ��� denotes the area of 

a minute element on the hyperplane. 

From equation (7. 9), and considering �� (��) as the extension of an 

input spectrum �(��) to the ���  order non-linear case as 

�� (��) =
1

√2 ∙ (2�)���
� � �(���)

�

�� �

 

���⋯ ��� � �

��� 

It can be shown that 

�� (��) =
∫ �� (���,… ,��� )

 

���⋯ ��� � �
∏ �(���)���

�
�� �

∫ ∏ �(���)�
�� �

 

���⋯ ��� � �
���

∙
1

√� ∙ (2�)���
∙ 

� � �(���)

�

�� �

 

���⋯ ��� � �

��� 

Defining 

�� (��) =
∫ �� (���,… ,��� )

 

���⋯ ��� � �
∏ �(���)���

�
�� �

∫ ∏ �(���)�
�� �

 

���⋯ ��� � �
���

 

(7. 10) 
it is clear that  

�� (��) = �� (��) ∙ �� (��) 

(7. 11) 
�� (��) is the output frequency response function (OFRF) that relates the 

input spectrum and system parameters, in the form of the GFRF, to the 

output response (Billings, 2013; Lang & Billings, 2004). As it can be seen, 

this is an equivalent formulation to equation (7.1) for the non-linear case. 
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7.3.1. Derivation of the Generalized Frequency Response Functions 

 

Due to the difficulties encountered in obtaining the Volterra series 

representation of non-linear systems, different methods have been 

developed to derive the GFRFs (Billings, 2013; Billings & Tsang, 1989a; 

Nam & Powers, 1994). Such methods either involve direct identification 

of the GFRF from input-output data (Billings, 2013; Kim & Powers, 1988), 

or through a harmonic probing method based on parametric models 

(Billings, 2013; Billings & Tsang, 1989a; Lang & Billings, 2000). 

(Peyton Jones & Billings, 1989) proposed a method to map NARMAX 

models, such as those identified in this work, to the frequency domain. 

This method has been used and is implemented as follows. 

Firstly, the input needs to be re-written as an �-tone signal which is 

zero-mean given by: 

�(�) = ����� + ⋯ + ���� �  

Additionally, it is assumed that an asymptotically stable equilibrium of 

the system is reached (Billings, 2013; Peyton Jones & Billings, 1989).  

Then, considering the NARMAX model re-written as: 

�(�) = � � � ��� (��,… ,����) � �(� − ��)× � �(� − ��)

���

�� ���

�

�� �

�

��,… ,��� �� �

�

�� �
���� �

�

� � �

 

(7. 12) 
and � + � = � . A recursive method to obtain the GFRF is given by: 

�1 − � ���(��) exp[−�(�� + ⋯ ,�� )��]

�

��� �

��� (�� + ⋯ + �� )

= � ��� (��,… ,�� ) exp[−�(���� + ⋯ ,�� �� )]

�

��,… ,�� � �

+ � � � ��� (��,… ,�� ) exp�−������������ + ⋯ + �� ������ ����,���� + ⋯ + �����
 

�

��,… ,�� � �

���

�� �

���

�� �

+ � � ������,… ,���exp[−�(�� + ⋯ + �� )]

�

��,… ,�� � �

�

�� �

 

(7. 13) 
where 

��,�(���,… ,��� ) = � ��(���,… ,���)����,���(�����,… ,��� )

�����

�� �

exp [−�(�� + ⋯ + ��)
��  ] 

(7. 14) 
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and 

��,�(���,… ,��� ) = �(���,… ,��� ) exp[−�(�� + ⋯ + �� )��] 

(7. 15) 

The recursive algorithm set by equations (7. 13)-(7. 15) is only defined for 

data and models which are zero-mean and are stable around a zero-

equilibrium point (Billings, 2013; Peyton Jones & Billings, 1989, 1993). 

Data used for system identification and the models obtained are usually 

not of this form, therefore the mean in addition to the DC offset of the 

model must be removed (Peyton Jones & Billings, 1989, 1993; Peyton 

Jones & Choudhary, 2012b). 

The NARMAX model is re-written using a change of variable  

��(�) = �(�) − �� 

(7. 16) 
where  

�� =
1

��
� ��

� �

�� �

 

and �� is the length of the data sequence. Substituting �(�) from equation 

(7. 16) into the NARMAX model of equation (4.1) gives 

�(�) = � ��(� − 1),… ,��� − �� �,��(� − 1) + ��,… ,��(� − �� )

+ ��,�(� − 1),… ,�(� − ��)� + �(�) 

(7. 17) 
In order to remove the DC component, consider  

��(�) = �(�) + �� 

(7. 18) 
Where �� is the models internal constant, ��(�) the output including the 

DC term and �(�) is the offset-free output (Peyton Jones & Choudhary, 

2012b). Again, substituting (7. 18) into the modified predictor of equation 

(7. 17) yields 

�(�) − �� = � ��(� − 1) − ��,… ,��� − �� �− ��,��(� − 1)

+ ��,… ,��(� − �� ) + ��,�(� − 1),… ,�(� − ��)� + �(�) 

The internal constant is then obtained by solving ∑ ��� ∗ �� + � = 0, 

where ��� are all terms affected by �� and are labelled per equation (7. 12) 

and � are the constant terms. 

During each of these substitutions, the model coefficients need to be 

recalculated, and some terms will be added or removed. Once these 
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modifications have been made, the model is ready to be used for the 

estimation of the GFRF (Billings, 2013; Peyton Jones & Billings, 1989, 

1993; Peyton Jones & Choudhary, 2012b). 

 

7.3.2. Derivation of the Output Frequency Response Functions 

 

The GFRFs can be used to analyse the non-linear model. However, as 

they are multivariable function in higher order frequency space, they are 

difficult to interpret, and even their visualisation is complicated after 

second order (Billings, 2013; Billings & Tsang, 1989a, 1989b; Yue, Billings, 

& Lang, 2005a, 2005b).  

Nevertheless, methods have been implemented such as subdomain 

division to analyse individual contribution by each term (Peyton Jones 

& Billings, 1989), or using graphical techniques, for example (Billings, 

2013; Billings & Tsang, 1989b; Billings, Tsang, & Tomlinson, 1990; Yue, 

Billings, & Lang, 2005a, 2005b). 

A better approach is to perform the analysis using OFRF’s as defined 

in equation (7. 10) and (7. 11). These are functions of a single complex 

variable (Lang & Billings, 2004). The non-linear OFRF allows for the 

system to be analysed in the style of linear systems, therefore it is 

possible to define the non-linear behaviour and determine how the 

frequency generation occurs (Billings, 2013; Billings & Lang, 2002; Lang 

& Billings, 2004). 

The OFRF is obtained by integrating the product of the GFRF and 

input spectrum over the hyper-plane ��+ ,… ,+ �� = �, for each � of the 

output spectrum �(��). 

The output response of a third order system, according to equation 

(7. 8),  will be 

�(��) = ��(��) + ��(��) + ��(��) 

(7. 19) 
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Using (7. 9) 

�(��) = 1 ∙ � ��(���) ∙ �(���)����

 

��� �

+  

0.1125 ∙ � ��(���,���) ∙ �(���) ∙ �(���)��������

 

������ �

+  

0.0146 ∙ � ��(���,���,���) ∙ �(���) ∙ �(���) ∙ �(���)������������

 

��������� �

 

The contribution of the first, second and third order non-linearities 

can be studied individually as seen in (7. 9). 

 

7.4. Computation and analysis of the GFRF’s for the BFS 

 
The analysis of a NARMAX model using frequency domain methods is 

capable of shedding light into the energy transfer mechanisms between 

the input and output (Billings, 2013; Billings & Lang, 2002). For the case 

of flow over the BFS, it was decided to study how flow upstream of the 

step influences the downstream (of the step) behaviour.  

  
Figure 7.2. Location of the nodes considered for the study of the flow in the frequency domain. 

A method to obtain the GFRF’s was introduced in Section 7.3.1 and has 

been implemented on this system. Firstly, NARMAX models using data 

from the locations given in Figure 7.2 were obtained.  

  

B 

A 

C 

D 

A [−�,0.1�] 

B [−�,0.5�] 

C [�,0.1�] 

D [�,0.5�] 
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Table 7.1. Label and location of the input/output data of the identified NARMAX models 

Model name Input Output 
��� A D 
���  A E 
��� B D 
���  B E 
��� A B 

The input/output models between the selected locations were identified. 

The methodology introduced in Chapter 4 was carried out on data from 

the relevant nodes to obtain OSA, non-linear SISO predictors. The 

models were trained and validated on different data sets. The coefficient 

and model structures for each of the five models are given in Appendix 

C.1.  

 
Figure 7.3. Time series and spectrum of the input signals �� 

 
Figure 7.4. Time series and spectrum of the input signals �� 
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Figure 7.5. Time series and spectrum of the output signals �� 

 
Figure 7.6. Time series and spectrum of the output signals �� 

The input and output data as well as their spectrum are given in Figure 

7.3, Figure 7.4 for the inputs (point A and B) and Figure 7.5, Figure 7.6 for 

the outputs (points D and E).  

Table 7.2. Magnitude, |�(��)|, and frequency, ��, of the most significant peaks of the outputs. 

Output D Output E Output B 
�� |�(��)| �� |�(��)| �� |�(��)| 

12.59 1.449 12.59 1.42 12.59 0.1165 
25.25 1.081 25.25 0.40 24.05 0.028 
37.91 0.753 37.91 0.229 41.51 0.019 
50.3 0.374 50.3 0.356 47.5 0.024 

62.96 0.756 60.56 0.123 60.96 0.014 
75.75 0.43 62.96 0.172 - - 

- - 88.41 .167 - - 
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Significant peaks are seen in both inputs around � = 12.59Hz and a 

smaller one at � = 25.25Hz, whereas the outputs show peaks at  

� ≈ 12,25,37,50,62,75Hz. A summary of the location and magnitudes of 

the peaks is given in Table 7.2. The output frequencies are almost 

multiples of the input frequency; therefore, they are likely to be 

harmonics. The current analysis, in addition to the OFRF’s will allow for 

the precise determination of how these frequencies are generated. 

The algorithm proposed by (Peyton Jones & Billings, 1989) to 

compute the GFRF’s is defined for models that has a zero-mean and 

stable around a zero-equilibrium point. To ensure this, the modifications 

according to equation (7. 16) and (7. 18) were performed on each of the 

models. After the mean removal, the coefficients are recalculated and 

terms grouped where possible, the removal of the constant is then 

carried out and again, the model coefficients are updated and terms 

grouped. For this case, ��� = 5.9663m/s and ��� = 7.9821m/s over the 

training data and different internal constants were identified. The 

modified models are given in Appendix C.2 

Once the models were of appropriate form, the GFRF computation 

was performed using the Non-linear System Frequency Response 

Analysis Toolkit (Yue, Lang, & Billings, 2004). Using this Matlab toolbox, 

both the symbolic expressions and graphical representations of the 

GFRF of the first, second and third order GFRF were obtained. For many 

non-linear systems, these GFRF’s are sufficient to characterize such a 

system (Zhang & Billings, 1993). 

The expression for the linear, quadratic and cubic GFRF’s for system 

AD are: 

��(���) = − �
4.880 ��� � ��  − 5.962��� ��  + 1.707������     − 3.447 ��� � �� 

0.125��� ���  − 0.187������  + 1
 

+
 1.707���� � ��  +  1.127����� ��  −  0.173���� � ��  −  3.447 ���� � �� +  1.951���� � �� 

0.125��� � ��  − 0.187������  + 1
 

+
 0.940���� � ��  −  1.083���� � �� ) 

0.125��� � ��  − 0.187������  + 1
� 

 

��(���,��� ) = − �
0.286 ��� (��� ��� ��) − 0.578 ��� (� �� ��� ��) 

0.125 ��� �(�� � ��) − 0.187 ��� � (�� � ��) + 1
 

+
0.818 ���(��� �����) + 0.327 ��� (���� �����) − � + � + � 

0.125 ��� �(�� � ��) − 0.187 ��� � (�� � ��) + 1
� 
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where 

� = 4.880��� � ��� − 5.962��� �� + 1.707���� �� − 3.447 ���� �� + 1.707 ����� ��

+ 1.127 ����� �� − 0.173 ����� �� − 3.447 ���� � ��   

+ 1.951 ���� � �� + 0.940 ����� ��� − 1.083���� � ��  
 

� =
0.204��� ������� � ���

0.125��� � �� − 0.187���� �� + 1
 

 

� =
0.031������ ���� � �� 

0.125��� � �� − 0.187������ + 1
 

 

� =
0.183��� � ��  ����� �� 

0.125��� � �� − 0.187���� �� + 1
 

 

and lastly, 

��(���,���,���) = − �
� − � + �

0.125����(����� � ��)  − 0.187���� (�� � �� � ��)  + 1
� 

 

with 

� = �
4.88���� �� − 5.963��� �� + 1.707���� �� − 4.447 ���� �� 

(0.125���� �� − 0.187������ + 1)
 

+
1.707 ����� ��  + 1.127 ���� � ��  − 0.173 ���� � ��  − 3.447 ����� ��  + 1.951 ���� � ��

(0.125���� �� − 0.187������ + 1)
 

+
0.94 �������  − 1.083����� ��

(0.125���� �� − 0.187������ + 1)
� 

 

� =
0.204���� ������� �� 

(0.125���� �� − 0.187������ + 1)
� 

 

� =
0.031���� �� ����� ���

(0.125���� �� − 0.187������ + 1)
� 

 

� =
0.183���� ������� ��

(0.125���� �� − 0.187������ + 1)
� 

 

� = 0.286 ��� (� �� �����)  − 0.578 ���(� �� �����) + 0.818 ��� (��� ��� ��)

+ 0.327 ���(���� �����) − � + � + � 

� =
0.031���� (�� ���)���� � �� � 

0.125����(�� ���)  − 0.187���� (�� ���)  + 1
 

 

� =
0.204����(�� � ��)���� � ��� 

0.125����(��� ��)  − 0.187���� (�� � ��)  + 1
 

 

� =
 0.183����(�� � ��)����(�� � ��)����� �� � 

0.125����(�� � ��)  − 0.187���� (�� � ��)  + 1
 

 

The complexity of these functions is shown in this example.  
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Figure 7.7. Top: Magnitude |��(���)|, Bottom: phase ∠��(���) plots for the first order GFRF’s of model 

��� (blue) and ��� (red). 

 
Figure 7.8. Top: Magnitude |��(���)|, Bottom: phase ∠��(���) plots for the first order GFRF’s of model 

��� (blue) and ��� (red).  

 
Figure 7.9. Top: Magnitude |��(���)|, Bottom: phase ∠��(���) plots for the first order GFRF’s of model 

��� (blue). 

The above images compare the first order GFRF’s of the different 

input-output models identified. It can be observed that overall, both the 

|��
��(���)| and |��

��(���)| (shown in blue in their corresponding plots) 
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are larger than |��
��(���)| and |��

��(���)| (shown in red in their 

respective plots) for frequencies �� > 15Hz. Whereas below that 

frequency, |��
��(���)| is greater in the 3 < �� < 9 Hz range and |��

��(���)| 

is larger for all frequencies below �� < 26Hz. Both systems AD and AE 

show a high-pass filter behaviour where the gain is seen to increase 

slightly towards larger frequencies, whereas BD and BE are the opposite, 

with a slightly negative incline. 

Figure 7.9 shows that at all frequencies, the first order effect of the 

input �� is dampened considering �� as the output and therefore will 

have a low contribution to the output spectrum. 

The phase plots show a saw-tooth behaviour for the systems 

analysed, except ���. Additionally, there is a sharp phase change shown 

by both the ��� and ��� models at �� = 19.94Hz, and by the AE and BE 

models at �� ≈ 9,32 Hz, where in the latter, ��� is around 2Hz behind 

���. This last change in phase is also present in model ���. 

 

 
Figure 7.10. Magnitude of |��(���,���)| of second order GFRF of model ���. 

The magnitude of the second order GFRF of model ��� is given in Figure 

7.10. Here it can be seen that overall, the non-linear effects are amplified, 

as the GFRF is largely positive. There are peaks of up to 14.5 dB at  

�� = ±22.8Hz, �� = ±50. There are two significant anti-resonances at  

� = ±(−36.44,36.44)Hz. The complexity of these functions can be seen in 

these plots, which demonstrate the difficulty of interpreting them due 

to the high number of peaks and ridges, which hide the mechanisms of 

output frequency generation (Billings & Lang, 2002; Lang & Billings, 
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1996; Yue, Billings, & Lang, 2005a, 2005b; Zhang & Billings, 1993). The 

phase plots for all GFRF’s are given in Appendix C.3. 

 
Figure 7.11. Magnitude of |��(���,���)| of second order GFRF of model ���. 

The second order GFRF of ��� in Figure 7.11 shows a generally lower gain 

than that of ���. Peaks at �� = �� = ±12.2Hz have a gain of 13.41dB which 

is nearly equal to ���. However, the remainder drops quickly. There are 

significant valleys where the gain is lower than -5dB at approximately 

�� = �� = 0Hz. 

 

 
Figure 7.12. Magnitude of |��(���,���)| of second order GFRF of model ���. 

The GFRF of ��� in Figure 7.12 has a much lower magnitude to the 

previous. The highest peaks have a magnitude of around 2.4dB in gain 

and are found at �� = ±50Hz, �� = ±9.6Hz.  

There are ridges at �� + �� = 59.28Hz and �� + �� = 59.28Hz. 
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Figure 7.13. Magnitude of |��(���,���)| of second order GFRF of model ��� 

This second order GFRF for model ��� has a maximum gain of 17.92dB 

which is slightly higher than all previous GFRF’s. This shows that the 

contribution from the second order GFRF to the frequency response at 

�� = �� = ±13.3Hz will be significant. However, only frequencies in the 

−28 < ��,�� < 2Hz have a positive gain, the remaining effects are 

dampened. 

 

Figure 7.14. Magnitude of |��(���,���)| of second order GFRF of model ���. 

Finally, the second order GFRF from the ��� model show that the 

response will not be made up from contributions of this function. The 

entire gain is negative, that is, dampening the effects at all frequencies. 
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Figure 7.15. Magnitude of |��(���,���,���)| of second order GFRF of model ���. 

A slice of the third order GFRF at with �� = �� for model ��� is shown 

in Figure 7.15. It can be seen that the contribution of this function to the 

response will be lower than the second order GFRF’s for all frequencies. 

The highest gain in this case is 2.4dB but most of the values are negative. 

 
Figure 7.16. Magnitude of |��(���,���,���)| of second order GFRF of model ���. 

The third order GFRF for model has a gain which is higher than that of 

the second order. Peaks at �� = �� = 12.814Hz have a gain of 16.72dB and 

�� = �� = 12.46Hz of 14.8dB, both of which are higher than the peaks of 

the second order GFRF of the same model. However, most of the 

remaining frequencies are dampened. 
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Figure 7.17. Magnitude of |��(���,���,���)| of second order GFRF of model ���. 

The entire magnitude of the third order GFRF for model ���  in Figure 

7.17 is negative. As the second order only had small sections which were 

positive, it can be inferred that most of the output response is due to the 

linear effects. 

 
Figure 7.18. Magnitude of |��(���,���,���)| of second order GFRF of model ���. 

The third order GFRF for ���  has a high resonant peak at  

�� = �� = 12.814Hz with a gain of 20.5dB, likewise a ridge is found at  

8 < �� < 18Hz, −30 < �� < 30Hz. The remainder of the frequencies are 

dampened as seen in Figure 7.18. 
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Figure 7.19. Magnitude of |��(���,���,���)| of second order GFRF of model ���. 

Lastly, the third order GFRF of ��� has a lower gain than the second 

order counterpart, suggesting once more that the contribution to the 

output at these frequencies is dampened. 

In this section the GFRF’s have been studied, where it is possible to 

have an idea of the amount of contribution that each order will have on 

the output spectrum (Billings & Tsang, 1989b; Billings, Tsang, & 

Tomlinson, 1990). However, the actual way in which the contribution 

takes place is not transparent, mainly due to the high dimensionality 

and non-linear processes that are present in the functions, such as 

intermodulation of two or more frequencies, for the second and third 

order case, respectively (Lang & Billings, 2004; Yue, Billings, & Lang, 

2005a). It is necessary to consider all possible combinations of �’s that 

make up a single output frequency which can be daunting.  

7.5. Computation and analysis of the OFRF’s for the BFS 
 

Considering the difficulty of gaining insight into the system from the 

computed GFRF, the OFRF’s of each of the systems were studied.  

The OFRF were computed and evaluated per equation (7. 9) and 

compared to the FFT of the measured output signals at each location.  
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Figure 7.20. Magnitude of |��(��)| for ��� (in red) and ��� (in black) to the measured frequency 

response, �(��) (in dashed blue). 

The contributions that the first order OFRF’s have on the output 

spectrum for model ��� and ��� are shown in Figure 7.20. in red and 

black respectively. The largest peaks for both |��
��(��)| and |��

��(��)| are 

at the frequency �� = 12.59Hz which is expected since it is also found in 

the input. Furthermore, the linear contribution to |��
��(��)| is also 

significant to the peaks at �� = 25.25,37.2,50.3Hz, whereas |��
��(��)| 

only makes up 31.8% of the output frequency at �� = 12.59Hz and is 

negligible for the remaining values. 

 
Figure 7.21. Magnitude of |��(��)| for ��� (in red) and ��� (in black) to the measured frequency 

response, �(��) (in dashed blue). 

Figure 7.21 shows the contribution to the output spectrum by |��
��(��)| 

and |��
��(��)|. The largest peaks are found at the frequency �� = 12.59Hz. 

Further, once again the |��
��(��)| is close to that of the measured 

response, contributing 98.6% and makes up a significant percentage of 

the peaks at �� = 25.25,37.2Hz. In this case |��
��(��)| contributes 81% of 

the magnitude of the output spectrum but is only significant around this 

frequency. 
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Figure 7.22. Comparison of the magnitude of |��(��)| for ��� (in red) to the measured frequency 

response, �(��) (in dashed blue). 

This last Figure 7.22, shows how the measured output frequency 

response is much lower than that of the other models studied. In this 

case |��
��(��)| contributes 85% to the output frequency component at 

�� = 25.25Hz and 55.38% of the peak at 25.38Hz, however, the nearest 

resonant peak is around 1Hz lower.  

The second order OFRF’s have also been evaluated to study the system 

in response to pairs of frequencies that satisfy � = �� + �� (Billings, 

2013; Billings & Tsang, 1989a). 

 
Figure 7.23. Comparison of the magnitude of |��(��)| for ��� (in red) and ��� (in black) to the 

measured frequency response, �(��) (in blue). 

The second order OFRF shown in Figure 7.23 has a lesser contribution to 

the output spectrum than the linear part, this is expected considering 

the gain of the second order GFRF for both models. However, the non-

linear effects are visible at the higher resonant frequencies, where three-

wave interaction exists and is partially responsible for the harmonics, 

particularly for ���. 
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Figure 7.24. Comparison of the magnitude of |��(��)| for ��� (in red) and ��� (in black) to the 

measured frequency response, �(��) (in blue). 

Figure 7.24 shows a similar outcome, where the second order OFRF 

magnitude, |��(��)|, shows a slight contribution from three-wave 

interactions at � = 24.98Hz. The contribution at this frequency for both 

��� and ��� is quite similar. However, there is a slight contribution at 

� = 37.77Hz for ��� whereas ��� is largely insignificant. 

 
Figure 7.25. Comparison of the magnitude of |��(��)| for ��� (in red) to the measured frequency 

response, �(��) (in blue). 

Considering that the most relevant peaks of the output spectrum for ��� 

have been seen to be due to the linear effects, Figure 7.25 shows an 

expected low contribution from the second order OFRF |��(�ω)|. It is 

worth noting that two small peaks are visible which once again, show 

that three-wave interaction does account for some of the dynamics of the 

output. 
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Figure 7.26. Comparison of the magnitude of |��(��)| for ��� (in red) and ��� (in black) to the 

measured frequency response, �(��) (in blue). 

The contribution of the third order OFRF can be seen in Figure 7.26. It is 

clear that four-wave interactions have a great impact on the output 

spectrum for both ��� and ���. Several of the higher frequency 

resonances are generated due to these third order non-linear 

mechanisms for model ���, whereas almost the entire spectrum has a 

significant contribution for ���. 

 
Figure 7.27. Comparison of the magnitude of |��(��)| for ��� (in red) and ��� (in black) to the 

measured frequency response, �(��) (in blue). 

For ��� it is visible in Figure 7.27 that the third order OFRF also has a 

significant contribution to the output spectrum, especially in the higher 

frequencies. In the case of ���, the contribution is lower overall. 

 
Figure 7.28. Comparison of the magnitude of |��(��)| for ��� (in red) to the measured frequency 

response, �(��) (in blue). 
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Finally, the contribution to the output spectrum of the third order OFRF 

for model ��� is seen to be relatively high for most frequencies except 

for the resonance at � = 12.59Hz which had been almost completely 

made up from the linear effects.  

The OFRF’s for higher orders can be obtained as long as the GFRF’s can 

be identified, however, for many systems it is sufficient to study up to 

third order effects (Zhang & Billings, 1993). Therefore, the following step 

in the analysis of these systems is to assess how much of the measured 

output response has been estimated using the combination of the �-th 

order frequency responses computed from the model (Lang & Billings, 

2004). 

For this, a simple summation is performed to obtain an estimated 

output frequency response ��(��) using 

��(��) = ��(��) + ��(��) + ��(��) 

 
Figure 7.29. Top: Comparison of the magnitude of ���(��)� for ��� (in red) to the measured frequency 

response, �(��) (in blue). Bottom: Comparison of the magnitude of ���(��)� for ��� (in black) to the 

measured frequency response, �(��) (in blue). 

Figure 7.29 shows the comparison between the measured and estimated 

frequency responses. For model ���, the main resonant frequencies are 

estimated almost entirely, whereas for ��� the estimated response 

predicts the location of the peaks well, however the magnitude is not 

accurate at the lower frequencies but is seen to improve towards higher 

values. 

  



7.5 Computation and analysis of the OFRF’s for the BFS  

179 
 

Table 7.3. Comparison between measured |�(��)| and estimated ���(��)� output frequency response for 

��� and ��� 

Peak frequency [Hz] |�(��)| 
���(��)� % of Error 

��� ��� ��� ��� 
12.59 1.45 1.433 0.918 1.172 36.6 

25.25 1.082 0.754 0.772 30.24 28.63 

37.91 0.754 0.357 0.566 52.59 24.89 

50.3 0.375 0.342 0.282 8.74 24.8 

62.96 0.757 0.549 0.567 27.37 25.07 

75.75 0.431 0.2778 0.322 35.54 25.29 

A summary of the error between the predicted and measured value of 

the output response of model ��� and ��� at the resonant frequencies 

is given in Table 7.3. 

 
Figure 7.30. Top: Comparison of the magnitude of ���(��)� for ��� (in red) to the measured frequency 

response, �(��) (in blue). Bottom: Comparison of the magnitude of ���(��)� for ��� (in black) to the 

measured frequency response, �(��) (in blue). 

Similarly, Figure 7.30 shows the approximated and measured frequency 

response for models ���  and ���. In this case both models yielded 

GFRF’s and OFRF’s capable of estimating the output response of the 

system accurately. Once again, the model whose input is data from point 

A is seen to predict most of the response accurately.  

Table 7.4. Comparison between measured |�(��)| and estimated ���(��)� output frequency response for 

��� and ��� 

Peak frequency [Hz] |�(��)| 
���(��)� % of Error 

���  ���  ���  ���  
12.59 1.422 1.403 1.121 1.33 21.16 

25.25 0.404 0.341 0.203 15.39 49.60 

37.91 0.231 0.189 0.119 18.01 48.13 

50.57 0.3491 0.172 0.173 50.50 50.27 

A summary of the main peaks, and the amount of the output response 

predicted using the OFRF’s of model ���  and ��� is given in Table 7.4. 
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Figure 7.31. Comparison of the magnitude of���(��)� for ��� (in red) to the measured frequency 

response, �(��) (in blue). 

Lastly, the approximation of the output response for model ��� can be 

seen to be accurate in Figure 7.31. Here most of the peak at � = 12.59Hz 

is accounted for by the approximation and the location of lesser peaks is 

also captured precisely. 

Table 7.5. Comparison between measured |�(��)| and estimated ���(��)� output frequency response for 

��� 

Peak frequency [Hz] |�(��)| ���(��)� % of Error 

12.59 0.1165 0.1078 7.46 

24.05 0.028 0.0147 47.5 

41.51 0.019 0.009 52.63 

47.5 0.024 0.0119 50.41 

A summary of the main peaks, and the amount of the output response 

predicted using the OFRF’s of model ���  and ��� is given in Table 7.4. 

 

7.6. Discussion 

 

To understand turbulence, it is necessary to deduce a description of the 

observed dynamics, that is, the composition of the turbulence, such as 

the energy distribution, and linear and non-linear, energy transfer 

processes (Balikhin, Bates, & Walker, 2001). 

This chapter has presented a study of turbulent flow over the BFS in 

the frequency domain, for the first time using GFRF’s and OFRF’s. This 

was achieved by identifying several polynomial SISO NARMAX model 

from data extracted at different points up and downstream of the flow. 

These models were mapped into the frequency domain to obtain the 

GFRF’s proposed by (George, D. A., 1959) using the NSFRA toolbox, based 

on the harmonic probing approach (Billings & Lang, 2002; Billings & 
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Tsang, 1989a; Lang & Billings, 2004; Peyton Jones & Billings, 1989; Peyton 

Jones & Choudhary, 2012b; Yue, Lang, & Billings, 2004).  

The first order GFRF’s for the models showed that there are some 

local maxima near the resonant frequencies observed in the output, 

such as � ≈ 12,25,37,53,65,75Hz for all the identified models. The 

second and third order GFRF’s are harder to interpret, as they are 

multivariable and high-dimensional functions. However, they can be 

used to have an idea of the amount of contribution that each of the non-

linear processes will have on the output spectrum (Billings, 2013; 

Billings & Tsang, 1989a, 1989b; Peyton Jones & Choudhary, 2012b).  

The second and order effects for model ��� and ��� are likely to 

have the highest contribution to their corresponding frequency 

response since the gain of the GFRF is of a similar or even larger 

magnitude than the linear effects. On the other hand, model ��� and ��� 

have decreasing gains for the second and third order GFRF’s for most 

frequencies. Finally, model ��� has negative gains for all GFRF’s. 

An analysis of the OFRF’s has been performed to study the way in 

which the �-th order frequency responses are formed, and in turn, how 

much of the output frequency response is explained by linear, quadratic 

and cubic effects using the identified models (Billings, 2013; Lang & 

Billings, 1997, 2004). 

The linear energy transfer mechanism is dominant in all five cases. 

In particular, the output frequency response at the frequency F=12.59 Hz, 

|�(�12.59)| can be explained almost entirely in terms of the linear 

frequency response function. Additionally, for models ��� and ���, a 

significant contribution to higher resonant frequencies can be seen, as 

mentioned these are approximately at the local maxima of the first order 

GFRF. 

The second order OFRF’s have a minimal contribution to the output 

response for the BD and BE systems. The most significant peaks make 

up less than 28% of the output response at � ≈ 25,37Hz.  However, three-

wave interactions are present in the flow, in systems AD/AE the 

magnitude of |��(��)| at � = 25.25,37.9Hz has clear resonant peaks, 

which will ultimately contribute to the output response at those 

frequencies. On the other hand, the third order contribution is seen to 
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be quite significant for ��� and ���, this is foreseeable considering the 

gain of the corresponding GFRF. Additionally, the |��(��)| is expected to 

be lower for the ��� and ��� since the linear and quadratic output 

responses have already accounted for a large part of the output response. 

��� is seen to be largely linear, where the second and third order effects 

are negligible for most of the frequencies with the exceptions of slight 

peaks at the resonant frequencies of the input. 

In a study on turbulence,  (Ritz & Powers, 1986) showed that in 

turbulent plasma, the position of the measuring probes changes the 

effects which are measured. For measurements from neighbouring 

points, the effects are mainly linear since structures seen at the input 

are still present, and dominate the behaviour at the output, whereas 

larger distance between probes yields an increase capture of non-linear 

interactions between the waves (Ritz & Powers, 1986).  

In this work, this remains valid, the distance between the studied 

nodes is small and linear effects dominate the energy transfer for all 

systems, hence the input frequency has a strong presence in the output 

response. Between nodes AD, the quadratic effect is significant whereas 

AE shows almost entirely linear behaviour. System BD has strong cubic 

contributions whereas BE does not.  

It is understandable to see that AE has mainly linear dynamics, since 

the two nodes are separated by a short wall-normal distance (0.5H) and 

node E is close to the dividing streamline between the recirculation and 

free flow (shear layer). However, it is interesting to see that AD has again 

mainly linear dynamics, with a slight contribution from three-wave 

interactions (quadratic effects), considering that the vertical separation 

is almost a whole step height, and in addition, point D is immersed in 

the recirculation zone.  

On the other hand, system BE is mostly linear with some cubic 

effects, whereas BD is almost entirely dominated by cubic effects. 

Further investigation into the energy transfer and the variation of these 

mechanisms across the spatial domain, in addition to variations of flow 

properties is required. It may also be of interest to study if the energy 

transfer mechanisms can be used to determine the direction of the 

energy transfer, from smaller to larger eddies or vice versa, however this 
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would have to be done using three-dimensional data to obtain a more 

realistic behaviour including vortices. 

In the case of the study by Ritz, it was found that a linear transfer 

function was sufficient to represent the turbulent plasma system since 

the quadratic effects were insignificant and they did not pursue higher 

order due to limitations of the method implemented (Ritz & Powers, 

1986). In the analysis performed here, linear effects indeed dominate the 

energy transfer the studied positions, however, cubic and perhaps 

higher order interactions are also important. These play an important 

role in the transfer of energy from the input to output frequencies, which 

by definition, cannot be done through linear means (Billings & Lang, 

2002; Lang & Billings, 2004), and as shown using the linear OFRF’s, the 

output response is not adequately represented using only this 

component.   

  



CHAPTER 7  
  

184 
 

 



185 
 

 
 
 
 
CHAPTER 8  

 
 

Conclusions and future work 

 
 

8.1. Summary  

 

This work proposed an alternative approach to the development of 

reduced-order models of fluid flows for flow control applications, using 

non-linear system identification rather than finite-element 

approximations. This approach has been applied to two classic 

benchmark models, the three-dimensional channel flow and two-

dimensional flow over the backward facing step.  

The identification approach was used to develop a non-linear model 

predictive control strategy, based on input-affine multi-step ahead 

nonlinear predictors. The methodology was demonstrated through 

numerical simulations to control the flow over the backward facing step.  

Furthermore, non-linear models identified from simulated data were 

used to carry out higher-order frequency response analysis of turbulent 

flow, over the backward facing step using the generalized and output 

frequency response functions. 

Simulations were performed using dedicated computational fluid 

dynamics software. The ChannelFlow package (Gibson, 2012) was 

employed for direct numerical simulations of three-dimensional 
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channel flow, whereas Ansys Fluent (Ansys, 2016) was used to perform 

Large Eddy simulations of two-dimensional flow over the backward 

facing step. These simulations were designed and carried out 

considering flow properties, parameters and dimensions used in the 

literature, to ensure their accuracy and validity of the data (Driver & 

Jovic, 1994; Gibson, Halcrow, & Cvitanović, 2008; Heins, 2015; Le, Moin, 

& Kim, 1997).  

A Fourier analysis was performed on the data from both scenarios to 

identify the system’s bandwidth and generate a persistently exciting 

input (Leontaritis & Billings, 1987; Ljung, 2004). This signal was 

implemented on actuated versions of the scenarios (Heins, 2012). The 

actuation used was suction and blowing applied as normal velocity on 

the wall nodes (Ricco & Dilib, 2010; Uruba, Jonáš, & Mazur, 2007).  

Input/output data from a simulation using the designed stimuli was 

used to identify one-step ahead MIMO predictors (Billings, 2013; Chen & 

Billings, 1989; Leontaritis & Billings, 1985). In the case of channel flow, a 

six-input and three-output configuration was considered. A structure 

was identified for nodes belonging to different classes, such as wall, edge 

and vertex, resulting in 27 sub-models. Quadratic and cubic predictors 

with input and output lag �� = 7, �� = 4, respectively, and varying 

number of terms were identified. The best performing over the training 

data were tested on an unseen data set for validation, the final model for 

each structure was chosen based on the NRMSE, parameters were re-

calculated for each node of the corresponding sub-type. 

A similar approach was taken to identify SISO OSA predictors for the 

fluctuations of the pressure coefficient ��, on the top of the step, and 

MISO MSA predictors for the variations of the velocity magnitude at a 

point within the recirculation zone. The inputs were a single actuator on 

the inlet wall for the ��� case, and two or four actuators on the step wall 

for the ��(∙) configurations, once again using suction and blowing. The 

candidate term set for the models identified of flow over the BFS was 

tailored to ensure input affinity, which allows for a predictive control 

strategy to be readily implemented (Bai & Coca, 2008, 2011). 

A linear/non-linear hybrid model predictive control approach (Bai & 

Coca, 2008) is used based on the GPC algorithm (Camacho & Bordons-
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Alba, 2003; Clarke, Mohtadi, & Tuffs, 1987a). This method uses the full 

non-linear model, which contains terms that allow for the posterior 

optimization to be performed using fast QP methods. The identified non-

linear predictors, formulated with input and output increments to 

incorporate integral action (Bai & Coca, 2008), are used to generate 

predictions of future states over the �� horizon. A control sequence is 

computed which minimizes a defined cost function of the error between 

the actual and desired state, additionally it can penalize the actuation 

and output signal (Clarke, Mohtadi, & Tuffs, 1987a).  

A predictive control scheme was chosen due to the compatibility 

with non-linear models, in addition to the capability of imposing 

constraints during the control design stage (Camacho & Bordons-Alba, 

2003; Clarke, Mohtadi, & Tuffs, 1987a; Rossiter, 2003). This is of great 

importance since real systems all have constraints on the actuation, 

output and rates of change of these variables.  

The control algorithm was applied to the three identified models, 

���, ��� and ���. Simulations using the corresponding OSA predictor as 

the plant were performed, and the control was shown to be able to 

maintain the system on the desired trajectory, even in the presence of 

measurement noise and load disturbances. 

Lastly, an analysis of the energy transfer between two up and 

downstream nodes, in addition to the interaction of both upstream 

points was realized. To achieve this, the NARMAX system identification 

methodology (Billings, 2013) was implemented on data from these points 

and OSA SISO predictors were identified. These were mapped into the 

frequency domain to yield the linear, quadratic and cubic GFRF’s 

(George, 1959), which were analysed and subsequently used to compute 

the OFRF’s (Lang & Billings, 1997, 2004). The latter show the 

contribution of each �-th order frequency response to the total output 

response. 

It was found that linear mechanisms dominate the energy transfer 

for the selected points, however quadratic and cubic effects are 

significant for the AD and BD systems, respectively.  
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8.1.1. System identification of non-linear reduced order models and predictive 

control of flow over the backward facing step 

 

System identification using the NARMAX methodology was carried out 

for the first time using data from simulations of turbulent flow in two 

geometries. This approach has been shown to be effective in capturing 

the dynamics of the system using SISO, MISO and MIMO predictors. 

Validation techniques have shown the accuracy of models identified in 

this manner, additionally, a predictive control strategy was designed 

and tested using the NARMAX models and shown to be able to drive the 

system to the desired state. Which once again shows that the dynamics 

captured are representative of the system.  

The main issues recognised in the current work regarding system 

identification are related to the experiment design. This stage is crucial 

for any application (Leontaritis & Billings, 1987; Ljung, 2004), however 

in the case of fluid flows and their control, it is particularly difficult 

considering the complexity and incomplete understanding of their 

behaviour (Bradshaw, 1994; Davidson, Kaneda, & Sreenivasan, 2013).  

Experimental tests are difficult and often costly to perform (John, 

1995), due to the iterative nature of system identification, they are not 

an optimal source of data. Simulations on the other hand can provide 

the required data, however, the selection of parameters, flow properties 

and design of meshes needs to be done carefully and is often a repetitive, 

and time consuming process until an adequate simulation can be 

obtained (Ansys, 2016; John, 1995). Putting these matters aside, the 

definition of the adequate sensing and actuation position, and sampling 

rate, as well as the variables themselves is a further challenge (Chung & 

Talha, 2011; Lofdahl & Gad-El-Hak, 1999a; Scott Collis, Joslin, Seifert, & 

Theofilis, 2004).  

Currently, actuators exist which can be readily implemented and so 

their behaviour can be simulated in a straight forward manner 

considering the response rate, dimensions and other characteristics (Ho 

& Tai, 1998; Lofdahl & Gad-El-Hak, 1999a, 1999b).  

Similarly, current sensor technology can make measurements of 

wall-based values, and some can record flow information small distances 

from the boundary (Lofdahl & Gad-El-Hak, 1999a). Therefore, the 
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selection of a quantity which can be readily measured is of importance 

if controllers based on these models are to be implemented on real 

systems.  

In the current work, the velocity measurements for the MISO models 

are not easily obtained. However, these variables were considered as a 

first attempt of employing non-linear system identification approaches 

and predictive controllers in a simulation environment. These can be 

refined or modified to consider more realistic measurements, and 

sampling times for example, to generate feasible controllers. 

The use of non-linear models in fluid control is of great importance 

since numerical solutions of the Navier-Stokes equations are 

prohibitively expensive for any purpose other than off-line analysis 

(Scott Collis, Joslin, Seifert, & Theofilis, 2004). On the other hand, 

linearized or simplified versions of the governing equations can only 

represent a limited set of flow dynamics, and are usually defined around 

small neighbourhoods of states (Pollard, 1998; Scott Collis, Joslin, 

Seifert, & Theofilis, 2004; Yue, Billings, & Lang, 2005). In reality, flow 

behaviour changes dramatically, and many applications have properties 

such as Reynolds numbers, which make some of the previously reported 

approaches no longer valid (Davidson, Kaneda, & Sreenivasan, 2013; 

Frank, 2011).  

The predictive control approach proposed in this work has the 

accuracy of non-linear models to forecast the evolution of the flow, with 

the ease of implementation of a linear predictive approach, given that 

the identified MSA predictors are input affine and do not require non-

linear optimization methods. Additionally, since all future predictions 

depend on measured data up to instant (�), they can be evaluated in 

parallel and so are feasible for use in real-time applications. 

The control scheme incorporates integral action using input and 

output increments rather than the whole variable. Therefore, it is well 

suited to account for exogeneous disturbances, which have a significant 

presence in real flows. 

Lastly, as stated, the position of the actuator has a great impact on 

the effectiveness of the control approach. Therefore, the simulation of 

the system before actuation with practical dimensions and limitations, 
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will help to elucidate the true impact that an implementable control can 

produce. 

 

8.1.2. Frequency analysis of turbulent fluid flows 

 

The analysis made on the five systems of the flow over the backward 

facing step has shown the way in which the output frequency response 

is made up by �-th order mechanisms (Lang & Billings, 2004). It has been 

shown that the linear effects dominate but quadratic and cubic effects 

can be significant depending on the position of the input considered. 

This study was based on NARMAX SISO predictors which can be mapped 

directly into the frequency domain, hence some of the issues regarding 

the system identification also need to be addressed here.  

The position of the input and output will define the dynamics 

captured, small separation between measurement points result in 

dominant linear characteristics whereas more separation allows for the 

non-linear effects to increase in significance (Ritz & Powers, 1986). The 

frequency domain tools such as the OFRF’s can be used to study the 

positions which have greater effect on other locations of the flow, or 

which effects are better transmitted, and so a better decision on the type 

and location of the actuation and sensing can be taken. 

The study of the OFRF can also be applied to determine the specific 

frequencies which contribute to the generation of resonances and the 

way in which energy is transferred (Billings & Lang, 2002; Lang & 

Billings, 2004). A further study between the spatial variations of 

frequency and time domain properties, can lead to the determination of 

which events give rise to instabilities and how these are propagated 

across the domain. Hence it can be possible to design controllers which 

attenuate the relevant modes. An approach using a similar strategy is 

used by (Heins, Jones, & Sharma, 2016) and has been shown to be 

effective. 
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8.2. Conclusions  
 

The current work has successfully implemented the NARMAX 

system identification methodology using data obtained from numerical 

simulations of turbulent flow in two different geometries. Two 

numerical methods were used to generate the data, DNS and LES 

methods for the channel, and flow over the BFS, respectively. The 

geometry, flow properties, and simulation parameters were set 

according to previous studies. 

Models of the SISO, MISO and MIMO types were obtained for 

different variables from these geometries, these being the components 

of velocity fluctuations from three-dimensional channel flow and the 

velocity magnitude and pressure coefficient variations from two-

dimensional flow over the BFS. In the case of the latter geometry, both 

OSA and MSA predictors were identified, and were later used in a non-

linear model predictive control scheme. The proposed NMPC approach 

has been shown to be robust and capable of following a desired trajectory 

using localized actuation and sensing. 

Finally, a frequency domain analysis has been performed between 

two upstream and two downstream nodes of the step, in addition to the 

interaction between the two upstream locations. New SISO OSA 

predictors were identified from measured data. The GFRF’s were 

computed to study the linear, quadratic and cubic effects visible through 

the gain of the magnitude, the phase and dependence on the 

combinations of frequencies. The OFRF’s have been evaluated and the 

individual contributions of the �-th frequency responses studied.  

It was determined that for the selected positions, the linear effects 

dominate the energy transfer, however for two of the locations the 

quadratic and cubic non-linearities also make a significant contribution. 

It was shown that the effects up to third order can explain most of the 

output frequency response, including the additional resonances 

observed on the output, which are due to harmonic and intermodulation 

effects. 
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8.3. Recommendations for future work 
 

This thesis has presented developments obtained in the system 

identification, control and analysis of turbulent fluid flows. However, a 

number of issues and challenges remain in each of these areas. The 

following recommendations are avenues for future work on this 

multidisciplinary subject. 

 The NARMAX system identification methodology has been 

used in this work using turbulent flow data. A polynomial 

expansion was selected,  however, the use of alternate 

formulations may be beneficial to improve the accuracy of the 

multi-step ahead predictors to be used in the control 

approach (Billings, 2013). Further, an improvement of the 

validity of the identified models and subsequent control can 

be obtained through the use of three-dimensional simulations 

to generate more realistic data (De Brederode & Bradshaw, 

1978). In addition, the consideration of existing device 

properties of actuators and sensors, coupled with a matching 

sampling rate and the use of feasible variables and 

measurements is essential for the development of realistic 

control strategies based on these models. 

 The proposed control scheme has been tested using the 

identified OSA predictor as the plant. The next step is to 

implement this algorithm into the CFD package and study the 

performance on the “true” system, that is, the LES of the 

Navier-Stokes equations, and with this, validate its 

usefulness. It is also of importance to study the effect of the 

control and prediction horizons, as within the simulations 

performed in this work, the values selected were sufficient. 

However, considering the increased complexity of the full 

simulation, it may be necessary to expand one or both 

parameters, as well as a performing a re-tuning of the 

weighting function(s) (Clarke, Mohtadi, & Tuffs, 1987a). 

Further, if the measurements used for the identification are 

considered as noisy, the NARMAX methodology can easily 

incorporate a noise sub-model to ensure that the parameters 
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computed are not biased (Chen, Billings, & Luo, 1989; 

Leontaritis & Billings, 1985), and the NMPC scheme can be 

extended to account include this addition (Bai, 2010; Bai & 

Coca, 2008; Clarke, Mohtadi, & Tuffs, 1987a, 1987b). 

 The extension and adaptation of the control approach to the 

MIMO channel flow case also studied in this work can show 

the scalability and range of systems to which such an 

approach can be applied to. This can be a first step into the 

establishment of a complete methodology for turbulent flow 

control which encompasses from the experiment design, 

system identification and ends with controller 

implementation. 

 GFRF’s and OFRF’s have shown the energy transfer 

mechanisms present between node-pairs up and downstream 

of flow over the BFS. Using this initial knowledge, events of 

interest can be sought in the computed GFRF’s and OFRF’s of 

different order to further study them. A precise 

decomposition of each event can be performed to determine 

the specific contributions that input frequencies have, and 

how the output behaviour is constructed (Lang & Billings, 

2004). In addition, a study of higher order functions may be of 

interest to obtain a more accurate approximation to the 

spectrum of the measured output, in addition to determining 

the importance of five- or higher-wave interactions for 

different flow arrangements (Ritz & Powers, 1986; Zhang & 

Billings, 1993).  

 The frequency analysis tools can be used to determine the 

spatial variation of energy transfer within the flow by 

carrying out a frequency domain analysis of more systems. 

Using this new insight into turbulence and its behaviour, it 

may be possible to determine the locations which have the 

biggest effects on the recirculation zone, for example, and 

thus identify the best position for actuation systematically. A 

similar approach may be able to elucidate the optimal spatial 

arrangement of actuators and sensors.  
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Appendix A 

 

A.1 Additional fluid mechanics and 

dynamics concepts 
 

 Dynamic viscosity (�): This quantity depends on the temperature 

of the fluid and the surrounding pressure. It has SI units �
��

��
�. 

 Kinematic viscosity (�): ratio of the dynamic viscosity to the 

density of the fluid denoted by � =
�

�
 with SI units �

��

�
�. 

 Velocity (U): It stands for � = �� + �� + ��, where � = ��(�, �, �, �), 

� = ��(�, �, �, �) and  � = ��(�, �, �, �) are the directional 

components with SI units �
�

�
�. 

 Reynolds number ( ��): Care has to be taken when using this since 

the ranges that define the type of flow vary greatly depending on 

the geometry of the domain. When calculating it, L is the 

characteristic length of the flow, which is related for example, to 

the diameter of pipes or the distance travelled by the fluid. 

 Boundary layer: This concept has allowed for the simplification of 

the Navier-Stokes equations and enables the study of a number of 

practical problems which were unreachable beforehand (Scott 

Collis, Joslin et al. 2004). 

 Density (�): Is the amount of mass of a fluid contained within a 

unit volume, with international system (SI) units �
��

��� . 
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 Pressure (�): It is the property that represents the compressive 

stress within the fluid and has the same magnitude in all 

directions, it has SI units �
�

���. 

 Turbulence: It is usually found when a �� value is exceeded 

(depending on the geometry), where a transitional flow occurs 

which may be part laminar, part turbulent. If the �� value is 

increased further the flow will usually become fully turbulent. 

Turbulent flow is always three-dimensional with high interaction 

of ordered structures, particularly in the boundary layer which 

itself becomes unstable.  

 Turbulent kinetic energy or TKE (�): it is the measure of the mean 

kinetic energy per unit mass of the turbulent fluctuations ��, ��, �� 

with SI units [
�

��
=

��

�� ]. 

 Turbulent kinetic energy dissipation rate (�): it is the rate at 

which the TKE is converted into thermal energy, with SI units 

[
�

��∗�
=

��

�� ] 
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Appendix B 

B.1 Channel flow model structures 
Vertex [1,1,1] 

Structure ��  Structure ��  Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

y_1(k-2) 1 
 

y_2(k-2) 1 
 

y_3(k-2) 1 

u_2(k-1) 1 
 

u_8(k-1) 1 
 

u_10(k-1) y_3(k-1) 

u_17(k-1) y_2(k-2) 
 

u_26(k-1) 1 
 

u_24(k-1) u_16(k-1) 

u_13(k-1) u_11(k-1) 
 

u_22(k-1) u_11(k-1) 
 

u_27(k-1) y_3(k-1) 

u_14(k-1) 1 
 

u_24(k-1) u_20(k-1) 
 

u_19(k-1) u_12(k-1) 

u_24(k-1) 1 
 

u_15(k-1) y_3(k-1) 
 

u_26(k-1) y_1(k-1)    
y_3(k-2) y_3(k-1) 

 
u_14(k-1) u_7(k-1)    

u_2(k-1) 1 
 

u_26(k-1) y_1(k-2)    
u_22(k-1) u_12(k-1) 

 
u_16(k-1) y_3(k-2)    

u_16(k-1) y_3(k-1) 
 

u_9(k-1) y_3(k-2)    
u_13(k-1) y_3(k-2) 

 
u_22(k-1) u_9(k-1)    

u_22(k-1) u_21(k-1) 
   

   
y_3(k-2) y_1(k-1) 

   

   
u_25(k-1) y_3(k-1) 

   

   
u_11(k-1) y_1(k-1) 

   

   
u_20(k-1) y_1(k-2) 

   

   
u_25(k-1) u_11(k-1) 

   

   
u_26(k-1) u_11(k-1) 

   

   
u_4(k-1) 1 

   

   
u_13(k-1) 1 

   

   
u_13(k-1) y_1(k-1) 

   

   
y_1(k-2) y_1(k-2) 

   

   
y_3(k-1) y_3(k-1) 

   

   
u_19(k-1) u_15(k-1) 

   

   
u_21(k-1) u_16(k-1) 

   

   
u_25(k-1) y_3(k-2) 

   

   
u_24(k-1) y_1(k-2) 

   

 

Vertex [30,1,1] 

Structure ��  Structure ��  Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

y_1(k-2) 1 
 

y_2(k-2) 1 
 

y_3(k-2) 1 

u_7(k-2) 1 
 

u_8(k-1) 1 
 

u_9(k-2) 1 

u_7(k-1) 1 
 

u_26(k-1) u_17(k-1) 
 

u_27(k-1) u_23(k-2) 

y_1(k-1) 1 
 

u_26(k-2) u_11(k-2) 
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Vertex [1,1,25] 

Structure ��  Structure ��  Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

1 1 

u_13(k-3) u_13(k-3) 
 

u_8(k-3) 1 
 

y_3(k-1) 1 

u_10(k-2) y_3(k-1) 
 

u_14(k-2) 1 
 

u_15(k-2) 1 

u_10(k-2) 1 
 

u_6(k-3) 1 
 

u_15(k-1) 1 

u_22(k-2) u_9(k-2) 
 

u_20(k-1) u_14(k-1) 
 

u_15(k-3) 1 

u_22(k-1) u_13(k-1) 
 

u_4(k-1) 1 
 

u_24(k-1) u_22(k-1) 

u_22(k-1) u_13(k-2) 
 

u_8(k-1) 1 
 

u_13(k-1) y_1(k-1) 

u_22(k-1) u_13(k-3) 
 

u_8(k-2) 1 
 

u_13(k-2) y_1(k-1) 

u_22(k-3) u_13(k-3) 
 

u_26(k-2) 1 
 

u_20(k-1) u_15(k-3) 

u_24(k-3) u_10(k-1) 
 

u_26(k-1) 1 
 

u_13(k-3) u_12(k-1) 

y_3(k-1) y_1(k-1) 
 

u_26(k-3) 1 
 

u_12(k-3) u_7(k-2) 

u_24(k-2) u_22(k-3) 
 

u_14(k-1) 1 
 

u_24(k-1) y_3(k-1) 

u_27(k-1) u_10(k-1) 
 

u_21(k-2) u_18(k-2) 
 

u_22(k-3) u_12(k-3) 

u_13(k-2) 1 
 

u_14(k-3) 1 
 

u_22(k-1) u_10(k-1) 

u_13(k-1) 1 
 

u_26(k-3) u_9(k-1) 
 

u_13(k-3) u_12(k-2) 

u_13(k-3) 1 
 

u_24(k-3) u_24(k-2) 
 

u_24(k-1) u_10(k-1) 

u_13(k-3) u_10(k-3) 
 

u_16(k-1) u_15(k-3) 
 

  

u_13(k-3) u_10(k-1) 
 

u_25(k-1) u_13(k-1) 
 

  

u_8(k-3) 1 
    

  

 

 

Vertex [30,1,25] 

Structure ��  Structure ��  Structure �� 

y_1(k-1) 1 
 

y_2(k-1) y_1(k-2) 
 

y_3(k-1) 1 

u_13(k-2) u_10(k-2) 
 

u_8(k-2) 1 
 

u_15(k-2) 1 

u_13(k-1) u_10(k-2) 
 

u_8(k-1) 1 
 

u_15(k-1) 1 

u_25(k-2) u_7(k-2) 
    

u_21(k-2) y_1(k-1) 

u_24(k-2) u_22(k-1) 
    

u_12(k-1) u_10(k-2) 

u_13(k-2) u_7(k-1) 
    

u_10(k-1) 1 

u_13(k-1) u_7(k-1) 
      

u_24(k-2) u_22(k-2) 
      

u_16(k-2) u_14(k-2) 
      

u_10(k-2) y_1(k-1) 
      

u_25(k-2) u_19(k-1) 
      

u_13(k-2) 1 
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Vertex [1,29,1] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) y_1(k-2) 
 

y_3(k-1) 1 

u_13(k-2) 1 
 

u_8(k-2) 1 
 

u_15(k-2) 1 

u_13(k-1) 1 
 

u_8(k-1) 1 
 

u_15(k-1) 1 

u_10(k-1) u_10(k-1) 
 

u_14(k-2) 1 
 

u_15(k-1) y_2(k-1) 

u_13(k-1) u_8(k-1) 
 

u_26(k-2) 1 
 

u_12(k-1) u_10(k-1)    
u_26(k-1) 1 

   

   
u_14(k-1) 1 

   

   
u_15(k-1) 1 

   

   
y_3(k-1) 1 

   

 

Vertex [1,29,25] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

u_15(k-1) 1 

u_25(k-1) y_1(k-1) 
 

u_4(k-1) 1 
 

u_27(k-1) u_23(k-1) 

u_13(k-1) u_7(k-1) 
 

u_9(k-1) u_9(k-1) 
 

u_15(k-1) u_14(k-1) 

u_18(k-1) u_12(k-1) 
 

u_17(k-1) 1 
   

   
u_19(k-1) u_18(k-1) 

   

 

Vertex [30,29,1] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 1 y_3(k-1) 1 

u_25(k-1) 1 
 

u_17(k-1) y_2(k-1) 
 

u_19(k-1) u_9(k-1) 

u_19(k-1) u_15(k-1) 
 

y_2(k-1) y_2(k-1) 
 

u_12(k-1) u_10(k-1) 

u_24(k-1) u_13(k-1) 
    

u_24(k-1) u_13(k-1)       
u_13(k-1) u_12(k-1)       
u_12(k-1) u_12(k-1)       
u_25(k-1) u_10(k-1)       
u_15(k-1) u_13(k-1) 

 

 Vertex [30,29,25] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

u_15(k-1) 1 

u_25(k-2) u_25(k-2) 
 

u_8(k-2) u_7(k-1) 
 

u_15(k-2) 1 

u_25(k-1) u_13(k-2) 
 

u_8(k-1) 1 
 

u_15(k-1) u_14(k-2) 

u_25(k-1) u_13(k-1) 
    

u_9(k-2) u_7(k-2) 

u_7(k-2) 1 
    

u_15(k-2) u_8(k-2) 

 

Edge [1,1,~] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

u_18(k-1) 1 

u_16(k-2) u_15(k-1) 
 

u_8(k-2) 1 
 

u_18(k-2) 1 

u_16(k-1) 1 
 

u_8(k-1) u_8(k-1) 
 

u_18(k-1) u_17(k-1) 
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Edge [30,1,~] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

u_18(k-1) 1 

y_1(k-2) 1 
 

u_8(k-1) 1 
 

y_3(k-2) 1 

u_7(k-1) 1 
 

y_2(k-2) 1 
 

u_38(k-1) u_9(k-1) 

u_37(k-1) u_17(k-1) 
 

u_38(k-1) 1 
 

u_35(k-1) u_18(k-1) 

u_16(k-1) y_2(k-2) 
 

u_17(k-1) 1 
 

u_28(k-1) u_18(k-1) 

u_16(k-1) y_2(k-1) 
 

y_3(k-1) y_3(k-1) 
 

u_38(k-1) u_38(k-1) 

u_38(k-1) u_34(k-1) 
 

y_3(k-2) y_3(k-2) 
   

 

Edge [~,1,1] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

y_1(k-2) 1 
 

y_2(k-2) 1 
 

y_3(k-2) 1 

u_7(k-1) 1 
 

u_8(k-1) 1 
 

u_36(k-1) 1 

u_37(k-1) u_23(k-1) 
 

u_11(k-1) 1 
 

u_39(k-1) u_23(k-1) 

u_16(k-1) 1 
 

u_21(k-1) y_1(k-1) 
 

u_32(k-1) u_18(k-1) 

u_35(k-1) u_16(k-1) 
 

u_38(k-1) u_23(k-1) 
 

u_19(k-1) y_3(k-1) 

u_32(k-1) u_9(k-1) 
 

y_1(k-1) y_1(k-1) 
 

u_36(k-1) u_31(k-1) 

1 1 
    

u_39(k-1) u_32(k-1) 

  
    

u_13(k-1) y_3(k-1) 

 

Edge [~,1,25] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

u_8(k-1) 1 
 

y_3(k-1) 1 

y_1(k-2) 1 
 

y_2(k-2) 1 
 

y_3(k-2) 1 

u_31(k-1) y_1(k-2) 
 

y_2(k-1) 1 
 

u_24(k-1) y_1(k-1) 

u_34(k-1) 1 
 

u_3(k-1) 1 
 

u_15(k-1) u_13(k-1) 

u_9(k-1) y_1(k-1) 
 

u_35(k-1) u_35(k-1) 
 

u_37(k-1) u_36(k-1) 

u_31(k-1) u_18(k-1) 
 

u_2(k-1) 1 
 

u_31(k-1) 1 

u_16(k-1) u_13(k-1) 
 

u_1(k-1) 1 
   

 

Edge [1,29,~] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

u_14(k-1) u_14(k-2) 
 

y_3(k-1) 1 

u_22(k-1) u_13(k-2) 
 

u_14(k-2) 1 
 

u_18(k-2) 1 

u_22(k-1) u_13(k-1) 
 

1 1 
 

u_18(k-1) 1 

u_16(k-2) u_16(k-2) 
    

u_31(k-1) u_31(k-1) 

u_16(k-1) u_16(k-1) 
      

1 1 
      

u_34(k-1) u_19(k-2) 
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Edge [30,29,~] 

Structure �� 
 

Structure �� Structure �� 

y_1(k-1) 1 
 

 y_2(k-1) y_2(k-1) 
 

u_18(k-1) 1 

u_7(k-2) 1 
 

 u_23(k-2) 1 
 

u_18(k-2) 1 

u_17(k-1) u_16(k-2) 
 

 u_23(k-1) 1 
 

u_32(k-1) u_9(k-2) 

u_17(k-2) u_16(k-1) 
 

 u_17(k-2) 1 
 

u_38(k-2) u_9(k-1) 

u_17(k-1) y_1(k-1) 
 

 u_29(k-2) 1 
 

u_18(k-2) u_17(k-1) 

u_38(k-2) u_16(k-1) 
 

 u_29(k-1) 1 
 

u_18(k-2) u_17(k-2) 

u_16(k-1) 1 
 

 u_38(k-2) 1 
 

u_13(k-1) y_3(k-1)    
 

   
u_39(k-2) u_13(k-1)    

 
   

u_15(k-1) y_3(k-1) 

 

 

Edge [~,20,1] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) y_1(k-2) 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_7(k-1) 1 
 

u_29(k-1) u_17(k-1) 
 

u_9(k-1) 1 

u_18(k-1) 1 
 

u_38(k-1) u_11(k-1) 
 

u_18(k-1) u_16(k-1) 

1 1 
 

u_4(k-1) 1 
   

   
u_2(k-1) 1 

   

   
u_5(k-1) 1 

   

   
1 1 

   

 

Edge [~,29,25] 

Structure ��  Structure ��  Structure �� 

y_1(k-1) 1 
 

y_2(k-1) y_2(k-2) 
 

u_18(k-1) 1 

u_17(k-1) u_16(k-2) 
 

u_20(k-2) 1 
 

u_18(k-2) 1 

u_17(k-2) u_16(k-1) 
 

u_20(k-1) 1 
 

u_35(k-1) u_9(k-2) 

u_35(k-2) u_34(k-2) 
 

u_17(k-2) 1 
 

u_18(k-1) u_17(k-2) 

u_17(k-2) u_7(k-2) 
 

u_23(k-2) 1 
 

u_35(k-2) u_9(k-2) 

u_37(k-2) u_24(k-2) 
 

u_23(k-1) 1 
 

u_17(k-1) u_9(k-1) 

u_18(k-2) u_17(k-2) 
 

u_17(k-1) 1 
 

u_17(k-2) u_9(k-1) 

1 1 
    

u_25(k-1) u_21(k-2)       
u_36(k-2) u_16(k-1) 

 

Edge [1,~,1] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_16(k-2) 1 
 

u_17(k-2) 1 
 

u_18(k-2) 1 

u_16(k-1) 1 
 

u_17(k-1) 1 
 

u_18(k-1) 1 

u_13(k-1) 1 
 

u_14(k-1) 1 
 

u_28(k-1) 1 

1 1 
 

u_28(k-1) u_17(k-1) 
 

u_18(k-1) u_13(k-1)    
u_31(k-2) u_13(k-1) 

 
1 1 
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Edge [1,~,25] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_16(k-2) 1 
 

u_14(k-2) 1 
 

u_15(k-2) 1 

u_16(k-1) 1 
 

u_14(k-1) y_1(k-1) 
 

u_18(k-2) 1 

u_13(k-1) u_13(k-2) 
 

1 1 
 

u_18(k-1) 1 

u_13(k-2) 1 
 

  
 

u_15(k-1) u_14(k-1) 

 

Edge [30,~,1] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_7(k-2) 1 
 

u_8(k-2) 1 
 

u_9(k-2) 1 

u_13(k-2) 1 
 

u_17(k-2) 1 
 

u_15(k-2) 1 

u_13(k-1) 1 
 

u_17(k-1) 1 
 

u_15(k-1) 1 

u_34(k-2) 1 
 

u_14(k-1) 1 
 

u_36(k-2) 1 

u_16(k-2) u_16(k-2) 
 

u_14(k-2) 1 
 

u_33(k-1) u_24(k-1) 

u_30(k-1) u_16(k-1) 
 

u_17(k-1) u_7(k-1) 
 

u_36(k-1) 1 

1 1 
 

u_39(k-2) u_33(k-1) 
 

u_39(k-2) u_16(k-1)    
u_8(k-1) 1 

 
u_15(k-1) y_1(k-1)    

u_21(k-2) u_16(k-1) 
 

u_33(k-1) u_13(k-1)    
u_24(k-1) u_16(k-2) 

   

   
u_27(k-1) u_23(k-2) 

   

   
u_25(k-2) u_8(k-2) 

   

   
u_31(k-1) u_14(k-1) 

   

   
u_33(k-1) u_26(k-2) 

   

   
u_34(k-2) u_20(k-2) 

   

   
u_38(k-1) u_15(k-2) 

   

   
u_27(k-2) y_1(k-1) 

   

   
u_32(k-1) y_3(k-1) 

   

   
u_29(k-2) u_19(k-1) 

   

   
u_37(k-2) u_22(k-2) 

   

   
u_16(k-1) y_2(k-1) 

   

 

Edge [30,~,25] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

u_15(k-1) 1 

u_37(k-2) u_7(k-2) 
 

u_14(k-2) 1 
 

u_15(k-2) 1 

u_13(k-2) 1 
 

u_14(k-1) 1 
 

u_36(k-2) u_16(k-1) 

u_13(k-1) 1 
 

u_35(k-1) 1 
 

u_18(k-2) 1 

u_37(k-2) u_13(k-1) 
 

u_29(k-2) 1 
 

u_18(k-1) y_1(k-1) 

u_13(k-1) u_8(k-2) 
 

u_26(k-1) u_19(k-2) 
 

u_36(k-1) u_14(k-1) 

u_16(k-1) u_8(k-1) 
 

u_33(k-1) u_27(k-1) 
 

u_18(k-2) u_13(k-1) 
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Wall [~,1,~] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) y_1(k-1) 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_7(k-2) 1 
 

u_8(k-2) 1 
 

u_51(k-3) 1 

1 1 
 

u_50(k-3) y_1(k-1) 
 

u_22(k-1) u_12(k-1) 

  
 

u_26(k-3) u_7(k-3) 
 

u_51(k-2) u_49(k-2) 

  
 

u_50(k-1) u_16(k-3) 
   

  
 

u_11(k-1) 1 
   

  
 

u_53(k-1) u_13(k-2) 
   

 

Wall [~,29,~] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) y_1(k-2) 
 

y_2(k-1) 1 
 

u_21(k-1) 1 

u_7(k-2) 1 
 

u_11(k-2) 1 
 

u_21(k-2) 1 

u_19(k-2) 1 
 

u_11(k-1) 1 
 

u_32(k-2) y_3(k-1) 

u_19(k-1) 1 
 

u_20(k-2) 1 
 

u_52(k-2) u_9(k-2) 

1 1 
 

u_20(k-1) 1 
 

1 1 

  
 

u_56(k-1) 1 
   

  
 

u_56(k-2) 1 
   

 

Wall [1,~,~] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_7(k-1) 1 
 

u_43(k-1) u_41(k-1) 
 

u_15(k-1) 1 

u_10(k-1) 1 
 

u_47(k-1) u_37(k-1) 
 

1 1 

u_25(k-1) 1 
 

u_41(k-1) u_28(k-1) 
   

u_17(k-1) 1 
 

u_48(k-1) u_27(k-1) 
   

1 1 
 

u_8(k-1) 1 
   

  
 

u_40(k-1) u_11(k-1) 
   

  
 

u_6(k-1) 1 
   

 

Wall [30,~,~] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_7(k-1) 1 
 

u_53(k-1) 1 
 

u_24(k-1) 1 

u_37(k-1) u_27(k-1) 
 

u_35(k-1) 1 
 

u_15(k-1) 1 

u_49(k-1) u_31(k-1) 
 

u_14(k-1) 1 
 

u_20(k-1) 1 

u_45(k-1) 1 
 

u_24(k-1) u_23(k-1) 
 

u_33(k-1) u_31(k-1) 

u_15(k-1) 1 
 

u_54(k-1) u_53(k-1) 
 

u_31(k-1) u_15(k-1)    
u_17(k-1) 1 

 
u_47(k-1) u_35(k-1)       
u_10(k-1) u_10(k-1)       
u_25(k-1) u_19(k-1)       
u_25(k-1) u_13(k-1)       
u_16(k-1) u_12(k-1) 
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Wall [~,~,1] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_46(k-1) 1 
 

u_47(k-1) 1 
 

u_9(k-1) 1 

u_10(k-1) 1 
 

u_11(k-1) 1 
 

u_57(k-1) 1 

u_7(k-1) 1 
 

u_50(k-1) u_23(k-1) 
 

u_15(k-1) 1 

u_47(k-1) u_19(k-1) 
 

1 1 
 

u_50(k-1) u_19(k-1) 

u_50(k-1) u_49(k-1) 
    

u_55(k-1) u_50(k-1) 

u_17(k-1) 1 
    

u_50(k-1) u_46(k-1) 

u_20(k-1) 1 
    

u_53(k-1) u_18(k-1) 

u_16(k-1) u_15(k-1) 
    

u_53(k-1) u_42(k-1) 

u_41(k-1) u_30(k-1) 
    

u_53(k-1) u_32(k-1) 

u_50(k-1) 1 
    

u_21(k-1) u_17(k-1) 

  
    

u_18(k-1) u_11(k-1) 

  
    

u_56(k-1) u_43(k-1) 

  
    

u_39(k-1) u_35(k-1) 

 

Wall [~,~,25] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) y_2(k-1) 
 

y_3(k-1) 1 

u_7(k-1) 1 
 

u_50(k-1) 1 
 

u_51(k-1) 1 

u_52(k-1) 1 
    

u_54(k-1) u_50(k-1) 

u_49(k-1) u_47(k-1) 
    

u_21(k-1) 1 

u_47(k-1) u_7(k-1) 
    

u_29(k-1) u_21(k-1) 

u_52(k-1) u_13(k-1) 
    

u_51(k-1) u_30(k-1) 

u_50(k-1) u_13(k-1) 
    

u_54(k-1) u_53(k-1) 

0 0 
    

u_26(k-1) y_3(k-1) 

 

Inner flow [~,~,~] 

Structure �� 
 

Structure �� 
 

Structure �� 

y_1(k-1) 1 
 

y_2(k-1) 1 
 

y_3(k-1) 1 

u_7(k-1) u_6(k-1) 
 

u_26(k-1) 1 
 

u_27(k-1) u_27(k-1) 

u_10(k-1) 1 
 

u_68(k-1) 1 
 

u_72(k-1) 1    
u_58(k-1) u_8(k-1) 

   

   
u_23(k-1) 1 
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B.2 Probability density functions for 

the NRMSE of each velocity 

component over the entire channel 

flow domain 
 

Probability density function of NRMSE of models of the streamwise velocity 

component across the channel flow domain 

 

 

Probability density function of NRMSE of models of the wall-normal velocity 

component across the channel flow domain 

 

 

Probability density function of NRMSE of models of the spanwise velocity 

component across the channel flow domain 

 

  



APPENDIX 

206 
 

B.3 Model structures and 

parameters for OSA predictors of |�| 

data of flow over the BFS 
 

��� Model 

Parameter Structure 

2.53797 1 1 

0.755998 y_1(k-1) 1 

-0.01108 y_1(k-1) y_1(k-2) 

-0.00518 y_1(k-1) u_1(k-4) 

0.003086 y_1(k-1) u_2(k-5) 

-0.23781 y_1(k-2) 1 

0.007318 y_1(k-2) y_1(k-3) 

0.253627 u_1(k-1) 1 

0.001529 u_1(k-1) y_1(k-3) 

0.100254 u_1(k-1) u_1(k-2) 

-0.14836 u_1(k-1) u_1(k-3) 

0.103555 u_1(k-1) u_1(k-4) 

-0.03578 u_1(k-1) u_1(k-5) 

-0.29675 u_1(k-2) 1 

-0.16042 u_1(k-2) u_1(k-2) 

0.220081 u_1(k-3) 1 

0.378664 u_1(k-3) u_1(k-2) 

-0.20632 u_1(k-3) u_1(k-3) 

-0.08243 u_1(k-4) 1 

-0.24637 u_1(k-4) u_1(k-2) 

0.254099 u_1(k-4) u_1(k-3) 

-0.07313 u_1(k-4) u_1(k-4) 

0.079872 u_1(k-5) u_1(k-2) 

-0.07343 u_1(k-5) u_1(k-3) 

0.03338 u_1(k-5) u_1(k-4) 

0.001652 u_2(k-1) u_1(k-5) 

0.002332 u_2(k-4) u_1(k-1) 

0.002282 u_2(k-6) u_1(k-5) 

-0.00183 u_2(k-7) u_2(k-2) 

 

 

 

 

��� Model 

Parameter Structure 

1.552415 1 1 

0.739311 y_1(k-1) 1 

-0.01552 y_1(k-1) y_1(k-2) 

0.002856 u_3(k-3) u_1(k-2) 

0.084472 u_4(k-1) 1 

0.005077 u_4(k-1) y_1(k-3) 

-0.00283 u_4(k-1) u_1(k-2) 

0.282455 u_4(k-1) u_4(k-2) 

-1.0773 u_4(k-1) u_4(k-3) 

2.13992 u_4(k-1) u_4(k-4) 

-2.93899 u_4(k-1) u_4(k-5) 

2.987156 u_4(k-1) u_4(k-6) 

-2.27135 u_4(k-1) u_4(k-7) 

1.25803 u_4(k-1) u_4(k-8) 

-0.46837 u_4(k-1) u_4(k-9) 

0.089137 u_4(k-1) u_4(k-1) 

0.010947 u_4(k-2) u_4(k-2) 

-0.05311 u_4(k-3) 1 
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B.5 Model structures and 

parameters for MSA predictors of 

|�| data from flow over the BFS 
 

��� Model 

Parameter Structure (2SA) 

2.53797 1 1 

0.755998 y_1(k-1) 1 

-0.01108 y_1(k-1) y_1(k-2) 

-0.00518 y_1(k-1) u_1(k-4) 

0.003086 y_1(k-1) u_2(k-5) 

-0.23781 y_1(k-2) 1 

0.007318 y_1(k-2) y_1(k-3) 

0.253627 u_1(k-1) 1 

0.001529 u_1(k-1) y_1(k-3) 

0.100254 u_1(k-1) u_1(k-2) 

-0.14836 u_1(k-1) u_1(k-3) 

0.103555 u_1(k-1) u_1(k-4) 

-0.03578 u_1(k-1) u_1(k-5) 

-0.29675 u_1(k-2) 1 

-0.16042 u_1(k-2) u_1(k-2) 

0.220081 u_1(k-3) 1 

0.378664 u_1(k-3) u_1(k-2) 

-0.20632 u_1(k-3) u_1(k-3) 

-0.08243 u_1(k-4) 1 

-0.24637 u_1(k-4) u_1(k-2) 

0.254099 u_1(k-4) u_1(k-3) 

-0.07313 u_1(k-4) u_1(k-4) 

0.079872 u_1(k-5) u_1(k-2) 

-0.07343 u_1(k-5) u_1(k-3) 

0.03338 u_1(k-5) u_1(k-4) 

0.001652 u_2(k-1) u_1(k-5) 

0.002332 u_2(k-4) u_1(k-10) 

0.002282 u_2(k-6) u_1(k-5) 

-0.00183 u_2(k-7) u_2(k-2) 

 

 

 

 

 

 

Parameter Structure (5SA) 

5.951107 1 1 1 

0.001229 y_1(k-4) y_1(k-6) u_2(k-6) 

0.307119 u_1(k-1) 1 1 

-0.00687 u_1(k-1) u_1(k-5) 1 

0.000669 u_1(k-1) u_1(k-5) u_2(k-7) 

-0.00058 u_1(k-1) u_2(k-5) u_2(k-5) 

0.019445 u_2(k-1) 1 1 

-0.07164 u_1(k-2) 1 1 

0.0058 u_2(k-4) u_1(k-10) 1 

 

Parameter Structure (4SA) 

5.675127 1 1 

0.00763 y_1(k-3) u_2(k-11) 

0.00766 y_1(k-6) y_1(k-5) 

0.309818 u_1(k-1) 1 

-0.01083 u_1(k-1) u_1(k-4) 

-0.18185 u_1(k-2) 1 

0.092169 u_1(k-3) 1 

-0.01138 u_1(k-5) y_1(k-6) 

0.005533 u_1(k-10) y_1(k-7) 

0.011809 u_2(k-1) 1 

0.008235 u_2(k-5) y_1(k-5) 

0.007701 u_2(k-5) u_1(k-11) 

0.006083 u_2(k-6) u_1(k-14) 

-0.00369 u_2(k-9) u_1(k-14) 

-0.01091 u_2(k-11) y_1(k-7) 
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Parameter Structure (3SA) 

4.551515 1 1 

0.114738 y_1(k-2) 1 

-0.00305 y_1(k-2) u_1(k-5) 

0.004083 y_1(k-2) u_2(k-5) 

0.356015 u_1(k-1) 1 

0.058835 u_1(k-1) u_1(k-3) 

-0.16428 u_1(k-1) u_1(k-4) 

0.239917 u_1(k-1) u_1(k-5) 

-0.2549 u_1(k-1) u_1(k-6) 

0.206357 u_1(k-1) u_1(k-7) 

-0.12808 u_1(k-1) u_1(k-8) 

0.055316 u_1(k-1) u_1(k-9) 

-0.01657 u_1(k-1) u_1(k-10) 

-0.29867 u_1(k-2) 1 

0.216621 u_1(k-3) 1 

-0.10567 u_1(k-4) 1 

0.027062 u_1(k-9) 1 

0.002591 u_2(k-2) u_1(k-5) 

-0.00337 u_2(k-2) u_2(k-8) 

0.004473 u_2(k-4) u_1(k-10) 

0.005115 u_2(k-6) u_1(k-5) 

 

��� Model 

Parameter Structure (2SA) 

4.038423 1 1 

0.180865 y_1(k-2) 1 

-0.00571 y_1(k-2) u_4(k-4) 

-0.00462 u_2(k-1) u_4(k-5) 

0.044338 u_2(k-10) 1 

0.163482 u_4(k-1) 1 

-0.00343 u_4(k-1) u_1(k-3) 

0.302551 u_4(k-1) u_4(k-3) 

-1.07788 u_4(k-1) u_4(k-4) 

2.000969 u_4(k-1) u_4(k-5) 

-2.44749 u_4(k-1) u_4(k-6) 

2.11271 u_4(k-1) u_4(k-7) 

-1.27522 u_4(k-1) u_4(k-8) 

0.500628 u_4(k-1) u_4(k-9) 

-0.10302 u_4(k-1) u_4(k-10) 

 

 

 

 

 

Parameter Structure (4SA) 

6.335584 1 1 

0.006438 u_1(k-3) y_1(k-6) 

0.006495 u_1(k-4) u_1(k-12) 

0.005697 u_2(k-1) u_4(k-10) 

-0.00553 u_2(k-2) u_3(k-11) 

0.00662 u_2(k-8) u_1(k-6) 

-0.00509 u_2(k-15) u_1(k-7) 

0.003938 u_3(k-1) u_4(k-9) 

-0.04817 u_3(k-13) 1 

0.005869 u_3(k-13) u_1(k-9) 

-0.0073 u_3(k-13) u_2(k-6) 

0.004639 u_3(k-15) u_2(k-5) 

0.153388 u_4(k-1) 1 

-0.00411 u_4(k-1) u_2(k-14) 

-0.00692 u_4(k-1) u_4(k-5) 

0.005987 u_4(k-1) u_4(k-7) 

0.004752 u_4(k-2) u_1(k-7) 

-0.00523 u_4(k-15) u_2(k-11) 

0.005372 u_4(k-15) u_2(k-15) 

 

Parameter Structure (3SA) 

4.858581 1 1 

0.070562 y_1(k-3) 1 

0.004182 y_1(k-3) u_2(k-4) 

0.002937 u_1(k-1) u_2(k-4) 

0.003 u_1(k-2) u_4(k-6) 

0.004164 u_1(k-3) u_3(k-4) 

0.004397 u_1(k-3) u_4(k-9) 

0.001841 u_1(k-7) u_1(k-7) 

0.002976 u_1(k-9) u_1(k-9) 

-0.00551 u_2(k-1) u_3(k-10) 

-0.00587 u_2(k-1) u_4(k-5) 

0.005654 u_2(k-7) u_1(k-5) 

0.051542 u_2(k-10) 1 

0.005008 u_2(k-10) u_1(k-7) 

0.002926 u_3(k-4) u_2(k-9) 

-0.02931 u_3(k-7) 1 

-0.00498 u_3(k-7) u_1(k-8) 

0.003198 u_3(k-9) u_1(k-5) 

-0.00336 u_3(k-10) u_1(k-10) 

0.157153 u_4(k-1) 1 

-0.00319 u_4(k-1) u_1(k-4) 

0.00423 u_4(k-1) u_1(k-6) 

-0.00311 u_4(k-1) u_3(k-6) 

0.181099 u_4(k-1) u_4(k-4) 
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-0.6448 u_4(k-1) u_4(k-5) 

1.138395 u_4(k-1) u_4(k-6) 

-1.25855 u_4(k-1) u_4(k-7) 

0.9202 u_4(k-1) u_4(k-8) 

-0.42058 u_4(k-1) u_4(k-9) 

0.095465 u_4(k-1) u_4(k-10) 

-0.03545 u_4(k-4) 1 

0.005941 u_4(k-5) u_2(k-9) 

0.00259 u_4(k-10) u_2(k-10) 

0.002598 u_4(k-10) u_3(k-5) 

 

 

 

 

 

 

 

 

 

 

 

Parameter Structure (5SA) 

6.297355 1 1 0 

0.000794 u_1(k-4) u_3(k-9) u_4(k-13) 

-0.00053 u_2(k-3) u_2(k-12) u_3(k-11) 

-0.00058 u_2(k-4) u_2(k-8) u_2(k-15) 

0.000732 u_3(k-3) u_3(k-13) u_2(k-15) 

0.127341 u_4(k-1) 1 1 

-0.00149 u_4(k-1) u_2(k-10) u_1(k-9) 

0.000787 u_4(k-1) u_2(k-13) u_2(k-6) 

-0.00069 u_4(k-1) u_4(k-7) u_1(k-11) 

-0.00077 u_4(k-2) u_2(k-11) u_1(k-6) 

-0.00083 u_4(k-2) u_2(k-14) u_1(k-9) 

-0.00071 u_4(k-12) u_2(k-11) u_1(k-6) 

-0.00084 u_4(k-12) u_4(k-9) u_2(k-10) 

0.000761 u_4(k-14) u_2(k-12) u_1(k-15) 
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Appendix C 
 

C.1 Coefficients and model 

structures of NARMAX predictors 

used for frequency analysis of flow 

over the BFS 
 

 

Parameter Structure ��� 

0.577679 u_1(k-16) u_1(k-5) 

-0.28612 u_1(k-11) u_1(k-3) 

-0.32704 u_1(k-19) u_1(k-18) 

0.999447 u_1(k-20) u_1(k-1) 

0.031293 u_1(k-14) y_1(k-3) 

-0.818 u_1(k-20) u_1(k-2) 

-0.20371 u_1(k-13) y_1(k-2) 

0.182682 u_1(k-19) y_1(k-2) 

 

Parameter Structure ��� 

0.235252 u_1(k-10) u_1(k-10) 

-0.5779 u_1(k-6) u_1(k-1) 

0.37175 u_1(k-6) u_1(k-2) 

-0.07538 u_1(k-10) u_1(k-5) 

-0.03017 y_1(k-2) y_1(k-1) 

8.819774 1 1 

 

 

 

 

 

 

 

 

 

Parameter Structure ��� 

0.109226 u_1(k-7) y_1(k-1) 

0.139829 u_1(k-10) u_1(k-9) 

-0.22738 u_1(k-4) u_1(k-1) 

0.181832 u_1(k-25) u_1(k-11) 

-0.06305 y_1(k-1) y_1(k-1) 

-0.16316 u_1(k-16) u_1(k-6) 

0.122899 u_1(k-27) u_1(k-12) 

 

Parameter Structure ��� 

2.187493 y_1(k-1) 1 

-0.11613 y_1(k-1) y_1(k-1) 

0.01427 u_1(k-14) u_1(k-1) 

-0.43072 y_1(k-2) 1 

0.016801 y_1(k-3) y_1(k-2) 

-0.01018 u_1(k-21) u_1(k-10) 

0.005822 u_1(k-27) u_1(k-21) 

-0.00304 u_1(k-12) u_1(k-3) 

 

 

 

 

Parameter Structure ��� 

0.000106 u_1(k-18) u_1(k-4) u_1(k-2) 

-0.0151 u_1(k-12) u_1(k-11) u_1(k-10) 

0.058915 u_1(k-20) u_1(k-17) y_1(k-1) 

-0.00521 u_1(k-13) u_1(k-13) y_1(k-2) 

-0.05263 u_1(k-13) u_1(k-11) y_1(k-1) 

0.025099 u_1(k-14) u_1(k-11) u_1(k-1) 
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C.2 Modified models used for 

frequency analysis 
 

Parameter Structure ��� 

-0.28612 u_1(k-11) u_1(k-3) 

-0.20371 u_1(k-13) y_1(k-2) 

0.031293 u_1(k-14) y_1(k-3) 

0.577679 u_1(k-16) u_1(k-5) 

0.182682 u_1(k-19) y_1(k-2) 

-0.32704 u_1(k-19) u_1(k-18) 

-0.818 u_1(k-20) u_1(k-2) 

5.962982 1 u_1(k-20) 

5.962982 1 u_1(k-1) 

-1.70706 1 u_1(k-11) 

-1.70706 1 u_1(k-3) 

-1.21536 1 y_1(k-2) 

0.186701 1 y_1(k-3) 

3.446593 1 u_1(k-16) 

3.446593 1 u_1(k-5) 

1.089933 1 y_1(k-2) 

-1.95123 1 u_1(k-19) 

-1.95123 1 u_1(k-18) 

-4.88044 1 u_1(k-20) 

-4.88044 1 u_1(k-2) 

-1.12748 u_1(k-13) 1 

0.1732 u_1(k-14) 1 

1.011119 u_1(k-19) 1 
 

Parameter Structure ��� 

-0.03017 y_1(k-2) y_1(k-1) 

-0.5779 u_1(k-6) u_1(k-1) 

0.37175 u_1(k-6) u_1(k-2) 

-0.07538 u_1(k-10) u_1(k-5) 

0.235252 u_1(k-10) u_1(k-10) 

-3.4479 1 u_1(k-6) 

-3.4479 1 u_1(k-1) 

2.217964 1 u_1(k-6) 

2.217964 1 u_1(k-2) 

-0.44973 1 u_1(k-10) 

-0.44973 1 u_1(k-5) 

1.403577 1 u_1(k-10) 

1.403577 1 u_1(k-10) 

-0.18294 y_1(k-2) 1 

-0.18294 y_1(k-1) 1 

Parameter Structure ���  

-0.06305 y_1(k-1) y_1(k-1) 

-0.22738 u_1(k-4) u_1(k-1) 

0.109226 u_1(k-7) y_1(k-1) 

0.139829 u_1(k-10) u_1(k-9) 

-0.16316 u_1(k-16) u_1(k-6) 

0.181832 u_1(k-25) u_1(k-11) 

0.122899 u_1(k-27) u_1(k-12) 

-1.35661 1 u_1(k-4) 

-1.35661 1 u_1(k-1) 

0.651675 1 y_1(k-1) 

0.834258 1 u_1(k-10) 

0.834258 1 u_1(k-9) 

-0.97345 1 u_1(k-16) 

-0.97345 1 u_1(k-6) 

1.08486 1 u_1(k-25) 

1.08486 1 u_1(k-11) 

0.733249 1 u_1(k-27) 

0.733249 1 u_1(k-12) 

-0.21517 y_1(k-1) 1 

-0.21517 y_1(k-1) 1 

0.372748 u_1(k-7) 1 

 

Parameter Structure ��� 

2.187493 0 y_1(k-1) 

-0.11613 y_1(k-1) y_1(k-1) 

-0.43072 0 y_1(k-2) 

0.016801 y_1(k-3) y_1(k-2) 

0.01427 u_1(k-14) u_1(k-1) 

-0.00304 u_1(k-12) u_1(k-3) 

-0.01018 u_1(k-21) u_1(k-10) 

0.005822 u_1(k-27) u_1(k-21) 

0.085138 1 u_1(k-14) 

0.085138 1 u_1(k-1) 

-0.01815 1 u_1(k-12) 

-0.01815 1 u_1(k-3) 

-0.06076 1 u_1(k-21) 

-0.06076 1 u_1(k-10) 

0.034738 1 u_1(k-27) 

0.034738 1 u_1(k-21) 
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0.036044 y_1(k-1) 1 

0.036044 y_1(k-1) 1 

-0.00521 y_1(k-3) 1 

 

 

 

 

 

Parameter Structure ��� 

-0.0151 u_1(k-12) u_1(k-11) u_1(k-10) 

-0.05263 u_1(k-13) u_1(k-11) y_1(k-1) 

-0.00521 u_1(k-13) u_1(k-13) y_1(k-2) 

0.000106 u_1(k-18) u_1(k-4) u_1(k-2) 

0.058915 u_1(k-20) u_1(k-17) y_1(k-1) 

0.14975 1 u_1(k-14) u_1(k-11) 

0.14975 1 u_1(k-14) u_1(k-1) 

0.14975 1 u_1(k-11) u_1(k-1) 

0.893449 1 1 u_1(k-14) 

0.893449 1 1 u_1(k-11) 

0.893449 1 1 u_1(k-1) 

-0.09009 1 u_1(k-12) u_1(k-11) 

-0.09009 1 u_1(k-12) u_1(k-10) 

-0.09009 1 u_1(k-11) u_1(k-10) 

-0.53752 1 1 u_1(k-12) 

-0.53752 1 1 u_1(k-11) 

-0.53752 1 1 u_1(k-10) 

-0.31402 1 u_1(k-13) y_1(k-1) 

-0.31402 1 u_1(k-11) y_1(k-1) 

-1.8735 1 1 y_1(k-1) 

-0.03106 1 u_1(k-13) y_1(k-2) 

-0.03106 1 u_1(k-13) y_1(k-2) 

-0.18532 1 1 y_1(k-2) 

0.000634 1 u_1(k-18) u_1(k-4) 

0.000634 1 u_1(k-18) u_1(k-2) 

0.000634 1 u_1(k-4) u_1(k-2) 

0.003783 1 1 u_1(k-18) 

0.003783 1 1 u_1(k-4) 

0.003783 1 1 u_1(k-2) 

0.351504 1 u_1(k-20) y_1(k-1) 

0.351504 1 u_1(k-17) y_1(k-1) 

2.097169 1 1 y_1(k-1) 

-0.11746 u_1(k-13) u_1(k-11) 1 

-0.01162 u_1(k-13) u_1(k-13) 1 

0.131483 u_1(k-20) u_1(k-17) 1 

-0.7008 u_1(k-13) 1 1 

-0.7008 u_1(k-11) 1 1 

-0.06932 u_1(k-13) 1 1 

-0.06932 u_1(k-13) 1 1 

0.784465 u_1(k-20) 1 1 

0.784465 u_1(k-17) 1 1 
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C.3 Phase plots for GFRF’s 
AD 2nd order 

 

AD 3rd order 

 

 

BD 2nd order 

 

BD 3rd order 
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BE 2nd order 

 

BE 3rd order 
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