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Abstract

Hazardous obstacles are a prominent feature of all natural environments and

moving animals must demonstrate a robust avoidance response in order to prevent

collisions. Whilst the study of collective motion has yielded many models for simu-

lating animal movements, comparatively few have considered interactions with such

obstacles. This thesis outlines a framework for incorporating obstacles into existing

models of collective motion and uses these models to explore the impact of social

interactions on collision risk.

The findings presented show that in the case of obstacle avoidance, where nav-

igational information can be contradictory, the collective decisions of homogeneous

groups often results in increased collision risk due to conflicting information between

individuals. The introduction of heterogeneous social networks, which gives preference

to particular individuals, acts as a natural mechanism by which these conflicted deci-

sions may be averted, thereby facilitating coherent avoidance manoeuvres. However,

this comes at the cost of cohesion, and groups must balance staying together against

the benefits of more effective decision making.

The insights provided by models are applied to assess avian collision risk with

wind turbines. This is an increasingly important ecological problem and has received

wide attention. The difficulties in obtaining accurate empirical data at the individual

level require that accurate and robust modelling solutions are developed. The models

presented in this thesis provide a powerful tool in which collision risk can be assessed

taking into account site- and species-specific factors. The key observation is that both

social factors such as flock size, and spatial factors such as array design, significantly

affect avoidance rates and consequently collision risk. Therefore the established

methods of risk assessment, which assume a general avoidance rate and apply this to

each individual independently, are argued to be inadequate.
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1.1 Thesis motivation

The environments in which many animals live are cluttered with hazardous obstacles.

These obstacles present a challenge to navigation, and moving individuals must pos-

sess robust avoidance behaviours in order to prevent collisions. Whilst animals appear

to have evolved this behaviour in response to natural obstacles, such as trees and cliffs,

collisions with man-made structures can be commonly observed. This is particularly

evident in birds, to the extent that some scientists have claimed mortality as a result of

these collisions is the largest unintended cause of avian fatalities worldwide (Banks,

1979; Klem Jr et al., 2004). As man-made structures begin to spread away from

densely packed urban areas into the more remote environments occupied by a large

numbers of bird species, it becomes increasingly important to understand the causes

of collisions in order to develop sustainable mitigation strategies.

Initial studies have suggested that bird collisions may occur as a result of the

limited changes in flight speed and manoeuvrability associated with maintaining

flight (Bevanger, 1998; Janss and Ferrer, 2000; Drewitt and Langston, 2008). More

recently arguments have be made that, in addition to these physical limitations,

the visual perception of obstacles can have a significant impact on which avoidance

response (Martin, 2011). However, as yet no studies have considered the role of

social interactions in collision risk. Many species of bird exhibit social tendencies, for

example moving together in large flocks or foraging in family groups. The purpose

of this thesis is to outline a framework in which the interactions between groups and

obstacles can be assessed. This involves combining the increasingly sophisticated field

of collective motion with the ecological need to predict and understand collisions. In

particular, the insights provided by such models will be applied to investigate the

collision risk of birds with wind turbines used for power generation.
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1.2 Collective motion in animals

The aggregation of animals can be observed at all scales of the natural world, from

familiar human crowds and bird flocks, to fish schools, and even unicellular organisms

like bacteria (Grégoire and Chaté, 2004). Several theories have been offered to

explain this behaviour, these include, but are not limited to: social dependence;

increased mating success; enhanced foraging capabilities; and dilution of predation

risk (Abrahams and Colgan, 1985; Parrish and Edelstein-Keshet, 1999; Krause and

Ruxton, 2002; Sumpter, 2006).

The study of collective motion attempts to categorise and explain the way in which

these groups of animals move. Movement is an important animal capability; individ-

uals are required to move in order to disperse, to find food or to escape predators.

Often the movements within animals groups demonstrate a high degree of organisation

(Bajec and Heppner, 2009; Viscido et al., 2005). This organisation can manifest in

numerous different forms from the rigid v-shaped formations of migrating geese to the

swirling vortices of sardines in response to attacks from predators. Murmurations of

starlings swooping across the evening sky are a particularly striking example, where

individuals appear to turn synchronously (Ballerini et al., 2008b). This led early

scientists to hypothesise that they must be communicating telepathically (Selous,

1931).

Perhaps the most significant observation in the study of collective motion is that

despite the limited sensory capabilities of individuals the size of groups displaying

complex coordinated movement appears to be unbounded (Sumpter, 2006; Rackham,

1933; Buhl et al., 2006). Such groups containing many individuals can show a large

degree of synchronisation over huge distances, for example a single shoal of herring

can extend as far as 17 miles (Scheffer, 1985). At these distances even high levels

of sensory perception would be unlikely to allow individuals to have knowledge of

the motion of the group as a whole. Consequently, scientists have hypothesised that

collective motion is likely to occur as a result of local interactions between neighbours

(Aoki, 1980; Reynolds, 1987). Many numerical models have tried to investigate the
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mechanisms underlying this behaviour. These numerical models have been developed

to study collective motion in groups of animals including birds, fish, ants, bats,

dolphins and locusts to name a few, (Kawasaki, 1978; Aoki, 1982; Huth and Wissel,

1992; Vicsek et al., 1995; Edelstein-Keshet et al., 1998; Czirók et al., 1999; Mogilner

and Edelstein-Keshet, 1999; Couzin et al., 2002, 2005; Topaz et al., 2006; Eftimie et al.,

2007; Codling et al., 2007; Bode et al., 2010a; Hildenbrandt et al., 2010; Hemelrijk

and Hildenbrandt, 2011; Bode et al., 2011a, 2012a; Leonard et al., 2012). However,

it is unclear whether the rules for interaction outlined in these studies have a clear

empirical basis to merit their use in the movement models for other species (Cavagna

et al., 2008).

1.2.1 Empirical studies of collective motion

Collective animal behaviour has been observed for over 2000 years (observations by

Pliny in 200BC, translated by Rackham (1933)). Bird flocking is an eye-catching

example of this that can be seen by a casual observer. However, the limitations

of available technology to analyse this behaviour meant that initial scientific studies

were capable only of qualitative assessment (Bajec and Heppner, 2009). Early studies

attempting to quantify collective motion filmed or photographed animals, predomi-

nantly fish, in laboratory experiments (Aoki, 1980; Cullen et al., 1965; Partridge et al.,

1980). This provided a closed, controllable environment allowing the trajectories of

individual fish to be observed using positional data over time. The investigation by

Aoki (1980) extracted critical data about group behaviour from these observations

such as speed distributions, distance to nearest neighbours, turning events, internal

structure and alignment of individuals. These key metrics are still used in studies

today.

It is not necessarily possible to apply empirical data obtained from studies of fish

to models of bird flocking because although they share some behaviours, there are

other patterns that are present in one case and not in the other (Krause and Ruxton,

2002). For example, there are differences in the mechanisms of sensory perception
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available to each taxa, birds primarily rely upon vision to determine motion whereas

fish also have the capacity to use mechanical stimuli perceived via the lateral line, a

system of sensory organs found in aquatic vertebrates which can detect vibrations

in the surrounding environment. It has been argued that the latter causes the

shape of sensory zones in fish to be more elliptical. The resulting motion of fish

typically forms stable oblong shaped groups (Hemelrijk and Kunz, 2005). In contrast

the constraints of flight behaviour, requiring birds to maintain a minimum speed,

produces more variable and less stable structures (Hemelrijk and Hildenbrandt, 2012)

The importance of distinguishing general characteristics from those that are situation

specific has been highlighted by Ballerini et al. (2008b). This study also notes that

experiments in the laboratory, and in confined spaces, may influence some features of

groups such as their shape and dynamics.

Studies of collective motion in bird flocks present a greater experimental challenge

since they can only be observed in real-world environments. Similarly to fish studies,

the first attempts to track the movements of birds involved measurements in two

dimensions (Sugg, 1965; Van Tets, 1966). These studies used a single photographic

technique to estimate flock densities. As photographic techniques evolved it be-

came possible to reconstruct trajectories for each individual in three dimensions.

The approach described by Major and Dill (1978) captured the relative positions of

individuals using single images from multiple cameras allowing them to successfully

reconstruct the three-dimensional position of individual birds within small flocks (25–

76 individuals). While this approach was useful for establishing the internal structure

of specific flocks it cannot be used to investigate general flock dynamics (Pomeroy

and Heppner, 1992). A non-stereo three-dimensional photographic technique, the

orthogonal method, was proposed by Pomeroy and Heppner (1992) to study turning

movements in flocks of Rock Doves. This technique allowed individual bird trajec-

tories to be distinguished and provided information on group considerations during

turning manoeuvres. Building on the work of Major and Dill, Budgey (1998) was

able to reconstruct three-dimensional trajectories of various bird species using similar
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stereoscopic techniques. This study was able to calculate nearest neighbour distances

and link this variable to wing span. However, the flock sizes were limited to 61

individuals.

The use of small flocks in all these studies may have implications for the applica-

bility of their findings to other situations, for example use in numerical models; there

are boundary effects associated with there being larger numbers of individuals at the

extremities of the flock and fewer in the centre (Ballerini et al., 2008a; Cavagna et al.,

2008). Larger, more compact flocks were not studied because computational methods

had not yet been developed to allow the analysis of the image data. The scarcity of

similar studies and the time span of this work illustrates the difficulty associated with

the collection of high quality, three-dimensional data (Ballerini et al., 2008b).

With advances in technology, stereometric and computer vision techniques were

used in a landmark study by Ballerini et al. (2008a) which was able to measure the

three-dimensional positions of individuals in flocks of up to 2600 birds. This repre-

sented an increase of two orders of magnitude in the flock size compared with previous

studies, and a huge step forward for empirical observation of collective motion. It was

the first study to provide insights into the hidden mechanisms underlying collective

motion within large flocks. The findings showed that flocks maintain cohesion even

when sparsely distributed and when under intense stimuli, but also that it seems

sensible that the interactions between individuals will decay as the distance between

them increases. This leads to a discussion of the most appropriate measure of distance

over which interactions with neighbours can occur.

The majority of models at this time used metric distance to define the strength of

interactions (e.g. Couzin et al., 2005). While this seems reasonable these models pre-

dict that when groups or individuals break apart sufficiently they would not regroup;

this is not what is observed in nature. An alternative is to use topological distance,

which would predict that it is the number of intermediate individuals separating the

birds that determines the strength of interaction, rather than the distance between

them. Observations of flocks at different densities (Ballerini et al., 2008a) revealed
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that the topological range of interactions in the studied flocks was approximately

constant, suggesting that on average individuals interacted with a fixed number of

neighbours regardless of flock density. The number of individuals with which one

bird would interact in this study was shown to be 6–7. There are previous studies

whose results would seem to support the findings of Ballerini et al. (2008a). A study

by Emmerton and Delius (1993) showed that pigeons can recognise distinct sets of

objects so long as each set contains fewer than 7 objects. Tegeder and Krause (1995)

found that fish have a perceptual limit of 3–5 neighbours. The work of Ballerini et al.

(2008a) has changed the way in which some models parametrise the range over which

interactions can occur.

A further complication is that animals have been to shown to display “per-

sonalities”; observations reveal that individuals exhibit behavioural differences that

are consistent over time and in various contexts (Kurvers et al., 2009). One such

personality trait is that of leadership influencing movement order. Beauchamp (2000);

Dumont et al. (2005); Harcourt et al. (2009) show that movement order is consistent

suggesting that some individuals will be leaders and others will follow. The concept

of leadership and the reasons why certain individuals emerge as leaders has been

the subject of several theoretical investigations (e.g. Couzin et al., 2005; Conradt

et al., 2009; Bode et al., 2012a). Some of these suggest that, whilst personality

may have a bearing on an individual’s propensity to lead, it may in fact be a more

transient property depending on situation-specific factors (Vicsek and Zafeiris, 2012).

For example, initial work by Couzin et al. (2005) proposed that leaders emerge as a

result of greater ability to perform a specific task, in this case knowledge of a given

target location representing a food source or roosting site. Other studies have instead

theorised that leadership occurs as a result of “need”, with individuals for whom

reaching a particular target location is most critical, for instance those motivated by

food deprivation, changing their behaviour in order to influence group movements

(Conradt et al., 2009). In such cases individuals must consider a “consensus cost”

foregoing their own optimal behaviour in favour of retaining the benefits offered by
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group movement (King et al., 2008).

To explore these ideas empirically, studies now can take advantage of GPS tracking

as well as more advanced video tracking, computer vision and associated algorithms to

study the interactions of animals in a group more thoroughly. For example, in a recent

study these techniques have been used to investigate the leadership and dominance in

groups of pigeons (30 individuals) by tracking their behaviour on the ground and in

flight (Nagy et al., 2013). It was shown that social dominance while feeding does not

correlate with leadership in flight. This may be due to the difference in interaction,

because aggressive interactions in flight will not aid navigational decisions, or that

other individual attributes (such as local experience and route fidelity) are more

relevant than dominance (Flack, 2012; Freeman et al., 2011). Individuals at the

front of a group are the first to arrive at new food sources and so have first access to

nourishment, but being on the extremities of the group increases their risk of predation

(Krause, 1994; Stankowich, 2003). The benefits and penalties for leadership and the

fact that movement order is consistent gives weight to the idea that leaders may

be fundamentally different from followers. This type of leadership as a consequence

of social networks is a concept that is only recently being investigated in numerical

models (Bode et al., 2012a).

With the advancements in computing in the late twentieth century, focus shifted

from empirical studies to numerical modelling of collective behaviour. This is in part

responsible for the decreased emphasis on empirical data but also for the development

of the type of models we use today. It is still true that without essential empirical

data there is no “ground-truthing” for models and it is difficult to know what model,

rules and parametrisations are appropriate (Ballerini et al., 2008b).

1.2.2 Mathematical models for collective motion

Mathematical models of collective motion can be classified into two distinct types: Eu-

lerian (or continuum) (Eftimie et al., 2007; Kawasaki, 1978; Mogilner and Edelstein-

Keshet, 1999; Topaz et al., 2006) and Lagrangian (or individual-based) (Aoki, 1982;
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Couzin et al., 2002; Huth and Wissel, 1992; Vicsek et al., 1995). Eulerian models

determine motion using partial differential equations describing the mean-field density

of groups (Parrish and Edelstein-Keshet, 1999). In such models rules for interaction

are defined and implemented either locally (Edelstein-Keshet et al., 1998), or globally

(Eftimie et al., 2007; Topaz et al., 2006). Typically, this approach is used to simulate

the movements of large dense groups, such as swarms of insects, where finer individual-

level detail is unnecessary and can be computationally expensive. In contrast, a

Lagrangian approach is applied to simulate smaller groups with distinguishable in-

dividuals. In a similar way to Eulerian models rules for interaction are defined but

are always applied locally. Using these rules for interaction, movement trajectories

can be described continuously over time using precise, coupled ordinary differential

equations (Niwa, 1996) though these can be difficult to resolve numerically (Parrish

and Edelstein-Keshet, 1999). Instead, most Lagrangian models choose to dispense

with equations entirely and determine motion over discrete time steps according to

an algorithmic implementation of interaction rules from which collective motion can

emerge (Reynolds, 1987; Czirók et al., 1999; Couzin et al., 2002; Codling et al., 2007).

These models are commonly referred to as individual-based models and this has

become the most popular approach for simulating animal collective motion with each

interaction rule providing an intuitive link to identifiable social or biomechanical

behaviour, for example, avoidance of predators. Typically behavioural rules include

repulsion, alignment and attraction, although not all models use all of these rules,

for example arguing that alignment is unnecessary (Strömbom, 2011). The way in

which these core rules are implemented differs greatly across studies depending on

the situation that is being simulated.

Most models determine group motion by combining the response to each sensory

stimulus as a weighted average. The response towards neighbours can be classified into

three zones of interaction; repulsion, alignment and attraction. Figure 1.1 illustrates

how these zones are organized. Generally models apply rules in a hierarchy, giving the

highest priority to repulsion. In cases where repulsion is necessary, i.e. an imminent
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collision, all other interactions are ignored (Couzin et al., 2005; Codling et al., 2007).

An early study by Couzin et al. (2002) investigated the effect of varying the

level of alignment within groups. Where only attraction and repulsion are applied

the result is a group with high levels of cohesion but low levels of polarization and

low angular momentum, in other words a disorganized swarm such as that exhibited

by insects (Figure 1.1(b)(i)). When the alignment zone is small compared to the

attraction zone the resulting group moves in a toroidal pattern similar to the structure

observed in shoals of fish during attack from predators (Parrish and Edelstein-Keshet,

1999) (Figure 1.1(b)(ii)). Increasing the radius of the alignment zone further, groups

become highly polarized and well aligned such as the familiar behaviour of flocking

birds (Figure 1.1(b)(iii)). This goes some way to demonstrate that simple rules of

interaction can reproduce the different types of group behaviour seen in nature (Wood

and Ackland, 2007).

As demonstrated above, when considering interaction zones a distance over which

these interactions occur must be defined. Generally models use a metric system to

limit the zones but following the work of Ballerini et al. (2008a) some models have

chosen to use an alternative measure of distance. As a result of the empirical data

showing that birds interact with a distinct number of nearest neighbours models have

applied a limit on interactions topologically. This modifies the zones of interaction to

consider only a fixed number of neighbours (Hildenbrandt et al., 2010; Hemelrijk and

Hildenbrandt, 2011; Codling and Bode, 2014).

The majority of models assume that individuals are identical (Bode et al., 2010a).

In some models there is a degree of heterogeneity introduced by varying the amount of

information that individuals possess, that is whether they are an informed individual

or not (Couzin et al., 2005; Leonard et al., 2012). In nature, when moving in groups

there may be only a few individuals that have information about the location of a food

source or a migratory route (Swaney et al., 2001; Franks et al., 2002; Seeley et al.,

1985). Using a simple model Couzin et al. (2005) showed how a few informed individ-

uals can facilitate successful motion within groups even when there is no perceivable
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Figure 1.1: An illustration outlining the basic rules for simulating social movement with

examples of characteristic patterns seen in nature which can be reproduced under different

parameterisation of the zones of interactions (redrawn from Couzin et al. (2002)). (a) shows

the social response of an individual (black) to neighbours located within each of the distinct

zones of interaction: repulsion (red); alignment (green); attraction (blue). (b) shows ; (i)

disorganised motion produced when only attraction and repulsion is applied; (ii) toroidal

motion produced when a small alignment zone is added; (iii) highly polarised motion produced

when the zone of alignment is further increased.
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distinction between informed and uninformed group members. This study also showed

that the larger the group the smaller the proportion of informed individuals necessary

to enable successful navigation. Other models introduce heterogeneity by introducing

noise to represent imperfect sensing or movement abilities (e.g. Codling et al., 2007).

In both cases the variability in information or ability does not affect the stability of

group structure or ability to move as a group. By averaging throughout the group

information is passed between individuals, balancing out individual deficiencies and

maintaining a stable and cohesive group. A consequence of the robust nature of group

structure and stability of collective motion in this approach is that it is difficult to

distinguish the effects of individual rules (Bode et al., 2012a).

Scientists have tried to match models to empirical data by simulating particular

features, for example limiting neighbours to a fixed number as discussed above.

Similarly, most models apply a constant homogeneous speed (e.g. Couzin et al.,

2002) but there are some (e.g. Aoki, 1982) that use variable speeds based upon the

observed speed distributions in empirical studies. However, by applying constraints

such as these, the emergent nature of collective motion can be difficult to recreate.

Initially proposed as a method to investigate and understand the mechanisms that

produce the varied speed distributions seen by Aoki (1980), Bode et al. (2010a) suggest

a new asynchronous update scheme. In previous models, during every time step all

individuals react to their local stimuli and update their positions and orientations

together – that is synchronously. In Bode et al. (2010a) instead individuals are

selected at random each time step. This means some individuals may update more

than once and others not at all. This method of updating produces speed distributions

similar to those seen in nature without the need for a priori assumptions or the

addition of stochastic noise. In order to maintain cohesion it was found that a higher

speed of attraction was required; approximately double that of other behaviours. As

part of this work laboratory studies were conducted to record speed and nearest

neighbour distributions from fish under varying levels of perceived threat. This

showed that variations in the frequency at which model updates occur reproduced
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these distributions, with faster updates corresponding to increased levels of threat.

This would appear to reproduce behaviours seen in nature where individuals attempt

to avoid being morphologically or behaviourally distinctive relative to other group

members when threat is perceived (Ward et al., 2008). The details of this modelling

approach, and it’s computational implementation, are discussed in more detail in

Chapter 5.

Further developments of this modelling approach (Bode et al., 2011a) have in-

corporated the use of random sensory zone sampling. Rather than responding to all

neighbours within a fixed distance an individual instead chooses a single neighbour to

interact with. The probability of selecting a particular neighbour is weighted inversely

with distance. Using this approach it was possible to reproduce emergent topological

properties within groups consistent with the empirical observations of Ballerini et al.

(2008a).

The impact of social networks has been explored in Bode et al. (2011b) using

the same model as previous studies (2011a) but applying an underlying preference

for particular neighbours according to an interaction matrix. A “social network”

represents the preferences of individuals to associate or interact with other individuals

within a group. Studies of animal groups have shown that individuals may show

preferences for familiar individuals or those with certain characteristics and that

structures may emerge as a result of these preferences (Krause et al., 2014). Empirical

observations of groups are used to assess the preferences displayed and to construct

an interaction matrix. In some cases this is done by weighting connections between

individuals according to the number of times interactions are observed. An alternative

approach determines a connection to be significant if the interaction is observed

more than a fixed number of times, a minimum threshold. No further distinction is

made between the connections determined to be significant; no weighting is applied,

connections are either significant or they are not (Croft et al., 2008). Once constructed

network analysis techniques can be used to identify non-random characteristics, such

as clustering, which may explain behaviours at a population level (Newman, 2010).
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Defining social networks empirically remains a challenge for ecologists and careful

consideration must be given to the context in which interactions occur (Wey et al.,

2008); in the absence of context, which is typical in cases where direct observation

is difficult, it is often assumed that all members of a group are interacting and part

of the same social network, an assumption also known as “the gambit of the group”

(Whitehead and Dufault, 1999). It is far easier to observe where individuals are

part of a group than to assess which individuals are interacting with each other.

Advancement of empirical methods, i.e. GPS technology, allows ecologists to observe

individual movements in more detail and infer social interactions. For example by

comparing relative changes in direction and alignment of individuals, information

about social interactions and networks can be inferred. Bode et al. (2011b) assert

that the addition of social networks into their model could explain the hierarchical

dynamics observed by Nagy et al. (2010) in flocks of pigeons.

One of the particular benefits of the modelling approach used by Bode et al.

(2011a) is the emergence of stochastic noise from the algorithmic implementation.

Noise is often added to models to represent imperfect decision-making or sensory

capabilities. As models become more complex, for example with the inclusion of

social networks, it becomes more difficult to identify a suitable noise term. Whilst

previous studies (Aoki, 1982; Hildenbrandt et al., 2010) have shown that models can

reproduce specific empirical observations, the constraints necessary to achieve this

limit their general applicability. The three studies by Bode et al. (2010a; 2011a;

2011b) show that an asynchronous modelling approach begins to bridge the gap

between the collective motion observed in empirical studies and that reproduced by

numerical models.

1.2.3 Obstacle avoidance in models of collective motion

Considering the wide range and scope of studies investigating collective motion it is

surprising that few include mechanisms for the avoidance of obstacles. This is perhaps

a reflection of the difficulties involved in representing obstacles simply, and in defining
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rules that reflect the visual perception of them.

One of the most notable studies of collective motion which includes obstacle

avoidance is the “boids” model developed by Reynolds (1987). The motivation of

this study was to develop a robust alternative to scripted collective behaviour in

computer animations. The methods for representing obstacles in this model are

based on early computer graphics techniques. These define a set of basic geometric

shapes which can be used to construct complex obstacles. Whilst it was shown that

general behavioural rules could be applied to interact with obstacles (Reynolds, 1988),

a particular drawback was that each shape possessed distinct geometric properties

requiring different computational processes.

As technology has evolved computers have become faster and more powerful

allowing vast amounts of data to be processed. The demand for realistic real-time

computer graphics in games and motion pictures has led to the development of many

sophisticated techniques for modelling objects. One of the most popular methods uses

an approach which describes objects using a technique known as polygon meshing

(Botsch et al., 2010). Using this technique a solid surface can be reconstructed by a

finite set of interconnecting polygons, usually triangles, each of which is defined by an

ordered set of vertices and a normal vector describing its relative orientation in space.

By reducing the size of polygons highly accurate three-dimensional shapes can be

represented. Whilst this approach has been applied successfully to many applications

in computer science, such as facial recognition software (Lu et al., 2004) and three-

dimensional reconstructions of objects using stereoscopic vision techniques (Hartley

and Zisserman, 2003), it has yet to be adopted in models of collective motion. The

methods of obstacle representation used in this thesis develop some of the key ideas

from Reynolds (1987), while allowing for both computational efficiency and more

realistic interactions between birds and obstacles.

Obstacle avoidance in simulations of collective motion has also been developed for

applications in other areas of artificial systems, such as robotics (Lindhe et al., 2005).

Whilst informative, similar to Reynolds (1987) the primary motivation for such studies
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has been to provide a framework for “perfect” avoidance, i.e. to render collisions

impossible, and behavioural rules have therefore been implemented to conform to

this. It is clear that obstacle avoidance is not perfect in the real world (Banks, 1979;

Martin, 2011), and so the general applicability of these existing models to biological

systems is not necessarily justified. However, some of the approaches which have been

developed for perfect avoidance may be applicable after careful modification.

In biological systems obstacle avoidance has been considered in models of collective

motion to investigate escape dynamics of human crowds (Helbing et al., 2000; Frank

and Dorso, 2011). These models use a force-based approach to determine the direction

of motion. Individuals experience repulsive or curb-crawling responses to obstacles,

such as walls, providing a mechanism to explore smoke filled environments and dis-

cover nearby exits. Further extensions of this work dispense with a distinct obstacle

avoidance response, instead encoding this information into a floor field which influ-

ences the navigational route of individuals (Bode et al., 2014). Whilst these methods

for simulating behavioural response are suitable for situations in closed environments,

such as buildings, they are perhaps less applicable for applications where more open

and unrestricted motion is possible. In such environments long distance pre-emptive

avoidance strategies may occur resulting in a less extreme response than that required

at close distances. Additionally, for birds the use of repulsion in force-based models

can be problematic as conflicts have the potential to slow the movement reducing an

individuals ability to maintain flight (Reynolds, 1987).

1.3 Birds and wind farms

1.3.1 Renewable energy in the UK

There is growing pressure on governments to implement immediate mitigation strate-

gies to offset the effects of unsustainable greenhouse gas emissions and to stem

climate change. Advancements in renewable technologies to generate energy provide

a significant part of the proposed strategy. In Europe, members of the EU have
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committed to a substantial shift towards renewable energy, imposing a target of

sourcing 20% of energy from renewable technologies by 2020 (Commission of the

European Communities, 2007). The current technologies that present a viable option

to contribute to this increased demand include solar power, hydropower, geothermal

energy and wind power. Of these, wind power is predicted to provide one of the more

significant contributions (Larsson, 1994). This observation was validated in a recent

review of renewable energy in the UK, identifying wind power, and in particular off-

shore wind power technologies, as key growth areas for development. This report

anticipated that by 2030 wind power could potentially provided as much as 75% of

renewable energy and nearly 50% of all energy in the UK (Committee on Climate

Change, 2011). Statistics provided by Renewable UK, formally BWEA, demonstrate

this commitment to the development of the wind power industry in the UK with plans

to double the number of operational wind farms from 306 to 563 with further plans

for an additional 283 wind farms (UK Renewables, 2012).

1.3.2 The impact of wind power on birds

As with all energy generation technology, there are economic, social and environmen-

tal impacts associated with wind farm developments. The rapid deployment of wind

power has made it difficult for environmental assessment methodologies to maintain

pace (Drewitt and Langston, 2008). While wind farms present clear benefits to the

UK carbon budget, there are concerns that the wind farm developments are likely

to impact negatively on the distribution and abundance of wildlife, particularly birds

(Elphick, 2008).

Potential impacts of wind farms on bird populations can be categorized into

three types: direct mortality of individuals as a result of collision with turbines and

infrastructure; modification of the physical habitat as a consequence of the footprint of

the turbines and associated structures; and behavioural responses of birds to turbines

(Fielding et al., 2006; Fox et al., 2006). The latter considers the possibility that wind

farms could form a barrier to movement with birds choosing to avoid them entirely
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(Masden et al., 2009). Whilst this response reduces the risk of collisions with wind

farm structures it could have significant energetic costs as birds are required to travel

greater distances. Though the impact that this may have on populations is yet to be

fully assessed migration studies have suggested that energetic efficiency can be related

to the survival fitness of birds (Pennycuick, 2008).

1.3.3 Empirical estimates of collision risk

In order to quantify the levels of mortality as a result of collisions, impact studies have

been conducted globally both pre and post construction (Desholm and Kahlert, 2005;

Drewitt and Langston, 2008; Cook et al., 2012; Plonczkier and Simms, 2012). Direct

observation of fatalities is limited to terrestrial sites (onshore) where a method of

corpse retrieval can be employed (Barrios and Rodriguez, 2004; Langston and Pullan,

2003). In general, these studies have indicated that collision rates are low, though

quantitative estimates are subject to significant observational error with corpses

removed by scavengers or simply not detected (Morrison, 2002). As a result it is

likely that actual collision rates could be significantly higher.

Estimating collision risk at marine sites (offshore) presents a much greater chal-

lenge and the majority of studies have instead focused on estimating avoidance rates

around wind farms using remote sensing techniques such as Thermal Animal Detection

Systems (TADS) and radar surveillance (Desholm et al., 2006; Plonczkier and Simms,

2012). These studies have shown that the activity of birds within the footprint of wind

farms is significantly reduced (Desholm and Kahlert, 2005) confirming the notion that

wind farms act as a barrier to movement (Masden et al., 2009). For migratory birds,

such as geese, estimates indicate that between 50 and 70% of all groups show avoidance

behaviour (Cook et al., 2012). Of those birds which enter the wind farm footprint,

only around 10% pass close enough to a wind turbine (approximately 50 metres)

to risk any chance of collision (Desholm and Kahlert, 2005). In addition to these

observations a recent long-term radar study which mapped the movement patterns of

geese over a number of years both pre- and post- construction, summarised in figure
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1.2, has revealed that flocks displayed a growing tendency for avoidance behaviour

(Plonczkier and Simms, 2012).

1.3.4 Modelling collision risk

Modelling provides a method of prediction without the need for extensive site surveys

by using basic pre and post construction data to determine risk over a wide range of

environmental and engineering scenarios. The most widely accepted Collision Risk

Model (CRM) is that described by Band (2000). The methodology consists of a two-

stage probabilistic approach that combines aspects of data describing the structure

and operation of a wind turbine with attributes of bird physiology and flight in order

to predict mortality. The first stage of the process estimates the number of birds

that pass through the rotor blades or “risk window”. The second stage of the process

calculates the probability of a bird passing through the risk window being struck by

a rotor blade. The approach uses data describing the structure and operation of the

turbines: number of blades; maximum chord width and pitch angle of blades; rotor

diameter; and rotation speed; and of bird size and flight: body length; wingspan;

flight speed; flapping; or gliding flight, to derive a probability of collision. Mortality

is then estimated by multiplying the collision probability by the number of birds

passing through the area at risk height.

Crucially, however, this initial model assumes that an individual bird takes no

avoiding action when encountering a turbine, so an adjustment must also be made for

avoidance behaviour. This was addressed in the revised version of the model (Band

et al., 2005) through the addition of an avoidance factor which scales the determined

collision probability. However, this modification has since come under significant

scrutiny due to the inaccuracies involved in estimating suitable values. These values

are reliant upon empirical data combining the avoidance rates from remote studies

(macro avoidance) with collision rates observed at terrestrial sites (micro avoidance)

to generate a single estimate for each species of bird (Cook et al., 2012), for example

current advice for wintering geese calculates the rate of avoidance to be approximately
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Figure 1.2: An example of goose flock movement patterns recorded by radar studies.

Taken from Plonczkier and Simms (2012), this figure shows the change to these patterns

over sequential years (2007 – 2010), from wind farm construction to operation.
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99.8% (Pendlebury, 2006). It has been demonstrated through sensitivity analysis that

even small errors in these estimated rates can have large effects on predicted mortality

rates making accurate quantitative assessment difficult (Chamberlain et al., 2006).

Recently modelling studies have begun to explore ways in which more accurate

avoidance rates can be determined by considering implicit factors such as the spatial

configuration of turbines. In particular, the statistical model presented by Masden

et al. (2012) has been used to show that the spacing between turbines and number of

turbines in each column or row have a significant impact on avoidance rates. The aim

of these studies is to provide a tool for industry which can shape wind farm layouts for

both optimal power generation and minimal environmental impact. However, these

models do not consider the movements of individuals but instead only simulate groups

as a single entity. Studies of collective motion have shown that the decisions, and

thus movements, of a groups can be considerably different depending on the degree

of social interaction and variation of navigational information (Couzin et al., 2005;

Codling et al., 2007; Leonard et al., 2012). In order to gain a better understanding

of the factors driving avoidance it is therefore important that these considerations be

taken into account.

1.4 Thesis structure

This thesis develops a method for the inclusion of obstacle avoidance in collective

motion models which can be used to assess the collision risk of birds with wind

turbines. This provides a framework to reinterpret existing predictive models in

the light of group dynamics, and furthermore to explore the potential role of social

networks on navigation and avoidance. Chapter 2 outlines a general approach for

representing obstacles and implements this using an established individual-based

model. Mechanisms for possible avoidance behaviours are proposed and tested,

with findings discussed in the context of existing collision risk modelling techniques.

Chapter 3 assesses the feasibility of using a popular stereoscopic vision technique to

observe and analyse the movements of geese interacting with a fixed static obstacle.
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The discussion outlines the limitations of this approach and suggests improvements

which could be used in future study. The results of this work together with additional

data from a previous study (Budgey, 1998) are analysed to identify key parameters.

Chapter 4 develops an recent asynchronously updating model for collective motion

to investigate the movement of social groups around obstacle arrays. In particular,

different network structures are simulated to study their effect on decision-making

within groups and the potential impact this could have on collision risk. Finally,

Chapter 5 applies the model outlined in Chapter 4 to explore the impact various

aspects of wind farm design have on avoidance in order to identify potential mitigation

strategies that could be implemented pre-construction. Further justification of the

model development is also presented with particular focus on the inclusion of bird

specific behaviours. Overall, this work provides a robust basis upon which future

collision risk models can be built and applied to real-world problems.
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Chapter 2

The influence of group size and

social interactions on collision

risk with obstacles

Published manuscript

S. Croft, R. Budgey, J.W. Pitchford, and A.J. Wood. The influence of group size

and social interactions on collision risk with obstacles. Ecological Complexity, 16:

77–82, 2013
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2.1 Preface

As stated previously in the Thesis Declaration this chapter has been published in a

peer-review journal. It is presented as it appears in print with the following revisions:

1. Minor grammatical and referencing errors have been corrected to improve clar-

ity.

2. Referencing to relevant discussion elsewhere in the thesis has been incorporated.

3. Technical language and mathematical notation has been changed to be consis-

tent with that used throughout the remained of the thesis (Chapters 4 and 5).

For example, obstacle “nodes” are now referred to as “vertices”.

4. Additional figures 2.1, 2.2 and 2.3 omitted from the published manuscript

have been included to supplement the methodology by providing a graphical

illustration of key concepts.

5. Comment has been added to justify the use of equal weighting between align-

ment and attraction behavioural responses in Equation 2.2.

6. Comment has been added regarding interactions with non-linear obstacles.

7. Comment has been added to clarify the definition and generation of the vectorial

noise weξ̂ (formerly σξ).

8. Comment has been added to explain the omission of a sensory error when

detecting the target navigational direction.

9. Comment has been added to define how a collision is determined.

10. Comment has been added to discuss the choice of parameter value relating to

obstacle interactions.

11. The simulation algorithm described in Section 2.4.3 has been updated follow-

ing discovery that the application of the warm-up routine documented in the
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published manuscript, which was designed to form groups into a representative

stable configuration, did not behave as anticipated. Instead, group configuration

remained effectively random and therefore can be considered indistinguishable

from the initial random placement step.

12. Comment has been added to retrospectively justify the choice of target weighting

following more recent work by Codling and Bode (2014).

Significant additions to the text are presented in italics delineated by square

brackets.
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2.2 Abstract

In the UK there has been dramatic growth in the number of proposed wind

farms, and the impact on wildlife of this expansion is largely unknown.

Avian collisions with wind turbines have received wide attention but

reliable predictions remain elusive. Existing predictive models consider

behavioural factors such as group movement only implicitly and require

accurate site-specific data to produce predictions, making them difficult

to translate between locations. Here we introduce an individual-based

modelling approach to describe group interactions with obstacles that

incorporates aspects of collective motion to simulate and quantify likely

avoidance behaviour. We quantify the effect of group size on the probabil-

ity of an individual colliding with a fixed obstacle, and investigate the roles

of both navigational efficiency and group cohesion. We show that, over a

wide range of model assumptions and parametrisations, social interactions

have a significant and potentially large effect on collision risk; in contrast

to previous models, collision risk is typically a non-linear function of

group size. These results show that emergent behaviour induced by social

interactions can have important effects on the metrics used to inform

management and policy decisions.

2.3 Introduction

Individual-based models have become a popular solution to simulating animal col-

lective motion, providing a natural link to identifiable social, biomechanical and

environmental forces (Reynolds, 1987; Vicsek, 2001; Couzin et al., 2005; Codling et al.,

2004, 2007; Wood and Ackland, 2007; Bode et al., 2010a,b, 2011a). While providing

a rigorous set of modelling methods, these studies have not explicitly considered the

implications of group social behaviour on risk of collision with hazardous obstacles.

This is an increasingly important application for models of this type, for example
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offering an avenue by which the impact of wind turbines on moving groups, and

migrating birds in particular, can be assessed in silico.

Wind power is one of a host of rapidly developing solutions to enable governments

to implement sustainable energy strategies. In Europe, members of the EU have

committed to a substantial shift towards renewable energy, imposing a target of

sourcing 20% of energy from renewable technologies by 2020 (Commission of the

European Communities, 2007). However, some countries such as Scotland have

imposed a more rapid shift, setting a target of 100% electricity generation from

renewable sources by 2020. A recent review of renewable energy in the UK identifies

wind power, and in particular off-shore wind power technologies, as key growth areas

for development. It suggested that by 2030 wind power could potentially provide as

much as 75% of renewable energy and nearly 50% of all energy in the UK (Committee

on Climate Change, 2011). To achieve such a contribution of wind power energy would

require a large-scale expansion in the number of wind farms. Statistics provided by

Renewable UK, formally BWEA, suggest that current and proposed developments

will increase the existing number of wind farms in the UK two-to-three fold in the

near future (UK Renewables, 2012).

Despite this confidence in the role of wind power there are concerns that wind

farm developments are likely to impact negatively on the distribution and abundance

of wildlife, particularly birds. Potential impacts of wind farms on bird populations

can be categorized into four types: collision, disturbance (particularly during con-

struction), barrier effects (exclusion) and habitat modification (Fielding et al., 2006;

Fox et al., 2006). Of these, collisions have a direct effect on avian mortality and have

received wide attention. Impact studies have been conducted at several wind farm

sites both pre- and post-construction to record the avian activity in the area and to

monitor collisions with turbines (Garthe and Hüppop, 2004; Desholm and Kahlert,

2005; Pearce-Higgins et al., 2012). These studies use a number of different approaches

such as radar, thermal imagery, human observation and carcass retrieval. The data

obtained reveal that avian collisions with turbines can vary greatly across sites and
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species. However, wind farms are often positioned in remote locations, especially

those offshore, and it is not practical to conduct empirical studies.

Modelling has the potential to provide a reliable method of prediction without

the need for extensive pre- and post-construction site surveys. The most widely used

Collision Risk Model (CRM) is that described by Band (2000). The methodology

consists of a two-stage probabilistic approach to predict mortality by combining a

description of the structure and operation of a wind turbine with attributes of bird

physiology and flight. The model first estimates the number of birds that pass

through a “risk window” (turbine blades), and secondly calculates the probability

of a bird passing through the risk window being hit by a rotor blade. Mortality is

then estimated by multiplying the collision probability by the number of birds passing

through the area at risk height. Crucially, the model assumed that an individual bird

takes no avoiding action when encountering a turbine. This omission was addressed

in a revised version of the model (Band et al., 2005) through the addition of an

avoidance factor which scales the determined collision probability. This avoidance

factor incorporates an implicit dependence on parameters such as the average number

of individuals that pass through a “risk window” simultaneously. However, it has been

demonstrated through additional sensitivity analysis that even small errors in this

parameter can have large effects on predicted mortality rates. Therefore, no matter

how robust the estimates of collision risk in the absence of avoiding action, the final

predicted mortality is unreliable until “species-specific and state-specific avoidance

probabilities can be accurately established from observation and empirical evidence”

(Chamberlain et al., 2006).

The study of collective motion provides a new avenue of investigation in which

specific avoidance probabilities no longer need to be imposed, but instead emerge

from a set of behavioural rules (Grégoire and Chaté, 2004; Couzin et al., 2002).

Individual-based models apply rules in a hierarchy based on proximity following the

observation that individuals within a group remain synchronised despite having no

knowledge of the group as a whole (Sumpter, 2006; Rackham, 1933; Buhl et al., 2006),
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instead relying on local interactions with nearest neighbours to navigate (Reynolds,

1987). This methodology has allowed the recreation of complex flocking behaviour

with a high degree of success and provided a deeper understanding of the mechanics

involved in collective motion. For example, models of this type (Bode et al., 2010a;

Hildenbrandt et al., 2010) have shown emergent properties such as the idea that

individuals interacting with a fixed number of neighbours can explain complex real-

world observations (Ballerini et al., 2008a). Models also predict that whilst there are

navigational benefits to moving within a group this is not always the case (Codling

et al., 2007; Guttal and Couzin, 2010). Here we describe an individual-based model

of collective motion and obstacle avoidance, and use this to determine the effect of

group size on collision risk for a single obstacle under a range of ecologically plausible

parametrisations. These results elucidate important directions for future research,

and are likely to be of direct relevance to the construction of wind farms in sensitive

environments.

2.4 Methods

2.4.1 Modelling framework

The model is adapted from that outlined by Couzin et al. (2005) in which a group

of individuals attempt to navigate toward a distant target. Individuals exist in a

two-dimensional environment. Each individual is represented by a position (x) and

an orientation (v̂). At discrete time intervals (τ) there is a “turning event” in which

each individual (indexed by i in the equations below) assesses the position and/or

orientation of other individuals (indexed by j) or objects within a given proximity, and

calculates a new heading according to a set of behavioural rules. The individual then

moves in this direction at a constant speed (v0). This process is repeated until all in-

dividuals reach a specified termination condition (or “target”). The behavioural rules

used in this model form a two-tier hierarchy which considers three non-overlapping

zones of interaction; collision (Rr), alignment (Ro) and attraction (Ra). The highest
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priority is given to collision avoidance where individuals attempt to steer away from

other individuals or objects (Equation 2.1, Equation 2.3). If not performing an

avoidance manoeuvre individuals combine a balance of directional vectors relating

to three behavioural cues; social behaviour (vs
i ) where individuals are attracted to

distant group members and align with neighbours (Equation 2.2), obstacle avoidance

(vo
i ) (Equation 2.4) and target seeking (v̂t). We define these vectors in turn below

before combining them to determine a new direction of motion.

If an individual j is closer than Rr to an individual i then collision avoidance is

prioritised as follows,

vs
i = −

j∈Rr∑
j ̸=i

xj − xi

|xj − xi|
(2.1)

If not, then the social interaction serves both to align to the closest individuals, and

to attract the individual towards the perceived centre of the group (Equation 2.2).

[Consistent with the method outlined by Couzin et al. (2005), this implementation

considers all neighbours within the sensory zone of an individuals to contribute equally

to the resultant direction of motion regardless of relative distance or the particular zone

of interaction, alignment or attraction, in which they appear. However, as indicated

below, it is noted that alternative approaches have been proposed in similar models

which consider the interplay between alignment and attraction behaviours differently.

For instance, both Couzin et al. (2002) and Codling et al. (2007) only considers

attraction responses if there are no neighbours within the repulsion or alignment

zones. Whilst the latter approach was considered, hierarchical equality of alignment

and attraction behaviour was required in this case to provide a comparable structure

in which to incorporate obstacle based interactions.]

vs
i =

j∈Ro∑
j ̸=i

v̂j +

j∈Ra∑
j ̸=i

xj − xi

|xj − xi|
(2.2)

The reader is directed elsewhere for details of similar models, e.g. Couzin et al.

(2002, 2005); Wood and Ackland (2007).
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Figure 2.1: An illustration of the method for obstacle representation. Obstacles consists

of a finite set of vertices represented by a point p
j
and a tangential surface vector nj (by

convention these follow a clockwise direction around the surface). In addition each vertex

is defined with a circle of fixed radius which is used to determine collisions. (a) shows

three example representations of obstacles using this approach (from top to bottom): a line

with even spacing as is used in all simulations throughout this chapter, a curve with even

spacing, and a line with uneven spacing. This demonstrates the flexibility to approximate any

shape. The spacing between vertices effects the error associated with this approximation and

especially the detection of collisions as circles may no longer overlap. (b) outlines a method for

calculating the minimum spacing between vertices (or granularity), d, to ensure that even at

short distances (Rr) individuals cannot move directly towards an obstacle without detecting

at least one vertex within the appropriate zone of interaction (hence showing the correct

behavioural response). For an individual moving with speed (v0) over an update step τ , the

minimum distance can be calculated using basic trigonometry as d = 2
√
2Rrv0τ − (v0τ)2.
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In our model we introduce a one-dimensional obstacle, mimicking a single wind

turbine, which is placed such that the flock must interact with it in order to reach

the given target. Obstacles are constructed as a set of vertices (indexed by k in the

following equations), each of which has a fixed position (p) and an associated unit

vector (n) parallel to the obstacle surface (illustrated in Figure 2.1(a)). The density

of points is chosen to minimise the granularity errors associated with representing a

solid object by a set of points (shown in Figure 2.1(b)).

The description of an obstacle as a set of discrete points emulates the interac-

tion framework between individuals as described above, allowing similar interaction

mechanics to be employed. This representation allows for an emergent relationship

between proximity to, and reaction to, obstacles. As an individual moves toward an

obstacle more vertices lie within the zones of interaction, thereby inducing a larger

reaction. We choose here to implement a short range repulsion, exactly paralleling

the interaction with other group members, combined with a longer range aligning

interaction (an illustration of these behavioural rules is presented in Figure 2.2).

This is based on the notion that the most efficient way to move around an obstacle

is to align with the surface towards the closest perceived end point. [Although not

considered here it should be noted that this concept does not necessarily hold for

interactions with more general non-linear obstacles, such as those forming convex or

concave shapes. For these interactions it may be more appropriate to apply a similar

alignment behaviour instead based on the one-dimensional projection, or silhouette,

of an obstacle as proposed by Reynolds (1987). The avoidance mechanism outlined in

later chapters is a simplified implementation of this approach.] We therefore introduce

a new interaction weighting with this obstacle computed as follows.

If an obstacle vertex k is closer than Rr to an individual i then collision avoidance

is prioritised,

vo
i = −

k∈Rr∑
k=0

p
k
− xi

|p
k
− xi|

(2.3)

Otherwise, an individual is seeks to move away from vertices in a direction parallel
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Figure 2.2: An illustration of the behavioural rules for obstacle avoidance. Each panel

illustrates the directional response (v̂) of an individual (black triangle), with positions xi and

heading v̂i, to the highlighted obstacle vertex (black circle), with position p
j
and tangential

vector nj , located within: (a) the zone of repulsion (Rr); and (b) the zone of surface alignment

(Ra). The marked angle θ is used to determine direction of surface alignment, if the angle is

acute (i.e. less than π/2 radians) then, according to Equation 2.4, the individual aligns with

a vector directly opposite nj (moving along the surface in an anti-clockwise direction).
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to the obstacle surface,

vo
i =

k∈Ro∪Ra∑
k=0

sgn

(
cos−1

((
p
k
− xi

|p
k
− xi|

)
· nk

)
− π

2

)
nk (2.4)

where sgn denotes the sign function.

If not performing an avoidance manoeuvre an individual also orientates towards

a fixed target direction which remains constant across all individuals at all time steps

(v̂t) corresponding to a fixed target represented as a point at infinity. This is in

contrast to alternative models which apply a more general approach where the target

is fixed in space and hence the target direction is allowed to vary across individuals

(Codling et al., 2004, 2007). In addition we apply uniform vectorial noise weξ̂ [a

unit vector generated using a random angle drawn from a uniform distribution on the

range (0, 2π) radians applied with a relative weighting we] for each individual at each

time step. For simplicity we use a single error term to account for imprecision in

movement and sensing ability which is common in collective motion studies (Grégoire

and Chaté, 2004). However, studies that consider separate error terms have shown

that the interplay between sensing and movement error can be quite complex (Codling

et al., 2007). [To explore the relationship between social and obstacle interactions in

isolation, “perfect” navigation is required in all simulations for consistency to ensure

that any avoidance, or apparent reduction in collision risk, is as a result of behaviour

rather than a failure to navigate. It should be noted that error is only included to

introduce a minimal level of disturbance and is not designed to have a significant

effect on movement. Furthermore, the relative effect of varying levels of error on

movement is not explored and remains constant in throughout.] The new direction of

individual i at a new time step can then be calculated as follows.

If an individual detects a collision threat [defined as a neighbour or obstacle vertex

within Rr] then,

v̂i =
wsv

s
i + wov

o
i

|wsvs
i + wovo

i |
+ weξ̂ (2.5)
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and otherwise,

v̂i =
wsv

s
i + wov

o
i + wtvt

|wsvs
i + wovo

i + wtv̂t|
+ weξ̂ (2.6)

The parameters ws, wo and wt represent the relative preference of each individual

for social, obstacle avoidance and target directions respectively. We constrain the

angle to which an individual’s orientation can change in any one time step by im-

plementing a maximum angular turning rate. Finally, the new orientation vector is

renormalised and the individual’s position updated accordingly.

Note that the above formulation (Equation 2.5, Equation 2.6) makes an assump-

tion that the components corresponding to social interactions and obstacle avoidance

are not individually normalised before they are combined (hereafter designated Model

I). This is a reasonable assumption; each detectable point in the system is considered

on an equal footing, in order not to provide individuals with global information about

the system. It could, however, be argued that the social weighting may unrealistically

overwhelm the interactions with obstacles at large group sizes. For this reason, our

results are also calculated for an equivalent model (Model II) as follows where the

vectors corresponding to social and obstacle avoidance vectors are each normalised

before being combined (Equation 2.7, Equation 2.8). [Further discussion of the

differences between these model implementations, specifically with regard to the idea

that a single obstacle could present multiple yet equally merited avoidance strategies

and that this may lead to indecision, is presented in Section 5.2.3.]

If an individual detects a collision threat then,

v̂i =
wsv̂

s
i + wov̂

o
i

|ws + wo|
+ weξ̂ (2.7)

and otherwise,

v̂i =
wsv̂

s
i + wov̂

o
i + wtv̂t

|ws + wo + wt|
+ weξ̂ (2.8)

where v̂X
i =

vX
i

|vX
i | .
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As will be seen below, both models have consistent large-scale behaviour and

produce qualitatively identical results in terms of the predicted obstacle collision risk.

2.4.2 Parametrisation

We initially parametrise our model to simulate a group of individuals attempting

to negotiate a single obstacle, using values based on previous theoretical animal

collective motion studies (Couzin et al., 2002, 2005; Codling et al., 2007). In order

to investigate the specific scenario of birds interacting with a single wind turbine we

nominally consider a flock of pink-footed geese (Anser brachyrhynchus) moving either

between roosting and feeding sites or on a longer term migration. The model could

be adapted for any social species of bird, geese are chosen here because they can be

observed throughout the UK and provide a reliable species for fieldwork observations

in order to validate this model. We use existing literature and expert knowledge,

together with our own observations from video analysis of flocks of geese to choose

parameter values. Where parameters are unknown values are taken from previous

theoretical studies, and whilst they have been scaled using realistic values they remain

arbitrary and do not have any biological meaning. [For example, due to the limited

availability of empirical data relating to obstacle interactions we assume, consistent

with the concept that each obstacle vertex is considered similar to a conspecific, the

same parameterisation defining the relative zones of interaction. However, it would

not be unreasonable to anticipate that responses to large obstacles, relative to the

size of a conspecific, may require a larger collision radius. We therefore suggest that

the results of this study can only be used to inform a theoretical understanding of

interactions with obstacles and that accurate real-world predictions, which may be used

to inform policy, would require additional empirical evidence to justify such parameter

choices.] More precise estimates of parameter values could be derived from analysis

of stereoscopic video data (Cavagna et al., 2008); this is addressed in Chapter 3. The

magnitude of the “error” vector is essentially an arbitrary choice at this stage; its

value is taken from that used by Couzin et al. (2005) and the effect of this choice was
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Table 2.1: Typical parameter values used in the simulation models. The reader should note

that the values for interaction zones are scaled from those outlined in existing theoretical

studies by the average size of an individual. The range of values given for social preference

and obstacle avoidance represent those used across both models.

Description Symbol Value Reference

Number of individuals N 1-100 (Couzin et al., 2002;

Codling et al., 2007)

Zone of collision (metres) Rr 1.5 Couzin et al. (2002, 2005);

Codling et al. (2007);

Ogilvie (2011)

Zone of orientation (metres) Ro 15 Couzin et al. (2002, 2005);

Codling et al. (2007);

Ogilvie (2011)

Zone of attraction (metres) Ra 37.5 Couzin et al. (2002, 2005);

Codling et al. (2007);

Ogilvie (2011)

Time step increment (sec) τ 0.1 Couzin et al. (2002, 2005)

Speed (metres/second) v0 5 Ogilvie (2011)

Max. turning rate (deg/sec) 45 Couzin et al. (2002, 2005)

Magnitude of noise vector wt 0.05 Couzin et al. (2002, 2005)

Initial centre mass of group (Ix, Iy) (0, 1000)

Centre of obstacle (Ox, Oy) (0, 750)

Width of obstacle (metres) Oz 50 Siemens AG (2012)

Target direction v̂t (0, -1)

Social preference ws 0-100

Obstacle avoidance wo 0.1-100

Target preference wt 1
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Figure 2.3: Plot of Nearest Neighbour Distance (NND) (average of 100 independent

simulation runs) as a function of simulation time for various parametrisations of social and

obstacle preference. The vertical line (grey) marks the minimum time at which a group can

begin interacting with the obstacle. The pattern shows that when groups are released there

is an initial restructuring which reduced NND. However, it can be observed in that groups

reach a stable equilibrium prior to interacting with the obstacle.

explored prior to our simulations so when social interactions are present collisions

with the obstacle may occur.

2.4.3 Simulations

The goal of this study is to examine the impact of group size on the risk of collision

with an obstacle. We therefore construct a simple environment with a single obstacle

placed directly ahead of, and a large distance from, the initial group of individuals.

For each group size, and for each set of social interaction parameters, we run 100

independent simulation runs. Each run consists of the following steps:

1. The individuals are created with random initial positions and heading.
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2. The group is then rotated so that the group is, on average, heading in the

target direction v̂t, the centre of the group is placed at (Ix, Iy) 250 metres

(approximately 500 time steps) away from the centre of the obstacle which is

located at (Ox, Oy). The target direction preference is now turned on, with an

arbitrary weighting of 1 relative to the social and obstacle avoidance weightings.

[The value of target weighting was set in an attempt to ensure that accurate

navigation towards the obstacle was maintained for all combinations of social

and obstacle preference weighting (this may not have been the case and the im-

plications are discussed further in Section 6.1). Since publication of this study,

work by Codling and Bode (2014) has suggested that only a relatively small target

weighting is required to achieve accurate navigation – approximately 6%. Whilst

it may therefore appear that the weighting chosen here may be unnecessarily

large it should be noted that the implementation of target navigation differs

between these models, and consequently direct comparison of this parameter

value is difficult. Here, the proportion of direct target navigation contributing to

movement is not soley reflected by the value of wt but instead relative to that of

ws and wo and, in the case of Model I, by the number of neighbours and obstacle

vertices which appear within an individuals sensory zone). As a result the actual

contribution to the direction of motion is significantly smaller and may in fact

be quantitatively similar to the value suggested above.]

3. The group then moves towards, and interacts with, the obstacle and reaches

a new equilibrium after passing the obstacle. The number of collisions of

individuals with the obstacle is recorded.

The transit distance of the individuals prior to interacting with the obstacles allows

burn in time for the group dynamics and ensures that the configuration is coherent.

[Figure 2.3 confirms that the relative distance between the initial group position and

the obstacle is sufficient to ensure that following initial release groups reach a stable

state prior to any interactions with the obstacle. Therefore, any differences in group

structure prior to interaction may be compared with that after an interaction has
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occurred in order to assess the cost of avoidance.]

Collisions in our model [defined as being when an individual moves within a set

distance of an obstacle vertex – set at Rr (see Figure 2.1)] are assumed always to be

“fatal”. We do, however, permit the colliding individual to react to the presence of the

obstacle immediately prior to its demise, i.e. prior to its removal from the simulation.

This is so that the information about the presence of the obstacle is implicitly

transmitted back through the group. Groups are not constrained to remain coherent

and individuals are free to select any trajectory around the obstacle independent of

the actions of the majority. The relative weighting of the preference parameters is

unknown and we therefore make a large scale search of this 2-dimensional state space.

Our goal is to illustrate the potential for social interaction to influence collision risk

so we select parameters to show the full range of behaviour in this pilot. This means

varying relative weights by orders of magnitude.

2.5 Results

Figure 2.4 plots the number of collisions against group size, for a model in which

social interactions are switched off. The approximately linear dependence of collision

risk on group size therefore simply reflects the fact that each individual acts entirely

independently. These results correspond to the predictions of a model such as Band

et al. (2005), as anticipated, and form a null model against which any changes in

collision risk due to social interactions may be judged.

The principal results from our study are shown in Figure 2.5 in which we plot the

average number of collisions for different combinations of social and obstacle avoidance

parameters, across a range of group sizes from 1 to 100 individuals. The first column

refers to the model as presented in equations 2.5 and 2.6 (Model I). The second

column shows the alternative formulation presented in equations 2.7 and 2.8 where

the vectors corresponding to social and obstacle avoidance factors are each normalised

before being combined to produce a resultant direction (Model II). The key finding

appears in the first row of Figure 2.5, which quantifies the role of social preference
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Figure 2.4: The number of collisions against group size for an asocial group (i.e. ws = 0)

with varying levels of obstacle avoidance (wo) generated using Model I. The magnitude of

the error vector is fixed at wt = 1. We used a higher error value in these simulations so

that sufficient collisions occur to be able to construct a complete plot of the asocial case.

The qualitative differences between asocial and social cases remain unchanged. [We note that

in this asocial case wo simply represents the trade-off between obstacle avoidance and target

navigation, which in the defined scenario conflict with increased target navigation reducing

avoidance and vice versa.]
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Figure 2.5: The number of collisions against group size for different sets of parameter values

generated using: (a) Model I; (b) Model II; varying: (i) levels of social preference (ws) with

fixed obstacle avoidance (Model I: wo = 1 and Model II: wo = 10); (ii) levels of obstacle

avoidance (wo) with fixed social preference (Model I: ws = 1 and Model II: ws = 3). In all

simulations target preference (wt) is fixed at wt = 1.
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Figure 2.6: Heat Maps generated using: (a) Model I; (b) Model II; plotting the number of

collisions against different levels of social and obstacle avoidance preference for a group of size

30 individuals. In all simulations the target preference (wt) is fixed at wt = 1.

in collision risk when the level of obstacle avoidance is fixed. The result is clearly

non-linear (in contrast to Figure 2.4), showing that as group size increases there is

an increased per-capita risk of collision. The effect is caused by social interactions,

and its strength increases as the strength of these interactions increases. The second

row of Figure 2.5 shows that the collision risk scales approximately linearly with the

strength of obstacle avoidance. This is reasonable, since social interaction strength is

fixed for this second row of results, and confirms that it is the combination of social

interactions and group size which drives the non-linear response in collision risk.

Figure 2.6 plots the number of collisions across more comprehensive combinations

of social and obstacle avoidance preference. Although the models give quantitatively

different results (as would be expected, since the model details differ and in Model I

much “larger” social vectors are being assimilated when the group size is large), there

is clear qualitative correspondence.
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2.6 Discussion

We have made an exploratory simulation study of the collision risk associated with a

group of birds, nominally assumed to be geese, with a single obstacle representing a

wind turbine. We have made a number of simplifying assumptions in this work, many

of which can be challenged. We therefore make no claims about the specific details

of the risks we have derived as a function of group size, but rather observe that even

in this simplified case there is significant deviation from the simplifying assumptions

made in the Band model (Band et al., 2005) which is the most widely used tool in

wind farm planning and development. Where such models are used to inform policy

their limitations should be carefully considered.

To summarise our results, we show that social interactions can have a large effect

on collision risk (Figure 2.5), and that this risk is strongly dependent on group size,

in contrast to the asocial case (Figure 2.4). Our conclusions are insensitive to the

details of the model implementation since the data represented in the first and second

columns of Figure 2.5 behave similarly. Note that the weightings between social and

obstacle avoidance vectors change numerically between models to allow a meaningful

comparison to be made.

An interesting observation is that for low relative levels of obstacle avoidance

small increases in social interaction lead to a higher number of collisions, but that

increasing the social interaction eventually leads to a drop in collision risk. This

is explained heuristically by a decrease in the overall progress of the group directly

towards its target and an increase in information flow from individuals encountering

the obstacle, making the group more manoeuvrable when faced with an obstacle.

It may be that for our chosen application such large levels of social interaction are

unrealistic, resulting in flocks which move artificially slowly around obstacles. For

zero social preference the “group” is perfect at avoiding the obstacle and always

reaches the target. The question is then whether this is a group or not? This is

a common problem in group movement, and we refer the reader to recent work by

Bode et al. which proposes an algorithmic method to distinguish asocial from social
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movement (Bode et al., 2012b). Our results reveal an important balance between

social preference and obstacle avoidance suggesting that in situations where limited

information is available about the best way to avoid an obstacle it is more beneficial

to be on your own, or part of a strongly social group, than one which is weakly social.

This is most likely due to indecision within the group and can be likened to the idea

of the “many wrongs principle” (Codling et al., 2007). The transfer of information

through the group is critical as it allows those with less knowledge of the way around

an obstacle to be guided by those with more knowledge.

There are a number of lessons to be learned from this study. Most important is

the observation that there is a lack of empirical evidence to justify the adoption of any

particular scheme to model the interaction between moving individuals and obstacles.

The manner in which this is integrated in the wider scheme of group interactions needs

to be handled with great care; the precise details of this have profound implications

for information transfer within the group about impending decisions.

Even in this simple study it is clear that there are significant non-linear effects

associated with group size, and that this may have a wide impact on wind farm

placement. Given the projections for wind farm construction, both in the UK and

globally, it is crucial that more detailed models are created to assess risk to birds

moving in groups. As previously discussed, the primary criticism of existing collision

risk models is the dependence of the “avoidance factor” on accurate empirical data.

Often, due to the location of wind farms, it is not viable to collect such data. Typically

values of 95–99% avoidance are assumed. It is important to stress that we do not

anticipate that the methodology described in this study can be a replacement for

models such as the Band model, but instead could supplement it, especially in

generating robust avoidance rates for prototypic wind farm configurations in the

absence of a priori empirical data. Recent empirical studies confirm collision risk

with wind turbines is low (Pearce-Higgins et al., 2012). In general, our results mimic

this observation with the average avoidance rate for a group of 30 individuals (in

Model I) falling at 98% across all combinations of weightings.
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A strength of our approach is to represent obstacles as a collection of points. This

is a natural extension of the individual-based interaction rules in models of this type.

The technique is readily extensible to varied density and time-dependence of points

within an obstacle to simulate areas that require a more a extreme avoidance reaction

or moving parts, respectively. This will be the subject of future investigations.

Future versions of our modelling will use established mechanisms for asynchronous

updates (Bode et al., 2011a) together with more complex social behaviours (Ballerini

et al., 2008a; Bode et al., 2011b) and realistic physics both of birds (Hemelrijk and

Hildenbrandt, 2011; Hildenbrandt et al., 2010; Reynolds, 1987) and the turbines (Band

et al., 2005). Better representation of the turbines will be necessary in order to

effectively scale studies of this type from single turbines to the large arrays of, for

example, 100 turbines at Thanet, Kent and 60 turbines at Robin Rigg, Solway Firth

(UK Renewables, 2012). Recent work by Masden et al. illustrates potential ways

forward in this area (Masden et al., 2012). It is anticipated that the changes in group

structure induced by obstacle avoidance will affect the collision risk with subsequent

obstacles, putting further distance between the predictions of social models and those

where each individual is considered in isolation.

This study forms a fundamental first step towards modelling avoidance rates

without the need for extensive site-specific empirical data. We have shown that

when social interactions are explicitly considered the relationship between group size

and collision risk can be non-linear, contrary to the assumptions used in existing

probabilistic models. This finding could have a large impact on predictions of avian

collisions with wind farms; it is crucial that further investigation is undertaken.
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2.8 Summary

This chapter describes a method for incorporating obstacle avoidance into a typical,

synchronously updating, model for simulating collective motion which will act as a

benchmark for future model development. Through the course of this work, and

subsequent discussion, some interesting questions have been raised regarding the

best ways to represent interactions with obstacles, for example, whether responses

should be determined at a point level (Model I) where all avoidance strategies are

considered or alternatively at an obstacle level (Model II) where only the ideal

avoidance strategy is followed in combination with other stimulus. Such modelling

questions are addressed in later chapters. The investigation also exposes a gap in

knowledge regarding specific parameter choices, both physical and behavioural. In

order to provide accurate and reliable insights into real-world applications this is vital

and it highlights the requirement for further empirical work, particularly focusing on

the interactions of groups with obstacles.
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Chapter 3

Assessing the feasibility of using

stereoscopic vision to

parameterise and validate

theoretical models

59



3.1 Introduction

The model presented in Chapter 2 has nominally been developed to simulate the

movements of geese. It provides a theoretical platform in which to investigate the

interaction of flocks with obstacles. In addition to the proposed mechanisms for

simulating avoidance several key parameter values, particularly those relating to

categorising behavioural responses, have been adopted from existing modelling studies

and lack empirical basis. In order to generate accurate real work assessments it is

important to ground this type of theoretical speculation with empirical observation

(Cavagna et al., 2008).

Several existing studies have empirically investigated the interaction of bird flocks

with wind turbines (Desholm et al., 2006; Plonczkier and Simms, 2012). These studies

have primarily used radar based techniques in order to track the movement of flocks

at a wind farm level. Observations have shown that there are significant differences

in the way species respond to wind farms with some choosing to risk collisions by

flying between turbines and others avoiding the wind farm entirely (Masden et al.,

2012). Whilst these results are useful, the resolution of radar only allows flocks to

be described at a global level with summary statistics such as average trajectory,

extent, shape and in some cases a relative density distribution. In order to observe

the underlying mechanisms which produce avoidance behaviours it is necessary to

capture movements at an individual-level. Recent advances in GPS technology pro-

vide a potential solution to this problem and its use has been demonstrated in an

investigation of hierarchical dynamics of pigeons (Nagy et al., 2013). However, the

success of GPS for monitoring group dynamics is currently dependent upon the ability

to ensure all group members are tagged and can therefore be tracked. In the case of

wild geese this level of control is unlikely to be possible and hence GPS alone may

not be a suitable approach.

Optical camera based techniques are by far the most accessible and popular

approach used in the empirical study of collective motion providing a reliable medium

in which all individuals within a group can be observed. Initially, such techniques
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were pioneered to analyse collective motion, primarily of fish, in closed lab-based

environments (Cullen et al., 1965; Aoki, 1980; Partridge et al., 1980). For the first

time researchers were able to quantify behaviours relating to group dynamics such as

the relative speed and separation of individuals. However, the observation of birds

poses a different challenge as closed situations can be difficult to engineer and it is

therefore only practical to conduct experiments in open environments.

The earliest attempts to quantitatively investigate the structure of bird flocks

used snapshot images from a single camera to estimate the density of individuals

(Van Tets, 1966). More recently the emergence of stereoscopic camera technology has

allowed the three-dimensional position of individuals to be reconstructed revealing not

only the structure of flocks (Major and Dill, 1978; Budgey, 1998) but also providing

the information required to assess the mechanisms of collective motion. The latter

was the result of a landmark study which was able to record the movements of

thousands of starlings concluding that on average each individual only interacts with

a fixed number of neighbours (Ballerini et al., 2008b). Whilst this remarkable result

marks a significant advancement in the empirical investigation of collective motion,

capturing the movement of individuals at this level of precision for an extended period

remains problematic (Hayakawa, 2010). This is one of the fundamental issues faced

by stereoscopic research where the limitations of commercial camera technology often

forces a trade-off between using high resolution still images at a low frame rate or

lower resolution video but with a substantially higher sustainable frame rate (Cavagna

et al., 2008). Previous empirical studies (Budgey, 1998; Hayakawa, 2010) which have

specifically investigated the structure of goose flocks have used video in order to ensure

that sufficient information can be gathered whilst flocks remain within the view of

both cameras.

These studies have demonstrated that despite a relatively low image resolution,

compared with Ballerini et al. (2008b), three-dimensional positions can be recon-

structed with a reasonable degree of accuracy. This is due in part to the fact

that, unlike starling, flocks of geese contain comparatively fewer individuals and
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with a greater separation between individuals accommodating a lower stereoscopic

sensitivity. Budgey (1998) note that nearest neighbour distance shows a strong

correlation with wingspan with larger species maintaining a greater distance from

their respective neighbours. This relationship was applied in Chapter 2 to scale the

radii corresponding to the zones of interaction used in theoretical studies in an effort

to provide a more realistic estimates for geese.

In this chapter we describe the development of a portable stereoscopic based

system to investigate the interaction of flocks of geese with an obstacle. We discuss

methods for calibrating this system and assess the feasibility of using either high

resolution still images or lower resolution but higher frame rate video in terms of

relative measurement error verses observation time. The aim of this exercise is to

reconstruct three-dimensional trajectories of flocks as they interact with the obstacle

in an effort to further our understanding of the mechanisms which facilitate suc-

cessful avoidance manoeuvres and identify situations which may limit this ability

contributing to collisions. For example, exploring the distance to an obstacle and

the relative position of individuals within the flock where avoidance manoeuvres

are initiated and assessing the impact of avoidance on flock structure. The results

of this study will provide an empirical basis upon which model validation can be

performed. Analysis of the data should also provide sufficient evidence to allow key

species specific parameters, such as the radii characterising the zones of interaction,

to be determined which it is argued are necessary for models to produce reliable

quantitative predictions.

3.2 Methods

3.2.1 Study site

A study site was selected at the Millennium Bridge in York with UK grid reference

SE 60215009 (shown in Figure 3.1). Regular flights of geese had been observed at

this location in the hours around sunrise throughout the summer period. These daily
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Figure 3.1: Details of the proposed study site at York Millennium Bridge. The images

show: (a) an aerial view of the proposed study site with the red dot denoting the position

of the stereoscopic apparatus which is located approximately 200 metres from the bridge; (b)

a view of the bridge from the setup location. Flocks of geese have been observed migrating

towards daily feeding sites around sunrise using the river to navigate. These flocks approach

the bridge from the same side as the stereoscopic setup displaying a behavioural response to

avoid collisions. By reconstructing the trajectories of individuals we aim to gather evidence

relating to the mechanisms of avoidance and through analysis identify key parameter values.

movements from roosting sites on the outskirts of the city to feeding sites in the

city centre parks typically followed the River Ouse with flocks required to deviate

from this preferred route in order to avoid the bridge. Whilst the bridge is a static

obstacle and could perhaps be considered a different proposition to a wind turbine

it does exhibit some similar properties, in particular that some sections appear more

transparent and hence permeable than others, rendering it a suitable proxy.

The stereoscopic apparatus was positioned approximately 200 metres downstream

from the bridge to allow a sufficient distance to capture group movement both pre-

and post- interaction with the bridge. Initial observation was conducted without

cameras in September 2010 and repeated deployment of stereoscopic apparatus was
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conducted for 2 hours around sunrise during the months of July to September in 2011

and 2012.

3.2.2 Stereoscopic vision

The fundamental idea of stereoscopy is that, by taking images of the same object

from two different positions in space, we generate enough information to reconstruct

its three-dimensional coordinates, provided that relative position of the two cameras is

known (Cavagna et al., 2008). This basic concept is illustrated in Figure 3.2 together

with the principle equation of stereovision. In this simple example two identical

cameras with focal length f are separated by a given distance d along a mutual

axis containing both image plane, known as the baseline. By comparing the shift,

or disparity s, between the position of an object on each image plane the simple

geometric property of similar triangles can be used to compute relative distance z.

In practice, however, examples of stereometry are rarely so simple and over the past

decade there has been a rapid development of multiple view geometry to provide a

more general modelling framework (Hartley and Zisserman, 2003).

These models consider a camera in its simplest terms to be defined as a projective

mapping between points in the three-dimensional world and a two-dimensional image.

Typically this process is modelled using a central projection in which a ray is drawn

from a point in three-dimensional space through another point fixed in space, known

as the centre of projection. If we define a given plane in space as the image plane then

where this ray intersects the plane represents the image of the point. This mapping

is an example of a projective transformation and can be represented mathematically

as follows,

σm = A[R|t]X (3.1)

where A describes the transformation between the camera axis and the image plane

in terms of the intrinsic camera properties, i.e. focal length fx and fy, skew γ (the

angle between axis on the image plane) and the principle point (u0, v0) (the centre
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Figure 3.2: An illustration of the principle of stereoscopic vision. This shows the simplest

stereoscopic setup with two perfectly aligned identical cameras separated by a fixed distance

d along the x axis, termed the baseline. The baseline separation causes a target subject to

appear at different positions on each of the image planes, uL and uR on the left and right

cameras respectively. The difference, or disparity s, between these positions can be combined

with the known focal length (in pixels) f and the length of baseline to calculate the distance

to a target z by applying the simple geometric property of similar triangles. This fundamental

concept underlying stereoscopic vision is expressed in the displayed equation.
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of the image plane); [R|t] describes the transformation between the camera axis and

the real world in terms of the extrinsic camera properties, i.e. the absolute position

and rotation of the camera relative to real world coordinate system. Here, m denotes

the projected position of an object on the image plane and X the position in the real

world. In order to rationalise differences in the concept of infinity, the observation

that parallel lines in the real world intersect at a finite point on the image plane,

both m and X are defined in a homogenous coordinate system. It is important to

note that this basic camera model only defines the mapping of points up to a scale

factor σ, therefore, in order to determine the exact position of a point in three-

dimensional space it is necessary to triangulate using rays from multiple view. In

practice the rays defined by multiple camera models often do not intersect precisely

and so an approximation is required. A numeric approximation, known as the mid-

point method is commonly used which estimates the most likely point of intersection

to be the mid-point of the shortest line connecting each ray (Hartley and Zisserman,

2003).

When defining stereoscopic systems comprising of two cameras it is usual to define

the real world axis to coincide with one of the camera axis thus reducing one of the

camera models to the trivial case where R is the identity matrix and t is a zero vector.

The other model is then defined in terms of relative position and orientation rather

that absolute values which provides a more appropriate comparison for calibrating

experimental setups.

3.2.3 Stereoscopic apparatus

The stereoscopic setup comprised of two Canon EOS 500D cameras fitted with stan-

dard Canon EF-s 18-55 millimetre lenses. The specification of these cameras advertise

a continuous shooting mode supporting bursts of 3.4 images per second at a resolution

of 4752 by 3168 pixels for 170 images and a high definition video mode recording at

50 frames per second with a resolution of 1920 by 1080. Each camera was fixed to a

custom built clamp which was used to mount them on a rigid beam constructed from
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a steel cross-section. The separation between the cameras was adjustable with precise

markers 2 metres apart to accurately position the cameras. The beam was supported

on a steel tripod with a pivot to allow the system to be rotated easily in order to

adjust the direction of view. The cameras were connected via a remote switch to

enable synchronised release in either continuous shooting or video modes.

In all experiments the focal length was fixed to the minimum limit of 18 millimetres

to provide the widest field of view. This was chosen to maximise the time flocks

remained in view which was necessary to ensure interactions both pre- and post-

avoidance could be captured. Given this setup the intrinsic camera parameters can

nominally be determined using the manufacturers specification of sensor size, stated

as 22.3 by 14.9 millimetres, to compute the relative metric dimensions of a pixel.

According to this conversion for still images with resolution 4752 by 3168 the focal

length measured in the x axis fx and the y axis fy of the image plane would be 3836

and 3827 pixels respectively. If we assume the principle point lies at the precise centre

of the image plane then it can be defined with pixel coordinates (2376,1584). In order

to determine the same parameters for video these values can simply be multiplied by

a scale factor according to relative difference in pixel resolution for each axis. This

factors can be calculated as 2.475 and 2.933 in the x and y axis respectively.

3.2.4 Calibration and measurement error

As mentioned previously the basic theory of stereometry relies on two identically cal-

ibrated and perfectly aligned cameras. In practice this can be difficult and expensive

to achieve as it would require purpose built optical equipment. Almost all studies

rely on commercially available non-metric cameras which are not calibrated to a high

degree. As such many of the camera parameters can vary significantly from those

specified by the manufacturer. If not properly accounted for, this discrepancy can

have an enormous impact on accuracy of measurements (Cavagna et al., 2008).

Whilst ideally cameras should be subjected to a professional calibration identifying

intrinsic parameters, including levels of lens distortion, precisely this process can
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be expensive and is beyond the limited resources of this investigation. Instead, we

perform calibration and stereoscopic reconstruction using a freely-available compu-

tational tool developed in Matlab R⃝ by Bouguet (2014), predominantly based on the

approach outlined in Zhang (2000).

In order to estimate the intrinsic parameters and additional components of radial

and tangential distortion for each camera we conducted experiments taking images

of a two-dimensional checkerboard pattern with 3 by 3 centimetre squares (Figure

3.3(a)) from a series of different positions. By relating the position of known point

locations on this grid to the relative position on the camera plane through a process of

corner extraction (Figure 3.3(b)) a homography matrix describing the transformation

from one plane to the other can be estimated. An initial guess for this matrix is

computed by rearranging the camera model, which can be simplified as the real world

coordinates for Xz are equal to zero, so that the required elements of homography

matrix are contained in a single vector (v) such that Lv = 0. The solution to this

problem is well known, using a single value decomposition (SVD) to determine the

eigenvector of L corresponding to the smallest eigenvalue. Using this initial estimate

a non-linear minimisation is conducted using the Levenberg-Marquardt algorithm. To

ensure sufficient information is available to determine all parameters each homography

requires a minimum of 4 pairs of points; the checkerboard provides 48 pairs using the

corners corresponding to the interior 7 by 5 grid squares.

In total we took 25 images from different angles within a spherical pattern (Figure

3.3(c)); a minimum of 3 is required to provide information in three-dimensions. By

combining the homography matrices generated for each camera angle a closed form

solution can applied to provide an initial estimate of all intrinsic parameters (Zhang,

2000). These parameter values, including those describing lens distortion, can then

be refined using the same optimisation approach described previously. To ensure

reliable estimates this calibration process was repeated 10 times for each camera with

the average of these adopted as the parameterisation for the respective models. The

results of this calibration are detailed in Table 3.1 alongside corresponding estimates
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Figure 3.3: The results of calibration experiments to determine intrinsic camera parameters.

The images show: (a) the calibration plane with standard checkerboard pattern providing a

set of known relative positions; (b) corner extraction, the process of identifying the position

of known locations on the image plane; (c) the pattern of 25 different camera angles used to

build up a three-dimensional representation of the calibration pattern; (d) the distribution of

pixel error produced by the estimated camera model.
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Table 3.1: A summary of the intrinsic camera parameters determined by the calibration.

Estimates are provided for both still images with resolution of 4752 by 3168 pixels and video

resolution of 1920 by 1080. Parameters fx and fy denote the focal length measured in pixels

according to the pixel dimensions in x and y respectively; u0 and v0 denote the position

of the principle point on the image plane; γ denotes the skew between axis on the image

plane, this was negligible and thus assumed to be zero throughout the calibration; ki denote

the components of distortion with first and second elements representing radial distortion

and the third and fourth tangential, as was the case for skew the additional fifth element of

distortion remained effectively zero and consequently was not considered.

Stills (4752x3168) Video (1920x1080)

Parameters Left Camera Right Camera Left Camera Right Camera

fx 3916 ± 7 1582 ± 3 3940 ± 10 1592 ± 4

fy 3913 ± 7 1334 ± 2 3941 ± 9 1344 ± 3

u0 2327 ± 11 940 ± 5 2334 ± 6 943 ± 3

v0 1724 ± 13 588 ± 4 1772 ± 12 604 ± 4

γ 0 0 0 0

k1 -0.185 ± 0.008 -0.186 ± 0.009 -0.185 ± 0.008 -0.186 ± 0.009

k2 0.158 ± 0.026 0.179 ± 0.032 0.158 ± 0.026 0.179 ± 0.032

k3 0.009 ± 0.001 0.011 ± 0.001 0.009 ± 0.001 0.011 ± 0.001

k4 0.001 ± 0.001 -0.001 ± 0.0004 0.001 ± 0.001 -0.001 ± 0.0004

k5 0 0 0 0
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for video resolution images. These suggest that the camera parameters do in fact

differ from those specified by the manufacturer.

It can be seen in Figure 3.3(d) that the pixel error produced by this calibration

is clustered radially around zero with average error of approximately 1.25 pixels in

each dimension. Whilst this may seem large the sensitivity of any stereoscopic system

is limited to 1 pixel below which changes in position cannot be measured (Cavagna

et al., 2008). An error of 1.25 pixels is comparable to this limit suggesting that the

estimates provided in this calibration are reasonably accurate.

Using these intrinsic parameters we can now determine the extrinsic parameters for

the stereoscopic setup. We conducted experiments using the outline of a badminton

court to position identical objects at known locations (Figure 3.4(a)). As before, by

relating the position of these images to those on the image plane this time using the

known intrinsic parameters we were able to infer the position of each camera in the

real world. By applying the inverse transformation for the left camera to both camera

models we obtain the relative transformation between the cameras. We repeated this

3 times disassembling the apparatus between each experiment in order to capture

any differences which may occur due to inaccuracies in the setup procedure. These

results were averaged concluding that the vector separating the camera positions was

(−1.98±0.005,−0.002±0.002, 0.072±0.01) metres and the relative rotation defined by

the angles of roll, pitch and yaw was (0.025± 0.0003,−0.0001± 0.0007, 0.003± 0.002)

radians. The small standard deviation observed in each parameter value indicates

that the setup procedure could be reproduced with relative consistency.

To test the accuracy of the stereoscopic setup we conducted another experiment

again placing objects at different positions and relative heights on the badminton court

(Figure 3.4(a)). The measurement errors observed in this experiment are plotted

in Figure 3.5(b) and summarised in Table 3.2. Using the relationships outlined in

Cavagna et al. (2008) we estimate the error which would be observed using the same

cameras in video mode. Here, the absolute error is independent of resolution, instead

relying on the relative alignment of the cameras, and therefore remains unchanged.
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Figure 3.4: An illustration of calibration experiments to determine the extrinsic

parameterisation of the stereoscopic setup and test the method of reconstruction. These

experiments are conducted on a standard badminton court where the outline can be used

to identify the relative position of objects. The arrangement in: (a) marks the placement

of calibration objects arranged at known positions on a plane (at a height of 5 cm above

the court) which are used to estimate the relative separation and alignment of the cameras

mounted on the stereoscopic rig, the extrinsic parameters; (b) marks the placement of

calibration objects arranged at known positions which are used to assess the accuracy of the

stereoscopic apparatus (white circles indicate an object at a height of 5 cm above the court

with the black circle denoting an object at 65 cm); (c) marks the path followed by a subject

carrying a calibration objects which is used to test the accuracy of trajectory reconstruction.

In all experiments the position and orientation of the stereoscopic camera setup remains

unchanged.
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Figure 3.5: Results of the stereoscopic calibration and testing. (a) and (b) plot the

reconstructed position (white markers) of calibration objects (black markers) placed at know

positions on a badminton court which were used to parameterise and independently test the

stereoscopic system (note some calibration objects are covered by the reconstruction and hence

are not visible); (c) plots two reconstructed trajectories of a subject moving along a fixed pre-

planned route around the badminton court; (d) plots the time lag between corresponding

images taken by each of the cameras in the stereoscopic setup on continuous shooting mode

indexed by the image number. For the static objects shown in (a) and (b) the accuracy of

estimated positions is good. Whilst initially this is also the case for a moving object, over

time accuracy is seriously reduced due to desynchronisation between the cameras which is

shown to occurs after approximately 20 images.
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Table 3.2: A summary of the absolute and relative measurement errors determined from

calibration experiments taking still images of objects at a distance of 10 metres. Using

the relationships outlined by Cavagna et al. (2008) these results are scaled to estimate the

measurement error which would be observed at various distances using the image resolution

of both stills and video.

Stills (4752x3168) Video (1920x1080)

z ∆x ∆y ∆z δx δy δz ∆x ∆y ∆z δx δy δz

10 0.02 0.01 0.06 0.01 0.01 0.03 0.02 0.01 0.06 0.02 0.02 0.08

50 0.32 0.19 1.17 0.13 0.12 0.53 0.32 0.19 1.17 0.36 0.32 1.43

100 1.26 0.76 4.69 0.53 0.47 2.12 1.26 0.76 4.69 1.43 1.27 5.73

200 5.06 3.04 18.8 2.11 1.88 8.48 5.06 3.04 18.8 5.72 5.08 22.9

Whilst these errors may seem acceptable at an average distance of 10 metres it must

be noted that relative error increases by a factor equal to squared distance. The table

also details an estimate of both absolute and relative error at various target distance

up to 200 metres, the distance required at our chosen study site.

Finally, we performed an experiment designed to test the ability of the system to

reconstruct the trajectory of moving object. Here, a subject followed a specific path

around the badminton court shown in Figure 3.4(c) carrying an object to provide a

consistent feature to identify in each image. The results of this experiment, displayed

in Figure 3.5(c), show that initially the calibrated setup performs well matching

the trajectory taken by the subject, however, over time both the accuracy and the

frequency of points is reduced. This occurs as a result of a desynchronisation between

the cameras. Further tests which used the camera setup to capture images of a

digital timer found that this desynchronisation occurs after approximately 20 images

corresponding to a time of 6 seconds (Figure 3.5(d)). This is a disappointing result

and given the requirements of the investigation mean that video provides the only

viable option. However, the relative errors associated with this means that accurate

assessment of parameters especially at 200 metres may be unreliable.
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3.3 Results

Despite regular deployment of the stereoscopic setup at our chosen site where interac-

tions had previously been observed we recorded no useable data. This highlights the

limitations of this approach in that observation is not continuous and relies heavily

on site selection. However, during the course of this work some data was collected

at an alternative site on the University of York campus. Whilst there is only a small

quantity of data and this does not incorporate any interaction with obstacles, an

analysis of flock structure and dynamics are presented here in order to demonstrate

the type of summary statistics which may be extracted from the reconstruction and

how these may be interpreted to infer particular parameter values in our models,

specifically those relating to social interactions. Since the data is limited the values

obtained from the reconstruction do not always fall within the expected ranges; this

is discussed and alternative values from existing literature are suggested.

3.3.1 Reconstruction data and analysis

Following the failure to observe flocks at our primary study site the stereoscopic

apparatus was deployed at secondary site on the University of York campus, with UK

grid reference SE 63855052, where frequent flights could be observed. The detail of

this site are shown in Figure 3.6. At this site we were able to capture footage of a

single flock of 6 geese using the video based stereoscopic setup described previously.

From this video footage synchronised images were extracted at a rate of 20 frames

per second yielding 23 distinct time steps for which reconstructive analysis could be

conducted. Owing to the limited amount of data the position of each individual on the

image plane was extracted manually. In future work should larger amounts of data be

captured an automated approach could be implemented using a suitable open source

motion tracking software, such as SwisTrack (Correll et al., 2006), which has been

used in other similar experiments (Bode et al., 2010a).

Using these point locations on the image together with the known parameters of

the stereoscopic apparatus we reconstructed three-dimensional trajectories for each
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Figure 3.6: Details of a secondary study site with plots of reconstructed trajectories and

analysis. (a) provides an aerial view of the study site outlining the position and orientation of

the stereoscopic apparatus (red dot and cone respectively) with an inlay showing the location

on a map of the surrounding area (green and red dots mark primary and secondary sites

respectively); (b) is an image taken using the stereoscopic apparatus showing a flock of 6

geese (circled in red) which were observed at the study site; (c) plots the reconstructed three-

dimensional trajectories for this flock; (d) plots the relationship between various summary

metrics extracted from the reconstruction as a function of moving average length. The metrics

shown are: (i) nearest neighbour distance; (ii) furthest neighbour distance; (iii) polarity; (iv)

speed; and (v) turning rate. The reconstruction shows erratic movements likely due to system

errors. By applying a moving average to smooth trajectories metrics appear to converge

towards a stable value.
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individual. These reconstructed trajectories are plotted in Figure 3.6(c). It is clear by

comparing the trajectories in this figure with the video footage that the accuracy of the

reconstruction is limited and consequently a direct analysis of these trajectories would

be unreliable. In order to address this issue we propose a similar approach to that

used in Budgey (1998), applying a moving average to smooth each trajectory. This

method of noise reduction is valid assuming that the system error is evenly distributed

with mean equal to zero. We computed several metrics to assess the structure and

motion of the flock using various lengths of moving average to demonstrate that given

a suitable smoothing coefficient each statistic converges towards a stable value. Figure

3.6(d) suggests that for all metrics to converge sufficiently a moving average across

10 images should be applied.

3.3.2 Analytical metrics and model parameterisation

The following discussion presents the estimates of computed metrics, namely neigh-

bour distance, flight speed, flock polarity and average turning rate from the data

described in Section 3.3.1. For each their reliability is assessed in the context of

similar published studies and our own visual observation. Where estimates from

previous studies are unavailable, as is the case for turning rate, comparison is provided

using a theoretical approach based on well defined equations of flight (Pennycuick,

2008).

Using specific metrics, primarily neighbour distances, we outline the considera-

tions which could be applied to parameterise the simulation model detailed in Chapter

4. The limited data collected as part of this study alone would be insufficient to make

any statistically significant conclusions. To supplement this discussion additional

analysis is presented using data obtained from a previous stereoscopic study (Budgey,

1998). The raw data supplied by Budgey (Pers. comm.) describes the reconstructed

positions of 17 different flocks of various sizes at a single snapshot in time. This

information can therefore only be used to inform flock structure and cannot provide

information flight speed, flock polarity and average turning rate. Whilst the data
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presents three-dimensional information it shows, consistent with observation, that

geese tend to fly at similar flight heights with only minimal deviation (less than a

metre). As such, the distances measured between neighbours can plausibly be applied

to parametrise a two-dimensional model. In the absence of supporting trajectory

data, the metric describing turning rate is difficult to validate empirically. Instead, as

mentioned previously a theoretical argument is presented to provide comparison for

our observations and suggest a suitable parameterisation for the maximum turning

rate of geese.

Neighbour distance

Neighbour distances are computed as the relative distance between each individual at

a specific snapshot in time. These distances are commonly used to describe and

assess the spatial structure of groups. Figure 3.7 presents the data supplied by

R. Budgey (Pers. comm.) detailed above to explore the structure of goose flocks

and assess any relationship with flock size. Based on these distributions of nearest

neighbour and neighbour distance an argument is outlined below as to how the radii

characterising the zones of social interaction (repulsion, orientation and attraction)

could be determined. The distances which define these interaction zones are a key

component in models of collective motion and have been shown to significantly alter

the characteristics of group motion (Couzin et al., 2002).

The nearest neighbour distance for each individual is one of most common met-

rics computed in studies of collective motion. The results from our reconstruction

suggest that for the observed flock of 6 individuals the average nearest neighbour

distance across all snapshots along the trajectory converges towards a distance of

approximately 1 metre. Whilst this distance is plausible it is noticeably smaller than

the range of distances observed in Figure 3.7(a)(iii). This perhaps shows that the

dataset obtained from our stereoscopic set up is unsuitable to derive flock parameters

from due to the lack of data and large errors in measurement of relative distance. At

a distance of 50 metres, as is the case for the flock reconstructed here, the relative
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Figure 3.7: Plots present an analysis of the flock reconstruction supplemented with

additional data supplied by Budgey (1998) to estimate the radii characterising zones of social

interaction. (a) Summarises this data by plotting: (i) a histogram of nearest neighbour

distances (NND); (ii) a histogram of neighbour distances (ND); (iii) average NND as a function

of group size for both empirical and modelled data. (b) Plots the probability of splitting for

simulated social groups (ws = 1) of varied size (N) using the model outlined in Chapter 4 as

a function of the radius of attraction (Ra). Empirical observation indicates fewer neighbours

than anticipated in the range 0–2 metres with all nearest neighbours appear within 18 metres.

NND is weakly correlated withN as opposed to modelled data which exhibits a strong negative

correlation. In simulations, Ra must remain above 100 metres (approximately the maximum

ND observed empirically) to maintain cohesive groups.
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error between individuals 1 metre apart is estimated as 1.43 metres meaning that the

average nearest neighbour distance could in fact be 2.43 metres. This value is instead

much closer to the distances seen in Figure 3.7(a)(iii). Based on the distribution of

nearest neighbour distance derived from Budgey (Pers. comm.) the radii of repulsion

and alignment can be inferred according to the following argument.

Taking into account only attractive interactions, individuals would cluster together

around the centre of the flock, the distribution of nearest neighbour distances would

show most occurrences for the closest nearest neighbour distances (0–2 metres),

decreasing with distance. Figure 3.7(a)(i) shows a distribution that approaches this

but with significantly fewer individuals in the first bin (0–2 metres) than would be

anticipated by this explanation. This indicates the zone of repulsion and is consistent

with the average wingspan of the geese studied, reported as 1.5 metres (Ogilvie, 2011).

In addition, it is observed that all individuals have a nearest neighbour within

a distance of 20 metres. This indicates that at distances that are larger than this,

individuals will move to reduce the separation, giving a value for the closest distance

at which attraction begins to occur. Between the zones of repulsion and attraction

lies the alignment zone in which birds align with each other in order to maintain a

separation. The data therefore indicates that this zone should span distances between

2 and 20 metres.

The distribution of neighbour distances can also be useful with the furthest

neighbour distance representing the maximum flock width. Figure 3.7(a)(ii) plots this

distribution from Budgey (Pers. comm.). It shows that the majority of neighbours lie

within 0–20 metres supporting the conclusion from Figure 3.7(a)(i) that at distances

larger than this attraction is likely to occur. It can also be seen that the furthest

neighbour distance, and therefore the maximum width of the observed flocks, is 140

metres. As the flock observed in our study contained relatively few individuals it

is perhaps unsurprising that the flock width calculated is well within this limit at

around 4.5 metres. In comparison with flocks of similar size, as previously observed

for nearest neighbour distance, the width recorded from Budgey (Pers. comm.) is
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nearly double at 8 metres. Again, this difference is likely due to the high measurement

errors estimated for the stereoscopic system.

It may be possible that the maximum flock width could indicate the radius of

attraction for social groups. However, it is noted in Reynolds (1987) that, unlike

other animals such as fish, birds have long-range visual capabilities and that this

allows widely separated flocks to join together. Therefore, it is likely that the radius of

attraction in fact extends beyond the maximum flock width. For the models outlined

in this thesis the zone of attraction represents the limit of sensory perception. This

zone also applies to interactions with obstacles. Studies at wind farm sites have

recorded that geese display avoidance behaviour up to 1000 metres from turbines

(Hötker et al., 2006). Consequently, in models containing obstacle interactions it is

suggested that this distance should be used instead to define the zone of attraction.

Flight speed

Flight speed can be extracted from our reconstruction by calculating the distance

between sequential positions on an individuals trajectory and dividing by the length

of the time step, in this case 0.05 seconds. The average flight speed recorded for

the flock across the period of observation was 7 m/s which is comparable to the

observations expressed in Ogilvie (2011) for flights at low altitude which is used in

the model described in Chapter 2. However, a higher speed of around 15 m/s has

been recorded for geese during migrations, which is more relevant to the scenario

simulated using the models in this thesis.

Flock polarity

The internal alignment, or polarity p, of the observed flock is determined using the

heading vector vi, the vector connecting sequential positions on the smoothed flight

trajectory, of each individual. It is computed as follows,

p =
1

N

∣∣∣∣∣
N∑
i=1

vi
|vi|

∣∣∣∣∣ (3.2)
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where N is the flock size (Couzin et al., 2002). This produces a value between 0 and

1 with higher values indicating a greater degree of alignment. Figure 3.6(d) shows

that initially for a moving average of 1 (corresponding to the raw data) the flock

appears poorly aligned with a polarity of 0.45 but as the length of moving average

is increased polarity also increases converging towards a value of 0.95 for a moving

average of 20. This value suggests a high degree of polarity which is consistent with

the casual observation of geese.

Turning rate

An estimate of the average turning rate can be determined by calculating the angle

between sequential heading vectors extracted from our reconstruction data. For a

moving average of 20 this calculation produced an average turning rate measured

across all time steps of approximately 0.42 radians, or 22 degrees, per 0.05 seconds.

This would suggest that if an individual were to turn in a consistent direction the

potential turning rate would be 440 degrees per second, i.e. an individual could turn

more than a full circle within a second; this result seems unreasonable. The maximum

observed turning rate according to our reconstructed trajectories was even larger at

approximately 1000 degrees per second, nearly 3 full turns. This again illustrates the

issues around calculating parameters from such a limited and imprecise dataset.

Using known physical parameters a more reasonable turning rate can be calculated

from established equations of flight (Pennycuick, 2008). In the models used in this

thesis the maximum turning rate (θ) is considered to apply to changes in heading

rather than position. By considering a banked turn, in which an individuals movement

follows an arced path, the maximum angle between sequential heading vectors is

equal to the angle defining the arc length connecting the corresponding sequential

positions; equivalent to the speed of travel v0. To account for the two-dimensional

environment in which individuals move such banked turns should be considered to

occur horizontally, so that the vertical component of lift balances gravitational forces.

Whilst the speed of movement is known in order to calculate the arc angle the
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radius defining the turning circle, or tightness of turn, is also required. Considering

a horizontal turn as described above Pennycuick (2008) derives the equation to

determine minimum turning radius corresponding to the maximum turning angle

as follows,

rlim =
2m

CLρS
(3.3)

where CL denotes the maximum coefficient of lift, S is the wing area, m is mass and ρ

is air density. Using specific values for geese provided by Pennycuick (2008) where CL,

S, m and ρ are given as 1.6, 0.331 m2, 3.77 kg and 1.23 kgm−3 the minimum radius

of a horizontal banked turn can be estimated as 11.57 metres. Therefore according to

the basic equation defining an arc, θ = v0/rlim, and assuming a speed of 15 m/s as

outlined above the maximum turning rate is 1.29 radians, approximately 80 degrees,

per second.

3.3.3 Model comparison

Using the parameters for speed, radius of interaction and turning rate suggested in

the previous section, simulations were conducted according to the modelling approach

outlined in Chapter 4 to compare the spatial distribution of groups with empirical

data.

The plot in Figure 3.7(a)(iii) shows the variation of average nearest neighbour

distance in relation to group size. It can be observed that the modelled data appears

over a similar range to that of empirical data confirming that the parametrisation

produces a representative group structure. However, simulated groups display a

strong relationship between nearest neighbour distance and group size which is not

present in the empirical data. The decreases in nearest neighbour distance, observed

in the modelled data, is a result of increased desire for group centring. As more

individuals are added, naturally the group must expand to maintain minimum nearest

neighbour distances. However, this expansion is resisted by individuals towards the

outer edge of the group who attempt to improve their position by moving towards the
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group centre. These behaviours counteract each other increasing the density of the

group, reflected by the decrease in nearest neighbour distance. This is a commonly

observed difference between modelled and empirical data as discussed by Hemelrijk

and Hildenbrandt (2012). For geese in particular this result could be due to the

omission of factors, such as the energetic benefit of maintaining flight in the “upwash”

of leading birds (Bajec and Heppner, 2009), which may contribute to the relative

spacing of birds.

In addition to comparing the spacing between individuals the plot in Figure 3.7(b)

tests the width of groups produced by the model. Rather than measuring this directly

the parametrised model is used to explore the effect of varying the radius of attraction

(Ra). In the absence of a common navigational direction Reynolds (1987) notes

that in groups containing individuals whose sensory capability prevents at least some

knowledge of all neighbours (e.g. fish) localised centres of mass could form, leading

to group splitting. Therefore, the width of groups can be inferred by determining

the attraction radius required to maintain stable cohesive groups. It can be observed

(figure 3.7(b)) that when the radius of attraction is greater than 100 metres all groups

maintain cohesion. Below this distance larger groups exhibit significantly reduced

cohesion, indicating that group width is approximately 100 metres. This value is

comparable to the maximum width of flocks estimated from the empirical data.

Whilst it is not shown here it should also be noted that simulated groups ex-

hibit high polarisation which is characteristic of the flocks observed empirically. As

mentioned previously the distances used to define the radii of interaction can have a

significant effect on the pattern of movement produced within models. The fact that

the parameterisation used here produces movements similar to those observed in the

field is further evidence to suggest that the identified values are reasonable.

3.4 Discussion

In this chapter we have described the development of a portable stereoscopic camera

system which could be used to investigate the interaction of geese with obstacles, such
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as wind turbines. We outline methods to calibrate this system and perform tests to

assess its limitations. Using data gathered in the field we reconstruct trajectories for a

flock of geese and demonstrate how appropriate model parameters could be extracted

given data of suitable context, quality and quantity. By comparing the behaviour

of simulated groups according to this parameterisation with empirical observations

we assess the realism of the model and suggest mechanisms which could explain

differences in group structure. The results of this comparison show that whilst some

properties are reproduced by the model, such as flock width, others are less well

defined. For example, the nearest neighbour distance in simulated groups is strongly

correlated with group size but a similar pattern is not clearly evident in empirical

data. It is argued that this may be due to the omission of mechanisms related to

aerodynamics efficiency. Whilst this may limit the realism of the model it should not

impact the qualitative assessment of obstacle avoidance.

Our assessment of the stereoscopic system shows that whilst the resolution of

still images allows more precise reconstruction the cameras used in this study were

only able to maintain synchronisation at a suitable frame rate for a short period,

approximately 6 seconds. Based on our observations of geese this would be insufficient

to capture the full interaction of flocks with an obstacle allowing an assessment of

behaviour both pre- and post- avoidance. Consequently, we conclude that at present

video provides the most viable option for this type of study. However, the limited

resolution of video impacts the accuracy of the system. At a distance of 200 metres,

that required to observed flocks at our chosen site, both the absolute and relative

positional errors are approximately 20 metres, i.e. 10%. Whilst this error is large

we have demonstrated, for observations recorded at a distance of 50 metres, that

a moving average can be implemented to reduce noise allowing metrics describing

group structure and movement to be computed with a reasonable degree of accuracy;

comparing favourably with similar values found in existing literature. This approach

may not be suitable for assessing group interactions with an obstacle. Unlike the

relatively stable flocks captured here, flocks performing avoidance manoeuvres may be
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subject to significant disruption the observation of which would be limited by applying

a moving average. It is therefore necessary to consider methods for improving the

accuracy of the stereoscopic system.

The relationships outlined in Cavagna et al. (2008) suggest that errors in absolute

position are a result of misalignment between the cameras and that these could be

improved by accurate measurement of alignment in the field each time the system is

deployed rather than applying a general calibration result inferred from reconstruction

data as is the case here. Relative error is instead dependent upon the baseline length,

the relative separation of the cameras, and the image resolution with increases in

each reducing error. In order to maintain the mobility of the system it would be

impractical to consider increasing the length of the baseline meaning that the only

way to reduce relative errors would be to increase image resolution. Recent advances

in commercial video technology may provide a solution to this problem. The wide

spread release of 4k video has begun to bridge the gap between the resolution of still

images and video providing high speed image capture at a standard resolution of 3840

by 2160. This signals a shift in the use of camera technology away from traditional

point and click image capture towards more continuous approaches where stills are

instead extracted in post processing. Further advances are anticipated in the near

future with an 8k video standard in development which would provide a resolution of

7680 by 4320. At this resolution the relative error in our system would be reduced

significantly to approximately 2.5%.

The integration of an accompanying GPS based system could also improve the

experimental design. As already stated this method alone is unsuitable to use in

uncontrolled experiment as it cannot be guaranteed that all members of a flock are

tagged. However, GPS data from a sample of individuals within a flock could be used

to ground the stereoscopic reconstruction data providing the necessary information to

perform validation and reference the absolute position of the flock relative to the real

world. The latter would be particularly beneficial for assessing avoidance manoeuvres

where absolute position relative to an obstacle is required and can be challenging to
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infer from stereoscopic data.

The lack of data captured at our primary study site highlights the variable nature

of observing animals in an open environment. It is perhaps reasonable to suggest

that the fieldwork proposed in this chapter could be considered overly ambitious

for an initial investigation given the limitations of the technology and resources

available. An alternative approach may be to conduct exploratory experiments in a

more controlled lab-based environment using fish where repeated obstacle interactions

could be manufactured and observed at a closer distance which is not subject to the

same levels of measurement error. Though behaviour may vary across taxa this would

at least provide a basic understanding of the mechanisms relating to avoidance and in

the absence of other such studies could serve as a benchmark for future investigations.
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Chapter 4

Obstacle avoidance in social

groups: new insights from

asynchronous models

Published manuscript

S. Croft, R. Budgey, J.W. Pitchford, and A.J. Wood. Obstacle avoidance in so-

cial groups: new insights from asynchronous models. Journal of The Royal Society
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4.1 Preface

As stated previously in the Thesis Declaration this chapter has been published in a

peer-review journal. It is presented as it appears in print with the following revisions:

1. Minor grammatical and referencing errors have been corrected to improve clar-

ity.

2. Referencing to relevant discussion elsewhere in the thesis has been incorporated.

3. Text has been added to provide clarification on the meaning of transparency of

obstacles in relation to vertex density.

4. Comment has been added regarding the choice of minimum spacing between

obstacle vertices.

5. Equation 4.1, detailing the calculation of selection probability for each update

partners, and accompanying text has been revised to clarify the distinction

between selection weight and probability.

6. Explanation of the generation of random turbulence has been modified to reflect

the definition of a Von Mises distribution i.e. with a κ-parameter rather than a

standard deviation as used in an equivalent Wrapped Normal distribution.

7. The definition of simulation metrics has been revised and added to in order to

provide additional clarity.

8. Comment has been added to clarify the method used to simulate heterogeneity

in the preference weightings of individuals for social and obstacle avoidance

behaviours.

9. Definition of turbulence (we) added to Table 4.1.

10. Comment has been added to provide additional discussion of the observations

relating to network structure and group cohesion in relation to the previous

findings of Bode et al. (2012c).
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11. Discussion of Figure 4.6 relating to navigation of groups in turbulent environ-

ments has been revised to emphasis the argument that the observations at first

glance may appear to contradict Codling et al. (2007) but do in fact support

these conclusions with increased avoidance of more social groups driven by a

failure to navigate in the target direction rather than a deliberate avoidance

strategy.

12. Note added to clarify the meaning of “no collision risk” in the discussion of

variations in environmental turbulence.

Significant additions to the text are presented in italics delineated by square

brackets.
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4.2 Abstract

For moving animals, the successful avoidance of hazardous obstacles is

an important capability. Despite this, few models of collective motion

have addressed the relationship between behavioural and social features

and obstacle avoidance. We develop an asynchronous individual-based

model for social movement which allows social structure within groups to

be included. We assess the dynamics of group navigation and resulting

collision risk in the context of information transfer through the system.

In agreement with previous work, we find that group size has a non-linear

effect on collision risk. We implement examples of possible network struc-

tures to explore the impact social preferences have on collision risk. We

show that any social heterogeneity induces greater obstacle avoidance with

further improvements corresponding to groups containing fewer influential

individuals. The model provides a platform for both further theoretical

investigation and practical application. In particular, we argue that the

role of social structures within bird flocks may have an important role to

play in assessing the risk of collisions with wind turbines but that new

methods of data analysis are needed to identify these social structures.

4.3 Introduction

Collective motion can be observed in a wide variety of biological systems, inspiring sci-

entists to investigate the mechanics behind such apparently complex behaviour (Aoki,

1982; Major and Dill, 1978; Heppner, 1997; Czirók and Vicsek, 2001). Many of these

studies have developed individual-based models to assess the effect of behavioural and

environmental factors (Couzin et al., 2002, 2005; Codling et al., 2007; Bode et al.,

2011a; Croft et al., 2013). These models simulate motion through local interactions by

applying rules based on proximity with individuals exhibiting three core behaviours:

repulsion (avoiding collision with other individuals); orientation (aligning with nearby
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individuals); and attraction (movement towards distant individuals) (Reynolds, 1987;

Couzin et al., 2002). Additional rules can be incorporated to represent environmental

factors, for example, navigation towards a target or response to predators (Inada and

Kawachi, 2002; Couzin et al., 2005; Codling et al., 2007; Bode et al., 2011a).

Typically, such individual-based models do not constrain the number of interac-

tions that contribute to the motion of an individual. These are known as “metric”

models, as they sum the interactions with all cues within a given distance of a focal

individual (Couzin et al., 2005; Codling et al., 2007; Croft et al., 2013). However,

empirical evidence suggests that social interactions may in fact be topological, with

each individual responding only to a fixed number of other individuals (Ballerini et al.,

2008a). Studies which develop an asynchronous updating method have demonstrated

that this topological property for interactions emerges spontaneously (Bode et al.,

2011a). Significant features of this modelling approach include varied speed distri-

butions and emergent stochastic noise in the decision making process, both of which

contribute to a greater degree of biological realism.

The importance of this updating scheme becomes apparent when individuals

interact with other environmental factors and averaging becomes inappropriate. Of

particular interest is when these environmental factors are of significant societal or

conservational relevance. For example, a growing demand for renewable energy has led

to a significant increase in the number of wind farm developments (UK Renewables,

2013). Wind farms are often sited in areas which intersect existing flight paths of

migratory bird species, thereby forming a potential barrier to movement (Masden

et al., 2009). It is important that we understand the impact such developments could

have on the level of avian mortality as a direct result of collisions in order to protect

the population of at risk species (Drewitt and Langston, 2008). There is considerable

variability in the collision risk for avian species from wind turbines, not least due

to variable sampling techniques and carcass loss from scavengers, estimates for per

turbine collision rates per annum span 4 orders of magnitude (Drewitt and Langston,

2008). However, few studies in the field of collective motion have investigated the
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interactions of bird flocks with wind turbines or other obstacles (Banks, 1979; Martin,

2011), primarily because of ambiguity in the methodology for incorporating obstacles

(and their avoidance) within existing models.

The previous work, presented in Chapter 2, investigating the interaction of groups

with a single obstacle shows that group size has a non-linear relationship with collision

risk, and that whilst initially social interactions cause a higher per capita risk of colli-

sion this is reduced with further increases (Croft et al., 2013). This has implications for

the modelling of real-world applications, especially for avian collisions where current

probabilistic models (Band et al., 2005) have no explicit dependence on group size

and cannot incorporate changes in behaviour driven by social dynamics (Chamberlain

et al., 2006).

Recent studies using an asynchronous update scheme have outlined a robust

framework to investigate the effect of complex behaviours such as the influence of

social networks (Bode et al., 2012a). This has important applications in simulating

real-world animal movement where empirical evidence suggests that both ability and

influence are unlikely to be distributed evenly (Lamprecht, 1992; Kurvers et al., 2009;

Nagy et al., 2013). The results show that when compared to previous studies,

which focus on the effects of varied ability (Couzin et al., 2005; Leonard et al.,

2012; Richardson et al., 2014), underlying networks representing simple examples

of leadership can have a significant impact on group dynamics and navigational

performance. Whilst leadership provides one example of a social network structure,

other characteristics such as clustering, as a result of strong interactions between

members of family groups, could also be present and have the potential to produce

distinct group behaviours (Krause et al., 2014). This highlights the importance of

identifying plausible network structures in order to produce realistic simulations

of animal movements. In the case of geese such network structures are not well

established; and in pigeons it has been shown that in-flight hierarchies cannot be

inferred reliably from ground-based networks (Nagy et al., 2013). Network structures

in other systems are better developed, for example in humans (Moussad et al., 2010),
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in other social animals (Pinter-Wollman et al., 2014) and in other application areas

(Kumar et al., 2010; Watts, 2004).

Here, we describe an individual-based model with an asynchronous updating

algorithm to investigate group interactions with obstacles. Using this model we

explore the response of individuals to changes in group size. We determine the

effect this may have on collision risk; initially with a single obstacles, and then

with an array of obstacles representing a typical wind farm. We parametrise and

then continue to simulate group interactions with an obstacle array, investigating the

impact underlying social networks have on collision risk by comparing four example

networks (homogeneous, random, clustered and leadership; to be defined in Section

4.4) each representing a distinct structural characteristic. We discuss how different

environmental factors may contribute to collision risk, paying particular attention

to the role of weather conditions, such as environmental turbulence and visibility.

These factors have proved difficult to assess empirically as many studies rely upon a

degree of visual observation to determine behaviour (Desholm et al., 2006; Drewitt and

Langston, 2008; Plonczkier and Simms, 2012). Finally, we investigate the trade-off

between avoidance and migratory pressures such as energetic efficiency (Pennycuick,

2008) by introducing a fixed straight route which group members attempt to follow,

thereby minimising energy expenditure. Such behaviour imposes a previously ignored

cost to obstacle avoidance which may have an important impact on predicted collision

risk.

4.4 Methods

4.4.1 Modelling framework

The model is adapted from the stochastic implementation outlined in Bode et al.

(2012a) (further justification for this choice with respect to obstacle avoidance is

included in Chapter 5).

Groups consist of a set of {1, . . . , N} individuals each represented by a position
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xi and a unitary heading vector v̂i in continuous two dimensional space. Inspired by

computational techniques for object reconstruction, obstacles are represented by a

finite set of {1, . . . ,M} vertices and connecting edges (Hartley and Zisserman, 2003).

Each obstacle vertex is represented by a position p
i
and an outwardly facing normal

vector n̂i. By describing obstacles in this way we provide a flexible approach for

approximating any shape, size or orientation without the need for complex differential

geometry. The degree of error in this method can be controlled by varying the

number of vertices which comprise each obstacle (see Section 5.3.4 for further details).

This allows us to distinguish between obstacles of equal size which induce different

avoidance potentials, for example as a result of varying levels of transparency, without

altering the way individuals respond to singular vertices. In this study we minimise the

error in behavioural response by adopting a standard spacing of 1 spatial unit between

vertices; provided the minimum distance used to categorise behavioural response is

greater than this value, individuals will detect the obstacles and react appropriately.

[Further investigation presented in Section 5.3.4 show that whilst a spacing of 1 is

consistent with the representation used in Chapter 2, in fact the minimum standard

spacing used here could be larger, approximately 7, due to an increased radius of

repulsion for obstacle interactions.] Motivated by our wind turbine application,

obstacles are considered to be transparent to the extent that they do not occlude

vision.

In common with established models (Reynolds, 1987; Couzin et al., 2002, 2005),

an individual determines a direction of motion by responding to selected navigational

cues within a given sensory zone, including migration towards a particular target

(Codling et al., 2007). This sensory zone is defined by a circle of radius Ra centred

on the individual, with an omitted blind angle β to the rear (Heppner et al., 1985).

However, unlike these models, individuals are updated asynchronously according to

the following algorithm:

1. Choose individual i at random.

2. Choose an “update partner” j (which may be another individual, an obstacle
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vertex, or the target direction) with probability Pij at random from all stimuli

within sensory zone (see below). If there is no stimulus then continue on current

heading.

3. Determine v̂i in response to chosen partner j.

4. Update xi and v̂i.

We ensure that each individual updates on average once per time interval ∆t by

performing N realisations of the steps 1–4 (Bode et al., 2010a). Simulation outputs

are recorded every τ = λ∆t seconds, where λ (≥ 1) defines the average number of

updates performed by each individual. When λ > 1 the resulting behaviour between

consecutive model outputs is the sum over a number of updates (Bode et al., 2012a).

The choice of λ is discussed in Table 4.1.

The probability of an individual selecting a particular update partner is initially

weighted based on the type of interaction. Interaction weighting are defined as social

(ws), obstacle (wo) and target (wt). Each of these weightings is modified according

to a spatial relationship providing distinction between partners of the same type.

Social and obstacle interactions are each scaled by a factor equal to the inverse of

relative distance (dij = |xj − xi|); capturing the averaged effect of visual occlusion.

In addition, obstacle vertices which appear outside of the frontal region defined by a

sector of angle α and radius greater than Rr
o are considered to have a weighting of

zero.

In order to emulate the effect of social networks within the group we construct

an underlying fixed matrix with elements eij (≥ 0). This matrix remains unchanged

through the simulation and contains information on the long-term social preference

and bonds between group members. The factor ϵi,j further scales the probability of

an individual i selecting a particular neighbour j. The details and implications of this

methodology are discussed in detail elsewhere (Bode et al., 2011b,c).

Finally, the weighting for target navigation comprises two parts, a constant di-

rectional part (wt0), and a variable part (wt1) which is determined by a function of
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the angle between the individuals current heading and its ideal target direction (ϕ).

As an individual orientates away from its ideal target heading this angle becomes

greater, increasing the target selection weighting. This simulates a desire for group

members to follow a particular route with strong route fidelity, a well established

trait of migratory birds (e.g. Biro et al., 2007). In summary, for an individual i

in a group with individuals n = {1, . . . , N} augmented with the obstacle vertices

m = {1, . . . ,M} and the target, then update partner j ∈ {N +M +1} is chosen with

weighting wij such that:

wij =


wseij/dij j ≤ N

wodij N < j ≤ N +M

wt0 + wt1(1− cos(ϕ)) j = N +M + 1

(4.1)

and hence the probability of selection (Pij) can be calculated as wij divided by the

sum of all weightings.

It is important to note that this differs from previous implementations of this

model (Bode et al., 2012a) which use a constant probability for the target; here the

target is merged into the pool of update partners that can occur at each micro-step,

and as a result the target preference is dependent upon the weight of other stimuli.

Once a partner has been selected, the updating individual must determine how

to respond according to the type of update partner. If a neighbour is selected, then

the focal individual’s sensory zone is divided into hierarchical interaction zones of

radius Rr
s, Ro

s and Ra which dictate whether repulsion, orientation or attraction

manoeuvres are performed respectively. Here, attraction manoeuvres are applied

with a velocity of 2v0, representing the increased thrust required by an individual

to reduce their distance to neighbours, maintaining group cohesion. Similarly, if an

obstacle vertex is selected a repulsive manoeuvre is applied within a zone of radius

Rr
o. For any vertices which appear at a distance greater than Rr

o we apply a pre-

emptive avoidance strategy equivalent to social alignment which aims to limit more

extreme repulsive action. Previously, it has been proposed that individuals should
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attempt to align themselves with the surface of an obstacle at the point of interaction

(Croft et al., 2013). For birds, which have been shown to have largely monocular

vision (Martin, 2011), this type of information requires a degree of depth perception

that is likely to be beyond their sensory capability. Instead, in this model we suggest

a simpler response where individuals turn away from obstacle vertices to maintain a

minimum angle of α between their heading and the trajectory intersecting the vertex.

The cumulative effect of this response results in an individual attempting to avoid an

obstacle on a trajectory which requires the least deviation from its current heading.

If target navigation is selected then an individual aims for a point that is a fixed

distance (dt) from its current projected position along the group target trajectory, in-

spired by route fidelity found in other species. This target trajectory is defined by the

straight line starting at the initial group centre of mass and continuing indefinitely in

the direction specified by a fixed target vector (v̂t). This implements instantaneously

perfect navigation on a linear route. Other studies have considered error in navigation

(Codling et al., 2007), but when this variation is introduced into the model presented

here it is dominated by the inherent noise in the underlying algorithm (Bode et al.,

2010b). For the application to collision avoidance, navigation error is therefore of less

importance then some of the other features varied in our analysis.

To represent the finite ability of an individual to execute a turn in the direction

of its preferred heading, we implement a maximum turning rate of θ. In simulations

which apply a movement error to represent environmental turbulence we rotate the

calculated heading vector, following the application of a turning limit, by an angle

randomly drawn from a Von Mises distribution with mean of zero and kappa w−1
e such

that small values of we correspond to low levels of error. Intersections with obstacles

are recorded when the trajectory of an individual intersects either an obstacle vertex

or connecting edge. In this implementation of the model we consider the probability of

these intersections resulting in a fatal collision to be zero. Consequently, intersecting

individuals are not removed from simulations. The implications of this choice on

obstacle avoidance is addressed in Section 5.3.3.
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We compute various metrics to summarise the data from our simulations. Target

navigation ability is defined as the fraction of the trajectory that all birds spend

travelling in the target direction. This is computed as the dot product of the mean

group direction (the vector from the initial mean group position to the current mean

group position) with the target direction, scaled by the mean distance travelled.

[Consequently, this metric not only describes how accurately a group has navigated in

the target direction but also how direct the trajectory.] The probability of splitting

is computed by calculating the fraction of simulations which contain more than one

group at the end of the simulation. [The simulation time was tested and set so that

groups had sufficient time to reach a new stable state following obstacle interactions,

see Section 5.2 for details.] We include both spontaneous splitting and interaction

with the obstacle to enable a measure of relative disruption to be computed. The

number of groups is calculated using an equivalence class relation with the equivalence

based on the radius of alignment. The probability of avoidance is computed by

averaging the number of individuals that intersect a single wind turbine (micro) or

array of wind turbines (macro) across all independent simulations of a given scenario.

The latter measure should be assumed in all cases unless otherwise stated.

4.4.2 Parametrisation

Parameters are chosen to nominally represent flocks of pink-footed geese (Anser

brachyrhynchus) interacting with an array of wind turbines. Where possible param-

eter values have been taken from empirical data. Time and space steps, and model

parameters, are related to their real world units and values in Table 4.1. Following

(Siemens AG, 2014) the width of obstacles used in simulations is fixed at 100 metres,

which represents a typical offshore wind turbine.

In simulations where we investigate the effect of heterogeneity in the abilities of

group members, the values of obstacle avoidance and target preference are varied.

For each individual the respective parameter values stated in Table 4.1 are scaled

by a factor randomly selected from a Normal distribution with mean equal to 1
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and standard deviation wh, which provides a quantification for heterogeneity. [To

ensure that parameter values remain appropriate, i.e. non-negative, the distribution

is truncated at either end between 0 and 2 with factors generated outside of this range

resampled until a suitable value is achieved. Given the levels of wh used in simulations

it should be noted that whilst possible resampling of factors is unlikely to be required.]

Table 4.1: List of parameters used in model simulations. Values stated are for a typical group

interacting with a square array of 25 obstacles. Where appropriate, physical parameters have

been set based on values from existing empirical studies.

Symbol Value Description and Unit (where appropriate)

N 30 Number of individuals within the group (Croft et al.,

2013).

τ 1 Time interval for each individual to perform, on average,

λ updates (in seconds) (Bode et al., 2011a, 2012a).

∆t 0.01 Time interval for each individual to perform, on average,

a single update step (in seconds) (Bode et al., 2011a,

2012a).

λ 100 Update frequency represents the average number of

updates an individual performs per second (Bode et al.,

2011a, 2012a; Healy et al., 2013).

v0 15 Average cruise speed in metres per second (Pennycuick,

2008).

α 45 Angle of pre-emptive obstacle avoidance needed to

observe a minimum distance of Rr
o from vertexes.

β 60 Angle of rear blind region of an individual (in degrees)

(Heppner et al., 1985).

θ 80 Maximum horizontal turning rate (degrees per second)

(Pennycuick, 2008).

Rr
s 2 Radius of social repulsion, in metres, representing the

average size of an individual, in this case the wingspan

(Pennycuick, 2008).
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Table 4.1: List of parameters used in model simulations (continued from the previous page).

Symbol Value Description and Unit (where appropriate)

Rr
o 150 Radius of obstacle repulsion, in metres, average minimum

distance maintained by individuals from obstacles, in this

case geese from wind turbines (Desholm et al., 2006).

Ro
s 20 Radius of social alignment, in metres, maximum nearest

neighbour distance within groups, in this case flocks of

geese (Budgey, 1998).

Ra 1000 Radius of attraction, in metres, representing the

maximum perception distance of an individual, in this

case the maximum distance from wind farms which geese

show avoidance action (Hötker et al., 2006).

ws 1 Social preference weighting, the priority an individual

shows towards selecting a neighbour for an “update

partner”.

wo 1 Obstacle avoidance weighting, the priority an individual

shows towards selecting an obstacle vertex for an “update

partner”.

wt 0.1 Target preference weighting, the priority an individual

shows towards selecting the target for an “update

partner”.

wt0 0.1 Baseline target preference weighting, the minimum

weighting which guarantees successful navigation towards

a designated target.

wt1 0 Variable target preference weighting, the coefficient which

scales the maximum target preference weighting.

wn 0.1 Network weighting, the magnitude of increments applied

to interaction matrix elements used in random network

generation.
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Table 4.1: List of parameters used in model simulations (continued from the previous page).

Symbol Value Description and Unit (where appropriate)

wh 0 Heterogeneity, the standard deviation of the normal

distribution used to vary avoidance and target

preferences between individuals.

we 1e-15 Error weighting, the magnitude of movement error used

to simulate environmental turbulence.

dt 30000 Target heading distance, defines the distance along group

target trajectory which an individual navigates towards.

This is chosen to minimise the lateral effect on group

structure.

In order to simulate underlying social networks we define interaction matrices with

elements eij denoting the strength of the social connection individual i has towards

neighbour j. For a unitary homogeneous network we consider connections be-

tween neighbours to have a weight equal to 1 (eij = 1). Connections between the same

individual are disallowed (eii = 0). Random networks are generated relative to this

unitary matrix so as to maintain a balance between the average weight of all detected

social interactions relative to obstacle and target interactions. Initially, we assume

that all individuals are at least weakly connected with weight wn. Connections are

selected at random and incremented by wn until the sum of all elements is equal to

that of the homogeneous case.

For clustered and leadership networks the connections which can be incre-

mented are limited to a specific subgroup. In the case of a leadership network l

individuals are randomly identified as leaders. The only matrix elements which can

be incremented are those which describe the connections from a remaining group

member to any of these leaders. In the case of clustered networks, group members

are assigned a number between 1 and c representing a fixed number of subgroups.
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The only matrix elements which can be incremented are those which describe the

connections between group members with matching cluster index. Unless otherwise

stated simulations use a unitary homogeneous network.

4.4.3 Simulations

Simulations consist of two phases: an initial warm up, followed by a phase of inter-

action with obstacles. Each phase is performed for a period of 1000 time steps in an

unbounded environment. The warm up phase allows groups to form a representative

configuration in the absence of obstacles. Here, we define a representative configu-

ration to mean that all individuals belong to an equivalence class where neighbours

are declared equivalent if they are within a distance equal to the radius of alignment

(Ro
s). Thereby, each individual must as a minimum be in a position to align with

at least one neighbour. It should be noted that individuals can become permanently

separated from the main group. In such cases where a representative configuration is

not formed the warm up phase is repeated.

The group is then reset with its centre placed on a selected origin and rotated

so that the average heading is equal to the specified target direction. In simulations

with a single obstacle we use a fixed origin which is located 5000 metres from the

obstacle centre in the target direction. Otherwise, groups interact with an array

containing 25 obstacles uniformly arranged on a square grid at 500 metre intervals,

the representative spacing of wind turbines (Masden et al., 2012).

To focus on behavioural effects and minimise the effect of starting conditions we

perform the following randomisation scheme on the initial positions. The origin is

randomly selected on a line segment with midpoint 6000 metres from the array centre

(approximately 5000 metres from the nearest obstacle) in the target direction and

extending perpendicular to this vector. The group centre may be placed either side

of the segment midpoint at a distance corresponding to the cross-sectional width of

the obstacle array excluding a 50 metre buffer zone at both ends. This guarantees

that, if there is no avoidance behaviour, individuals will intersect the area bounding
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the array. By varying the origin of groups we sample all potential interactions with

the array. To minimise the number of direct routes through the array we offset the

angle of approach, between the target direction and the orientation of columns in the

array, by 12 degrees, at which the probability of an individual avoiding all obstacles

without evasion is negligible.

Once the simulation warm up phase is complete, the phase of obstacle interaction

is initiated, during which individual level trajectory data is recorded at discrete time

intervals (τ). For each set of parameters we perform 100 iterations and using this

trajectory data calculate the statistics characterising group dynamics and collision

risk.

4.5 Results

Prior to introducing any obstacles, the first step is to establish what baseline target

preference is necessary for the model to reproduce the observed biological phenomenon

of coherent group navigation along a nominated trajectory. Figure 4.1 summarises

this process: Panel (a) confirms that the minimum target preference required, relative

to a social weighting of unity, is approximately 10−2; Panel (b) shows that group

cohesion is initially improved by a common navigational direction but that there

exists a maximum baseline target preference of approximately 10−1, above which

relative social preference is insufficient to maintain group cohesion. Combining these

results we identify this maximum threshold as an appropriate value for baseline target

preference across all group sizes. In addition to the results shown in Figure 4.1 we

observe that mean nearest neighbour distance decreases as a function of group size,

consistent with Hemelrijk and Hildenbrandt (2012).

We can now begin to explore the effect of avoidance preference in relation to

collision risk (Figure 4.2). In common with a simpler fixed time step model (Croft

et al., 2013), we find that avoidance is dependent upon group size, with smaller

groups displaying an increased ability to avoid both single obstacles and arrays across

all parameter values. Furthermore, it can be seen in Figure 4.7 that this relationship
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Figure 4.1: Parametrising target preference for coherent directed groups. For social groups

(ws = 1) of varying size (N) in an obstacle-free environment, we plot: (a) average proportion of

distance travelled parallel with target trajectory; (b) probability of a group splitting; (recorded

after 1000 time steps) as a function of baseline target preference (wt0). We observe that

beyond a critical value (0 < wt ≤ 0.1), dependent on N , navigation occurs directly along the

target trajectory. This common direction appears to improve group cohesion reducing the

probability of splitting but as wt0 increases further social preference is overwhelmed resulting

in an increased proportion of groups splitting.

105



Figure 4.2: Avoidance of an obstacle does not guarantee avoidance of an array. For social

groups (ws = 1) of varying size (N) and baseline target preference (wt0 = 0.1) we plot the

probability of avoiding the region bounding an array containing: (a) a single obstacle; (b) 25

obstacles uniformly arranged on a square grid at 500 metre intervals; (recorded after 1000

time steps) as a function of avoidance preference (wo). For each, group target trajectory

intersects the array at an angle which minimises the probability of avoiding all obstacle

given no avoidance behaviour. As expected the probability of avoidance increases with wo.

However, this relationship is not linear but instead shows a sharp step at a critical value of

preference particularly evident in (b). In common with previous studies (Croft et al., 2013)

there appears a dependence upon N , with smaller groups displaying a higher propensity for

avoidance. We note that the probability of avoiding all obstacles (micro) in case (b) (not

shown) is qualitatively similar to (a) with transitions appearing at marginally lower values of

preference. Consequently, groups demonstrate total avoidance of all obstacles in (b) prior to

any avoidance of the array as a whole.
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can be non-linear. In the context of avian interactions with wind turbines we aim to

identify a suitable parameter value for avoidance preference by comparing the data

in Figure 4.2(b) to estimated wind farm avoidance rates for migrating geese. This

plot shows a sharp improvement in avoidance around a value of 1 with an average

probability of avoidance across all group sizes reaching approximately 60%. This lies

well within the range of estimates for wind farm avoidance observed by empirical

studies which record values between 50 and 70% (Cook et al., 2012). Empirical

studies also observe that of the remaining individuals which enter the wind farm area

more than 99% successfully avoid all wind turbine structures resulting in an overall

avoidance rate of approximately 99.8% (Pendlebury, 2006; Plonczkier and Simms,

2012). However, it should be noted that there are some studies which record 100%

avoidance (Desholm et al., 2006) – for our chosen value of wo = 1 individuals entering

the array are able to successfully avoid all obstacles.

Using the parameter values identified above for all subsequent simulations we

explore the effect that heterogeneity within a group has on collision risk. In particular,

we exploit the potential of an asynchronous update scheme to implement varying types

of underlying social networks which may influence group decisions.

Figure 4.3 shows that different network structures have distinct effects on both the

probability of avoiding an obstacle array and the resulting group structure. We see

that groups which navigate according to a homogeneous network show the least ability

to avoid obstacles, but demonstrate little disruption to group structure (measured

by the probability of the group splitting). Comparing subsequent groups to this

benchmark we notice that any degree of heterogeneity within a network produces a

higher probability of avoidance, but that in both leadership and clustered networks

this can be at a cost to group cohesion. This is most notably the case for leadership

groups, which demonstrate a high probability of avoidance but also a high probability

of splitting. For these groups we see that avoidance is related to the number of

leaders, with fewer influential individuals providing the highest levels of avoidance.

The number of leaders does not affect splitting, which remains high. Clustered groups
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Figure 4.3: Heterogeneous social structure promotes obstacle avoidance. For social groups

(ws = 1) of 30 individuals with baseline target preference (wt0 = 0.1) and avoidance

preference (wo = 1) intersecting an array containing 25 obstacles uniformly arranged on

a square grid at 500 metre intervals, we plot: (a) probability of avoiding a region bounding

the array; (b) probability of a the group splitting; (recorded after 1000 time steps) for various

examples of underlying social network (homogeneous, random, clustered and leadership), as

a function of network structure index indicating the precise number of clusters or leaders

in respective network types (homogeneous and random networks are invariant). We observe

that homogeneous groups display the least avoidance ability, generally followed by random

networks. Clustered networks produce increasing avoidance and splitting with the number of

clusters. Groups which employ a single leader exhibit the highest levels of avoidance but as

the number of leaders increases avoidance is reduced.
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appear to follow a pattern similar to that seen for group size. Here, as the degree

of clustering is increased, thus reducing the number of individuals per cluster, we

observe an increase in avoidance. This is matched by an increase in the probability

of splitting suggesting that clusters may begin to act independently as their size

is reduced. [It should be noted that in fact, consistent with the previous findings

of Bode et al. (2012c), groups which interact according to a random social network

exhibit a greater degree of cohesion. This may not follow for leadership or clustered

groups despite their respective heterogeneity due to the implementation of network

creation. In both cases networks are generated as extreme examples to emphasis the

effect of the different characteristics with only a fixed weak connection maintained

towards non-preferentially influential neighbours, i.e. group members that are neither

a leader nor part of the same cluster. It is therefore unsurprising that groups with these

types of underlying network are prone to a greater degree of splitting compared with a

more egalitarian network structures. In future investigations intermediate structures

could be produced by allowing the strength of any connection within the network to be

randomly increased according to a weighted selection process based on likely preference

(similar to that used in the model algorithm to select an update partner). This should

produce a higher degree of connectivity across the group and therefore reduce the

probability of splitting.]

For all networks the probability of avoidance shows a bimodal distribution in

that, for a given simulation, either all group members traverse the array, or all

successfully avoid the array. This is of particular significance when considered with

Figure 4.4 which maps the trajectories of groups responding to the array. Despite

varying probabilities of avoidance we see only marginal differences between movement

patterns. This suggests that avoidance is limited by the ability of a group to initiate

an avoidance response rather than an ability to perform the action. The horizontal

trajectories seen for leadership networks (panel (d)) are likely due to a loss of contact

with the lead individual during separation. A lower preference for other group

members increases the probability of separations becoming permanent resulting in
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Figure 4.4: Similar movement patterns for distinct network structures. Mapped trajectories

for groups with baseline target (wt0 = 0.1) and avoidance preference (wo = 1) intersecting

an array which contains 25 obstacles uniformly arranged on a square grid at 500 metre

intervals and: (a) homogeneous; (b) random; (c) clustered; (d) leadership; underlying network

structures. Each plot displays trajectories for 100 groups (light grey) of 30 individuals. 10

groups are highlighted (dark grey) with a focal individual (black). In (d) this focal individual

represents the group leader. These plots can be compared to empirical data presented in

Masden et al. (2012). We observe similar patterns of movement for all networks with only

marginal differences in coherence ((b) shows less splitting) and cohesion ((c) shows high and

(d) low density reflecting neighbour distances). See also supplementary movies S1a–S1d,

corresponding to the panels in this figure.
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this self-navigation through the array.

Motivated by previous studies (Couzin et al., 2005; Leonard et al., 2012), we then

introduce groups which contain individuals with heterogeneous abilities, in this case

the preference for avoidance and target navigation, i.e. (wo)i = wo ∗ N(1, wh) and

similarly for the target weighting for each individual i. The results shown in Figure

4.5 demonstrate that as the magnitude of heterogeneity is increased groups experience

an increased disruption to group cohesion and reduced probability of avoidance. This

suggests that the relative variation of avoidance and target preferences alters the

balance towards target navigation. In general, we see that groups which rely on fewer

individuals for navigational decisions are more affected by this variation.

In order to assess whether the collisions observed by empirical studies could be

explained by an increased risk as a result of environmental conditions, we vary the

magnitude of movement error and the radius of attraction, the limit of an individuals

sensory zone, to simulate turbulence and visibility respectively. Figure 4.6 shows that

in both cases as parameters are varied to simulate poorer environmental conditions

groups which rely on a particular individual for navigation are significantly influenced,

transitioning from showing the most avoidance to the least. In the case of turbulence,

if we assume that accurate target navigation and avoidance ability are related, then

this result appears to contradict Codling et al. (2007) as asocial groups are shown

to navigate less effectively in variable environments than their social counterparts.

However, the trajectories mapped in panel (b)(i) (when compared with Figure 4.4(a))

support the idea that at least for social groups, target navigation is significantly

affected by turbulence. In highly turbulent environments groups are less likely to

follow the target trajectory intersecting the array, and this appears to drive the

improvement in their ability to avoid obstacles. For those groups which are able

to maintain accurate target navigation, such as those which rely on a particular

individual, we have clear evidence that avoidance behaviour is susceptible to poor

conditions. Our simulations suggest that in all groups environmental conditions

affect avoidance behaviour, but the response is dependent on the social structure.
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Figure 4.5: Variable ability reduces avoidance and group cohesion. For social groups (ws =

1) of 30 individuals with baseline target preference (wt0 = 0.1) and avoidance preference

(wo = 1) intersecting an array containing 25 obstacles uniformly arranged on a square grid

at 500 metre intervals, we plot: (a) probability of avoiding a region bounding the array; (b)

probability of a the group splitting; (recorded after 1000 time steps) for various examples of

underlying social network (homogeneous, random, 5 clusters and a single leader), as a function

of heterogeneity wh (magnitude of variation in avoidance and baseline target preferences).

We observe that groups with a single leader are the most affected by changing heterogeneity

showing a decrease in avoidance and increase in splitting as abilities become more variable.

Clustered networks also induce this pattern although it is less pronounced. Groups with

homogeneous and random networks appear largely unaffected by changes in heterogeneity

showing only at small increases in splitting at high levels.
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Figure 4.6: Leaderless groups appear less susceptible to environmental factors. For

social groups (ws = 1) with baseline target preference (wt0 = 0.1) and avoidance preference

(wo = 1) intersecting an array containing 25 obstacles uniformly arranged on a square grid

at 500 metre intervals, we plot: (a) probability of avoiding a region bounding the array

(recorded after 1000 time steps) as a function of: (i) turbulence (we); (ii) visibility (Ra); for

various social structures; (b) trajectories for 100 groups of 30 individuals (light grey) with

underlying homogeneous network in an environment where: (i) we = 0.1 (increased from

0); (ii) Ra = 100 (decreased from 1000). 10 groups are highlighted (dark grey) with a focal

individual (black). Groups with a leader initially display the most avoidance but as conditions

worsen they transition to showing the least. Mapped trajectories show that when visibility is

reduced collisions can occur.
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The increased dependence on local decisions makes it less likely that the groups will

enter the array but the effect of this is to cause greater disruption to the group which

may have significant effects on other fitness costs not captured here.

Despite the erratic movements of groups in turbulent environments (panel (b)(i)),

individuals retain the ability to avoid obstacles and we observe no collision risk

(“micro” probability of avoidance is zero) for any level of turbulence. This is not

the case in environments which simulate low visibility. We find that, as visibility is

reduced, groups show much later and more extreme avoidance responses resulting in

the stepped movement patterns in panel (b)(ii). Here, we see that for some groups

the loss of pre-emptive avoidance means they are no longer able to react in time to

prevent intersections with obstacles.

Finally, we investigate the effect of introducing a variable target preference simu-

lating the desire of groups to follow a direct migratory route with high fidelity. This

is implemented by an allowing an increase in selection of an individual when the

local angular deviation from the route increases. For comparison we parametrise the

component of variable target preference (wt1) such that with an inflated avoidance

preference of wo = 3 the avoidance rate for a group of 30 individuals is equivalent

to the typical case. It should be noted that the use of a variable target preference

with this parametrisation does not alter the results seen for groups in obstacle-free

or single obstacle environments. The plot in Figure 4.7(a) shows that this need

for route fidelity significantly alters the relationship between avoidance and group

size, reversing the trend from non-linearly decreasing with group size to show a

marginal increase. The change in avoidance is most noticeable for smaller groups

which show a reduction in avoidance whereas the values for larger groups remain

relatively unchanged. In comparison with groups which apply no cost to avoidance,

the mapped trajectories shown in panel (b) show that, despite evidence indicating an

earlier initiation of avoidance, the response is limited by the increased route fidelity.

Consequently, groups are much less likely to avoid the array when required to travel

across the corridors between columns of obstacles.
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Figure 4.7: Route fidelity outweighs collision risk for small groups. For social groups (ws =

1) with baseline target preference (wt0 = 0.1) intersecting an array containing 25 obstacles

uniformly arranged on a square grid at 500 metre intervals, we plot: (a) probability of avoiding

a region bounding the array (recorded after 1000 time steps) for different sets of avoidance

and variable target preference (wo = 1, wt1 = 0 and wo = 3, wt1 = 2), as a function of group

size (N); (b) trajectories for 100 groups of 30 individuals (light grey) with avoidance (wo = 3)

and variable target preference (wt1 = 2). Groups with no consideration for route fidelity

show a non-linear relationship where avoidance decreases with group size. When an cost to

avoidance, due to a lack of fidelity, is introduced the relationship with group size is reversed.

Mapped trajectories show few avoidance manoeuvres which cross multiple corridors between

columns. Groups are most likely to traverse the array along the nearest corridor in the target

direction. Exceptions occur when this is an outer corridor with groups instead choosing to

navigate outside the array.
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4.6 Discussion

We have outlined a method by which obstacle interactions can be incorporated into

an asynchronous individual-based model without compromising biological realism.

The novel mechanism by which our model balances social and navigational forces

creates a trade-off between group interactions and responses to environmental cues.

Social interactions are dependent not only on social preference but also relative

distance, meaning that groups with decreased nearest neighbour distance will exhibit

more social tendencies. When individuals interact socially they pass on indirect

information about environmental cues. This information is necessarily “noisy”, but

averaging across multiple neighbours can filter noise (Codling et al., 2007; Codling

and Bode, 2014). A complementary study (Chepizhko et al., 2013) shows that the

noise experienced by individuals can have an important role on group dynamics in

the presence of obstacles – where this noise is small, the group may be too inflexible

to adjust to the presence of obstacles and maintain cohesion.

For environmental cues, such as target navigation, where the directional infor-

mation is similar for all group members, averaging provides a robust method by

which individuals can combine knowledge to formulate a cohesive group response.

However, when individuals are subject to conflicting information averaging can result

in an inappropriate group decision, as can be the case for obstacle avoidance where

response is highly dependent upon spatial position. This is of particular relevance

where the ideal avoidance strategy is unclear, for example when an obstacle is spaced

equally either side of the group centre. In such situations the movements of an

informed individual or cluster can sufficiently influence group decisions to initiate a

successful avoidance response (Couzin et al., 2005) and break the decision deadlock

(Seeley et al., 2012). This is consistent with our results for varied group sizes which

show an increase in avoidance for groups comprising fewer individuals. Here, average

information is obtained across a smaller sample thus allowing for a greater bias from

particular individuals, with leaders emerging more frequently. When information

cannot be resolved to achieve a unified group decision this results in the formation
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of localised subgroups which overwhelm the social bonds holding the group together

and separate away in a different direction.

Our results show that underlying social networks produce significant differences

to both group structure and navigational response. When compared with the lead-

erless homogeneous case described above, we find that for any underlying networks

where preference is shown towards interactions with particular individuals, groups

demonstrate a higher probability of avoidance. This is consistent with the similar

improvements shown elsewhere (Bode et al., 2012c). This behaviour results from an

increased bias within the group decision making process. Consistent with existing

studies we observe that groups with fewer influential individuals provide the most

effective response to contradictory environmental information (Leonard et al., 2012).

In contrast with this type of leadership, examples which simulate clustering show the

emergence of smaller independent groups showing less cohesion but maintaining an

ability to initiate avoidance actions without clearly defined leaders.

Whilst a reliance upon fewer individuals for navigation can be beneficial it is also

less robust to sensory variability (Codling et al., 2007). When variation is applied

to both target and avoidance preferences the ability of such individuals to lead a

group may not justify the influence which neighbours show towards them resulting

in impaired navigational responses. Conversely, we find that when movement error is

applied to simulate turbulence, groups which navigate either asocially or with a single

leader maintain coherent target navigation even in highly disruptive environments.

Unlike in Codling et al. (2007) where this result represents a positive outcome, in

our model avoidance ability is not maintained at a relative level and whilst other

groups avoid the array as a result of inaccurate navigation those which maintain

target navigation consequently intersect the array more frequently. However, it is

clear that even at high turbulence individuals maintain a safe distance from obstacles

which suggests in our chosen parameter range that the risk of collision is effectively

zero. This is not the case when the sensory range of individuals is reduced, mimicking

conditions of poor visibility 4.6. Collisions are observed when the sensory range falls
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below the radius of obstacle repulsion thus reducing the distance in which individuals

have to respond to initiate an avoidance manoeuvre.

Throughout this study we have assumed that collision rates are the result of

deficiencies in sensory ability. We challenge this assumption by suggesting that

all groups may in fact posses an ability to avoid obstacles but instead choose to

enter arrays because of strong route fidelity related to migratory efficiency. By

introducing a variable element to target preference which produces an increasing

desire to select target navigation as individuals deviate further away from the optimal

target trajectory, we show that groups containing fewer individuals are much more

likely to voluntarily enter the array. This has potentially important consequences for

groups that are weakened, for example by lack of food, and may make different times

of the year more important for collision vulnerability.

The ultimate goal of this modelling study is to quantify the risk of avian col-

lisions with wind turbines. We recognise that at present the model outlined here

is limited to specific scenarios in which individuals show no vertical avoidance. In

reality, large-scale studies suggest that in good conditions birds, such as geese, favour

vertical avoidance. Our modelling methods are amenable to generalisation to three-

dimensions (Plonczkier and Simms, 2012) where data are available. However, through

simulations with an array containing multiple obstacles we demonstrate that the

cumulative avoidance response to those obstacles is sufficient to produce movement

patterns which can be compared to those recorded by empirical studies. We show

that by selecting reasonable parameter values we can reproduce estimated avoidance

rates. Furthermore, we use the model to explore conditions which are difficult to

assess empirically. These results reinforce the suggestion that birds are most at risk

of collision when conditions reduce detection distance, for example during nocturnal

navigation.

The effect of social networks has not previously been modelled in the context of

obstacle avoidance. We have shown in this study that social interactions can affect the

ability of a group to perform suitable avoidance responses and it would therefore be
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ecologically informative to include realistic social networks when assessing risk. The

structure of networks has been shown to have considerable impact on group behaviour,

in ecological examples (Couzin et al., 2005; Bode et al., 2011c) as well as in other

biological settings (Newman, 2003). Compared with our simple examples, goose social

networks have been shown to be more complex and highly variable (Lamprecht, 1992;

Kurvers et al., 2009). The relationship between in-flight communication networks

and important social structures, such as foraging groups or family grouping, has been

shown to have complex correlations which make it difficult to interpolate between

them (Nagy et al., 2013). Therefore, caution must be exercised in making social

inferences from in-flight interactions and consequences. Our results indicate that

movement patterns, similar to those obtained by current radar studies which assess

collision risk, cannot be used to infer the structure of social networks. This observation

highlights the need for greater focus on the motion of individuals in the context of

obstacle avoidance. To address these deficiencies new experimental approaches are

necessary so that individual-based social network models can be verified and utilised

to their full potential to predict avoidance rates in silico. With these advances it may

be possible to inform decisions regarding the impact on birds prior to the construction

of wind farms.
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4.9 Summary

The model outlined in this chapter builds on that described previously, incorporating

more considerations for bird specific limitations and parameterisation. It is argued

that the adoption of an asynchronous update scheme enhances the biological realism

of the resulting motion, matching the observations of recent landmark empirical

studies (Ballerini et al., 2008b). The use of this approach also overcomes some of

the difficulties specific to obstacle avoidance which were highlighted in Chapter 2,

particularly allowing multiple avoidance strategies to be represented without conflict

necessarily resulting in inaction and potentially collision. Instead, a more natural

decision making process is simulated based on a priority response (similar to that

described by Reynolds (1987)) in which errors of judgment can occur but are proba-

bilistically most likely when navigational information is noisy.

Importantly, the resulting simulations demonstrate that avoidance of an array

can be achieved through the cumulative response to distinct obstacles represented

by a “cloud” of individual vertices, and that the probability of such an avoidance in

the model is quantitatively comparable to those observed in radar studies of geese

(Plonczkier and Simms, 2012). This represents a significant step towards providing a

platform capable of assessing the design of wind farms pre-construction to minimise

the risk of avian collision risk.
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Chapter 5

Investigating the effect of

obstacle layout and

representation on collision risk

with wind turbines
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5.1 Introduction

The work presented in previous chapters has addressed factors affecting avoidance

by exploring various social and behavioural mechanisms within a group as well as

environmental considerations such as poor weather conditions. Of these, results

indicate that visibility is the most likely cause of collision suggesting a possible

mitigation strategy to reduce bird strikes with wind turbines post-construction may

be to limit operation during periods where visibility is low. Whilst this approach is

straightforward to implement it is not an ideal solution for energy production. An

alternative would be to consider mitigation options pre-construction.

A recent publication by Masden et al. (2012) has conjectured that the configu-

ration of wind turbines within an array can have a significant impact on avoidance

rates. Using a mechanistic modelling approach this investigation considers the effect of

layout in terms of permeability, how likely birds are to enter the array thereby risking

collisions; and straightness, how far birds must travel in order to avoid the array which

is related to energy expenditure. The optimal layout should seek to minimise both of

these measures. However, it is argued that the importance of each is dependent on the

typical behaviour of specific species, for example when species are prone to collisions

a layout which encourages avoidance of the entire wind farm is more favourable over

optimising energy expenditure. For migratory species such as geese, which migrate

over long distances, energetic considerations are perhaps more important (Pennycuick,

2008) and so layouts which improve the straightness of trajectories and prevent wind

farms acting as a barrier to movement (Masden et al., 2009) would be beneficial.

The findings suggest that permeability can be controlled by adjusting the spacing

between columns (defined by linear alignment in the general direction of approach)

and the number of rows; with closer spacing and more rows inducing a reduction.

It is also shown that of several potential configuration patterns, including uniform

and random arrangements as well as a clustered layout which provides a clear path

through the wind farm whilst discouraging movement between close turbines, that

a diagonal arrangement orientated in the general direction of approach produces the
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least straight trajectories, though this appears to be related to higher avoidance rates.

The approach outlined by Masden et al. (2012) is informative, providing a method

by which avoidance rates can be assessed. However, as is the case in all existing avian

collision risk models (CRMs) (Band, 2000; Band et al., 2005), it does not consider so-

cial interactions between individuals. The trajectories produced represent the average

group position, similar to those recorded by radar studies, rather than that of single

individuals. Consequently, it is not possible to accurately assess strike rates with

regard to distinct wind turbines. This is a specific feature of the models developed

throughout this thesis which demonstrate an ability to explore the interaction of

individuals with obstacles and identify any collisions that may occur. Other factors

such as disruption to group structure which may impact energetic efficiency can also

be assessed.

The model described in Chapter 4 provides an alternative method developing an

individual-based approach for simulating collective motion and obstacle avoidance

according to an asynchronous updating routine introduced by Bode et al. (2011b).

It has been demonstrated that this approach produces more biologically realistic

movements and decision making, reproducing variable speed distributions (Aoki,

1982) and emergent properties, such as the observation that individuals on average

interact with a limited number of near neighbours (Ballerini et al., 2008b). The

asynchronous approach also solves several of the issues relating to interactions with

obstacles highlighted by our initial modelling study, presented in Chapter 2. In

particular it allows all possible avoidance strategies to be represented with a relative

probability of selection. In doing so a natural decision error emerges and contrary to

a synchronous approach the result of equal but conflicting strategies is not inaction.

Instead as only a single partner is chosen per update, a clear navigational decision is

guaranteed. Depending on whether the correct decision has been made, at the next

update step, it will either be reinforced or overruled, and the movement reversed. By

combining responses in this way priority is given to the most urgent actions up to a

set movement limit, as per the optimal method suggested by Reynolds (1987). The
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resultant direction over the time-step then reflects an effective and consistent response

to the situation rather than averaging conflicting responses which may prove to be

ineffective, i.e. an optimal avoidance response might be to head directly north or east

but a combined response averaging the two heading north east results in collision.

This chapter investigates some of the factors considered in Masden et al. (2012)

to examine the impact of wind farm design on collision risk in light of the additional

capabilities of the developed model. By comparing outcomes we aim to provide a

validation for the behaviours which emerge. We also investigate the impact of obstacle

representation in the model, namely the strike rate given the intersection of an indi-

viduals trajectory with an obstacle and the granularity, or spacing between obstacle

vertices, has the potential to introduce errors in detection and consequently alter

behavioural response. In future studies these variables could be used to distinguish

between obstacles, or parts of an obstacles, with different properties without altering

the core behavioural mechanisms for avoidance. For example, a moving wind turbine

blade offers a degree of transparency, compared to the solid tower, meaning individuals

may be less likely to show avoidance and unlike collisions with the tower, birds may

pass through the blades unharmed. To justify this approach it is important that

we understand its limitations and demonstrate that the parameter choice produces

results as anticipated.

5.2 Modelling framework

The model and general parameterisation is identical to that outlined in Section 4.4.

Here, we provide additional discussion of key modelling concepts and developments

with particular regard to simulating “bird-like” subjects. We also present evidence

to justify the choice of specific parameter values listed in Table 4.1 as well as fur-

ther explanation of the simulation framework, primarily relating to the formation of

representative groups which is required to ensure consistent initial conditions for all

simulations.
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5.2.1 Update frequency

The initial work by Bode et al. (2010a) has shown that the choice of update frequency

can greatly affect group behaviour. It is therefore important that an appropriate value

is selected. For group motion to be maintained individuals must interact with at

least two distinct neighbours (Huth and Wissel, 1992). In order to ensure that this is

represented by the random sampling approach outlined in this model it is necessary for

the update frequency to remain above a minimum level. The specific parametrisation

and considerations for target navigation can affect this minimum. In order to assess

this for the specific model used here groups of varying size are simulated according to

different update frequencies. The plots in Figure 5.1 show that with no consideration

for target navigation the minimum value required to achieve cohesive group motion

is approximately 30 updates per time step. However, since all simulations require the

inclusion of target navigation, to guarantee interactions with obstacles it is practical

to use a higher update frequency. A value of 100 updates per time step was selected

as a sufficiently high frequency to ensure cohesive group movement is maintained.

Whilst previous studies have not inferred any direct links between update frequency

and physical or neurological information, a recent study has linked the reaction speed

of animals to their critical flicker frequency (CFF) (Healy et al., 2013). Interestingly,

for birds this is typically 100 hertz. Given that our time step is 1 second this is

equivalent to our selected update frequency. In future studies this equivalence may

provide a suitable basis for parameter identification.

5.2.2 Target navigation

In order to assess the risk obstacles pose to groups it is necessary to introduce target

navigation ensuring any avoidance is as a result of behaviour rather than random

movement. To integrate with the algorithm for group movements any implementation

of this behaviour requires two components: a directional response; and a selection

weighting.

A suitable choice for directional response is dependent upon the situation which
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Figure 5.1: Collective motion requires a minimum update frequency. For social groups

(ωs = 1) of varied size (N) plots show: (a) internal alignment; (b) probability of splitting;

as a function of update frequency (λ). The results indicate that in order to guarantee robust

collective motion in groups of any size each individuals must perform a minimum of 30 updates

(on average) per time step.
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simulations are designed to investigate. For example, studies which represent move-

ments between specific locations, such as roosting and feeding sites, use a fixed point

to determine directional response (Codling et al., 2007), whereas, for longer-distance

migrations this point is undefined, often being considered to exist at infinity with

individuals instead orientating towards a fixed target heading (Croft et al., 2013).

For the specific scenario of migratory birds interacting with a single wind turbine,

the work in Chapter 2 chose to implement the latter. This is in part to avoid

the inherent lateral variation associated with fixed point interactions, which has the

potential to significantly alter group structure and avoidance behaviour depending

on relative proximity. However, when interacting with an array of wind turbines

(wind farm) additional considerations must be taken into account. In particular,

for migratory birds the pressures of maintaining perpetual flight over large distances

presents an energetic challenge (Pennycuick, 2008). Consequently, it is likely that

energetic efficiency will have a role in decisions regarding avoidance, with groups

demonstrating a form of route fidelity to minimise the distance travelled (Drewitt

and Langston, 2008).

Simulating this behaviour poses a conflict because it requires an element of spatial

variation not present with a fixed target heading. To solve this problem the notion

of a target point must be reconsidered; rather than a fixed point an individual aims

for a moving point which remains at a fixed distance (dt) from its current projected

position along a defined target trajectory. This type of route fidelity has been observed

in empirical studies investigating long-distance navigation in birds, for example the

homing behaviour of pigeons (Biro et al., 2007). For simplicity the target trajectory

is defined as a straight line containing the initial group position (centre of mass) and

extending infinitely in a specified direction. This is illustrated in Figure 5.2(a) and

represents the most energy efficient route from the starting point to an eventual

destination. Unlike in the case of a fixed target point, at any position a given

distance from the target trajectory the lateral component of directional response

remains constant with magnitude proportional to the distance of deviation relative
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Figure 5.2: Illustration shows: (a) the target navigational response for an individual

(black triangle) with given target trajectory (vertical arrow). The dashed line maps the

projected position of the individual onto the target trajectory. The dotted line plots the

target navigational response of the individual aiming for a point a given distance (dt) along

the target trajectory ahead of the projected current position. The marked angle (ϕ) between

the individual’s current heading (v)and the target navigational response (vt) influences the

strength of preference for selection; (b) the response of an individual (black triangle) to a

single obstacle vertex located within the zone of pre-emptive avoidance. The marked angle

(α) between the dotted line (p
j
− xi) and the response vector (voj) is the same as that used

to describe the zone of interaction (defined as a sector centred on the individuals current

position with angular range (−α,α) about the current heading (v)).
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Figure 5.3: Target heading distance can effect the structure of groups. For social groups

(ωs = 1) of 30 individuals the plot shows average nearest neighbour distance (NND) as a

function of target heading distance dt for a range of target weightings wt (consistent with those

which may be experience should energetic efficiency be applied). The results demonstrate that

as dt is reduced, increasing the lateral component of motion toward the target, groups become

more compact. To prevent this effect a minimum target heading distance of 30000 metres

must be observed.

to dt. This means that the effect of this lateral component can be reliably controlled

by a suitable choice of dt. Figure 5.3 shows that as dt distance is reduced, increasing

the lateral component of directional response, so is nearest neighbour distance. The

rate at which this change occurs is dependent on the relative preference for target

navigation wt. This can be explained by imagining a group travelling with centre

of mass positioned directly on the defined target trajectory. As target distance is

reduced the inward component of the resulting directional vector for each individual

not on this trajectory increases. Eventually, this inward component increases to such

an extent that the inherent resistance of the group to compress is overwhelmed and

it begins to collapse onto a line, the target trajectory. In order to limit such effects

we chose to implement a large target heading distance, 30000 metres, beyond which

nearest neighbour distance becomes relatively stable for all values of wt.
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In Bode et al. (2012a) selection weighting represented a fixed probability such that

individuals chose either to perform target navigation or to respond to an “update

partner” within their sensory zone. Whilst this approach allows for a direct control

of selection probability, the inference is that even in the event of a near collision an

individual remains equally likely to navigate towards the target. For social navigation

where groups form relatively stable configurations these events are infrequent and so

this modelling choice is relatively unimportant. However, in simulations including

obstacles, avoidance is designed to directly contradict target navigation, presenting

a clear trade-off. To reflect this, target navigation is instead included in the pool

of potential update partners, thus scaling the weighting of selection relative to the

priority and number of other interactions. The balance between group and target

navigation is controlled by multiplying the relative weightings for each type by a

given factor representing preference. A recent study by Codling and Bode (2014) has

shown that the weight of target navigation is related to navigational performance with

only a small relative weighting required to maintain optimal performance regardless

of any navigational error. This is analogous to the result shown in Figure 4.1 which

similarly suggest that a minimum target weighting is required to produce optimal

navigational performance but that further increases do not improve performance.

The weight an individual assigns to target navigation (wt) is considered to reflect

a desire to follow the target trajectory or optimal navigational strategy, thereby re-

ducing energy expenditure. To simulate this wt is allowed to increase as an individual

deviates away from the ideal target trajectory. The magnitude of this increase is

determined according to the angle between an individuals heading and the calculated

target direction (ϕ), shown in Figure 5.2(a), as follows,

wt = (wt0 + wt1(1− cos(ϕ)) (5.1)

where wt0 and wt1 denote the minimum baseline and the magnitude of variation

respectively.

As noted previously navigational uncertainty as implemented in Codling et al.
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(2007) is not considered to ensure that interactions with the obstacles occur pre-

dictably and that any avoidance is as a result of behaviour rather than imperfect

navigation along the target trajectory. Consistent with the findings of Codling and

Bode (2014) given the relatively small weighting required to produce optimal perfor-

mance target navigation is rarely chosen directly and so any error relating to this

vector would be negligible in comparison to that emerging from the stochastic model

algorithm.

5.2.3 Obstacle avoidance

In accordance with the approach outlined in Chapter 2, obstacles are represented

by a finite set of vertices each with a vector to describe the surface, in this case an

outwardly facing normal. However, in contrast, rather than apply a circle of fixed

radius to determine collisions, the set of vertices is ordered such that the vector

between sequential vertices defines a connecting edge. This implementation allows

intersections between obstacles and individuals to be identified precisely. Significantly,

this development means that the distance between vertices can be varied without

impacting the ability to detect intersections (and hence collisions), which was not

previously the case. Visual occlusion can also be applied simply by tracing the line

of sight to each neighbour and vertex. The increased accuracy that this provides

has a computational cost. To improve efficiency each obstacle is defined with a

bounding box which is initially used to test for intersections. If an intersection

with this bounding box is detected then a more detailed search is conducted. This

reduces the number of unnecessary calculations thus limiting the impact on runtime

of simulations. Similarly, a bounding box can also be defined to represent the region

containing an array of obstacles thus allowing the number of individuals which enter

the array to be recorded. To maintain a comparison with the obstacles used previously

a standard granularity of 1 vertex per spatial unit is adopted.

As is the case for group navigation, appropriate directional response to obstacle

vertices is categorised based on relative proximity. Similarly, it is assumed that
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individuals respond to close obstacles by applying a repulsive behaviour thereby

maintaining a minimum distance. In addition to this behaviour, geese also have

been shown to demonstrate some long-distance avoidance (Plonczkier and Simms,

2012). This can be challenging to represent in simulations as the visual perception of

birds can be difficult to encapsulate in models.

Studies have determined that, despite a wide field of view, birds have very limited

stereovision (Heppner et al., 1985; Martin, 2011). In light of this research the relative

depth perception required to align with the surface of an obstacle, as is suggested in

Chapter 2, would be beyond the capabilities of most birds (including geese). Instead,

it is perhaps more likely that birds simply turn away from obstacles until avoidance has

been guaranteed. This response can be simulated by introducing a minimum angle by

which individuals attempt to maintain between their current heading and the direct

heading towards each obstacle vertex (is illustrated in Figure 5.2(b)). Any vertices

which lie outside of the region defined by this angle are ignored. As a minimum the

avoidance angle should be chosen so that, in general, individuals pass an obstacle

without the need for more extreme repulsive action. The angle required to achieve

this varies depending on proximity. However, the monocular vision of birds means

that this distance and therefore the specific angle by which to turn cannot be assessed.

To ensure that the angle is always sufficient, obstacles must be assumed to lie on the

limit of repulsion requiring an angle of 45 degrees. The maximum angle which should

be applied is 90 degrees, at which an individual no longer exhibits any forward motion

towards a vertex.

Each obstacle vertex is considered similar to that of a conspecific. Consequently,

all vertices within the sensory zone are added to the pool of potential update partners

with a weighting proportional to the inverse distance from the updating individual.

As was introduced for integrating target navigation in Section 5.2.2, each weighting

is further scaled by a given value related to the preference for interactions of this

type. By allowing individuals the choice to respond to obstacle vertices in this

way (similar to Model I in Chapter 2), rather than combining responses prior to
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selection forming a single response vector at the obstacle level (as is the case in

Model II in Chapter 2), all possible avoidance strategies can be represented. This is

particularly important in situations where a clear avoidance strategy is not present;

for instance when an individual is heading along a trajectory intersecting an obstacle

close to its centre. Here, unlike in the case of conspecifics where a single response

can be defined, multiple equally valid responses could be followed in order to perform

successful avoidance. This situation may lead to a degree of indecision which would be

removed if avoidance were calculated at the obstacle level. Instead, the accumulation

of responses to obstacle vertices selected according to the model algorithm enables an

avoidance strategy to emerge through sustained selection of similar responses, with

each new response gradually reinforcing the direction of movement, while retaining

the possibility for an individual to change their mind. The latter would be more likely

when presented with equal strategies with an even selection of conflicting responses

leading to inaction.

5.2.4 Initial conditions

Initial conditions are important for interactions with obstacles. The simulations per-

formed in Chapter 4 consider groups following a migratory route which is interjected

by obstacles. In order to ensure that any variations in group structure are a result

of obstacle interactions (avoidance behaviour) each group must begin with a stable

representative configuration.

In Chapter 2, groups were initially placed randomly within a circle of fixed radius.

They were then updated within this circle until either all individuals aligned with

at least one neighbour or a maximum time limit of 100 time steps was exceeded.

If an individual left the circle radius it was reflected back to prevent splitting (as

defined in Chapter 4). However, in comparison with groups which are randomly

placed in a circle, the aforementioned approach shows little difference. Once groups

were released they began to organise, settling into a new stable formation before any

obstacle interactions. To avoid these possible ambiguities in this study a more robust
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method is described below. Firstly, it is necessary to define a representative group

configuration. In accordance with the empirical data in Figure 3.7, each individual

is required to have at least one neighbour within 20 metres, previously identified

as the radius of alignment. Therefore, for a group to be considered representative,

all individuals must belong to an equivalence class where neighbours are declared

equivalent if they are within this distance.

Prior to warm-up individuals are placed sequentially into an obstacle-free envi-

ronment as follows. In turn each individual chooses a neighbour from those already

placed in the environment (if none have been placed then the individual is placed

at the origin). This individual is then placed randomly so as to align with the

chosen neighbour (i.e. the relative distance between them corresponds to the distances

defining the zone of alignment). The process is repeated until all individuals have been

placed in the environment. To promote a high degree of alignment, as is observed

in flocks of geese, all individuals are initially orientated parallel to a defined target

trajectory. This method ensures that the initial configuration immediately satisfies

our criteria for a representative group and that this group structure is relatively stable

with all group members spaced at a comfortable distance from each other and aligned

in the same direction. Consequently, we would not anticipate a dramatic change in

the summary statistics following release, but some restructuring is to be expected

due to the stochastic variation included in the model. Once all individuals have been

placed and orientated the group is allowed to move, for a fixed number of time steps,

according to the algorithm outlined in Section 4.4.1. It should be noted that target

preference is applied during this warm-up phase. This common direction increases

group cohesion (measured using the probability of splitting as defined in Section 4.4.1,

with low probability of splitting indicating high group cohesion) and in an unbounded

environment reduces the probability of individuals becoming permanently separated

from groups.

Figure 5.4 shows that to ensure groups of all sizes have the opportunity to organise

themselves into a stable configuration the warm-up must last at least 400 time steps
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Figure 5.4: In an unbounded environment group configuration reach a stable steady state.

Plots show: (a) average nearest neighbour distance; (b) internal alignment; for groups of

varying size (N), as a function of simulation time. Groups are randomly placed and allowed

to warm-up in an unbounded obstacle-free environment. The results indicate that groups of

all sizes reach a stable group configuration after approximately 400 time steps. The time for

a group to stabilise is related inversely to the number of individuals (larger groups stabilise

faster).
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(seconds). At the end of the warm-up groups are tested to ensure a representative

configuration has been achieved. The process is repeated until this condition is met.

5.2.5 Simulation time

To ensure that the long-term disruption of avoidance can be assessed, simulations

must allow groups to stabilise following an interaction. Figure 5.5 shows simulations

conducted using both a single obstacle and an array. It can be seen from these that the

internal alignment of groups is disrupted during avoidance, but quickly stabilises. For

both a single obstacle and an array this re-stabilisation occurs within approximately

150 and 500 time steps respectively. Since initial interaction occurs around 250 time

steps allowing a simulation time of 1000 time steps ensures that any effects seen can

be compared with simulations conducted in obstacle-free environments (equivalent

to representative groups prior to obstacle interactions) to determine the impact of

avoidance on group structure.

It is interesting to note that in simulations with an array of obstacles groups

containing 10 individuals show the highest levels of disruption, taking the longest to

re-stabilise following the initial avoidance manoeuvre. It has been shown previously

(Figure 3.7(a)(iii): modelling results) that group size is related to nearest neighbour

distance with larger groups displaying more compact formations. As interactions

within this model are weighted based on distance such differences may also effect

the relative sociality of groups. Given this inference the result is explainable in the

context outlined in Chapter 2 and the findings of Chepizhko et al. (2013) both of

which suggest that there is an intermediate level of social navigation at which groups

are unable to effectively resolve conflicting information.

5.3 Simulations

Unless otherwise stated simulations are performed according to the procedure outlined

in Chapter 4 using a homogeneous group of 30 individuals with a standard preference
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Figure 5.5: Groups rapidly re-stabilise following disruption as a result of interactions with

obstacles. For social groups (ws = 1) of varying size (N) with baseline target preference

(wt0 = 0.1) intersecting an array containing: (a) a single obstacle (wo = 0.3); (b) 25 obstacles

uniformly arranged on a square grid at 500 metre intervals (wo = 1); plots show internal

alignment as a function of simulation time. In both cases initial disruption occurs after

approximately 250 time steps (smaller groups appear to reacting later). The magnitude (and

consequently the period) of this disruption is dependent on N (larger groups appear more

disrupted). Following disruption internal alignment quickly returns to the prior stable value.

In (b) larger groups show a secondary peak of disruption (after 400 time steps). This could

be a consequence of the transition from obstacle avoidance back to target navigation. In all

cases groups reach a stable state well within the maximum simulation time.
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weighting of ws = 1 and wt = 0.1 for social and target navigation respectively.

Obstacle avoidance weighting is fixed at wo = 0.3 in simulations with a single obstacle

and wo = 1 in simulations with an array in order to ensure that variations in

avoidance and collision risk can be observed. Initially, groups are randomly placed in

an obstacle-free environment and allowed to move according to the warm up routine

described in Section 5.2.4. Groups are then replaced in an environment containing the

obstacle array with average group heading orientated along a fixed target trajectory

intersecting the array and average position randomly selected on a line segment

perpendicular to this trajectory with length equivalent to the cross-sectional width

of the array. For each scenario 100 independent simulation runs are performed and

combined to produce averaged summary metrics describing: disruption to group co-

hesion (probability of splitting); straightness of navigation (target navigation ability);

wind farm permeability (macro avoidance); and strike rate with wind turbines (micro

avoidance).

5.3.1 Array layout

To investigate the effect that array layout has on avoidance behaviour we perform

simulations varying the spacing between rows, columns and obstacles, and the number

of obstacles per row and column. In all cases the position of the array remains

unchanged relative to the initial position of the group. As the array layout is different

in each scenario it is no longer possible to specify a single angle at which given no

avoidance (wo = 0) intersection with an obstacle is guaranteed (as is argued previously

in Section 4.4.3). Instead, all groups approach the array head on (corresponding to

an approach angle of 0 degrees). At this angle it is trivial to calculate the collision

risk for individuals given no avoidance behaviour as the total length of obstacles

per row divided by the width of the array. By comparing this rate relative to that

displayed by groups a standard metric can be computed to assess the effects across

all array layouts. As in previous simulations a minimum bounding region is defined

for each array to determine avoidance rates. Whilst the mechanism for defining this
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Figure 5.6: The spacing between rows in an array influences avoidance rates. For social

groups (ws = 1) of 30 individuals with baseline target preference (wt0 = 0.1) plots show: (a)

the relative spacing between rows, columns and obstacles; (b) the number of obstacle per row

and column; in relation to: (i) the probability of avoiding all the region bounding (macro) an

array containing 25 obstacles uniformly arranged on a square grid at 500 metre intervals; (ii)

probability of a group splitting (recorded after 1000 time steps). The results show that row

spacing controls the permeability of an array with closer spacing encouraging groups to avoid

the array. However, this avoidance causes greater disruption to group structure indicated by

an increased probability of groups splitting. None of the other factors explored showed any

significant impact on the rate of avoidance.
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region is constant in all simulations it should be noted that the specific dimensions

are dependent on those of the array and hence variable.

In agreement with the results presented in Masden et al. (2012) Figure 5.6(a)(i)

shows that increasing the spacing between columns increases the permeability of

arrays, exhibited as a decrease in the macro avoidance rate. Initially, the spacing

between rows shows a similar, albeit less pronounced effect, with the macro avoidance

rates decreasing but as spacing is increased above 300 metres no further decreases are

observed. This is likely a consequence of the decision to limit the interaction range for

obstacle avoidance to 1000 metres (see Section 4.4.2). Whilst more compact arrays

appear to limit the number of groups entering an array the results shown in Figure

5.6(a)(ii) suggest that there is a negative impact on group structure. As spacing is

decreased the probability of a group permanently splitting as a result of avoidance is

increased.

Contrary to Masden et al. (2012) the results in Figure 5.6(b)(i) show no rela-

tionship between the number of obstacles per column and the macro avoidance rate.

Again, this may be related to the limited interaction range of individuals simulated in

this model. As may be expected for an array consisting of a single column (1 obstacle

per row) groups show 100% avoidance of the array. However, this is a special case in

which entering the array head on would mean intersecting an obstacle. Despite some

array layouts encouraging groups to traverse between obstacles no intersections with

obstacles were observed in any simulations (i.e. the micro avoidance rate is 100%). In

general the size of an array, i.e. the number of obstacles it contains, has a negligible

impact on avoidance rates.

5.3.2 Angle of approach

The angle at which a group approaches an obstacle or obstacle array can significantly

alter its perceived appearance affecting cross-sectional width, spacing and relative

size of obstacles within the array. Figure 5.7 shows the consequences of this change

in perception by plotting the relationship between angle of approach and avoidance
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Figure 5.7: The angle of approach significantly impacts avoidance rates. For social groups

(ws = 1) of 30 individuals with baseline target preference (wt0 = 0.1) plots show: (a)

probability of avoiding all the obstacles in (micro) and the region bounding (macro) an array

containing: (i) a single obstacle; (ii) 25 obstacles uniformly arranged on a square grid at 500

metre intervals; (recorded after 1000 time steps) given zero and non-zero avoidance preference

((i) wo = 0.3; (ii) wo = 1), as a function of the angle which groups approach the array; (b)

trajectories for individuals in 100 groups (light grey) approaching an array at an angle of: (i)

0◦; (ii) 45◦. 10 groups are highlighted (dark grey) with a focal individual (black). In (a)(i),

avoidance increases with angle as cross sectional width reduces. In (a)(ii), avoidance (micro)

given zero preference indicates the proportion of this width occupied by obstacles showing a

maximum at 12◦. However, maximum avoidance (macro) is observed at 45◦.
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rates for both obstacles (micro) and the array as a whole (macro).

For a single (linear) obstacle it is perhaps unsurprising that the results indicate

that as angle of approach increases, thereby reducing cross sectional width, avoidance

increases (in this case of a single obstacle micro and macro avoidance are identical).

For an array we record both the probability of avoiding obstacles (micro avoidance)

and the array as a whole (macro avoidance). Given zero preference for avoidance

behaviour all groups intersect the array. Here, the avoidance of obstacles (micro

avoidance) indicates the likelihood of random spatial positioning presenting a direct

route through the array. This reflects the proportion of the cross sectional width

(of the array) which is occupied by obstacles. For an array, which contains 25

obstacles arranged in a square with uniform spacing of 500 metres, Figure 5.7(b)

suggests that an angle of approximately 0.2 radians (12 degrees) minimises the direct

routes. The maximum micro avoidance rate is observed when the angle of approach

is perpendicular to the array layout where obstacles align resulting in maximum

spacing. When avoidance preference is applied no intersections with obstacles are

observed (micro avoidance is constant at 100%). However, the probability of avoiding

the array as a whole now varies. It may be reasonable to anticipate that the most

avoidance will be exhibited at 12 degrees where the fewest clear routes are visible.

This appears not to be the case. Instead, 45 degrees is shown to be the ideal angle of

approach to maximise the macro avoidance rate.

5.3.3 Strike probability

The improvements in obstacle representation mean that rather than simply detecting

collisions it is now possible to identify intersections. In the case of wind turbines

an intersection does not necessarily result in a collision. This risk is dependent

upon the angle of intersection and mechanical properties relating to the turbine

structure, such as blade length. The lack of visual occlusion offered by wind turbines

means that individuals which survive an intersection could, through social attraction,

encourage others to do the same thereby altering the probability of avoidance. This
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Figure 5.8: Avoidance rates are unaffected by the strike probability associated with obstacle

intersections. For social groups (ws = 1) of varying size with baseline target preference (wt0 =

0.1) plots show: (a) probability of avoiding a single obstacles (wo = 0.3); (b) probability of

avoiding the region bounding an array containing 25 obstacles uniformly arranged on a square

grid at 500 metre intervals (wo = 1); as a function of the probability of striking obstacles

given an intersection. The results show no significant trends relating the avoidance to the

probability of striking an obstacle.

can be assessed by applying a simple fixed probability of striking the rotor given an

intersection, the strike probability.

The results shown in Figure 5.8 demonstrate that, at least for the obstacle repre-

sentation used in these simulations, the threat of collision given an intersection has

no bearing on avoidance. This is perhaps due to the choice of obstacle granularity

which, as a consequence of using relative distance to determine selection weighting,

suppresses any chance of interactions between neighbours either side of the obstacle.

5.3.4 Granularity

In previous simulations we have defined obstacles with a standard density, or granu-

larity g, of 1 vertex per spatial unit. It is argued that this is required in order to ensure
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that individuals can accurately identify the correct behavioural response (illustrated in

Figure 2.1). However, there is an increasing need to consider more realistic obstacles

where perceptual variation, such as the varying degrees of transparency exhibited

between a moving wind turbine blade and the supporting tower, may elicit a different

avoidance response. One way that this distinction could be simulated without altering

the way individuals respond to obstacle vertices would be to vary the granularity of

obstacles, or specific sections of the same obstacle.

It is reasonable to assume that if we simply reduced the granularity of an obstacle

then avoidance would also be reduced as fewer vertices would mean a smaller overall

probability of selecting an avoidance behaviour relative to social and target naviga-

tion. However, as already stated granularity may also influence the accuracy with

which individuals categorise behavioural response. To explore this effect in isolation

we perform simulations using obstacles with varying uniform granularity maintaining

the total weight of avoidance for each obstacle. This is done by scaling the weight of

avoidance (wo) relative to that used for the standard representation containing 101

vertices (w∗
o) such that wo = w∗

o(101/(100g + 1)).

Figure 5.9(a) shows that for interactions with a single obstacle, where collisions are

possible, that as granularity is reduced there is a critical limit below which detection

errors begin to occur reducing avoidance. This result is analogous with observations

regarding the spacing between obstacles in an array (Section 5.3.1). The limit of

granularity corresponds to an approximate spacing of 7 spatial units which given the

parameterisation defined in Table 4.1 is consistent with the argument presented by

Figure 2.1. It is suggested in the previous section that the choice of granularity may

prevent social interactions across obstacles. However, when granularity was reduced

no qualitative differences were observed between the behaviour of asocial (N = 1)

and social groups (N > 1).

Figure 5.9(b) shows that at an array level behaviour appears invariant to obstacle

representation. This could be as avoidance occurs on a different spatial scale where

relatively small changes in granularity have no relative impact on perception.
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Figure 5.9: Avoidance rates are reduced when granularity falls below the minimum density

required to detect the correct behavioural response. For social groups (ws = 1) of varying

size with baseline target preference (wt0 = 0.1) plots show: (a) probability of avoiding a

single obstacles (wo = 0.3∗ (101/(100g+1))); (b) probability of avoiding the region bounding

an array containing 25 obstacles uniformly arranged on a square grid at 500 metre intervals

(wo = 1 ∗ (101/(100g + 1))); as a function of obstacle granularity (the density of vertices

comprising the obstacle). It is important to note that obstacle avoidance weighting is scaled

relative to that used in simulation with the standard obstacle representation containing 101

vertices in order to maintain a constant avoidance potential for the obstacle(s) as a whole

relative to social and target navigation. In the case of interactions with a single obstacle, where

individuals tend to move closer to obstacles, the results show that despite offering the same

combined “strength” of avoidance there exists a critical density below which errors in judgment

lead to reduced avoidance. In simulations with obstacle arrays the cumulative response to all

vertices remains sufficient to maintain accurate avoidance at all levels of granularity.
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5.4 Discussion

In general our results compare well with the broad scale conclusions presented in

Masden et al. (2012), specifically that avoidance increases when the spacing between

columns is reduced. Whilst intuitive, it provides important validation that the model

behaves in a reasonable manner. However, the observations regarding numbers of

rows is not consistent. We observe no significant relationship between avoidance

of the array and the numbers of rows. This could be caused by several modelling

choices which combine to limit the impact. Firstly, the decision to investigate flocks

approaching the array head on means the linear projection or perceived cross section

remains constant, whereas in Masden et al. (2012) trajectories from 10 approach

angles are combined each experiencing a different perception which varies dependent

on numbers of rows (the more rows, the less apparent space is between obstacles,

which we have already seen promotes avoidance).

Perhaps the most interesting result is that the angle of approach can affect avoid-

ance so significantly. Unexpectedly it is not the angle where apparent spacing between

columns is minimised (12 degrees) that yields the most avoidance but rather an angle

of 45 degrees. This is consistent with a similar simulation in Masden et al. (2012)

which demonstrates that arrays arranged in a diagonal produce the least straight

trajectories and appears to show that this is due to increased avoidance. This may

be explained by considering the perception of the array at this angle. As individuals

move towards the array obstacles nearer to the interior will be closer and hence appear

larger effecting a greater avoidance response than those at the outer edges which are

further away. This biases movement away from the centre of the array, reinforcing

movements towards the exterior edges and therefore promoting avoidance. In short,

approaching the array at this angle presents clear avoidance strategies facilitating

early decision making even in an egalitarian group. Conversely, in the case where

no gaps are visible, groups heading towards the interior of the array have no clear

avoidance strategy, i.e. the obstacle appears to be infinite in both directions. Here,

group decisions are only affected through the emergence of a leader (discussed in
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Chapter 4) on the periphery who is eventually able to encourage the group in their

chosen direction. Otherwise, deadlock results in no decision at all with the group

entering the array.

In order to test potential mechanisms through which realistic differences in the

properties of obstacles may be simulated while maintaining a consistent approach

to determine avoidance responses we explored the effects of parameters relating to

obstacle representation, namely the strike probability and granularity. It has been

suggested that strike probability may affect avoidance as individuals surviving an

intersection could encourage others to follow. However, our results show that this

is not the case; there is no relationship between strike probability and avoidance

in the current implementation of the model. Whilst it is initially argued that this

may be due to the choice of obstacle granularity, and that reducing this value may

allow social interactions across obstacles to impact avoidance, further investigation

showed no evidence to support this explanation. Instead it is likely that the use

of relative distance to scale selection weightings may prohibit the emergence of this

behaviour; as an individual moves closer to an obstacle the relative distance to vertices

tends towards zero and since no limit has been defined the corresponding weight of

avoidance approaches infinity. This may also explain the lack of collisions observed

in our simulations. To rectify this a minimum distance could be defined below which

the weighting for a particular update partner no longer increases. The impact of

granularity on avoidance behaves as anticipated demonstrating that as the spacing

between vertices increases there is a limit beyond which individuals can no longer

accurately detect changes in appropriate behavioural response. This is important as

it confirms that reducing granularity to simulate differences in perception will not

only reduce avoidance due to a smaller overall weighting contributing to the decision

process but may also introduce an additional detection error compounding the effect.

Interestingly, the observed similarity of the effects of spacing between vertices within

an obstacle and those of spacing between obstacles in an array suggest that there

may be transferable properties visible at different spatial scales which may be used
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to infer results across situations.

This chapter demonstrates the potential use of the model to assess avian avoidance

rates at wind farms. We demonstrate that simulations produce sensible and explain-

able results which are comparable with those presented in existing work (Masden

et al., 2012). Whilst no collisions are observed for any scenario the model does at least

provide the functionality to record individual collisions as well as assess any potential

disruption to group structure which is not a feature of other collision risk models

including that developed by Masden et al. (2012). This is vitally important to fully

understand collision risk and adds to the discussion regarding energy expenditure with

disruption and splitting of flocks potentially leading to greater energy expenditure,

not just as a result of direct avoidance but longer term post avoidance, as smaller

groups are aerodynamically less efficient (Kshatriya and Blake, 1992) and potentially

susceptible to poorer navigation (Codling et al., 2007).
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Chapter 6

Discussion and conclusions
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6.1 Discussion

The study of collective motion is a rapidly emerging field of research with diverse

applications in biology, physics and computer science. For biological systems in

particular collective motion can occur in many different forms (Krause and Ruxton,

2002). This has inspired a wide range of empirical and modelling studies as scientists

seek to understand how and why distinctive movement patterns evolve (e.g. Couzin

et al., 2002; Wood and Ackland, 2007; Ballerini et al., 2008a; Bode et al., 2012b;

Nagy et al., 2013). Prior to the work presented in this thesis no studies had explicitly

investigated the impact of social interactions within animal groups on an individual’s

ability to avoid obstacles. The capability to avoid hazardous obstacles is an important

feature of navigation within natural environments and understanding the mechanisms

which result in successful avoidance manoeuvres could provide insights into the cause

of animal collisions with man-made structures. With the rapid development of the

wind power industry in the UK this has become a significant ecological problem which

must be addressed (Elphick, 2008). The discussion presented in this chapter aims to

assess the impact of this thesis to the fields of collective motion and avian collision

risk modelling.

Impact on modelling collective motion

The most significant contribution of this thesis to the modelling of collective motion is

the introduction and representation of obstacles. Rather than obstacles comprising of

primitive solid shapes each with distinct geometric characteristics and computations

as described in Reynolds (1987), obstacles are instead represented as a finite set of

points (see Figure 2.1). In this way obstacles of any shape or size can be approxi-

mated free from the inherent problems associated with intersections between lines and

complex polyhedra. Importantly, each point can be considered and interacted with

independently, in an equivalent manner to that defined for social interactions (see

Figure 1.1), according to rules based on a generalised geometric computation. This

mechanism provides a simple and intuitive approach for incorporating obstacles into
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any existing individual based model. An interesting feature of representing obstacles

as a set of points is that approximation error, controlled by the spacing between

points, can become a model parameter. Varying the density of points can represent

differences in obstacle perception and therefore avoidance behaviour. For example,

decreasing the density of points results in fewer obstacle interactions being represented

and induces a less extreme avoidance response. This could represent a set of obstacles

or areas of a single obstacle which are transparent or less easily observed. Where

obstacles of the same size may be perceived differently, for example due to differences

in colour, variations in the density of points will allow appropriate avoidance responses

to be simulated without altering the core behavioural mechanisms for avoidance. The

application of this has summarily been explored in Chapter 5 using obstacles with

uniform spacing. An interesting observation is a similarity in the effects of spacing

between vertices within an obstacle and those of spacing between obstacles in an

array. This suggests that there may be transferable properties visible at different

spatial scales which may be used in future to infer results across situations.

Prior to the work in this thesis it had been asserted that it was advantageous

to navigate as part of a group (Codling et al., 2007; Codling and Bode, 2014).

However, the studies in Chapters 2 and 4 have shown that this is not necessarily

the case where obstacle avoidance is required. The asynchronous modelling approach

outlined in Chapter 4 has provided valuable insights into the mechanisms which

influence avoidance behaviours. The algorithmic implementation reduces averaging

and allows the flow of information to be traced more clearly through the group.

This has led to the concepts discussed in Section 4.6 and the explanation developed

here can be applied to reinterpret the results in Chapter 2. Avoidance behaviour

is highly dependent on spatial position and the responses of individuals to obstacles

can be contradictory. In small groups an averaged decision can be subject to bias

from particular individuals. However, for larger groups, the number of individuals

that contribute to decisions is unlikely to result in significant bias towards a clear

avoidance response. These deadlocks lead to an increased collision risk. Perhaps the
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most difficult result to explain is the observation that highly social groups display

decreased collision risk compared with moderately social groups despite reduced

obstacle awareness. In these groups fewer individuals are informed about the location

of obstacles and so the averaged group decision has more potential to be biased

resulting in a coherent avoidance manoeuvre; similar ideas are discussed in Leonard

et al. (2012).

The application of underlying network structures in Chapter 4 has shown that any

social heterogeneity facilitates group decision making and therefore effective avoidance

behaviour. Such networks could provide a natural mechanism by which deadlocked

decisions may be broken. The results in Figure 4.3 show that groups with fewer

influential individuals are more likely to display successful avoidance. However, this

comes at the cost of cohesion and groups must balance staying together against the

benefits of more effective decision making. This perhaps suggests that social networks

in animal groups are most likely to contain multiple influential individuals rather than

a single leader.

Impact on avian collision risk modelling

The remote location of wind farms, particularly those situated offshore, presents

difficulties in obtaining detailed empirical estimates of collision risk (Langston and

Pullan, 2003). Models have become an important tool for predicting collision risk

for many species. Whilst these models are generally robust, accurate quantitative

assessment has been limited by the availability of avoidance rates which account

for the behavioural response of birds towards wind farm structures (Chamberlain

et al., 2006). This behavioural response is based on many implicit factors such as the

configuration and internal communication of flocks (flock size and social interactions)

as well as the spatial configuration of wind farms (Drewitt and Langston, 2008).

Estimates for avoidance response have been found to be highly site- and species-

specific (Cook et al., 2012). However, the current guidance for impact assessment

studies assumes a fixed rate of avoidance for each species (the avoidance rate for
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geese is estimated to be approximately 99.8%) based on empirical evidence (Scottish

Natural Heritage, 2013). The modelling frameworks described in this thesis provide

a platform in which the relationship between avoidance and implicit factors, such as

flock size, can be explored and understood.

The key finding of this work is that social interactions within groups induce a

significant non-linear relationship between collision risk and group size. The initial

investigation in Chapter 2 shows that, for interactions with a single “wind-turbine”

like obstacle, in the absence of social interactions (asocial groups) risk is independent

of group size. This supports the use of a fixed avoidance rate. However, when

social interactions are applied, avoidance displays a clear dependence on group size,

with increased risk for individuals belonging to larger groups. Intuitively this result

is understandable; increasing the number of individuals creates a more cluttered

environment limiting the available space for manoeuvres resulting in a greater risk of

collision.

Despite a different algorithmic approach, the study in Chapter 4 confirms this

result for a single obstacle and demonstrates that when extended to consider an

array containing multiple obstacles an identical dependence between avoidance (of

the array) and group size is observed. For geese in particular, which have been shown

to interact and navigate socially (Kurvers et al., 2009), this could have significant

implications for the way collision risk is estimated. It must be concluded that the

assumption that avoidance is independent of situation specific factors, and can be

applied as a constant is unsupportable.

The work in Chapter 4 shows that the model can reproduce the estimated avoid-

ance rates from empirical studies. This study demonstrates that the model can

provide insight into the effect of environmental conditions on collision risk which

has been difficult to assess using empirical techniques (Section 4.5). In addition,

it is shown that spatial considerations, such as the angle at which flocks approach

a wind farm, can have a significant effect on avoidance (Section 5.3.2). The model

provides a powerful tool in which these different social, environmental and engineering
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scenarios can be explored, both pre- and post- construction, to predict situation

specific avoidance rates and inform decisions regarding potential mitigation strategies.

However, this relies on the availability of empirical data. In order to provide reliable

quantitative predictions the model requires species specific parameters to characterise

behaviour; these parameters are not site specific and once determined can be applied

generally. In recent years stereoscopic vision techniques have been developed to track

the motion of animals and provide the data necessary to identify such parameters.

This technology has evolved and become more mobile, allowing the movements of even

the smallest of animals, for example clouds of midges, to be observed and accurately

tracked in their natural environment (Attanasi et al., 2014). This is critical for birds,

such as geese, where it can be difficult to identify field sites with sufficient, repeatable

activity.

One of the key observations from the model outlined in Chapter 4 is the simi-

larity of movement patterns produced by groups with different underlying network

structure; upon visual inspection there are no obvious characterising features which

could be used to easily distinguish between movement patterns by network structure.

It therefore seems reasonable to suggest that in the absence of individual level data,

as is the case for radar studies typically used to investigate avoidance at wind farms,

it is unlikely that the network structure of geese could be inferred with an degree of

certainty. Empirical evidence has indicated that hierarchical interactions are likely

to exist within groups of moving animals and models, including those presented in

this thesis, have shown that these structures could have a significant impact on group

movement. It is critical that these network structures be accurately determined in

order to identify their impact on collision risk. The identification of social networks

has become an emerging area of interest within studies of collective motion. Studies

have exploited modern GPS technologies to observe social structure of birds in flight

(e.g. Nagy et al., 2013). This technology is promising and could be implemented not

only to identify these networks but to provide more accurate empirical data for the

interaction of groups with obstacles.
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6.2 Conclusions and further work

Whilst the models presented in this thesis have provided a rigorous platform for

future research, it is clear that further detailed development is needed. In order

to model birds more realistically it is necessary to consider movements in three-

dimensions. This has always been a consideration throughout the development pro-

cess and modelling decisions have been made in order to facilitate a simple transition

to three-dimensional space without the need to alter the existing framework. These

developments are important to investigate the effect of flight height on collisions where

accurate empirical observation is difficult.

The results of model simulations have shown consistently that the presence of

social interactions can have a large effect on the avoidance response of groups towards

wind turbines. It must be concluded from this work that the simple assumption made

by all collision risk models that avoidance rates are independent of social factors, such

as group size, cannot be supported.

Crucially, the models presented have demonstrated an ability to test hypotheses

about collision risk which are challenging to observe empirically, for example the

effects of poor visibility where use of the visual techniques argued necessary to assess

the behaviour of socially navigating groups would be seriously limited. This will

be particularly important to supplement discussions relating to vertical avoidance at

wind farms which currently relies upon human observation.

Despite having been explicitly developed to consider geese and wind farms the

models are general and therefore not limited to this particular example of collective

motion. The versatility of the modelling approach makes it a powerful tool to improve

understanding of collective motion. The obstacle representation used throughout this

work is widely applicable and can be introduced into other individual based model

frameworks. An extension of these models could be used to explore the impact of other

renewable technologies on socially navigating animals, for example fish interacting

with tidal turbines, which is an area of growing concern amongst ecologists.

The study of collective motion has been largely exploratory, but there are many
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important ecological problems where it can be applied. The application in this thesis

is only an example, but has shown that the ideas that have been generated over the

past decade provide a robust basis on which tools can be developed to address these

issues. This perhaps signals the evolution of this field towards a more translational

science.
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